Science.gov

Sample records for flood hazard mapping

  1. Flood hazard probability mapping method

    NASA Astrophysics Data System (ADS)

    Kalantari, Zahra; Lyon, Steve; Folkeson, Lennart

    2015-04-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. Factors such as topography, land use, soil data and other PCDs were analysed in terms of their relative importance for flood generation. The specific objective was to test the methodology using statistical methods to identify factors having a significant role on controlling flooding. A second objective was to generate an index quantifying flood probability value for each cell, based on different weighted factors, in order to provide a more accurate analysis of potential high flood hazards than can be obtained using just a single variable. The ability of indicator covariance to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. By using PCD data, realistic representations of high probability flood regions was made, despite the magnitude of rain events. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  2. Flood Hazard Mapping Assessment for Lebanon

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie

    2014-05-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of

  3. Flood fatality hazard and flood damage hazard: combining multiple hazard characteristics into meaningful maps for spatial planning

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Klijn, F.; van de Pas, B.; Slager, C. T. J.

    2015-06-01

    For comprehensive flood risk management, accurate information on flood hazards is crucial. While in the past an estimate of potential flood consequences in large areas was often sufficient to make decisions on flood protection, there is currently an increasing demand to have detailed hazard maps available to be able to consider other risk-reducing measures as well. Hazard maps are a prerequisite for spatial planning, but can also support emergency management, the design of flood mitigation measures, and the setting of insurance policies. The increase in flood risks due to population growth and economic development in hazardous areas in the past shows that sensible spatial planning is crucial to prevent risks increasing further. Assigning the least hazardous locations for development or adapting developments to the actual hazard requires comprehensive flood hazard maps. Since flood hazard is a multi-dimensional phenomenon, many different maps could be relevant. Having large numbers of maps to take into account does not, however, make planning easier. To support flood risk management planning we therefore introduce a new approach in which all relevant flood hazard parameters can be combined into two comprehensive maps of flood damage hazard and flood fatality hazard.

  4. Flood fatality hazard and flood damage hazard: combining multiple hazard characteristics into meaningful maps for spatial planning

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Klijn, F.; van de Pas, B.; Slager, C. T. J.

    2015-01-01

    For comprehensive flood risk management, accurate information on flood hazards is crucial. While in the past an estimate of potential flood consequences in large areas was often sufficient to make decisions on flood protection, there currently is an increasing demand to have detailed hazard maps available to be able to consider other risk reducing measures as well. Hazard maps are a prerequisite for spatial planning, but can also support emergency management, the design of flood mitigation measures, and the setting of insurance policies. The increase in flood risks due to population growth and economic development in hazardous areas in the past shows that sensible spatial planning is crucial to prevent risks increasing further. Assigning the least hazardous locations for development or adapting developments to the actual hazard requires comprehensive flood hazard maps. Since flood hazard is a multi-dimensional phenomenon, many different maps could be relevant. Having large numbers of maps to take into account does, however, not make planning easier. To support flood risk management planning we therefore introduce a new approach in which all relevant flood hazard parameters can be combined into two comprehensive maps of flood damage hazard respectively flood fatality hazard.

  5. Scoping of Flood Hazard Mapping Needs for Penobscot County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program (MFMP), began scoping work in 2006 for Penobscot County. Scoping activities included assembling existing data and map needs information for communities in Penobscot County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database with information gathered during the scoping process. As of 2007, the average age of the FEMA floodplain maps in Penobscot County, Maine, is 22 years, based on the most recent revisions to the maps. Because the revisions did not affect all the map panels in each town, however, the true average date probably is more than 22 years. Many of the studies were published in the mid-1980s. Since the studies were completed, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms

  6. Scoping of Flood Hazard Mapping Needs for Lincoln County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Lincoln County. Scoping activities included assembling existing data and map needs information for communities in Lincoln County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) database with information gathered during the scoping process. The average age of the FEMA floodplain maps in Lincoln County, Maine is at least 17 years. Many of these studies were published in the mid- to late-1980s, and some towns have partial maps that are more recent than their study. However, in the ensuing 15-20 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.

  7. Scoping of Flood Hazard Mapping Needs for Hancock County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Hancock County. Scoping activities included assembling existing data and map needs information for communities in Hancock County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) database with information gathered during the scoping process. The average age of the FEMA floodplain maps (all types) in Hancock County, Maine, is at least 19 years. Most of these studies were published in the late 1980s and early 1990s, and no study is more recent than 1992. Some towns have partial maps that are more recent than their study, indicating that the true average age of the data is probably more than 19 years. Since the studies were done, development has occurred in some of the watersheds and the characteristics of the watersheds have changed. Therefore, many of the older studies may not depict current conditions or accurately estimate

  8. Scoping of Flood Hazard Mapping Needs for Androscoggin County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed and as funds allow. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Androscoggin County. Scoping activities included assembling existing data and map needs information for communities in Androscoggin County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database with information gathered during the scoping process. The average age of the FEMA floodplain maps in Androscoggin County, Maine, is at least 17 years. Most studies were published in the early 1990s, and some towns have partial maps that are more recent than their study date. Since the studies were done, development has occurred in many of the watersheds and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.

  9. High resolution mapping of flood hazard for South Korea

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos

    2015-04-01

    Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood

  10. A method for mapping flood hazard along roads.

    PubMed

    Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-01-15

    A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways. PMID:24361730

  11. Scoping of flood hazard mapping needs for Somerset County, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Somerset County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Somerset County. Scoping activities included assembling existing data and map needs information for communities in Somerset County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Somerset County, Maine is 18.1 years. Most of these studies were in the late 1970's to the mid 1980

  12. Scoping of flood hazard mapping needs for Kennebec County, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Kennebec County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Kennebec County. Scoping activities included assembling existing data and map needs information for communities in Kennebec County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Kennebec County, Maine is 16 years. Most of these studies were in the late 1970's to the mid 1980s

  13. Scoping of flood hazard mapping needs for Cumberland County, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Cumberland County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Cumberland County. Scoping activities included assembling existing data and map needs information for communities in Cumberland County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Cumberland County, Maine is 21 years. Most of these studies were in the early to mid 1980s. However, in the ensuing 20-25 years, development has occurred in many of the

  14. Probabilistic flood hazard mapping: effects of uncertain boundary conditions

    NASA Astrophysics Data System (ADS)

    Domeneghetti, A.; Vorogushyn, S.; Castellarin, A.; Merz, B.; Brath, A.

    2013-08-01

    Comprehensive flood risk assessment studies should quantify the global uncertainty in flood hazard estimation, for instance by mapping inundation extents together with their confidence intervals. This appears of particular importance in the case of flood hazard assessments along dike-protected reaches, where the possibility of occurrence of dike failures may considerably enhance the uncertainty. We present a methodology to derive probabilistic flood maps in dike-protected flood prone areas, where several sources of uncertainty are taken into account. In particular, this paper focuses on a 50 km reach of River Po (Italy) and three major sources of uncertainty in hydraulic modelling and flood mapping: uncertainties in the (i) upstream and (ii) downstream boundary conditions, and (iii) uncertainties in dike failures. Uncertainties in the definition of upstream boundary conditions (i.e. design-hydrographs) are assessed through a copula-based bivariate analysis of flood peaks and volumes. Uncertainties in the definition of downstream boundary conditions are characterised by uncertainty in the rating curve with confidence intervals which reflect discharge measurement and interpolation errors. The effects of uncertainties in boundary conditions and randomness of dike failures are assessed by means of the Inundation Hazard Assessment Model (IHAM), a recently proposed hybrid probabilistic-deterministic model that considers three different dike failure mechanisms: overtopping, piping and micro-instability due to seepage. The results of the study show that the IHAM-based analysis enables probabilistic flood hazard mapping and provides decision-makers with a fundamental piece of information for devising and implementing flood risk mitigation strategies in the presence of various sources of uncertainty.

  15. Flood hazard maps from SAR data and global hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe

    2015-04-01

    With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single

  16. Developments in large-scale coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Dottori, Francesco; Giardino, Alessio; Bouziotas, Dimitrios; Bianchi, Alessandra; Salamon, Peter; Feyen, Luc

    2016-08-01

    Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a ˜ 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20-70 % range.

  17. Flood Hazard Mapping over Large Regions using Geomorphic Approaches

    NASA Astrophysics Data System (ADS)

    Samela, Caterina; Troy, Tara J.; Manfreda, Salvatore

    2016-04-01

    Historically, man has always preferred to settle and live near the water. This tendency has not changed throughout time, and today nineteen of the twenty most populated agglomerations of the world (Demographia World Urban Areas, 2015) are located along watercourses or at the mouth of a river. On one hand, these locations are advantageous from many points of view. On the other hand, they expose significant populations and economic assets to a certain degree of flood hazard. Knowing the location and the extent of the areas exposed to flood hazards is essential to any strategy for minimizing the risk. Unfortunately, in data-scarce regions the use of traditional floodplain mapping techniques is prevented by the lack of the extensive data required, and this scarcity is generally most pronounced in developing countries. The present work aims to overcome this limitation by defining an alternative simplified procedure for a preliminary, but efficient, floodplain delineation. To validate the method in a data-rich environment, eleven flood-related morphological descriptors derived from DEMs have been used as linear binary classifiers over the Ohio River basin and its sub-catchments, measuring their performances in identifying the floodplains at the change of the topography and the size of the calibration area. The best performing classifiers among those analysed have been applied and validated across the continental U.S. The results suggest that the classifier based on the index ln(hr/H), named the Geomorphic Flood Index (GFI), is the most suitable to detect the flood-prone areas in data-scarce environments and for large-scale applications, providing good accuracy with low requirements in terms of data and computational costs. Keywords: flood hazard, data-scarce regions, large-scale studies, binary classifiers, DEM, USA.

  18. Utah Flooding Hazard: Raising Public Awareness through the Creation of Multidisciplinary Web-Based Maps

    NASA Astrophysics Data System (ADS)

    Castleton, J.; Erickson, B.; Bowman, S. D.; Unger, C. D.

    2014-12-01

    The Utah Geological Survey's (UGS) Geologic Hazards Program has partnered with the U.S. Army Corps of Engineers to create geologically derived web-based flood hazard maps. Flooding in Utah communities has historically been one of the most damaging geologic hazards. The most serious floods in Utah have generally occurred in the Great Salt Lake basin, particularly in the Weber River drainage on the western slopes of the Wasatch Range, in areas of high population density. With a growing population of 2.9 million, the state of Utah is motivated to raise awareness about the potential for flooding. The process of increasing community resiliency to flooding begins with identification and characterization of flood hazards. Many small communities in areas experiencing rapid growth have not been mapped completely by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Existing FIRM maps typically only consider drainage areas that are greater than one square mile in determining flood zones and do not incorporate geologic data, such as the presence of young, geologically active alluvial fans that indicate a high potential for debris flows and sheet flooding. Our new flood hazard mapping combines and expands on FEMA data by incorporating mapping derived from 1:24,000-scale UGS geologic maps, LiDAR data, digital elevation models, and historical aerial photography. Our flood hazard maps are intended to supplement the FIRM maps to provide local governments and the public with additional flood hazard information so they may make informed decisions, ultimately reducing the risk to life and property from flooding hazards. Flooding information must be widely available and easily accessed. One of the most effective ways to inform the public is through web-based maps. Web-based flood hazard maps will not only supply the public with the flood information they need, but also provides a platform to add additional geologic hazards to an easily accessible format.

  19. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    NASA Astrophysics Data System (ADS)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  20. Modelling Inland Flood Events for Hazard Maps in Taiwan

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage

  1. Flood hazard mapping using open source hydrological tools

    NASA Astrophysics Data System (ADS)

    Tollenaar, Daniel; Wensveen, Lex; Winsemius, Hessel; Schellekens, Jaap

    2014-05-01

    Commonly, flood hazard maps are produced by building detailed hydrological and hydraulic models. These models are forced and parameterized by locally available, high resolution and preferably high quality data. The models use a high spatio-temporal resolution, resulting in large computational effort. Also, many hydraulic packages that solve 1D (canal) and 2D (overland) shallow water equations, are not freeware nor open source. In this contribution, we evaluate whether simplified open source data and models can be used for a rapid flood hazard assessment and to highlight areas where more detail may be required. The validity of this approach is tested by using four combinations of open-source tools: (1) a global hydrological model (PCR-GLOBWB, Van Beek and Bierkens, 2009) with a static inundation routine (GLOFRIS, Winsemius et al. 2013); (2) a global hydrological model with a dynamic inundation model (Subgrid, Stelling, 2012); (3) a local hydrological model (WFLOW) with a static inundation routine; (4) and a local hydrological model with a dynamic inundation model. The applicability of tools is assessed on (1) accuracy to reproduce the phenomenon, (2) time for model setup and (3) computational time. The performance is tested in a case study in the Rio Mamoré, one of the tributaries of the Amazone River (230,000 km2). References: Stelling, G.S.: Quadtree flood simulations with sub-grid digital elevation models, Proceedings of the ICE - Water Management, Volume 165, Issue 10, 01 November 2012 , pages 567 -580 Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci. Discuss., 9, 9611-9659, doi:10.5194/hessd-9-9611-2012, 2012 Van Beek, L. P. H. and Bierkens, M. F. P.: The global hydrological model PCR-GLOBWB: conceptualization, parameterization and verification, Dept. of Physical Geography, Utrecht University, Utrecht, available at: http

  2. A procedure for global flood hazard mapping - the Africa case study

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Feyen, Luc; Barbosa, Paulo

    2015-04-01

    River floods are recognized as one of the major causes of economic damages and loss of human lives worldwide, and their impact in the next decades could be dramatically increased by socio-economic and climatic changes. In Africa, the availability of tools and models for predicting, mapping and analysing flood hazard and risk is still limited. Consistent, high-resolution (1km or less), continental-scale hazard maps are extremely valuable for local authorities and water managers to mitigate flood risk and to reduce catastrophic impacts on population and assets. The present work describes the development of a procedure for global flood hazard mapping, which is tested and applied over Africa to derive continental flood hazard maps. We derive a long-term dataset of daily river discharges from global hydrological simulations to design flood hydrographs for different return periods for the major African river network. We then apply a hydrodynamic model to identify flood-prone areas in major river catchments, which are merged to create pan-African flood hazard maps at 900m resolution. The flood map designed for a return period of 20 years is compared with a mosaic of satellite images showing all flooded areas in the period 2000-2014. We discuss strengths and limitations emerging from the comparison and present potential future applications and developments of the methodology.

  3. Global flood hazard mapping using statistical peak flow estimates

    NASA Astrophysics Data System (ADS)

    Herold, C.; Mouton, F.

    2011-01-01

    Our aim is to produce a world map of flooded areas for a 100 year return period, using a method based on large rivers peak flow estimates derived from mean monthly discharge time-series. Therefore, the map is supposed to represent flooding that affects large river floodplains, but not events triggered by specific conditions like coastal or flash flooding for instance. We first generate for each basin a set of hydromorphometric, land cover and climatic variables. In case of an available discharge record station at the basin outlet, we base the hundred year peak flow estimate on the corresponding time-series. Peak flow magnitude for basin outlets without gauging stations is estimated by statistical means, performing several regressions on the basin variables. These peak flow estimates enable the computation of corresponding flooded areas using hydrologic GIS processing on digital elevation model.

  4. Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Takara, K. T.

    2015-12-01

    Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.

  5. Development and evaluation of a framework for global flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Hirpa, Feyera Aga; Feyen, Luc

    2016-08-01

    Nowadays, the development of high-resolution flood hazard models have become feasible at continental and global scale, and their application in developing countries and data-scarce regions can be extremely helpful to increase preparedness of population and reduce catastrophic impacts. The present work describes the development of a novel procedure for global flood hazard mapping, based on the most recent advances in large scale flood modelling. We derive a long-term dataset of daily river discharges from the hydrological simulations of the Global Flood Awareness System (GloFAS). Streamflow data is downscaled on a high resolution river network and processed to provide the input for local flood inundation simulations, performed with a two-dimensional hydrodynamic model. All flood-prone areas identified along the river network are then merged to create continental flood hazard maps for different return periods at 30‧‧ resolution. We evaluate the performance of our methodology in several river basins across the globe by comparing simulated flood maps with both official hazard maps and a mosaic of flooded areas detected from satellite images. The evaluation procedure also includes comparisons with the results of other large scale flood models. We further investigate the sensitivity of the flood modelling framework to several parameters and modelling approaches and identify strengths, limitations and possible improvements of the methodology.

  6. Development and evaluation of a framework for global flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2016-04-01

    Nowadays, the development of high-resolution flood hazard models have become feasible at continental and global scale, and their application in developing countries and data-scarce regions can be extremely helpful to increase preparedness of population and reduce catastrophic impacts. The present work describes the development of a novel procedure for global flood hazard mapping, based on the most recent advances in large scale flood modelling. We derive a long-term dataset of daily river discharges from the global hydrological simulations of the Global Flood Awareness System (GloFAS). Streamflow data is downscaled on a high resolution river network and processed to provide the input for local flood inundation simulations, performed with a two-dimensional hydrodynamic model. All flood-prone areas identified along the river network are then merged to create continental flood hazard maps for different return periods at 30'' resolution. We evaluate the performance of our methodology in several large river basins by comparing simulated flood maps against both official hazard maps and satellite-derived flood maps. We further investigate the sensitivity of the flood modelling framework to different parameters and modelling approaches and identify strengths, limitations and possible improvements of the methodology.

  7. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  8. Making Coastal Flood Hazard Maps to Support Decision-Making - What End Users Want

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Cheung, W. H.; Luke, A.; Gallien, T.; Aghakouchak, A.; Feldman, D.; Matthew, R.; Sanders, B. F.

    2015-12-01

    Growing awareness about accelerating Sea Level Rise (SLR) is contributing to coastal resilience initiatives around the world, with an emphasis on coastal planning, infrastructure adaptation, and emergency preparedness. Maps are the primary tool for communicating flood hazard, and their design raises two fundamental challenges: (1) representing the flood hazard in a scientifically defensible manner considering complexity associated with multiple drivers of flooding (e.g., rainfall, streamflow, storm surge, high tides, waves), urban infrastructure, and human interventions (e.g. pumping, sand bags) and (2) effectively communicating hazard information considering the specific needs of decision-makers. In this research we rely on a hydrodynamic model of coastal flooding that can be forced by multiple drivers of flooding (rainfall, high water levels, and waves) to simulate extreme flooding scenarios at street-level resolution. Model scenarios include 20%, 10%, 5%, 2% and 1% annual exceedance probability (AEP) scenarios for each possible driver of flooding and for both present and future sea levels. The resulting flood zones and related flood depths are aggregated using GIS techniques and transformed into a set of maps depicting annual exceedance probability, multi-year flood probability, 1% AEP flooding depth, uncertainty associated with model forcing data, and road network accessibility. The usability of each map is assessed through focus group discussions with local stakeholders who have distinct decision-making needs, such as homeowners, planners, and emergency response managers. Findings from this research reveal the mapped flood risk information and visualizations preferred by different decision-makers.

  9. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    NASA Astrophysics Data System (ADS)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  10. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  11. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  12. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  13. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping efforts. The criterion to be used in the evaluation of dune erosion will apply to primary frontal dunes...

  14. Probabilistic floodplain hazard mapping: managing uncertainty by using a bivariate approach for flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Tito Aronica, Giuseppe

    2014-05-01

    Floods are a global problem and are considered the most frequent natural disaster world-wide. Many studies show that the severity and frequency of floods have increased in recent years and underline the difficulty to separate the effects of natural climatic changes and human influences as land management practices, urbanization etc. Flood risk analysis and assessment is required to provide information on current or future flood hazard and risks in order to accomplish flood risk mitigation, to propose, evaluate and select measures to reduce it. Both components of risk can be mapped individually and are affected by multiple uncertainties as well as the joint estimate of flood risk. Major sources of uncertainty include statistical analysis of extremes events, definition of hydrological input, channel and floodplain topography representation, the choice of effective hydraulic roughness coefficients. The classical procedure to estimate flood discharge for a chosen probability of exceedance is to deal with a rainfall-runoff model associating to risk the same return period of original rainfall, in accordance with the iso-frequency criterion. Alternatively, a flood frequency analysis to a given record of discharge data is applied, but again the same probability is associated to flood discharges and respective risk. Moreover, since flood peaks and corresponding flood volumes are variables of the same phenomenon, they should be, directly, correlated and, consequently, multivariate statistical analyses must be applied. This study presents an innovative approach to obtain flood hazard maps where hydrological input (synthetic flood design event) to a 2D hydraulic model has been defined by generating flood peak discharges and volumes from: a) a classical univariate approach, b) a bivariate statistical analysis, through the use of copulas. The univariate approach considers flood hydrographs generation by an indirect approach (rainfall-runoff transformation using input rainfall

  15. A new approach for deriving Flood hazard maps from SAR data and global hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Matgen, P.; Hostache, R.; Chini, M.; Giustarini, L.; Pappenberger, F.; Bally, P.

    2014-12-01

    With the flood consequences likely to amplify because of the growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method that integrates global flood inundation modeling and microwave remote sensing is presented. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers opportunities for estimating flood non-exceedance probabilities in a robust way. These probabilities can be attributed to historical satellite observations. Time series of SAR-derived flood extent maps and associated non-exceedance probabilities can then be combined generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. In principle, this can be done for any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. As a test case we applied the method on the Severn River (UK) and the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. The first results confirm the potentiality of the method. However, further developments on two aspects are required to improve the quality of the hazard map and to ensure the acceptability of the product by potential end user organizations. On the one hand, it is of paramount importance to

  16. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.

    2014-12-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient

  17. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil

    2015-04-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more

  18. Scoping of flood hazard mapping needs for Belknap County, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) New Hampshire-Vermont Water Science Center for scoping of flood-hazard mapping needs for Belknap County, New Hampshire, under Federal Emergency Management Agency (FEMA) Inter-Agency agreement Number HSFE01-05X-0018.

  19. Scoping of flood hazard mapping needs for Merrimack County, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) New Hampshire/Vermont Water Science Center for scoping of flood-hazard mapping needs for Merrimack County, New Hampshire, under Federal Emergency Management Agency (FEMA) Inter-Agency agreement Number HSFE01-05X-0018.

  20. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    NASA Astrophysics Data System (ADS)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  1. 78 FR 14318 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may...

  2. Scoping of flood hazard mapping needs for Coos County, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) New Hampshire/ Vermont Water Science Center for scoping of flood-hazard mapping needs for Coos County, New Hampshire, under Federal Emergency Management Agency (FEMA) Inter-Agency agreement Number HSFE01-05X-0018. One of the priorities for FEMA, Region 1, is to develop updated Digital Flood Insurance Rate Maps (DFIRMs) and Flood Insurance Studies (FIS) for Coos County, New Hampshire. The information provided in this report will be used to develop the scope for the first phase of a multiyear project that will ultimately result in the production of new DFIRMs and FIS for the communities and flooding sources in Coos County.

  3. Flood-hazard mapping in Honduras in response to Hurricane Mitch

    USGS Publications Warehouse

    Mastin, M.C.

    2002-01-01

    The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.

  4. 77 FR 55856 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in......

  5. 78 FR 48884 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  6. 77 FR 39721 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in......

  7. Scoping of flood hazard mapping needs for Carroll County, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) New Hampshire/Vermont Water Science Center for scoping of flood-hazard mapping needs for Carroll County, New Hampshire, under Federal Emergency Management Agency (FEMA) Inter-Agency agreement Number HSFE01-05X-0018. FEMA is embarking on a map modernization program nationwide to: 1. Gather and develop updated data for all flood prone areas in support of flood plain management. 2. Provide maps and data in a digital format for the improvement in the efficiency and precision of the mapping program. 3. Integrate FEMA's community and state partners into the mapping process One of the priorities for FEMA, Region 1, is to develop updated Digital Flood Insurance Rate Maps (DFIRMs) and Flood Insurance Studies (FIS) for Carroll County, New Hampshire. The information provided in this report will be used to develop the scope for the first phase of a multiyear project that will ultimately result in the production of new DFIRMs and FIS for the communities and flooding sources in Carroll County. The average age of the FEMA flood plain maps in Carroll County, New Hampshire is 18 years. Most of these studies were computed in the late 1970s to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the rivers and streams and their flood plains have changed as a result. In addition, as development has occurred, peak flooding has increased downstream of the development from increased flows across impervious surfaces. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. Carroll County gained 3,773 residents between 2000 and 2005. This represents a growth of 8.6 percent compared to 6.0 percent for the state as a whole. Carroll County ranks second (from highest to lowest) out of New Hampshire's 10 counties in terms of rate of population increase. Since 1990, Carroll County has gained 12,029 residents

  8. Inland Flood Hazards

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen E.

    2000-07-01

    A comprehensive, interdisciplinary review of issues related to inland flood hazards, this important work addresses physical controls on flooding, flood processes and effects, and responses to flooding, from the perspectives of human, aquatic, and riparian communities. The contributors, recognized experts in their fields, draw on examples and case studies of inland flood hazards from around the world. The volume is unique in that it addresses how the nonoccurrence of floods, in association with flow regulation and other human manipulation of river systems, may create hazards for aquatic and riparian communities. This book will be a valuable resource for all professionals concerned with inland flood hazards.

  9. 78 FR 45938 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... flood hazard information for each community is available for inspection at the respective Community Map... community or online through the FEMA Map Service Center at www.msc.fema.gov . The flood hazard... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal...

  10. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing

    USGS Publications Warehouse

    Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.

    2005-01-01

    Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In

  11. Flood Hazard Mapping Assessment for El-Awali River Catchment-Lebanon

    NASA Astrophysics Data System (ADS)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Hijazi, Samar

    2016-04-01

    River flooding prediction and flood forecasting has become an essential stage in the major flood mitigation plans worldwide. Delineation of floodplains resulting from a river flooding event requires coupling between a Hydrological rainfall-runoff model to calculate the resulting outflows of the catchment and a hydraulic model to calculate the corresponding water surface profiles along the river main course. In this study several methods were applied to predict the flood discharge of El-Awali River using the available historical data and gauging records and by conducting several site visits. The HEC-HMS Rainfall-Runoff model was built and applied to calculate the flood hydrographs along several outlets on El-Awali River and calibrated using the storm that took place on January 2013 and caused flooding of the major Lebanese rivers and by conducting additional site visits to calculate proper river sections and record witnesses of the locals. The Hydraulic HEC-RAS model was then applied to calculate the corresponding water surface profiles along El-Awali River main reach. Floodplain delineation and Hazard mapping for 10,50 and 100 years return periods was performed using the Watershed Modeling System WMS. The results first show an underestimation of the flood discharge recorded by the operating gauge stations on El-Awali River, whereas, the discharge of the 100 years flood may reach up to 506 m3/s compared by lower values calculated using the traditional discharge estimation methods. Second any flooding of El-Awali River may be catastrophic especially to the coastal part of the catchment and can cause tragic losses in agricultural lands and properties. Last a major floodplain was noticed in Marj Bisri village this floodplain can reach more than 200 meters in width. Overall, performance was good and the Rainfall-Runoff model can provide valuable information about flows especially on ungauged points and can perform a great aid for the floodplain delineation and flood

  12. GIS data for the Seaside, Oregon, Tsunami Pilot Study to modernize FEMA flood hazard maps

    USGS Publications Warehouse

    Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.

    2007-01-01

    A Tsunami Pilot Study was conducted for the area surrounding the coastal town of Seaside, Oregon, as part of the Federal Emergency Management's (FEMA) Flood Insurance Rate Map Modernization Program (Tsunami Pilot Study Working Group, 2006). The Cascadia subduction zone extends from Cape Mendocino, California, to Vancouver Island, Canada. The Seaside area was chosen because it is typical of many coastal communities subject to tsunamis generated by far- and near-field (Cascadia) earthquakes. Two goals of the pilot study were to develop probabilistic 100-year and 500-year tsunami inundation maps using Probabilistic Tsunami Hazard Analysis (PTHA) and to provide recommendations for improving tsunami hazard assessment guidelines for FEMA and state and local agencies. The study was an interagency effort by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, and FEMA, in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. The pilot study model data and results are published separately as a geographic information systems (GIS) data report (Wong and others, 2006). The flood maps and GIS data are briefly described here.

  13. Exploring local risk managers' use of flood hazard maps for risk communication purposes in Baden-Württemberg

    NASA Astrophysics Data System (ADS)

    Kjellgren, S.

    2013-07-01

    In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.

  14. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice In New York”

    PubMed Central

    Maantay, Juliana; Maroko, Andrew

    2009-01-01

    This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly-developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal weighting interpolation. Compared to CEDS, 37 percent and 72 percent fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts. PMID:20047020

  15. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice In New York"

    PubMed

    Maantay, Juliana; Maroko, Andrew

    2009-01-01

    This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly-developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal weighting interpolation. Compared to CEDS, 37 percent and 72 percent fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts. PMID:20047020

  16. Seaside, Oregon Tsunami Pilot Study - modernization of FEMA flood hazard maps

    USGS Publications Warehouse

    Tsunami Pilot Study Working Group

    2006-01-01

    FEMA Flood Insurance Rate Map (FIRM) guidelines do not currently exist for conducting and incorporating tsunami hazard assessments that reflect the substantial advances in tsunami research achieved in the last two decades; this conclusion is the result of two FEMA-sponsored workshops and the associated Tsunami Focused Study. Therefore, as part of FEMA's Map Modernization Program, a Tsunami Pilot Study was carried out in the Seaside/Gearhart, Oregon, area to develop an improved Probabilistic Tsunami Hazard Assessment (PTHA) methodology and to provide recommendations for improved tsunami hazard assessment guidelines. The Seaside area was chosen because it is typical of many coastal communities in the section of the Pacific Coast from Cape Mendocino to the Strait of Juan de Fuca, and because State Agencies and local stakeholders expressed considerable interest in mapping the tsunami threat to this area. The study was an interagency effort by FEMA, U.S. Geological Survey and the National Oceanic and Atmospheric Administration, in collaboration with the University of Southern California, Middle East Technical University. Portland State University, Horning Geosciences, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. Draft copies and a briefing on the contents, results and recommendations of this document were provided to FEMA officials before final publication.

  17. The use of remote sensing imagery for environmental land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Miller, D. A.; Foster, K. E.

    1976-01-01

    Flood hazard maps have been constructed for Graham, Yuma, and Yavapai Counties in Arizona using remote sensing techniques. Watershed maps of priority areas were selected on the basis of their interest to the county planning staff and represented areas of imminent or ongoing development and those known to be subject to inundation by storm runoff. Landsat color infrared imagery at scales of 1:1,000,000, 1:500,000, and 1:250,000 was used together with high-altitude aerial photography at scales of 1:120,000 and 1:60,000 to determine drainage patterns and erosional features, soil type, and the extent and type of ground cover. The satellite imagery was used in the form of 70 mm chips for enhancement in a color additive viewer and in all available enlargement modes. Field checking served as the main backup to the interpretations. Areas with high susceptibility to flooding were determined with a high level of confidence from the remotely sensed imagery.

  18. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  19. The Study of Insurance Premium Rate GIS Mapping Considering the Storm and Flood Hazard Risks

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Lee, I. S.

    2016-06-01

    Recently, the number of natural disaster occurrence is increasing because of abnormal changes of weather in Korea. In Korea the storm and flood insurance system is in effect to prevent these natural disasters. The national storm and flood insurance Premium rate is very low and the risk of adverse selection resides because of choosing by who lives in high risk area. To solve these problems, the storm and flood insurance rate map are required. In this study, the prototype of storm and flood insurance premium rate map of the Ulsan, Korea was made and the method of GIS analysis for the insurance premium rate calculating and the procedure of the Ulsan storm and flood insurance rate map were researched.

  20. Hazard Maps in the Classroom.

    ERIC Educational Resources Information Center

    Cross, John A.

    1988-01-01

    Emphasizes the use of geophysical hazard maps and illustrates how they can be used in the classroom from kindergarten to college level. Depicts ways that hazard maps of floods, landslides, earthquakes, volcanoes, and multi-hazards can be integrated into classroom instruction. Tells how maps may be obtained. (SLM)

  1. 78 FR 28879 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...This notice lists communities where the addition or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood hazard determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports,......

  2. 78 FR 32673 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...This notice lists communities where the addition or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood hazard determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports,......

  3. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  4. Building a flood hazard map due to magma effusion into the caldera lake of the Baekdusan Volcano

    NASA Astrophysics Data System (ADS)

    Lee, K.; Kim, S.; Yun, S.; Yu, S.; Kim, I.

    2013-12-01

    Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. The volcano is showing signs of waking from a century-long slumber recently and the volcanic ash may spread up to the northeastern of Japan. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. Floods from lake-filled calderas may be particularly large and high. Volcanic flood may cause significant hydrologic hazards for this reason. This study focuses on constructing a flood hazard map triggered by the uplift of lake bottom due to magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by the past record from other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic model (Flo-2D) runs to simulate channel routing downstream. The final goal of the study stresses the potential flood hazard represented by the huge volume of water in the caldera lake, the unique geography, and the limited control capability. he study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Effusion rate, Volcanic flood, Caldera lake, Uplift, Flood hazard map Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from

  5. 78 FR 47330 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...://www.r9map.org/ September 9, 2013 040012 areas of Cochise English Chair, Flood Control Docs/13-09-0282P... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area...

  6. 78 FR 28875 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...New or modified Base (1% annual-chance) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as shown on the indicated Letter of Map Revision (LOMR) for each of the communities listed in the table below are finalized. Each LOMR revises the Flood......

  7. 78 FR 21143 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  8. 78 FR 52954 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  9. 78 FR 52953 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  10. 78 FR 5820 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  11. 78 FR 5821 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  12. 78 FR 45938 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  13. 78 FR 45937 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  14. 78 FR 9406 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  15. 78 FR 43905 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  16. 78 FR 14316 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  17. 78 FR 43904 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  18. 78 FR 20337 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  19. 78 FR 20338 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  20. 78 FR 14577 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  1. 78 FR 14576 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  2. 78 FR 36216 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  3. 78 FR 36219 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  4. 78 FR 29762 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  5. 78 FR 36220 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  6. 78 FR 32678 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  7. 78 FR 32679 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  8. 78 FR 64521 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  9. 78 FR 29761 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  10. 78 FR 43904 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  11. 78 FR 29763 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  12. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Huggel, C.; Cochachin, A.; Guillén, S.; García, J.

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream communities and city of Carhuaz. In this study we evaluate how such complex cascades of mass movement processes can be simulated coupling different physically-based numerical models. We furthermore develop an approach that allows us to elaborate corresponding hazard maps according to existing guidelines for debris flows and based on modelling results and field work.

  13. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Evaluation of sand dunes in... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in...-established with long-standing vegetative cover, such as the placement of sand materials in a...

  14. Morphometric analyze for flood hazard map using DTM built with LIDAR and Echo-sounder data in Danube Delta

    NASA Astrophysics Data System (ADS)

    Constantinescu, A.; Nichersu, I.; Trifanov, C.; Nichersu, I.; Mierla, M.

    2012-04-01

    will be merged with high quality LIDAR data available for the whole area and the accurate DTM result will help in better understanding of the morphology of the area, with acurate models and flooding scenarios. It is well known that is difficult to determine and delineate on the topographic maps, the floods limit, which is essential in the preparation of hazard maps. To perform a morphometric analysis for real floods is needed to be defined precisely on the 3D model. In this paper, we wish to present an analysis of flooding phenomenon in the Danube Delta, based on the study of digital models.

  15. Seaside, Oregon, Tsunami Pilot Study-Modernization of FEMA Flood Hazard Maps: GIS Data

    USGS Publications Warehouse

    Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.

    2006-01-01

    Introduction: The Federal Emergency Management Agency (FEMA) Federal Insurance Rate Map (FIRM) guidelines do not currently exist for conducting and incorporating tsunami hazard assessments that reflect the substantial advances in tsunami research achieved in the last two decades; this conclusion is the result of two FEMA-sponsored workshops and the associated Tsunami Focused Study (Chowdhury and others, 2005). Therefore, as part of FEMA's Map Modernization Program, a Tsunami Pilot Study was carried out in the Seaside/Gearhart, Oregon, area to develop an improved Probabilistic Tsunami Hazard Analysis (PTHA) methodology and to provide recommendations for improved tsunami hazard assessment guidelines (Tsunami Pilot Study Working Group, 2006). The Seaside area was chosen because it is typical of many coastal communities in the section of the Pacific Coast from Cape Mendocino to the Strait of Juan de Fuca, and because State agencies and local stakeholders expressed considerable interest in mapping the tsunami threat to this area. The study was an interagency effort by FEMA, U.S. Geological Survey, and the National Oceanic and Atmospheric Administration (NOAA), in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. We present the spatial (geographic information system, GIS) data from the pilot study in standard GIS formats and provide files for visualization in Google Earth, a global map viewer.

  16. 78 FR 29760 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... flood hazard information for each community is available for inspection at the respective Community Map Repository address listed in the tables below and will be available online through the FEMA Map Service... visit the FEMA Map Information eXchange (FMIX) online at...

  17. Stream network analysis and geomorphic flood plain mapping from orbital and suborbital remote sensing imagery application to flood hazard studies in central Texas

    NASA Technical Reports Server (NTRS)

    Baker, V. R. (Principal Investigator); Holz, R. K.; Hulke, S. D.; Patton, P. C.; Penteado, M. M.

    1975-01-01

    The author has identified the following significant results. Development of a quantitative hydrogeomorphic approach to flood hazard evaluation was hindered by (1) problems of resolution and definition of the morphometric parameters which have hydrologic significance, and (2) mechanical difficulties in creating the necessary volume of data for meaningful analysis. Measures of network resolution such as drainage density and basin Shreve magnitude indicated that large scale topographic maps offered greater resolution than small scale suborbital imagery and orbital imagery. The disparity in network resolution capabilities between orbital and suborbital imagery formats depends on factors such as rock type, vegetation, and land use. The problem of morphometric data analysis was approached by developing a computer-assisted method for network analysis. The system allows rapid identification of network properties which can then be related to measures of flood response.

  18. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Insurance Rate Map: This map is prepared after the flood hazard study for the community has been completed... symbols in combination. (2) Flood Hazard Boundary Map (FHBM). This map is issued by the Administrator... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Insurance Maps....

  19. Analysing uncertainties associated with flood hazard assessment

    NASA Astrophysics Data System (ADS)

    Neuhold, Clemens; Stanzel, Philipp; Nachtnebel, Hans-Peter

    2010-05-01

    Risk zonation maps are mostly derived from design floods which propagate through the study area. The respective delineation of inundated flood plains is a fundamental input for the flood risk assessment of exposed objects. It is implicitly assumed that the river morphology will not vary, even though it is obvious that the river bed elevation can quickly and drastically change during flood events. The objectives of this study were (1) to integrate river bed dynamics into flood risk assessment and (2) to quantify uncertainties associated to flood hazard modelling by means of (i) hydrology (input hydrographs) (ii) sediment transport (torrential input, river bed elevation) (iii) hydrodynamics (water surface levels) The proposed concept was applied to the River Ill in the Western Austrian Alps. In total, 138 flood and associated sediment transport scenarios were considered, simulated and illustrated for the main river stem. The calculated morphological changes of the river bed during peak flow provided a basis to estimate the variability of possible water surface levels and inundated areas, necessary for flood hazard assessment. The applied multi-scenario approach was compared to the normatively defined design flood event to account for the uncertainty of flood risk management decisions based on a few scenarios. Due to the incorporation of river morphological changes and variations in rainfall characteristics into flood hazard assessment, for 12 % of considered cross sections inundations were calculated where safety was expected.

  20. 78 FR 48701 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  1. 78 FR 49278 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  2. 77 FR 18839 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  3. 78 FR 49277 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  4. 78 FR 21143 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  5. 77 FR 18844 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  6. 77 FR 18835 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  7. 77 FR 74859 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  8. 78 FR 5826 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  9. 77 FR 18842 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  10. 78 FR 5824 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  11. 78 FR 5822 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  12. 77 FR 56669 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  13. 78 FR 8181 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  14. 78 FR 77481 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SECURITY Federal Emergency Management Agency ; Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  15. 77 FR 76501 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  16. 78 FR 72920 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  17. 77 FR 25495 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  18. 77 FR 44650 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  19. 77 FR 73490 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  20. 78 FR 36217 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  1. 78 FR 36212 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  2. 77 FR 50709 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  3. 78 FR 20341 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  4. 78 FR 20339 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  5. 78 FR 20343 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  6. 77 FR 46104 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  7. 78 FR 32679 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  8. 78 FR 20344 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  9. 78 FR 48888 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  10. 78 FR 43907 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  11. 78 FR 28888 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  12. 78 FR 58334 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  13. 78 FR 43910 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  14. 78 FR 43909 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  15. 78 FR 14584 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  16. 78 FR 36222 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  17. 77 FR 27076 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the...

  18. Flood hazard assessment based on a GIS based methodology

    NASA Astrophysics Data System (ADS)

    Mentzafou, A.; Dimitriou, E.; Markogianni, V.

    2012-04-01

    Global warming effects on hydrological cycle and land use changes have led to flood events with severe social and economical consequences. The European Directive 2007/60/EC aims to the reduction and management of the risks that floods pose to human health, the environment, cultural heritage and economic activity. Especially in cases of transboundary river basins, the integrated management of flood risks is even more challenging. Under this scope, the estimation of flood hazards areas of Evros transboundary river basin was attempted based on a grid-based GIS modelling method. Based on this approach, the flood-hazard map was produced after the aggregation of six individual maps for each of the main factors that contribute to the development of floods: flow accumulation, slope, land use, rainfall intensity, geology and elevation of the river basin. The final flood hazard map was divided in five classes: very high, high, moderate, low and very low. In order to verify the results of the specific methodology, the produced risk map was compared to the inundation map of the April 2006 flood event. The results accredited the accuracy of the method since 85.3% of the inundated area was already characterized as of very high flood hazard in the model while 14% of the flooded area was classified as of high hazard. Keywords: flood hazard mapping, Evros river, GIS, Directive 2007/60/EC

  19. 12 CFR Appendix to Part 760 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Sample Form of Notice of Special Flood Hazards... HAZARDS Pt. 760, App. Appendix to Part 760—Sample Form of Notice of Special Flood Hazards and...

  20. 12 CFR Appendix to Part 760 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Sample Form of Notice of Special Flood Hazards... HAZARDS Pt. 760, App. Appendix to Part 760—Sample Form of Notice of Special Flood Hazards and...

  1. 12 CFR Appendix to Part 760 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Sample Form of Notice of Special Flood Hazards... HAZARDS Pt. 760, App. Appendix to Part 760—Sample Form of Notice of Special Flood Hazards and...

  2. 12 CFR Appendix to Part 760 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Sample Form of Notice of Special Flood Hazards... HAZARDS Pt. 760, App. Appendix to Part 760—Sample Form of Notice of Special Flood Hazards and...

  3. A framework of integrated hydrological and hydrodynamic models using synthetic rainfall for flash flood hazard mapping of ungauged catchments in tropical zones

    NASA Astrophysics Data System (ADS)

    Lohpaisankrit, Worapong; Meon, Günter; Tingsanchali, Tawatchai

    2016-05-01

    Flash flood hazard maps provide a scientific support to mitigate flash flood risk. The present study develops a practical framework with the help of integrated hydrological and hydrodynamic modelling in order to estimate the potential flash floods. We selected a small pilot catchment which has already suffered from flash floods in the past. This catchment is located in the Nan River basin, northern Thailand. Reliable meteorological and hydrometric data are missing in the catchment. Consequently, the entire upper basin of the main river was modelled with the help of the hydrological modelling system PANTA RHEI. In this basin, three monitoring stations are located along the main river. PANTA RHEI was calibrated and validated with the extreme flood events in June 2011 and July 2008, respectively. The results show a good agreement with the observed discharge data. In order to create potential flash flood scenarios, synthetic rainfall series were derived from temporal rainfall patterns based on the radar-rainfall observation and different rainfall depths from regional rainfall frequency analysis. The temporal rainfall patterns were characterized by catchment-averaged rainfall series selected from 13 rainstorms in 2008 and 2011 within the region. For regional rainfall frequency analysis, the well-known L-moments approach and related criteria were used to examine extremely climatic homogeneity of the region. According to the L-moments approach, Generalized Pareto distribution was recognized as the regional frequency distribution. The synthetic rainfall series were fed into the PANTA RHEI model. The simulated results from PANTA RHEI were provided to a 2-D hydrodynamic model (MEADFLOW), and various simulations were performed. Results from the integrated modelling framework are used in the ongoing study to regionalize and map the spatial distribution of flash flood hazards with four levels of flood severities. As an overall outcome, the presented framework can be applied in

  4. Swiss Re Global Flood Hazard Zones: Know your flood risk

    NASA Astrophysics Data System (ADS)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  5. Flood risk mapping at European scale.

    PubMed

    Barredo, J I; de Roo, A; Lavalle, C

    2007-01-01

    The aim of this article is to illustrate a framework for flood risk mapping at pan-European scale produced by the Weather-Driven Natural Hazards (WDNH) action of the EC-JRC-IES. Early results are presented in the form of flood risk index maps. We assess several flood risk factors that contribute to the occurrence of flood disasters. Among the causal factors of a flood disaster one is triggering a natural event in the form of extreme precipitation and consequently extreme river discharge and extreme flood water levels. The threatening natural event represents the hazard component in our assessment. Furthermore exposure and vulnerability are anthropogenic factors that contribute also to flood risk. In the proposed approach, flood risk is considered on the light of exposure, vulnerability and hazard. We use a methodology with a marked territorial approach for the assessment of the flood risk. Hence, based on mathematical calculations, risk is the product of hazard, exposure and vulnerability. Improvements on datasets availability and spatial scale are foreseen in the next phases of this study. This study is also a contribution to the discussion about the need for communication tools between the natural hazard scientific community and the political and decision making players in this field. PMID:17851200

  6. Mapping Coastal Flood Zones for the National Flood Insurance Program

    NASA Astrophysics Data System (ADS)

    Carlton, D.; Cook, C. L.; Weber, J.

    2004-12-01

    The National Flood Insurance Program (NFIP) was created by Congress in 1968, and significantly amended in 1973 to reduce loss of life and property caused by flooding, reduce disaster relief costs caused by flooding and make Federally backed flood insurance available to property owners. These goals were to be achieved by requiring building to be built to resist flood damages, guide construction away from flood hazards, and transferring the cost of flood losses from taxpayers to policyholders. Areas subject to flood hazards were defined as those areas that have a probability greater than 1 percent of being inundated in any given year. Currently over 19,000 communities participate in the NFIP, many of them coastal communities subject to flooding from tides, storm surge, waves, or tsunamis. The mapping of coastal hazard areas began in the early 1970's and has been evolving ever since. At first only high tides and storm surge were considered in determining the hazardous areas. Then, after significant wave caused storm damage to structures outside of the mapped hazard areas wave hazards were also considered. For many years FEMA has had Guidelines and Specifications for mapping coastal hazards for the East Coast and the Gulf Coast. In September of 2003 a study was begun to develop similar Guidelines and Specifications for the Pacific Coast. Draft Guidelines and Specifications will be delivered to FEMA by September 30, 2004. During the study tsunamis were identified as a potential source of a 1 percent flood event on the West Coast. To better understand the analytical results, and develop adequate techniques to estimate the magnitude of a tsunami with a 1 percent probability of being equaled or exceeded in any year, a pilot study has begun at Seaside Oregon. Both the onshore velocity and the resulting wave runup are critical functions for FEMA to understand and potentially map. The pilot study is a cooperative venture between NOAA and USGS that is partially funded by both

  7. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.12 Revision of flood insurance rate maps to reflect base flood elevations caused by... rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section...

  8. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.12 Revision of flood insurance rate maps to reflect base flood elevations caused by... rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section...

  9. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.12 Revision of flood insurance rate maps to reflect base flood elevations caused by... rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section...

  10. 78 FR 43906 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... Riverside Riverside County Flood Control County. and Water Conservation District, 1995 Market Street... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood...

  11. Influence of structures on flood hazard

    NASA Astrophysics Data System (ADS)

    Ali, Anuar Md; Di Baldassarre, Giuliano; Solomatine, Dimitri P.

    2013-04-01

    In flood hazard mapping via 1D hydraulic models, a certain number of cross sections is required to properly represent the river channel and its surrounding floodplain. Other than having a river cross section at finer spacing, it also suggested having river cross sections upstream and downstream every structure across the river (e.g. bridges). However, the inclusion of a large number of cross sections increases the computational time and the costs of topographical surveys. The objective of this study are (i) to quantify the performance of 1D hydraulic models, and (ii) assess the differences of flood hazard classification due to the inclusion/exclusion of a bridge section into the 1D hydraulic model. To achieve the objective of this study, two hydraulic models of the 30km reach of the Johor River, Malaysia were conducted using the hydrodynamic model code HEC-RAS. The cross sections of the models were based on the ground survey method across the river with the spacing between cross section is approximately 1000m. To enable sufficient coverage area for floodplain in hydraulic modelling, the DEM from the LiDAR were integrated with the cross section from the ground survey works. Based on the simulation of the December 2006 flood (calibration event), the sensitivity analysis of the Nash Sutcliffe Efficiency (NSE) between the 500 simulated and observed maximum water levels for a matrix of Manning's n roughness coefficient for the river channel and floodplain were conducted. Finally, to assess the differences of flood hazard categorization for the two different models, a flood hazard map was prepared where the hazard was defined as the depth of inundation. As a result, the simulation showed that the total inundation area for the model with a bridge is smaller than the inundation area obtained with the model without the bridge.

  12. 78 FR 52956 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Register (78 FR 36220-36222) a proposed flood hazard determination notice that contained an erroneous table... FR 36220. The table provided here represents the proposed flood hazard determinations and communities... . In the proposed flood hazard determination notice published at 78 FR 36220 in the June 17,...

  13. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Insurance Maps. 64.3... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program COMMUNITIES ELIGIBLE FOR THE SALE OF INSURANCE § 64.3 Flood Insurance Maps. (a) The following maps may be prepared by...

  14. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Insurance Maps. 64.3... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program COMMUNITIES ELIGIBLE FOR THE SALE OF INSURANCE § 64.3 Flood Insurance Maps. (a) The following maps may be prepared by...

  15. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Insurance Maps. 64.3... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program COMMUNITIES ELIGIBLE FOR THE SALE OF INSURANCE § 64.3 Flood Insurance Maps. (a) The following maps may be prepared by...

  16. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  17. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  18. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  19. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  20. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard...

  1. Relative Tsunami Hazard Maps, Humboldt County, California

    NASA Astrophysics Data System (ADS)

    Dengler, L. A.; Ludy, B. R.; Patton, J. R.

    2003-12-01

    We present a series of maps depicting the relative tsunami hazard of coastal Humboldt County in Northern California. Unlike inundation maps that show a single line to show the inland extent of flooding, these maps use a four-color zonation to represent relative risk. The highest hazard area has experienced tsunami or storm wave inundation in historic times. These areas include beaches and low coastal bluffs on the open coast and low areas adjacent to Humboldt Bay and major river deltas. The high hazard zones are also mapped as zone A (100 year flooding) or zone V (100 year flood with wave action) on FEMA Flood Insurance Rate Maps. Moderate hazard zones are areas likely to be flooded by a major tsunami generated by the Cascadia subduction zone based on published paleotsunami studies, numerical modeling (Bernard and others, 1994) and observations of recent tsunamis elsewhere. Current estimates of major Cascadia earthquake recurrence averages about 500 years. Low hazard zones show no evidence of flooding in the paleotsunami record and are likely to provide refuge in all but the most extreme event. No hazard areas are too high in elevation and/or too far inland to be at risk. A continuous gradational color scale ranging from red (high hazard) through orange (medium), yellow (low) to gray (no hazard) depicts the zones. The blurred boundaries help convey the continuum of possible events and the uncertainty in delineating distinct inundation lines. The maps are GIS based to facilitate ready adaptation by planners and emergency managers. The maps are intended for educational purposes, to improve awareness of tsunami hazards and to encourage emergency planning efforts of local and regional organizations by illustrating the range of possible tsunami events.

  2. 77 FR 59675 - Compliance With Information Request, Flooding Hazard Reevaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... COMMISSION Compliance With Information Request, Flooding Hazard Reevaluation AGENCY: Nuclear Regulatory... was needed in the areas of seismic and flooding design, and emergency preparedness. In addition to... licensees reevaluate flooding hazards at nuclear power plant sites using updated flooding hazard...

  3. 78 FR 8166 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood...

  4. 77 FR 59953 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood...

  5. 78 FR 35305 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood...

  6. 78 FR 35300 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood...

  7. 78 FR 52946 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or the regulatory floodway (hereinafter referred to as flood...

  8. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  9. Customized hazard maps

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Finding out about the historic occurrence of six different types of natural hazards in any region in the United States recently became a little easier.A Project Impact initiative of the Federal Emergency Management Agency (FEMA) and ESRI—a leading provider of Geographic Information System (GIS) software and a Project Impact partner—offers the public customized online hazard maps.

  10. Flood hazards studies in the Mississippi River basin using remote sensing

    NASA Technical Reports Server (NTRS)

    Rango, A.; Anderson, A. T.

    1974-01-01

    The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicated that ERTS-1 is extremely useful as a regional tool for flood mamagement. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.

  11. 77 FR 70454 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Register a ] proposed flood hazard determination notice at FR 77 44651 that contained a table which... notice published at 77 FR 44651 in the July 30, 2012, issue of the Federal Register, FEMA published a... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal...

  12. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  13. Flood maps in Europe - methods, availability and use

    NASA Astrophysics Data System (ADS)

    de Moel, H.; van Alphen, J.; Aerts, J. C. J. H.

    2009-03-01

    To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map

  14. 12 CFR Appendix to Part 760 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... special flood hazards. The area has been identified by the Director of the Federal Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard... percent (26%). Federal law allows a lender and borrower jointly to request the Director of FEMA to...

  15. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  16. 12 CFR Appendix A to Part 22 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Sample Form of Notice of Special Flood Hazards... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS Pt....

  17. 38 CFR Appendix A to Part 36 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... Special Flood Hazards and Availability of Federal Disaster Relief Assistance A Appendix A to Part 36..., App. A Appendix A to Part 36—Sample Form of Notice of Special Flood Hazards and Availability...

  18. 12 CFR Appendix A to Part 572 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Sample Form of Notice of Special Flood Hazards... OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS...

  19. 38 CFR Appendix A to Part 36 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... Special Flood Hazards and Availability of Federal Disaster Relief Assistance A Appendix A to Part 36..., App. A Appendix A to Part 36—Sample Form of Notice of Special Flood Hazards and Availability...

  20. 12 CFR Appendix A to Part 572 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Sample Form of Notice of Special Flood Hazards... OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS...

  1. 12 CFR Appendix A to Part 572 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 6 2013-01-01 2012-01-01 true Sample Form of Notice of Special Flood Hazards... OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS...

  2. 12 CFR Appendix A to Part 172 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Sample Form of Notice of Special Flood Hazards... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS Pt....

  3. 12 CFR Appendix A to Part 572 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 6 2012-01-01 2012-01-01 false Sample Form of Notice of Special Flood Hazards... OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS...

  4. 12 CFR Appendix A to Part 22 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Sample Form of Notice of Special Flood Hazards... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS Pt....

  5. 38 CFR Appendix A to Part 36 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... Special Flood Hazards and Availability of Federal Disaster Relief Assistance A Appendix A to Part 36..., App. A Appendix A to Part 36—Sample Form of Notice of Special Flood Hazards and Availability...

  6. 12 CFR Appendix A to Part 22 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Sample Form of Notice of Special Flood Hazards... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS Pt....

  7. 12 CFR Appendix to Subpart D of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Sample Form of Notice of Special Flood Hazards... OF THRIFT SUPERVISION REGULATIONS Loans in Areas Having Special Flood Hazards Pt. 391, Subpt. D,...

  8. 12 CFR Appendix A to Part 172 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Sample Form of Notice of Special Flood Hazards... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS Pt....

  9. 38 CFR Appendix A to Part 36 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... Special Flood Hazards and Availability of Federal Disaster Relief Assistance A Appendix A to Part 36..., App. A Appendix A to Part 36—Sample Form of Notice of Special Flood Hazards and Availability...

  10. FLOOD EVENT MAPPING IMAGES

    EPA Science Inventory

    OSEI flood products (FLD) include multichannel color composite imagery and single-channel grayscale imagery of enlarged river areas or increased sediment flow. Typically, these events are displayed by comparison to imagery taken when flooding was not occurring.

  11. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    NASA Astrophysics Data System (ADS)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  12. 77 FR 40627 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency... Administrator for Mitigation, Department of Homeland Security, Federal Emergency Management Agency. BILLING CODE... Development Building, 25 Dorrance Street, Providence, RI 02903. Big Horn County, Wyoming, and...

  13. In Brief: Flood impact map

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-03-01

    The U.S. Federal Emergency Management Agency (FEMA) and the National Oceanic and Atmospheric Administration (NOAA) have created an interactive “flood impact map.” The map, available at http://www.floodsmart.gov/noaa, features localized, searchable data about the scope and severity of flood events in recent years. Other forecasting and warning tools include those available at http://www.weather.gov/water and NOAA Weather Radio (http://www.nws.noaa.gov/nwr/).

  14. 78 FR 21138 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  15. 78 FR 35298 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  16. 77 FR 59949 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  17. 77 FR 74856 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  18. 78 FR 35307 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  19. 78 FR 52951 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  20. 78 FR 21141 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  1. 78 FR 35302 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  2. 78 FR 34116 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal...) Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, and/or the regulatory floodway (hereinafter referred to as flood hazard determinations) as...

  3. Publication: Evansville hazard maps

    USGS Publications Warehouse

    Evansville Area Earthquake Hazards Mapping Project

    2012-01-01

    The Evansville (Indiana) Area Earthquake Hazards Mapping Project was completed in February 2012. It was a collaborative effort among the U.S. Geological Survey and regional partners Purdue University; the Center for Earthquake Research and Information at the University of Memphis; the state geologic surveys of Kentucky, Illinois, and Indiana; the Southwest Indiana Disaster Resistant Community Corporation; and the Central U.S. Earthquake Consortium state geologists.

  4. A high-resolution global flood hazard model

    NASA Astrophysics Data System (ADS)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  5. A high‐resolution global flood hazard model†

    PubMed Central

    Smith, Andrew M.; Bates, Paul D.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-01-01

    Abstract Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data‐scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross‐disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high‐resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2‐D only variant and an independently developed pan‐European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next‐generation global terrain data sets will offer the best prospect for a step‐change improvement in model performance. PMID:27594719

  6. Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia.

    PubMed

    Skakun, Sergii; Kussul, Nataliia; Shelestov, Andrii; Kussul, Olga

    2014-08-01

    In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood-prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov-Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat-5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values. PMID:24372226

  7. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF...

  8. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF...

  9. 78 FR 43901 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... 85003. Maricopa Unincorporated The Honorable Andy Flood Control http:// August 2, 2013 040037 areas of... SECURITY Federal Emergency Management Agency Changes in Flood Hazard Determinations AGENCY: Federal... or modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area...

  10. Flooding scenarios, hazard mapping and damages estimation: what if the 2011 Cinque Terre event had happened in Genoa?

    NASA Astrophysics Data System (ADS)

    Silvestro, Francesco; Rebora, Nicola; Rossi, Lauro; Dolia, Daniele; Gabellani, Simone; Pignone, Flavio; Masciulli, Cristiano

    2016-04-01

    During the autumn of 2011 two catastrophic very intense rainfall events affected two different parts of the Liguria Region of Italy causing various flash floods, the first occurred in October and the second at the beginning of November. Various studies demonstrated that the two events had a similar genesis and similar triggering elements. In this work we did the exercise of putting the rainfall field of the first event (Cinque Terre area) on the main catchment, stroke by the second event, that has its mouth in correspondence of the biggest city of the Liguria Region: Genoa. A flood forecast framework and a hydraulic model were used as tools to quantitatively carry out a "what if" experiment, a proper methodology for damages estimation is then used to estimate the potential losses and the people affected. The results are interesting, surprising and in such a way worrying: a peak flow with return period larger than 200 years would have occurred with an estimated damage between 120 and 220 million of euros for the city of Genoa, Italy.

  11. Probabilistic Flood Maps to support decision-making: Mapping the Value of Information

    NASA Astrophysics Data System (ADS)

    Alfonso, L.; Mukolwe, M. M.; Di Baldassarre, G.

    2016-02-01

    Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard mitigation measure, for which advanced methods and tools (such as flood inundation models) are used to estimate potential flood extent maps that are used in spatial planning. However, these tools are affected, largely to an unknown degree, by both epistemic and aleatory uncertainty. Over the past few years, advances in uncertainty analysis with respect to flood inundation modeling show that it is appropriate to adopt Probabilistic Flood Maps (PFM) to account for uncertainty. However, the following question arises; how can probabilistic flood hazard information be incorporated into spatial planning? Thus, a consistent framework to incorporate PFMs into the decision-making is required. In this paper, a novel methodology based on Decision-Making under Uncertainty theories, in particular Value of Information (VOI) is proposed. Specifically, the methodology entails the use of a PFM to generate a VOI map, which highlights floodplain locations where additional information is valuable with respect to available floodplain management actions and their potential consequences. The methodology is illustrated with a simplified example and also applied to a real case study in the South of France, where a VOI map is analyzed on the basis of historical land use change decisions over a period of 26 years. Results show that uncertain flood hazard information encapsulated in PFMs can aid decision-making in floodplain planning.

  12. What if the 25 October 2011 event that struck Cinque Terre (Liguria) had happened in Genoa, Italy? Flooding scenarios, hazard mapping and damage estimation

    NASA Astrophysics Data System (ADS)

    Silvestro, Francesco; Rebora, Nicola; Rossi, Lauro; Dolia, Daniele; Gabellani, Simone; Pignone, Flavio; Trasforini, Eva; Rudari, Roberto; De Angeli, Silvia; Masciulli, Cristiano

    2016-08-01

    During the autumn of 2011 two catastrophic, very intense rainfall events affected two different parts of the Liguria Region of Italy causing various flash floods. The first occurred in October and the second at the beginning of November. Both the events were characterized by very high rainfall intensities (> 100 mm h-1) that persisted on a small portion of territory causing local huge rainfall accumulations (> 400 mm 6 h-1). Two main considerations were made in order to set up this work. The first consideration is that various studies demonstrated that the two events had a similar genesis and similar triggering elements. The second very evident and coarse concern is that two main elements are needed to have a flash flood: a very intense and localized rainfall event and a catchment (or a group of catchments) to be affected. Starting from these assumptions we did the exercise of mixing the two flash flood ingredients by putting the rainfall field of the first event on the main catchment struck by the second event, which has its mouth in the biggest city of the Liguria Region: Genoa. A complete framework was set up to quantitatively carry out a "what if" experiment with the aim of evaluating the possible damages associated with this event. A probabilistic rainfall downscaling model was used to generate possible rainfall scenarios maintaining the main characteristics of the observed rainfall fields while a hydrological model transformed these rainfall scenarios in streamflow scenarios. A subset of streamflow scenarios is then used as input to a 2-D hydraulic model to estimate the hazard maps, and finally a proper methodology is applied for damage estimation. This leads to the estimation of the potential economic losses and of the risk level for the people that stay in the affected area. The results are interesting, surprising and in a way worrying: a rare but not impossible event (it occurred about 50 km away from Genoa) would have caused huge damages estimated between

  13. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  14. Coproduction of flood hazard assessment with public participation geographic information system

    NASA Astrophysics Data System (ADS)

    Cheung, W. H.; Houston, D.; Schubert, J.; Basolo, V.; Feldman, D.; Matthew, R.; Sanders, B. F.; Karlin, B.; Goodrich, K.; Contreras, S.; Reyes, A.; Serrano, K.; Luke, A.

    2015-12-01

    While advances in computing have enabled the development of more precise and accurate flood models, there is growing interest in the role of crowdsourced local knowledge in flood modeling and flood hazard assessment. In an effort to incorporate the "wisdom of the crowd" in the identification and mitigation of flood hazard, this public participation geographic information system (PPGIS) study leveraged tablet computers and cloud computing to collect mental maps of flooding from 166 households in Newport Beach, California. The mental maps were analyzed using GIS techniques and compared with professional hydrodynamic model of coastal flooding. The results revealed varying levels of agreement between residents' mental maps and professional model of flood risk in regions with different personal and contextual characteristics. The quantification of agreement using composite indices can help validate professional models, and can also alert planners and decisionmakers of the need to increase flood awareness among specific populations.

  15. Flood hazard assessment for french NPPs

    NASA Astrophysics Data System (ADS)

    Rebour, Vincent; Duluc, Claire-Marie; Guimier, Laurent

    2015-04-01

    This paper presents the approach for flood hazard assessment for NPP which is on-going in France in the framework of post-Fukushima activities. These activities were initially defined considering both European "stress tests" of NPPs pursuant to the request of the European Council, and the French safety audit of civilian nuclear facilities in the light of the Fukushima Daiichi accident. The main actors in that process are the utility (EDF is, up to date, the unique NPP's operator in France), the regulatory authority (ASN) and its technical support organization (IRSN). This paper was prepared by IRSN, considering official positions of the other main actors in the current review process, it was not officially endorsed by them. In France, flood hazard to be considered for design basis definition (for new NPPs and for existing NPPs in periodic safety reviews conducted every 10 years) was revised before Fukushima-Daichi accident, due to le Blayais NPP December 1999 experience (partial site flooding and loss of some safety classified systems). The paper presents in the first part an overview of the revised guidance for design basis flood. In order to address design extension conditions (conditions that could result from natural events exceeding the design basis events), a set of flooding scenarios have been defined by adding margins on the scenarios that are considered for the design. Due to the diversity of phenomena to be considered for flooding hazard, the margin assessment is specific to each flooding scenario in terms of parameter to be penalized and of degree of variation of this parameter. The general approach to address design extension conditions is presented in the second part of the paper. The next parts present the approach for five flooding scenarios including design basis scenario and additional margin to define design extension scenarios.

  16. 77 FR 18841 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... satisfies the data requirements outlined in 44 CFR 67.6(b) is considered an appeal. Comments unrelated to... County, South Carolina, and Incorporated Areas Maps Available for Inspection Online at: http://www.dnr.sc... Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports...

  17. 78 FR 78995 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency... Mitigation, Department of Homeland Security, Federal Emergency Management Agency. BILLING CODE 9110-12-P ..., Paris, MI 49338. City of Big Rapids City Hall, 226 North Michigan Avenue, Big Rapids, MI 49307....

  18. 78 FR 7441 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations Correction In notice document 2012-27366, appearing on pages 67016-67018 in the issue of Thursday, November 8, 2012, make...

  19. 78 FR 45943 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... . In the proposed flood hazard determination notice published at 77 FR 25498 in the April 30, 2012... provides corrections to that table, to be used in lieu of the information published at 77 FR 25498. The... published. Correction In Proposed rule FR Doc. 2012-10280, beginning on page 25495 in the issue of April...

  20. 78 FR 45944 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... . In the proposed flood hazard determination notice published at 77 FR 21792 in the April 11, 2012... provides corrections to that table, to be used in lieu of the information published at 77 FR 21792. The... published. Correction In Proposed rule FR Doc. 2012-8600, beginning on page 21791 in the issue of April...

  1. 78 FR 20941 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... notice provides corrections to that table, to be used in lieu of the information published at FR 77 67016... for comparison. Correction In the proposed flood hazard determination notice published at 77 FR 67016... Online at: http://www.geology.deq.ms.gov/floodmaps/Projects/FY2009/?county=Rankin City of Brandon...

  2. 78 FR 48703 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... provides corrections to that table, to be used in lieu of the information published at 78 FR 14581-14583.../factsheets/2010/srp_fs.pdf . In the proposed flood hazard determination notice published at 78 FR 14581-14583... should be used in lieu of that previously published. Correction In Proposed rule FR Doc....

  3. Predicting Flood Hazards in Systems with Multiple Flooding Mechanisms

    NASA Astrophysics Data System (ADS)

    Luke, A.; Schubert, J.; Cheng, L.; AghaKouchak, A.; Sanders, B. F.

    2014-12-01

    Delineating flood zones in systems that are susceptible to flooding from a single mechanism (riverine flooding) is a relatively well defined procedure with specific guidance from agencies such as FEMA and USACE. However, there is little guidance in delineating flood zones in systems that are susceptible to flooding from multiple mechanisms such as storm surge, waves, tidal influence, and riverine flooding. In this study, a new flood mapping method which accounts for multiple extremes occurring simultaneously is developed and exemplified. The study site in which the method is employed is the Tijuana River Estuary (TRE) located in Southern California adjacent to the U.S./Mexico border. TRE is an intertidal coastal estuary that receives freshwater flows from the Tijuana River. Extreme discharge from the Tijuana River is the primary driver of flooding within TRE, however tide level and storm surge also play a significant role in flooding extent and depth. A comparison between measured flows at the Tijuana River and ocean levels revealed a correlation between extreme discharge and ocean height. Using a novel statistical method based upon extreme value theory, ocean heights were predicted conditioned up extreme discharge occurring within the Tijuana River. This statistical technique could also be applied to other systems in which different factors are identified as the primary drivers of flooding, such as significant wave height conditioned upon tide level, for example. Using the predicted ocean levels conditioned upon varying return levels of discharge as forcing parameters for the 2D hydraulic model BreZo, the 100, 50, 20, and 10 year floodplains were delineated. The results will then be compared to floodplains delineated using the standard methods recommended by FEMA for riverine zones with a downstream ocean boundary.

  4. Uncertainty in flood risk mapping

    NASA Astrophysics Data System (ADS)

    Gonçalves, Luisa M. S.; Fonte, Cidália C.; Gomes, Ricardo

    2014-05-01

    A flood refers to a sharp increase of water level or volume in rivers and seas caused by sudden rainstorms or melting ice due to natural factors. In this paper, the flooding of riverside urban areas caused by sudden rainstorms will be studied. In this context, flooding occurs when the water runs above the level of the minor river bed and enters the major river bed. The level of the major bed determines the magnitude and risk of the flooding. The prediction of the flooding extent is usually deterministic, and corresponds to the expected limit of the flooded area. However, there are many sources of uncertainty in the process of obtaining these limits, which influence the obtained flood maps used for watershed management or as instruments for territorial and emergency planning. In addition, small variations in the delineation of the flooded area can be translated into erroneous risk prediction. Therefore, maps that reflect the uncertainty associated with the flood modeling process have started to be developed, associating a degree of likelihood with the boundaries of the flooded areas. In this paper an approach is presented that enables the influence of the parameters uncertainty to be evaluated, dependent on the type of Land Cover Map (LCM) and Digital Elevation Model (DEM), on the estimated values of the peak flow and the delineation of flooded areas (different peak flows correspond to different flood areas). The approach requires modeling the DEM uncertainty and its propagation to the catchment delineation. The results obtained in this step enable a catchment with fuzzy geographical extent to be generated, where a degree of possibility of belonging to the basin is assigned to each elementary spatial unit. Since the fuzzy basin may be considered as a fuzzy set, the fuzzy area of the basin may be computed, generating a fuzzy number. The catchment peak flow is then evaluated using fuzzy arithmetic. With this methodology a fuzzy number is obtained for the peak flow

  5. Future flood hazard under climate change in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Apel, H.; Dung, N. V.; Delgado, J. M.; Merz, B.

    2012-04-01

    The main characteristic of flood hazard estimations is the association of a probability of occurrence to a flood event of a defined magnitude. This is usually performed via frequency analysis assuming stationarity and independence of the analyzed time series. This assumption, however, often does not hold true even for historical records and periods and it will be even more challenged under the expected impact of climate change to the water cycle in general and flood probabilities and magnitudes in particular. Thus strategies and methods have to be developed and evaluated for accounting for climate change impacts on flood hazard. In the presented contribution two options are presented and compared for the Mekong Delta, one of the most endangered areas with respect to climate change world-wide. The first method takes non-stationarity explicitly into account by analyzing the observed time series of peak discharge and flood volume at the upper boundary of the Delta with non-stationary extreme value statistics. The two variables and their dependence are modeled by a copula, coupling their marginal distributions to a joint bivariate distribution. Using this copula in combination with characteristic normalized flood hydrographs, probabilistic flood hazard maps for the Mekong Delta are generated via a large scale hydrodynamic model of the Delta embedded in a Monte Carlo framework for the reference year 2009. In order to account for climate change the observed trend in the non-stationary extreme value distribution was simply extrapolated to two future time horizons 2030 and 2050. However, the extrapolations of the trends are certainly associated with high level of uncertainty, in particular for time horizons in the far future. Thus we compare the simple extrapolation approach with an approach deriving future flood hazard in the Mekong Delta by establishing direct correlations between monsoon indexes describing the intensity of the flood triggering monsoon activities and the

  6. 12 CFR Appendix A to Part 22 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flood hazards. The area has been identified by the Director of the Federal Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... (26%). Federal law allows a lender and borrower jointly to request the Director of FEMA to review...

  7. 12 CFR Appendix A to Part 572 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flood hazards. The area has been identified by the Director of the Federal Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary... (26%). Federal law allows a lender and borrower jointly to request the Director of FEMA to review...

  8. 12 CFR Appendix A to Subpart S of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Sample Form of Notice of Special Flood...

  9. 12 CFR Appendix A to Subpart S of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Sample Form of Notice of Special Flood...

  10. 12 CFR Appendix A to Part 339 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Sample Form of Notice of Special Flood...

  11. 12 CFR Appendix A to Part 339 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Sample Form of Notice of Special Flood...

  12. 12 CFR Appendix A to Part 339 - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Sample Form of Notice of Special Flood...

  13. 12 CFR Appendix A to Subpart S of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Sample Form of Notice of Special Flood...

  14. 12 CFR Appendix A to Subpart S of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map or the Flood Hazard Boundary Map for the following community: ________. This area has at least a one... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Sample Form of Notice of Special Flood...

  15. SEERISK concept: Dealing with climate change related hazards in southeast Europe: A common methodology for risk assessment and mapping focusing on floods, drought, winds, heat wave and wildfire.

    NASA Astrophysics Data System (ADS)

    Papathoma-Koehle, Maria; Promper, Catrin; Glade, Thomas

    2014-05-01

    Southeast Europe is a region that suffers often from natural hazards and has experienced significant losses in the recent past due to extreme weather conditions and their side-effects (cold and heat waves, extreme precipitation leading to floods / flash floods, thunderstorms, extreme winds, drought and wildfires). SEERISK ("Joint Disaster Management Risk Assessment and Preparedness in the Danube macro-region") is a European funded SEE (Southeast Europe) project that aims at the harmonisation and consistency among risk assessment practices undertaken by the partner countries at various levels regarding climate change related disasters. A common methodology for risk assessment has been developed that offers alternatives in order to tackle the problem of limited data. The methodology proposes alternative steps for hazard and vulnerability assessment that, according to the data availability, range from detailed modelling to expert judgement. In the present study the common methodology has been adapted for five hazard types (floods, drought, winds, heat wave and wildfire) that are expected to be affected by climate change in the future and are relevant for the specific study areas. The last step will be the application of the methodology in six different case studies in Hungary, Romania, Bosnia, Bulgaria, Slovakia and Serbia followed by field exercises.

  16. 24 CFR 3285.406 - Flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas....

  17. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant...

  18. 24 CFR 3285.302 - Flood hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Flood hazard areas. 3285.302... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard areas. In flood hazard areas, foundations, anchorings, and support systems must be capable of...

  19. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant...

  20. 24 CFR 3285.406 - Flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas....

  1. 24 CFR 3285.302 - Flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Flood hazard areas. 3285.302... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard areas. In flood hazard areas, foundations, anchorings, and support systems must be capable of...

  2. 24 CFR 3285.406 - Flood hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas....

  3. 24 CFR 3285.302 - Flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Flood hazard areas. 3285.302... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard areas. In flood hazard areas, foundations, anchorings, and support systems must be capable of...

  4. 24 CFR 3285.406 - Flood hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas....

  5. 24 CFR 3285.302 - Flood hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Flood hazard areas. 3285.302... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard areas. In flood hazard areas, foundations, anchorings, and support systems must be capable of...

  6. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant...

  7. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant...

  8. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant...

  9. 24 CFR 3285.406 - Flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas....

  10. 34 CFR 75.611 - Avoidance of flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Avoidance of flood hazards. 75.611 Section 75.611... by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction, a...) Evaluate flood hazards in connection with the construction; and (b) As far as practicable, avoid...

  11. 24 CFR 3285.302 - Flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.302... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.302 Flood hazard areas. In flood hazard areas, foundations, anchorings, and support systems must be capable of...

  12. Methodologies for hydraulic hazard mapping in alluvial fan areas

    NASA Astrophysics Data System (ADS)

    Milanesi, L.; Pilotti, M.; Ranzi, R.; Valerio, G.

    2014-09-01

    Hydraulic hazards in alluvial fan areas are mainly related to torrential floods and debris flows. These processes are characterized by their fast time evolution and relevant sediment load. Rational approaches for the estimation of hazard levels in flood-prone areas make use of the maps of depth and velocity, which are provided by numerical simulations of the event. This paper focuses on national regulations regarding quantitative debris-flow hazard mapping and compares them to a simple conceptual model for the quantification of the hazard levels on the basis of human stability in a flood. In particular, the proposed method takes into account, in a conceptual fashion, both the local slope and the density of the fluid, that are crucial aspects affecting stability for processes in mountain environments. Physically-based hazard criteria provide more comprehensible and objective maps, increasing awareness among stakeholders and providing more acceptable constraints for land planning.

  13. Hydrologic versus geomorphic drivers of trends in flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Singer, Michael Bliss; Kirchner, James W.

    2015-01-01

    is a major hazard to lives and infrastructure, but trends in flood hazard are poorly understood. The capacity of river channels to convey flood flows is typically assumed to be stationary, so changes in flood frequency are thought to be driven primarily by trends in streamflow. We have developed new methods for separately quantifying how trends in both streamflow and channel capacity have affected flood frequency at gauging sites across the United States Flood frequency was generally nonstationary, with increasing flood hazard at a statistically significant majority of sites. Changes in flood hazard driven by channel capacity were smaller, but more numerous, than those driven by streamflow. Our results demonstrate that accurately quantifying changes in flood hazard requires accounting separately for trends in both streamflow and channel capacity. They also show that channel capacity trends may have unforeseen consequences for flood management and for estimating flood insurance costs.

  14. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards.

    PubMed

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability. PMID:25526847

  15. Visualising interactive flood risk maps in a dynamic Geobrowser

    NASA Astrophysics Data System (ADS)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    Communicating flood forecast products effectively to end-users is the final step in the flood event simulation process. A prototype of the Novel Flood Early Warning System (NEWS) based on the TIGGE (THORPEX Interactive Grand Global Ensemble) database explores new avenues to visualise flood forecast products in a dynamic and interactive manner. One of the possibilities NEWS is currently assessing is Google Maps. Google Maps is a basic web mapping service application and technology provided by Google, free (for non-commercial use). It powers many map-based services including maps embedded on third-party websites via the Google Maps API. Creating a customized map interface requires adding the Google JavaScript code to a page, and then using Javascript functions to add points to the map. Flood maps allow end-users to visualise and navigate a world that is too large and complex to be seen directly. The NEWS software will attempt to deal with the following issues: • Uncertainty visualization in hazards maps • Visualizing uncertainty for sector specific risk managers • Uncertainty representation of point and linear data The objective is improve the information content of flood risk maps making them more useful to specific end-users.

  16. Comparison of flood hazard assessments on desert piedmonts and playas: A case study in Ivanpah Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Robins, Colin R.; Buck, Brenda J.; Williams, Amanda J.; Morton, Janice L.; House, P. Kyle; Howell, Michael S.; Yonovitz, Maureen L.

    2009-02-01

    Accurate and realistic characterizations of flood hazards on desert piedmonts and playas are increasingly important given the rapid urbanization of arid regions. Flood behavior in arid fluvial systems differs greatly from that of the perennial rivers upon which most conventional flood hazard assessment methods are based. Additionally, hazard assessments may vary widely between studies or even contradict other maps. This study's chief objective was to compare and evaluate landscape interpretation and hazard assessment between types of maps depicting assessments of flood risk in Ivanpah Valley, NV, as a case study. As a secondary goal, we explain likely causes of discrepancy between data sets to ameliorate confusion for map users. Four maps, including three different flood hazard assessments of Ivanpah Valley, NV, were compared: (i) a regulatory map prepared by FEMA, (ii) a soil survey map prepared by NRCS, (iii) a surficial geologic map, and (iv) a flood hazard map derived from the surficial geologic map, both of which were prepared by NBMG. GIS comparisons revealed that only 3.4% (33.9 km 2) of Ivanpah Valley was found to lie within a FEMA floodplain, while the geologic flood hazard map indicated that ~ 44% of Ivanpah Valley runs some risk of flooding (Fig. 2D). Due to differences in mapping methodology and scale, NRCS data could not be quantitatively compared, and other comparisons were complicated by differences in flood hazard class criteria and terminology between maps. Owing to its scale and scope of attribute data, the surficial geologic map provides the most useful information on flood hazards for land-use planning. This research has implications for future soil geomorphic mapping and flood risk mitigation on desert piedmonts and playas. The Ivanpah Valley study area also includes the location of a planned new international airport, thus this study has immediate implications for urban development and land-use planning near Las Vegas, NV.

  17. Uncertain Characterization of Flood Hazard Using Bivariate Analysis Based on Copulas

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Tito Aronica, Giuseppe

    2015-04-01

    This study presents a methodology to derive probabilistic flood hazard map in flood prone areas taking into account uncertainties in the definition of design-hydrographs. Particularly, we present an innovative approach to obtain probabilistic inundation and flood hazard maps where hydrological input (synthetic flood design event) to a 2D hydraulic model has been defined by generating flood peak discharges and volumes from a bivariate statistical analysis, through the use of copulas. This study also aims to quantify the contribution of boundary conditions uncertainty in order to explore the impact of this uncertainty on probabilistic flood hazard mapping. The uncertainty of extreme flood events is considered in terms of different possible combinations of peak discharge and flood volume given by the copula. Further, we analyzed the role of a multivariate probability hydrological analysis on inundation and flood hazard maps highlighting the differences between deterministic and probabilistic approaches. The methodology has been applied to a study area located in Sicily that was subject to several flooding events in the past.

  18. Effectiveness of water infrastructure for river flood management - Part 1: Flood hazard assessment using hydrological models in Bangladesh

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Kwak, Y.; Khairul, M. I.; Arifuzzaman, M. B.; Magome, J.; Sawano, H.; Takeuchi, K.

    2015-06-01

    This study introduces a flood hazard assessment part of the global flood risk assessment (Part 2) conducted with a distributed hydrological Block-wise TOP (BTOP) model and a GIS-based Flood Inundation Depth (FID) model. In this study, the 20 km grid BTOP model was developed with globally available data on and applied for the Ganges, Brahmaputra and Meghna (GBM) river basin. The BTOP model was calibrated with observed river discharges in Bangladesh and was applied for climate change impact assessment to produce flood discharges at each BTOP cell under present and future climates. For Bangladesh, the cumulative flood inundation maps were produced using the FID model with the BTOP simulated flood discharges and allowed us to consider levee effectiveness for reduction of flood inundation. For the climate change impacts, the flood hazard increased both in flood discharge and inundation area for the 50- and 100-year floods. From these preliminary results, the proposed methodology can partly overcome the limitation of the data unavailability and produces flood~maps that can be used for the nationwide flood risk assessment, which is presented in Part 2 of this study.

  19. Creating Probabilistic Multi-Peril Hazard Maps

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Page, N. A.; Rundle, J. B.

    2011-12-01

    An often overlooked component of natural hazards is the element of human involvement. Physical events--such as massive earthquakes--that do not affect society constitute natural phenomena, but are not necessarily natural hazards. Natural phenomena that occur in populated areas constitute hazardous events. Furthermore, hazardous events that cause damage--either in the form of structural damage or the loss or injury of lives--constitute natural disasters. Geographic areas that do not contain human interests, by definition, cannot suffer from hazardous events. Therefore, they do not contain a component of natural hazard. Note that this definition differs from the view of natural hazards as "unavoidable havoc wreaked by the unrestrained forces of nature". On the contrary, the burden of cause is shifted from purely natural processes to the concurrent presence of human society and natural events. Although individuals can do little to change the occurrences or intensities of most natural phenomena, they can mitigate their exposure to natural events and help ensure hazardous events do not become natural disasters. For example, choosing to build new settlements in known flood zones increases the exposure--and therefore risk--to natural flood events. Similarly, while volcanoes do erupt periodically, it is the conscious act of reappropriating the rich soils formed by ejecta as farmland that makes the volcanoes hazardous. Again, this empowers individuals and makes them responsible for their own exposure to natural hazards. Various local and governmental agencies--in particular, the United States Geographical Survey (USGS)--do a good job of identifying and listing various local natural hazards. These listings, however, are often treated individually and independently. Thus, it is often difficult to construct a "big picture" image of total natural hazard exposure. In this presentation, we discuss methods of identifying and combining different natural hazards for a given location

  20. 77 FR 29678 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... satisfies the data requirements outlined in 44 CFR 67.6(b) is considered an appeal. Comments unrelated to..., and Incorporated Areas Maps Available for Inspection Online at: http://www.in.gov/dnr/water/7293.htm... Online at: http://www.dnr.sc.gov/water/flood/comaps.html City of Manning 29 West Boyce Street,...

  1. Influence of ENSO on coastal flood hazard

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Haigh, Ivan; Veldkamp, Ted; Aerts, Jeroen; Ward, Philip

    2016-04-01

    ENSO is the most dominant interannual signal of climate variability. While ENSO-induced climate anomalies may result in changed probabilities of coastal flooding, little is known about how interannual variability affects the occurrence of extreme sea levels, and the probability of coastal flooding around the world. With this contribution, we will show in which areas El Niño or La Niña can result in significantly higher/lower extreme sea levels than during neutral years, and how this influences flood hazard. To assess this, we developed a model framework to assess the influences of the El Niño Southern Oscillation (ENSO) on coastal flood hazard at the global-scale. This approach is based on a new dynamically-derived global dataset that contains sea levels along the entire world's coastline for 1979-2014 (GTSR dataset). However, the modelled sea level variations in GTSR are strictly due to gravitational tides and barotropic changes (changes in wind and pressure): baroclinic effects (density differences) are not considered. Subsequently, we used satellite altimetry data and ocean reanalysis data to reconstruct the interannual signal in mean sea level, and combined this with the GTSR sea level timeseries. Using this timeseries we calculated the anomalies in sea level extremes during El Niño years and La Niña years (compared to all years) and we assess the correlation between the sea level extremes and ENSO driven variability. In this contribution, we show our first results on the influence of ENSO on coastal flood hazard around the world, and we discuss potential applications in, for example, disaster planning.

  2. Special challenges in assessing and mapping flood risk following a flood-debris flow event

    NASA Astrophysics Data System (ADS)

    Aggett, Graeme

    2016-04-01

    Severe rainfall along the Colorado front range in 2013 delivered flood and debris flows to many mountain communities, causing millions of dollars of damage as well as taking several lives. Phase changes in clear-hyperconcentrated-debris flows during the event created challenges in recreating the hydrology post-flood and in estimating and mapping new regulatory floodplains to support ongoing flood recovery efforts. This presentation highlights approaches used to overcome these challenges and to adequately represent the different processes and their uncertainties in updated flood hazard and risk assessments. It also considers the need to educate and involve the community in this process.

  3. Effects of rating-curve uncertainty on probabilistic flood mapping

    NASA Astrophysics Data System (ADS)

    Domeneghetti, A.; Vorogushyn, S.; Castellarin, A.; Merz, B.; Brath, A.

    2012-08-01

    Comprehensive flood risk assessment studies should quantify the global uncertainty in flood hazard estimation, for instance by mapping inundation extents together with their confidence intervals. This appears of particular importance in case of flood hazard assessments along dike-protected reaches where the possibility of occurrence of dike failures may considerably enhance the uncertainty. We present a methodology to derive probabilistic flood maps in dike-protected flood prone areas, where several sources of uncertainty are taken into account. In particular, this paper focuses on a 50 km reach of River Po (Italy) and three major sources of uncertainty in hydraulic modelling and flood mapping: uncertainties in the (i) upstream and (ii) downstream boundary conditions, and (iii) uncertainties in dike failures. Uncertainties in the definition of upstream boundary conditions (i.e. design-hydrographs) are assessed by applying different bivariate copula families to model the frequency regime of flood peaks and volumes. Uncertainties in the definition of downstream boundary conditions are characterised by associating the rating-curve used as downstream boundary condition with confidence intervals which reflect discharge measurements errors and interpolation errors. The effects of uncertainties in boundary conditions and randomness of dike failures are assessed by means of the Inundation Hazard Assessment Model (IHAM), a recently proposed hybrid probabilistic-deterministic model that considers three different failure mechanisms: overtopping, piping and micro-instability due to seepage. The results of the study show that the IHAM-based analysis enables probabilistic flood hazard mapping and provides decision makers with a fundamental piece of information for devising and implementing flood risk mitigation strategies in the presence of various sources of uncertainty.

  4. Flood warnings, flood disaster assessments, and flood hazard reduction: the roles of orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.; Anderson, E.; Nghiem, S. V.; Caquard, S.; Shabaneh, T. B.

    2003-01-01

    Orbital remote sensing of the Earth is now poised to make three fundamental contributions towards reducing the detrimental effects of extreme floods. Effective Flood warning requires frequent radar observation of the Earth's surface through cloud cover. In contrast, both optical and radar wavelengths will increasingly be used for disaster assessment and hazard reduction.

  5. Method Study of Flood Hazard Analysis for Plain River Network Area, Taihu Basin, China

    NASA Astrophysics Data System (ADS)

    HAN, C.; Liu, S.; Zhong, G.; Zhang, X.

    2015-12-01

    Flood is one of the most common and serious natural calamities. Taihu Basin is located in delta region of the Yangtze River in East China (see Fig. 1). Because of the abundant rainfall and low-lying terrain, the area frequently suffers from flood hazard which have caused serious casualty and economic loss. In order to reduce the severe impacts of floods events, numerous polder areas and hydraulic constructions (including pumps, water gates etc.) were constructed. Flood Hazard Map is an effective non-structural flood mitigation tool measures. Numerical simulation of flood propagation is one of the key technologies of flood hazard mapping. Because of the complexity of its underlying surface characteristics, numerical simulation of flood propagation was faced with some special problems for the plain river network area in Taihu Basin. In this paper, a coupled one and two dimensional hydrodynamic model was established. Densely covered and interconnected river networks, numerous polder areas and complex scheduling hydraulic constructions were generalized in the model. The model was proved to be believable and stable. Based on the results of the simulation of flood propagation, flood hazard map was compiled.

  6. Statistical analysis of the uncertainty related to flood hazard appraisal

    NASA Astrophysics Data System (ADS)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  7. A fluvial and pluvial probabilistic flood hazard analysis for Can Tho city, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martinez, Oriol; Thi Chinh, Do; Viet Dung, Nguyen

    2014-05-01

    Can Tho city is the largest city and the economic heart of the Mekong Delta, Vietnam. Due to its economic importance and envisaged development goals the city grew rapidly in population size and extend over the last two decades. Large parts of the city are located in flood prone areas, and also the central parts of the city recently experienced an increasing number of flood events, both of fluvial and pluvial nature. As the economic power and asset values are constantly increasing, this poses a considerable risk for the city. The the aim of this study is to perform a flood hazard analysis considering both fluvial and pluvial floods and to derive probabilistic flood hazard maps. This requires in a first step an understanding of the typical flood mechanisms. Fluvial floods are triggered by a coincidence of high water levels during the annual flood period in the Mekong Delta with high tidal levels, which cause in combination short term inundations in Can Tho. Pluvial floods are triggered by typical tropical convective rain storms during the monsoon season. These two flood pathways are essentially independent in its sources and can thus be treated in the hazard analysis accordingly. For the fluvial hazard analysis we propose a bivariate frequency analysis of the Mekong flood characteristics, the annual maximum flood discharge Q and the annual flood volume V at the upper boundary of the Mekong Delta, the gauging station Kratie. This defines probabilities of exceedance of different Q-V pairs, which are transferred into synthetic flood hydrographs. The synthetic hydrographs are routed through a quasi-2D hydrodynamic model of the entire Mekong Delta in order to provide boundary conditions for a detailed hazard mapping of Can Tho. This downscaling step is necessary, because the huge complexity of the river and channel network does not allow for a proper definition of boundary conditions for Can Tho city by gauge data alone. In addition the available gauge data around Can Tho

  8. GIS Development of Probabilistic Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Wong, F. L.; Geist, E. L.; Venturato, A. J.

    2004-12-01

    Probabilistic tsunami hazard mapping is best performed using geographic information systems (GIS), where multiple model-based inundation maps can be combined according to assigned probabilities. To test these techniques, hazard mapping is performed at Seaside, Oregon, the site of a pilot study that is part of the Federal Emergency Management Agency's (FEMA) effort to modernize its Flood Insurance Rate Maps (FIRMs). Because of the application of the study to FIRMs, we focus on developing aggregate hazard values (e.g., inundation area, flow depth) for the 1% and 0.2% annual probability events, otherwise known as the 100-year and 500-year floods. Both far-field and local tsunami sources are considered, each with assigned probability parameters. For an assumed time-independent (Poissonian) model, the only probability parameter needed is the mean inter-event time of the source under consideration. For a time-dependent model, the probability parameters include the time to the last event, the mean inter-event time, and a measure of recurrence aperiodicity. The main input for the model consists of far-field and local inundation maps, which represent maximum inundation values on land modeled for different combinations of earthquake magnitude and distance to earthquake source. The maps are rendered as raster grids, which lend themselves to algebraic functions as numerical arrays. One approach to determine the 100-year or 500-year inundation line is to calculate the maximum spatial extent of the input inundation maps. Alternatively, probabilistic flow depths can be determined by estimating a frequency-flow depth regression relationship for all of the layers at any given spatial point and interpolating the 100-year or 500-year value. The flow depths and accompanying inundation lines will be provided as map data layers reflecting the impact of tsunamis on the process of modernizing the FEMA Flood Insurance Rate Maps. In addition this type of analysis can be expanded to other

  9. USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.

    2000-01-01

    The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and

  10. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  11. ERTS-1 flood hazard studies in the Mississippi River Basin. [Missouri, Mississippi, and Arkansas

    NASA Technical Reports Server (NTRS)

    Rango, A.; Anderson, A. T.

    1974-01-01

    The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicate that ERTS-1 is extremely useful as a regional tool for flood and floodplain management. The maximum error of such flood area measurements is conservatively estimated to be less than five percent. Change detection analysis indicates that the flood had major impacts on soil moisture, land pattern stability, and vegetation stress. Flood hazard identification was conducted using photointerpretation techniques in three study areas along the Mississippi River using pre-flood ERTS-1 imagery down to 1:100,000 scale. Flood prone area boundaries obtained from ERTS-1 were generally in agreement with flood hazard maps produced by the U.S. Army Corps of Engineers and the U.S. Geological Survey although the latter are somewhat more detailed because of their larger scale. Initial results indicate that ERTS-1 digital mapping of the flood-prone areas can be performed at least 1:62,500 which is comparable to conventional flood hazard map scales.

  12. Flood Hazard Recurrence Frequencies for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    2001-07-11

    Department of Energy (DOE) regulations outline the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this report is flooding. The facility-specific probabilistic flood hazard curve defines, as a function of water elevation, the annual probability of occurrence or the return period in years. The facility-specific probabilistic flood hazard curves provide basis to avoid unnecessary facility upgrades, to establish appropriate design criteria for new facilities, and to develop emergency preparedness plans to mitigate the consequences of floods. A method based on precipitation, basin runoff and open channel hydraulics was developed to determine probabilistic flood hazard curves for the Savannah River Site. The calculated flood hazard curves show that the probabilities of flooding existing SRS major facilities are significantly less than 1.E-05 per year.

  13. Mapping Europe's Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Giardini, Domenico; Wössner, Jochen; Danciu, Laurentiu

    2014-07-01

    From the rift that cuts through the heart of Iceland to the complex tectonic convergence that causes frequent and often deadly earthquakes in Italy, Greece, and Turkey to the volcanic tremors that rattle the Mediterranean, seismic activity is a prevalent and often life-threatening reality across Europe. Any attempt to mitigate the seismic risk faced by society requires an accurate estimate of the seismic hazard.

  14. Rapid Response Flood Water Mapping

    NASA Technical Reports Server (NTRS)

    Policelli, Fritz; Brakenridge, G. R.; Coplin, A.; Bunnell, M.; Wu, L.; Habib, Shahid; Farah, H.

    2010-01-01

    Since the beginning of operation of the MODIS instrument on the NASA Terra satellite at the end of 1999, an exceptionally useful sensor and public data stream have been available for many applications including the rapid and precise characterization of terrestrial surface water changes. One practical application of such capability is the near-real time mapping of river flood inundation. We have developed a surface water mapping methodology based on using only bands 1 (620-672 nm) and 2 (841-890 nm). These are the two bands at 250 m, and the use of only these bands maximizes the resulting map detail. In this regard, most water bodies are strong absorbers of incoming solar radiation at the band 2 wavelength: it could be used alone, via a thresholding procedure, to separate water (dark, low radiance or reflectance pixels) from land (much brighter pixels) (1, 2). Some previous water mapping procedures have in fact used such single band data from this and other sensors that include similar wavelength channels. Adding the second channel of data (band 1), however, allows a band ratio approach which permits sediment-laden water, often relatively light at band 2 wavelengths, to still be discriminated, and, as well, provides some removal of error by reducing the number of cloud shadow pixels that would otherwise be misclassified as water.

  15. Dynamic Flood Vulnerability Mapping with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Kuhn, C.; Max, S. A.; Sullivan, J.

    2015-12-01

    Satellites capture the rate and character of environmental change from local to global levels, yet integrating these changes into flood exposure models can be cost or time prohibitive. We explore an approach to global flood modeling by leveraging satellite data with computing power in Google Earth Engine to dynamically map flood hazards. Our research harnesses satellite imagery in two main ways: first to generate a globally consistent flood inundation layer and second to dynamically model flood vulnerability. Accurate and relevant hazard maps rely on high quality observation data. Advances in publicly available spatial, spectral, and radar data together with cloud computing allow us to improve existing efforts to develop a comprehensive flood extent database to support model training and calibration. This talk will demonstrate the classification results of algorithms developed in Earth Engine designed to detect flood events by combining observations from MODIS, Landsat 8, and Sentinel-1. Our method to derive flood footprints increases the number, resolution, and precision of spatial observations for flood events both in the US, recorded in the NCDC (National Climatic Data Center) storm events database, and globally, as recorded events from the Colorado Flood Observatory database. This improved dataset can then be used to train machine learning models that relate spatial temporal flood observations to satellite derived spatial temporal predictor variables such as precipitation, antecedent soil moisture, and impervious surface. This modeling approach allows us to rapidly update models with each new flood observation, providing near real time vulnerability maps. We will share the water detection algorithms used with each satellite and discuss flood detection results with examples from Bihar, India and the state of New York. We will also demonstrate how these flood observations are used to train machine learning models and estimate flood exposure. The final stage of

  16. A new methodology for flood hazard assessment considering dike breaches

    NASA Astrophysics Data System (ADS)

    Vorogushyn, S.; Merz, B.; Lindenschmidt, K.-E.; Apel, H.

    2010-08-01

    This study focuses on development and application of a new modeling approach for a comprehensive flood hazard assessment along protected river reaches considering dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models that are coupled in a dynamic way: (1) 1D unsteady hydrodynamic model for river channel and floodplain between dikes; (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges; and (3) 2D raster-based inundation model for the dike-protected floodplain areas. Due to the unsteady nature of the 1D and 2D models and runtime coupling, the interdependence between the hydraulic loads on dikes at various locations along the reach is explicitly considered. This ensures a more realistic representation of the fluvial system dynamics under extreme conditions compared to the steady approaches. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by seepage flow through the dike core (micro-instability). The 2D storage cell model computes various flood intensity indicators such as water depth, flow velocity, and inundation duration. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the input hydrograph form and the randomness of dike failures. Besides binary (wet/dry) inundation patterns, IHAM generates new probabilistic flood hazard maps for each intensity indicator and the associated uncertainty bounds. Furthermore, the novel probabilistic dike hazard maps indicate the failure probability of dikes for each considered breach mechanism.

  17. Communicating the Global Flood Hazard Risk

    NASA Astrophysics Data System (ADS)

    Green, D. S.

    2015-12-01

    On any given day somewhere on the planet floods threaten communities, livelihoods, and individuals lives, but the location and extent of many of these events are unknown beyond the local community, region or nation. Earth observation, computational models and analysis tools, validated by dedicated flood observatories that leverage the data from earth observing satellites is changing the situation. This presentation will describe the efforts to strengthen global flood modeling and mapping at a scale that complements many of the local hydrometeorology warning and geologic river flow monitoring systems. Examples from NASA's Earth System Science partnerships and the research and application by scientists and engineers monitoring and tracking floods will be examined. The interface between applied science for water resource management and disaster response will be described as well as progress in capacity building. Pilot projects involving collaborations among the Community of Earth Observing Satellites members will be reviewed as well as opportunities described to translate science results into application through new satellite missions over the next decade.

  18. Hydrologic versus geomorphic drivers of trends in flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Bliss Singer, Michael; Kirchner, James W.

    2016-04-01

    Flooding is a major threat to lives and infrastructure, yet trends in flood hazard are poorly understood. The capacity of river channels to convey flood flows is typically assumed to be stationary, so changes in flood frequency are thought to be driven primarily by trends in streamflow. However, changes in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. We developed new methods for separately quantifying how trends in both streamflow and channel capacity have affected flood frequency at gauging sites across the United States. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect overbank flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity and/or the frequency of high flows. Flood frequency is generally nonstationary across these 401 U.S. rivers, with increasing flood hazard at a statistically significant majority of sites. Changes in flood hazard driven by channel capacity are smaller, but more numerous, than those driven by streamflow, with a slight tendency to compensate for streamflow changes. Our results demonstrate that accurately quantifying changes in flood hazard requires accounting separately for trends in both streamflow and channel capacity, or using water levels directly. They also show that channel capacity trends may have unforeseen consequences for flood management and for estimating flood insurance costs. Slater, L. J., M. B. Singer, and J. W. Kirchner (2015), Hydrologic versus geomorphic drivers of trends in flood hazard, Geophys. Res. Lett., 42, 370-376, doi:10.1002/2014GL062482.

  19. Flood Hazard Assessment for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    1999-07-08

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  20. Flood hazards in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Nassar, E.G.

    1975-01-01

    Floods are natural hazards that have complicated man's land-use planning for as long as we have had a history. Although flood hzards are a continuing danger, the year-to-year threat cannot be accurately predicted. Also, on any one stream, the time since the last destructive flood might be so long that most people now living near the stream have not experienced such a flood. Because of the unpredictability and common infrequency of disastrous flooding, or out of ignorance about the danger, or perhaps because of an urge to gamble, man tends to focus his attention on only the advantages of the flood-prone areas, rather than the risk due to the occasional major flood. The purposes of this report are to: (1) briefly describe flood hazards in this region, including some that may be unique to the Puget Sound basin, (2) indicate the parts of the area for which flood-hazard data are available, and (3) list the main sources of hydrologic information that is useful for flood-hazard analysis in conjuction with long-range planning. This map-type report is one of a series being prepared by the U.S. Geological Survey to present basic environmental information and interpretations to assist land-use planning in the Puget Sound region.

  1. Determining the Optimum Post Spacing of LIDAR-Derived Elevation Data in Varying Terrain for Flood Hazard Mapping Purposes in North Carolina and Texas

    NASA Technical Reports Server (NTRS)

    Berglund, Judith; Davis, Bruce; Estep, Lee

    2004-01-01

    The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality

  2. Fifty-year flood-inundation maps for Tegucigalpa, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Tegucigalpa that would be inundated by a 50-year flood of Rio Choluteca, Rio Grande, Rio Guacerique, and Rio Chiquito. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Tegucigalpa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Choluteca, Rio Grande, Rio Guacerique, and Rio Chiquito at Tegucigalpa were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at bridges. There are no nearby long-term stream-gaging stations; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The estimated 50-year-flood discharge is 922 cubic meters per second at Rio Choluteca at downstream end of the study area boundary, 663 cubic meters per second at the mouth of the Rio Grande, 475 cubic meters per second at the mouth of the Rio Guacerique, and 254 cubic meters per second at the mouth of the Rio Chiquito.

  3. Fifty-year flood-inundation maps for Tocoa, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Tocoa that would be inundated by a 50-year flood of Rio Tocoa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Tocoa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Tocoa at Tocoa were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at one bridge. There are no nearby long-term stream-gaging stations on Rio Tocoa; therefore, the 50-year-flood discharge for Rio Tocoa, 552 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Tocoa at Tocoa are 204 square kilometers and 1,987 millimeters, respectively. It was assumed that a portion of the 50-year flood, 200 cubic meters per second, would escape the main channel and flow down a side channel before re-entering the main channel again near the lower end of the study area.

  4. Fifty-year flood-inundation maps for Siguatepeque, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Siguatepeque that would be inundated by 50-year floods on Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Siguatepeque as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on each of the streams studied were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at six bridges. There are no nearby long-term stream-gaging stations on any of the streams studied; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The 50-year-flood discharges estimated for Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma are 323, 168, 161, 146, and 90 cubic meters per second, respectively.

  5. Flood Hazard Assessment for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    2000-08-15

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper.

  6. 34 CFR 75.611 - Avoidance of flood hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Avoidance of flood hazards. 75.611 Section 75.611 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction,...

  7. 34 CFR 75.611 - Avoidance of flood hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Avoidance of flood hazards. 75.611 Section 75.611 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction,...

  8. 34 CFR 75.611 - Avoidance of flood hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Avoidance of flood hazards. 75.611 Section 75.611 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction,...

  9. 34 CFR 75.611 - Avoidance of flood hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Avoidance of flood hazards. 75.611 Section 75.611 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction,...

  10. Increasing resilience through participative flood risk map design

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral

  11. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web

    USGS Publications Warehouse

    Hearn,, Paul P., Jr.; Longenecker, Herbert E., III; Aguinaldo, John J.; Rahav, Ami N.

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency’s (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS’s newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  12. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web.

    PubMed

    Hearn, Paul P; Longenecker, Herbert E; Aguinaldo, John J; Rahav, Ami N

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency's (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS's newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders. PMID:24303773

  13. Influence of dem in Watershed Management as Flood Zonation Mapping

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Khan, Mudasir; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS), geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis) which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs) of different resolution (30m, 20m,10m and 5m) have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  14. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.

    2015-08-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by

  15. Fifty-year flood-inundation maps for Olanchito, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Olanchito that would be inundated by a 50-year-flood of Rio Uchapa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Olanchito as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 243 cubic meters per second on Rio Uchapa at Olanchito were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Uchapa; therefore, the 50-year-flood discharge for Rio Uchapa was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Uchapa at Olanchito are 97.1 square kilometers and 1,178 millimeters, respectively.

  16. Fifty-year flood-inundation maps for Sonaguera, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Sonaguera that would be inundated by a 50-year flood of Rio Sonaguera and its tributary, Rio Juan Lazaro. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Sonaguera as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Sonaguera and Rio Juan Lazaro at Sonaguera were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at the bridge. There are no nearby long-term stream-gaging stations on Rio Sonaguera or Rio Juan Lazaro; therefore, the 50-year-flood discharge for Rio Sonaguera above the confluence with Rio Juan Lazaro, 194 cubic meters per second; for Rio Juan Lazaro at its mouth, 168 cubic meters per second, and for Rio Sonaguera at the downstream end of the study area, 282 cubic meters per second; were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation.

  17. Fifty-year flood-inundation maps for Catacamas, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Catacamas that would be inundated by a 50-year-flood of Rio Catacamas. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Catacamas as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/ floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Catacamas at Catacamas were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Catacamas at Catacamas, 216 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation because there are no long-term stream-gaging stations on the river from which to estimate the discharge. The drainage area and mean annual precipitation estimated for Rio Catacamas at Catacamas are 45.4 square kilometers and 1,773 millimeters, respectively.

  18. Fifty-year flood-inundation maps for Choloma, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choloma that would be inundated by a 50-year flood of Rio Choloma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choloma as part of the in the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Choloma at Choloma were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light detection and ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Choloma; therefore, the 50-year-flood discharge for Rio Choloma, 370 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Choloma at Choloma are 89.5 square kilometers and 2,164 millimeters, respectively.

  19. Development of flood risk mapping in Kota Tinggi, Malaysia

    NASA Astrophysics Data System (ADS)

    Tam, T. H.

    2014-02-01

    Flood risk maps provide valuable information for development of flood risk management. Geospatial technology and modeling enable us to monitor natural disasters around the world. Flooding is the most severe natural disaster that causing huge economic losses every year. Flood risk maps are an essential tool for assessing the consequences of flooding. The main aim of this study is to initiate a framework to develop a local-based flood risk map. Flood risk maps can be produced by using integration of geospatial technology and hydrodynamic modeling. Results show that a flood risk map for Kota Tinggi is produced with unsatisfactory information in term of flood damage.

  20. 78 FR 14569 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... on the indicated Letter of Map Revision (LOMR) for each of the communities listed in the table below are finalized. Each LOMR revises the Flood Insurance Rate Maps (FIRMs), and in some cases the Flood...: Each LOMR is available for inspection at both the respective Community Map Repository address listed...

  1. 78 FR 45941 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... on the indicated Letter of Map Revision (LOMR) for each of the communities listed in the table below are finalized. Each LOMR revises the Flood Insurance Rate Maps (FIRMs), and in some cases the Flood...: Each LOMR is available for inspection at both the respective Community Map Repository address listed...

  2. 78 FR 43899 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... on the indicated Letter of Map Revision (LOMR) for each of the communities listed in the table below are finalized. Each LOMR revises the Flood Insurance Rate Maps (FIRMs), and in some cases the Flood...: Each LOMR is available for inspection at both the respective Community Map Repository address listed...

  3. 78 FR 48880 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... on the indicated Letter of Map Revision (LOMR) for each of the communities listed in the table below are finalized. Each LOMR revises the Flood Insurance Rate Maps (FIRMs), and in some cases the Flood...: Each LOMR is available for inspection at both the respective Community Map Repository address listed...

  4. Flood hazard, vulnerability, and risk assessment for human life

    NASA Astrophysics Data System (ADS)

    Pan, T.; Chang, T.; Lai, J.; Hsieh, M.; Tan, Y.; Lin, Y.

    2011-12-01

    Flood risk assessment is an important issue for the countries suffering tropical cyclones and monsoon. Taiwan is located in the hot zone of typhoon tracks in the Western Pacific. There are three to five typhoons landing Taiwan every year. Typhoons and heavy rainfalls often cause inundation disaster rising with the increase of population and the development of social economy. The purpose of this study is to carry out the flood hazard, vulnerability and risk in term of human life. Based on the concept that flood risk is composed by flood hazard and vulnerability, a inundation simulation is performed to evaluate the factors of flood hazard for human life according to base flood (100-year return period). The flood depth, velocity and rising ratio are the three factors of flood hazards. Furthermore, the factors of flood vulnerability are identified in terms of human life that are classified into two main factors, residents and environment. The sub factors related to residents are the density of population and the density of vulnerable people including elders, youngers and disabled persons. The sub factors related to environment include the the number of building floors, the locations of buildings, the and distance to rescue center. The analytic hierarchy process (AHP) is adopted to determine the weights of these factors. The risk matrix is applied to show the risk from low to high based on the evaluation of flood hazards and vulnerabilities. The Tseng-Wen River watershed is selected as the case study because a serious flood was induced by Typhoon Morakot in 2009, which produced a record-breaking rainfall of 2.361mm in 48 hours in the last 50 years. The results of assessing the flood hazard, vulnerability and risk in term of human life could improve the emergency operation for flood disaster to prepare enough relief goods and materials during typhoon landing.

  5. Flood inundation map library, Fort Kent, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2012-01-01

    Severe flooding occurred in northern Maine from April 28 to May 1, 2008, and damage was extensive in the town of Fort Kent (Lombard, 2010). Aroostook County was declared a Federal disaster area on May 9, 2008. The extent of flooding on both the Fish and St. John Rivers during this event showed that the current Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) and Flood Insurance Rate Map (FIRM) (Federal Emergency Management Agency, 1979) were out of date. The U.S. Geological Survey (USGS) conducted a study to develop a flood inundation map library showing the areas and depths for a range of flood stages from bankfull to the flood of record for Fort Kent to complement an updated FIS (Federal Emergency Management Agency, in press). Hydrologic analyses that support the maps include computer models with and without the levee and with various depths of backwater on the Fish River. This fact sheet describes the methods used to develop the maps and describes how the maps can be accessed.

  6. Flood mapping with multitemporal MODIS data

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  7. Flood hazard assessment for the Savannah River Site

    SciTech Connect

    Chen, K.F.

    2000-01-18

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper.

  8. Effects of uncertainty in boundary-conditions on flood hazard assessment

    NASA Astrophysics Data System (ADS)

    Domeneghetti, A.; Vorogushyn, S.; Castellarin, A.; Merz, B.; Brath, A.

    2012-04-01

    Comprehensive flood-risk assessment studies should quantify the global uncertainty in flood hazard estimation, for instance by mapping inundation extents together with their confidence intervals. This appears of utmost importance, especially in the case of flood hazard assessments along dike-protected reaches, where dike failures have to be considered. This paper focuses on a 50km reach of River Po (Italy) and three major sources of uncertainty in inundation mapping: uncertainties in the (i) upstream and (ii) downstream boundary conditions, and (iii) uncertainties in the dike-failure location and breach morphology. We derive confidence bounds for flood hazard maps by means of the Inundation Hazard Assessment Model (IHAM) - a hybrid probabilistic-deterministic model. IHAM couples in a dynamic way a 1D hydrodynamic model and a 2D raster-based hydraulic model through a probabilistic dike-breaching analysis that considers three different failure mechanisms: overtopping, piping and micro-instability due to seepage. To address the randomness resulting from the variability in boundary conditions and dike-failures the system is run in a Monte Carlo framework. Uncertainties in the definition of upstream boundary conditions (i.e. design-hydrographs) are assessed by applying different bivariate copula families to model the frequency of flood peaks and volumes. Uncertainties in the definition of downstream boundary conditions are characterized by associating the rating-curve used as boundary condition with confidence intervals which reflect discharge measurements errors and interpolation errors. The results of the study are presented in terms of the Monte Carlo-based flood hazard mapping for different flood-intensity indicators (e.g., inundation depth, flow velocity, inundation duration, etc.) together with the corresponding uncertainty bounds. We conclude on the influence of uncertainty in boundary conditions and provide decision makers with an important piece of information

  9. Quantifying the combined effects of multiple extreme floods on river channel geometry and on flood hazards

    NASA Astrophysics Data System (ADS)

    Guan, Mingfu; Carrivick, Jonathan L.; Wright, Nigel G.; Sleigh, P. Andy; Staines, Kate E. H.

    2016-07-01

    Effects of flood-induced bed elevation and channel geometry changes on flood hazards are largely unexplored, especially in the case of multiple floods from the same site. This study quantified the evolution of river channel and floodplain geometry during a repeated series of hypothetical extreme floods using a 2D full hydro-morphodynamic model (LHMM). These experiments were designed to examine the consequences of channel geometry changes on channel conveyance capacity and subsequent flood dynamics. Our results revealed that extreme floods play an important role in adjusting a river channel to become more efficient for subsequent propagation of floods, and that in-channel scour and sediment re-distribution can greatly improve the conveyance capacity of a channel for subsequent floods. In our hypothetical sequence of floods the response of bed elevation was of net degradation, and sediment transport successively weakened even with floods of the same magnitude. Changes in river channel geometry led to significant impact on flood hydraulics and thereby flood hazards. We found that flood-induced in-channel erosion can disconnect the channel from its floodplain resulting in a reduction of floodwater storage. Thus, the frequency and extent of subsequent overbank flows and floodplain inundation decreased, which reduced downstream flood attenuation and increased downstream flood hazard. In combination and in summary, these results suggest that changes in channel capacity due to extreme floods may drive changes in flood hazard. The assumption of unchanging of river morphology during inundation modelling should therefore be open to question for flood risk management.

  10. Increasing resilience through participative flood risk map design

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral

  11. Overcoming complexities for consistent, continental-scale flood mapping

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Zaidman, Maxine; Davison, Charlotte

    2013-04-01

    The EU Floods Directive requires all member states to produce flood hazard maps by 2013. Although flood mapping practices are well developed in Europe, there are huge variations in the scale and resolution of the maps between individual countries. Since extreme flood events are rarely confined to a single country, this is problematic, particularly for the re/insurance industry whose exposures often extend beyond country boundaries. Here, we discuss the challenges of large-scale hydrological and hydraulic modelling, using our experience of developing a 12-country model and set of maps, to illustrate how consistent, high-resolution river flood maps across Europe can be produced. The main challenges addressed include: data acquisition; manipulating the vast quantities of high-resolution data; and computational resources. Our starting point was to develop robust flood-frequency models that are suitable for estimating peak flows for a range of design flood return periods. We used the index flood approach, based on a statistical analysis of historic river flow data pooled on the basis of catchment characteristics. Historical flow data were therefore sourced for each country and collated into a large pan-European database. After a lengthy validation these data were collated into 21 separate analysis zones or regions, grouping smaller river basins according to their physical and climatic characteristics. The very large continental scale basins were each modelled separately on account of their size (e.g. Danube, Elbe, Drava and Rhine). Our methodology allows the design flood hydrograph to be predicted at any point on the river network for a range of return periods. Using JFlow+, JBA's proprietary 2D hydraulic hydrodynamic model, the calculated out-of-bank flows for all watercourses with an upstream drainage area exceeding 50km2 were routed across two different Digital Terrain Models in order to map the extent and depth of floodplain inundation. This generated modelling for

  12. Accumulation risk assessment for the flooding hazard

    NASA Astrophysics Data System (ADS)

    Roth, Giorgio; Ghizzoni, Tatiana; Rudari, Roberto

    2010-05-01

    One of the main consequences of the demographic and economic development and of markets and trades globalization is represented by risks cumulus. In most cases, the cumulus of risks intuitively arises from the geographic concentration of a number of vulnerable elements in a single place. For natural events, risks cumulus can be associated, in addition to intensity, also to event's extension. In this case, the magnitude can be such that large areas, that may include many regions or even large portions of different countries, are stroked by single, catastrophic, events. Among natural risks, the impact of the flooding hazard cannot be understated. To cope with, a variety of mitigation actions can be put in place: from the improvement of monitoring and alert systems to the development of hydraulic structures, throughout land use restrictions, civil protection, financial and insurance plans. All of those viable options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - flood risk scenarios. It is therefore necessary to identify proper statistical methodologies, able to describe the multivariate aspects of the involved physical processes and their spatial dependence. In hydrology and meteorology, but also in finance and insurance practice, it has early been recognized that classical statistical theory distributions (e.g., the normal and gamma families) are of restricted use for modeling multivariate spatial data. Recent research efforts have been therefore directed towards developing statistical models capable of describing the forms of asymmetry manifest in data sets. This, in particular, for the quite frequent case of phenomena whose empirical outcome behaves in a non-normal fashion, but still maintains some broad similarity with the multivariate normal distribution. Fruitful approaches were recognized in the use of flexible models, which include the normal

  13. Fifty-year flood-inundation maps for Comayagua, Hondura

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Comayagua that would be inundated by 50-year floods on Rio Humuya and Rio Majada. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Comayagua as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Humuya and Rio Majada at Comayagua were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Humuya at Comayagua, 1,400 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The reasonableness of the regression discharge was evaluated by comparing it with drainage-area-adjusted 50-year-flood discharges estimated for three long-term Rio Humuya stream-gaging stations. The drainage-area-adjusted 50-year-flood discharges estimated from the gage records ranged from 946 to 1,365 cubic meters per second. Because the regression equation discharge agrees closely with the high end of the range of discharges estimated from the gaging-station records, it was used for the hydraulic modeling to ensure that the resulting 50-year-flood water-surface elevations would not be underestimated. The 50-year-flood

  14. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  15. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  16. Groundwater flood hazards in lowland karst terrains

    NASA Astrophysics Data System (ADS)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  17. An automated approach to flood mapping

    NASA Astrophysics Data System (ADS)

    Sun, Weihua; Mckeown, Donald M.; Messinger, David W.

    2012-10-01

    Heavy rain from Tropical Storm Lee resulted in a major flood event for the southern tier of New York State in early September 2011 causing evacuation of approximately 20,000 people in and around the city of Binghamton. In support of the New York State Office of Emergency Management, a high resolution multispectral airborne sensor (WASP) developed by RIT was deployed over the flooded area to collect aerial images. One of the key benefits of these images is their provision for flood inundation area mapping. However, these images require a significant amount of storage space and the inundation mapping process is conventionally carried out using manual digitization. In this paper, we design an automated approach for flood inundation mapping from the WASP airborne images. This method employs Spectral Angle Mapper (SAM) for color RGB or multispectral aerial images to extract the flood binary map; then it uses a set of morphological processing and a boundary vectorization technique to convert the binary map into a shapefile. This technique is relatively fast and only requires the operator to select one pixel on the image. The generated shapefile is much smaller than the original image and can be imported to most GIS software packages. This enables critical flood information to be shared with and by disaster response managers very rapidly, even over cellular phone networks.

  18. Debris flow hazard mapping, Hobart, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Mazengarb, Colin; Rigby, Ted; Stevenson, Michael

    2015-04-01

    constrained by aerial photographs to decade precision and many predate regional photography (pre 1940's). We have performed runout modelling, using 2D hydraulic modelling software (RiverFlow2D with Mud and Debris module), in order to calibrate our model against real events and gain confidence in the choice of parameters. Runout modelling was undertaken in valley systems with volumes calibrated to existing flood model likelihoods for each catchment. The hazard outputs from our models require developing a translation to hazard models used in Australia. By linking to flood mapping we aim to demonstrate to emergency managers where existing mitigation measures may be inadequate and how they can be adapted to address multiple hazards.

  19. Flood risk assessment and mapping for the Lebanese watersheds

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs

  20. Natural Phenomena Hazards Modeling Project: Flood hazard models for Department of Energy sites

    SciTech Connect

    Savy, J.B.; Murray, R.C.

    1988-05-01

    For eight sites, the evaluation of flood hazards was considered in two steps. First, a screening assessment was performed to determine whether flood hazards may impact DOE operations. The screening analysis consisted of a preliminary flood hazard assessment that provides an initial estimate of the site design basis. The second step involves a review of the vulnerability of on-site facilities by the site manager; based on the results of the preliminary flood hazard assessment and a review of site operations, the manager can decide whether flood hazards should be considered a part of the design basis. The scope of the preliminary flood hazard analysis was restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does not involve an assessment of the potential of encroachment of flooding at specific on-site locations. Furthermore, the screening analysis does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues were reserved for consideration by the DOE site manager. 9 refs., 18 figs.

  1. Fifty-year flood-inundation maps for Choluteca, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choluteca that would be inundated by 50-year floods on Rio Choluteca and Rio Iztoca. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choluteca as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Choluteca and Rio Iztoca at Choluteca were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Choluteca at Choluteca is 4,620 cubic meters per second, which is the drainage-area-adjusted weighted-average of two independently estimated 50-year-flood discharges for the gaging station Rio Choluteca en Puente Choluteca. One discharge, 4,913 cubic meters per second, was estimated from a frequency analysis of the 17 years of peak discharge record for the gage, and the other, 2,650 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 4,530 cubic meters per second. The 50-year-flood discharge for the study area reach of Rio Choluteca was estimated by multiplying the weighted discharge at the gage by the ratio of the drainage

  2. Fifty-year flood-inundation maps for Nacaome, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Nacaome that would be inundated by 50-year floods on Rio Nacaome, Rio Grande, and Rio Guacirope. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Nacaome as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Nacaome, Rio Grande, and Rio Guacirope at Nacaome were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at two bridges. The estimated 50-year-flood discharge for Rio Nacaome at Nacaome, 5,040 cubic meters per second, was computed as the drainage-area-adjusted weighted average of two independently estimated 50-year-flood discharges for the gaging station Rio Nacaome en Las Mercedes, located about 13 kilometers upstream from Nacaome. One of the discharges, 4,549 cubic meters per second, was estimated from a frequency analysis of the 16 years of peak-discharge record for the gage, and the other, 1,922 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges is 3,770 cubic meters per second. The 50-year-flood discharges for Rio Grande, 3,890 cubic meters per

  3. Estimation of flood inundation probabilities using global hazard indexes based on hydrodynamic variables

    NASA Astrophysics Data System (ADS)

    Aronica, Giuseppe Tito; Candela, Angela; Fabio, Pamela; Santoro, Mario

    In this paper a new procedure to derive flood hazard maps incorporating uncertainty concepts is presented. The layout of the procedure can be resumed as follows: (1) stochastic input of flood hydrograph modelled through a direct Monte-Carlo simulation based on flood recorded data. Generation of flood peaks and flow volumes has been obtained via copulas, which describe and model the correlation between these two variables independently of the marginal laws involved. The shape of hydrograph has been generated on the basis of a historical significant flood events, via cluster analysis; (2) modelling of flood propagation using a hyperbolic finite element model based on the DSV equations; (3) definition of global hazard indexes based on hydro-dynamic variables (i.e., water depth and flow velocities). The GLUE methodology has been applied in order to account for parameter uncertainty. The procedure has been tested on a flood prone area located in the southern part of Sicily, Italy. Three hazard maps have been obtained and then compared.

  4. Hazards of Extreme Weather: Flood Fatalities in Texas

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Jackson, T.; Bin-Shafique, S.

    2009-12-01

    The Federal Emergency Management Agency (FEMA) considers flooding “America’s Number One Natural Hazard”. Despite flood management efforts in many communities, U.S. flood damages remain high, due, in large part, to increasing population and property development in flood-prone areas. Floods are the leading cause of fatalities related to natural disasters in Texas. Texas leads the nation in flash flood fatalities. There are three times more fatalities in Texas (840) than the following state Pennsylvania (265). This study examined flood fatalities that occurred in Texas between 1960 and 2008. Flood fatality statistics were extracted from three sources: flood fatality databases from the National Climatic Data Center, the Spatial Hazard Event and Loss Database for the United States, and the Texas Department of State Health Services. The data collected for flood fatalities include the date, time, gender, age, location, and weather conditions. Inconsistencies among the three databases were identified and discussed. Analysis reveals that most fatalities result from driving into flood water (about 65%). Spatial analysis indicates that more fatalities occurred in counties containing major urban centers. Hydrologic analysis of a flood event that resulted in five fatalities was performed. A hydrologic model was able to simulate the water level at a location where a vehicle was swept away by flood water resulting in the death of the driver.

  5. 78 FR 24439 - Compliance With Information Request, Flooding Hazard Reevaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing draft Japan Lessons-Learned Project Directorate Interim Staff Guidance (JLD- ISG), JLD-ISG-2013-01, ``Guidance for Estimating Flooding Hazards due to Dam Failure.'' This draft JLD-ISG provides guidance acceptable to the NRC staff for reevaluating flooding hazards due to dam failure for the purpose of responding to enclosure 2 of a March......

  6. 12 CFR 391.35 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Required use of standard flood hazard... Special Flood Hazards § 391.35 Required use of standard flood hazard determination form. (a) Use of form. A State savings association shall use the standard flood hazard determination form developed by...

  7. 7 CFR 1980.318 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Flood or mudslide hazard area precautions. 1980.318... Flood or mudslide hazard area precautions. RHS policy is to discourage lending in designated flood and mudslide hazard areas. Loan guarantees shall not be issued in designated flood/mudslide hazard areas...

  8. 12 CFR 572.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A savings association shall use the standard flood hazard...

  9. 12 CFR 391.35 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Required use of standard flood hazard... Special Flood Hazards § 391.35 Required use of standard flood hazard determination form. (a) Use of form. A State savings association shall use the standard flood hazard determination form developed by...

  10. 7 CFR 1980.318 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Flood or mudslide hazard area precautions. 1980.318... Flood or mudslide hazard area precautions. RHS policy is to discourage lending in designated flood and mudslide hazard areas. Loan guarantees shall not be issued in designated flood/mudslide hazard areas...

  11. 7 CFR 1980.318 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Flood or mudslide hazard area precautions. 1980.318... Flood or mudslide hazard area precautions. RHS policy is to discourage lending in designated flood and mudslide hazard areas. Loan guarantees shall not be issued in designated flood/mudslide hazard areas...

  12. 12 CFR 22.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Required use of standard flood hazard... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 22.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood hazard determination form developed by...

  13. 12 CFR 391.35 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Required use of standard flood hazard... Special Flood Hazards § 391.35 Required use of standard flood hazard determination form. (a) Use of form. A State savings association shall use the standard flood hazard determination form developed by...

  14. 7 CFR 1980.318 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Flood or mudslide hazard area precautions. 1980.318... Flood or mudslide hazard area precautions. RHS policy is to discourage lending in designated flood and mudslide hazard areas. Loan guarantees shall not be issued in designated flood/mudslide hazard areas...

  15. 12 CFR 22.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Required use of standard flood hazard... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 22.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood hazard determination form developed by...

  16. 12 CFR 22.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Required use of standard flood hazard... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 22.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood hazard determination form developed by...

  17. 12 CFR 572.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A savings association shall use the standard flood hazard...

  18. 12 CFR 572.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A savings association shall use the standard flood hazard...

  19. 12 CFR 572.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A savings association shall use the standard flood hazard...

  20. 12 CFR 22.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Required use of standard flood hazard... LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 22.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood hazard determination form developed by...

  1. 7 CFR 1980.318 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Flood or mudslide hazard area precautions. 1980.318... Flood or mudslide hazard area precautions. RHS policy is to discourage lending in designated flood and mudslide hazard areas. Loan guarantees shall not be issued in designated flood/mudslide hazard areas...

  2. Fifty-year flood-inundation maps for Juticalpa, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Juticalpa that would be inundated by a 50-year flood of Rio Juticalpa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Juticalpa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Juticalpa at Juticalpa were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Juticalpa at Juticalpa, 1,360 cubic meters per second, was computed as the drainage-area-adjusted weighted average of two independently estimated 50-year-flood discharges for the gaging station Rio Juticalpa en El Torito, located about 2 kilometers upstream from Juticalpa. One discharge, 1,551 cubic meters per second, was estimated from a frequency analysis of the 33 years of peak-discharge record for the gage, and the other, 486 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 1,310 cubic meters per second. The 50-year flood discharge for the study area reach of Rio Juticalpa was estimated by multiplying the weighted discharge at the gage by the

  3. Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen

    2016-04-01

    coincidence into account. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.

  4. 44 CFR 65.5 - Revision to special hazard area boundaries with no change to base flood elevation determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... area boundaries with no change to base flood elevation determinations. 65.5 Section 65.5 Emergency... § 65.5 Revision to special hazard area boundaries with no change to base flood elevation determinations... paragraphs (a)(1) through (6) of this section to request a map revision when no physical changes...

  5. 44 CFR 65.5 - Revision to special hazard area boundaries with no change to base flood elevation determinations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... area boundaries with no change to base flood elevation determinations. 65.5 Section 65.5 Emergency... § 65.5 Revision to special hazard area boundaries with no change to base flood elevation determinations... paragraphs (a)(1) through (6) of this section to request a map revision when no physical changes...

  6. A GIS Flood Tool for Rapid Inundation Mapping

    NASA Astrophysics Data System (ADS)

    Verdin, K. L.; Verdin, J. P.; Gadain, H.; Mathis, M.; Woodbury, M.; Rusack, E.; Brakenridge, G. R.

    2013-12-01

    Many developing countries lack objectively produced flood inundation mapping around which to build scenarios for mitigation and response planning. Conventional methods, involving costly field surveys and hydraulic modeling, are often beyond the means of sub-national and national units of government. At the same time, organizations with a global perspective on flooding (UN agencies, donor disaster assistance agencies, non-governmental organizations, and insurance companies) lack a globally consistent approach for flood hazard characterization. In order to meet these needs, tools were developed for flood mapping with globally available or locally produced topographic data. The tools were tested in a variety of settings with the assistance of a number of partner organizations. This work was done in cooperation with the U.S. Agency for International Development Office of U.S. Foreign Disaster Assistance. The resulting GIS Flood Tool (GFT) was developed to operate on digital elevation model (DEM) data to produce patterns of flood inundation corresponding to a river discharge or stage value specified by the user. The GFT uses the DEM to derive stream networks and stream cross-sections. The Manning equation is then used to construct a stage-discharge relationship for each cross-section. Use of the stage-discharge relationship along with a specially processed Relative DEM allows for rapid mapping of the inundated extent. The resulting inundation patterns can be used in conjunction with additional geographic information describing settlement patterns, transportation networks, land use and land cover to assess vulnerability to flood events and support preparedness planning. Comparison of the GFT results with inundation patterns produced using conventional hydraulic modeling approaches (HEC-RAS) and satellite remote sensing shows good correlation in many settings. Training sessions have been conducted in East Africa, where the tool is in use by national and regional

  7. Spatial planning using probabilistic flood maps

    NASA Astrophysics Data System (ADS)

    Alfonso, Leonardo; Mukolwe, Micah; Di Baldassarre, Giuliano

    2015-04-01

    Probabilistic flood maps account for uncertainty in flood inundation modelling and convey a degree of certainty in the outputs. Major sources of uncertainty include input data, topographic data, model structure, observation data and parametric uncertainty. Decision makers prefer less ambiguous information from modellers; this implies that uncertainty is suppressed to yield binary flood maps. Though, suppressing information may potentially lead to either surprise or misleading decisions. Inclusion of uncertain information in the decision making process is therefore desirable and transparent. To this end, we utilise the Prospect theory and information from a probabilistic flood map to evaluate potential decisions. Consequences related to the decisions were evaluated using flood risk analysis. Prospect theory explains how choices are made given options for which probabilities of occurrence are known and accounts for decision makers' characteristics such as loss aversion and risk seeking. Our results show that decision making is pronounced when there are high gains and loss, implying higher payoffs and penalties, therefore a higher gamble. Thus the methodology may be appropriately considered when making decisions based on uncertain information.

  8. 78 FR 8169 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood... appeals to the Chief Executive Officer of the community as listed in the table below. FOR FURTHER... as listed in the table below. The modifications are made pursuant to section 201 of the...

  9. Adige river in Trento flooding map, 1892: private or public risk transfer?

    NASA Astrophysics Data System (ADS)

    Ranzi, Roberto

    2016-04-01

    For the determination of the flood risk hydrologist and hydraulic engineers focuse their attention mainly to the estimation of physical factors determining the flood hazard, while economists and experts of social sciences deal mainly with the estimation of vulnerability and exposure. The fact that flood zoning involves both hydrological and socio-economic aspects, however, was clear already in the XIX century when the impact of floods on inundated areas started to appear in flood maps, for instance in the UK and in Italy. A pioneering 'flood risk' map for the Adige river in Trento, Italy, was already published in 1892, taking into account in detail both hazard intensity in terms of velocity and depth, frequency of occurrence, vulnerability and economic costs for flood protection with river embankments. This map is likely to be the reinterpreted certainly as a pioneering, and possibly as the first flood risk map for an Italian river and worldwide. Risk levels were divided in three categories and seven sub-categories, depending on flood water depth, velocity, frequency and damage costs. It is interesting to notice the fact that at that time the map was used to share the cost of levees' reparation and enhancement after the severe September 1882 flood as a function of the estimated level of protection of the respective areas against the flood risk. The sharing of costs between public bodies, the railway company and private owners was debated for about 20 years and at the end the public sustained the major costs. This shows how already at that time the economic assessment of structural flood protections was based on objective and rational cost-benefit criteria, that hydraulic risk mapping was perceived by the society as fundamental for the design of flood protection systems and that a balanced cost sharing between public and private was an accepted approach although some protests arose at that time.

  10. Flood Hazards: Communicating Hydrology and Complexity to the Public

    NASA Astrophysics Data System (ADS)

    Holmes, R. R.; Blanchard, S. F.; Mason, R. R.

    2010-12-01

    Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL: http://water.usgs.gov/wateralert/), allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the

  11. 12 CFR 760.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Required use of standard flood hazard... AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.6 Required use of standard flood hazard determination form. (a) Use of form. A credit union shall use the standard flood...

  12. 24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Flood and hazard insurance, and... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... part if the property securing repayment of the loan is located in a special flood hazard...

  13. 12 CFR 172.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 172.6 Required use of standard flood hazard determination form. (a) Use of form. A Federal savings association shall use the standard flood...

  14. 12 CFR 172.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 172.6 Required use of standard flood hazard determination form. (a) Use of form. A Federal savings association shall use the standard flood...

  15. 12 CFR 760.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Required use of standard flood hazard... AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.6 Required use of standard flood hazard determination form. (a) Use of form. A credit union shall use the standard flood...

  16. 24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Flood and hazard insurance, and... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... part if the property securing repayment of the loan is located in a special flood hazard...

  17. 24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Flood and hazard insurance, and... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... part if the property securing repayment of the loan is located in a special flood hazard...

  18. 12 CFR 172.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 172.6 Required use of standard flood hazard determination form. (a) Use of form. A Federal savings association shall use the standard flood...

  19. 12 CFR 339.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Required use of standard flood hazard... STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood...

  20. 12 CFR 339.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Required use of standard flood hazard... STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood...

  1. 24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Flood and hazard insurance, and... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... part if the property securing repayment of the loan is located in a special flood hazard...

  2. 12 CFR 760.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Required use of standard flood hazard... AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.6 Required use of standard flood hazard determination form. (a) Use of form. A credit union shall use the standard flood...

  3. 12 CFR 339.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Required use of standard flood hazard... STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood...

  4. 12 CFR 760.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.6 Required use of standard flood hazard determination form. (a) Use of form. A credit union shall use the standard flood...

  5. 24 CFR 201.28 - Flood and hazard insurance, and Coastal Barriers properties.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Flood and hazard insurance, and... Disbursement Requirements § 201.28 Flood and hazard insurance, and Coastal Barriers properties. (a) Flood... part if the property securing repayment of the loan is located in a special flood hazard...

  6. 12 CFR 339.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Required use of standard flood hazard... STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood...

  7. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Ito, Y.; Sawamukai, M.; Su, T.; Tokunaga, T.

    2015-11-01

    Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  8. Integrated flood risk assessment for the Mekong Delta through the combined assessment of flood hazard change and social vulnerability

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Garschagen, Matthias; Delgado, José Miguel; Viet Dung, Nguyen; Van Tuan, Vo; Thanh Binh, Nguyen; Birkmann, Joern; Merz, Bruno

    2013-04-01

    agro-ecological zones and socio-economic population profiles. The focus herein is particularly on understanding the causal constellations and trajectories of vulnerability patterns. Secondly, key vulnerability parameters identified in step one are translated into quantitative indicators and aggregated into a vulnerability index, allowing for spatial analysis. Thirdly, ways to assess future vulnerability trajectories in the context of the ongoing socio-economic transformation in the Mekong Delta are explored. In effect, this analysis generates an integrated risk assessment that is based not only on an advancement of current flood hazard assessments but also on a detailed vulnerability assessment that goes beyond the mapping of exposure. The study thereby contributes knowledge of great relevance for informing disaster risk management and adaptation policies. In addition, the analysis allows for a dynamic perspective and the examination of key trends in the flood risk of the Mekong Delta.

  9. Application of physical erosion modelling to derive off-site muddy flood hazard

    NASA Astrophysics Data System (ADS)

    Annika Arevalo, Sarah; Schmidt, Jürgen

    2015-04-01

    Muddy floods are local inundation events after heavy rain storms. They occur inside watersheds before the runoff reaches a river. The sediment is eroded from agricultural fields and transported with the surface runoff into adjacent residential areas. The environment where muddy floods occur is very small scaled. The damages related to muddy floods are caused by the runoff-water (flooded houses and cellars) and the transported sediment that is deposited on infrastructure and private properties. There are a variety of factors that drive the occurrence of muddy floods. The spatial extend is rather small and the distribution is very heterogeneous. This makes the prediction of the precise locations that are endangered by muddy flooding a challenge. The aim of this investigation is to identify potential hazard areas that might suffer muddy flooding out of modelled soil erosion data. For the German state of Saxony there is a modelled map of soil erosion and particle transport available. The model applied is EROSION 3D. The spatial resolution is a 20 m raster and the conditions assumed are a 10 year rainfall event on uncovered agricultural soils. A digital landuse map is edified, containing the outer borders of potential risk elements (residential and industrial areas, streets, railroads, etc.) that can be damaged by muddy flooding. The landuse map is merged with the transported sediment map calculated with EROSION 3D. The result precisely depicts the locations where high amounts of sediments might be transported into urban areas under worst case conditions. This map was validated with observed muddy flood events that proved to coincide very well with areas predicted to have a potentially high sediment input.

  10. Utilising social media contents for flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Dransch, Doris; Fohringer, Joachim; Kreibich, Heidi

    2016-04-01

    Data about the hazard and its consequences are scarce and not readily available during and shortly after a disaster. An information source which should be explored in a more efficient way is eyewitness accounts via social media. This research presents a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. It uses quantitative data that are estimated from photos extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. Key challenges are to filter the large number of posts to a manageable amount of potentially useful inundation-related information, and to interpret and integrate the posts into mapping procedures in a timely manner. We present a methodology and a tool ("PostDistiller") to filter geo-located posts from social media services which include links to photos and to further explore this spatial distributed contextualized in situ information for inundation mapping. The June 2013 flood in Dresden is used as an application case study in which we evaluate the utilization of this approach and compare the resulting spatial flood patterns and inundation depths to 'traditional' data sources and mapping approaches like water level observations and remote sensing flood masks. The outcomes of the application case are encouraging. Strengths of the proposed procedure are that information for the estimation of inundation depth is rapidly available, particularly in urban areas where it is of high interest and of great value because alternative information sources like remote sensing data analysis do not perform very well. The uncertainty of derived inundation depth data and the uncontrollable availability of the information sources are major threats to the utility of the approach.

  11. 32 CFR 644.352 - Evaluation and reporting of flood hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Evaluation and reporting of flood hazards. 644... Property to General Services Administration (gsa) § 644.352 Evaluation and reporting of flood hazards... presence of flood hazards. If such hazards are found, a report will be forwarded to HQDA...

  12. 32 CFR 644.352 - Evaluation and reporting of flood hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Evaluation and reporting of flood hazards. 644... Property to General Services Administration (gsa) § 644.352 Evaluation and reporting of flood hazards... presence of flood hazards. If such hazards are found, a report will be forwarded to HQDA...

  13. 32 CFR 644.352 - Evaluation and reporting of flood hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Evaluation and reporting of flood hazards. 644... Property to General Services Administration (gsa) § 644.352 Evaluation and reporting of flood hazards... presence of flood hazards. If such hazards are found, a report will be forwarded to HQDA...

  14. 32 CFR 644.352 - Evaluation and reporting of flood hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Evaluation and reporting of flood hazards. 644... Property to General Services Administration (gsa) § 644.352 Evaluation and reporting of flood hazards... presence of flood hazards. If such hazards are found, a report will be forwarded to HQDA...

  15. 32 CFR 644.352 - Evaluation and reporting of flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Evaluation and reporting of flood hazards. 644... Property to General Services Administration (gsa) § 644.352 Evaluation and reporting of flood hazards... presence of flood hazards. If such hazards are found, a report will be forwarded to HQDA...

  16. Landslide and flood hazard assessment in urban areas of Levoča region (Eastern Slovakia)

    NASA Astrophysics Data System (ADS)

    Magulova, Barbora; Caporali, Enrica; Bednarik, Martin

    2010-05-01

    The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.

  17. St. Louis Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Williams, Robert A.; Steckel, Phyllis; Schweig, Eugene

    2007-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project will produce digital maps that show variability of earthquake hazards in the St. Louis area. The maps will be available free via the internet. They can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes.

  18. Toward economic flood loss characterization via hazard simulation

    NASA Astrophysics Data System (ADS)

    Czajkowski, Jeffrey; Cunha, Luciana K.; Michel-Kerjan, Erwann; Smith, James A.

    2016-08-01

    Among all natural disasters, floods have historically been the primary cause of human and economic losses around the world. Improving flood risk management requires a multi-scale characterization of the hazard and associated losses—the flood loss footprint. But this is typically not available in a precise and timely manner, yet. To overcome this challenge, we propose a novel and multidisciplinary approach which relies on a computationally efficient hydrological model that simulates streamflow for scales ranging from small creeks to large rivers. We adopt a normalized index, the flood peak ratio (FPR), to characterize flood magnitude across multiple spatial scales. The simulated FPR is then shown to be a key statistical driver for associated economic flood losses represented by the number of insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally readily available physically-based data, our flood simulation approach has the potential to be broadly utilized, even for ungauged and poorly gauged basins, thus providing the necessary information for public and private sector actors to effectively reduce flood losses and save lives.

  19. 78 FR 36220 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Frederick, MD 20678. St. Mary's County, Maryland, and Incorporated Areas Maps Available for Inspection..., 1005 Merriman Street, Port Neches, TX 77651. ] City of Taylor Landing Taylor Landing Building...

  20. 77 FR 31372 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... inspection at both the online location and the respective Community Map Repository address listed in the... online through the FEMA Map Service Center at www.msc.fema.gov for comparison. You may submit comments...., Washington, DC 20472, (202) 646-4064, or (email) Luis.Rodriguez3@fema.dhs.gov ; or visit the FEMA...

  1. Safety of Italian dams in the face of flood hazard

    NASA Astrophysics Data System (ADS)

    Bocchiola, Daniele; Rosso, Renzo

    2014-09-01

    Most rivers in Italy are segmented by dams that need rehabilitation because of (1) safety requirements by increasingly risk-averse societies, (2) changes in the downstream river and riparian system after dams building, (3) poor initial design at the time of completion and (4) modified priorities of watershed management. Safe design of flood spillways is a major concern, and requires to cope with low frequency flood hazard. One must estimate flood figures with high return periods (R ⩾ 1000-10,000 years) but statistical methods involve large uncertainties because of the short length of the available records. This paper investigates the return period of the design flood of existing spillways RS of large dams in Italy. We used re-normalized flood frequency approach and regionalization using the Generalized Extreme Value distribution. The estimation of the site specific index flood is carried out by simple scaling with basin area at the regional level. The result show that 55% (245) of the 448 examined dams are equipped by spillway with RS > 10,000; and 71% (315) of the dams have RS > 1000. Conversely, 29% (130) of the dams display RS < 1000 years, lower than acceptable hazard. The spillway of 14% (62) of the dams has RS < 100 years, indicating potential exceedance of spillways capacity. Reservoir routing may dampen the outflow hydrograph, but one should carefully account for the need of achieving accurate dam safety assessment of these dams based on site specific investigations, also accounting for global change forcing.

  2. 78 FR 14573 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... that the community must change any existing ordinances that are more stringent in their floodplain... policies established by other Federal, State, or regional entities. The flood hazard determinations are in....msc.fema.gov for comparison. Chief executive State and county Location and case officer of...

  3. 78 FR 14565 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... that the community must change any existing ordinances that are more stringent in their floodplain... policies established by other Federal, State, or regional entities. The flood hazard determinations are in....msc.fema.gov for comparison. Chief executive State and county Location and case officer of...

  4. 78 FR 32676 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... to mean that the community must change any existing ordinances that are more stringent in their... pursuant to policies established by other Federal, State, or regional entities. The flood hazard... Service Center at www.msc.fema.gov for comparison. Chief executive State and county Location and...

  5. Flood hazard in the Mekong Delta - a probabilistic, bivariate, and non-stationary analysis with a short-termed future perspective

    NASA Astrophysics Data System (ADS)

    Dung, N. V.; Merz, B.; Bárdossy, A.; Apel, H.

    2013-02-01

    In this paper we present a novel approach for flood hazard analysis of the whole Mekong Delta with a particular focus on the Vietnamese part. Based on previous studies identifying the flood regime in the Mekong delta as non-stationary (Delgado et al., 2010), we develop a non-stationary approach for flood hazard analysis. Moreover, the approach is also bi-variate, as the flood severity in the Mekong Delta is determined by both maximum discharge and flood volume, which determines the flood duration. Probabilities of occurrences of peak discharge and flood volume are estimated by a copula. The flood discharges and volumes are used to derive synthetic hydrographs, which in turn constitute the upper boundary condition for a large-scale hydrodynamic model covering the whole Mekong Delta. The hydrodynamic model transforms the hydrographs into hazard maps. In addition, we extrapolate the observed trends in flood peak and volume and their associated non-stationary extreme value distributions to the year 2030 in order to give a flood hazard estimate for the near future. The uncertainty of extreme flood events in terms of different possible combinations of peak discharge and flood volume given by the copula is considered. Also, the uncertainty in flood hydrograph shape is combined with parameter uncertainty of the hydrodynamic model in a Monte Carlo framework yielding uncertainty estimates in terms of quantile flood maps. The proposed methodology sets the frame for the development of probabilistic flood hazard maps for the entire Mekong Delta. The combination of bi-variate, non-stationary extreme value statistics with large-scale flood inundation modeling and uncertainty quantification is novel in itself. Moreover, it is in particular novel for the Mekong Delta: a region where not even a standard hazard analysis based on a univariate, stationary extreme value statistic exists.

  6. 78 FR 8177 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ..., PA 19020. Township of Bridgeton Bridgeton Township Office, 1370 Bridgeton Hill Road, Upper Black Eddy... Lake Warren Road, Upper Black Eddy, PA 18972. Township of Northampton Northampton Township... Incorporated Areas Maps Available for Inspection Online at:...

  7. 12 CFR 614.4940 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood...

  8. 12 CFR 614.4940 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood...

  9. 12 CFR 614.4940 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood...

  10. 12 CFR 614.4940 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood...

  11. Coupled Hydrological and Hydraulic Modeling for Flood Mapping

    NASA Astrophysics Data System (ADS)

    Drobot, Radu; Draghia, Aurelian

    2014-05-01

    The delineation of the flooded areas involves both hydrological and hydraulic modeling. Usually, the hydrological and hydraulic processes are separately treated. In the proposed methodology, the coupled modeling of the hydrological and hydraulic processes is used. The calibration and validation of the hydrological parameters is undertaken based on historical floods using the corresponding precipitations for the same period. The calibration process was more complicated in the presence of reservoirs, when not only the discharges downstream but also the water level in the reservoirs had to be accurately reproduced. The time step for precipitation is 1 hour, corresponding to the concentration time of the smallest catchments. The maximum annual precipitation for different time steps (1; 3; 6; 24 hours) were statistically processed and based on these results the cumulative rainfall curves and the synthetic hyetographs were derived. The rainfall duration is depending on the concentration time. Mike 11 with UHM module based on SCS model was used for coupled hydrological and hydraulic modeling. The coupled hydrological and hydraulic simulation for the scaled precipitation leads both at the computation of the components which contribute to the generation of the P% flood at the Hydrometric stations as well as to the determination of the discharge hydrograph along the main river. Based on these results the flood hazard maps were obtained using a DTM based on Lidar data. The methodology was applied for a river basin in Romania of 12500 km2.

  12. CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas

    NASA Astrophysics Data System (ADS)

    Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.

    2013-12-01

    When a flood affects an urban area, the managers and services responsible for public safety need precise and real time information on the localization of the flooded areas, on the submersion heights in those areas, but also on the vulnerability of people exposed to this hazard. Such information is essential for an effective crisis management. Despite a growing interest in this topic over the last 15 years, the development of flood risk assessment tools mainly focused on quantitative modeling of the monetary damages caused by floods to residential buildings or to critical infrastructures. Little attention was paid to the vulnerability of people exposed to flooding but also to the effects of the failure or destruction of critical infrastructures and residential building on people health and security during the disaster. Moreover, these models do not integrate the dynamic features of the flood (extent, submersion heights) and the evolution of human vulnerability in the same mapping tool. Thus, an accurate and precise evaluation of human risk induced by urban flooding is hardly feasible using such models. This study presents CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas, which fills the actual needs in terms of flood risk evaluation and management. This innovative tool integrates a methodology of flood hazard mapping that simulates, for a given discharge, the associated water level, and subsequently determines the extent of the flooded area and the submersion heights at each point of the flooded area, using a DEM. The dynamics of human vulnerability is then mapped at the household level, according to the characteristics of the flood hazard. Three key components of human vulnerability have been identified and are integrated to CADYRI: 1, the intrinsic vulnerability of the population, estimated by specific socio-economic indicators; 2, the vulnerability of buildings, assessed by their structural features; 3, the vulnerability of

  13. Natural Phenomena Hazards Modeling Project: Preliminary flood hazards estimates for screening Department of Energy sites, Albuquerque Operations Office

    SciTech Connect

    McCann, M.W. Jr.; Boissonnade, A.C.

    1988-05-01

    As part of an ongoing program, Lawrence Livermore National Laboratory (LLNL) is directing the Natural Phenomena Hazards Modeling Project (NPHMP) on behalf of the Department of Energy (DOE). A major part of this effort is the development of probabilistic definitions of natural phenomena hazards; seismic, wind, and flood. In this report the first phase of the evaluation of flood hazards at DOE sites is described. Unlike seismic and wind events, floods may not present a significant threat to the operations of all DOE sites. For example, at some sites physical circumstances may exist that effectively preclude the occurrence of flooding. As a result, consideration of flood hazards may not be required as part of the site design basis. In this case it is not necessary to perform a detailed flood hazard study at all DOE sites, such as those conducted for other natural phenomena hazards, seismic and wind. The scope of the preliminary flood hazard analysis is restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does involve an assessment of the potential encroachment of flooding on-site at individual facility locations. However, the preliminary flood hazard assessment does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues are reserved for consideration by the DOE site manager. 11 refs., 84 figs., 61 tabs.

  14. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and/or unpredictable flow paths between (1) and (3) ft A99 Area of special flood hazard where enough... flow paths between (1) and (3) feet, and with water surface elevations determined AR Area of special... of special flood hazards having shallow water depths and/or unpredictable flow paths between (1)...

  15. Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2013-01-01

    Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.

  16. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Loans in areas having special flood hazards...) Investments and Loans § 208.25 Loans in areas having special flood hazards. (a) Purpose and scope—(1) Purpose... Management Agency to have special flood hazards. Paragraphs (f) and (h) of this section apply to...

  17. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Loans in areas having special flood hazards...) Investments and Loans § 208.25 Loans in areas having special flood hazards. (a) Purpose and scope—(1) Purpose... Management Agency to have special flood hazards. Paragraphs (f) and (h) of this section apply to...

  18. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Loans in areas having special flood hazards...) Investments and Loans § 208.25 Loans in areas having special flood hazards. (a) Purpose and scope—(1) Purpose... Management Agency to have special flood hazards. Paragraphs (f) and (h) of this section apply to...

  19. 12 CFR 572.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 572.6 Section 572.6 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A...

  20. 12 CFR 339.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 339.6 Section 339.6 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a)...

  1. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property... of the Federal Emergency Management Agency as having special flood or mudslide hazards....

  2. Sources of uncertainty in flood inundation maps

    USGS Publications Warehouse

    Bales, J.D.; Wagner, C.R.

    2009-01-01

    Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.

  3. Use of Geologic and Paleoflood Information for INL Probabilistic Flood Hazard Decisions

    NASA Astrophysics Data System (ADS)

    Ostenaa, D.; O'Connell, D.; Creed, B.

    2009-05-01

    The Big Lost River is a western U.S., closed basin stream which flows through and terminates on the Idaho National Laboratory. Historic flows are highly regulated, and peak flows decline downstream through natural and anthropomorphic influences. Glaciated headwater regions were the source of Pleistocene outburst floods which traversed the site. A wide range of DOE facilities (including a nuclear research reactor) require flood stage estimates for flow exceedance probabilities over a range from 1/100/yr to 1/100,000/yr per DOE risk based standards. These risk management objectives required the integration of geologic and geomorphic paleoflood data into Bayesian non parametric flood frequency analyses that incorporated measurement uncertainties in gaged, historical, and paleoflood discharges and non exceedance bounds to produce fully probabilistic flood frequency estimates for annual exceedance probabilities of specific discharges of interest. Two-dimensional hydraulic flow modeling with scenarios for varied hydraulic parameters, infiltration, and culvert blockages on the site was conducted for a range of discharges from 13-700 m3/s. High-resolution topographic grids and two-dimensional flow modeling allowed detailed evaluation of the potential impacts of numerous secondary channels and flow paths resulting from flooding in extreme events. These results were used to construct stage probability curves for 15 key locations on the site consistent with DOE standards. These probability curves resulted from the systematic inclusion of contributions of uncertainty from flood sources, hydraulic modeling, and flood-frequency analyses. These products also provided a basis to develop weights for logic tree branches associated with infiltration and culvert performance scenarios to produce probabilistic inundation maps. The flood evaluation process was structured using Senior Seismic Hazard Analysis Committee processes (NRC-NUREG/CR-6372) concepts, evaluating and integrating the

  4. Quick mapping of flood-prone areas in plain terrain using GIS analysis: applications for flood management plans over large areas

    NASA Astrophysics Data System (ADS)

    Pistocchi, A.; Mazzoli, P.; Bagli, S.

    2012-04-01

    Flood management plans, as required under the provisions of the "Flood Directive" 2007/60/EC, ground on the mapping of flood-prone areas. When dealing with plain terrains, inundation modeling using bi-dimensional models may entail considerable efforts both in terms of data collection and processing, and of hydraulic computation. The resolution of numerical models may be limited if working on large areas, or conversely a model can tackle only relatively limited areas with a high resolution. On the other hand, a dynamic simulation of overland floods may be necessary for certain applications, but may be beyond the practical requirements of a flood management plan, for which it may be sufficient to identify the general characteristics of flow that drive potential risks, such as the type of flooding (slow or with significant dynamic component) and an indication of depth and velocity of flow. In this contribution we present criteria for the classification of flooding type and for the mapping of first-approximation depth and velocity fields in case of floods, and we illustrate a few applications of simple GIS analyses entailing the use of hydrologic functions and mathematical morphology, that can be implemented in most GIS packages and can be used for quick mapping of flood hazards on plain terrain. In this way, no dynamic model implementation is required and computing time is irrelevant even at high resolution as allowed e.g. by LiDAR terrain models. These applications refer to contexts in Italy including the Emilia Romagna regional basins flood management plan, the Province of Ravenna civil protection plan, hydraulic hazards on Northern Adriatic coastal areas and the assessment of hazards for a windfarm to be located in a flood-prone area in Puglia, Southern Italy. We discuss how the approach can be generally applied in Europe with relatively limited and/or uncertain information, within the framework of the Floods Directive in support of flood hazards for subsequent

  5. Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara

    2011-01-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  6. 77 FR 44651 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... satisfies the data requirements outlined in 44 CFR 67.6(b) is considered an appeal. Comments unrelated to..., Montana, and Incorporated Areas Maps Available for Inspection Online at: http://www.bakeraecom.com/index...: http://www.ncfloodmaps.com Town of Indian Trail Administrative Services, 130 Blythe Drive, Indian...

  7. 77 FR 18846 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Incorporated Areas Maps Available for Inspection Online at: http://www.bakeraecom.com/index.php/region-viii... Inspection Online at: http://www.starr-team.com/starr/RegionalWorkspaces/RegionVII/PottawatomieCountyIowa... Inspection Online at: http://www.rampp-team.com/nm.htm City of Clovis Administrative Office, 321...

  8. 78 FR 36215 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Cloud County, Kansas, and Incorporated Areas Maps Available for Inspection Online at: www.fema.gov.... City of Miltonvale City Hall, 107 Starr Avenue, Miltonvale, KS 67466. Unincorporated Areas of Cloud County... Cloud County Courthouse, 811 Washington Street, Concordia, KS 66901. (Catalog of...

  9. 78 FR 14578 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... basis of the floodplain management measures that the community is required either to adopt or to show... Preliminary FIRM, and where applicable, the FIS report for each community are available for inspection at both the online location and the respective Community Map Repository address listed in the tables...

  10. 77 FR 58562 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Tuscaloosa County, Alabama, and Incorporated Areas Maps Available for Inspection Online at: http://www.adeca... Boulevard, Northport, AL 35476. City of Tuscaloosa City Hall, 2201 University Boulevard, Tuscaloosa, AL... Tuscaloosa Tuscaloosa County Public Works County. Department, 2810 35th Street, Tuscaloosa, AL...

  11. 77 FR 58560 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    .../dnr/water/6497.htm City of Tipton Tipton County Courthouse, 101 East Jefferson Street, Tipton, IN... Incorporated Areas Maps Available for Inspection Online at: http://www.in.gov/dnr/water/6648.htm City of... Courthouse, 200 6th Street, Point Pleasant, WV 25550. Wood County, West Virginia, and Incorporated Areas...

  12. 78 FR 8179 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    .../water/7359.htm Town of Medaryville Town Hall, 409 East Main Street, Medaryville, IN 47957. Town of... Rice Street East, Wayzata, MN 55391. ] Harris County, Texas, and Incorporated Areas Maps Available for... information shown on the Preliminary FIRM and FIS report that satisfies the data requirements outlined in...

  13. 77 FR 21791 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., North Haven, CT 06473. Bracken County, Kentucky, and Incorporated Areas Maps Available for Inspection Online at: http://www.bakeraecom.com/index.php/kentucky/bracken/ City of Augusta City Offices, 219 Main... of Bracken County. Bracken County Courthouse, 116 West Miami Street, Brooksville, KY 41004....

  14. Mapping Near-Earth Hazards

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  15. A simple methodology to produce flood risk maps consistent with FEMA's base flood elevation maps: Implementation and validation over the entire contiguous United States

    NASA Astrophysics Data System (ADS)

    Goteti, G.; Kaheil, Y. H.; Katz, B. G.; Li, S.; Lohmann, D.

    2011-12-01

    In the United States, government agencies as well as the National Flood Insurance Program (NFIP) use flood inundation maps associated with the 100-year return period (base flood elevation, BFE), produced by the Federal Emergency Management Agency (FEMA), as the basis for flood insurance. A credibility check of the flood risk hydraulic models, often employed by insurance companies, is their ability to reasonably reproduce FEMA's BFE maps. We present results from the implementation of a flood modeling methodology aimed towards reproducing FEMA's BFE maps at a very fine spatial resolution using a computationally parsimonious, yet robust, hydraulic model. The hydraulic model used in this study has two components: one for simulating flooding of the river channel and adjacent floodplain, and the other for simulating flooding in the remainder of the catchment. The first component is based on a 1-D wave propagation model, while the second component is based on a 2-D diffusive wave model. The 1-D component captures the flooding from large-scale river transport (including upstream effects), while the 2-D component captures the flooding from local rainfall. The study domain consists of the contiguous United States, hydrologically subdivided into catchments averaging about 500 km2 in area, at a spatial resolution of 30 meters. Using historical daily precipitation data from the Climate Prediction Center (CPC), the precipitation associated with the 100-year return period event was computed for each catchment and was input to the hydraulic model. Flood extent from the FEMA BFE maps is reasonably replicated by the 1-D component of the model (riverine flooding). FEMA's BFE maps only represent the riverine flooding component and are unavailable for many regions of the USA. However, this modeling methodology (1-D and 2-D components together) covers the entire contiguous USA. This study is part of a larger modeling effort from Risk Management Solutions° (RMS) to estimate flood risk

  16. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  17. Fifty-Year Flood-Inundation Maps for Santa Rosa de Aguan, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the coastal municipality of Santa Rosa de Aguan that are prone to oceanic storm-surge flooding and wave action. The 50-year flood on the Rio Aguan (4,270 cubic meters per second), would inundate most of the area surveyed for this municipality and beyond. Therefore a detailed numerical hydraulic model was not developed for this municipality as it was for the others. The 50-year storm surge would likely produce higher water levels than the 50-year flood on the river during normal astronomical tides. The elevation of the 50-year storm surge was estimated to be 4.35 meters above normal sea level, based on hurricane probabilities and published storm-surge elevations associated with various hurricane categories. Flood-inundation maps, including areas of wave-action hazard and a color-shaded elevation map, were created from the available data and the estimated 50-year storm tide. Geographic Information System (GIS) coverages of the hazard areas are available on a computer in the municipality of Santa Rosa de Aguan as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Data Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the maps in much more detail than is possible using the maps in this report.

  18. A Sentinel-1 Flood map generation QGIS plugin

    NASA Astrophysics Data System (ADS)

    Sala, Joan; Lopez, Alex; Romero, Laia; Koudogbo, Fifame

    2016-04-01

    Climate change derived in changing weather patterns making risks very difficult to predict and one very representative example is flood events. Flooding due to overflow from water bodies can be analyzed through change detection techniques with satellite imagery from the Synthetic Aperture Radar (SAR) sensors such as the one on board the ESA Sentinel-1. This analysis will help us have a better understanding of the floodable areas and therefore provide better support and response to these events. The presented open-source Quantum GIS (QGIS) plugin for flood mapping provides this analysis to a growing earth observation user community as described in the following abstract. The flood mapping QGIS plugin has been developed in the context of a FP7 EU funded earth observation project named RASOR (Rapid Analysis and Spatialisation Of Risk), a multi-hazard risk analysis and assessment to support the full cycle of disaster management. The plugin available through QGIS repository enables any user to execute the processing of flood maps based on S1 data in their local work environments. Moreover, results can be uploaded to the RASOR platform in order to be shared with the community. The RASOR Floodmap plugin takes as input two Sentinel-1 SAR images, one taken as reference and another just after the flood event. In parallel, the Area Of Interest (AOI) can be established with one or more polygons in a Shapefile format. The algorithm calibrates and co-registers both images to obtain a change detection RGB GeoTiff file. A K-Means filtering is performed in order to smooth the results and in preparation for the last classification step. Classification is performed by the plugin in which one or more classes are identified as flooded area and therefore polygonise of the extent is conducted, the user can make use of the QGIS workspace in order to supervise results and perform the necessary refinements, for instance by comparing them with different optical images or land cover

  19. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    PubMed

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally. PMID:25649059

  20. Seismotectonics and seismic Hazard map of Tunisia

    NASA Astrophysics Data System (ADS)

    Soumaya, Abdelkader; Ben Ayed, Noureddine; Khayati Ammar, Hayet; Kadri, Ali; Zargouni, Fouad; Ghanmi, Mohamed

    2016-04-01

    One natural hazard in Tunisia is caused by earthquakes and one way to measure the shaking risk is the probabilistic seismic-hazard map. The study of seismic hazard and risk assessment in Tunisia started in 1990 within the framework of the National Program for Assessment of Earthquake Risk. Because earthquakes are random events characterized by specific uncertainties, we used a probabilistic method to build the seismic hazard map of Tunisia. Probabilities were derived from the available seismic data and from results of neotectonic, geophysical and geological studies on the main active domains of Tunisia. This map displays earthquake ground motions for various probability levels across Tunisia and it is used in seismic provisions of building codes, insurance rate structures, risk assessment and other public management activities. The product is a seismotectonic map of Tunisia summarizing the available datasets (e.g., active fault, focal mechanism, instrumental and historical seismicity, peak ground acceleration). In addition, we elaborate some thematic seismic hazard maps that represent an important tool for the social and economic development.

  1. Ensemble Prediction of Flood Maps Under Uncertain Conditions

    NASA Astrophysics Data System (ADS)

    Pedrozo-Acuña, A.; Rodríguez-Rincón, J. P.; Brena-Naranjo, J. A. A.

    2014-12-01

    Hydro-meteorological hazards can have cascading effects and far-reaching implications on water security, with socio-economic and environmental consequences. Worldwide the magnitude of recent floods highlight the necessity to generate a better understanding on their causes and associated risk. An improved flood risk strategy should incorporate the communication of uncertain research results to decision-makers. Therefore, it is of paramount importance to generate a robust framework that enables its quantification. The purpose of this study is to investigate the propagation of meteorological uncertainty within a cascade modelling approach to flood mapping. The methodology is comprised of a Numerical Weather Prediction Model (NWP), a distributed rainfall-runoff model and a standard 2D hydrodynamic model. The cascade of models is used to reproduce an extreme flood event that took place in Southern Mexico, during September 2013. The event is selected as high quality field data (e.g. LiDAR; rain gauges) and satellite imagery are available. Uncertainty in the meteorological model (Weather Research and Forecasting model) is evaluated through the use of a multi-physics ensemble technique, which considers twelve parameterisation schemes to determine a given precipitation. The resulting precipitation fields are used as input in a distributed hydrological model, enabling the determination of different hydrographs associated to this event. Lastly, by means of a standard 2D hydrodynamic model, resulting hydrographs are used as forcing conditions to study the propagation of the meteorological uncertainty to an estimated flooded area. Results show the utility of the selected modelling approach to investigate error propagation within a cascade of models. Moreover, the error associated to the determination of the runoff, is showed to be lower than that obtained in the precipitation estimation suggesting that uncertainty do not necessarily increase within a model cascade.

  2. Working towards a clearer and more helpful hazard map: investigating the influence of hazard map design on hazard communication

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Lindsay, J. M.; Gaillard, J.

    2015-12-01

    Globally, geological hazards are communicated using maps. In traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map for stakeholder and public use. However, this one-way, top-down approach to hazard communication is not necessarily effective or reliable. The messages which people take away will be dependent on the way in which they read, interpret, and understand the map, a facet of hazard communication which has been relatively unexplored. Decades of cartographic studies suggest that variables in the visual representation of data on maps, such as colour and symbology, can have a powerful effect on how people understand map content. In practice, however, there is little guidance or consistency in how hazard information is expressed and represented on maps. Accordingly, decisions are often made based on subjective preference, rather than research-backed principles. Here we present the results of a study in which we explore how hazard map design features can influence hazard map interpretation, and we propose a number of considerations for hazard map design. A series of hazard maps were generated, with each one showing the same probabilistic volcanic ashfall dataset, but using different verbal and visual variables (e.g., different colour schemes, data classifications, probabilistic formats). Following a short pilot study, these maps were used in an online survey of 110 stakeholders and scientists in New Zealand. Participants answered 30 open-ended and multiple choice questions about ashfall hazard based on the different maps. Results suggest that hazard map design can have a significant influence on the messages readers take away. For example, diverging colour schemes were associated with concepts of "risk" and decision-making more than sequential schemes, and participants made more precise estimates of hazard with isarithmic data classifications compared to binned or gradational shading. Based on such

  3. Cartographic Design in Flood Risk Mapping - A Challenge for Communication and Stakeholder Involvement

    NASA Astrophysics Data System (ADS)

    Fuchs, S.; Serrhini, K.; Dorner, W.

    2009-12-01

    In order to mitigate flood hazards and to minimise associated losses, technical protection measures have been additionally and increasingly supplemented by non-technical mitigation, i.e. land-use planning activities. This is commonly done by creating maps which indicate such areas by different cartographic symbols, such as colour, size, shape, and typography. Hazard and risk mapping is the accepted procedure when communicating potential threats to stakeholders, and is therefore required in the European Member States in order to meet the demands of the European Flood Risk Directive. However, available information is sparse concerning the impact of such maps on different stakeholders, i.e., specialists in flood risk management, politicians, and affected citizens. The lack of information stems from a traditional approach to map production which does not take into account specific end-user needs. In order to overcome this information shortage the current study used a circular approach such that feed-back mechanisms originating from different perception patterns of the end user would be considered. Different sets of small-scale as well as large-scale risk maps were presented to different groups of test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented communication of cartographic information. Therefore, the method of eye tracking was applied using a video-oculography technique. This resulted in a suggestion for a map template which fulfils the requirement to serve as an efficient communication tool for specialists and practitioners in hazard and risk mapping as well as for laypersons. Taking the results of this study will enable public authorities who are responsible for flood mitigation to (1) improve their flood risk maps, (2) enhance flood risk awareness, and therefore (3) create more disaster-resilient communities.

  4. Prediction of flash flood hazard impact from Himalayan river profiles

    NASA Astrophysics Data System (ADS)

    Devrani, R.; Singh, V.; Mudd, S. M.; Sinclair, H. D.

    2015-07-01

    To what extent can we treat topographic metrics such as river long profiles as a long-term record of multiple extreme geomorphic events and hence use them for hazard prediction? We demonstrate that in an area of rapid mountain erosion where the landscape is highly reactive to extreme events, channel steepness measured by integrating area over upstream distance (chi analysis) can be used as an indicator of geomorphic change during flash floods. We compare normalized channel steepness to the impact of devastating floods in the upper Ganga Basin in Uttarakhand, northern India, in June 2013. The pattern of sediment accumulation and erosion is broadly predictable from the distribution of normalized channel steepness; in reaches of high steepness, channel lowering up to 5 m undercut buildings causing collapse; in low steepness reaches, channels aggraded up to 30 m and widened causing flooding and burial by sediment. Normalized channel steepness provides a first-order prediction of the signal of geomorphic change during extreme flood events. Sediment aggradation in lower gradient reaches is a predictable characteristic of floods with a proportion of discharge fed by point sources such as glacial lakes.

  5. Hazard map of agricultural products due to typhoons-an example of Bok-choy

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Jun; Ma, Kuo-Chen; Lai, Jihn-Sung; Chang, Tsang-Jung; Tan, Yih-Chi

    2015-04-01

    The torrential rain and strong wind brought by typhoons usually cause huge damages to agricultural products. This study aims at hazard map of agricultural products due to typhoons. The factors affecting the hazard of agricultural products due to typhoons include the duration of flooding, flooding depth, wind speed, and rainfall intensity. High rainfall intensity and high wind speed may knock down the leaves or fruits of the plants. The long-duration of flooding or high flooding depth may chock the plant or rotten the roots. In order to get the information needed for making hazard map due to assumed scenarios, an overland flow simulations is performed for getting the duration of flooding and maximum flooding in the study area. The data of wind speed is obtained from metrological stations. Four levels of hazard are defined due to the characteristic of the chosen agricultural products- Bok-choy (such average height of mature Bok-choy). The final goal of this study is to establish a real-time hazard evaluation system for the specific agricultural products.

  6. Tsunami hazard map in eastern Bali

    NASA Astrophysics Data System (ADS)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  7. Tsunami hazard map in eastern Bali

    SciTech Connect

    Afif, Haunan; Cipta, Athanasius

    2015-04-24

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  8. 12 CFR 391.38 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Notice of special flood hazards and... REGULATIONS Loans in Areas Having Special Flood Hazards § 391.38 Notice of special flood hazards and... located in a special flood hazard area, the State savings association shall mail or deliver a...

  9. Alternating flood and drought hazards in the Drava Plain, Hungary

    NASA Astrophysics Data System (ADS)

    Lóczy, Dénes; Dezsö, József; Gyenizse, Péter; Ortmann-Ajkai, Adrienne

    2016-04-01

    Our research project covers the assessment of archive data and monitoring present-day water availability in the floodplain of the Hungarian Drava River. Historically flood hazard has been prevalent in the area. Recently, however, flood and drought hazards occur with equal frequency. Potential floodwater storage is defined from the analyses of soil conditions (grain size, porosity, water conductivity etc.) and GIS-based volumetric estimations of storage capacities in oxbows (including communication with groundwater). With the remarkable rate of river channel incision (2.4 m per century) and predictable climate change trends (increased annual mean temperature and decreased summer precipitation), the growing frequency and intensification of drought hazard is expected. For the assessment of drought hazard the impacts of hydrometeorological events, groundwater table dynamics and capillary rise are modelled, the water demands of natural vegetation and agricultural crops are studied. The project is closely linked to the ongoing Old Drava Programme, a comprehensive government project, which envisions floodplain rehabilitation through major transformations in water governance and land use of the region, and has numerous implications for regional development. Authors are grateful for financial support from the Hungarian National Scientific Research Fund (OTKA, contacts nos K 104552 and K 108755) as well as from the Visegrad Fund (31210058). The contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

  10. GIS based Relative Tsunami Hazard Maps for Northern California, Humboldt and Del Norte Counties

    NASA Astrophysics Data System (ADS)

    Patton, J. R.; Dengler, L. A.

    2004-12-01

    Tsunami hazard maps are generated using a geographical information systems (GIS) approach to depict the relative tsunami hazard of coastal Humboldt and Del Norte Counties in northern California. Maps are composed for the Humboldt Bay, Eel River, and Crescent City regions and available online at http://www.humboldt.edu/~geodept/earthquakes/rctwg/toc.html . In contrast to previous mapping efforts that utilize a single line to represent inundation, hazard is displayed gradationally. A 2.5D surface is constructed to represent this hazard. Elevation, normally used for 2.5D surfaces, is substituted with hazard units. Criteria boundaries are used to separate regions of increasing hazard. Criteria boundaries are defined based on numerical modeling, paleoseismic studies, historical flooding, FEMA Q3 flood maps, and impacts of recent tsunamis elsewhere. Zones are constructed to further adjust the criteria with respect to a physically determined variable hazard (e.g. proximity to open ocean). A triangular irregular network (TIN) is constructed using hazard criteria boundaries as breaklines. Fabricated points are necessary to construct a hazard surface and are placed where criteria boundaries diverge or where hazard is nonlinear between criteria boundaries. Hazard is displayed as a continuous gradational color scale ranging from red (high hazard) through orange (medium), yellow (low) to gray (no hazard). The maps are GIS based to facilitate ready adaptation by planners and emergency managers. The maps are intended for educational purposes, to improve awareness of tsunami hazards and to encourage emergency planning efforts of local and regional organizations by illustrating the range of possible tsunami events.

  11. 7 CFR 1980.433 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood...

  12. 7 CFR 1980.433 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood...

  13. 7 CFR 1980.433 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood...

  14. 7 CFR 1980.433 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood...

  15. 7 CFR 1980.433 - Flood or mudslide hazard area precautions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Flood or mudslide hazard area precautions. 1980.433... Program § 1980.433 Flood or mudslide hazard area precautions. (See subpart A, § 1980.42.) Administrative The State Director is responsible for determining if a project is located in a special flood...

  16. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Loans in areas having special flood hazards...) Investments and Loans § 208.25 Loans in areas having special flood hazards. (a) Purpose and scope—(1) Purpose. The purpose of this section is to implement the requirements of the National Flood Insurance Act...

  17. Building A Database Of Flood Extension Maps Using Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roque, D.; Afonso, N.; Fonseca, A. M.; Heleno, S.

    2013-12-01

    Hydraulic flood models can be used to identify the regions prone to floods. In order to achieve reliable information, the models must be calibrated using data from past floods. In this study, a set of optical and Synthetic Aperture Radar (SAR) images are used to obtain flood extension maps in the lower River Tagus, Portugal, from 1992 to 2012. An object-based approach and thresholding operations are used to extract the flood boundaries. While for optical data two thresholding operations are enough, for SAR images, successive thresholding procedures are applied over different data types in order to identify flooded regions with distinct characteristics (smooth water, disturbed water and emerged elements). The proposed method allowed the extraction of flood boundaries for 25 flood dates, with an 88% of correctly detected flood area for both the optical and the SAR data.

  18. Forecasting surface water flooding hazard and impact in real-time

    NASA Astrophysics Data System (ADS)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  19. Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Soltani, Saeed; Modarres, Reza

    2012-08-01

    SummaryThis study presents an exhaustive methodology of floodplain mapping at ungauged rivers. To present our methodology, we selected the Halilrud basin and Jiroft city in southeastern Iran as an example of hazardous regions. To estimate flood quantiles in different return periods at ungauged reaches, we used regional flood frequency analysis. By using the well-known L-moments approach and related criteria, a homogeneous region was formed and the 3-parameter Log normal distribution was identified as the robust regional frequency distribution. The hydro-geomorphic characteristics and the land use properties of the catchments were then extracted using RS&GIS techniques to establish multivariate regional regression models between hydro-geomorphic characteristics and flood quantiles. After delineation of the catchments for the ungauged reaches, flood quantiles as an important factor in flood inundation at outlets of these reaches with different probabilities were estimated using the regional regression models. To delineate flood hazard maps and to enhance the accuracy of the hydraulic modeling, we applied satellite stereoscope images of Cartosat-1 along with the Rational Polynomial Coefficients to extract a high resolution DTM and detailed parameterization of the channel required by 1D hydraulic model HEC-RAS. The GIS-based HEC-Geo RAS pre- and post-processor were also used for careful optimization of the geometry features for real visualization of the flood prone areas. Information of some historical flood events was also used to evaluate the hydraulic model performance in predicting flood inundations. Finally, vulnerable areas were crossed with extracted land use mapping from IRS-P6 satellite images to differentiate the critical infrastructures and the valuable land use classes affected by floods in different return periods.

  20. Recommendations for the user-specific enhancement of flood maps

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Kuhlicke, C.; Luther, J.; Fuchs, S.; Priest, S.; Dorner, W.; Serrhini, K.; Pardoe, J.; McCarthy, S.; Seidel, J.; Palka, G.; Unnerstall, H.; Viavattene, C.; Scheuer, S.

    2012-05-01

    The European Union Floods Directive requires the establishment of flood maps for high risk areas in all European member states by 2013. However, the current practice of flood mapping in Europe still shows some deficits. Firstly, flood maps are frequently seen as an information tool rather than a communication tool. This means that, for example, local stocks of knowledge are not incorporated. Secondly, the contents of flood maps often do not match the requirements of the end-users. Finally, flood maps are often designed and visualised in a way that cannot be easily understood by residents at risk and/or that is not suitable for the respective needs of public authorities in risk and event management. The RISK MAP project examined how end-user participation in the mapping process may be used to overcome these barriers and enhance the communicative power of flood maps, fundamentally increasing their effectiveness. Based on empirical findings from a participatory approach that incorporated interviews, workshops and eye-tracking tests, conducted in five European case studies, this paper outlines recommendations for user-specific enhancements of flood maps. More specific, recommendations are given with regard to (1) appropriate stakeholder participation processes, which allow incorporating local knowledge and preferences, (2) the improvement of the contents of flood maps by considering user-specific needs and (3) the improvement of the visualisation of risk maps in order to produce user-friendly and understandable risk maps for the user groups concerned. Furthermore, "idealised" maps for different user groups are presented: for strategic planning, emergency management and the public.

  1. Global scale map of the impact of changes in climate and socio-economic conditions on river flood losses

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel; Ward, Philip; Bouwman, Arno; Jongman, Brenden; Van Beek, Rens; Lucas, Paul; Van Vuuren, Detlef; Bierkens, Marc; Ligtvoet, Willem; Kwadijk, Jaap

    2014-05-01

    Floods pose one of the largest risks to natural hazards globally. In 2012, the global damage from floods was estimated to be about € 22 billion. For the first half of 2013, the global damage was estimated to be already € 35 billion, being about 47% of the overall losses due to natural hazards. Almost half of this amount was due to river flooding such as the devastating floods in East Germany in May-June 2013. Besides possible increases in frequency and severity of flood events, floods are becoming more damaging due to increases in population and increases in economic utilization of flood prone areas. It is therefore crucial to understand the nature and causes of flood risks and possible changes therein due to climate and socio-economic change. Improved understanding will support adaptation plans and investments, either in new economic activities or in flood protection. On this poster, we show a global scale map of current river flood risk and flood risk changes in the future. The map shows how economic damages and the number of flood-affected people due to river floods will change under several scenarios of combined climate and socio-economic change. Across a number of large river basins, we distinguish the contribution to change in risk by climate change (resulting in an increase in flood hazard) and by socio-economic change (resulting in more impacts of flooding). We compute these risks using a validated model cascade consisting of hydrological flood models and impact models forced by long time series of current and future climate (CMIP5) and socio-economic scenarios in periods around 2030 and 2080. We discuss per basin what the possible implications of the scenarios are.

  2. Mapping technological and biophysical capacities of watersheds to regulate floods

    USGS Publications Warehouse

    Mogollon, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances

  3. The Use of LIDAR and Volunteered Geographic Information to Map Flood Extents and Inundation

    NASA Astrophysics Data System (ADS)

    McDougall, K.; Temple-Watts, P.

    2012-07-01

    Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  4. The Role of Satellite Derived Data for Flood Inundation Mapping Using GIS

    NASA Astrophysics Data System (ADS)

    Kuldeep; Garg, P. K.

    2015-08-01

    River flooding in planar region is the most significant type of natural disaster that modern society is exposed to, affecting several thousand people each year. Recent flood events, population growth concerns have augmented the call for global methods which utilise both spatial and temporal dynamics. Object oriented classification approaches based on the segmentation are being adopted for extraction of variety of thematic information from high resolution satellite images. Generation of landuse/cover map which is one of the important inputs to the model for flood inundation mapping and for accurate assessment of damage due to floods requires advanced methods of image classification. The Cartosat-1 (PAN) satellite data has been fused with the LISS-III (MX) to obtain the color image containing both high spatial and spectral information. The fused image is further classified to obtain the landuse/cover map using object based classification approach. The classification results are assessed by calculating overall accuracy and kappa index with the help of error matrix. The overall accuracy of classification has been obtained 86.00% with kappa index 0.7815. The objective of this study is to develop a GIS aided model for flood inundation mapping of the surrounding of the part of the Yamuna River which flows through the two districts i.e. Yamuna Nagar and Saharanpur in states of Haryana and Uttar Pradesh respectively. The model considers the five parameters viz. topography (slope, elevation) information, landuse/cover, time series data of surface water elevation, river geometry and location of the rain gauge station. Field survey has been conducted to validate the positional accuracy of the DEM and landuse/cover classes using DGPS. A final flood inundation map has been prepared by combining all weighted layers with in GIS environment. The flood inundation maps can further be used for quick identification of areas of potential flood hazard to minimize the flood losses.

  5. 12 CFR Appendix A to Subpart S of... - Sample Form of Notice of Special Flood Hazards and Availability of Federal Disaster Relief...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Availability of Federal Disaster Relief Assistance A Appendix A to Subpart S of Part 614 Banks and... Requirements Pt. 614, Subpt. S, App. A Appendix A to Subpart S of Part 614—Sample Form of Notice of Special... Emergency Management Agency (FEMA) as a special flood hazard area using FEMA's Flood Insurance Rate Map...

  6. 2008 United States National Seismic Hazard Maps

    USGS Publications Warehouse

    Petersen, M.D.; and others

    2008-01-01

    The U.S. Geological Survey recently updated the National Seismic Hazard Maps by incorporating new seismic, geologic, and geodetic information on earthquake rates and associated ground shaking. The 2008 versions supersede those released in 1996 and 2002. These maps are the basis for seismic design provisions of building codes, insurance rate structures, earthquake loss studies, retrofit priorities, and land-use planning. Their use in design of buildings, bridges, highways, and critical infrastructure allows structures to better withstand earthquake shaking, saving lives and reducing disruption to critical activities following a damaging event. The maps also help engineers avoid costs from over-design for unlikely levels of ground motion.

  7. Real-time flood extent maps based on social media

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen

    2015-04-01

    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  8. Improving Flood Risk Maps as a Capacity Building Activity: Fostering Public Participation and Raising Flood Risk Awareness in the German Mulde Region (project RISK MAP)

    NASA Astrophysics Data System (ADS)

    Luther, J.; Meyer, V.; Kuhlicke, C.; Scheuer, S.; Unnerstall, H.

    2012-04-01

    ended in September 2011, focussing on the participatory aspects in one of the German case studies (the Mulde River in Saxony). In short, different map users such as strategic planners, emergency managers or the (affected) public require different maps, with varying information density and complexity. The purpose of participation may therefore have a substantive rationale (i.e. improving the content, including local knowledge) or a more instrumental rationale (i.e. building trust, raising awareness, increasing legitimacy). The degree to which both rationales are accommodated depends on the project objectives and determines the participants and process type. In the Mulde case study, both the process of collaborating with each other and considering the (local) knowledge and different experiences as well as the results were highly appreciated. Hazard and risk maps are thus not an end-product that could be complemented e.g. by emergency management information on existing or planned defences, evacuation routes, assembly points, but they should be embedded into a participatory maintenance/updating framework. Map visualisation could be enhanced by using more common and/or self-explanatory symbols, text and a limited number of colour grades for hazard and risk information. Keywords: Flood mapping, hazard and risk maps, participation, risk communication, flood risk awareness, emergency management

  9. Institutional arrangements for flood hazard management in Malaysia: an evaluation using the criteria approach.

    PubMed

    Chan, N W

    1997-09-01

    Institutional aspects of flood hazards significantly affect their outcomes in Malaysia. Institutional arrangements to deal with floods include: legislative activity, organisational structures, attitudes and sub-culture, and policies and instruments. When assessed in terms of four specific criteria, institutional aspects of flood hazards are found to be largely inadequate. Disaster reduction programmes are over-dependent on a reactive approach based largely on technology and not even aimed at floods specifically. Structural flood reduction measures are the predominant management tool and, although the importance of non-structural measures is recognised, thus far they have been under-employed. Current laws and regulations with regard to flood management are also insufficient and both the financial and human resources of flood hazard organisations are generally found to be wanting. Finally, economic efficiency, equity and public accountability issues are not adequately addressed by institutional arrangements for flood hazards. PMID:9301137

  10. Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes

    NASA Astrophysics Data System (ADS)

    Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis

    2016-04-01

    Post-wildfire natural hazards such as flooding and debris flows threaten infrastructure and can even lead to loss of life. The risk from these natural hazards could be reduced if floods and debris flows could be predicted from modeling. Our ability to test predictive models is primarily constrained by a lack of observational data that can be used for comparison with model predictions. Following the 2009 Station Fire in the San Gabriel Mountains, CA, USA, we conducted a study with high-resolution topography and hydrologic measurements to test the effectiveness of two different hydrologic routing models to predict flood and debris flow timing. Our research focuses on comparing the performance of two hydrologic models with differing levels of complexity and efficiency using high-resolution, lidar-derived digital elevation models. The simpler model uses the kinematic wave approximation to route flows, while the more complex model uses the full shallow water equations. In both models precipitation is spatially uniform and infiltration is simulated using the Green-Ampt infiltration equation. Input data for the numerical models was constrained by time series data of soil moisture, and rainfall collected at field sites as well as high-resolution lidar-derived digital elevation models. We ran the numerical models and varied parameter values for the roughness coefficient and hydraulic conductivity. These parameter values were calibrated by minimizing the difference between the simulated and observed flow timing. Moreover, the two parameters were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. The calibrated parameters were subsequently used to model a third watershed, and the results show a good match with observed timing of flow peaks for both models. Calibrated roughness coefficients are generally higher when using the kinematic wave approximation relative to the full shallow water equations, and decrease with increasing spatial

  11. 78 FR 9714 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ...: Each LOMR is available for inspection at both the respective Community Map Repository address listed in... hazard determinations as shown in the LOMRs for each community listed in the table below. Notice of these... rating purposes, the currently effective community number is shown and must be used for all new...

  12. A LiDAR based analysis of hydraulic hazard mapping

    NASA Astrophysics Data System (ADS)

    Cazorzi, F.; De Luca, A.; Checchinato, A.; Segna, F.; Dalla Fontana, G.

    2012-04-01

    one by one. Therefore, each segment was split into many reaches, so that within any of them the slope of the piezometric line can be approximated to zero. As a consequence, the hydraulic profile (open channel flow) in every reach is assumed horizontal both downslope and on the cross-section. Each reach can be seen as a polygon, delimited laterally by the hazard mapping boundaries and longitudinally by two successive cross sections, usually orthogonal to the talweg line. Simulating the progressive increase of the river stage, with a horizontal piezometric line, allow the definition of the stage-area and stage-volume relationships. Such relationships are obtained exclusively by the geometric information as provided by the high resolution elevation model. The maximum flooded area resulting from the simulation is finally compared to the potentially floodable area described by the hazard maps, to give a flooding index for every reach. Index values lower than 100% show that the mapped hazard area exceeds the maximum floodable area. Very low index values identify spots where there is a significant incongruity between the hazard map and the topography, and where a specific verification is probably needed. The procedure was successfully used for the validation of many hazard maps across Italy.

  13. Accounting for image uncertainty in SAR-based flood mapping

    NASA Astrophysics Data System (ADS)

    Giustarini, L.; Vernieuwe, H.; Verwaeren, J.; Chini, M.; Hostache, R.; Matgen, P.; Verhoest, N. E. C.; De Baets, B.

    2015-02-01

    Operational flood mitigation and flood modeling activities benefit from a rapid and automated flood mapping procedure. A valuable information source for such a flood mapping procedure can be remote sensing synthetic aperture radar (SAR) data. In order to be reliable, an objective characterization of the uncertainty associated with the flood maps is required. This work focuses on speckle uncertainty associated with the SAR data and introduces the use of a non-parametric bootstrap method to take into account this uncertainty on the resulting flood maps. From several synthetic images, constructed through bootstrapping the original image, flood maps are delineated. The accuracy of these flood maps is also evaluated w.r.t. an independent validation data set, obtaining, in the two test cases analyzed in this paper, F-values (i.e. values of the Jaccard coefficient) comprised between 0.50 and 0.65. This method is further compared to an image segmentation method for speckle analysis, with which similar results are obtained. The uncertainty analysis of the ensemble of bootstrapped synthetic images was found to be representative of image speckle, with the advantage that no segmentation and speckle estimations are required. Furthermore, this work assesses to what extent the bootstrap ensemble size can be reduced while remaining representative of the original ensemble, as operational applications would clearly benefit from such reduced ensemble sizes.

  14. Hazards, Disasters, and The National Map

    USGS Publications Warehouse

    Carswell, William J., Jr.; Newell, Mark R.

    2009-01-01

    Federal, State, and local response and management personnel must have current, reliable, and easily accessible geographic information and maps to prepare for, respond to, or recover from emergency situations. In life-threatening events, such as earthquakes, floods, or wildland fires, geographic information is essential for locating critical infrastructure and carrying out evacuation and rescue operations. The USGS promotes partnerships to ensure that base map data are up to date, readily available, and shareable among local, state, and National users. The National Map enables other government agencies, private industry, and the public to link and share additional data that provide even more information. These efforts with state and local governments have helped standardize the data by reducing data inconsistencies between neighboring jurisdictions and will help fill in the gaps for those places where data are lacking.

  15. Efficient pan-European flood hazard modelling through a combination of statistical and physical models

    NASA Astrophysics Data System (ADS)

    Paprotny, Dominik; Morales Nápoles, Oswaldo

    2016-04-01

    Low-resolution hydrological models are often applied to calculate extreme river discharges and delimitate flood zones on continental and global scale. Still, the computational expense is very large and often limits the extent and depth of such studies. Here, we present a quick yet similarly accurate procedure for flood hazard assessment in Europe. Firstly, a statistical model based on Bayesian Networks is used. It describes the joint distribution of annual maxima of daily discharges of European rivers with variables describing the geographical characteristics of their catchments. It was quantified with 75,000 station-years of river discharge, as well as climate, terrain and land use data. The model's predictions of average annual maxima or discharges with certain return periods are of similar performance to physical rainfall-runoff models applied at continental scale. A database of discharge scenarios - return periods under present and future climate - was prepared for the majority of European rivers. Secondly, those scenarios were used as boundary conditions for one-dimensional (1D) hydrodynamic model SOBEK. Utilizing 1D instead of 2D modelling conserved computational time, yet gave satisfactory results. The resulting pan-European flood map was contrasted with some local high-resolution studies. Indeed, the comparison shows that, in overall, the methods presented here gave similar or better alignment with local studies than previously released pan-European flood map.

  16. A physically based criterion for hydraulic hazard mapping

    NASA Astrophysics Data System (ADS)

    Milanesi, Luca; Pilotti, Marco; Petrucci, Olga

    2013-04-01

    Hydraulic hazard maps are widely used for land use and emergency planning. Due to their practical consequences, it is important that their meaning is effectively transferred and shared by the stakeholders; to this purpose maps should communicate hazard levels moving from the potential consequences on specified targets. For these reasons flood maps showing only the extension of the inundated areas or flow features as depth and/or velocity may reveal themselves as ineffective instruments. The selection of the specific target to analyse must, in our opinion, be site-specific and reflect land use and/or the hydraulics features of the phenomenon. In case of sudden processes, such as torrential floods or debris flows, hazard levels should be referred to human life, because emergency plans may not mitigate risk; on the contrary, when the time scale of the flood wave propagation is sufficiently larger than the warning system one, the focus might move to the economic value of properties, since human-focused criteria may result in too severe land planning restrictions. This contribution starts exploring, from a theoretical point of view, human hazard levels as drowning, toppling and friction stability limits, which are the main failure mechanisms of human stability in flows. The proposed approach considers the human body, set on a slope and hit by a current of known density, as a combination of cylinders with different dimensions. The drowning threshold is identified through a limiting water depth, while toppling and translation are studied respectively through a moment and momentum balance. The involved forces are the friction at the bottom, the destabilizing drag force exerted by the current, the human weight and buoyancy. Several threshold curves on the velocity-depth plane can be identified as a function of different masses and heights for children and adults. Because of its dependence from the fluid density, this methodology may be applied also to define hazard

  17. Fifty-year flood-inundation maps for La Ceiba, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Ceiba that would be inundated by a 50-year-flood of Rio Cangrejal. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Ceiba as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 1,030 cubic meters per second on Rio Cangrejal at La Ceiba were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Cangrejal; therefore, the 50-year-flood discharge for Rio Cangrejal at La Ceiba was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Cangrejal at La Ceiba are 498 square kilometers and 2,306 millimeters, respectively.

  18. Fifty-year flood-inundation maps for El Progreso, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of El Progreso that would be inundated by a 50-year flood of Rio Pelo. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of El Progreso as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Pelo at El Progreso were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Pelo; therefore, the 50-year-flood discharge for Rio Pelo, 235 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Pelo at El Progreso are 47.4 square kilometers and 1,920 millimeters, respectively.

  19. Climate-Related Hazards: A Method for Global Assessment of Urban and Rural Population Exposure to Cyclones, Droughts, and Floods

    PubMed Central

    Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie

    2014-01-01

    Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures. PMID:24566046

  20. Climate-related hazards: a method for global assessment of urban and rural population exposure to cyclones, droughts, and floods.

    PubMed

    Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie

    2014-02-01

    Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures. PMID:24566046

  1. A combined GIS-HEC procedure for flood hazard evaluation

    SciTech Connect

    McLin, S.G.

    1993-09-01

    A technique is described for incorporating a drainage recognition capability into a graphical information system (GIS) database. This capability is then utilized to export digital topographic profiles of stream-channel cross-sectional geometries to the Hydrologic Engineering Center`s Water Surface Profile (HEC-2) model. This model is typically used in conjunction with the Flood Hydrograph (HEC-1) package to define floodplain boundaries in complex watersheds. Once these floodplain boundaries are imported back into the GIS framework, they can be uniquely referenced to the New Mexico state plane coordinate system. A combined GIS-HEC application in ungaged watersheds at Los Alamos National Laboratory is demonstrated. This floodplain mapping procedure uses topographic data from the Laboratory`s MOSS database. Targeted stream channel segments are initially specified in the MOSS system, and topographic profiles along stream-channel cross-sections am extracted automatically. This procedure is initiated at a convenient downstream location within each watershed, and proceeds upstream to a selected termination point. HEC-2 utilizes these MOSS channel data and HEC-1 generated storm hydrographs to uniquely define the floodplain. The computed water surface elevations at each channel section am then read back into the MOSS system. In this particular application, 13 separate elongated watersheds traverse Laboratory lands, with individual channels ranging up to 11 miles in length. The 50, 100, and 500-year floods, and the Probable Maximum Flood (PMF) are quantified in HEC-1. Individual floodplains are then defined for each channel segment in HEC-2 at 250 foot intervals, and detailed 1:4800 scale maps am generated. Over 100 channel miles were mapped using this combined GIS-HEC procedure.

  2. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  3. Flood-inundation maps for White River at Petersburg, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2015-01-01

    The availability of these maps along with Internet information regarding current stage from the USGS streamgage at White River at Petersburg, Ind., and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  4. Integrated assessment of fluvial and pluvial flood hazards in the city of Salzburg, Austria

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian

    2014-05-01

    Urban flooding can have various sources including floods from a river ('fluvial flooding'), from heavy rainfall usually from convective storms ('pluvial flooding') or from high tides ('storm surge'). Although awareness of pluvial flooding in the scientific community and among policymakers has been increasing, the term 'flooding' is still often seen as a phenomenon explicitly related to a river. Previous research primarily focused on fluvial flooding, with only very recent literature dealing with pluvial flooding. As a result, there are established methods to assess the hazards from fluvial floods, and a smaller number focusing on pluvial floods. Much less work has been conducted on integrated flood hazard assessment taking into account various types of flood hazards. In this work, an integrative, probabilistic modelling framework was developed to assess the urban flood hazard from fluvial and pluvial flooding in the city of Salzburg (Austria). The framework consists of a stochastic multi-site weather generator, which provides input for the hydrological model HBV. In the city of Salzburg, a kNN algorithm converts the simulated mean discharge into peak discharge as well as daily into sub-daily precipitation. The time series generated in this way make the identification of fluvial events (peak discharge) and pluvial events (sub-daily precipitation) possible. The kNN algorithm inherently considers weather situations to ensure a reasonable disaggregation of daily precipitation. Critical thresholds of pluvial flood events are empirically derived from damage data provided by a local insurer as well as action plans from the local fire service. The modelling framework is then applied to examine the probability of the two single flood hazards, as well as the probability of simultaneous pluvial-fluvial flood events.

  5. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border

  6. Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Lindsay, J. M.; Calder, E.

    2015-12-01

    All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.

  7. A methodology for the assessment of flood hazards at the regional scale

    NASA Astrophysics Data System (ADS)

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Marcomini, Antonio

    2013-04-01

    In recent years, the frequency of water-related disasters has increased and recent flood events in Europe (e.g. 2002 in Central Europe, 2007 in UK, 2010 in Italy) caused physical-environmental and socio-economic damages. Specifically, floods are the most threatening water-related disaster that affects humans, their lives and properties. Within the KULTURisk project (FP7) a Regional Risk Assessment (RRA) methodology is proposed to evaluate the benefits of risk prevention in terms of reduced environmental risks due to floods. The method is based on the KULTURisk framework and allows the identification and prioritization of targets (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) and areas at risk from floods in the considered region by comparing the baseline scenario (i.e. current state) with alternative scenarios (i.e. where different structural and/or non-structural measures are planned). The RRA methodology is flexible and can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale). The final aim of RRA is to help decision-makers in examining the possible environmental risks associated with uncertain future flood hazards and in identifying which prevention scenario could be the most suitable one. The RRA methodology employs Multi-Criteria Decision Analysis (MCDA functions) in order to integrate stakeholder preferences and experts judgments into the analysis. Moreover, Geographic Information Systems (GISs) are used to manage, process, analyze, and map data to facilitate the analysis and the information sharing with different experts and stakeholders. In order to characterize flood risks, the proposed methodology integrates the output of hydrodynamic models with the analysis of site-specific bio-geophysical and socio-economic indicators (e.g. slope of the territory, land cover

  8. Mapping flood prone areas in southern Brazil: a combination of frequency analysis, HAND algorithm and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Fabris Goerl, Roberto; Borges Chaffe, Pedro Luiz; Marcel Pellerin, Joel Robert; Altamirano Flores, Juan Antonio; Josina Abreu, Janete; Speckhann, Gustavo Andrei; Mattos Sanchez, Gerly

    2015-04-01

    Floods disaster damages several people around the world. There is a worldwide increasing trend of natural disasters frequency and their negative impacts related to the population growth and high urbanization in natural hazards zones. In Santa Catarina state, such as almost all southern Brazilian territory, floods are a frequent hydrological disaster. In this context, flood prone areas map is a important tool to avoid the construction of new settlements in non-urbanizations areas. The present work aimed to map flood prone areas in Palhoça City, Southern Brazil combining high resolution digital elevations data, remote sensing information, frequency analysis and High Above Nearest Drainage (HAND) algorithm. We used 17 years of daily discharge and stage data to calculate flood probability and return period. Remote Sensing (RS) with CBERS HRC image with 2,7m resolution was used. This image was taken one day after one flood occurrence and a band difference was used to extract the flood extent. HAND using DEM to calculate the altimetric difference between channel pixel and adjacent terrain values. All morphometric attributes used in HAND were extracted directly from the high resolution DEM (1m). Through CBERS image areas where flood level was higher than 0.5m were mapped. There is some kind of uncertain in establish HAND classes, since only distance to the channel was take in account. Thus, using other hydrological or spatial information can reduce this uncertain. To elaborate the final flood prone map, all this methods were combined. This map was classified in three main classes based on return period. It was notices that there is a strong spatial correlation between high susceptibility flood areas and geomorphological features like floodplains and Holocene beach ridges, places where water table emerges frequently. The final map was classified using three different colors (red, yellow and green) related to high, medium an law susceptibility flood areas. This mapping

  9. Geologic Maps as the Foundation of Mineral-Hazards Maps in California

    NASA Astrophysics Data System (ADS)

    Higgins, C. T.; Churchill, R. K.; Downey, C. I.; Clinkenbeard, J. P.; Fonseca, M. C.

    2010-12-01

    The basic geologic map is essential to the development of products that help planners, engineers, government officials, and the general public make decisions concerning natural hazards. Such maps are the primary foundation that the California Geological Survey (CGS) uses to prepare maps that show potential for mineral-hazards. Examples of clients that request these maps are the California Department of Transportation (Caltrans) and California Department of Public Health (CDPH). Largely because of their non-catastrophic nature, mineral hazards have received much less public attention compared to earthquakes, landslides, volcanic eruptions, and floods. Nonetheless, mineral hazards can be a major concern locally when considering human health and safety and potential contamination of the environment by human activities such as disposal of earth materials. To address some of these concerns, the CGS has focused its mineral-hazards maps on naturally occurring asbestos (NOA), radon, and various potentially toxic metals as well as certain artificial features such as mines and oil and gas wells. The maps range in scope from statewide to counties and Caltrans districts to segments of selected highways. To develop the hazard maps, the CGS begins with traditional paper and digital versions of basic geologic maps, which are obtained from many sources such as its own files, the USGS, USDA Forest Service, California Department of Water Resources, and counties. For each study area, these maps present many challenges of compilation related to vintage, scale, definition of units, and edge-matching across map boundaries. The result of each CGS compilation is a digital geologic layer that is subsequently reinterpreted and transformed into new digital layers (e.g., lithologic) that focus on the geochemical and mineralogical properties of the area’s earth materials and structures. These intermediate layers are then integrated with other technical data to derive final digital layers

  10. Probabilistic Flood Mapping and Visualization Issues: Application to the River Ubaye, Barcelonnette (France)

    NASA Astrophysics Data System (ADS)

    Mukolwe, M. M.; Di Baldassarre, G.; Bogaard, T. A.; Malet, J.-P.; Solomatine, D. P.

    2012-04-01

    Potential loss of life and damage to infrastructure is an ever present risk along several rivers globally. Recent floodings in Thailand (2011), Pakistan (2010) and Australia (2010) testify the level of damage experienced. Increasing population levels and migration patterns result in space shortages, and floodplain encroachment. This has increased the vulnerability and exposure of the population. The problem is compounded by the uncertainty in the derived flood risk mitigation parameters and design guidelines, due to unknown behavior of hydrological extremes (Klemes, 1989). Current flood risk management practices acknowledge the inability of hydrological extremes (and resulting floods) to be fully contained by structural flood defense measures (Loat and Petrascheck, 1997). Consequently, decision makers are faced with a challenge in the safeguarding of civil society. Flood mapping provides prior knowledge and aids land-use planning strategies. The EU flood directive (2007) clearly outlines procedures to be followed in the mapping of floodplains, by the production of hazard maps corresponding to specified probabilities of occurrence. The main challenge is the reliability of natural randomness and epistemic uncertainty of the hydraulic flood modeling process (Refsgaard et al., 2007). Several studies over the resent past have investigated methods to estimate (and possibly reduce) the uncertainty (e.g. Montanari, 2007). However, it is acknowledged that the degree of randomness and the incomplete knowledge of natural system behavior contribute to a certitude level in the derived outputs (Di Baldassarre et al., 2010). Several authors pinpointed the need for "honest" portrayal of this uncertainty in modeling output. Nevertheless, the fear of introducing confusion has hampered this endeavour (Pappenberger and Beven, 2006). This study focuses on a flood inundation modeling and a probabilistic mapping carried out along the R. Ubaye (Barcelonnette Basin, South French Alps

  11. 12 CFR 208.25 - Loans in areas having special flood hazards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under the terms of the loan. (10) Special flood hazard area means the land in the flood plain within a... is covered by flood insurance for the term of the loan. The amount of insurance must be at least... the land on which the property is located. (2) Table funded loans. A member bank that acquires a...

  12. Flooding, erosion and coastal structures hazards on the Spanish coast

    NASA Astrophysics Data System (ADS)

    Perez, Jorge; Losada, Inigo; Mendez, Fernando; Menendez, Melisa; Izaguirre, Cristina; Requejo, Soledad; Abascal, Ana; Tomas, Antonio; Camus, Paula

    2013-04-01

    Coastal flooding, beach erosion and coastal structures can be affected by long-term changes in sea level and in the storminess. Each beach or construction requires a specific study for a proper estimation of coastal hazards. However, high resolution regional studies are useful to decision-makers to focus in the most endangered areas. The aim of this work is to provide an overview of coastal risks along the Spanish coast. Four different databases providing hourly data have been used to study 423 local sites along the Spanish coastline (around 10 Km spatial resolution). 1- The mean sea level was estimated from satellite and tide-gauges based on Church et al. (2004). 2- The astronomical tide was assessed from the Spanish tide-gauge network interpolating 68 tidal constituents to obtain a tide series for each local site. 3- The coastal surge data come from a numerical reanalysis (GOS) with 1/8 degree spatial resolution performed by using the 2-D barotropic Regional Ocean Modeling System (ROMS) model. 4- Nearshore wave time series (at 15-25 m water depth) are provided from a reanalysis obtained from a hybrid downscaling along the Spanish coast (Camus et al., 2013). Flooding can be considered as the combined result of mean sea level, tidal level, surge level and run-up. Run-up has been assessed by the Stockdon et al. (2006) formulation from the wave time series. We reconstructed hourly flood level time series from their components in the selected locations during 60 years (from 1950 to 2009). A time-dependent extreme value model based on Pareto and Poisson probability distributions has been developed for magnitude and frequency respectively. Long-term trends and their statistical significance, and future changes on flooding return levels (e.g. 20 year return level) have been estimated. Two main causes of beach erosion have been analyzed. The shoreline retreat induced by sea level rise has been quantified by using Bruun's rule, and the erosion due to changes in the

  13. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property located at ______ is in a floodplain, wetland or area identified by the Federal Insurance...

  14. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property located at ______ is in a floodplain, wetland or area identified by the Federal Insurance...

  15. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property located at ______ is in a floodplain, wetland or area identified by the Federal Insurance...

  16. 7 CFR Exhibit A to Subpart C of... - Notice of Flood, Mudslide Hazard or Wetland Area

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Notice of Flood, Mudslide Hazard or Wetland Area A... Flood, Mudslide Hazard or Wetland Area TO:____ DATE:____ This is to notify you that the real property located at ______ is in a floodplain, wetland or area identified by the Federal Insurance...

  17. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  18. Modeling framework to link climate, hydrology and flood hazards: An application to Sacramento, California

    NASA Astrophysics Data System (ADS)

    Kim, B.; David, C. H.; Druffel-Rodriguez, R.; Sanders, B. F.; Famiglietti, J. S.

    2013-12-01

    The City of Sacramento and the broader delta region may be the most flood vulnerable urbanized area in the United States. Management of flood risk here and elsewhere requires an understanding of flooding hazards, which is in turn linked to California hydrology, climate, development and flood control infrastructure. A modeling framework is presented here to make predictions of flooding hazards (e.g., depth and velocity) at the household scale (personalized flood risk information), and to study how these predictions could change under different climate change, land-use change, and infrastructure adaptation scenarios. The framework couples a statewide hydrologic model (RAPID) that predicts runoff and streamflow to a city-scale hydrodynamic model (BreZo) capable of predicting levee-breach flows and overland flows into urbanized lowlands. Application of the framework to the Sacramento area is presented here, with a focus on data needs, computational demands, results and hazard communication strategies, for selected flooding scenarios.

  19. Flood hazard studies in Central Texas using orbital and suborbital remote sensing machinery

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Holz, R. K.; Patton, P. C.

    1975-01-01

    Central Texas is subject to infrequent, unusually intense rainstorms which cause extremely rapid runoff from drainage basins developed on the deeply dissected limestone and marl bedrock of the Edwards Plateau. One approach to flood hazard evaluation in this area is a parametric model relating flood hydrograph characteristics to quantitative geomorphic properties of the drainage basins. The preliminary model uses multiple regression techniques to predict potential peak flood discharge from basin magnitude, drainage density, and ruggedness number. After mapping small catchment networks from remote sensing imagery, input data for the model are generated by network digitization and analysis by a computer assisted routine of watershed analysis. The study evaluated the network resolution capabilities of the following data formats: (1) large-scale (1:24,000) topographic maps, employing Strahler's "method of v's," (2) standard low altitude black and white aerial photography (1:13,000 and 1:20,000 scales), (3) NASA - generated aerial infrared photography at scales ranging from 1:48,000 to 1:123,000, and (4) Skylab Earth Resources Experiment Package S-190A and S-190B sensors (1:750,000 and 1:500,000 respectively).

  20. Flood inundation mapping uncertainty introduced by topographic data accuracy, geometric configuration and modeling approach

    NASA Astrophysics Data System (ADS)

    Papaioannou, G.; Loukas, Athanasios

    2010-05-01

    Floodplain modeling is a recently new and applied method in river engineering discipline and is essential for prediction of flood hazards. The issue of flood inundation of upland environments with topographically complex floodplains is an understudied subject. In most areas of the U.S.A., the use of topographic information derived from Light Detection and Ranging (LIDAR) has improved the quality of river flood inundation predictions. However, such high quality topographical data are not available in most countries and the necessary information is obtained by topographical survey and/or topographical maps. Furthermore, the optimum dimensionality of hydraulic models, cross-section configuration in one-dimensional (1D) models, mesh resolution in two-dimensional models (2D) and modeling approach is not well studied or documented. All these factors introduce significant uncertainty in the evaluation of the floodplain zoning. This study addresses some of these issues by comparing flood inundation maps developed using different topography, geometric description and modeling approach. The methodology involves use of topographic datasets with different horizontal resolutions, vertical accuracies and bathymetry details. Each topographic dataset is used to create a flood inundation map for different cross-section configurations using 1D (HEC-RAS) model, and different mesh resolutions using 2D models for steady state and unsteady state conditions. Comparison of resulting maps indicates the uncertainty introduced in floodplain modeling by the horizontal resolution and vertical accuracy of topographic data and the different modeling approaches.

  1. Hazard function analysis for flood planning under nonstationarity

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-05-01

    The field of hazard function analysis (HFA) involves a probabilistic assessment of the "time to failure" or "return period," T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine, actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probability distribution function (pdf) of the return period always follows an exponential distribution, the same is not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrological applications. After a general introduction to HFA, we describe a new mathematical linkage between the magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the probabilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution provides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative approach to characterize the probabilistic properties of both nonstationary flood series and the resulting pdf of T.

  2. Flood Water Level Mapping and Prediction Due to Dam Failures

    NASA Astrophysics Data System (ADS)

    Musa, S.; Adnan, M. S.; Ahmad, N. A.; Ayob, S.

    2016-07-01

    Sembrong dam has undergone overflow failure. Flooding has been reported to hit the town, covering an area of up to Parit Raja, located in the district of Batu Pahat. This study aims to identify the areas that will be affected by flood in the event of a dam failure in Sembrong Dam, Kluang, Johor at a maximum level. To grasp the extent, the flood inundation maps have been generated by using the InfoWorks ICM and GIS software. By using these maps, information such as the depth and extent of floods can be identified the main ares flooded. The flood map was created starting with the collection of relevant data such as measuring the depth of the river and a maximum flow rate for Sembrong Dam. The data were obtained from the Drainage and Irrigation Department Malaysia and the Department of Survey and Mapping and HLA Associates Sdn. Bhd. Then, the data were analyzed according to the established Info Works ICM method. The results found that the flooded area were listed at Sri Lalang, Parit Sagil, Parit Sonto, Sri Paya, Parit Raja, Parit Sempadan, Talang Bunut, Asam Bubok, Tanjung Sembrong, Sungai Rambut and Parit Haji Talib. Flood depth obtained for the related area started from 0.5 m up to 1.2 m. As a conclusion, the flood emanating from this study include the area around the town of Ayer Hitam up to Parit Raja approximately of more than 20 km distance. This may give bad implication to residents around these areas. In future studies, other rivers such as Sungai Batu Pahat should be considered for this study to predict and reduce the yearly flood victims for this area.

  3. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models.

    NASA Astrophysics Data System (ADS)

    Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.

    2013-11-01

    El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and deterministic methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold: on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high-resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps, and from the elevation in the near shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific Basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences-finite volumes numerical model in this work, based on the linear and non-linear shallow water equations, to simulate a total of 24 earthquake-generated tsunami scenarios. Our results show that at the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results

  4. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models

    NASA Astrophysics Data System (ADS)

    Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.

    2013-05-01

    El Salvador is the smallest and most densely populated country in Central America; its coast has approximately a length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there have been 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and hundreds of victims. The hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached from both Probabilistic and Deterministic Methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold, on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps and from the elevation in the near-shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences - finite volumes numerical model in this work, based on the Linear and Non-linear Shallow Water Equations, to simulate a total of 24 earthquake generated tsunami scenarios. In the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results obtained with the high resolution

  5. Application of ERTS-1 Imagery to Flood Inundation Mapping

    NASA Technical Reports Server (NTRS)

    Hallberg, G. R.; Hoyer, B. E.; Rango, A.

    1973-01-01

    Ground data and a variety of low-altitude multispectral imagery were acquired for the East Nishnabotna River on September 14 and 15. This successful effort concluded that a near-visible infrared sensor could map inundated areas in late summer for at least three days after flood recession. ERTS-1 multispectral scanner subsystem (MSS) imagery of the area was obtained on September 18 and 19. Analysis of MSS imagery by IGSRSL, USGS, and NASA reinforced the conclusions of the low-altitude study while increasing the time period critical for imagery acquisition to at least 7 days following flood recession. The capability of satellite imagery to map late summer flooding at a scale of 1:250,000 is exhibited by the agreement of interpreted flood boundaries obtained from ERTS-1 imagery to boundaries mapped by low-altitude imagery and ground methods.

  6. A software tool for rapid flood inundation mapping

    USGS Publications Warehouse

    Verdin, James; Verdin, Kristine; Mathis, Melissa; Magadzire, Tamuka; Kabuchanga, Eric; Woodbury, Mark; Gadain, Hussein

    2016-01-01

    The GIS Flood Tool (GFT) was developed by the U.S. Geological Survey with support from the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance to provide a means for production of reconnaissance-level flood inundation mapping for data-sparse and resource-limited areas of the world. The GFT has also attracted interest as a tool for rapid assessment flood inundation mapping for the Flood Inundation Mapping Program of the U.S. Geological Survey. The GFT can fill an important gap for communities that lack flood inundation mapping by providing a first-estimate of inundation zones, pending availability of resources to complete an engineering study. The tool can also help identify priority areas for application of scarce flood inundation mapping resources. The technical basis of the GFT is an application of the Manning equation for steady flow in an open channel, operating on specially processed digital elevation data. The GFT is implemented as a software extension in ArcGIS. Output maps from the GFT were validated at 11 sites with inundation maps produced previously by the Flood Inundation Mapping Program using standard one-dimensional hydraulic modeling techniques. In 80 percent of the cases, the GFT inundation patterns matched 75 percent or more of the one-dimensional hydraulic model inundation patterns. Lower rates of pattern agreement were seen at sites with low relief and subtle surface water divides. Although the GFT is simple to use, it should be applied with the oversight or review of a qualified hydraulic engineer who understands the simplifying assumptions of the approach.

  7. Mapping Flash Flood Severity in the United States

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2015-12-01

    Flash floods have been a major natural hazard in terms of both fatalities and property damage. In the United States, flash floods have only been characterized on a case study basis due to the lack of a comprehensive database matching flood characteristics with geospatial and geomorphologic information. To characterize the ability of a basin to produce flash floods, a new variable called "Flashiness" is derived from the slope of the rising limb in hydrograph time series. It is the basis to document and predict the flash flood potential and severity over the U.S. First a representative and long archive of flood events spanning 78 years is used to analyze the spatial and temporal variability of observed flashiness. The areas and seasons prone to flash floods are documented, highlighting the flash flood alley in Texas, Appalachians, West Coast, and North American monsoon in Arizona etc. Then the flashiness is linked to geomorphologic and climatologic attributes to identify the basin characteristics driving the ability to produce flash floods. The significant impact of characteristics such as slope, precipitation, and basin area are quantified. Next the model is used to predict flashiness all over the continental U.S., specifically over regions poorly covered by hydrological observations. It highlights ungauged areas prone to flash floods such as parts of Florida, Southern Wisconsin, Montana and South Dakota etc. Finally these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  8. Hazards, Disasters, and The National Map

    USGS Publications Warehouse

    U.S. Geological Survey

    2003-01-01

    Governments depend on base geographic information that describes the Earth's surface and locates features. They use this information for economic and community development, land and natural resource management, delivery of health services, and ensuring public safety. It is also the foundation for studying and solving geographically based problems. Geographic information underpins an increasingly large part of the Nation's economy. It is an important part of our national infrastructure in the same way that the Interstate Highway System is an essential element of our transportation network. Federal, State, and local response and management personnel must have current, reliable, and easily accessible geographic information and maps to prepare for, respond to, or recover from emergency situations. In life-threatening events, such as earthquakes, floods, or wildland fires, geographic information is essential for locating critical infrastructure and carrying out evacuation and rescue operations.

  9. Extreme Precipitation Mapping for Flood Risk Assessment in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Kohnova, S.; Parajka, J.; Szolgay, J.; Hlavcova, K.

    2009-04-01

    The poster present a study of mapping 2-year and 100-year annual maximum daily precipitation for rainfall-runoff studies and estimating flood hazard. The main objective was to discuss the quality and properties of maps of design precipitation with a given return period with respect to the expectations of the end user community. Four approaches to the preprocessing of annual maximum 24-hour precipitation data were used, and three interpolation methods employed. The first method is the direct mapping of at-site estimates of distribution function quantiles; the second is the direct mapping of local estimates of the three parameters of the GEV distribution. In the third method, the daily measurements of the precipitation totals were interpolated into a regular grid network, and then the time series of the maximum daily precipitation totals in each grid point of the selected region were statistically analysed. In the fourth method, the spatial distribution of the design precipitation was modeled by quantiles predicted by regional precipitation frequency analysis using the Hosking and Wallis procedure. Homogeneity of the region of interest was tested, and the index value (the mean annual maximum daily precipitation) was mapped using spatial interpolation (instead of the more usual regional regression). Quantiles were derived through the dimensionless regional frequency distribution estimated by using L-moments. The three interpolation methods used were the inverse distance weighting, nearest neighbor and the kriging method. The daily precipitation measurements at 23 climate stations from 1961-2000 were used in the upper Hron basin in central Slovakia. Visual inspection and jackknife cross-validation was used to compare the combination of approaches. Under the specific regime dominated by thermal and frontal convective events, the potential advantage of using mapping of daily precipitation series as a basis for quantile estimation was not shown and under the given

  10. Geomorphology and Mapping of Canyon Lake Gorge from Flood Events

    NASA Astrophysics Data System (ADS)

    Gunawan, A. P.

    2015-12-01

    A large volume of runoff causes flood that exceed the capacity of flood control reservoir. Canyon Lake Gorge, Canyon Lake, TX was formed as a result of a major erosional event in 2002. A low-pressure system combined with a flow of tropical air hit over central Texas causing precipitation, recent flooding in 2015 has changed the structure of the channel. Here, channel changes in the canyon are evaluated using hydrologic conductivity, ground penetrating radar (GPR), and photogrammetry. Mapping and field reconnaissance will be used to map out changes over the years of when the flood had occurred in the past (1998, 2002, and 2015) as well as to study the flood surrounding Canyon Lake Gorge and Guadalupe River. A demographic survey will be used to analyzed the damage that was caused by the flood and compare the severity of the event. The justification for this is that the Canyon Lake Gorge have a unique formation, geologic time scale before and after the flood has changed. The recent flood in 2015 gives an opportunity to study the changes that is currently occurring.

  11. 12 CFR 760.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Notice of special flood hazards and availability of Federal disaster relief assistance. 760.9 Section 760.9 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.9 Notice of special flood hazards...

  12. 12 CFR 339.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Notice of special flood hazards and availability of Federal disaster relief assistance. 339.9 Section 339.9 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.9 Notice of special flood hazards...

  13. 12 CFR 572.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Notice of special flood hazards and availability of Federal disaster relief assistance. 572.9 Section 572.9 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.9 Notice of special flood hazards and availability of...

  14. 12 CFR 572.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Notice of special flood hazards and availability of Federal disaster relief assistance. 572.9 Section 572.9 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.9 Notice of special flood hazards and availability of...

  15. 12 CFR 760.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Notice of special flood hazards and... ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.9 Notice of special flood hazards and availability of Federal disaster relief assistance. (a) Notice requirement....

  16. 12 CFR 339.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Notice of special flood hazards and... INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.9 Notice of special flood hazards and availability of Federal disaster relief assistance....

  17. 12 CFR 339.9 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Notice of special flood hazards and... INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.9 Notice of special flood hazards and availability of Federal disaster relief assistance....

  18. Current and future pluvial flood hazard analysis for the city of Antwerp

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Tabari, Hossein; De Niel, Jan; Van Uytven, Els; Lambrechts, Griet; Wellens, Geert

    2016-04-01

    to two types of methods). These were finally transferred into future pluvial flash flood hazard maps for the city together with the uncertainties, and are considered as basis for spatial planning and adaptation.

  19. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2016-01-01

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  20. Development of a flood-warning system and flood-inundation mapping in Licking County, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2012-01-01

    Digital flood-inundation maps for selected reaches of South Fork Licking River, Raccoon Creek, North Fork Licking River, and the Licking River in Licking County, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with the Ohio Department of Transportation; U.S. Department of Transportation, Federal Highway Administration; Muskingum Watershed Conservancy District; U.S. Department of Agriculture, Natural Resources Conservation Service; and the City of Newark and Village of Granville, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the following USGS streamgages: South Fork Licking River at Heath, Ohio (03145173); Raccoon Creek below Wilson Street at Newark, Ohio (03145534); North Fork Licking River at East Main Street at Newark, Ohio (03146402); and Licking River near Newark, Ohio (03146500). The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. As part of the flood-warning streamflow network, the USGS re-installed one streamgage on North Fork Licking River, and added three new streamgages, one each on North Fork Licking River, South Fork Licking River, and Raccoon Creek. Additionally, the USGS upgraded a lake-level gage on Buckeye Lake. Data from the streamgages and lake-level gage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected, established streamgage rating curves. The step-backwater models then were used to determine water-surface-elevation profiles for up to 10 flood stages at a streamgage with corresponding streamflows ranging from approximately