Science.gov

Sample records for flood protection levees

  1. The influence of woody plants on the seepage of flood protection levees: Experiences from a test site

    NASA Astrophysics Data System (ADS)

    Lammeranner, W.; Meixner, H.; Florineth, F.

    2009-04-01

    The past flood events have once more drawn the attention to the stability and maintenance of flood protection levees. The attention has also been focused on the relationship between vegetation and the structural integrity of dikes. Current standards regard dense turf to be safest vegetation cover for dikes. Many guidelines ban woody vegetation from dikes and levees to provide structural integrity, visual inspection and unhindered flood-fight access. The refusal of woody plants is mainly based on the argument that root penetration of woody plants facilitates water movement along their path. Within the frame of a research project carried out by the Institute of Soil Bioengineering and Landscape Construction (University of Natural Resources and Applied Life Sciences, Vienna), focusing on woody plants on levees, the effects of small to medium growing woody (shrubby) plants on the seepage are tested. Data are drawn from two natural-scaled research levees. The homogenous levees consist of a mineral silt-sand-gravel and have a fill height of 2.7 m and a slope inclination of 2:3. The tests investigate the impact of woody plants (living brush mattress - transversal) in comparison to compact turf (jute netting mulch seeding). Measured plant parameters, characterising the vegetation structures were shoot lengths, shoot diameters, and above ground biomass. Root growth is investigated in an extra plot area allowing excavation of the plants. Percolation is monitored using seepage monitoring pipes, soil moisture sensors and soil temperature probes, which were build into the embankment during construction. The proposed contribution discusses the effects of woody plants (shrubs) on seepage of flood protection levees. Methodology of research and results after three initial seepage tests are presented.

  2. Flood Protection Structure Accreditation Task Force: Interim Report

    E-print Network

    US Army Corps of Engineers

    Flood Protection Structure Accreditation Task Force: Interim Report January 2, 2013 #12;FLOOD States Army Corps of Engineers (USACE) are pleased to present this report, titled "Flood Protection inspections and assessments and the National Flood Insurance Program levee accreditation requirements

  3. Climate and floods still govern California levee breaks

    USGS Publications Warehouse

    Florsheim, J.L.; Dettinger, M.D.

    2007-01-01

    Even in heavily engineered river systems, climate still governs flood variability and thus still drives many levee breaks and geomorphic changes. We assemble a 155-year record of levee breaks for a major California river system to find that breaks occurred in 25% of years during the 20th Century. A relation between levee breaks and river discharge is present that sets a discharge threshold above which most levee breaks occurred. That threshold corresponds to small floods with recurrence intervals of ???2-3 years. Statistical analysis illustrates that levee breaks and peak discharges cycle (broadly) on a 12-15 year time scale, in time with warm-wet storm patterns in California, but more slowly or more quickly than ENSO and PDO climate phenomena, respectively. Notably, these variations and thresholds persist through the 20th Century, suggesting that historical flood-control effects have not reduced the occurrence or frequency of levee breaks. Copyright 2007 by the American Geophysical Union.

  4. Levee Scour Protection for Storm Waves

    NASA Astrophysics Data System (ADS)

    Johnson, E.; Sustainable; Resiliency in Levee Scour Protection

    2011-12-01

    Earnest Johnson, Firat Y. Testik *, Nadarajah Ravichandran Civil Engineering, Clemson University, Clemson, SC, USA * Contact author ftestik@clemson.edu Levee failure due to scouring has been a prominent occurrence among intense storm surges and waves, giving rise to the implementation of various scour protection measures over the years. This study is to investigate the levee scour and to compare different scour protection measures on a model-levee system in a laboratory wave tank. The protection measures that are tested and compared for their effectiveness in this study include turf reinforcement mats, woven geotextiles, and core-locs. This is an ongoing research effort and experiments are currently being conducted with model levees constructed based upon the United States Army Corps of Engineers' levee design and construction guidelines under various simulated storm conditions. Parameters such as wave elevations, deformation time history of the floodwall, and the scour depth are measured in each test. The finding of this research will be translated to provide effective scour protection measures for robust levee designs.

  5. Mitigation Experiment of Levee Breach by Concrete Block Foot Protection in Chiyoda Experimental Flume

    NASA Astrophysics Data System (ADS)

    Tobita, D.; Kakinuma, T.; Yokoyama, H.; Takeda, A.

    2013-12-01

    Recent years have seen a considerably increased incidence of typhoons, torrential rainstorms and other extreme meteorological phenomena due to climate change, thereby raising the risk of large-scale disasters caused by riverine floods. The flood damage is particularly severe when levee breaches occur, so estimating the flood magnitude and providing hazard maps are crucial for risk management. In previous studies, the mechanisum of levee breach was examined and measures to reinforce levee and restrict the overflow rates of protection forest were investigated. However, no appropriate techniques for the implementation of such measures hasn't been established yet. The purpose of this study is to evaluate countermeasures of mitigating levee breach progress and reducing overflow rate. The concept of the countermeasure is to utilize 2 ton of concrete blocks installed on the levee ahead of breaching and expect these blocks to be collapsed and protect the edge of the breached levee. Upon considering this concept, we referred to the findings of previous side-overflow breach experiments performed in the Chiyoda experiment flume, where the levee breach process with state-of-the-art observation devices under highly precise hydraulic conditions. Therefore we performed levee breach experiments in the Chiyoda Experimental Flume. (Large scale experimental flume; width is 30m, length is 1,300m, bed slope is approximately 1/500.) The experimental results highlighted the behavior of the collapsed blocks, effectiveness for mitigating the breach progress, and hydraulic characteristics around blocks. Considerations such as the number of blocks to be used were also clarified.

  6. Flood protection for the Kansas City bannister federal complex

    SciTech Connect

    Nolan, J.J.; Williams, R.H.; Betzen, G.A.

    1995-08-01

    The Bannister Federal Complex is bordered on the east by the Blue River and on the south by Indian Creek. After a flood in 1961 and several near-miss floods, flood protection has been installed. The protection consists of 2,916 feet of concrete flood walls, 8,769 feet of levee, five rolling gates, four stoplog gaps, one hinged pedestrian gate, and one sandbag gap. The flood walls are over 14 feet tall. Construction was started on August 3, 1992 and was completed in early 1995. Architectural treatment was incorporated in the flood walls as well as landscaping to enhance the appearance of the flood protection.

  7. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall be addressed in the analyses include: Depth of flooding, duration of flooding, embankment geometry... this additional information. (c) Operation plans and criteria. For a levee system to be recognized,...

  8. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    USGS Publications Warehouse

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are more prone to erosion or scour. Data collected from multibeam echosounder hydrographic surveys at selected bridges aided State agencies in evaluating the structural integrity of the bridges during the flood, by assessing the amount of scour present around piers and abutments. Hydrographic surveys of the riverbed detected scour depths ranging from zero (no scour) to approximately 5.8 meters in some areas adjacent to North Dakota bridge piers, zero to approximately 6 meters near bridge piers in Nebraska, and zero to approximately 10.4 meters near bridge piers in Missouri. Substructural support elements of some bridge piers in North Dakota, Nebraska, and Missouri that usually are buried were exposed to moving water and sediment. At five Missouri bridge piers the depth of scour left less than 1.8 meters of bed material between the bottom of the scour hole and bedrock. State agencies used this information along with bridge design and construction information to determine if reported scour depths would have a substantial effect on the stability of the structure. Multibeam echosounder hydrographic surveys of the riverbed near pipeline crossings did not detect exposed pipelines. However, analysis of the USGS survey data by pipeline companies aided in their evaluation of pipeline safety and led one company to further investigate the safety of their line and assisted another company in getting one offline pipeline back into operation. Multibeam echosounder hydrographic surveys of the banks, riverbed, and underwater infrastructure at Omaha Public Power District power plants documented the bed and scour conditions. These datasets were used by Omaha Public Power District to evaluate the effects that the flood had on operation, specifically to evaluate if scour during the peak of the flood or sediment deposition during the flood recession would affect the water intake structures. Hydrographic surveys at an Omaha Public Power District electrical transmission tower documented scour so that they could evaluate the structural integrity of the tower as well as have the informati

  9. Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain

    E-print Network

    Turner, Monica G.

    on floodplain denitrification S A R A H E . G E R G E L *, S T E P H E N R . C A R P E N T E R w and E M I LY H. Because floodplains are important sites for denitrification and nitrogen retention, we developed a generalized floodplain biogeochemical model to determine whether dams and flood-control levees affect

  10. Proposal from Tulsa/West Tulsa Levee District 12

    E-print Network

    US Army Corps of Engineers

    structure. The levees are designed to protect the Standard Project Flood or the Arkansas River flows or 350 was completed in 1945. The levee failed in two places during a 1986 flood event on the Arkansas River was authorized for construction by the Flood Control Act 1941. The project consists of a system of three earthen

  11. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Flood protection. 385.37 Section 385...and Purpose of the Plan § 385.37 Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent with...

  12. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Flood protection. 385.37 Section 385...and Purpose of the Plan § 385.37 Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent with...

  13. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Flood protection. 385.37 Section 385...and Purpose of the Plan § 385.37 Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent with...

  14. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Flood protection. 385.37 Section 385...and Purpose of the Plan § 385.37 Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent with...

  15. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Flood protection. 385.37 Section 385...and Purpose of the Plan § 385.37 Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent with...

  16. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...and magnitude of debris, sediment, and ice accumulation. It must be also shown that...areas); expected wind and wave action; ice loading; impact of debris; slope protection...compressibility of foundation soils, age of the levee system, and construction...

  17. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...and magnitude of debris, sediment, and ice accumulation. It must be also shown that...areas); expected wind and wave action; ice loading; impact of debris; slope protection...compressibility of foundation soils, age of the levee system, and construction...

  18. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...and magnitude of debris, sediment, and ice accumulation. It must be also shown that...areas); expected wind and wave action; ice loading; impact of debris; slope protection...compressibility of foundation soils, age of the levee system, and construction...

  19. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...and magnitude of debris, sediment, and ice accumulation. It must be also shown that...areas); expected wind and wave action; ice loading; impact of debris; slope protection...compressibility of foundation soils, age of the levee system, and construction...

  20. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...and magnitude of debris, sediment, and ice accumulation. It must be also shown that...areas); expected wind and wave action; ice loading; impact of debris; slope protection...compressibility of foundation soils, age of the levee system, and construction...

  1. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Flood protection. 385.37 Section... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...) Existing flood protection. Each Project Implementation Report shall include appropriate analyses,...

  2. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Flood protection. 385.37 Section... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...) Existing flood protection. Each Project Implementation Report shall include appropriate analyses,...

  3. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Flood protection. 385.37 Section... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...) Existing flood protection. Each Project Implementation Report shall include appropriate analyses,...

  4. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood protection. 385.37 Section... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...) Existing flood protection. Each Project Implementation Report shall include appropriate analyses,...

  5. 33 CFR 385.37 - Flood protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Flood protection. 385.37 Section... Flood protection. (a) General. In accordance with section 601 of WRDA 2000, flood protection, consistent...) Existing flood protection. Each Project Implementation Report shall include appropriate analyses,...

  6. Development of Floating Wave Barriers for Cost Effective Protection of Irrigation Pond Levees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The earth levees commonly used for irrigation reservoirs are subjected to significant embankment erosion due to wind-generated waves. Large seasonal fluctuations in water level make vegetative bank protection impractical, and other stabilization methods, such as the use of stone or discarded tires, ...

  7. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2012-04-01 true Flood plain management and protection. 801...COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. ...waterways has not discouraged development of flood hazards areas. Major floods cause...

  8. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Flood plain management and protection. 801...COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. ...waterways has not discouraged development of flood hazards areas. Major floods cause...

  9. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Flood plain management and protection. 801...COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. ...waterways has not discouraged development of flood hazards areas. Major floods cause...

  10. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Flood plain management and protection. 801...COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. ...waterways has not discouraged development of flood hazards areas. Major floods cause...

  11. Flood Vulnerability and Flood Protection North and Baltic Seas

    E-print Network

    Vries, Hans de

    G G G G Flood Vulnerability and Flood Protection North and Baltic Seas Meteorological Forcings NorthSea/BalticSeaMeteorologicalForcingsforDCSM28April2009 1 #12;G G G G Overview GLAMEPS Harmonie G G G G NorthSea/BalticSeaMeteorologicalForcingsforDCSM28April2009 2 #12;G G G G DCSM and Hirlam History

  12. National Levee Database: monitoring, vulnerability assessment and management in Italy

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Camici, Stefania; Maccioni, Pamela; Moramarco, Tommaso

    2015-04-01

    A properly designed and constructed levees system can often be an effective device for repelling floodwaters and provide barriers against inundation to protect urbanized and industrial areas. However, the delineation of flooding-prone areas and the related hydraulic hazard mapping taking account of uncertainty (Apel et al., 2008) are usually developed with a scarce consideration of the possible occurrence of levee failures along river channels (Mazzoleni et al., 2014). Indeed, it is well known that flooding is frequently the result of levee failures that can be triggered by several factors, as: (1) overtopping, (2) scouring of the foundation, (3) seepage/piping of levee body/foundation, and (4) sliding of the foundation. Among these failure mechanisms that are influenced by the levee's geometrical configuration, hydraulic conditions (e.g. river level and seepage), and material properties (e.g. permeability, cohesion, porosity, compaction), the piping caused by seepage (ICOLD, http://www.icold-cigb.org) is considered one of the most dominant levee failure mechanisms (Colleselli F., 1994; Wallingford H. R., 2003). The difficulty of estimating the hydraulic parameters to properly describe the seepage line within the body and foundation of the levee implies that the study of the critical flood wave routing is typically carried out by assuming that the levee system is undamaged during the flood event. In this context, implementing and making operational a National Levee Database (NLD), effectively structured and continuously updated, becomes fundamental to have a searchable inventory of information about levees available as a key resource supporting decisions and actions affecting levee safety. The ItaliaN LEvee Database (INLED) has been recently developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Civil Protection Department of the Presidency of Council of Ministers. INLED has the main focus of collecting comprehensive information about Italian levees and historical breach failures to be exploited in the framework of an operational procedure addressed to the seepage vulnerability assessment of river reaches where the levee system is an important structural measure against flooding. For its structure, INLED is a dynamic geospatial database with ongoing efforts to add levee data from authorities with the charge of hydraulic risk mitigation. In particular, the database is aimed to provide the available information about: i) location and condition of levees; ii) morphological and geometrical properties; iii) photographic documentation; iv) historical levee failures; v) assessment of vulnerability to overtopping and seepage carried out through a procedure based on simple vulnerability indexes (Camici et al. 2014); vi) management, control and maintenance; vii)flood hazard maps developed by assuming the levee system undamaged/damaged during the flood event. Currently, INLED contains data of levees that are mostly located in the Tiber basin, Central Italy. References Apel H., Merz B. & Thieken A.H. Quantification of uncertainties in flood risk assessments. Int J River Basin Manag 2008, 6, (2), 149-162. Camici S,, Barbetta S., Moramarco T., Levee body vulnerability to seepage: the case study of the levee failure along the Foenna stream on 1st January 2006 (central Italy)", Journal of Flood Risk Management, in press. Colleselli F. Geotechnical problems related to river and channel embankments. Rotterdam, the Netherlands: Springer, 1994. H. R.Wallingford Consultants (HRWC). Risk assessment for flood and coastal defence for strategic planning: high level methodology technical report, London, 2003. Mazzoleni M., Bacchi B., Barontini S., Di Baldassarre G., Pilotti M. & Ranzi R. Flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy. J Hydrol Eng 2014, 19, (4), 717-731.

  13. Protecting Mobile Devices From TCP Flooding Attacks

    E-print Network

    Fu, Xiaoming

    of a DoS Attack: Identify a resource constraint, then find a means to exhaust it! · TCP SYN flooding1 Protecting Mobile Devices From TCP Flooding Attacks Yogesh Swami% and Hannes Tschofenig* % Nokia attack is well understood for wire-line networks · Memory is the resource constraint · SYN Cookies

  14. Levee and sandbag efforts in Fargo, ND

    USGS Multimedia Gallery

    The city of Fargo, ND builds levees and prepares sandbags in preparation for rising flood waters. The height of the levees are built based on flood predictions, made by the National Weather Service using USGS streamflow information. ...

  15. Blackland's flood warning system protects soldiers 

    E-print Network

    Wythe, Kathy

    2008-01-01

    stream_source_info Blackland's flood warning system protects soldiers.pdf.txt stream_content_type text/plain stream_size 2758 Content-Encoding ISO-8859-1 stream_name Blackland's flood warning system protects soldiers....pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2O | pg. 28 Story by Kathy Wythe | pg. 28 A flood warning system resulting from a Texas AgriLife Research water quality monitoring project at Fort Hood is potentially saving lives...

  16. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... true Remapping of areas for which local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 ...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND...

  17. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... false Remapping of areas for which local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 ...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND...

  18. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... false Remapping of areas for which local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 ...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND...

  19. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... false Remapping of areas for which local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 ...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND...

  20. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... false Remapping of areas for which local flood protection systems no longer provide base flood protection. 65.14 Section 65.14 ...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND...

  1. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., potential, and magnitude of debris, sediment, and ice accumulation. It must be also shown that the levee... (especially in constricted areas); expected wind and wave action; ice loading; impact of debris; slope..., compressibility of embankment soils, compressibility of foundation soils, age of the levee system,...

  2. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., potential, and magnitude of debris, sediment, and ice accumulation. It must be also shown that the levee... (especially in constricted areas); expected wind and wave action; ice loading; impact of debris; slope..., compressibility of embankment soils, compressibility of foundation soils, age of the levee system,...

  3. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., potential, and magnitude of debris, sediment, and ice accumulation. It must be also shown that the levee... (especially in constricted areas); expected wind and wave action; ice loading; impact of debris; slope..., compressibility of embankment soils, compressibility of foundation soils, age of the levee system,...

  4. 44 CFR 65.10 - Mapping of areas protected by levee systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., potential, and magnitude of debris, sediment, and ice accumulation. It must be also shown that the levee... (especially in constricted areas); expected wind and wave action; ice loading; impact of debris; slope..., compressibility of embankment soils, compressibility of foundation soils, age of the levee system,...

  5. Development of Floating Wave Barriers for Cost Effective Protection of Irrigation and Catfish Pond Levees

    NASA Astrophysics Data System (ADS)

    Ozeren, Y.; Wren, D. G.; Alonso, C. V.

    2007-12-01

    Earth levees for catfish ponds and irrigation water storage experience significant embankment erosion due to wind generated waves. Large seasonal fluctuations in water level make vegetative bank protection impractical, and other stabilization methods such as the use of old tires or riprap are not acceptable due to ecological and economic concerns. The goal of the present work is to define configurations and construction techniques for inexpensive floating breakwaters made of polyethylene irrigation tubing. Based on wave characteristics measured in an irrigation pond near Lonoke, Arkansas, a laboratory scale wave generating flume was designed, constructed, and used to test multiple wave barrier configurations for regular waves in deep and transitional water depths. Wave transmission characteristics were investigated for the following breakwater arrangements: (1) fully restrained, (2) vertically restrained with a single mooring line, (3) horizontally restrained with a rigid arm hinged at one end, and (4) horizontally restrained with piles at both sides of the breakwater. The test results show that cylindrical pipes can be used effectively as floating breakwaters and that wave transmission characteristics strongly depend on the draft of the breakwater and the mooring configuration. The use of multiple small cylinders instead of a single large one can reduce cost while maintaining the same level of wave attenuation. The wave characteristics measured in the field and the results of laboratory testing resulted in a final design that is to be tested at the prototype scale in an irrigation pond.

  6. Mapping levees for river basin management using LiDAR data and multispectral aerial orthoimages

    NASA Astrophysics Data System (ADS)

    Choung, Yun Jae

    Mapping levees is important to assessing levee stability, identifying flood risks for the areas protected by levee systems, etc. Historically, mapping levees has been carried out using ground surveying methods or only one type of remote sensing data set. This dissertation aims at mapping the levees by using airborne topographic LiDAR data and multispectral orthoimages taken in the river basins of the Nakdong River. In this dissertation, three issues with mapping levees are illustrated. The first issue is developing new methods for mapping levee surfaces by using geometric and spectral information. Levee surfaces consist of multiple objects having different geometric and spectral patterns. This dissertation proposes multiple methods for identifying the major objects and eroded areas on the levee surfaces. Multiple geometric analysis approaches such as the slope difference analysis and the elevation and area analysis are used to identify the levee top, berm, slope plates and the eroded area having different geometric patterns. Next, the spectral analysis approach, such as clustering algorithms, is used to identify major objects having different spectral patterns on the plates identified. Finally, multiple components, including the major objects and eroded areas on the levee surfaces, are identified. The second issue is developing new methods for mapping levee lines by using the geometric and spectral information. In general, the levee lines are determined on levee surfaces by considering the geometric pattern, the types of major objects, etc. This dissertation proposes multiple methods for mapping the levee lines located on various levee surfaces. First, the three baselines (the edges extracted from the images, the cluster boundaries extracted from the identified clusters and the plate boundaries extracted from the LiDAR data) are extracted separately from different sources. Next, the judgment test is performed in order to select one baseline as the levee line segment most suitable for the levee surface. Finally, levee lines consisting of multiple baselines are generated in all levee surfaces having different geometric and spectral patterns. The third issue is establishing a levee information system to assess failure risks for the levee systems in the Nakdong River basins. This dissertation proposes new methods for establishing these levee information systems by using the generated levee lines and identified objects on the levee surfaces. First, various levee failure risks are evaluated separately on each levee segment. Next, the level of failure risks on each levee segment is measured by using the risks for each. Finally, the levee segments having failure risks are identified along the levee lines using specific colors (red, blue, yellow and green). Using the above procedure, levee information systems are established to assess the failure risks of the levee systems in the Nakdong River basins. The established levee information systems show that the areas of Changnyeong City protected by the levees having the safe conditions from levee failure are the safest zones from flooding.

  7. On mechanisms triggering the levees failure along the Foenna stream on 1st January 2006 and which caused the flooding in the urban area of Sinalunga, Tuscany Region (Italy). A case study

    NASA Astrophysics Data System (ADS)

    Camici, Stefania; Moramarco, Tommaso; Brocca, Luca; Melone, Florisa; Lapenna, Vincenzo; Perrone, Angela; Loperte, Antonio

    2010-05-01

    On 1st January 2006, during an ordinary flood event, a levee failure along the Foenna stream caused the flooding in the urban area of Sinalunga, a small town located in Tuscany region (Italy). The event was monitored by a public agency with the responsibility for the control and maintenance of the natural channel networks. Long time before of flooding, people living in the surrounding area of the stream blamed the presence of wild animals and of numerous burrows along the levees. Although the numerous actions of maintenance along the levees mainly for removing the burrows, a levee seepage occurred during that flood. The presence of an outflow located on the downstream face, almost 2 m below the levee top, caused the spurt of brown water denoting the presence of sediment erosion. On the upstream face of levee, a little hole of about 30 cm at the same height of the outflow was discovered. Although the agency workers tried to close the hole by using appropriate blankets, in short time the top of the levee subsided and the overtopping flow caused a trapezoidal breach typical for an earth-fill embankment. The formation of breach was so fast that in a little more of one hour the urban area near to the Foenna stream was flooded causing high economic damages. Mechanisms triggered the levees failure are the object of this work. The analysis of the event has been first addressed to assess the state of-fact of levees conditions along the Foenna stream, thus to understand how much the activity of wild animals, in particular that of porcupine, may have affected the hydraulic safety of the embankment. At the purpose, after the event, topographical surveys of cross sections have been done along with tomographic surveys by geoelectric technique for investigating the possible presence, besides of burrows, also of tunnels dug into the levees by animals. Then, the analysis of hydrometeorological conditions of the event has allowed to better understand the evolution of the flood and if its magnitude was able to affect the hydraulic holding of levees. Finally, the seepage vulnerability of these levees has been also assessed to address their hydraulic safety applying two models based on a steady and unsteady infiltration, respectively. Based on the obtained results, the following findings can be drawn. 1) The levees failure near the Sinalunga urban area is certainly due to the presence of the porcupine burrow at middle height of upstream face of levee that has addressed the flow into the embankment and then triggered the seepage phenomenon. 2) The works of the maintenance finalized to the closure of the burrows carried out before of the flood event were necessary but not sufficient to prevent the failure of levees. 3) To prevent the failure due to burrows presence, the levees maintenance should have been addressed through both the closure of burrows and the capture of wild animals; if this action had been done for the Foenna stream then the probability of failure would have been truly low. This last aspect has been also inferred through geoelectrical tomography surveys that showed the possible presence of at least two tunnels along both faces of levees, so emphasizing as the various closure of burrows made in the past by maintenance agency were totally useless. 4) The seepage vulnerability analysis has shown that levees might be to risk of failure for floods whose durations are consistent with the ones might occur in the Foenna basin. However, for this particular event the levees failure can be only ascribed to wild animals activity, seeing that the seepage was caused by a burrow hole.

  8. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... National Flood Insurance Program and the regulations thereunder (44 CFR parts 59 through 79); or (2) Less... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Flood insurance protection. 574.640... Requirements § 574.640 Flood insurance protection. No property to be assisted under this part may be located...

  9. 25 CFR 286.9 - Environmental and flood disaster protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Environmental and flood disaster protection. 286.9... BUSINESS DEVELOPMENT PROGRAM § 286.9 Environmental and flood disaster protection. Grant funds will not be advanced until there is assurance of compliance with any applicable provisions of the Flood...

  10. 25 CFR 286.9 - Environmental and flood disaster protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Environmental and flood disaster protection. 286.9... BUSINESS DEVELOPMENT PROGRAM § 286.9 Environmental and flood disaster protection. Grant funds will not be advanced until there is assurance of compliance with any applicable provisions of the Flood...

  11. 25 CFR 286.9 - Environmental and flood disaster protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Environmental and flood disaster protection. 286.9... BUSINESS DEVELOPMENT PROGRAM § 286.9 Environmental and flood disaster protection. Grant funds will not be advanced until there is assurance of compliance with any applicable provisions of the Flood...

  12. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... National Flood Insurance Program and the regulations thereunder (44 CFR parts 59 through 79); or (2) Less... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Flood insurance protection. 574.640... Requirements § 574.640 Flood insurance protection. No property to be assisted under this part may be located...

  13. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... National Flood Insurance Program and the regulations thereunder (44 CFR parts 59 through 79); or (2) Less... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Flood insurance protection. 574.640... Requirements § 574.640 Flood insurance protection. No property to be assisted under this part may be located...

  14. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... National Flood Insurance Program and the regulations thereunder (44 CFR parts 59 through 79); or (2) Less... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Flood insurance protection. 574.640... Requirements § 574.640 Flood insurance protection. No property to be assisted under this part may be located...

  15. 25 CFR 286.9 - Environmental and flood disaster protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Environmental and flood disaster protection. 286.9 Section... BUSINESS DEVELOPMENT PROGRAM § 286.9 Environmental and flood disaster protection. Grant funds will not be advanced until there is assurance of compliance with any applicable provisions of the Flood...

  16. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... National Flood Insurance Program and the regulations thereunder (44 CFR parts 59 through 79); or (2) Less... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Flood insurance protection. 574.640... Requirements § 574.640 Flood insurance protection. No property to be assisted under this part may be located...

  17. 25 CFR 286.9 - Environmental and flood disaster protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Environmental and flood disaster protection. 286.9... BUSINESS DEVELOPMENT PROGRAM § 286.9 Environmental and flood disaster protection. Grant funds will not be advanced until there is assurance of compliance with any applicable provisions of the Flood...

  18. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2010-04-01 true Flood insurance protection. 574.640 Section...Other Federal Requirements § 574.640 Flood insurance protection. No property...Management Agency (FEMA) as having special flood hazards, unless: (a)(1) The...

  19. 24 CFR 574.640 - Flood insurance protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Flood insurance protection. 574.640 Section...Other Federal Requirements § 574.640 Flood insurance protection. No property...Management Agency (FEMA) as having special flood hazards, unless: (a)(1) The...

  20. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands..., extensive damages, and other conditions not in the public interest. A balanced flood plain management...

  1. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands..., extensive damages, and other conditions not in the public interest. A balanced flood plain management...

  2. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands..., extensive damages, and other conditions not in the public interest. A balanced flood plain management...

  3. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Flood plain management... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands..., extensive damages, and other conditions not in the public interest. A balanced flood plain management...

  4. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management and protection. 801.8 Section 801.8 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands along waterways has not...

  5. Screening of Earthen Levees Using Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Aanstoos, J. V.; O'Hara, C.; Prasad, S.; Dabbiru, L.; Nobrega, R.; Lee, M.

    2009-12-01

    Earthen levees protect large areas of populated and cultivated land in the US from flooding. As shown recently with hurricanes Katrina and Ike and the recent floods in the Midwest, the potential loss of life and property associated with the catastrophic failure of levees can be extremely large. Over the entire US, there are over 100,000 miles of levee structures of varying designs and conditions. Currently, there are limited processes in place to prioritize the monitoring of large numbers of dam and levee structures. Levee managers and federal agencies need to assess levee health rapidly with robust techniques that identify, classify and prioritize levee vulnerabilities with lower costs than traditional soil-boring programs, which can cost many of millions of dollars and provide information about the subsurface only in the immediate vicinity of a small-diameter borehole. This paper reports preliminary results of a project studying the use of airborne synthetic aperture radar (SAR) as an aid to the levee screening process. The SAR sensor being studied is the NASA UAVSAR (Unmanned Aerial Vehicle SAR), a fully polarimetric L-band SAR which is specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. The instrument is capable of sub-meter ground sample distance. NASA has imaged with this instrument 230 km of levees along the lower Mississippi River for use in this study. SAR interferometric mode is capable of identifying vertical displacements on the order of a few millimeters. Its multipolarization measurements can penetrate soil to as much as one meter depth. Thus it is valuable in detecting changes in levees that will be key inputs to a levee vulnerability classification system. Once vulnerable levee reaches have been identified, further actions such as more detailed examination or repairs can be focused on these higher-priority sections. We report on the use of various feature detection algorithms being applied to the polarimetry data, including entropy-anisotropy decomposition and methods based on the Grey Level Co-occurrence Matrix (GLCM). The features detected are compared with various ground truth data including soil type maps, soil conductivity measurements, and on site visual inspections.

  6. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Rates based on a flood protection system involving Federal funds...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system involving Federal...

  7. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Rates based on a flood protection system involving Federal funds...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system involving Federal...

  8. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Rates based on a flood protection system involving Federal funds...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system involving Federal...

  9. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2011-10-01 true Rates based on a flood protection system involving Federal funds...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system involving Federal...

  10. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Rates based on a flood protection system involving Federal funds...INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system involving Federal...

  11. Geotechnical reconnaissance of the Mississippi River Delta flood-protection system after Hurricane Katrina: Chapter 3C in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Luna, Ronaldo; Summers, David; Hoffman, David; Rogers, J. David; Sevi, Adam; Witt, Emitt C.

    2007-01-01

    This article presents the post-Hurricane Katrina conditions of the flood-protection system of levees and floodwalls that failed in the environs of the Mississippi River Delta and New Orleans, La. Damage conditions and suggested mechanisms of failure are presented from the geotechnical point of view.

  12. Substation flood protection: A case study

    SciTech Connect

    Gacek, D.B.; McGovern, L.L.

    1999-11-01

    On July 18, 1996, the City of Naperville, Illinois encountered a substantial storm event ranging from nine to fourteen inches of rainfall across town in less than twelve hours, with the majority falling over a four-hour period. The watershed containing the City`s Westside substation encountered the most significant rainfall totals, resulting in a flood crest in the substation area of approximately thirteen inches of water. The station is a 138 kV substation, and the flooding of this station caused a power loss to approximately 60% of the City`s customers for more than eight hours. The water level posed no threat to yard equipment, however, within the substation control building, flood water shorted out control circuits and damaged transmission line relay systems. Crews worked round-the-clock for most of a week to return all transmission lines and transformers to normal service. The 15 kV switchgear ultimately had to be replaced due to recurring control circuit problems. Once the station was restored and the cleanup efforts underway, the City embarked on an evaluation to determine what condition or conditions allowed the flooding to occur, and what could be done in the future to avoid this problem to ensure that the customers of Naperville would not experience another service outage of this magnitude due to flooding.

  13. A NEW APPROACH TO FLOOD PROTECTION DESIGN AND RIPARIAN MANAGEMENT1

    E-print Network

    A NEW APPROACH TO FLOOD PROTECTION DESIGN AND RIPARIAN MANAGEMENT1 2 Philip B. Williams, California. Abstract: Conventional engineering methods of flood control design focus narrowly processes. Conse- quently, flood control projects are often environmentally disastrous, expensive

  14. Information support systems for cultural heritage protection against flooding

    NASA Astrophysics Data System (ADS)

    Nedvedova, K.; Pergl, R.

    2015-08-01

    The goal of this paper is to present use of different kind of software applications to create complex support system for protection of cultural heritage against flooding. The project is very complex and it tries to cover the whole area of the problem from prevention to liquidation of aftermath effects. We used GIS for mapping the risk areas, ontology systems for vulnerability assessment application and the BORM method (Business Object Relation Modelling) for flood protection system planning guide. Those modern technologies helped us to gather a lot of information in one place and provide the knowledge to the broad audience.

  15. Effects of river reach discretization on the estimation of the probability of levee failure owing to piping

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Maurizio; Brandimarte, Luigia; Barontini, Stefano; Ranzi, Roberto

    2014-05-01

    Over the centuries many societies have preferred to settle down nearby floodplains area and take advantage of the favorable environmental conditions. Due to changing hydro-meteorological conditions, over time, levee systems along rivers have been raised to protect urbanized area and reduce the impact of floods. As expressed by the so called "levee paradox", many societies might to tend to trust these levee protection systems due to an induced sense of safety and, as a consequence, invest even more in urban developing in levee protected flood prone areas. As a result, considering also the increasing number of population around the world, people living in floodplains is growing. However, human settlements in floodplains are not totally safe and have been continuously endangered by the risk of flooding. In fact, failures of levee system in case of flood event have also produced the most devastating disasters of the last two centuries due to the exposure of the developed floodprone areas to risk. In those cases, property damage is certain, but loss of life can vary dramatically with the extent of the inundation area, the size of the population at risk, and the amount of warning time available. The aim of this study is to propose an innovative methodology to estimate the reliability of a general river levee system in case of piping, considering different sources of uncertainty, and analyze the influence of different discretization of the river reach in sub-reaches in the evaluation of the probability of failure. The reliability analysis, expressed in terms of fragility curve, was performed evaluating the probability of failure, conditioned by a given hydraulic load in case of a certain levee failure mechanism, using a Monte Carlo and First Order Reliability Method. Knowing the information about fragility curve for each discrete levee reach, different fragility indexes were introduced. Using the previous information was then possible to classify the river into sub-reaches having different classes of reliability. This methodology was then applied to the Po River where the probability of failure in case of synthetic 100-year return period flood event was additionally calculated. The results of this study pointed out how the fragility classes assessed for the Po are in agreement with the historical observations. Moreover, the choice in the discretization criteria may affect the resulting probability of failure along the river reach. Classifying different levee reaches into different classes of fragility can be then used in a generic river reach where levee geometry is known. Furthermore, the proposed fragility analysis can support probabilistic flood risk mapping, monitoring and planning of maintenance works of levee systems. This study is part of the FP7 European Project KULTURisk.

  16. Protecting Coastal Areas from Flooding by Injecting Solids into the Subsurface

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L.

    2008-12-01

    Subsidence and sea level rise conspire to increase the risk of flooding in coastal cities throughout the world, and these processes were key contributors to the devastation of New Orleans by hurricane Katrina. Constructing levees and placing fill to raise ground elevations are currently the main options for reducing flooding risks in coastal areas, and both of these options have drawbacks. We suggest that hydromechanical injection of solid compounds suspended in liquid can be used to lift the ground surface and thereby expand the options for protecting such coastal cities as New Orleans, Venice, and Shanghai from flooding. These techniques are broadly related to hydraulic fracturing and compensation grouting, where solid compounds are injected as slurries and cause upward displacements at the ground surface. The equipment and logistics required for hydromechanical solid injection and ground lifting are readily available from current geotechnical and petroleum operations. Hydraulic fractures are routinely created in the upper tens of meters of sediments, where they are filled with a wide range of different proppants for environmental applications. At shallow depths, many of these fractures are sub-parallel to the ground surface and lift their overburden by a few mm to cm, although lifting is not the objective of these fractures. Much larger, vertical displacements, of the order of several meters, could be created in low-cohesion sediments over areas as large as square kilometers. This would be achieved as a result of multiple injections. Injecting solid particulates provides the benefits of a permanent displacement supported by the solids. We have demonstrated that hydraulic fractures will lift the ground surface at shallow depths in Texas near the Sabine River, where the geological setting is generally similar to that of New Orleans (and where, incidentally, hurricane Rita landed in 2005). In these regions, the soft surficial sediments are underlain by relatively stiff Pleistocene deposits, which create in-situ stress conditions favorable for sub-horizontal orientation of hydraulic fractures. Based on the poroelastic effect, these conditions can further be improved by subsurface manipulations of pore fluid. Also, there are many geological examples of natural, sub- horizontal hydraulic fractures. These include multiple igneous sills (e.g., Henry Mountains, Utah) and sand- filled sills intruded into sedimentary formations (e.g., Shetland-Faroe Islands). Techniques that are currently used, or planned, for protecting coastal cities from flood are typically based on the concept of a barrier to the seawater (e.g., levees or water gates). However, the failure of any barrier to flood waters can be catastrophic when the city it protects is below sea level. Hydromechanical injection of solid compounds could permanently lift elevations above a Category 5 hurricane surge, so the risk of a catastrophic failure and subsequent flooding becomes insignificant. We envision that the hydromechanical method can be used in combination with other strategies. For example, in some areas it may be efficient to let most of a city retreat and only lift localized regions of particularly high value, such as airports, port facilities, refineries, historical areas, military bases, etc. In other cases, the protecting equipment itself may begin subsiding (e.g., massive, metal water gates on a soft-sediment foundation). Then, hydromechanical injections could be used to lift the region supporting this equipment.

  17. Changes in Benefits of Flood Protection Standard under Climate Change

    NASA Astrophysics Data System (ADS)

    Lim, W. H.; Koirala, S.; Yamazaki, D.; Hirabayashi, Y.; Kanae, S.

    2014-12-01

    Understanding potential risk of river flooding under future climate scenarios might be helpful for developing risk management strategies (including mitigation, adaptation). Such analyses are typically performed at the macro scales (e.g., regional, global) where the climate model output could support (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014). To understand the potential benefits of infrastructure upgrading as part of climate adaptation strategies, it is also informative to understand the potential impact of different flood protection standards (in terms of return periods) on global river flooding under climate change. In this study, we use a baseline period (forced by observed hydroclimate conditions) and CMIP5 model output (historic and future periods) to drive a global river routing model called CaMa-Flood (Yamazaki et al., 2011) and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the potential risk of river flooding and changes in the benefits of flood protection standard (e.g., 100-year flood of the baseline period) from the past into the future (represented by the representative concentration pathways). In this presentation, we show our preliminary results. References: Arnell, N.W, Gosling, S., N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate Change 3: 816-821, doi: 10.1038/nclimate1911. Yamazaki et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47, W04501, doi: 10.1029/2010wr009726.

  18. Capacitively coupled resistivity survey of the levee surrounding the Omaha Public Power District Nebraska City Power Plant, June 2011

    USGS Publications Warehouse

    Burton, Bethany L.; Cannia, James C.

    2011-01-01

    This report is a release of digital data from a capacitively coupled resistivity survey conducted on June 13, 2011, on the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant. The U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center and the Nebraska Water Science Center performed the survey in response to a flood on the Missouri River. A single line of resistivity profiling was completed along the center line of the section of levee 573 that surrounds the power plant.

  19. Using ground penetrating radar in levee assessment to detect small scale animal burrows

    NASA Astrophysics Data System (ADS)

    Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah

    2014-04-01

    Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.

  20. Characterizing Levees using Polarimetric and Interferometric Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Dabbiru, L.; Aanstoos, J. V.; Mahrooghy, M.; Gokaraju, B.; Nobrega, R. A.; Younan, N. H.

    2011-12-01

    Monitoring the physical condition of levees is vital in order to protect them from flooding. The dynamics of subsurface water events can cause damage on levee structures which could lead to slough slides, sand boils or through seepage. Synthetic Aperture Radar (SAR) technology, due to its high spatial resolution and soil penetration capability, is a good choice to identify such problem areas so that they can be treated to avoid possible catastrophic failure. The radar polarimetric and interferometric data is capable of identifying variations in soil properties of the areas which might cause levee failure. The study area encompasses portion of levees of the lower Mississippi river in the United States. The methodology of this research is mainly categorized into two streams: 1) polarimetric data analysis and classification, and 2) interferometric analysis. Two sources of SAR imagery are used: a) quad-polarized, L-band data from Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) for polarimetric classification, and b) high resolution dual-polarized Terrasar-X data for interferometric analysis. NASA's UAVSAR imagery acquired between 2009 and 2011 are used for the analysis. The polarimetric classification is performed based on the decomposition parameters: entropy (H), anisotropy (A) and alpha (?) and the results detected slough slides on the levees and potential future slides. In the interferometric approach, the Terrasar-X SAR images acquired at different times in the year 2011 are combined into pairs to exploit the phase difference of the signals. The interferometric information is used to find evidence of potential small-scale deformations which could be pre-cursors to levee failure.

  1. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Local flood protection works; maintenance and operation of structures and facilities. 208.10 Section 208.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.10 Local flood protection works;...

  2. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Local flood protection works; maintenance and operation of structures and facilities. 208.10 Section 208.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.10 Local flood protection works;...

  3. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Local flood protection works... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.10 Local flood protection works; maintenance and operation of structures and facilities. (a) General....

  4. Cookies Along Trust-Boundaries (CAT): Accurate and Deployable Flood Protection

    E-print Network

    Akella, Aditya

    Cookies Along Trust-Boundaries (CAT): Accurate and Deployable Flood Protection Martin Casado Aditya@google.com, shenker@icsi.berkeley.edu Abstract Packet floods targeting a victim's incoming bandwidth are no- toriously their applicability in practice. We propose CAT, a new network-based flood protection scheme. In CAT, all flows must

  5. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Local flood protection works... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.10 Local flood protection works; maintenance and operation of structures and facilities. (a) General....

  6. Flood Risk and Global Change: Future Prospects

    NASA Astrophysics Data System (ADS)

    Serra-Llobet, A.

    2014-12-01

    Global flood risk is increasing in response to population growth in flood-prone areas, human encroachment into natural flood paths (exacerbating flooding in areas formerly out of harm's way), and climate change (which alters variables driving floods). How will societies respond to and manage flood risk in coming decades? Analysis of flood policy evolution in the EU and US demonstrates that changes occurred in steps, in direct response to disasters. After the flood produced by the collapse of Tous Dam in 1982, Spain initiated a systematic assessment of areas of greatest flood risk and civil protection response. The devastating floods on the Elbe and elsewhere in central Europe in 2002 motivated adoption of the EU Floods Directive (2007), which requires member states to develop systematic flood risk maps (now due) and flood risk management plans (due in 2015). The flooding of New Orleans by Hurricane Katrina in 2005 resulted in a nationwide levee-safety assessment and improvements in communicating risk, but overall less fundamental change in US flood management than manifest in the EU since 2007. In the developing world, large (and increasing) concentrations of populations in low-lying floodplains, deltas, and coasts are increasingly vulnerable, and governments mostly ill-equipped to implement fundamental changes in land use to prevent future increases in exposure, nor to develop responses to the current threats. Even in the developed world, there is surprisingly little research on how well residents of flood-prone lands understand their true risk, especially when they are 'protected' by '100-year' levees. Looking ahead, researchers and decision makers should prioritize improvements in flood risk perception, river-basin-scale assessment of flood runoff processes (under current and future climate and land-use conditions) and flood management alternatives, and bridging the disconnect between national and international floodplain management policies and local land-use decisions.

  7. When the levee breaks - public policy and holistic risk management - lessons from Katrina for coastal cities faced with rising storm surge flood risk

    NASA Astrophysics Data System (ADS)

    Muir-Wood, R.

    2009-04-01

    In a period of accelerating sea level rise and increased tropical cyclone intensities, extreme 100 year coastal flood levels are rising rapidly along a number of tropical and subtropical coastlines. Meanwhile, whether from natural megadelta consolidation, post glacial rebound or overpumping of shallow aquifers, many coastal cities are sinking even faster than mean sea level is rising. Without significant investment in continually improved flood defence inevitably this means the risk of catastrophic flooding is rising, for many cities quite steeply. The experience of Hurricane Katrina and New Orleans may become seen as iconic for 21st Century catastrophe risk as more and more coastal cities are subject to similar calamities. The story of New Orleans also highlights many aspects of catastrophe risk management failures before and after extreme events. The city of New Orleans had already been flooded three times by storm surges in the 100 years before Katrina. After each flood, investments were made in improved flood defences but these investments dwindled through time as there appeared to be a reduced imperative to divert money to support abstract risk reduction. Meanwhile land subsidence and rising sea levels and storm surges meant that risk levels continued to rise, until the inevitable time when the city once again was flooded. As the city increasingly sinks below mean sea level the impact of each flood has become increasingly catastrophic, both in terms of areas flooded, property damage and casualties. While a major program of investment in improved flood defences has once again followed the catastrophic 2005 flood, Federal government agencies have given no assurance that levels of flood risk will be maintained below some designated threshold long term. Therefore another cycle of rising flood risk has now started that will inevitably eventually to lead to the city becoming reflooded. This cycle can only end with the eventual abandonment of much of the city area - an outcome that is deemed politically unacceptable. The loss consequences of rising levels of risk, improvements or degradation in flood defences and the potential outcomes of different catastrophic storm surges can only be explored in a Catastrophe loss model.

  8. 18 CFR 801.8 - Flood plain management and protection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...standards for flood plain management. (4) Promote the use of flood insurance by helping localities qualify for the national program. (5) Assist in the development of a modern flood forecasting and warning...

  9. Mapping Flood Protection Benefits from Restored Wetlands at the Urban-Suburban Interface

    EPA Science Inventory

    Urbanization exacerbates flooding by increasing runoff and decreasing surface water storage. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flood p...

  10. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  11. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  12. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  13. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  14. Tiger Dams Reinforce Baton Rouge Levees

    USGS Multimedia Gallery

    Tiger Dams line the Baton Rouge Mississippi River levee during the 2011 Flood.  Previously used to prevent oil from reaching Louisiana's coast during the 2010 Deepwater Horizon oil spill, these Tiger Dams are filled with water and reinforced with sandbags to give the Baton Rouge Mississippi Riv...

  15. Flooding

    MedlinePLUS

    ... flooding Prepare for flooding For communities, companies, or water and wastewater facilities: Suggested activities to help facilities ... con monóxido de carbono. Limit contact with flood water. Flood water may have high levels of raw ...

  16. Levee Health Monitoring With Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. The impact of different soil bioengineering techniques on the surface erosion of levees

    NASA Astrophysics Data System (ADS)

    Lammeranner, W.; Meixner, H.; Florineth, F.

    2009-04-01

    The recent flood events have once more drawn attention to the stability and maintenance of river levees. Subsequently, the attention has also been focused on the prevention of erosion by hydraulic forces in case of flooding or overtopping. Vegetation can limit the soil detaching capacity of flowing water, by their retarding effects on runoff and velocity as well as the physical protection of the levee surface. At low discharge intensity vegetation stands rigid and unsubmerged, reducing velocity below required for soil particle entrainment (Coppin and Richards, 1990). At higher discharge capacities flexible vegetation tend to lay down, dissipating energy and providing resistance to scour (Henderson and Shields, 1984). Roots increase the shear strength of the soil (Schiechtl, 1980) and can create a fibrous mat that resists detachment of the surrounding soil matrix (Henderson and Shields, 1984). The erosive capacity of surface water flow is dependant to type and pattern of vegetation. The denser the vegetation, the better the soil surface is protected against erosion. Sets of regulations regard compact turf to be the best vegetation cover for river levees. A contentious issue are woody plants, and many guidelines (DIN 19712, 1997; FEMA, 2005; USACE, 2000) ban woody vegetation from levees for several reasons. So, the planting of woody plants is not an accepted policy by any agency. Within the frame of a research project carried out by the Institute of Soil Bioengineering and Landscape Construction (University of Natural Resources and Applied Life Sciences, Vienna), focusing on woody plants on levees, the effects of small to medium growing woody (shrubby) plants on erosion while hydraulic forces (overtopping) are tested. Data are drawn from two natural-scaled research levees. The homogenous levees consist of a mineral silt-sand-gravel and have a fill height of 2.7 m and a slope inclination of 2:3. The tests investigate erosion resistance with respect to four different vegetation covers. The types of soil bioengineering techniques tested were (1) dormant cuttings; (2) living brush mattress (longitudinal); (3) living brush mattress (transversal) and (4) jute netting mulch seeding. The dormant cuttings and living branches tested originated from the Purple-willow (Salix purpurea L.). Measured plant parameters, characterising the vegetation structures were shoot lengths, shoot diameters, and above ground biomass. Root growth is investigated in an extra plot area allowing excavation of the plants. The proposed contribution discusses the effects of different soil bioengineering techniques using woody plants (shrubs) on surface erosion of river levees. Methodology of research and results after an initial overtopping test are presented. Despite of the cutting plantation all techniques gave adequate erosion protection.

  18. Citizens' Perceptions of Flood Hazard Adjustments: An Application of the Protective Action Decision Model

    ERIC Educational Resources Information Center

    Terpstra, Teun; Lindell, Michael K.

    2013-01-01

    Although research indicates that adoption of flood preparations among Europeans is low, only a few studies have attempted to explain citizens' preparedness behavior. This article applies the Protective Action Decision Model (PADM) to explain flood preparedness intentions in the Netherlands. Survey data ("N" = 1,115) showed that…

  19. Joint Pixels InSAR for Health Assessment of Levees in New Orleans Xiaolei Lv1

    E-print Network

    Yazici, Birsen

    life and the country's economy. The failure of levees during hurricane Katrina and subsequent-based InSAR measurements into a global-local network to monitor the response of flood-control levees due to natural or man-made hazards, such as hurricanes, floods, earthquakes, deterioration

  20. Woody Vegetation on Levees? - Research Experiences and Design Suggestions

    NASA Astrophysics Data System (ADS)

    Lammeranner, Walter

    2013-04-01

    Recent flood events in Austria have reawakened practical and scientific interest in the stability of levees. One focus amongst others has been taken on the relationship between vegetation and levee stability with special reference to the role of woody plants. The effects of woody plants are undoubtedly manifold: On the one hand they can potentially have a negative influence and endanger levees, which is why many guidelines ban woody vegetation to preserve stability, visual inspection and unhindered flood-fight access. On the other hand woody vegetation can have several positive impacts on soil stability and which effects prevail depends largely on types and characteristics of plants. This shows how controversially woody plants on levees can be discussed and the strong need for further research in this field. In order to obtain new insights and widen horizons for this controversial issue, a research project carried out by the Institute of Soil Bioengineering and Landscape Construction - at the University of Natural Resources and Life Sciences, Vienna - was launched. This project deals with several aspects of effects of woody plants have on levees and focuses particularly on shrubby woody plants. The examined vegetation type is a dense stand of willows - Purple-Willows (Salix purpurea L.) - commonly used for stabilization of river embankments. The proposed contribution discusses the gained results with reference to levee stability and existing levee vegetation guidelines and gives design suggestions for compatible woody vegetation on levees.

  1. Protection of Coastal Infrastructure under Rising Flood Risk

    E-print Network

    Lickley, M.J.

    The 2005 hurricane season was particularly damaging to the United States, contributing to significant losses to energy infrastructure—much of it the result of flooding from storm surge during hurricanes Katrina and Rita. ...

  2. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  3. Floods

    MedlinePLUS

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  4. The protection of RIVERLIFE by mitigation of flood damages RIVERLIFE

    NASA Astrophysics Data System (ADS)

    Adler, M. J.

    2003-04-01

    The long-term development objective of the RIVERLIFE project is to contribute to sustainable human end economic development in the Timis-Bega river basin area as part of the Danube River Basin (DRB), through reinforcing the capacities of Romanian central and local authorities to develop effective mechanisms and tools for integrated river basin management in the Timis-Bega basin. The overall objective of the project is to assist the country in the EU enlargement and accession process to meet the EU requirements of water related Directives with emphasis on the EU Water Framework Directive (WFD). The specific objective of the project is to support the WFD implementation process at the level of a sub-unit within the limits of the DRB, through the development of a River Basin Management Plan (RBMP). The project will also facilitate the implementation of the Danube River Protection Convention (DRPC) as an essential element in the implementation of the Directive in the transboundary river basins. Expected outcomes in the recipient country consist of (i) responding to a real hazard problem, which affects the quality of life of many citizens, and (ii) improvement in the environmental conditions in the targeted areas. Flooding is one of the major natural hazards to human society and an important influence on social and economic development for Romania causing financially greater losses per annum on average than any other natural hazard. One key concept of the WFD is the coordination, organization and regulation of water management at the level of river basins. Therefore, river basin districts are shaped in such a way as to include not only the surface run-off through streams and rivers to the sea, but the total area of land and sea together with the associated groundwater and coastal waters. The concept allows even for the small river basins directly discharging into the sea to be combined into one river basin district. As a principle, the complex decisions on the use or interventions in the aquatic systems within the river basin district limits should take place in an integrated and co-coordinated approach as part of the RBMP. The process includes all RBMP plan development phases for Timis-Bega basin from planning and analysis phases to the assessment and the identification of respective programs of measures intended to achieve the defined environmental objectives for the respective river basin. The central administrative tool of the WFD is the River Basin Management Plan, around which all other elements are set. The river basin becomes the basic unit for all water planning and management interventions according with the physical and hydrological boundaries, but not necessary with its political and administrative limits.

  5. Game Theory and Risk-Based Levee System Design

    NASA Astrophysics Data System (ADS)

    Hui, R.; Lund, J. R.; Madani, K.

    2014-12-01

    Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.

  6. Design of flood protection for transportation alignments on alluvial fans

    SciTech Connect

    French, R.H.

    1991-01-01

    The method of floodplain delineation on alluvial fans developed for the national flood insurance program is modified to provide estimates of peak flood flows at transportation alignments crossing an alluvial fan. The modified methodology divides the total alignment length into drainage design segments and estimates the peak flows that drainage structures would be required to convey as a function of the length of the drainage design segment, the return period of the event, and the location of the alignment on the alluvial fan. An example of the application of the methodology is provided. 16 refs., 5 figs.

  7. Protection of Coastal Infrastructure under Rising Flood Risk

    E-print Network

    -profit organizations. To inform processes of policy development and implementation, climate change research needs foreshadow a risk that is to continue and likely in- crease with a changing climate. Extensive energy to an increasing risk of flooding. We study the combined impacts of anticipated sea level rise, hurricane activity

  8. Towards modelling flood protection investment as a coupled human and natural system

    NASA Astrophysics Data System (ADS)

    O'Connell, P. E.; O'Donnell, G.

    2013-06-01

    Due to a number of recent high profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost-benefit approach in a natural system with varying levels of persistence/interannual variability in Annual Maximum Floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that Coupled Human and Natural System (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using Agent Based Modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.

  9. Towards modelling flood protection investment as a coupled human and natural system

    NASA Astrophysics Data System (ADS)

    O'Connell, P. E.; O'Donnell, G.

    2014-01-01

    Due to a number of recent high-profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost-benefit approach in a natural system with varying levels of persistence/interannual variability in annual maximum floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that coupled human and natural system (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using agent-based modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.

  10. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  11. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  12. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  13. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  14. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  15. FLOOD PROTECTION STRUCTURE ACCREDITATION TASK FORCE More than 21,000 communities across the U.S. and its territories voluntarily participate in the NFIP by

    E-print Network

    US Army Corps of Engineers

    FLOOD PROTECTION STRUCTURE ACCREDITATION TASK FORCE BACKGROUND More than 21,000 communities across management ordinances to reduce future flood damage. In exchange, the NFIP makes federally-backed flood is expected to perform during the 1% ACE event or 100- year flood (this is defined as the "base flood" in NFIP

  16. Flood Management and Protection from the Social Point of View: Case Study from Ukraine

    NASA Astrophysics Data System (ADS)

    Manukalo, V.; Gerasymenko, H.

    2012-12-01

    Defining Issue According to the statistics presented by the Ministry of Emergencies of Ukraine, river floods have imposed the most severe damages to the sectors of economy and the human communities in Ukraine. But, an adaptability and a vulnerability of Ukrainian society to floods are still poorly understood. Results Presentation In the response to increasing flood losses in the country between 1998 and 2008, the State Hydrometeorological Service of Ukraine, which is subordinate to the Ministry of Emergencies, in the cooperation with the National Academy of Sciences of Ukraine have carried out the research study focusing on public views on the problem of river floods for Ukraine. Aims of this study were: a) exploring the main sources of information on water-related hazards and the level of knowledge useful in a flood crisis situation in different groups of peoples; b) learning what the various population groups think of the most significant causes and consequences of flood damages and the role of various central/governmental/ and local authorities in an elaboration and implementation of mitigation measures. Public attitudes towards various prevention and mitigation strategies, as well as sources of emerging conflict were also revealed. The results of study have given a possibility to compare points of view of population groups which: a) living in the low- and high- flood risk areas; b) living in the urban and rural areas; c) having the different levels of education. The responses from 2550 residents have been analyzed and summarized. Among the most important findings of this study can be indicated following: a) on the one hand, the level of knowledge of some aspects of flood problem (impact of climate variation and change, adaptation measures) of the general public should be improved, on the other hand, the most of peoples understand that floods are the significant economical and ecological problem; b) views of the public on the problem differ very much with regard to their regions of residence (low- or high- flood risk areas, cities or villages), education level; c) a lot of peoples don't know distribution of duties between governmental bodies on central and local levels in the field of flood management and protection; d) the most of peoples don't know which Ukrainian governmental bodies are responsible for the elaboration of National adaptation strategy to the expected climate change; e) many recipient estimate as inefficient activities of Ukrainian authorities on local, national and international levels as well as a public participation in the flood management and protection policy. The results of this study have been rather unexpected for Ukrainian central and local governmental bodies responsible for flood management and protection policies. This underlines the importance of having the alternative flood risk management and protection policies studied not only from aspects of technical and economic rational, but also from that of social acceptability, before any decision is made. Practical Application Results of study have been used in preparation of: a) the State Program on the protection against floods in the Dniester, Prut and Siret river basins; b) of the "National Action Plan for Adaptation to Climate Change for period 2011-2015".

  17. Developing a Graphical User Interface to Automate the Estimation and Prediction of Risk Values for Flood Protective Structures using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Helal, A.; Gabr, M.

    2014-12-01

    In this project, we focus on providing a computer-automated platform for a better assessment of the potential failures and retrofit measures of flood-protecting earth structures, e.g., dams and levees. Such structures play an important role during extreme flooding events as well as during normal operating conditions. Furthermore, they are part of other civil infrastructures such as water storage and hydropower generation. Hence, there is a clear need for accurate evaluation of stability and functionality levels during their service lifetime so that the rehabilitation and maintenance costs are effectively guided. Among condition assessment approaches based on the factor of safety, the limit states (LS) approach utilizes numerical modeling to quantify the probability of potential failures. The parameters for LS numerical modeling include i) geometry and side slopes of the embankment, ii) loading conditions in terms of rate of rising and duration of high water levels in the reservoir, and iii) cycles of rising and falling water levels simulating the effect of consecutive storms throughout the service life of the structure. Sample data regarding the correlations of these parameters are available through previous research studies. We have unified these criteria and extended the risk assessment in term of loss of life through the implementation of a graphical user interface to automate input parameters that divides data into training and testing sets, and then feeds them into Artificial Neural Network (ANN) tool through MATLAB programming. The ANN modeling allows us to predict risk values of flood protective structures based on user feedback quickly and easily. In future, we expect to fine-tune the software by adding extensive data on variations of parameters.

  18. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Rates based on a flood protection system involving Federal funds. 61.12 Section 61.12 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National...

  19. 76 FR 78015 - Revised Analysis and Mapping Procedures for Non-Accredited Levees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...The Federal Emergency Management Agency (FEMA) is accepting comments on the proposed solution for Revised Analysis and Mapping Procedures for Non-Accredited Levees. This document proposes a revised procedure for the analysis and mapping of non-accredited levees on FEMA's Flood Insurance Rate Maps. FEMA seeks input on this policy in terms of its feasibility, flexibility, and collaborative......

  20. Fragility analysis of flood protection structures in earthquake and flood prone areas around Cologne, Germany for multi-hazard risk assessment

    NASA Astrophysics Data System (ADS)

    Tyagunov, Sergey; Vorogushyn, Sergiy; Munoz Jimenez, Cristina; Parolai, Stefano; Fleming, Kevin; Merz, Bruno; Zschau, Jochen

    2013-04-01

    The work presents a methodology for fragility analyses of fluvial earthen dikes in earthquake and flood prone areas. Fragility estimates are being integrated into the multi-hazard (earthquake-flood) risk analysis being undertaken within the framework of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe) for the city of Cologne, Germany. Scenarios of probable cascading events due to the earthquake-triggered failure of flood protection dikes and the subsequent inundation of surroundings are analyzed for the area between the gauges Andernach and Düsseldorf along the Rhine River. Along this river stretch, urban areas are partly protected by earthen dikes, which may be prone to failure during exceptional floods and/or earthquakes. The seismic fragility of the dikes is considered in terms of liquefaction potential (factor of safety), estimated by the use of the simplified procedure of Seed and Idriss. It is assumed that initiation of liquefaction at any point throughout the earthen dikes' body corresponds to the failure of the dike and, therefore, this should be taken into account for the flood risk calculations. The estimated damage potential of such structures is presented as a two-dimensional surface (as a function of seismic hazard and water level). Uncertainties in geometrical and geotechnical dike parameters are considered within the framework of Monte Carlo simulations. Taking into consideration the spatial configuration of the existing flood protection system within the area under consideration, seismic hazard curves (in terms of PGA) are calculated for sites along the river segment of interest at intervals of 1 km. The obtained estimates are used to calculate the flood risk when considering the temporal coincidence of seismic and flood events. Changes in flood risk for the considered hazard cascade scenarios are quantified and compared to the single-hazard scenarios.

  1. Flood Protection Decision Making Within a Coupled Human and Natural System

    NASA Astrophysics Data System (ADS)

    O'Donnell, Greg; O'Connell, Enda

    2013-04-01

    Due to the perceived threat from climate change, prediction under changing climatic and hydrological conditions has become a dominant theme of hydrological research. Much of this research has been climate model-centric, in which GCM/RCM climate projections have been used to drive hydrological system models to explore potential impacts that should inform adaptation decision-making. However, adaptation fundamentally involves how humans may respond to increasing flood and drought hazards by changing their strategies, activities and behaviours which are coupled in complex ways to the natural systems within which they live and work. Humans are major agents of change in hydrological systems, and representing human activities and behaviours in coupled human and natural hydrological system models is needed to gain insight into the complex interactions that take place, and to inform adaptation decision-making. Governments and their agencies are under pressure to make proactive investments to protect people living in floodplains from the perceived increasing flood hazard. However, adopting this as a universal strategy everywhere is not affordable, particularly in times of economic stringency and given uncertainty about future climatic conditions. It has been suggested that the assumption of stationarity, which has traditionally been invoked in making hydrological risk assessments, is no longer tenable. However, before the assumption of hydrologic nonstationarity is accepted, the ability to cope with the uncertain impacts of global warming on water management via the operational assumption of hydrologic stationarity should be carefully examined. Much can be learned by focussing on natural climate variability and its inherent changes in assessing alternative adaptation strategies. A stationary stochastic multisite flood hazard model has been developed that can exhibit increasing variability/persistence in annual maximum floods, starting with the traditional assumption of independence. This has been coupled to an agent based model of how various stakeholders interact in determining where and when flood protection investments are made in a hypothetical region with multiple sites at risk from flood hazard. Monte Carlo simulation is used to explore how government agencies with finite resources might best invest in flood protection infrastructure in a highly variable climate with a high degree of future uncertainty. Insight is provided into whether proactive or reactive strategies are to be preferred in an increasingly variable climate.

  2. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    NASA Astrophysics Data System (ADS)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk perception and understanding of risk in the population. • Residual risk and the levee shadow effect - why the population "felt safe." • What is the overload case and how to implement it in flood protection systems? • Decision-making for the future under uncertainty - how to design to acceptable flood protection levels if we haven't seen yet what's physically possible. 3. How to protect - practical examples Finally, we outline practical examples for reducing the loss burden and risk over time. • "Flood protection hierarchy" - from location choice under a hazard perspective to mobile flood protection. • Risk-based approach and identification of critical infrastructure. • Integrated flood risk management in theory and practical application. • Role of insurance.

  3. Strategic floodplain reconnection for the Lower Tisza River, Hungary: Opportunities for flood-height reduction and floodplain-wetland reconnection

    NASA Astrophysics Data System (ADS)

    Guida, Ross J.; Swanson, Taylor L.; Remo, Jonathan W. F.; Kiss, Timea

    2015-02-01

    During the late 19th Century, the Tisza River's vast floodplain-wetland system was largely disconnected by levees, facilitating "reclamation" for agriculture and resulting in an estimated loss of over 90% of historical wetlands. While levees have been successful in preventing catastrophic flooding for a century, Lower Tisza flood stage records have been set repeatedly during the last 15 years. The decrease in the Tisza's current floodway carrying capacity has reduced the flood-protection level of the Tisza's aging levee system. Recently in Hungary, "Room for the River" policies have gained more prominence. To explore the possibilities of a room for the river approach along the Lower Tisza, we assess eight potential floodplain-reconnection scenarios between Csongrád, Hungary and the Hungary-Serbia border. A novel framework using hydrodynamic and geospatial modeling was used to perform planning-level evaluations of the tradeoffs between floodplain-reconnection scenarios and enhancement of the existing levee system. The scenarios evaluated include levee removal and levee setbacks to strategically reconnect significant historical wetlands while reducing flood levels. Scenario costs and human population impacts are also assessed. Impacts of reconnecting the Lower Tisza floodplain are compared to heightening levees, the prevailing strategy over the previous century. From a purely construction-cost perspective, heightening Lower Tisza levees is potentially the most cost-effective and politically expedient solution (i.e., impacts the least number of people). However, levee-heightening does not solve the long-term problem of reduced flood conveyance, which has been attributed to aggradation and increased floodplain roughness, nor does it result in wetland reconnection or enhancement of other floodplain ecosystem services. The suite of reconnection options we evaluate provides engineers, planners, and decision makers a framework from which they can further evaluate potential flood-risk reduction options. At least three of the eight reconnection scenarios (setting the western levee back, 1500-m, and 2000-m setbacks) along the Lower Tisza demonstrate that floodplain-wetland reconnection is possible while achieving the objectives of minimizing impacts on human populations and reducing flood heights.

  4. Classification of Soil Moisture on Vegetated Earthen Levees Using X and L Band Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Mahrooghy, M.; Aanstoos, J. V.; Hasan, K.; Nobrega, R. A.; Younan, N. H.

    2011-12-01

    Earthen levees protect large areas of land in the US from flooding. Timely inspection and repairs can reduce the potential for catastrophic failures. Changes in spatial and temporal patterns of soil moisture can reveal signs of instability and help identify zones of weakness. Since analytical and empirical models have shown a relationship between SAR backscatter and soil moisture, we are using SAR to classify soil moisture on levees. Estimation of soil moisture from SAR is challenging when the surface has any significant vegetation. For the levee application, the soil is typically covered with a uniform layer of grass. Our methodology is based on a supervised soil moisture classification using a back propagation neural network with four classes of low, medium, high, and very high soil moisture. Our methodology consists of the following steps: 1) segmentation of the levee area from background and exclusion of tree-covered areas; 2) extracting the backscattering and texture features such as GLCM (Grey-Level Co-occurrence Matrix) and wavelet features; 3) training the back propagation neural network classifier; and 4) testing the area of interest and validation of the results using ground truth data. Two sources of SAR imagery are tested with this method: (1) fully polarimetric L-band data from NASA's UAVSAR; and (2) dual-polarimetric X-band data from the German TerraSAR-X satellite. The study area is a 4 km stretch of levee along the lower Mississippi River in the United States. Field data collected simultaneously with image acquisition are utilized for training and validation. Preliminary results show classification accuracies of about 50% for the UAVSAR image and 30% for the TerraSAR-X image in vegetated areas. The figure below shows a soil moisture classification using UAVSAR on April 28, 2011.

  5. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of acquisition, a dramatic increase of persistent scatter density in urban areas, and improved measurement of very small displacements (Crosetto et al., 2010). We compare the L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period, to determine the influence of different radar frequencies and analyses techniques. Our applications goal is to demonstrate a technique to inform targeted ground surveys, identify areas of persistent subsidence, and improve overall monitoring and planning in flood risk areas. Dokka, 2011, The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi: J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008. Jones, C. E., G. Bawden, S. Deverel, J. Dudas, S. Hensley, Study of movement and seepage along levees using DINSAR and the airborne UAVSAR instrument, Proc. SPIE 8536, SAR Image Analysis, Modeling, and Techniques XII, 85360E (November 21, 2012); doi:10.1117/12.976885. Crosetto, M., Monserrat, O., Iglesias, R., & Crippa, B. (2010). Persistent Scatterer Interferometry: Potential, limits and initial C-and X-band comparison. Photogrammetric engineering and remote sensing, 76(9), 1061-1069. Acknowledgments: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. Perspectives on Screening Winter-Flood-Tolerant Woody Species in the Riparian Protection Forests of the Three Gorges Reservoir

    PubMed Central

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well, and be used as candidate for the construction of riparian protection forests in the TGR WLFZ. PMID:25265326

  7. Cost estimates for flood resilience and protection strategies in New York City.

    PubMed

    Aerts, Jeroen C J H; Botzen, W J Wouter; de Moel, Hans; Bowman, Malcolm

    2013-08-01

    In the aftermaths of Hurricanes Irene, in 2011, and Sandy, in 2012, New York City has come to recognize the critical need to better prepare for future storm surges and to anticipate future trends, such as climate change and socio-economic developments. The research presented in this report assesses the costs of six different flood management strategies to anticipate long-term challenges the City will face. The proposed strategies vary from increasing resilience by upgrading building codes and introducing small scale protection measures, to creating green infrastructure as buffer zones and large protective engineering works such as storm surge barriers. The initial investment costs of alternative strategies vary between $11.6 and $23.8 bn, maximally. We show that a hybrid solution, combining protection of critical infrastructure and resilience measures that can be upgraded over time, is less expensive. However, with increasing risk in the future, storm surge barriers may become cost-effective, as they can provide protection to the largest areas in both New York and New Jersey. PMID:23915111

  8. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    This USGS aerial photo mosaic shows a series of levee breaks on the Missouri River during the 1993 flood, which were caused by overtopping. USGS scientists will use measurements from the intentionally breached levee at Birds Point in 2011 to compare with the 1993 levee breach measurements to underst...

  9. An assessment of two methods for identifying undocumented levees using remotely sensed data

    USGS Publications Warehouse

    Czuba, Christiana R.; Williams, Byron K.; Westman, Jack; LeClaire, Keith

    2015-01-01

    Many undocumented and commonly unmaintained levees exist in the landscape complicating flood forecasting, risk management, and emergency response. This report describes a pilot study completed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers to assess two methods to identify undocumented levees by using remotely sensed, high-resolution topographic data. For the first method, the U.S. Army Corps of Engineers examined hillshades computed from a digital elevation model that was derived from light detection and ranging (lidar) to visually identify potential levees and then used detailed site visits to assess the validity of the identifications. For the second method, the U.S. Geological Survey applied a wavelet transform to a lidar-derived digital elevation model to identify potential levees. The hillshade method was applied to Delano, Minnesota, and the wavelet-transform method was applied to Delano and Springfield, Minnesota. Both methods were successful in identifying levees but also identified other features that required interpretation to differentiate from levees such as constructed barriers, high banks, and bluffs. Both methods are complementary to each other, and a potential conjunctive method for testing in the future includes (1) use of the wavelet-transform method to rapidly identify slope-break features in high-resolution topographic data, (2) further examination of topographic data using hillshades and aerial photographs to classify features and map potential levees, and (3) a verification check of each identified potential levee with local officials and field visits.

  10. Operational tools to help stakeholders to protect and alert municipalities facing uncertainties and changes in karst flash floods

    NASA Astrophysics Data System (ADS)

    Borrell Estupina, V.; Raynaud, F.; Bourgeois, N.; Kong-A-Siou, L.; Collet, L.; Haziza, E.; Servat, E.

    2015-06-01

    Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).

  11. The use of retro- and scenario-modeling to assess effects of 100+ years river of engineering and land-cover change on Middle and Lower Mississippi River flood stages

    NASA Astrophysics Data System (ADS)

    Remo, Jonathan W. F.; Pinter, Nicholas; Heine, Reuben

    2009-10-01

    SummarySince the 19th century, the Middle and Lower Mississippi River (MMR and LMR) have been intensively modified for flood protection and commercial navigation. In order to quantify the effects of levee expansion, channel modification, and land-cover change upon flood stages, we have developed 1-D unsteady-flow models of multiple historical reference conditions ("retro-models") for three large study reaches (225-315 km each): one along the MMR and two reaches along the LMR. For each reference condition, four 1-D unsteady-flow models were developed. These models include a calibrated model of actual conditions and three "scenario" models: (1) a model with levees of the next time step, (2) a model with the channel geometry of the next time step, and (3) a model with floodplain roughness (i.e., land cover) of the next time step. Comparison of the model for actual conditions and the scenario models provide a quantitative assessment of levee expansion, channel modification, and land-cover change on stage. Scenario modeling suggests that the majority (38-70%) of the changes in flood stage on the LMR and MMR study reaches can be attributed to changes in channel geometry and hydraulic roughness. Levees were the next largest contributor to changes in flood stage. For time steps with significant levee expansion, these structures increase stage up to 1.0 m. Observed changes in floodplain land cover were associated with little (or none) of the increase in flood stage. These result show changes in channel geometry and roughness related to river engineering tools employed for improving navigation and flood protection are the principal drivers of historic changes in flood stages along these investigated reaches.

  12. Flooding in Downtown Minot, N.D.

    USGS Multimedia Gallery

    As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing about 11,000 people to evacuate their homes. The record-breaking flood crested on July 25 at over 26,000 cubic feet per second (cfs) and 24 feet - nearly 13 feet over flood s...

  13. Conceptual Design and Physical Model Tests of a Levee-in-Dune Hurricane Barrier 

    E-print Network

    West, Nicholas Allan

    2014-12-04

    In an effort to protect the Greater Houston Metropolitan Area from hurricane storm surge damage, four Levee-in-Dune concepts are studied as part of the Ike Dike project. The Ike Dike is a proposed hurricane surge barrier ...

  14. 77 FR 9637 - Process for Requesting a Variance From Vegetation Standards for Levees and Floodwalls; Additional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ..., channels, or shore-line or river-bank protection systems such as revetments, sand dunes, and barrier islands. b. New federally authorized cost-shared levee projects shall be designed to meet the...

  15. Agricultural aircraft and thermal imaging - from detecting sand boils at the levee to irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal imaging has many potential uses from aerial platforms. A thermal imaging camera was brought into service to detect potential leakage and sand boils at the Mississippi River levee during the flood period of April and May, 2011. This camera was mounted on an agricultural aircraft and operated ...

  16. Socio-economic Evaluation Of Different Alternatives For Flood Protection Within The Rivierenland-project

    NASA Astrophysics Data System (ADS)

    Boot, S. P.; van Ast, J. A.

    The Netherlands have a tradition of protecting land against flooding from the main rivers Rhine, Meuse and Scheldt by means of an extensive system of dikes. In recent years, however, this approach to protection has been increasingly questioned with re- gard to its sustainability and cost-effectiveness. The argument is that although the continued elevation of dikes may be technically feasible, there are several disadvan- tages to this approach. Firstly, a vast network of dikes requires a very high degree of organisation of water management, in which mistakes can not be afforded. Such a high degree of organisation may not always be maintainable in the future, due to changed economic or political circumstances. Secondly, it may not be the most cost- effective system for maintaining safety in the long term. Thirdly, it may not be the most desirable approach in terms of sustainability. One of the alternatives to contin- ued dike-elevation is the concept 'room for the river' ('ruimte voor de rivier'), which aims to give more space to rivers in the horizontal in stead of the vertical dimen- sion. This approach would reduce the risk of flooding, defined as the product of the probability and the consequences of flooding. In order to explore the long term con- sequences of both alternatives ('dike elevation' and 'room for the river'), the ministry of Verkeer en Waterstaat (Public Works, Transport and Water Management) started the 'Rivierenland'-project. The comparison of the alternatives mentioned was based on a fictitious project to adjust a region of The Netherlands, between the rivers Rhine and Meuse, to the concept of 'room for water'. The consequence of this adjustment would be that safety within that region would no longer be safeguarded by dikes, but by adjusting daily life to the 'demands of the water'. Part of the 'Rivierenland'-project was an analysis of the socio-economic costs and benefits of the alternative approaches. Within this analysis, a study was performed to identify the requirements an economic evaluation of the project-alternatives would have to meet to do justice to the specific characteristics of the project. These specific characteristics were its mere size (both in spatial and in financial terms), the duration and complexity of the decision-making process, and uncertainty about the effects of the alternatives. Requirements for the method to be used were an integrated analysis of the effects and the taking into account of both the short and the long term effects (over a hundred years) of the alternatives. As a result of these characteristics and requirements, the decision-making process in- volves considerations of intra- and intergenerational equity, the discount factor to be used, transparency of the decision-making process to the public and the possibility to adapt the results of the economic evaluation to changing insights and opinions.

  17. Integrated Assessment Methodologies For Land Use Changes and Flood Plain Restoration As Alternative Flood Protection Strategies In The River Basins of Rhine and Meuse

    NASA Astrophysics Data System (ADS)

    Brouwer, Roy; van Ek, Remco; Bouma, Jetske

    Water policy and management decisions become increasingly better informed. Often a large number of studies is carried out before a decision is taken. In the Netherlands, some of these studies, such as environmental impact assessment, are obligatory by law if serious environmental impacts are expected. However, an integrated assessment based on these separate studies is lacking. In this study, an attempt was made to combine and where possible integrate procedures and methods from environmental, social and economic impact assessment. The main objective of the study is to assess, separately and in combination, the ecological, social and economic consequences of land use changes and floodplain restoration as alternative flood protection strategies in the river basins of the rivers Rhine and Meuse in the Netherlands. Based on scenarios of climate change, land subsidence and sea level rise over the next fifty years the associated hy drological changes are translated into the corresponding ecological, economic and social impacts, using a combination of expert judgement and advanced modelling techniques. These impacts are assessed and evaluated with the help of integrated assessment methods such as cost-benefit and multi-criteria analysis in order to support decision-making towards the implementation of new policy regarding flood protection. The outcome of the integrated assessment is related to other water policy objectives, including restoration of the resilience of water systems and nature conservation.

  18. Delivery of Ecosystem Benefits at the Urban-Suburban Interface: A Case Study of Flood Protection in the Woonasquatucket River Watershed

    EPA Science Inventory

    Urbanization exacerbates flooding by increasing surface runoff and decreasing surface roughness. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flo...

  19. Evaluation of the Structure of Levee Transitions on Wave Run-Up and Overtopping by Physical Modeling

    E-print Network

    Lynett, Patrick

    protect large areas from inundation; however, the levee and floodwall system is only as durable as its Hurricane Protection System (HPS), encompassing the City of New Orleans (Link 2009). Of the 50 breaches

  20. A theoretical and field-based study on the formation and shape of fluvial levees

    NASA Astrophysics Data System (ADS)

    Edmonds, D. A.; Hajek, E. A.

    2013-12-01

    The natural levees that form on channel margins are important features because they influence sediment transfer between channel and floodplain, and modulate the floodplain accretion rate. Despite this importance, we do not have basic models that predict levee formation or shape. Here we present a coupled theoretical and field-based study on formation and shape of levees. We developed a 1D morphodynamic channel-floodplain model for levee growth. Our model starts from the simplifying assumption of a straight channel and floodplain, each with a uniform width. The model solves conservation of mass for water and sediment along a cross-section perpendicular to the channel and is coupled to an analytical solution of the Navier-Stokes equations that solves for the downstream flood velocity and accounts for turbulent momentum exchange between the channel and floodplain. Model results predict that the necessary conditions for levee formation depend non-linearly on the ratio of channel depth to floodplain depth, and the floodplain Rouse number. If the necessary conditions for levee formation are met, the shape of the levee is controlled by the Peclet-Rouse number. Wider levees form in advection-dominated floodplains (high Peclet number) with easily suspendable grains (low floodplain Rouse number). Diffusion has two important effects on levee width. Firstly, increasing the diffusivity directly increases diffusive sediment transport into the floodplain, which increases levee width. Secondly, increasing diffusivity causes additional turbulent diffusion of momentum from the main channel to the floodplain, which increases the width of the shear layer. A wider shear layer increases the near-channel downstream velocity, which creates more suspended transport and wider levees. We compare our model predictions to levees on reaches of the White River and Muscatatuck River, Indiana, USA. We chose these rivers because the sediment load of the White River is ~5% silt, whereas it is ~80% silt for the Muscatatuck River. Consistent with model predictions, we find that levees on the coarser-grained White River are narrower and much less prevalent compared to the Muscatatuck.

  1. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  2. California Levee Risk, Now and in the Future:Identifying Research and Tool Development Needs

    SciTech Connect

    Newmark, R L; Hanemann, M; Farber, D

    2006-11-28

    The Center for Catastrophic Risk Management (CCRM) and the California Center for Environmental Law and Policy (CCELP) at UC Berkeley and the Lawrence Livermore National Laboratory (LLNL) joined together to cosponsor a workshop to define research requirements to mitigate the hazards facing the Sacramento-San Joaquin Delta Levee system. The Workshop was intended to provide a forum to (1) Report assessments of current vulnerabilities facing the levees, such as structural failure, seismic loading, flooding, terrorism; (2) Consider longer term challenges such as climate change, sea level rise; and (3) Define research requirements to fill gaps in knowledge and reduce uncertainties in hazard assessments.

  3. 11-14 November 2012 Umbria Region (Central Italy) flood event: from prediction to management for civil protection purposes

    NASA Astrophysics Data System (ADS)

    Berni, Nicola; Pandolfo, Claudia; Stelluti, Marco; Zauri, Renato; Ponziani, Francesco; Francioni, Marco; Governatori Leonardi, Federico; Formica, Alessandro; Natazzi, Loredana; Costantini, Sandro

    2013-04-01

    Following laws and regulations concerning extreme natural events management, the Italian national hydrometeorological early warning system is composed by 21 regional offices (Functional Centres - CF). Umbria Region CF is located in Central Italy and provides early warning, monitoring and decision support systems (DSS) when significant flood/landslide events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. For the real time flood forecasting system, at the CF several operational hydrological and hydraulic models were developed and implemented for a "dynamic" hazard/risk scenario assessment for Civil Protection DSS, useful also for the development of Flood Risk Management Plans according to the European "Floods Directive" 2007/60. In the period 11th-14th November 2012, a significant flood event occurred in Umbria (as well as Tuscany and northern Lazio). The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 300 mm in 72 hours and, generally, values greater than the seasonal averages all over the region. In the most affected area the recorded rainfall depths correspond to centenarian return period: one-third of the annual mean precipitation occurred in 2-3 days. Almost all rivers in Umbria have been involved, exceeding hydrometric thresholds, and several ones overflowed. Furthermore, in some cases, so high water levels have never been recorded by the hydrometric network. As in the major flood events occurred in the last years, dams (Montedoglio and Corbara dams along Tiber River and Casanuova dam along Chiascio River) and other hydraulic works for flood defense (e.g. along Chiani stream) played a very important mitigation role, storing high water volumes and avoiding the overlap of peak discharges downstream. During the event many emergency interventions were necessary. There were no casualties among the population, but many landslides and flooding occurred causing over 240 million Euros of damages (to hydraulic works, infrastructures, public and commercial facilities, residential buildings, agriculture, etc.) enough to induce the Regional Administration to request declaration of state of emergency to the National Government. The day before the beginning of the event (10th November) QPFs values were high enough to activate "Attention" Phase of Regional Civil Protection System and CF, during the critical phases, provided 24h decision support activities, also through the official web site (www.cfumbria.it), very useful for monitoring and data/info dissemination from the national to the municipality level. The thresholds presented good agreement with direct territorial presidiums observations and the alert system has been tested. The purpose of this work is to highlight what worked well and what did not, in order to improve the early warning and DSS for Civil Protection purposes.

  4. Lessons from Katrina: Flood Management Technology Strategies for the US.

    NASA Astrophysics Data System (ADS)

    Galloway, Gerald

    2006-04-01

    Coastal and riverine flooding and hurricane-driven storms have long plagued those in the United States who live or work on or near the shoreline or the rivers edge. The devastation wrought by Hurricane Katrina brought the challenge of protecting against such events to the political and technical forefront. The predicted impacts of global warming strongly suggest that our floodplains and coastlines could be at greatly increased risk. This presentation will review the development of the U.S. program for providing structural protection, discuss the effectiveness of employing levees, dams, floodways, beach nourishment and storm barriers in this struggle, highlight the changes over the last two decades that have gradually shifted the focus from a structural-only approach to one that includes the non-structural approaches such as wise land use, wetland restoration, relocations, insurance, floodproofing, and emergency warning and evacuation. Using post-Katrina planning as an example, it will explore what new approaches can be taken. Should New Orleans take a 'levees only' approach to its protection? or should attention to New Orleans be part of a coastal Louisiana integrated flood damage reduction and coastal restoration strategy. The nation needs to make changes in its water resources policies and investment strategy to deal with the new threat that it now faces.

  5. Effects of Removal of Riparian Vegetation on Levee Stability on the Sacramento River

    NASA Astrophysics Data System (ADS)

    Pollen, N.; Shields, F. D.

    2007-12-01

    A new policy of the US Army Corps of Engineers requires that all levee vegetation be removed from federal levees in California. This directive requires levees to be cleared of all vegetation to preserve channel capacity and allow access for inspection and repair. The case for leaving vegetation in place on levees has largely been an environmental one, with concerns regarding removal of habitat and aesthetics. However, stability factors should also be considered. A previous study by Shields and Gray (1992) investigated the effects of vegetation on sandy levee integrity along the Sacramento River, just one such river that is affected by this vegetation-removal policy. Their study showed that even low root concentrations allowed for more stable bank conditions under worst-case conditions for bank stability. In the years since this initial study, modeling of root-reinforcement and streambank stability has improved greatly. This study used geotechnical data collected along the Sacramento River to model the effects of woody and herbaceous vegetation on levee stability using the Bank Stability and Toe Erosion Model developed at the National Sedimentation Laboratory and the root-reinforcement model, RipRoot. Model runs were carried out for a 4 m high levee with 2H: 1V and 3H: 1V slopes, and vegetation growing at different locations on the levee. Levee material was assumed to be a homogeneous, sandy soil, with very low cohesion (0.84 kPa). Three hydrologic conditions were modeled: baseflow conditions, peak of hydrograph, and the most critical bank condition during the receding limb of a hydrograph. Roots were assumed to grow perpendicular to the soil surface, with the additional cohesion due to roots only being added to soil layers in which the roots extended beyond the potential shear surface in that layer. Values for root-reinforcement were calculated using the RipRoot model, using typical root densities, depths and tensile strength measurements for different riparian species measured at sites across the USA. Values of 3, 15, and 20 kPa were added to the banks to represent young saplings, bunch grasses and mature trees respectively. Results showed that the levees were stable without the reinforcing effect of vegetation under all conditions, except under drawdown conditions which are the most critical. In those cases, root-reinforcement increased levee- stability significantly. A 2H: 1V levee had a factor of safety of 0.33 under these conditions without vegetation and a 3H: 1V levee a value of 0.54 (values <1 are unstable). With the addition of vegetation to the levee sides, factor of safety values increased to >1 under all conditions. Reinforcement added by mature trees and bunch grasses provided highest factor of safety values of up to 8.16 and 5.13 for 2H: 1V and 3H: 1V slopes respectively. The findings suggest that root-reinforcement of levees should be taken into account before complete removal of vegetation is carried out along rivers such as the Sacramento River. In cases where levees are composed of largely uncohesive materials, root-reinforcement provides significant support to the soil matrix, whilst additionally reducing shear stresses acting on the soil from flowing water and protecting the levee from rainfall impact and runoff. In deciding the case for removal of levee vegetation, these positive influences of vegetation should be weighted carefully against the desire for increased channel capacity and any possible negative influences of plant roots on levee integrity.

  6. Geomorphic Response to Global Warming in the Anthropocene: Levee Breaches in California's Sacramento-San Joaquin Watershed

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Dettinger, M.; Malamud-Roam, F.; Ingram, B.; Mount, J.

    2006-12-01

    Geomorphic processes in rivers are likely to be influenced by global warming through alterations of flood, erosion, and sedimentation processes and rates. In California's Sierra Nevada, warming scenarios imply future increases in magnitudes and durations (and changes in timing) of floods as snow packs diminish and rainfall runoff increasingly dominates flow into the Central Valley fluvial system. Geomorphic processes are likely to differ from processes that dominated during the Holocene due to the influence both of projected global warming and land use alterations including levee construction that narrows and separates Sacramento-San Joaquin Rivers and tributaries from floodplains and flow regulation downstream of numerous large dams. Whereas Holocene floods induced overbank flow and avulsion processes that led to vertical floodplain accretion and variability of stages in aggrading multiple-channel systems, modern floods largely transport flow and sediment within incised channels confined by levees. Because the scenarios of warming are developed at coarse scales, only an understanding of the relations between large-scale hydrology and climate on the one hand, and the incidence of levee breaches on the other, will make it possible to project likely geomorphic responses to future warming and flooding. A historical record of catastrophic levee breaks on the Sacramento and San Joaquin Rivers has been developed to allow analyses of these connections. In the current work, we develop statistical relations between historical levee break events and flow discharge, as well as with climatic phenomena such as El Nino and La Nina phases of the ENSO cycle, positive and negative phases of the Pacific Decadal Oscillation, and seasonal propensities towards "pineapple-express" storms. Preliminary results suggest strong relations between levee breaches and discharge, but poor relations to ENSO. Further investigation of these data will provide insight to help inform models and river management policy that addresses rates and magnitudes of erosion and sedimentation.

  7. 2008 Midwest Levee Failure: Erosion Studies 

    E-print Network

    Bernhardt, Michelle Lee

    2011-02-22

    MIDWEST LEVEE FAILURES: EROSION STUDIES A Thesis by MICHELLE LEE BERNHARDT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 2009 Major Subject: Civil Engineering 2008 MIDWEST LEVEE FAILURES: EROSION STUDIES A Thesis by MICHELLE LEE BERNHARDT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  8. Insights from socio-hydrology modelling on dealing with flood risk: roles of collective memory, risk-taking attitude and trust (Invited)

    NASA Astrophysics Data System (ADS)

    Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.

    2013-12-01

    The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.

  9. Flooded Homes in Downtown Minot, N.D.

    USGS Multimedia Gallery

    As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing about 11,000 people to evacuate their homes. The record-breaking flood crested on July 25 at over 26,000 cubic feet per second (cfs) and 24 feet - nearly 13 feet over flood s...

  10. Media Covering Flooding in Downtown Minot, N.D.

    USGS Multimedia Gallery

    As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing about 11,000 people to evacuate their homes. The record-breaking flood crested on July 25 at over 26,000 cubic feet per second (cfs) and 24 feet - nearly 13 feet over flood s...

  11. Downtown Minot Flooding as Seen From Broadway Bridge

    USGS Multimedia Gallery

    As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing about 11,000 people to evacuate their homes. The record-breaking flood crested on July 25 at over 26,000 cubic feet per second (cfs) and 24 feet - nearly 13 feet over flood s...

  12. Flooded Downtown Minot, N.D. Near the Police Station

    USGS Multimedia Gallery

    As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing about 11,000 people to evacuate their homes. The record-breaking flood crested on July 25 at over 26,000 cubic feet per second (cfs) and 24 feet - nearly 13 feet over flood s...

  13. Risk to life due to flooding in post-Katrina New Orleans

    NASA Astrophysics Data System (ADS)

    Miller, A.; Jonkman, S. N.; Van Ledden, M.

    2015-01-01

    Since the catastrophic flooding of New Orleans due to Hurricane Katrina in 2005, the city's hurricane protection system has been improved to provide protection against a hurricane load with a 1/100 per year exceedance frequency. This paper investigates the risk to life in post-Katrina New Orleans. In a flood risk analysis the probabilities and consequences of various flood scenarios have been analyzed for the central area of the city (the metro bowl) to give a preliminary estimate of the risk to life in the post-Katrina situation. A two-dimensional hydrodynamic model has been used to simulate flood characteristics of various breaches. The model for estimation of fatality rates is based on the loss of life data for Hurricane Katrina. Results indicate that - depending on the flood scenario - the estimated loss of life in case of flooding ranges from about 100 to nearly 500, with the highest life loss due to breaching of the river levees leading to large flood depths. The probability and consequence estimates are combined to determine the individual risk and societal risk for New Orleans. When compared to risks of other large-scale engineering systems (e.g., other flood prone areas, dams and the nuclear sector) and acceptable risk criteria found in literature, the risks for the metro bowl are found to be relatively high. Thus, despite major improvements to the flood protection system, the flood risk to life of post-Katrina New Orleans is still expected to be significant. Indicative effects of reduction strategies on the risk level are discussed as a basis for further evaluation and discussion.

  14. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    Inflow/outflow of the levee breach near New Madrid, MO. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding happens, ...

  15. Risk to life due to flooding in post-Katrina New Orleans

    NASA Astrophysics Data System (ADS)

    Miller, A.; Jonkman, S. N.; Van Ledden, M.

    2014-01-01

    After the catastrophic flooding of New Orleans due to hurricane Katrina in the year 2005, the city's hurricane protection system has been improved to provide protection against a hurricane load with a 1/100 per year exceedance frequency. This paper investigates the risk to life in post-Katrina New Orleans. In a risk-based approach the probabilities and consequences of various flood scenarios have been analyzed for the central area of the city (the metro bowl) to give a preliminary estimate of the risk to life in the post-Katrina situation. A two-dimensional hydrodynamic model has been used to simulate flood characteristics of various breaches. The model for estimation of fatality rates is based on the loss of life data for Hurricane Katrina. Results indicate that - depending on the flood scenario - the estimated loss of life in case of flooding ranges from about 100 to nearly 500, with the highest life loss due to breaching of the river levees leading to large flood depths. The probability and consequence estimates are combined to determine the individual risk and societal risk for New Orleans. When compared to risks of other large scale engineering systems (e.g. other flood prone areas, dams and the nuclear sector) and acceptable risk criteria found in literature, the risks for the metro bowl are found to be relatively high. Thus, despite major improvements to the flood protection system, the flood risk of post-Katrina New Orleans is still expected to be significant. Effects of reduction strategies on the risk level are discussed as a basis for further evaluation.

  16. Cheap Textile Dam Protection of Seaport Cities against Hurricane Storm Surge Waves, Tsunamis, and Other Weather-Related Floods

    E-print Network

    Alexander Bolonkin

    2007-01-04

    Author offers to complete research on a new method and cheap applicatory design for land and sea textile dams. The offered method for the protection of the USA's major seaport cities against hurricane storm surge waves, tsunamis, and other weather-related inundations is the cheapest (to build and maintain of all extant anti-flood barriers) and it, therefore, has excellent prospective applications for defending coastal cities from natural weather-caused disasters. It may also be a very cheap method for producing a big amount of cyclical renewable hydropower, land reclamation from the ocean, lakes, riverbanks, as well as land transportation connection of islands, and islands to mainland, instead of very costly over-water bridges and underwater tunnels.

  17. Cheap Textile Dam Protection of Seaport Cities against Hurricane Storm Surge Waves, Tsunamis, and Other Weather-Related Floods

    E-print Network

    Bolonkin, A

    2007-01-01

    Author offers to complete research on a new method and cheap applicatory design for land and sea textile dams. The offered method for the protection of the USA's major seaport cities against hurricane storm surge waves, tsunamis, and other weather-related inundations is the cheapest (to build and maintain of all extant anti-flood barriers) and it, therefore, has excellent prospective applications for defending coastal cities from natural weather-caused disasters. It may also be a very cheap method for producing a big amount of cyclical renewable hydropower, land reclamation from the ocean, lakes, riverbanks, as well as land transportation connection of islands, and islands to mainland, instead of very costly over-water bridges and underwater tunnels.

  18. Wetland Along Levee in Southern Paraguay

    USGS Multimedia Gallery

    Wetland between levee and Tebicuary river. The Ñeembucú Region is typified by extensive grasslands and wetlands. Near 26°34’52’’S, 56°49’18’’W. (Portion of text from: Guyra Paraguay 2004, Annotated Checklist of the Birds of Paraguay, Paraguay...

  19. One health and force health protection during foreign humanitarian assistance operations: 2010 Pakistan flood relief.

    PubMed

    Burke, Ronald L

    2013-01-01

    Restrictions on the number of troops that could enter Pakistan in support of the 2010 flood relief efforts limited the type and number of deployed medical personnel. Although this created the potential for mission gaps, the assigned personnel were able to perform additional functions beyond those normally associated with their particular health specialty to help close these gaps, which was largely made possible due to prior cross-training and predeployment refresher training. Given the rapid and unpredictable nature of disaster response, future foreign humanitarian assistance operations may face similar issues with assigned personnel. Promotion of the One Health concept through instruction and training will help to increase awareness among US Army Medical Department personnel about the roles and functions of health specialties, facilitate the identification of critical gaps during deployments, and provide personnel with the knowledge and skills needed to address them. PMID:23277449

  20. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to compute the NDWI indices and also the Normalized Difference Soil Index (NDSI). Coastwide Reference Monitoring System (CRMS) water levels from various hydrologic monitoring stations and aerial photography were used to optimize thresholds for MODIS-derived time series of NDWI and to validate resulting flood maps. In most of the profiles produced for post-hurricane assessment, the increase in the NDWI index (from storm surge) is accompanied by a decrease in the vegetation index (NDVI) and then a period of declining water. The NDSI index represents non-green or dead vegetation and increases after the hurricane s destruction of the marsh vegetation. Behavior of these indices over time is indicative of which areas remain flooded, which areas recover to their former levels of vegetative vigor, and which areas are stressed or in transition. Tracking these indices over time shows the recovery rate of vegetation and the relative behavior to inundation persistence. The results from this study demonstrated that identification of persistent marsh flooding, utilizing the tools developed in this study, provided an approximate 70-80 percent accuracy rate when compared to the actual days flooded at the CRMS stations.

  1. Experimental analysis of the levees safety based on geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Rizzo, Enzo; Valeria, Giampaolo; Mario, Votta; Lapenna, Vincenzo; Moramarco, Tommaso; Aricò, Costanza; Camici, S.; Morbidelli, Renato; Sinagra, M.; Tucciarelli, T.

    2010-05-01

    Several flood events brought river levees into the focus of attention for some disasters due to their collapse. This phenomena is quite complex to investigate, because of different factors that can affect the stability of levees, among them the non uniformity of material properties, which influencing the permeability of the embankment, might induce high percolation velocity of flux thus triggering the unstability. Thus, to apply a fast and integrate investigation methods with a non-destructive characteristics should have a large interest, if they are able to furnish ready and usable information necessary to hydrogeological models. In order to achieve this goal, the University of Perugia (Department of Civil and Environmental Engineering) and the National Research Council (IRPI and IMAA research institutes) developed a collaborating project on the study of the internal structure of the river embankment by carrying out experiments in laboratory. The purpose of this study is to show the preliminary results of the experimental investigation. The laboratory embankment was built using material coming from a real levee and gathered inside a 1.5m x 1.2m plexiglas box. The box has two compartments: a water reservoir at one hand where a constant water head was reached after some time and a soil simulating the presence of levee. We perform a geoelectrical multichannel acquisition system with three parallel profiles characterized by 16 mini-electrodes connected to georesistivimeter Syscal Pro. An automatic acquisition protocol has been performed to obtain time slice electrical tomographies during the experiments. The geophysical results show the effect of the water table inside the embankment during the wetting and emptying. In order to assess the capability of the geophysical monitoring for addressing the soil parameters estimate, the resistivity results are investigated by using two analytical and one hydraulic numerical models. The analytical models represent a linear solution of Laplace's equation where Dupuit hypothesis holds (the vertical gradients of the flow velocity in the medium are neglected). In particular, the Marchi and Supino solutions are investigated here by assuming the upstream water level variations in the river negligible with respect to the ones inside the groundwater under the steady state condition. Two different seepage fronts are calculated and compared with the ones inferred from the resistivity maps. The experimental data have been also compared with the results computed by a numerical code. The governing equation for the unsaturated-saturated medium is the continuity equation written in terms of the piezometric head unknown while the Brooks-Corey law relates the water content and the relative hydraulic conductivity to the piezometric head. The numerical model is a time splitting technique and the solution is obtained by solving consecutively a convective and a diffusive component. The medium has been discretized in space using a generally unstructured triangular mesh. The governing equations are discretized using the edge centred mixed hybrid finite element scheme. The computational domain is schematized as 1D network of cells located at the middle point of each edge and linked by fictitious channels and the storage capacity is concentrated in the cells. A linear variation of unknown is assumed inside each triangle. The positive outcomes of hydraulic model application have certainly had benefit from the information coming from the geophysical monitoring. Based on these preliminary results it was noticeable as the geophysical monitoring can be conveniently adopted for addressing the levee safety control and to provide information on soil parameters.

  2. Utilizing Radar Remote Sensing to Assess the Water Extent along River Levees

    NASA Astrophysics Data System (ADS)

    Laygo, K.; Madson, A.; O'Connell, K.; Jones, C. E.; Holt, B.

    2012-12-01

    Every spring, precipitation and snowmelt in the central U.S. leads to high water levels in the Mississippi River and its tributaries, with concurrent flooding and levee damage a near-yearly event. In the spring of 2011, historic water levels led to extensive flooding from Mississippi County, Missouri, to southern Louisiana, necessitating the opening of three major spillways, including the Morganza Spillway north of New Orleans, which diverts water from the Mississippi River through the Atchafalaya Basin of central Louisiana and had not been used since 1973. There is value to NOAA, the agency responsible for flood prediction, and the Army Corp. of Engineers, the agency responsible for flood control, in the application of remote sensing to flood mapping and soil moisture mapping, both along the main rivers and levee systems. We plan to use high resolution radar (NASA UAVSAR - Uninhabited Aerial Vehicle Synthetic Aperture Radar), with a particular focus on increased soil moisture mapping in order to determine how quickly and accurately areas of increased soil moisture content associated with levee seepage and sandboils can be delineated. We have several UAVSAR data sets collected along the Mississippi River during June 2009, April and June 2011, which we have analyzed for soil moisture detection algorithm development during the Spring 2012 term. Our goal for part 2 of the study is to develop an algorithm to detect areas of increased soil moisture, and to finalize flood map end products for decision makers based on an easily applied algorithm that utilizes a standard analysis package for water extent measurement along waterways, which will be usable by non-experts with widely available software.River Gage Datat; As mentioned in the section above, river gage data was utilized to help determine the best UAVSAR datset to use for algorithm and processing methodology creation. The table below shows river gage readings with their corresponding UAVSAR flight ID. The datasets of greatest interest are UAVSAR flights in which the river level was over flood stage for an extended amount of time. The flood river data below was provided by the USACE online river gage database.

  3. Will human recreational activity on levee trails enhance carnivore activity?

    E-print Network

    Johnson, Matthew

    Will human recreational activity on levee trails enhance carnivore activity? Will human recreational activity on levee trails enhance carnivore activity? INTRODUCTION For people and terrestrial 2006, we conducted carnivore surveys in control and impact areas established along the levee (Figure 1

  4. 75 FR 55527 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  5. 76 FR 19018 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  6. 78 FR 28888 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...FEMA proposes to make flood hazard determinations...with section 110 of the Flood Disaster Protection Act of 1973...a). These proposed flood hazard determinations...Posey County Area Plan Commission, 2nd...

  7. 75 FR 31368 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  8. 77 FR 73490 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ...FEMA proposes to make flood hazard determinations...with section 110 of the Flood Disaster Protection Act of 1973...a). These proposed flood hazard determinations...County Courthouse, Area Plan Commission, Room...

  9. 75 FR 9561 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  10. 75 FR 77598 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  11. 75 FR 59184 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  12. 75 FR 61371 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  13. 75 FR 67310 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  14. 76 FR 19005 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  15. 75 FR 59181 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  16. 76 FR 53082 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ...corresponding preliminary Flood Insurance Rate Map (FIRM...with section 110 of the Flood Disaster Protection Act of 1973...calculate the appropriate flood insurance premium rates...seq.; Reorganization Plan No. 3 of 1978, 3...

  17. 77 FR 66555 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  18. 78 FR 6745 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...FEMA-2013-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  19. 77 FR 30220 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  20. 75 FR 64165 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ...FEMA-2010-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street, SW...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  1. 77 FR 21471 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  2. 76 FR 76055 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  3. 77 FR 45262 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  4. 77 FR 76929 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  5. 77 FR 49360 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  6. 76 FR 35111 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street, SW...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  7. 78 FR 14697 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ...FEMA-2013-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  8. 77 FR 46972 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  9. 76 FR 21664 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street, SW...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  10. 75 FR 59989 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ...FEMA-2010-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street, SW...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  11. 77 FR 26959 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ...FEMA-2012-0003] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  12. 76 FR 43923 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  13. 77 FR 3625 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  14. 77 FR 6976 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  15. 76 FR 39011 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  16. 78 FR 5738 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ...FEMA-2013-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street SW., Washington...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  17. 76 FR 3531 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...FEMA-2011-0002] Final Flood Elevation Determinations...SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs...Management Agency, 500 C Street, SW...section 110 of the Flood Disaster Protection...AMENDED] 0 1. The authority...

  18. Cibola High Levee Pond annual report 2004

    USGS Publications Warehouse

    Mueller, Gordon A.; Carpenter, Jeanette; Marsh, Paul C.

    2005-01-01

    This represents the fourth and last annual report of a five year study investigating the early life ecology of the bonytail and razorback sucker at Cibola High Levee Pond. The work in 2004 included: telemetry studies, collection of physical water quality measurements, zooplankton samples, netting fish, the collection of scale samples for aging, predator/prey tank tests and a preliminary analysis of the data base.

  19. Flood trends and river engineering on the Mississippi River system

    USGS Publications Warehouse

    Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.

    2008-01-01

    Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.

  20. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    NASA Astrophysics Data System (ADS)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  1. An Inverse Methodology to Estimate the Flow Released from a Levee Breach

    NASA Astrophysics Data System (ADS)

    D'Oria, M.; Mignosa, P.; Tanda, M. G.

    2014-12-01

    When a levee breach occurs a remarkable volume of water is released causing the inundation of an extended area. To accurately reproduce the flooding resulting from the failure, the discharge over time leaving the river must be known. This flow rate is conditioned by many factors such as: 1. the river water levels in proximity of the failure; 2. the geometry of the breach and its evolution in time; 3. the water level of the flooded area that can produce backwater effects and thus reduce the leaving flow rate or in some case reverse the flow; and 4. the provisional works aimed at fixing the failure. However, from a practical point of view, many of the previous data are hardly known and usually the only available information is the position and the finally geometry of the breach and sometimes its opening time. But, if gauging stations are located in proximity of the failure, the water levels observed upstream and mainly downstream the levee breach are affected by the discharge leaving or eventually re-entering the river. In this work, a Bayesian inverse methodology to estimate the discharge time series leaving a levee breach based on the water levels recorded downstream and/or upstream the failure site is proposed. Prior information, in forms of geostatistical functions, regularizes the solution. The required simulation of the forward problem, able to reproduce the river flow routing and the discharge leaving the breach, has been accomplished by means of the 1D HEC-RAS model. The Uniform Later Flow boundary condition of HEC-RAS has been used to simulate the flow leaving/entering the river across the breach. Synthetic examples with and without the above mentioned back water effects and provisional works has been used to test the procedure. Different levee breaches modeled by means of a lateral weir with movable gates has been simulated to collect the synthetic level data then used in the inverse procedure. The methodology was able to accurately reproduce the flow released by the levee breaches in all cases. The procedure has been also tested on a real case study of the tragically famous inundation of the Polesine Region (Italy) occurred in 1951 and caused by three contiguous levee breaches of the Po river. The estimated discharge leaving the breaches and consequently the total volume of water released is in accordance with other literature studies.

  2. Assessment of the effectiveness of flood adaptation strategies for HCMC

    NASA Astrophysics Data System (ADS)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.

    2014-06-01

    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, Asian cities in particular are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and the cost and benefits of flood risk reduction measures are therefore paramount for sustainable development of these cities. This paper presents an approach to explore the impacts of sea-level rise and socio-economic developments on flood risk for the flood-prone District 4 in Ho Chi Minh City, Vietnam, and to develop and evaluate the effects of different adaptation strategies (new levees, dry- and wet proofing of buildings and elevating roads and buildings). A flood damage model was developed to simulate current and future flood risk using the results from a household survey to establish stage-damage curves for residential buildings. The model has been used to assess the effects of several participatory developed adaptation strategies to reduce flood risk, expressed in expected annual damage (EAD). Adaptation strategies were evaluated assuming combinations of both sea-level scenarios and land-use scenarios. Together with information on costs of these strategies, we calculated the benefit-cost ratio and net present value for the adaptation strategies until 2100, taking into account depreciation rates of 2.5% and 5%. The results of this modelling study indicate that the current flood risk in District 4 is USD 0.31 million per year, increasing up to USD 0.78 million per year in 2100. The net present value and benefit-cost ratios using a discount rate of 5 % range from USD -107 to -1.5 million, and from 0.086 to 0.796 for the different strategies. Using a discount rate of 2.5% leads to an increase in both net present value and benefit-cost ratio. The adaptation strategies wet-proofing and dry-proofing generate the best results using these economic indicators. The information on different strategies will be used by the government of Ho Chi Minh City to determine a new flood protection strategy. Future research should focus on gathering empirical data right after a flood on the occurring damage, as this appears to be the most uncertain factor in the risk assessment.

  3. USGS Scientist Interviewed by Media in Flooded Minot

    USGS Multimedia Gallery

    USGS hydrologist Chris Laveau is interviewed by media from the Broadway Bridge in downtown Minot, N.D. Dikes on the right of the photograph help control flooding in the downtown area. As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing...

  4. The Central European Flood in June 2013: Experiences from a Near-Real Time Disaster Analysis in Germany

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Khazai, Bijan; Mühr, Bernhard; Elmer, Florian; Bessel, Tina; Möhrle, Stella; Dittrich, André; Kreibich, Heidi; Fohringer, Joachim; Kunz-Plapp, Tina; Trieselmann, Werner; Kunz, Michael; Merz, Bruno

    2014-05-01

    The central European flood in June 2013 once again revealed that complete flood protection is not possible. Inundations caused severe damage to buildings, infrastructure and agricultural lands. Official estimates of total damage in Germany amount to approx. 8bn € which is lower than the damage caused by the August 2002 flood - the most expensive natural hazard experienced so far in Germany. Repeated and long lasting precipitation in combination with extremely adverse preconditions induced a large scale flood event. In Germany, particularly the catchment areas of the Danube and Elbe were affected. The June 2013 flood has been the most severe flood event in terms of spatial extent and magnitude of flood peaks in Germany during the last 60 years. Large scale inundation occurred as a consequence of levee breaches near Deggendorf (Danube), Groß Rosenau and Fischbeck (Elbe). The flood has had a great impact on people, transportation and the economy. In many areas more than 50,000 thousand people were evacuated. Electrical grid and local water supply utilities failed during the floods. Furthermore, traffic was disrupted in the interregional transportation network including federal highways and long distance railways. CEDIM analysed and assessed the flood event within its current research activity on near real time forensic disaster analysis (CEDIM FDA: www.cedim.de). This contribution gives an overview about the CEDIM FDA analyses' results. It describes the key hydro-meteorological factors that triggered this extraordinary event and draws comparisons to major flood events in August 2002 and July 1954. Further, it shows the outcomes of a rapid initial impact assessment on the district level using social, economic and institutional indicators which are supplemented with information on the number of people evacuated and transportation disruptions and combined with the magnitude of the event.

  5. USGS Scientist is Interviewed by Media at the Flooded Souris River

    USGS Multimedia Gallery

    USGS hydrologist Brent Hanson is interviewed by media at the flooded Souris River in Foxholm, N.D., about 30 miles northwest of Minot. A flooded road can be seen in the background. As the Souris River flooded during the early summer of 2011, it overcame levees in the city of Minot, N.D., causing ab...

  6. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Flood control regulations. 209.220 Section...ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection...the maintenance and operation of local flood protection works are contained...

  7. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Flood control regulations. 209.220 Section...ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection...the maintenance and operation of local flood protection works are contained...

  8. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Flood control regulations. 209.220 Section...ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection...the maintenance and operation of local flood protection works are contained...

  9. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Flood control regulations. 209.220 Section...ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection...the maintenance and operation of local flood protection works are contained...

  10. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Flood control regulations. 209.220 Section...ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection...the maintenance and operation of local flood protection works are contained...

  11. Seasonally Flooded Hardwood Bottomlands Topography and Vegetation

    E-print Network

    Gray, Matthew

    plantings ­ Results? #12;Difficult at best to restore natural hydrology · River & Site Hydrology AlterationsSeasonally Flooded Hardwood Bottomlands #12;Topography and Vegetation Stream Channel Levee Back influence vegetation and animal communities) Surrounding land use is also important #12;Ridge and Swale

  12. USGS Streamgage Flooded by Souris River

    USGS Multimedia Gallery

    The USGS Souris River at Foxholm, N.D. streamgage (center of photo) is half inundated by water about 30 miles northwest of Minot. This water channel, normally only about 30 feet wide, runs through a wildlife preserve. As the Souris River flooded during the early summer of 2011, it overcame levees i...

  13. Hydrologic effects of area B flood control plan on urbanization of Dade County, Florida

    USGS Publications Warehouse

    Kohout, F.A.; Hartwell, J.H.

    1967-01-01

    Swampy low land (Area B) that fringes the Everglades west of Metropolitan Miami, Florida (Area A) probably will be urbanized in the future. Area B will be protected from flooding by huge pumps that will pump water westward from Area B over a levee system into Conservation Area 3B. The total capacity of the pumps will be about 13,400 cubic feet per second which is sufficient to lower water levels 2 inches per day in the 203 square miles of Area B. As this capacity is about equal to the highest gravity-flow discharge to the ocean through existing canals of the Miami area, a great potential. will exist, not only for control of floods, but also for beneficial control and management of a major segment of the water resources in southeastern Florida.

  14. Relationship between canal and levee density and coastal land loss in Louisiana

    SciTech Connect

    Turner, R.E.

    1987-12-01

    Nearly 1% of Louisiana's coastal land becomes water each year. This land loss affects everything from wildlife, fisheries, and recreation to the economy and culture. A part of this loss results from natural, unmanageable factors, but manageable factors are also responsible. This report discusses one of the manageable factors: canals and their dredged-material levees. In coastal Louisiana wetlands, canals are constructed primarily to facilitate navigation and oil and gas recovery. The density of canals in this region is now about equal to the natural network of bayous and creeks. The primary effect of these canals and associated levees is to alter the process of flooding and drainage. The influence of canals and their levees on coastal Louisiana erosion rates are modified by local geologic, hydrologic, and biologic interactions. The empirical relationship between canals and erosion is, however, clear; land loss is directly related to canal density. Comparisons with mosquito ditches, which are smaller analogues of canals, reveal similar patterns of wetland changes and suggest management options.

  15. The President`s Floodplan Management Action Plan: Formulating a watershed and ecosystem approach to flood hazard mitigation and resource protection

    SciTech Connect

    McShane, J.

    1995-12-01

    The Great Midwest Flood of 1993 focused the attention of the Nation on the human and environmental costs associated with decades of efforts to control flooding, unwise land-use decisions, and the loss and degradation of the natural resources and functions of floodplains. The disaster can also be attributed to the single purpose decision-making process and fragmented planning at all levels of government, inconsistent statutory madates, and conflicting jurisdictional responsibilities. The Executive Office of the President established a Floodplain Management Review Committee to determine the major causes and consequences of the flood and to evaluate the performance of existing floodplain management and related watershed programs. The report, Sharing the Challenge: Floodplain Management into the 21st Century, included 90 recommendations to improve floodplain management and water resources planning including the need for a more comprehensive, coordinated approach to floodplain and watershed management. Preparation of the 1994 document A Unified National Program for Floodplain Management commenced prior to the Midwest Flood of 1993 and was completed, coincidentally, concurrently with the Review Committee`s report Sharing the Challenge. Both reports urge the formulation of a more comprehensive, watershed approach to managing human activities and protecting natural systems to ensure the long term viability of riparian ecosystems and the sustainable development of riverine communities. Both reports recognize that effective floodplain management will reduce the financial burdens placed upon all levels of government to compensate property owners and governments for flood losses caused by unwise land use decisions by individuals, as well as governments. This paper focuses on the fundamental changes in Federal floodplain management policies and programs that are emerging that will affect how as a Nation manage and use our floodplain resources into the 21st Century.

  16. Study of Extreme Hydrometeorological Events under Consideration of Climate Change in terms of Flood Protection Design Standard

    NASA Astrophysics Data System (ADS)

    Lin, B.-Z.

    2012-04-01

    A study of Trend and Shift on annual maximum daily data over 500 raingauges with data length of 80 years or longer in the Ohio River Basin U.S. demonstrated a significant increase in variance of the data over time. The area-average increase in standard deviation is 23% for the recent 40 years (1959 - 1998) in comparison with the earlier 40-60 years (1919 or earlier - 1958). This implies that more and more extreme hydrometeorological events such as extreme rainfalls and droughts could be observed in the future years. The centurial flood disaster of August 8-10 2009 in the mid-southern Taiwan caused by Morakot Typhoon and the extraordinary drought lasting from winter 2009 to early summer 2010 wreaking havoc of a vast area of south-west China mainland were two good examples of the extremes. This variation could attribute to climate change. It challenges the hydrologic frequency analysis. Thus, exploration of a robust and reliable approach to precipitation frequency analysis becomes an imminent issue in hydrologic design studies. This paper introduces a novel hydrometeorological approach, the Regional L-moments method (RLM), to rainfall frequency analysis. There are two fatal weaknesses in FA: 1) There is no analytical way to derive a theoretical distribution to best fit the data; 2) The theoretical true value of a frequency such as 50-y or 100-y is unknown forever. The RLM, which is developed based on the order statistics and the concept of hydrometeorological homogeneity, demonstrates unbiasedness of parameter estimates and robust to outliers, and reduces the uncertainties of frequency estimates as well via the real data in Ohio River Basin of the U.S. and in the Taihu Lake Basin of China. Further study indicated that the variation of the frequency estimates such as 10-year, 100-year, 500-year, etc. is not normal as suggested in current textbooks. Actually, the frequency estimates vary asymmetrically from positive skew to negative skew when estimates go through from common frequencies to rare frequencies. Probable Maximum Precipitation (PMP) is defined as the greatest depth of precipitation for a given duration meteorologically possible for a design watershed or a given storm area at a particular location at a particular time of year, with no allowance made for long-term climate trends (WMO, 2009). The PMP has been widely used by many hydrologists to determine the probable maximum flood (PMF) critical to the design of a variety of hydrological structures and other high profile infrastructures such as nuclear power-generation station with respect to flood-protection, for which a high level safety is required. What is the impact of climate change on PMP estimation? Actually, in the definition of PMP, there is "no allowance made for long-term climate trends" (WMO, 2009). However, when people are talking about impact of climate change on PMP estimation, two things may be taken into account practically: (1) To affect the precipitable water as a result of increase of SST; (2) Effect on the selection of the transposed storm because more extreme storms would occur due to climate change and more potential candidates to be used for storm transposition. The occurrence of a severe rainfall storm could alter the PMP estimates. A good example is the lashing of the Typhoon Morakot of 8 - 10 Aug. 2009 on Taiwan Island that set up new rainfall picture. What is the effect of topography on rainfall is another big issue in PMP estimation. Many observations of precipitation in mountainous areas show a general increase in precipitation with elevation. Practically, the effect of topography on rainfall should be taken into account in PMP estimation and implemented by the storm separation technique. The Step-Duration-Orographic-Intensification-Factor (SDOIF) Method, which was developed based on statistics analysis of extreme rainfalls in the storm area, can practically be used as storm separation technique to decouple the Morakot storm rainfalls into two components, convergence component and orographic component. Then, the convergence co

  17. Optimized Radar Remote Sensing for Levee Health Monitoring

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.

    2013-01-01

    Radar remote sensing offers great potential for high resolution monitoring of ground surface changes over large areas at one time to detect movement on and near levees and for location of seepage through levees. Our NASA-funded projects to monitor levees in the Sacramento Delta and the Mississippi River have developed and demonstrated methods to use radar remote sensing to measure quantities relevant to levee health and of great value to emergency response. The DHS-funded project will enable us is to define how to optimally monitor levees in this new way and set the stage for transition to using satellite SAR (synthetic aperture radar) imaging for better temporal and spatial coverage at lower cost to the end users.

  18. Three-dimensional imaging, change detection, and stability assessment during the centerline trench levee seepage experiment using terrestrial light detection and ranging technology, Twitchell Island, California, 2012

    USGS Publications Warehouse

    Bawden, Gerald W.; Howle, James; Bond, Sandra; Shriro, Michelle; Buck, Peter

    2014-01-01

    A full scale field seepage test was conducted on a north-south trending levee segment of a now bypassed old meander belt on Twitchell Island, California, to understand the effects of live and decaying root systems on levee seepage and slope stability. The field test in May 2012 was centered on a north-south trench with two segments: a shorter control segment and a longer seepage test segment. The complete length of the trench area measured 40.4 meters (m) near the levee centerline with mature trees located on the waterside and landside of the levee flanks. The levee was instrumented with piezometers and tensiometers to measure positive and negative porewater pressures across the levee after the trench was flooded with water and held at a constant hydraulic head during the seepage test—the results from this component of the experiment are not discussed in this report. We collected more than one billion three-dimensional light detection and ranging (lidar) data points before, during, and after the centerline seepage test to assess centimeter-scale stability of the two trees and the levee crown. During the seepage test, the waterside tree toppled (rotated 20.7 degrees) into the water. The landside tree rotated away from the levee by 5 centimeters (cm) at a height of 2 m on the tree. The paved surface of the levee crown had three regions that showed subsidence on the waterside of the trench—discussed as the northern, central, and southern features. The northern feature is an elongate region that subsided 2.1 cm over an area with an average width of 1.35 m that extends 15.8 m parallel to the trench from the northern end of the trench to just north of the trench midpoint, and is associated with a crack 1 cm in height that formed during the seepage test on the trench wall. The central subsidence feature is a semicircular region on the waterside of the trench that subsided by as much as 6.2 cm over an area 3.4 m wide and 11.2 m long. The southern feature is an elongate region that has a maximum subsidence of 3.5 cm over an area 0.75 m wide and 8.1 m long and is associated with a number of small fractures in the pavement that are predominately north-south-trending and parallel to the trench. We determined that there was no significant motion of the levee flank during the last week of the seepage test. We also determined biomorphic parameters for the landside tree, such as the 3D positioning on the levee, tree height, levee parallel/perpendicular cross sectional area, and canopy centroid. These biomorphic parameters were requested to support a University of California Berkeley team studying seepage and stability on the levee. A gridded, 2-cm bare-earth digital elevation model of the levee crown and the landside levee flank from the final terrestrial lidar (T-Lidar) survey provided detailed topographic data for future assessment. Because the T-Lidar was not integrated into the project design, other than an initial courtesy dataset to help characterize the levee surface, our ability to contribute to the overall science goals of the seepage test was limited. Therefore, our analysis focused on developing data collection and processing methodology necessary to align ultra high-resolution T-Lidar data (with an average spot spacing 2–3 millimeters on the levee crown) from several instrument setup locations to detect, measure, and characterize dynamic centimeter-scale deformation and surface changes during the seepage test.

  19. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2013-04-01 true National Flood Insurance Program. ...570.605 National Flood Insurance Program. ...grantee's consolidated plan, in accordance with 24...section 202(a) of the Flood Disaster Protection Act of...

  20. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false National Flood Insurance Program. ...570.605 National Flood Insurance Program. ...grantee's consolidated plan, in accordance with 24...section 202(a) of the Flood Disaster Protection Act of...

  1. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false National Flood Insurance Program. ...570.605 National Flood Insurance Program. ...grantee's consolidated plan, in accordance with 24...section 202(a) of the Flood Disaster Protection Act of...

  2. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false National Flood Insurance Program. ...570.605 National Flood Insurance Program. ...grantee's consolidated plan, in accordance with 24...section 202(a) of the Flood Disaster Protection Act of...

  3. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2010-04-01 true National Flood Insurance Program. ...570.605 National Flood Insurance Program. ...grantee's consolidated plan, in accordance with 24...section 202(a) of the Flood Disaster Protection Act of...

  4. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Flood control regulations. 209.300 Section...ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the...

  5. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Flood control regulations. 209.300 Section...ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the...

  6. Modeling flood dynamics along the superelevated channel belt of the Yellow River over the last 3000 years

    NASA Astrophysics Data System (ADS)

    Chen, Yunzhen; Overeem, Irina; Kettner, Albert J.; Gao, Shu; Syvitski, James P. M.

    2015-07-01

    The Yellow River, China, experienced >1000 levee breaches during the last 3000 years. A reduced-complexity model is developed in this study to explore the effects of climate change and human activity on flood levels, levee breaches, and river avulsions. The model integrates yearly morphological change along a channel belt with daily river fluxes and hourly evolution of levee breaches. Model sensitivity analysis reveals that under natural conditions, superelevation of the channel belt dominates flood frequency. When there is significant human-accelerated basin erosion and breach repair, the dominant factors shift to a combination of mean annual precipitation, superelevation, critical shear stress of weak channel banks, and the time interval between breach initiation and its repair. The effect of precipitation on flood frequency is amplified by land use changes in the hinterland, particularly in the erodible Loess Plateau. Uncertainty analysis estimates the most likely values of the dominant factors for six historical periods between 850 B.C. and A.D. 1839, which are used to quantitatively reconstruct flood dynamics. During 850 B.C. to A.D. 1839, when the sediment load increased fourfold, the breach recurrence interval was shortened from more than 500 years to less than 6 years, and the breach outflow rate increased ~27 times. River management practices during A.D. 1579 to A.D. 1839 focused on levees and triggered a severe positive feedback of increased levee heights and flood hazard exacerbation. Raising the levee heights proved to be ineffective for sustainable flood management.

  7. 25 CFR 256.24 - Will I need flood insurance?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Will I need flood insurance? 256.24 Section 256.24... Will I need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L....

  8. 25 CFR 256.24 - Will I need flood insurance?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Will I need flood insurance? 256.24 Section 256.24... Will I need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L....

  9. 25 CFR 256.24 - Will I need flood insurance?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Will I need flood insurance? 256.24 Section 256.24 Indians... need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L. 93-234,...

  10. 25 CFR 256.24 - Will I need flood insurance?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Will I need flood insurance? 256.24 Section 256.24... Will I need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L....

  11. 25 CFR 256.24 - Will I need flood insurance?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Will I need flood insurance? 256.24 Section 256.24... Will I need flood insurance? You will need flood insurance if your dwelling is located in an area identified as having special flood hazards under the Flood Disaster Protection Act of 1973 (Pub. L....

  12. Rethinking the relationship between flood risk perception and flood management.

    PubMed

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. PMID:24530580

  13. Seasonally Flooded Grasslands -Grand CaymanSeasonally Flooded Grasslands -Grand Cayman 0 1 2 3 4 50.5

    E-print Network

    Exeter, University of

    Seasonally Flooded Grasslands - Grand CaymanSeasonally Flooded Grasslands - Grand Cayman 0 1 2 3 4 Protected Areas Seasonally Flooded Grasslands V.A.1.N.g. #12;Seasonally Flooded Grasslands - Little CaymanSeasonally Flooded Grasslands - Little Cayman 0 0.5 1 1.5 2 2.50.25 Kilometers Cayman Islands National Biodiversity

  14. Levee Failures in the Sacramento - San Joaquin River Delta: Characteristics and Perspectives 

    E-print Network

    Hopf, Frank

    2012-02-14

    levees posed more risk of failure than did the pre-Katina Louisiana levees. This background motivates two research questions: What are the social perspectives regarding levee failures of the experts managing the Delta; and what is the history of levee...

  15. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    USGS Nation Flood Specialist takes a CNN crew on a measurement run at the Birds Point-New Madrid Floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Co...

  16. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    National Guard checkpoint at Birds Point-New Madrid floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding hap...

  17. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    Inflow Breech at Birds Point-New Madrid floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding happens, USGS f...

  18. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    Inflow breach at Birds Point-New Madrid Floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding happens, USGS f...

  19. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    USGS field crew inside the Birds Point-New Madrid floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding happe...

  20. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding happens, USGS field crews are among the first to respond. During ...

  1. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    Inflow breach at Birds Point-New Madrid floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engineers operation. When flooding happens, USGS f...

  2. Mississippi River Flooding 2011: Birds Point-New Madrid Floodway

    USGS Multimedia Gallery

    USGS National Flood Specialist answers questions for CNN at the Birds Point-NewMadrid Floodway. USGS scientists are measuring the amount of water spilling into the New Madrid floodway as a result of the recent intentional breaching of the Birds Point Levee in Missouri in support of the Corps of Engi...

  3. Scientists Measure Streamflow near Flooded Minot, N.D.

    USGS Multimedia Gallery

    USGS scientists measure streamflow on a tributary of the Souris River in Foxholm, N.D., about 30 miles northwest of Minot. The team is using an acoustic Doppler current profiler (ACDP) to measure streamflow. As the Souris River flooded during the early summer of 2011, it overcame levees in the city...

  4. Three dimensional numerical modeling of flow and pollutant transport in a flooding area of 2008 US Midwest Flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River in Oakville, Iowa. Due to a levee breaching along the Iowa River during the US ...

  5. Pakistan Flooding

    Atmospheric Science Data Center

    2013-04-16

    ... Tens of thousands of villages have been flooded, more than 1,500 people have been killed, and millions have been left homeless. The ... and Aug 11, 2010 Images:  Pakistan Flood location:  Asia thumbnail:  ...

  6. New Orleans and Hurricane Katrina. IV: Orleans East Bank (Metro) protected basin

    USGS Publications Warehouse

    Seed, R.B.; Bea, R.G.; Athanasopoulos-Zekkos, A.; Boutwell, G.P.; Bray, J.D.; Cheung, C.; Cobos-Roa, D.; Cohen-Waeber, J.; Collins, B.D.; Harder, L.F., Jr.; Kayen, R.E.; Pestana, J.M.; Riemer, M.F.; Rogers, J.D.; Storesund, R.; Vera-Grunauer, X.; Wartman, Joseph

    2008-01-01

    This paper addresses damage caused by Hurricane Katrina to the main Orleans East Bank protected basin. This basin represented the heart of New Orleans, and contained the main downtown area, the historic French Quarter, the Garden District, and the sprawling Lakefront and Canal Districts. Nearly half of the loss of life during this hurricane, and a similar fraction of the overall damages, occurred in this heavily populated basin. There are a number of important geotechnical lessons, as well as geo-forensic lessons, associated with the flooding of this basin. These include the difficulties associated with the creation and operation of regional-scale flood protection systems requiring federal and local cooperation and funding over prolonged periods of time. There are also a number of engineering and policy lessons regarding (1) the accuracy and reliability of current analytical methods; (2) the shortcomings and potential dangers involved in decisions that reduced short-term capital outlays in exchange for increased risk of potential system failures; (3) the difficulties associated with integrating local issues with a flood risk reduction project; and (4) the need to design and maintain levees as systems; with each of the many individual project elements being required to mesh seamlessly. These lessons are of interest and importance for similar flood protection systems throughout numerous other regions of the United States and the world. ?? 2008 ACSE.

  7. Analyses of water, core material, and elutriate samples collected near New Orleans, Louisiana (Lake Pontchartrain, Louisiana, and vicinity hurricane protection project)

    USGS Publications Warehouse

    Leone, Harold L.

    1976-01-01

    When a hurricane approaches the New Orleans, Louisiana area, the accompanying tides and heavy rainfall increase the level of water in Lake Borgne, Mississippi Sound, and Lake Pontchartrain and pose a major threat of water damage to the populated areas. During Hurricane Betsy (1965), for example, the level of Lake Pontchartrain rose as much as 13 feet. Nineteen core-material-sampling sites were chosen by the U.S. Army Corps of Engineers as possible borrow areas for fill material to be used in levee construction for flood protection around Lake Pontchartrain. Twenty-three receiving-water sites were also selected to represent the water that will contact the proposed levees. Selected nutrients, metals, pesticides, and other organic constituents were analyzed from bed-material and native-water samples as well as upon elutriate samples of specific core material-receiving water systems. The results of these analyses are presented without interpretation. (Woodard-USGS)

  8. 33 CFR 203.51 - Levee owner's manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps...

  9. 33 CFR 203.51 - Levee owner's manual.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps...

  10. 33 CFR 203.51 - Levee owner's manual.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps...

  11. 33 CFR 203.51 - Levee owner's manual.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps...

  12. 33 CFR 203.51 - Levee owner's manual.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps...

  13. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Flood insurance. 120.170 Section... to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec. 205(b) of Pub. L. 93-234; 87 Stat. 983 (42...

  14. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Flood insurance. 120.170 Section... to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec. 205(b) of Pub. L. 93-234; 87 Stat. 983 (42...

  15. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Flood insurance. 120.170 Section... to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec. 205(b) of Pub. L. 93-234; 87 Stat. 983 (42...

  16. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Flood insurance. 120.170 Section... to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec. 205(b) of Pub. L. 93-234; 87 Stat. 983 (42...

  17. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Flood insurance. 120.170 Section... to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec. 205(b) of Pub. L. 93-234; 87 Stat. 983 (42...

  18. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 2010-01-01 2010-01-01 false Flood insurance. 120.170 Section 120.170 Business...Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec....

  19. 13 CFR 120.170 - Flood insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 2011-01-01 2011-01-01 false Flood insurance. 120.170 Section 120.170 Business...Imposed Under Other Laws and Orders § 120.170 Flood insurance. Under the Flood Disaster Protection Act of 1973 (Sec....

  20. Flood Resilient Technological Products

    NASA Astrophysics Data System (ADS)

    Diez Gonzalez, J. J.; Monnot, J. V.; Marquez Paniagua, P.; Pámpanas, P.; Paz Abuín, S.; Prendes, P.; Videra, O.; U. P. M. Smartest Team

    2012-04-01

    As a consequence of the paradigm shift of the EU water policy (Directive 2007/60/EC, EC 2003) from defense to living with flood, floods shall be faced in the future through resilient solutions, seeking to improve the permanence of flood protection, and getting thus beyond traditional temporary and human-relying solutions. But the fact is that nowadays "Flood Resilient (FRe) Building Technological Products" is an undefined concept, and concerned FRe solutions cannot be even easily identified. "FRe Building Technological materials" is a wide term involving a wide and heterogeneous range of solutions. There is an interest in offering an identification and classification of the referred products, since it will be useful for stakeholders and populations at flood risk for adopting the most adequate protections when facing floods. Thus, a previous schematic classification would enable us at least to identify most of them and to figure out autonomous FRe Technological Products categories subject all of them to intense industrial innovative processes. The flood resilience enhancement of a given element requires providing it enough water-repelling capacity, and different flood resilient solutions can be sorted out: barriers, waterproofing and anticorrosive. Barriers are palliative solutions that can be obtained either from traditional materials, or from technological ones, offering their very low weight and high maneuverability. Belonging barriers and waterproofing systems to industrial branches clearly different, from a conceptual point of view, waterproofing material may complement barriers, and even be considered as autonomous barriers in some cases. Actually, they do not only complement barriers by their application to barriers' singular weak points, like anchors, joints, but on the other hand, waterproofing systems can be applied to enhance the flood resilience of new building, as preventive measure. Anticorrosive systems do belong to a clearly different category because their function do not consist in repelling water, but in preventing damages caused by the watery contact. Finally, others preventive flood resilient technologies could also be considered, since forecasting, near-casting and warning alert are solutions getting more and more involved in flood resilience strategies.

  1. Computer Simulation of Levee Erosion and Overtopping Mehrad Kamalzare1

    E-print Network

    Franklin, W. Randolph

    , Rensselaer Polytechnic Institute, Troy, NY; mail@wrfranklin.org Abstract Improved computer models of erosion have been developed, considering soil hydraulic conductivity. The models deal with erosion of levees, dams and embankments due to overtopping. The simulations trace the formation of rills and gullies

  2. Effectiveness of water infrastructure for river flood management - Part 1: Flood hazard assessment using hydrological models in Bangladesh

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Kwak, Y.; Khairul, M. I.; Arifuzzaman, M. B.; Magome, J.; Sawano, H.; Takeuchi, K.

    2015-06-01

    This study introduces a flood hazard assessment part of the global flood risk assessment (Part 2) conducted with a distributed hydrological Block-wise TOP (BTOP) model and a GIS-based Flood Inundation Depth (FID) model. In this study, the 20 km grid BTOP model was developed with globally available data on and applied for the Ganges, Brahmaputra and Meghna (GBM) river basin. The BTOP model was calibrated with observed river discharges in Bangladesh and was applied for climate change impact assessment to produce flood discharges at each BTOP cell under present and future climates. For Bangladesh, the cumulative flood inundation maps were produced using the FID model with the BTOP simulated flood discharges and allowed us to consider levee effectiveness for reduction of flood inundation. For the climate change impacts, the flood hazard increased both in flood discharge and inundation area for the 50- and 100-year floods. From these preliminary results, the proposed methodology can partly overcome the limitation of the data unavailability and produces flood~maps that can be used for the nationwide flood risk assessment, which is presented in Part 2 of this study.

  3. Flood inundation map library, Fort Kent, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2012-01-01

    Severe flooding occurred in northern Maine from April 28 to May 1, 2008, and damage was extensive in the town of Fort Kent (Lombard, 2010). Aroostook County was declared a Federal disaster area on May 9, 2008. The extent of flooding on both the Fish and St. John Rivers during this event showed that the current Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) and Flood Insurance Rate Map (FIRM) (Federal Emergency Management Agency, 1979) were out of date. The U.S. Geological Survey (USGS) conducted a study to develop a flood inundation map library showing the areas and depths for a range of flood stages from bankfull to the flood of record for Fort Kent to complement an updated FIS (Federal Emergency Management Agency, in press). Hydrologic analyses that support the maps include computer models with and without the levee and with various depths of backwater on the Fish River. This fact sheet describes the methods used to develop the maps and describes how the maps can be accessed.

  4. Methodology for Establishment of Integrated Flood Analysis System

    NASA Astrophysics Data System (ADS)

    Kim, B.; Sanders, B. F.; Kim, K.; Han, K.; Famiglietti, J. S.

    2012-12-01

    Flood risk management efforts face considerable uncertainty in flood hazard delineation as a consequence of changing climatic conditions including shifts in precipitation, soil moisture, and land uses. These changes can confound efforts to characterize flood impacts over decadal time scales and thus raise questions about the true benefits and drawbacks of alternative flood management projects including those of a structural and non-structural nature. Here we report an integrated flood analysis system that is designed to bring climate change information into flood risk context and characterize flood hazards in both rural and urban areas. Distributed rainfall-runoff model, one-dimensional (1D) NWS-FLDWAV model, 1D Storm Water Management Model (SWMM) and two-dimensional (2D) BreZo model are coupled. Distributed model using the multi-directional flow allocation and real time updating is used for rainfall-runoff analysis in ungauged watershed and its outputs are taken as boundary conditions to the FLDWAV model which was employed for 1D river hydraulic routing and predicting the overflow discharge at levees which were overtopped. In addition, SWMM is chosen to analyze storm sewer flow in urban areas and BreZo is used to estimate the inundation zones, depths and velocities due to the surcharge flow at sewer system or overflow at levees on the land surface. The overflow at FLDWAV or surcharged flow at SWMM becomes point sources in BreZo. Applications in Korea and California are presented.

  5. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  6. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  7. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  8. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  9. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  10. Flood marks of the 1813 flood in the Central Europe

    NASA Astrophysics Data System (ADS)

    Miklanek, Pavol; Pekárová, Pavla; Halmová, Dana; Pramuk, Branislav; Ba?ová Mitková, Veronika

    2014-05-01

    In August 2013, 200 years have passed since the greatest and most destructive floods known in the Slovak river basins. The flood affected almost the entire territory of Slovakia, northeastern Moravia, south of Poland. River basins of Váh (Orava, Kysuca), Poprad, Nitra, Hron, Torysa, Hornád, upper and middle Vistula, Odra have been most affected. The aim of this paper is to map the flood marks documenting this catastrophic flood in Slovakia. Flood marks and registrations on the 1813 flood in the Váh river basin are characterized by great diversity and are written in Bernolák modification of Slovak, in Latin, German and Hungarian. Their descriptions are stored in municipal chronicles and Slovak and Hungarian state archives. The flood in 1813 devastated the entire Váh valley, as well as its tributaries. Following flood marks were known in the Vah river basin: Dolná Lehota village in the Orava river basin, historical map from 1817 covering the Su?any village and showing three different cross-sections of the Váh river during the 1813 flood, flood mark in the city of Tren?ín, Flood mark in the gate of the Brunovce mansion, cross preserved at the old linden tree at Drahovce, and some records in written documents, e.g. Cifer village. The second part of the study deals with flood marks mapping in the Hron, Hnilec and Poprad River basins, and Vistula River basin in Krakow. On the basis of literary documents and the actual measurement, we summarize the peak flow rates achieved during the floods in 1813 in the profile Hron: Banská Bystrica. According to recent situation the 1813 flood peak was approximately by 1.22 m higher, than the flood in 1974. Also in the Poprad basin is the August 1813 flood referred as the most devastating flood in last 400 years. The position of the flood mark is known, but the building was unfortunately removed later. The water level in 1813 was much higher than the water level during the recent flood in June 2010. In Cracow the water level was by 38 cm lower in May 2010 than during the 1813 flood, but by 5 cm higher than in 1903, and also higher than all the other catastrophic floods that hit Cracow during the last 200 years. The analysis of documentary information is a contribution to the growing pool of material on pre-instrumental floods in Central and Eastern Europe. The long-term flood records may reduce uncertainty in hydrological analyses and contribute to reducing losses of human lives and property. Some historical cases may be used as analogues of the recent floods and very well documented recent events are important for complex understanding of similar past floods Acknowledgement This work was supported by the Science and Technology Assistance Agency under contract No. APVV-0015-10. The paper was prepared during the "Centre of excellence for integrated flood protection of land" (ITMS 26240120004) project implementation supported by the Research & Development Operational Programme funded by the ERDF.

  11. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false What flood insurance requirements are applicable...ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973,...

  12. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false What flood insurance requirements are applicable...ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973,...

  13. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false What flood insurance requirements are applicable...ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973,...

  14. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false What flood insurance requirements are applicable...ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973,...

  15. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false What flood insurance requirements are applicable...ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973,...

  16. Taming IP Packet Flooding Attacks Karthik Lakshminarayanan Daniel Adkins

    E-print Network

    Perrig, Adrian

    to attacks that exploit protocol vulnerabili- ties (e.g., SYN flooding [19]), attacks that exploit implemenTaming IP Packet Flooding Attacks Karthik Lakshminarayanan Daniel Adkins ¡ Adrian Perrig Ion (service) under a flooding attack to protect the traffic of other applica- tions. ¢ Protect the traffic

  17. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment

    NASA Astrophysics Data System (ADS)

    Hudson, Paul F.; Middelkoop, Hans; Stouthamer, Esther

    2008-10-01

    Flood management alters fundamental fluvial processes that have geomorphic consequences for rivers and floodplains. The Lower Mississippi and Rhine Rivers (The Netherlands) are two important examples of intensively regulated large rivers. Understanding the magnitude and direction of change caused by flood management requires a long-term perspective. This is particularly true of large lowland fluvial systems because of substantial lag-times required for adjustment to be manifest in the floodplain geomorphology. This study is a historical analysis and synthesis of the impacts of flood management on the Lower Mississippi and Rhine Rivers (The Netherlands), and investigates the interrelations of flood management with floodplain geomorphology. Although flood management varies between the Rhine and Mississippi on many accounts, the actual techniques of flood (and river) management are somewhat similar, and primarily include dikes, groynes, cutoffs, and bank protection. The implementation and history of these specific types of activities, however, varies considerably. Historical flood management along the Lower Mississippi can be characterized as abrupt, with the major options imposed within about five decades, while historical flood management along the Rhine River in The Netherlands is characterized as incremental and adaptive, with the major options imposed over about eight centuries. Conversely, modern flood management plans are implemented much more promptly along the Dutch Rhine than the Lower Mississippi. Changes to the Lower Mississippi include channel adjustment (width and incision) caused by meander bend cutoffs. The majority of the knickpoint incision in response to cutoffs occurred by 1963. Channel adjustment in some reaches is likely constrained by the presence of resistant alluvium and lithology. Floodplain geomorphic changes include the creation of new oxbow lakes within an embanked floodplain. Embanked floodplain sedimentation of oxbow lakes created from the 1928 Mississippi River & Tributaries Act have rapidly infilled, with 67% of the lake area converted to wetlands. In comparison, older oxbow lakes located outside of the embanked floodplain have undergone much lower amounts of infilling, averaging 37% of oxbow lake area converted to wetlands. The floodplain geomorphology is further modified by numerous large floodplain borrow pits and the selective removal of fine-grained deposits, primarily created for dike (levee) construction and maintenance. The Dutch Rhine has been managed for flooding for over eight centuries and exhibits specific types of humanized embanked floodplain geomorphology that require a greater period of adjustment. Dike breaches create ponds (wielen) and sandy splay-like deposits, which represent distinctive anthro-geomorphic environments along the margins of embanked floodplains. Channel stabilization by groynes and dikes has resulted in the formation of new floodplains along Rhine distributaries. The trapping of flood sediments within the embanked floodplain has resulted in aggradation that has reduced the inundation capacity of the embanked floodplain. This geomorphic alteration reduced the effectiveness of the existing flood management infrastructure and has stimulated a change towards a new flood management approach designed to "work with the river". The major conclusions are placed within a conceptual model, and illustrate that; 1. in many instances specific flood management options were constrained by the type of floodplain deposit; 2. geomorphic adjustment to flood management occurs along a time-space continuum; 3. flood management initiates positive feedbacks with unintended geomorphic consequences that require further management options to minimize flood risk.

  18. Flood producing mechanism identification in Otava river

    NASA Astrophysics Data System (ADS)

    Vlasák, T.

    2009-04-01

    Variability of flood causes is strongly determined by geographic environment of catchment area. Identification of unique flood characteristics such as seasonality, precipitation pattern, or typical interference of flood peaks at river confluences could be very useful for flood forecasting and control. Analysis of historical flood causes is proved method to get this knowledge. Paper describes compilation and analysis of Flood Archive (database of flood events), which was developed for application in the scope of flood protection of Otava river basin (2780 km2). Otava river basin is situated in southwest part of the Czech Republic and includes north-western part of Šumava mountain (Böhmer Wald). Archive consists of detail description of 72 flood events (including meteorological causes and hydrological response) that occurred between 1890 and 2006 with peak flow in closing profile at Písek exceeding threshold given as 10-year return period for 1890-1961 and 1-year return period for 1961-2006). Flood formation mechanism in Otava river basin was described using this Archive. The most important features of flood formation mechanism in Otava river basin were described and explained in relation to geographical environment. Predominance of summer floods was found in Otava river basin, and its increase with increasing return period was observed. On the other hand there were only 4 out of 72 flood events with dominant snowmelt contribution to the runoff. Expected difference was found between weather causes of winter and summer floods. Winter floods are generally the consequence of strong western circulation with crossing frontal systems bringing rain precipitation on snow. While summer floods are caused mostly by cyclonic precipitation of stable low pressure formation in Central European area. Different air circulation type results in different wind ward effect of precipitation and consequently different runoff response. Analysis results were used to create complex categorization of floods. It recognizes 9 categories of floods with typical characteristics of air circulation, precipitation pattern as well as runoff response in the Otava river basin.

  19. Urban sprawl and flooding in southern California

    USGS Publications Warehouse

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  20. CONSEQUENCES OF HUMAN-ALTERED FLOODS: LEVEES, FLOODS, AND FLOODPLAIN FORESTS ALONG THE WISCONSIN RIVER. (R826600)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. USGS Crews Measure Historic Flooding in Fargo, ND

    USGS Multimedia Gallery

    USGS scientists Chris Laveau and Joel Galloway measure streamflow during historical flooding in Fargo, ND. This information is critical for developing flood forecasts to help protect lives and property....

  2. Acoustic Doppler Current Profiler Used to Measure Historic Flooding

    USGS Multimedia Gallery

    USGS scientists use an acoustic doppler current profiler to monitor streamflow during the historic flooding in Fargo, ND. This information provides critical information used to estimate flood dangers and helps protect lives and property....

  3. USGS Crews Measure Historic Flooding in Fargo, ND

    USGS Multimedia Gallery

    USGS scientists continue to monitor streamflow during the historic flooding taking place in Fargo, ND. This information provides critical information used to estimate flood dangers and helps protect lives and property....

  4. Floods in Colombia (2009-2011): rethinking our response to climatic variability

    NASA Astrophysics Data System (ADS)

    Canon Barriga, J. E.

    2011-12-01

    The alternating El Niño-La Niña events of 2009-2011 are clear examples of the extreme weather variability that we can expect from climate-change conditions around the world. This presentation will discuss the impact that such events have had already in Colombia and will suggest ways to deal with similar events in the future. In less than a year the country passed from a dry El Niño (in which the system of reservoirs for water supply and hydropower dropped to critical levels) to a wet La Niña (in which a heavy, sustained rainy period caused landslides and major floods in most of the floodplains and main cities and put the reservoirs to work at their maximum capacity). As a result of the rains, several levees, bridges and roads across the country failed or collapsed, prompting the government to declare a state of emergency and to propose an ambitious plan for the reconstruction of the country's infrastructure in the following years. Many of the effects of these floods, which occur seasonally at lower scales, were magnified by the increasing human occupation of wetlands and floodplains due to different economic interests and by decades of transformation of forested areas in the mountains for pastures and cattle-growing. We drawn several lessons from these alternate occurrence of weather extremes: 1) reservoirs, for instance, may not be resilient to the occurrence of a single period of severe dryness and have a limited capacity to control floods during seasons of heavy rain; 2) alternating weather extremes may leave governments with limited time to respond within the regular seasonal cycle and solutions may be delayed and unreliable (as the PDO enters in a negative phase in the coming years, La Niña events and wetter than normal conditions in the country are likely to become more frequent, extending the rainy season cycle); 3) several years of deforestation in the cordillera have increased erosive processes and sediment loads making the rivers more difficult to predict or forecast; 4) levees and invasive channel works create a false sense of security and require better local specifications and studies (i.e., of discharge, sediment loads and geomorphological evolution in a non-stationary framework), as well as maintenance, constant monitoring and law enforcement to protect floodplain areas; 5) mountain reforestation is essential to mitigate these impacts, along with river-friendly solutions, including the relocation of communities and incentives for changes in the vocational use of land toward practices that harmonize with the ecosystems and with the seasonal nature of floods. These lessons would likely also apply to other countries in tropical regions characterized by similar weather patterns and levels of social development.

  5. Uncorrected land-use planning highlighted by flooding: the Alba case study (Piedmont, Italy)

    NASA Astrophysics Data System (ADS)

    Luino, F.; Turconi, L.; Petrea, C.; Nigrelli, G.

    2012-07-01

    Alba is a town of over 30 000 inhabitants located along the Tanaro River (Piedmont, northwestern Italy) and is famous for its wine and white truffles. Many important industries and companies are based in Alba, including the famous confectionery group Ferrero. The town suffered considerably from a flood that occurred on 5-6 November 1994. Forty-eight percent of the urban area was inundated, causing severe damage and killing nine people. After the flood, the Alba area was analysed in detail to determine the reasons for its vulnerability. Information on serious floods in this area since 1800 was gathered from official records, state technical office reports, unpublished documents in the municipal archives, and articles published in local and national newspapers. Maps, plans and aerial photographs (since 1954) were examined to reconstruct Alba's urban development over the last two centuries and the planform changes of the Tanaro River. The results were compared with the effects of the November 1994 flood, which was mapped from aerial photographs taken immediately after the flood, field surveys and eyewitness reports. The territory of Alba was subdivided into six categories: residential; public service; industrial, commercial and hotels; sports areas, utilities and standards (public gardens, parks, athletics grounds, private and public sport clubs); aggregate plants and dumps; and agriculture and riverine strip. The six categories were then grouped into three classes with different flooding-vulnerability levels according to various parameters. Using GIS, the three river corridors along the Tanaro identified by the Autorità di Bacino del Fiume Po were overlaid on the three classes to produce a final map of the risk areas. This study shows that the historic floods and their dynamics have not been duly considered in the land-use planning of Alba. The zones that were most heavily damaged in the 1994 flood were those that were frequently affected in the past and sites of more recent urbanisation. Despite recurrent severe flooding of the Tanaro River and its tributaries, areas along the riverbed and its paleochannels have been increasingly used for infrastructure and building (e.g., roads, a municipal dump, a prison, natural aggregate plants, a nomad camp), which has often interfered with the natural spread of the floodwaters. Since the 1994 flood, many remedial projects have been completed along the Tanaro and its tributaries, including levees, bank protection, concrete walls and floodway channels. In spite of these costly projects, some areas remain at high risk for flooding. The method used, which considered historical data, river corridors identified by hydraulic calculations, geomorphological aspects and land-use planning, can indicate with good accuracy flood-prone areas and in consequence to be an useful tool for the coherent planning of urban expansion and the mitigation of flood risk.

  6. Crowdsourcing detailed flood data

    NASA Astrophysics Data System (ADS)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK in the more generalised RASP project (DEFRA and the Environment Agency), and in line with the expressed needs of the ABI (Association of British Insurers) and National Flood Forum. The detailed data produced will also support improved flood risk assessment for the provision of affordable insurance.

  7. Flood-carrying capacities and changes in channels of the Lower Puyallup, White, and Carbon Rivers in western Washington

    USGS Publications Warehouse

    Prych, E.A.

    1988-01-01

    The flood-carrying capacity of the Puyallup River 's leveed channel from its mouth to the city of Puyallup exceeds the 100-yr-flood discharge at most locations. Upstream from the city of Puyallup the flood-carrying capacity also is less than the 100-yr flood at many locations. In King County the flood-carrying capacity would be greater than the 100-year flood nearly everywhere if the levees were in a good state of repair. The flood-carrying capacity of the leveed Carbon River channel is less than the 100-yr flood at numerous locations. Changes between 1976-77 and 1984 in average channel cross-section elevations for the Puyallup and Carbon Rivers were less than 1 ft at more than one-half of 90 surveyed cross sections and were more than 2 ft at only 5 of them. Changes in average elevations for the White River downstream of the inflow from Lake Tapps rose approximately 2 ft or more at 5 of the 10 surveyed cross sections, but decreased 2 ft or more at nearly one-half of 29 cross sections upstream of the reach. Differences between computed 100-yr floodwater-surface elevations for 1976-77 and 1984 channels are similar to changes in average cross-section elevations. Dense growths of streambank vegetation could increase 100-yr floodwater surface elevations by 1.2 ft. (USGS)

  8. Sea-Level Rise and Subsidence: Implications for Flooding in New Orleans, Louisiana

    E-print Network

    Gray, Matthew

    Sea-Level Rise and Subsidence: Implications for Flooding in New Orleans, Louisiana By Virginia R with relatively high rates of land subsidence. Land-surface altitude data collected in the leveed areas of the New subsidence of 5 millimeters per year. Preliminary results of other studies detecting the regional movement

  9. historical ecology study A PRODUCT OF FLOOD CONTROL 2.0

    E-print Network

    Sean Baumgarten CONTRIBUTING AUTHORS Scott Dusterhoff Erin Beller DESIGN AND LAYOUT Ruth Askevold #12 is available on SFEI's website at www.sfei.org/projects/flood-control-20 IMAGE PERMISSION Permissions Bay more rapidly and to remove surrounding areas from inundation. Following levee construction

  10. Flood control reservoir operations for conditions of limited storage capacity 

    E-print Network

    Rivera Ramirez, Hector David

    2005-02-17

    , and Dr. Patricia Haan, members of my Advisory Committee, for their willingness to be a part of this project and for their contributions. Thanks to the efforts of Dr. Robert Lytton, this project was funded for 4 years by the National Science Foundation... such as dams and reservoirs, levees and dikes, channel modifications, etc. In 1936, the U.S. Congress created the Flood Control Act, which authorized nearly 300 flood control projects at a cost of $370 million (Arnold 1988). Section 1 of this act declared...

  11. Assessment of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan

  12. The Global Flood Model

    NASA Astrophysics Data System (ADS)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage, the core specifications and reference version of the GFM will be licensed free. - for commercial use, users (such as software companies, engineering companies and business or risk management consultancies) will pay an annual fee, contributing to upkeep and maintenance. The GFM demonstrator will be shown and discussed. The initiative is seeking active involvement of the academic community.

  13. From flood management systems to flood resilient systems: integration of flood resilient technologies

    NASA Astrophysics Data System (ADS)

    Salagnac, J.-L.; Diez, J.; Tourbier, J.

    2012-04-01

    Flooding has always been a major risk world-wide. Humans chose to live and develop settlements close to water (rivers, seas) due to the resources water brings, i.e. food, energy, capacity to economically transport persons and goods, and recreation. However, the risk from flooding, including pluvial flooding, often offsets these huge advantages. Floods sometimes have terrible consequences from both a human and economic point of view. The permanence and growth of urban areas in flood-prone zones despite these risks is a clear indication of the choices of concerned human groups. The observed growing concentration of population along the sea shore, the increase of urban population worldwide, the exponential growth of the world population and possibly climate change are factors that confirm flood will remain a major issue for the next decades. Flood management systems are designed and implemented to cope with such situations. In spite of frequent events, lessons look to be difficult to draw out and progresses are rather slow. The list of potential triggers to improve flood management systems is nevertheless well established: information, education, awareness raising, alert, prevention, protection, feedback from events, ... Many disciplines are concerned which cover a wide range of soft and hard sciences. A huge amount of both printed and electronic literature is available. Regulations are abundant. In spite of all these potentially favourable elements, similar questions spring up after each new significant event: • Was the event forecast precise enough? • Was the alert system efficient? • Why were buildings built in identified flood prone areas? • Why did the concerned population not follow instructions? • Why did the dike break? • What should we do to avoid it happens again? • What about damages evaluation, wastes and debris evacuation, infrastructures and buildings repair, activity recovery, temporary relocation of inhabitants, health concerns, insurance concerns, water-resistant materials, vulnerability assessment ? Flood resilient system (FReS) concept has been proposed as a new framework to address flood situations. Such systems intend to better approach such situations from a holistic point of view. FReS encompass ecologic, spatial, structural, social, disaster relief and flood risk aspects. FReS design and implementation conditions have been addressed by the FP7 SMARTeST (Smart Resilience Technology, Systems and Tools) project. The focus of this Project on the use of available and innovative communication, forecasting and flood protection technologies leads to an original contribution which highlights both the scope and the limits of this technology driven approach. These reflexions contribute to the elaboration of guidelines for the design of FReS.

  14. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  15. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  16. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  17. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  18. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  19. FLOOD RESPONSE PLAN River Flood Guide

    E-print Network

    Lennard, William N.

    1 FLOOD RESPONSE PLAN River Flood Guide Effective Date: January 2013 Updated: February 2014 #12 Thames River basin have the potential to cause flooding on Western properties. PURPOSE To establish areas) closing of parking lots and clearing of parked vehicles and other Western property in flood

  20. 76 FR 78015 - Revised Analysis and Mapping Procedures for Non-Accredited Levees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...proposed solution for Revised Analysis and Mapping Procedures for...a revised procedure for the analysis and mapping of non-accredited...CONTACT: Bill Blanton, Levee Analysis and Mapping Approach Public...non-accredited levees. This approach works within the confines of...

  1. Documenting Tragedy and Resilience: The Importance of Spike Lee's "When the Levees Broke"

    ERIC Educational Resources Information Center

    Foster, Kevin Michael; Blakes, Tifani; McKay, Jenny

    2008-01-01

    Spike Lee's documentary, "When the Levees Broke," provides an informative, enduring, and alternative presentation surrounding the human and man-made debacle associated with Hurricane Katrina. Levees centers the voices of survivors and others involved in the weeks during and after the hurricane, historicizes residents' understandings and reactions,…

  2. A Model for Variable Levee Formation Rates in an Active Lava Flow

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Baloga, S. M.; Mouginis-Mark, P.; Crisp, J.

    2004-01-01

    Channelized lava flows on Mars and the Earth often feature levees and collateral margins that change in volume along the path of the flow. Consistent with field observations of terrestrial flows, this suggests that the rate of levee formation varies with distance and other factors. Previous models have assumed a constant rate of levee growth, specified by a single parameter, lambda. The rate of levee formation for lava flows is a good indicator of the mass eruption rate and rheology of the flow. Insight into levee formation will help us better understand whether or not the effusion rate was constant during an eruption, and once local topography is considered, allows us to look at cooling and/or rheology changes downslope. Here we present a more realistic extension of the levee formation model that treats the rate of levee growth as a function of distance along the flow path. We show how this model can be used with a terrestrial flow and a long lava flow on Mars. The key statement of the new formulation is the rate of transfer from the active component to the levees (or other passive components) through an element dx along the path of the flow. This volumetric transfer equation is presented.

  3. Balancing Play, Meaning and Reality: The Design Philosophy of LEVEE PATROLLER

    ERIC Educational Resources Information Center

    Harteveld, Casper; Guimaraes, Rui; Mayer, Igor S.; Bidarra, Rafael

    2010-01-01

    Most serious games have been developed without a proper and comprehensive design theory. To contribute to the development of such a theory, this article presents the underlying design philosophy of LEVEE PATROLLER, a game to train levee patrollers in the Netherlands. This philosophy stipulates that the design of a digital serious game is a…

  4. SIMULATING LEVEE EROSION WITH PHYSICAL MODELING Jared A. Gross, A.M.ASCE1

    E-print Network

    Franklin, W. Randolph

    SIMULATING LEVEE EROSION WITH PHYSICAL MODELING VALIDATION Jared A. Gross, A.M.ASCE1 ; Christopher, and general earth embankments. It specifically studies where these erosion features occur, and how long to previous levee erosion analysis, which has primarily concerned the final effects of erosion, such as soil

  5. Analyses, Simulations and Physical Modeling Validation of Levee and Embankment Erosion

    E-print Network

    Analyses, Simulations and Physical Modeling Validation of Levee and Embankment Erosion Zhongxian; email: zimmit@rpi.edu ABSTRACT We present a computer simulation of hydraulic erosion on levees, dams, and earth embankments, with emphasis on rill and gully initiation and propagation. We focus on erosion

  6. Perception of floods as an important aspect of quality of life and territorial changes in flood areas

    NASA Astrophysics Data System (ADS)

    Klemešová, Kamila; Andráško, Ivan

    2014-05-01

    The quality of life in many municipalities in the Czech Republic is affected by coming floods. Since 1997 when a great part of Moravia was affected by an extreme flood situation, much closer attention is paid to floods and flood protection. Flood management is based, besides others, on European flood legislation but it still does not reflect the social perception of flood situations as a common part of the evaluation of flood risk. However, this very perception strongly influences future implementation of flood measures, territorial and social development of the municipality and indirectly the quality of life in the municipality. One of the main problems in flood issue is the financing of anti-flood measures. In view of the fact that financial resources in environmental sphere are limited, preventive anti-flood measures, that can eliminate the impacts of future floods and are not so expensive, assume more importance. Such kind of measures is often suggested for local needs. The necessity to research the social perception of flood in this context is supported by some studies pointing out a still insufficient use of preventive anti-flood measures in the Czech Republic in spite of several extreme floods in the past 20 years. This paper aims at presenting the results of a research which has been done in a model area affected by floods. The aim of this research was to point out the main factors that influence the life in the municipality after flood (including suggested anti-flood measures) and the possibilities and willingness of the inhabitants to change them. The research results have subsequently been supplemented with the same evaluation by the members of local administrations who are important players in post-flood development of the municipality and in dealings with citizens about the suggested anti-flood measures.

  7. Study of Movement and Seepage Along Levees Using DINSAR and the Airborne UAVSAR Instrument

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.; Bawden, Gerald; Deverel, Steven; Dudas, Joel; Hensley, Scott

    2012-01-01

    We have studied the utility of high resolution SAR (synthetic aperture radar) for levee monitoring using UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) data collected along the dikes and levees in California's Sacramento-San Joaquin Delta and along the lower Mississippi River. Our study has focused on detecting and tracking changes that are indicative of potential problem spots, namely deformation of the levees, subsidence along the levee toe, and seepage through the levees, making use of polarimetric and interferometric SAR techniques. Here was present some results of those studies, which show that high resolution, low noise SAR imaging could supplement more traditional ground-based monitoring methods by providing early indicators of seepage and deformation.

  8. Estimating 100-year flood confidence intervals

    NASA Astrophysics Data System (ADS)

    Whitley, R. J.; Hromadka, T. V.

    The estimation of the 100-year flood, or more generally the T-year flood, is a basic problem in hydrology. An important source of uncertainty in this estimate is that caused by the uncertain estimation of parameters of the flood distribution. This uncertainty can have a significant effect on the flood design value, and its quantification is an important aspect of evaluating the risk involved in a chosen level of flood protection. In this paper, simulation is used to determine confidence intervals for the flood design value. The simulation allows verification of Stedinger's formula not only as it applies to confidence intervals, but also verifies the formula as an approximation to percentiles as well.

  9. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.

    PubMed

    Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding. PMID:24512322

  10. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011

    USGS Publications Warehouse

    Goodwell, Allison E.; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A.; Kumar, Praveen; Garcia, Marcelo H.; Rhoads, Bruce L.; Holmes, Jr., Robert R.; Parker, Gary; Berretta, David P.; Jacobson, Robert B.

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km2 agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.

  11. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.

    2014-01-01

    This study explores the feasibility of using airborne lidar surveys to derive high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish. Generally, the use of traditional manual surveying methods to map levees is a costly and time consuming process that typically produces cross-levee profiles every few hundred meters, at best. The purpose of our paper is to describe and test methods for extracting levee crest elevations in an efficient, comprehensive manner using high resolution lidar generated DEMs. In addition, the vertical uncertainty in the elevation data and its effect on the resultant estimate of levee crest heights is addressed in an assessment of whether the federal levees in our study meet the USACE minimum height design criteria.

  12. Decreasing flood risk perception in Porto Alegre - Brazil and its influence on water resource management decisions

    NASA Astrophysics Data System (ADS)

    Allasia, D. G.; Tassi, R.; Bemfica, D.; Goldenfum, J. A.

    2015-06-01

    Porto Alegre is the capital and largest city in the Brazilian state of Rio Grande do Sul in Southern Brazil with approximately 1.5 million inhabitants. The city lies on the eastern bank of the Guaiba Lake, formed by the convergence of five rivers and leading to the Lagoa dos Patos, a giant freshwater lagoon navigable by even the largest of ships. This river junction has become an important alluvial port as well as a chief industrial and commercial centre. However, this strategic location resulted in severe damage because of its exposure to flooding from the river system, affecting the city in the years 1873, 1928, 1936, 1941 and 1967. In order to reduce flood risk, a complex system of levees and pump stations was implemented during 1960s and 1970s. Since its construction, not a single large flood event occurred. However, in recent years, the levees in the downtown region of Porto Alegre were severally criticized by city planners and population. Several projects have been proposed to demolish the Mauá Wall due to the false perception of lack of flood risk. Similar opinions and reactions against flood infrastructure have been observed in other cities in Brazil, such as Itajaí and Blumenau, with disastrous consequences. This paper illustrates how the perception of flood risk in Porto Alegre has changed over recent years as a result of flood infrastructure, and how such changes in perceptions can influence water management decisions.

  13. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  14. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  15. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  16. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  17. EFFECT OF FLOOD REGIME ON TREE GROWTH IN THE FLOODPLAIN AND SURROUNDING UPLANDS OF THE WISCONSIN RIVER

    E-print Network

    Turner, Monica G.

    EFFECT OF FLOOD REGIME ON TREE GROWTH IN THE FLOODPLAIN AND SURROUNDING UPLANDS OF THE WISCONSIN growth in riverine landscapes. We studied tree growth in floodplain and upland forests of the Wisconsin River. About a century ago, levees set back from the river were constructed on this floodplain

  18. 10 7 2014. 07 139148 Investigation of Flood Stage on the Upstream Waterfront Area in Floodplain Depending on the

    E-print Network

    Julien, Pierre Y.

    in Floodplain Depending on the Operation Rule of the Nakdong River Estuary Barrage Sang Do An* Nakdong River level at each eco-park in the floodplain in response to increasing flood inflows. Numerical results show, levee, floodplain . 1 HEC-RAS . 1.1 3.0 . * Tel. +82

  19. Implementing the EU Floods Directive (2007/60/EC) in Austria: Flood Risk Management Plans

    NASA Astrophysics Data System (ADS)

    Neuhold, Clemens

    2013-04-01

    he Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EFD) aims at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the Community. This task is to be achieved based on three process steps (1) preliminary flood risk assessment (finalised by the end of 2011), (2) flood hazard maps and flood risk maps (due 2013) and (3) flood risk management plans (due 2015). Currently, an interdisciplinary national working group is defining the methodological framework for flood risk management plans in Austria supported by a constant exchange with international bodies and experts. Referring to the EFD the components of the flood risk management plan are (excerpt): 1. conclusions of the preliminary flood risk assessment 2. flood hazard maps and flood risk maps and the conclusions that can be drawn from those maps 3. a description of the appropriate objectives of flood risk management 4. a summary of measures and their prioritisation aiming to achieve the appropriate objectives of flood risk management The poster refers to some of the major challenges in this process, such as the legal provisions, coordination of administrative units, definition of public relations, etc. The implementation of the EFD requires the harmonisation of legal instruments of various disciplines (e.g. water management, spatial planning, civil protection) enabling a coordinated - and ideally binding - practice of flood risk management. This process is highly influenced by the administrative organisation in Austria - federal, provincial and municipality level. The Austrian approach meets this organisational framework by structuring the development of the flood risk management plan into 3 time-steps: (a) federal blueprint, (b) provincial editing and (c) federal finishing as well as reporting to the European Commission. Each time-step addresses different administrative levels and spatial scales accompanied by the active involvement of interested parties.

  20. Flood Modelling in Jakarta 

    E-print Network

    Diamantidis, Georgios

    2009-11-26

    Flooding is a major issue that affects the well being of a big part of the global population. This project is concerned with flooding caused by extreme rainfall events. Its aim is the development of a flood prediction ...

  1. Terrestrial Lidar Datasets of New Orleans, Louisiana, Levee Failures from Hurricane Katrina, August 29, 2005

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert; Minasian, Diane; Reiss, Thomas

    2009-01-01

    Hurricane Katrina made landfall with the northern Gulf Coast on August 29, 2005, as one of the strongest hurricanes on record. The storm damage incurred in Louisiana included a number of levee failures that led to the inundation of approximately 85 percent of the metropolitan New Orleans area. Whereas extreme levels of storm damage were expected from such an event, the catastrophic failure of the New Orleans levees prompted a quick mobilization of engineering experts to assess why and how particular levees failed. As part of this mobilization, civil engineering members of the United States Geological Survey (USGS) performed terrestrial lidar topographic surveys at major levee failures in the New Orleans area. The focus of the terrestrial lidar effort was to obtain precise measurements of the ground surface to map soil displacements at each levee site, the nonuniformity of levee height freeboard, depth of erosion where scour occurred, and distress in structures at incipient failure. In total, we investigated eight sites in the New Orleans region, including both earth and concrete floodwall levee breaks. The datasets extend from the 17th Street Canal in the Orleans East Bank area to the intersection of the Gulf Intracoastal Waterway (GIWW) with the Mississippi River Gulf Outlet (MRGO) in the New Orleans East area. The lidar scan data consists of electronic files containing millions of surveyed points. These points characterize the topography of each levee's postfailure or incipient condition and are available for download through online hyperlinks. The data serve as a permanent archive of the catastrophic damage of Hurricane Katrina on the levee systems of New Orleans. Complete details of the data collection, processing, and georeferencing methodologies are provided in this report to assist in the visualization and analysis of the data by future users.

  2. Prospects for Season-ahead Global Flood Forecasts

    NASA Astrophysics Data System (ADS)

    Lee, D.; Block, P. J.; Ward, P.

    2014-12-01

    Flood events rank as one of the most destructive natural hazards, with associated global economic losses increasing starkly over the past half century. This has drawn attention to prospects for flood forecasts to protect life and livelihoods. Typical forecasts emphasize the short-term (hours to days) scale to inform immediate response action. Longer-range forecasts, on the order of months to seasons, however, could compliment short-range forecasts by focusing on disaster preparedness. Initially, we define key flood seasons globally, at grid and basin scales, which are most likely to contain the most severe annual flood using observational (GRDC) and model (PCR-GLOBWB) streamflow data over 1958-2000. Model-defined flood seasons strongly agree (89% of time) with flood seasons defined through observations. Model-defined flood seasons were also qualitatively verified with actual flood records over 1985-2008 from the Dartmouth Flood Observatory records. Subsequently we have begun investigating the effects of inter-annual climate variability on seasonal maximum floods, particularly how ENSO and other large-scale phenomena may modulate discharge and flood severity. Skillful relationship have led to preliminary seasonal global flood forecast models, at the basin scale, providing early (season-ahead) flood probabilities, flood extent, and estimated damages.

  3. Flood risk changes over centuries in Rome: an empirical study

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, Giuliano; Saccà, Smeralda; Tito Aronica, Giuseppe; Grimaldi, Salvatore; Crisci, Massimiliano

    2015-04-01

    Over centuries, the development of the historical city of Rome -close to one of the largest Italian rivers, the Tiber- has been intertwined with the magnitude and frequency of flooding events. The ancient Rome mostly developed on the (seven) hills, while the Tiber's floodplain was mainly exploited for agricultural purposes. A few small communities did settle in the riparian areas of the Tiber, but they had a relatively peaceful relationships with the frequent occurrence of flooding events. Nowadays, numerous people live in modern districts in the Tiber's floodplain, unaware of their exposure to potentially catastrophic flooding. The main goal of this research is to explore the dynamics of changing flood risk over the centuries between these two extreme pictures of the ancient and contemporary Rome. To this end, we carried out a socio-hydrological study by exploiting long time series of physical (flooding, river morphology) and social (urbanization, population dynamics) processes together with information about human interactions with the environment (flood defense structures). This empirical analysis showed how human and physical systems have been co-evolving over time, while being abruptly altered by the occurrence of extreme events. For instance, a large flooding event occurred in 1870 and contributed to the constructions of levees, which in turn facilitated the development of new urban areas in the Tiber's floodplain, while changed the societal memory of floods as well as the communities' perception of risk. This research work was also used to test the hypotheses of recent-developed models conceptualizing the interplay between floods and societies and simulating the long-term behavior of coupled human-water systems. The outcomes of this test provided interesting insights about the dynamics of flood risk, which are expected to support a better anticipation of future changes.

  4. 75 FR 6364 - Process for Requesting a Variance From Vegetation Standards for Levees and Floodwalls

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ...system reliability, ability to flood fight, and observe system response under...overtopping. B. Definition of Flood Fight. For the purposes of application of this Agreement, the term ``flood fight'' is defined as actions taken...

  5. 76 FR 70745 - Agency Information Collection Activities: Proposed Collection; Comment Request; National Flood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ...; Comment Request; National Flood Insurance Program--Mortgage Portfolio Protection Program AGENCY: Federal... comments concerning the National Flood Insurance Program Mortgage Portfolio Protection program, which is an option that companies participating in the National Flood Insurance Program can use to bring...

  6. Multilevel integrated flood management aproach

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Rusjan, Simon

    2013-04-01

    The optimal solution for complex flood management is integrated approach. Word »integration« used very often when we try to put something together, but should distinguish full multiple integrated approach of integration by parts when we put together and analyse only two variables. In doing so, we lost complexity of the phenomenon. Otherwise if we try to put together all variables we should take so much effort and time and we never finish the job properly. Solution is in multiple integration captures the essential factors, which are different on a case-by-case (Brilly, 2000). Physical planning is one of most important activity in which flood management should be integrated. The physical planning is crucial for vulnerability and its future development and on other hand our structural measures must be incorporate in space and will very often dominated in. The best solution is if space development derived on same time with development of structural measures. There are good examples with such approach (Vienna, Belgrade, Zagreb, and Ljubljana). Problems stared when we try incorporating flood management in already urbanised area or we would like to decrease risk to some lower level. Looking to practice we learn that middle Ages practices were much better than to day. There is also »disaster by design« when hazard increased as consequence of upstream development or in stream construction or remediation. In such situation we have risk on areas well protected in the past. Good preparation is essential for integration otherwise we just lost time what is essential for decision making and development. We should develop clear picture about physical characteristics of phenomena and possible solutions. We should develop not only the flood maps; we should know how fast phenomena could develop, in hour, day or more. Do we need to analyse ground water - surface water relations, we would like to protected area that was later flooded by ground water. Do we need to take care about sediment transport, phenomenon close related to floods - could the river bad bottom increase or decrease for some meters or river completely rearrange morphology - how then inundated area will look like. Hazard of floods should be presented properly, with maps, uncertainty and trends related to natural and anthropogenic impacts. We should look time back, how our river look in past centuries and what are water management plans for future. Which activities are on the river? There are good practice in flood protection, hydropower development and physical planning (Vienna, Sava River).

  7. 100-Year Flood-It's All About Chance

    USGS Publications Warehouse

    Holmes, Jr., Robert R.; Dinicola, Karen

    2010-01-01

    In the 1960's, the United States government decided to use the 1-percent annual exceedance probability (AEP) flood as the basis for the National Flood Insurance Program. The 1-percent AEP flood was thought to be a fair balance between protecting the public and overly stringent regulation. Because the 1-percent AEP flood has a 1 in 100 chance of being equaled or exceeded in any 1 year, and it has an average recurrence interval of 100 years, it often is referred to as the '100-year flood'. The term '100-year flood' is part of the national lexicon, but is often a source of confusion by those not familiar with flood science and statistics. This poster is an attempt to explain the concept, probabilistic nature, and inherent uncertainties of the '100-year flood' to the layman.

  8. 75 FR 6364 - Process for Requesting a Variance From Vegetation Standards for Levees and Floodwalls

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ...The U.S. Army Corps of Engineers (Corps) is proposing to update its current process for requesting a variance from vegetation standards for levees and floodwalls to reflect organizational changes and incorporate current agency-wide review...

  9. Evaluation of the Structure of Levee Transitions on Wave Runup and Overtopping by Physical Modeling 

    E-print Network

    Oaks, Drake Benjamin

    2011-08-08

    Product h Water Depth, Depth of Levee Toe H Horizontal Dimension, Used for Defining Levee Slope H2% 2% Crest Elevation H?2% Dimensionless 2% Crest Elevation, Simple Scaling 2% tH Dimensionless 2% Crest Elevation, Tuned Scaling Hmo Zeroth...-moment Wave Height Hi Incident Characteristic Wave Height Hs Significant Wave Height H?s Dimensionless Floodwall Significant Wave Height, Simple Scaling t sH Dimensionless Floodwall Significant Wave Height, Tuned Scaling in Inch viii IPET...

  10. Flood Inundation Mapper

    USGS Multimedia Gallery

    A powerful new tool for flood response and mitigation are digital geospatial flood-inundation maps that show flood water extent and depth on the land surface. Because floods are the leading cause of natural-disaster losses, the U.S. Geological Survey (USGS) is actively involved in the development of...

  11. Name_____________________________ Lab 2. Floods

    E-print Network

    Perfect, Ed

    global plagues, world wars, and the Holocaust have caused more catastrophic loss of life. The Johnstown of future floods. TYPES OF FLOODS A flood is defined as any high flow of surface water that overflows be divided into three types. (a) River(ine) floods occur primarily when water from rainfalls or melting

  12. Feedback on flood risk management

    NASA Astrophysics Data System (ADS)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developed in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. With the help of Meteo France datas and experts, Predict services helps local communities and companies in decision making for flood management. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the space technology, communication, meteorology, hydraulics and hydrology, Predict-services brings help to local communities in their mission of protection and information to the citizens, for flood problems and helps companies to limit and delete operating losses facing floods. The initiative, developped by BRL, EADS Astrium, in association with Meteo France, has been employed and is functioning on cities of south of France, notably on Montpellier, and also on the scale of catchment area ( BRL is a regional development company, a public private partnership controlled by the local gouvernments of the Languedoc-Roussillon Region). The initiative has to be coordinated with state services to secure continuity and coherence of information. This initiative is developped in dialogue with State services as Météo France, the Ministry for the interior, the Ministry for ecology and the durable development, the Regional Direction of the Environment (DIREN), the Central service of Hydrometeorology and Support to the Forecast of the Floods ( SCHAPI) and service of forecast of rising (SPC). It has been successfully functioning for 5 years with 300 southern cities from South West to South East of France and notably Montpellier and Sommières, famous for it's flood problems on the Vidourle river where no human loss was to regret and where the economic impacts were minimized. Actually developed in cities of South of France, this initiative is to be developed nationaly and very soon internationally. Thanks to the efficiency of it's method, this initiative is also developed in partnership with insurance company involved in prevention actions. After more than 100 events observed and analysed in South of France, the experience gained, allowed PREDICT Services to better anticipate phenomena and also to better manage them. The presentation will expose the feedback of this initiative and lessons learned on risk management.

  13. Hydrodynamic Modeling of Flood Dynamics and Restoration Potential of Lower Missouri River Floodplains

    NASA Astrophysics Data System (ADS)

    Lindner, G. A.

    2012-12-01

    Lower Missouri River floodplains have the potential to provide multiple ecosystem services including agricultural production, floodwater storage, nutrient processing, and provision of habitats. In this research, a 2-dimensional hydrodynamic model of a representative looped floodplain bottom of approximately 20 km is utilized to explore how floodplain inundation contributes to ecosystem benefits and costs. High resolution 2-dimensional hydrodynamic modeling provides insights into the way velocities, flood stages, residence times, and transported constituents (sediment, nutrients, and fish larvae, for example) are affected by levee geometry, floodplain vegetation patterns, and flood magnitude and duration. The utility of 2-dimensional numerical hydraulic models to represent the channel and floodplain are demonstrated at a scale relevant to understanding processes that control channel/floodplain dynamics. The sensitivity of model response to alternative land use scenarios, including levee setbacks and variable overbank roughness, is quantified using hydraulic parameters such as velocity, water level, conveyance, and residence time. The 2-dimensional models are calibrated to existing 1-dimensional modeling solutions and field measurements of water surface from 1993 and 2007 for the 2-year, 5-year, and 10-year recurrence intervals. Calibration runs with current levee configurations are matched to approximately ±0.1 meters. Simulations of alternative land use scenarios demonstrate the tradeoffs between ecological restoration and flood risk reductions. Levee setbacks with low hydraulic roughness associated with traditional row crop agriculture on the floodplains have the greatest potential for flood stage reductions, while native plant communities with higher roughness can negate the effects of the setbacks by increasing water levels due to enhanced frictional resistance. Residence times, which are presumed to be related to ecosystem services, demonstrate increasingly complex flow paths as levees are setback. Model results indicate that high end-member roughness values on connected floodplains decrease residence time relative to lower roughness characterizations, suggesting compatibility between floodplain restoration and traditional agricultural practices. The 2-dimensional representation of channels and floodplains captures the spatial heterogeneities in water levels and inundation patterns, demonstrating the importance of preferential pathways and ecological hotspots in restoration design. Spatially variable roughness patterns representing a mix of vegetation communities are modeled to explore design scenarios that optimize flood risk reduction, ecological, and agricultural objectives. Evidence of floodwave attenuation is negligible for floods of approximately the 10-year recurrence interval for all land use scenarios because of the small scale of the study domain relative to the contributing area.

  14. Root Development of Salix purpurea L. on Heavily Compacted Levee Soils

    NASA Astrophysics Data System (ADS)

    Lammeranner, W.

    2012-04-01

    The effect of woody vegetation on levee stability is discussed controversially. On the one hand woody plants improve slope stability, prevent erosion failures and may aid in levee stability. On the other hand it is believed that woody vegetation has negative impacts which are largely related to the rooting system. Hence, root penetration can facilitate water movement - seepage or piping - as well as living and decaying roots can lead to voids and threaten the structural integrity of levees. In general root architecture is known for many plant species, but specific root characteristics and their interaction with soils are influenced by many factors, and therefore poorly understood. Consequently the current research investigates the rooting performance of woody vegetation by singling out a special type of vegetation which is often used within soil bioengineering techniques at river embankments. This vegetation type is a dense stand of shrubby willows (Salix purpurea L.), implemented with brush mattresses. The data is collected from a test site constructed in 2007, 5 km northeast of Vienna, Austria. Part of the test site is a research levee built true to natural scale. The fill material of the levee is a mineral silt-sand-gravel compound classified as silty sand, which was compacted to a dry density of 1.86 g/cm3. The planting of vegetation was applied directly to the compacted levee body using only a thin layer (2-4 cm) of humus topsoil. In 2009 the studies were supplemented with a lysimeter-like setup consisting of a total of 20 containers. The lysimeters were filled homogenously with the same soil as the levees and were consolidated to the same degree of compaction. They were planted similar to the research levees. Within the investigations a comprehensive annual vegetation monitoring program was carried out. Measured aboveground parameters were shoot diameter, shoot length, biomass and leaf area index (LAI). Monitored rooting parameters - examined by excavation - were rooting depth and root mass, complemented with several further rooting parameters obtained from the lysimeters and analyzed by WinRhizo. The proposed contribution will present the results of the vegetation monitoring program. Gained results will be discussed with reference to levee stability.

  15. Flood fatality hazard and flood damage hazard: combining multiple hazard characteristics into meaningful maps for spatial planning

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Klijn, F.; van de Pas, B.; Slager, C. T. J.

    2015-06-01

    For comprehensive flood risk management, accurate information on flood hazards is crucial. While in the past an estimate of potential flood consequences in large areas was often sufficient to make decisions on flood protection, there is currently an increasing demand to have detailed hazard maps available to be able to consider other risk-reducing measures as well. Hazard maps are a prerequisite for spatial planning, but can also support emergency management, the design of flood mitigation measures, and the setting of insurance policies. The increase in flood risks due to population growth and economic development in hazardous areas in the past shows that sensible spatial planning is crucial to prevent risks increasing further. Assigning the least hazardous locations for development or adapting developments to the actual hazard requires comprehensive flood hazard maps. Since flood hazard is a multi-dimensional phenomenon, many different maps could be relevant. Having large numbers of maps to take into account does not, however, make planning easier. To support flood risk management planning we therefore introduce a new approach in which all relevant flood hazard parameters can be combined into two comprehensive maps of flood damage hazard and flood fatality hazard.

  16. Time scales of change in chemical and biological parameters after engineered levee breaches adjacent to Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Wood, Tamara M.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Carlson, Rick A.; Fend, Steven V.

    2012-01-01

    Eight sampling trips were coordinated after engineered levee breaches hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. The reconnection, by a series of explosive blasts, was coordinated by The Nature Conservancy to reclaim wetlands that had for approximately seven decades been leveed for crop production. Sets of nonmetallic porewater profilers (U.S. Patent 8,051,727 B1; November 8, 2011; http://www.uspto.gov/web/patents/patog/ week45/OG/html/1372-2/US08051727-20111108.html.) were deployed during these trips in November 2007, June 2008, May 2009, July 2009, May 2010, August 2010, June 2011, and July 2011 (table 1). Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae and spatially involved three lake and four wetland sites. Spatial and temporal variation in solute benthic flux was determined by the field team, using the profilers, over an approximately 4-year period beginning 3 days after the levee breaches. The highest flux to the water column of dissolved organic carbon (DOC) was detected in the newly flooded wetland, contrasting negative or insignificant DOC fluxes at adjacent lake sites. Over the multiyear study, DOC benthic fluxes dissipated in the reconnected wetlands, converging to values similar to those for established wetlands and to the adjacent lake (table 2). In contrast to DOC, benthic sources of soluble reactive phosphorus, ammonium, dissolved iron and manganese from within the reconnected wetlands were consistently elevated (that is, significant in magnitude relative to riverine and established-wetland sources) indicating a multi-year time scale for certain chemical changes after the levee breaches (table 2). Colonization of the reconnected wetlands by aquatic benthic invertebrates during the study trended toward the assemblages in established wetlands, providing further evidence of a multiyear transition of this area to permanent aquatic habitat (table 3). Both the lake and wetland benthic environments substantively contribute to macro- and micronutrients in the water column. Wetland areas undergoing restoration, and those being used for water storage, function very differently relatively to the established wetland within the Upper Klamath Lake National Wildlife Refuge, adjacent Upper Klamath Lake. Developing long-term management strategies for water quality in the Upper Klamath Basin requires recognition of the multi-year time scales associated with restoring wetlands that provide natural, seasonal ecosystem function and services.

  17. Feedback on flood risk management

    NASA Astrophysics Data System (ADS)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developped in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the space technology, communication, meteorology, hydraulics and hydrology, Predict-services brings help to local communities in their mission of protection and information to the citizens, for flood problems and helps companies to limit and delete operating losses facing floods. The initiative, developped by BRL, EADS Astrium, in association with Meteo France, has been employed and is functioning on cities of south of France, notably on Montpellier, and also on the scale of catchment area( BRL is a regional development company, a public private partnership controlled by the local gouvernments of the Languedoc-Roussillon Region). The initiative has to be coordinated with state services to secure continuity and coherence of information. This initiative is developped in dialogue with State services as Météo France, the Ministry for the interior, the Ministry for ecology and the durable development, the Regional Direction of the Environment (DIREN), the Central service of Hydrometeorology and Support to the Forecast of the Floods ( SCHAPI) and service of forecast of rising (SPC). It has been successfully functioning for 5 years with 300 southern cities from South West to South East of France and notably Montpellier and Sommières, famous for it’s flood problems on the Vidourle river where no human loss was to regret and where the economic impacts were minimized. Actually developed in cities of South of France, this initiative is to be developed nationaly and very soon internationally. Thanks to the efficiency of it’s method, this initiative is also developed in partnership with insurance company involved in prevention actions. The presentation will expose the feedback of this initiative and lessons learned.

  18. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury

    PubMed Central

    Dong, Shuying; Tong, Xuhui; Li, Jun; Huang, Cheng; Hu, Chengmu; Jiao, Hao; Gu, Yuchen

    2013-01-01

    In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly alleviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in gluta-thione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion in-jury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso-ciated with its antioxidant activities. PMID:25206640

  19. Geophysical characterization of the Lollie Levee near Conway, Arkansas, using capacitively coupled resistivity, coring, and direct push logging

    USGS Publications Warehouse

    Gillip, Jonathan A.; Payne, Jason D.

    2011-01-01

    A geophysical characterization of Lollie Levee near Conway, Arkansas, was conducted in February 2011. A capacitively coupled resistivity survey (using Geometric's OhmMapper) was completed along the top and toe of the 6.7-mile levee. Two-dimensional inversions were conducted on the geophysical data. As a quality-control measure, cores and direct push logs were taken at approximately 1-mile intervals along the levee. The capacitively coupled resistivity survey, the coring, and the direct push logs were used to characterize the geologic materials. Comparison of the cores and the direct push log data, along with published resistivity values, indicates that resistivity values of 200 Ohm-meters or greater represent relatively clean sand, with decreasing resistivity values occurring with increasing silt and clay content. The cores indicated that the levee is composed of a heterogeneous mixture of sand, silt, and clay. The capacitively coupled resistivity sections confirm that the levee is composed of a heterogeneous mixture of high and low resistivity materials and show that the composition of the levee varies spatially. The geologic materials underlying the levee vary spatially as a result of the geologic processes that deposited them. In general, the naturally deposited geologic materials underlying the levee contain a greater amount of low resistivity materials in the southern extent of the levee.

  20. Technical Note: Stability of a Levee Made of Bottom Sediments From a Dam Reservoir

    NASA Astrophysics Data System (ADS)

    Ko?, Karolina; Zawisza, Eugeniusz

    2015-02-01

    Stability analysis of a levee made of the bottom sediments from Czorsztyn-Niedzica Reservoir is presented in the paper. These sediments were classified as silty sands and, based on the authors' own research, their geotechnical parameters were beneficial, so the possibility of using this material for the hydraulic embankments was considered. Stability and filtration calculations were carried out for a levee that had the same top width - 3 m, slope inclinations 1:2 and different heights: 4, 6 and 8 m. Two methods were used: analytical and numerical. Calculations were carried out without and with a steady and unsteady seepage filtration. Based on the analysis carried out it was stated that the levee made of the bottom sediments is stable even at the height of 8.0 m, although because of the seepage on the downstream side it is recommended to use a drainage at the toe of the slope.

  1. Souris River Flooding

    USGS Multimedia Gallery

    Souris River flooding many homes in Minot, ND. The Souris River went over the large dikes along 5th Ave and Edwards Ave in Minot, ND. Photo taken by USGS personnel during a FEMA Flood Inundation Mapping Project....

  2. FLOOD EVENT MAPPING IMAGES

    EPA Science Inventory

    OSEI flood products (FLD) include multichannel color composite imagery and single-channel grayscale imagery of enlarged river areas or increased sediment flow. Typically, these events are displayed by comparison to imagery taken when flooding was not occurring.

  3. Sugarcane Response to Month and Duration of Preharvest Flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some Florida growers apply 1-day floods about 3 weeks prior to harvest to prevent fires that may ignite on organic soils during preharvest burning of sugarcane (Saccharum spp.). Extending these flood durations could improve sugarcane insect control, freeze protection, soil conservation, and reduce u...

  4. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... accordance with 24 CFR part 91), section 202(a) of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4106) and the regulations in 44 CFR parts 59 through 79 apply to funds provided under this part 570. ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true National Flood Insurance...

  5. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  6. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... accordance with 24 CFR part 91), section 202(a) of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4106) and the regulations in 44 CFR parts 59 through 79 apply to funds provided under this part 570. ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false National Flood Insurance...

  7. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  8. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  9. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  10. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... accordance with 24 CFR part 91), section 202(a) of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4106) and the regulations in 44 CFR parts 59 through 79 apply to funds provided under this part 570. ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false National Flood Insurance...

  11. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 24 CFR part 91), section 202(a) of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4106) and the regulations in 44 CFR parts 59 through 79 apply to funds provided under this part 570. ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true National Flood Insurance...

  12. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  13. 24 CFR 570.605 - National Flood Insurance Program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... accordance with 24 CFR part 91), section 202(a) of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4106) and the regulations in 44 CFR parts 59 through 79 apply to funds provided under this part 570. ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false National Flood Insurance...

  14. Early-season flooding for insect pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Wisconsin, there is much interest in the spring flood as a means to not only reduce pest populations, but also to facilitate marsh sanitation and provide frost protection. A large-scale field study was undertaken in 2011 to examine how a 30-40 hour spring flood (late May) would affect key insect ...

  15. Removal of arthropods in the spring “trash floods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding of cranberry marshes is a common practice in the spring. It is intended primarily to clean out detritus while protecting against frost danger. The water is sometimes held for longer periods to reduce pest populations. We examined the detritus being hauled off of flooded beds for any evidenc...

  16. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain

    USGS Publications Warehouse

    Valett, H.M.; Baker, M.A.; Morrice, J.A.; Crawford, C.S.; Molles, M.C., Jr.; Dahm, C. N.; Moyer, D.L.; Thibault, J.R.; Ellis, L.M.

    2005-01-01

    Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function.

  17. 2011 Spring Flood

    USGS Multimedia Gallery

    A camp lies flooded on the edge of the Florida Gas Canal. Rising floodwaters during the 2011 flood have inundated many hunting camps and residences. Flooded even before the additional water from the Morganza Spillway arrived, these camps were built on land that is usually well above the water level ...

  18. Flood Aftermath, Boulder, Colo.

    USGS Multimedia Gallery

    This flooded culvert is located on Monarch Road just east of the Diagonal Highway in Boulder, Colo. Numerous rivers flooded during a significant September 2013 rain event along Colorado's Front Range, damaging or destroying several USGS streamgages. In response, USGS field crews measured flood...

  19. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  20. Raising risk preparedness by flood risk communication

    NASA Astrophysics Data System (ADS)

    Maidl, E.; Buchecker, M.

    2015-07-01

    During the last decade, most European countries have produced hazard maps of natural hazards, but little is known about how to communicate these maps most efficiently to the public. In October 2011, Zurich's local authorities informed owners of buildings located in the urban flood hazard zone about potential flood damage, the probability of flood events and protection measures. The campaign was based on the assumptions that informing citizens increases their risk awareness and that citizens who are aware of risks are more likely to undertake actions to protect themselves and their property. This study is intended as a contribution to better understand the factors that influence flood risk preparedness, with a special focus on the effects of such a one-way risk communication strategy. We conducted a standardized mail survey of 1500 property owners in the hazard zones in Zurich (response rate main survey: 34 %). The questionnaire included items to measure respondents' risk awareness, risk preparedness, flood experience, information-seeking behaviour, knowledge about flood risk, evaluation of the information material, risk acceptance, attachment to the property and trust in local authorities. Data about the type of property and socio-demographic variables were also collected. Multivariate data analysis revealed that the average level of risk awareness and preparedness was low, but the results confirmed that the campaign had a statistically significant effect on the level of preparedness. The main influencing factors on the intention to prepare for a flood were the extent to which respondents evaluated the information material positively as well as their risk awareness. Respondents who had never taken any previous interest in floods were less likely to read the material. For future campaigns, we therefore recommend repeated communication that is tailored to the information needs of the target population.

  1. Effect of Desiccation Cracks on Earth Embankments 

    E-print Network

    Khandelwal, Siddharth

    2012-07-11

    Levees are earth structures used for flood protection. Due to their easy availability and low permeability, clays are the most common material used for the construction of levees. Clays are susceptible to desiccation cracks ...

  2. GEOTECHNICAL RECONNAISSANCE OF THE 2011 FLOOD ON THE LOWER MISSISSIPPI RIVER

    E-print Network

    GEOTECHNICAL RECONNAISSANCE OF THE 2011 FLOOD ON THE LOWER MISSISSIPPI RIVER Sand Boil on Protected, Louisiana #12;2011 Mississippi River Flood i June 18, 2012 TABLE OF CONTENTS 1. INTRODUCTION #12;2011 Mississippi River Flood 1 June 18, 2012 1. INTRODUCTION The Spring of 2011 brought heavy

  3. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false What flood insurance requirements..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973, as amended (42...

  4. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false What flood insurance requirements..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973, as amended (42...

  5. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Flood-plain and...

  6. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false What flood insurance requirements..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973, as amended (42...

  7. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Flood-plain and...

  8. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false What flood insurance requirements..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973, as amended (42...

  9. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Flood-plain and...

  10. 13 CFR 120.172 - Flood-plain and wetlands management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Flood-plain and wetlands management. (a) All loans must conform to requirements of Executive Orders 11988, “Flood Plain Management” (3 CFR, 1977 Comp., p. 117) and 11990, “Protection of Wetlands” (3 CFR... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Flood-plain and...

  11. 24 CFR 1000.38 - What flood insurance requirements are applicable?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false What flood insurance requirements..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES General § 1000.38 What flood insurance requirements are applicable? Under the Flood Disaster Protection Act of 1973, as amended (42...

  12. Sand boils induced by the 1993 Mississippi River flood: Could they one day be misinterpreted as earthquake-induced liquefaction?

    USGS Publications Warehouse

    Li, Y.; Craven, J.; Schweig, E.S.; Obermeier, S.F.

    1996-01-01

    In areas that are seismically active but lacking clear surficial faulting, many paleoearthquake studies depend on the interpretation of ancient liquefaction features (sand blows) as indicators of prehistoric seismicity. Sand blows, however, can be mimicked by nonseismic sand boils formed by water seeping beneath levees during floods. We examined sand boils induced by the Mississippi River flood of 1993 in order to compare their characteristics with sand blows of the New Madrid earthquakes of 1811-1812. We found a number of criteria that allow a distinction between the two types of deposits. (1) Earthquake-induced liquefaction deposits are broadly distributed about an epicentral area, whereas flood-induced sand boils are limited to a narrow band along a river's levee. (2) The conduits of most earthquake-induced sand blows are planar dikes, whereas the conduits of flood-induced sand boils are most commonly tubular. (3) Depression of the preearthquake ground surface is usual for sand blows, not for sand boils. (4) Flood-induced sand boils tend to be better sorted and much finer than sand-blow deposits. (5) Source beds for earthquake-induced deposits occur at a wide range of depths, whereas the source bed for sand boils is always near surface. (6) Materials removed from the walls surrounding the vent of a sand blow are seen inside sand blows, but are rarely seen inside sand boils. In general, flood-induced sand boils examined are interpreted to represent a less-energetic genesis than earthquake-induced liquefaction.

  13. Flood Plain Management. 

    E-print Network

    McNeely, John G.; Lacewell, Ronald D.

    1976-01-01

    they face. Federal action against flooding has been escalatine since 1966. Executive Order No. 11296 of that year re- quires Federal agencies to take the flood hazard in!~ account in the uses of flood plain lands. In 1968, Con- gress established a... the benefits due to location. Economic analyses indicate that an annual flood premium of about $2 per $100 property value approaches the limit of eco- nomic rationality for dwellings, and perhaps for other property also. When flood costs get to this general...

  14. Severe Flooding in India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Floods devestated parts of eastern India along the Brahmaputra River in June 2000. In some tributaries of the Brahmaputra, the water reached more than 5 meters (16.5 feet) above flood stage. At least 40 residents died, and the flood waters destroyed a bridge linking the region to the rest of India. High water also threatened endangered Rhinos in Kaziranga National Park. Flooded areas are shown in red in the above image. The map was derived from Advanced Very High Resolution Radiometer (AVHRR) data taken on June 15, 2000. For more information on observing floods with satellites, see: Using Satellites to Keep our Head above Water and the Dartmouth Flood Observatory Image by the Dartmouth Flood Observatory

  15. Caustic steam flooding

    SciTech Connect

    Tiab, D.; Okoye, C.U.; Osman, M.M.

    1981-01-01

    A laboratory study was undertaken to investigate the potential of improving tertiary oil recovery of intermediate to heavy oils by using caustic soda as a chemical additive in water flooding and steam flooding. Seven aspects of this study were examined. In all the cases, the process was started with a fresh and similarly water and oil saturated sandpack. The results of these experiments show that as a chemical additive for tertiary water flood and steam flood, caustic soda substantially improved oil recovery of mildly acidic 18/degree/ API gravity oil over conventional water flood and steam flood. The performance of cool caustic flood as a tertiary recovery mechanism was good at high residual oil saturation and poor at low residual oil saturation. 18 refs.

  16. Health Vulnerability of Households in Flooded Communities and Their Adaptation Measures: Case Study in Northeastern Thailand.

    PubMed

    Srikuta, Phatcharee; Inmuong, Uraiwan; Inmuong, Yanyong; Bradshaw, Peter

    2015-10-01

    Floods adversely affect community well-being and health. This study aims to assess the present health vulnerability of households to floods in a rural flood-prone area of northeastern Thailand, as well as their adaptation measures. The participants were the representatives of 312 randomly selected households, and data were collected using an interview questionnaire. Health vulnerability was assessed in terms of flood exposure, flood sensitivity, and flood adaptive capacity. The data were analyzed with descriptive statistics. The results showed that 47.1% of the households had a low level of health vulnerability to flooding, while in 21.2% the level was high. Households had been adapting themselves to cope with the health impacts from flood. Their coping practices included special arrangements for the protection of property, food management, the provision of water supply and waste disposal, the elimination of sources of vector-borne diseases, family health care, the protection of family livelihood, and communication and transportation. PMID:25633112

  17. The use of seismic tomograms for the identification of internal problems with earthen dams and levees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to the National Inventory of dams (NID, 2009), out of the 84,134 dams in the US, more than 87% (73,423) are earthen dams. The majority of these earthen dams are past or approaching their design life expectancy of 50 years. According to the National committee on Levee Safety (NCLS, 2009),...

  18. SeCom - Serious Community 2.0 prevent flooding

    NASA Astrophysics Data System (ADS)

    Komma, Juergen; Breuer, Roman; Sewilam, Hani; Concia, Francesca; Aliprandi, Bruno; Siegmund, Sabine; Goossens, Jannis

    2013-04-01

    There is a significant need for raising the awareness and building the capacity of water professionals in different water sectors cross Europe. There is also a need for qualified graduates to implement the EU Flood Risk Directive (FRD). The main aim of this work is to prepare and build the capacity of both groups in flood risk management through identifying synergies, sharing knowledge, and strengthen partnerships between universities and different stakeholders(mainly water professionals). The specific objectives are to develop; a) Development of a dynamic and active tool that allows all target-groups/users to assess their knowledge about flood risk management. b) Development of an innovative, active and problem-based learning methodology for flood risk education and training. c)Development of flood related Vocational Education & Training (VET) modules for water professionals (involving the students to gain practical experience). This will include some modules for undergraduate students on flood risk management and protection.

  19. An Active Defense Mechanism for TCP SYN flooding attacks

    E-print Network

    Kumarasamy, Saravanan

    2012-01-01

    Distributed denial-of-service attacks on public servers have recently become a serious problem. To assure that network services will not be interrupted and more effective defense mechanisms to protect against malicious traffic, especially SYN floods. One problem in detecting SYN flood traffic is that server nodes or firewalls cannot distinguish the SYN packets of normal TCP connections from those of a SYN flood attack. Another problem is single-point defenses (e.g. firewalls) lack the scalability needed to handle an increase in the attack traffic. We have designed a new defense mechanism to detect the SYN flood attacks. First, we introduce a mechanism for detecting SYN flood traffic more accurately by taking into consideration the time variation of arrival traffic. We investigate the statistics regarding the arrival rates of both normal TCP SYN packets and SYN flood attack packets. We then describe a new detection mechanism based on these statistics. Through the trace driven approach defense nodes which recei...

  20. Social Media: Flood #FloodSafety #FallSafety

    E-print Network

    Social Media: Flood #FloodSafety #FallSafety Please help the NWS spread these important safety build a WeatherReady Nation. Turn Around Don't Drown Video Cars Carried off by Flood Waters People Carried off by Flood Waters Difference Between Flood Watch and Warning Putting Yours and Your

  1. Social Media: Flood #FloodSafety #SummerSafety

    E-print Network

    Social Media: Flood #FloodSafety #SummerSafety Please help the NWS spread these important.weather.gov/floodsafety #FloodSafety Twitter: A trickling creek could turn into a roaring waterway within minutes. www.weather.gov/floodsafety #FloodSafety #12; Facebook: It's important to know what kind of flooding you can expect in your

  2. Social Media: Flood #FloodSafety #WinterSafety

    E-print Network

    Social Media: Flood #FloodSafety #WinterSafety Please help the NWS spread these important the NWS build a WeatherReady Nation. Turn Around Don't Drown Video Cars Carried off by Flood Waters People Carried off by Flood Waters Difference Between Flood Watch and Warning Putting Yours

  3. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida

    USGS Publications Warehouse

    Elder, J.F.; Cairns, D.J.

    1982-01-01

    Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly in five different forest types in swamp and levee areas. Leaves from 42 species of trees and other plants accounted for 58 percent of total litter fall. The remaining 42 percent was nonleaf material. Average litter fall was 800 grams per square meter per year in the flood plain. Tupelo (Nyssa), baldcypress (Taxodium), and ash (Fraxinus), all swamp-adapted trees, produce over 50 percent of the leaf fall. Common levee species such as sweetgum (Liquidambar styraciflua) and diamond-leaf oak (Quercus laurifolia) are also major contributors to total flood-plain litter fall. Annual flooding of the river provides an important mechanism for mobilization of the litter-fall products. Leaf decomposition rates were greatly reduced in dry environments. Carbon loss was nearly linear over a 6-month period, but nitrogen and phosphorus loss was exponential and nearly complete within 1 month. (USGS)

  4. Impact Assessment of Large Scale Floods Using Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Goodwell, A. E.; Umar, M.; Greenberg, J.; Kumar, P.; Darmody, R.; Garvey, J. E.; Jacobson, R. B.; Berretta, D.

    2012-12-01

    The Lower Mississippi River experienced an extreme flood event during April-May 2011 due to springtime snowmelt and excessive rainfall. In order to protect the city of Cairo the US Army Corps of Engineers breached a two mile long levee on the Birds Point New Madrid (BPNM) floodway inundating about 527 sq. kms of farmland. The entire operation was coordinated with a number of data collection activities in terms of stage and discharge measurements at inflow and outflow points and various other locations in the floodway. Subsequently LiDAR, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flights and soil sample were collected after the floodwaters receded. IKONOS and Worldview 2 images show large plumes of sediments originating in the O'Bryan's ridge of the BPNM floodway and extending to more than 20 km downstream. We postulate imaging spectroscopy will enable us to identify various surface constituents and help us in characterizing a flooding event of such a large spatial extent in extensive detail. This has not been explored before. In this study we have used AVIRIS remote sensing data to explore and quantify the landscape characteristics of the floodway using different indices and spectral signatures of materials. Atmospherically corrected surface reflectance values were obtained from the AVIRIS at sensor radiance values using ATCOR 4 incorporating the MODTRAN radiative transfer model. Normalized Difference Vegetation Index (NDVI) and moisture stress index values computed from the AVIRIS data shows strong signals of high moisture stress and very low NDVI values in the zones of heavy scouring such as O Bryan's ridge and it is possible to spatially map those locations even in absence of topographic data. This is further substantiated by the available post flood topographic LiDAR data. Laboratory physical and chemical characterization of soil samples and their GIS analyses indicate soils most vulnerable to erosion were along a straight flow path from the breach point to its discharge point at the southern end of the floodway. Physical and chemical analyses of soil are used in conjunction with imaging spectroscopy data for characterizing the soil cover of the landscape using statistical techniques. We have used the Spectral Angle Mapper (SAM) classifier algorithm on the AVIRIS data together with USGS spectral library and LOPEX (Leaf Optical Properties EXperiment) databases and obtained good classification results. The SAM classification algorithm was able to classify woody vegetation accurately and also pick up spectral signatures of cultivated crops such as corn and soy fairly accurately. The algorithm also helped to exactly map the spatial extent of some very typical soil spectra near O'Bryan's ridge obtained through endmember collection, possibly explaining the deposition in the floodway as floodwaters receded. Some of the historic meanders of Mississippi were also highlighted in different indices and classifications from the AVIRIS data showing evolutionary history between topography and vegetation dynamics.

  5. Flood Finder: Mobile-based automated water level estimation and mapping during floods

    NASA Astrophysics Data System (ADS)

    Pongsiriyaporn, B.; Jariyavajee, C.; Laoharawee, N.; Narkthong, N.; Pitichat, T.; Goldin, S. E.

    2014-02-01

    Every year, Southeast Asia faces numerous flooding disasters, resulting in very high human and economic loss. Responding to a sudden flood is difficult due to the lack of accurate and up-to- date information about the incoming water status. We have developed a mobile application called Flood Finder to solve this problem. Flood Finder allows smartphone users to measure, share and search for water level information at specified locations. The application uses image processing to compute the water level from a photo taken by users. The photo must be of a known reference object with a standard size. These water levels are more reliable and consistent than human estimates since they are derived from an algorithmic measuring function. Flood Finder uploads water level readings to the server, where they can be searched and mapped by other users via the mobile phone app or standard browsers. Given the widespread availability of smartphones in Asia, Flood Finder can provide more accurate and up-to-date information for better preparation for a flood disaster as well as life safety and property protection.

  6. Alabama district flood plan

    USGS Publications Warehouse

    Hedgecock, T. Scott; Pearman, J. Leroy; Stricklin, Victor E.

    2002-01-01

    The purpose of this flood plan is to outline and record advance planning for flood emergencies, so that all personnel will know the general plan and have a ready-reference for necessary information. This will ensure that during any flood event, regardless of the extent or magnitude, the resources of the District can be mobilized into a maximum data collection operation with a mimimum of effort.

  7. Flood Inundation Mapping

    E-print Network

    Pearson, Wendy

    2009-11-18

    2009 November 18, 2009 Wendy L. Pearson NOAA’s National Weather Service Central Region Headquarters Kansas City, Missouri Flood Inundation Mapping “Water Predictions for Life Decisions” Page 2 Flood Inundation Mapping Objectives: Overview... of the technical aspects of the map development process Web demonstration “Water Predictions for Life Decisions”3 NOAA National Weather Service • Flood Mapping depends on partnerships, diligence, dedication, and commitment to ensure consistency. “Water...

  8. European Flood Awareness System - now operational

    NASA Astrophysics Data System (ADS)

    Alionte Eklund, Cristina.; Hazlinger, Michal; Sprokkereef, Eric; Garcia Padilla, Mercedes; Garcia, Rafael J.; Thielen, Jutta; Salamon, Peter; Pappenberger, Florian

    2013-04-01

    The European Commission's Communication "Towards a Stronger European Union Disaster Response" adopted and endorsed by the Council in 2010, underpins the importance of strengthening concerted actions for natural disasters including floods, which are amongst the costliest natural disasters in the EU. The European Flood Awareness System (EFAS) contributes in the case of major flood events. to better protection of the European Citizen, the environment, property and cultural heritage. The disastrous floods in Elbe and Danube rivers in 2002 confronted the European Commission with non-coherent flood warning information from different sources and of variable quality, complicating planning and organisation of aid. Thus, the Commission initiated the development of a European Flood Awareness System (EFAS) which is now going operational. EFAS has been developed and tested at the Joint Research Centre, the Commission's in house science service, in close collaboration with the National hydrological and meteorological services, European Civil Protection through the Monitoring and Information Centre (MIC) and other research institutes. EFAS provides Pan-European overview maps of flood probabilities up to 10 days in advance as well as detailed forecasts at stations where the National services are providing real time data. More than 30 hydrological services and civil protection services in Europe are part of the EFAS network. Since 2011, EFAS is part of the COPERNICUS Emergency Management Service, (EMS) and is now an operational service since 2012. The Operational EFAS is being executed by several consortia dealing with different operational aspects: • EFAS Hydrological data collection centre —REDIAM and ELIMCO- will be collecting historic and realtime discharge and water levels data in support to EFAS • EFAS Meteorological data collection centre —outsourced but running onsite of JRC Ispra. Will be collecting historic and realtime meteorological data in support to EFAS • EFAS Computational centre - European Centre for Medium-Range Weather Forecasts - will be running the forecasts, post-processing and operating the EFAS-Information System platform • EFAS Dissemination centre—Swedish Meteorological and Hydrological Institute, Slovak Hydrometeorological Institute and Rijkswaterstaat Waterdienst (the Netherlands)—analyse the results on a daily basis, assess the situation, and disseminate information to the EFAS partners The European Commission is responsible for contract management. The Joint Research Centre further provides support for EFAS through research and development. Aims of EFAS operational • added value early flood forecasting products to hydrological services • unique overview products of ongoing and forecast floods in Europe more than 3 days in advance • create a European network of operational hydrological services

  9. Flood frequency in Alaska

    USGS Publications Warehouse

    Childers, J.M.

    1970-01-01

    Records of peak discharge at 183 sites were used to study flood frequency in Alaska. The vast size of Alaska, its great ranges of physiography, and the lack of data for much of the State precluded a comprehensive analysis of all flood determinants. Peak stream discharges, where gaging-station records were available, were analyzed for 2-year, 5-year, 10-year, 25-year, and 50-year average-recurrence intervals. A regional analysis of the flood characteristics by multiple-regression methods gave a set of equations that can be used to estimate floods of selected recurrence intervals up to 50 years for any site on any stream in Alaska. The equations relate floods to drainage-basin characteristics. The study indicates that in Alaska the 50-year flood can be estimated from 10-year gaging- station records with a standard error of 22 percent whereas the 50-year flood can be estimated from the regression equation with a standard error of 53 percent. Also, maximum known floods at more than 500 gaging stations and miscellaneous sites in Alaska were related to drainage-area size. An envelope curve of 500 cubic feet per second per square mile covered all but 2 floods in the State.

  10. Root responses to flooding.

    PubMed

    Sauter, Margret

    2013-06-01

    Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding. PMID:23608517

  11. RASOR flood modelling

    NASA Astrophysics Data System (ADS)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje

    2015-04-01

    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the flooding scenarios that can be defined by the RASOR end user to support risk management in each area. Ongoing work for three more case studies (Haiti, Po valley in Italy and Jakarta, Indonesia) will also be discussed.

  12. Ground-water flow beneath levee 35A from conservation area 2B, Broward County, Florida

    USGS Publications Warehouse

    Swayze, L.J.

    1988-01-01

    Conservation Area 2B is an area of recharge for the surficial aquifer system in Broward County. Water stored in the conservation area provides the hydraulic potential for downward flow to the high permeability zone of the Biscayne aquifer. A 5.64 ft head differential (average for the period of record) between water levels in Conservation Area 2B and water levels in the adjacent levee 35A borrow canal causes water to leak into the canal at an average rate of about 0.0022 cu ft per sec per lineal foot of canal and accounts for a loss of 0.013 foot per day of surface water from Conservation Area 2B. Amounts of canal leakage and underflow are constantly changing and are dependent upon the head differential between Conservation Area 2B and the levee 35A borrow canal. (Author 's abstract)

  13. RouterMulticast .Source sends a flooding

    E-print Network

    Jang, Ju-Wook

    #12;Router RouterMulticast . . . Source Router Router . . .Source sends a flooding in periodic time One router is receiving multicast data service flooding Router Router Router Router Router RouterSource flooding flooding RouterRouter Router RouterSource flooding flooding flooding flooding prune Router

  14. Channel, floodplain, and wetland responses to floods and overbank sedimentation, 1846-2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Knox, J.C.; Schubauer-Berigan, J. P.

    2009-01-01

    Conversion of upland forest and prairie vegetation to agricultural land uses, following Euro-American settlement in the Upper Mississippi River System, led to accelerated runoff and soil erosion that subsequently transformed channels, floodplains, and wetlands on bottomlands. Halfway Creek Marsh, at the junction of Halfway Creek and the Mississippi River on Wisconsin's western border, is representative of such historical transformation. This marsh became the focus of a 2005-2006 investigation by scientists from the U.S. Geological Survey, the University of Wisconsin- Madison, and the U.S. Environmental Protection Agency, who used an understanding of the historical transformation to help managers identify possible restoration alternatives for Halfway Creek Marsh. Field-scale topographic surveys and sediment cores provided data for reconstructing patterns and rates of historical overbank sedimentation in the marsh. Information culled from historical maps, aerial photographs, General Land Offi ce Survey notes, and other historical documents helped establish the timing of anthropogenic disturbances and document changes in channel patterns. Major human disturbances, in addition to agricultural land uses, included railroad and road building, construction of artifi cial levees, drainage alterations, and repeated dam failures associated with large floods. A volume of approximately 1,400,000 m3, involving up to 2 m of sandy historical overbank deposition, is stored through the upper and lower marshes and along the adjacent margins of Halfway Creek and its principal tributary, Sand Lake Coulee. The estimated overbank sedimentation rate for the entire marsh is ??3,000 m3 yr-1 for the recent period 1994-2006. In spite of reduced surface runoff and soil erosion in recent years, this recent sedimentation rate still exceeds by ??4 times the early settlement (1846-1885) rate of 700 m3 yr-1, when anthropogenic acceleration of upland surface runoff and soil erosion was beginning. The highest rate of historical bottomland sedimentation occurred from 1919 to 1936, when the estimated overbank sedimentation rate was 20,400 m3 yr- 1. This rate exceeded by nearly 30 times the 1846-1886 rate. Artifi cial levees were constructed along the upper reach of Halfway Creek in the marsh during the early twentieth century to restrict fl ooding on the adjacent bottomlands. Anomalously high overbank sedimentation rates subsequently occurred on the fl oodplain between the levees, which also facilitated more effi cient transport of sediment into the lower marsh bottomland. Although overbank sedimentation rates dropped after 1936, corresponding to the widespread adoption of soil-conservation and agricultural best-management practices, the continuation of anomalously high overbank sedimentation between the levees led to increased bank heights and development of a relatively deep channel. The deep cross-section morphology is commonly mistaken as evidence of channel incision; however, this morphology actually resulted from excessive overbank sedimentation. The historical metamorphosis of the Halfway Creek channel and riparian wetlands underscores the importance of understanding the long-term history of channel and fl oodplain evolution when restoration of channels and riparian wetlands are under consideration. Sedimentation patterns and channel morphology for Halfway Creek Marsh probably are representative of other anthropogenically altered riparian wetlands in the Upper Mississippi River System and similar landscapes elsewhere.

  15. 2011 Spring Flood

    USGS Multimedia Gallery

    Left to Right: Bill Stiles, Dan Kroes USGS Hydrologist Dan Kroes shows Congressional staffers the difference in turbidity levels of the water in Bayou Sorrel. As the record flood waters of the 2011 flood inundate the Atchafalaya Basin, they begin to flush out the stagnant swamp water, or

  16. Flooded Wild Rice River

    USGS Multimedia Gallery

    Wild Rice River at Great Bend North Dakota, streamflow 1,890 cubic feet per second.  Photograph taken during spring 2010 flooding looking downstream of the bridge which was clogged with debris.  The river also had flooded over the road approaching the bridge....

  17. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  18. Discover Floods Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  19. Estimating insured residential losses from large flood scenarios on the Tone River, Japan - a data integration approach

    NASA Astrophysics Data System (ADS)

    Okada, T.; McAneney, K. J.; Chen, K.

    2011-12-01

    Flooding on the Tone River, which drains the largest catchment area in Japan and is now home to 12 million people, poses significant risk to the Greater Tokyo Area. In April 2010, an expert panel in Japan, the Central Disaster Prevention Council, examined the potential for large-scale flooding and outlined possible mitigation measures in the Greater Tokyo Area. One of the scenarios considered closely mimics the pattern of flooding that occurred with the passage of Typhoon Kathleen in 1947 and would potentially flood some 680 000 households above floor level. Building upon that report, this study presents a Geographical Information System (GIS)-based data integration approach to estimate the insurance losses for residential buildings and contents as just one component of the potential financial cost. Using a range of publicly available data - census information, location reference data, insurance market information and flood water elevation data - this analysis finds that insurance losses for residential property alone could reach approximately 1 trillion JPY (US 12.5 billion). Total insurance losses, including commercial and industrial lines of business, are likely to be at least double this figure with total economic costs being much greater again. The results are sensitive to the flood scenario assumed, position of levee failures, local flood depths and extents, population and building heights. The Average Recurrence Interval (ARI) of the rainfall following Typhoon Kathleen has been estimated to be on the order of 200 yr; however, at this juncture it is not possible to put an ARI on the modelled loss since we cannot know the relative or joint probability of the different flooding scenarios. It is possible that more than one of these scenarios could occur simultaneously or that levee failure at one point might lower water levels downstream and avoid a failure at all other points. In addition to insurance applications, spatial analyses like that presented here have implications for emergency management, the cost-benefit of mitigation efforts and land-use planning.

  20. Validation of a global hydrodynamic flood inundation model against high resolution observation data of urban flooding

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff

    2015-04-01

    In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore compare predictions from the global model to high resolution observations for two major urban flood events that occurred in the UK over the last decade: Carlisle in 2005 and Tewkesbury in 2007. In the case of Carlisle the validation data consist of ~150 post-flood observations of maximum water level with a vertical accuracy of ~10-15cm. For Tewkesbury we have available a series of remotely sensed images of the flood development and recession obtained from a variety of airborne and satellite platforms. For each site we estimate use official estimates of the return period of each event to select the appropriate global flood hazard map and compare this to the high resolution observations using appropriate performance metrics. We then benchmark the performance of the global model against simulations of these floods obtained using bespoke local models driven by ground gauged boundary conditions and with terrain derived from ~1m resolution airborne LiDAR data. Sampson, C.C., Smith, A.M., Bates, P.D., Neal, J.C., Alfieri, L. and Freer, J.E. (submitted). A High Resolution Global Flood Hazard Model. Water Resources Research.

  1. Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480

    NASA Astrophysics Data System (ADS)

    Himmelsbach, I.; Glaser, R.; Schoenbein, J.; Riemann, D.; Martin, B.

    2015-10-01

    This paper presents the long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany covering the period starting from 1480 BC. Special focus is given on the temporal and spatial variations of flood events and their underlying meteorological causes over time. Examples are presented of how long-term information about flood events and knowledge about the historical aspect of flood protection in a given area can help to improve the understanding of risk analysis and therefor transnational risk management. Within this context, special focus is given to flood vulnerability while comparing selected historical and modern extreme events, establishing a common evaluation scheme. The transnational aspect becomes especially evident analyzing the tributaries: on this scale, flood protection developed impressively different on the French and German sides. We argue that comparing high technological standards of flood protection, which were initiated by the dukes of Baden on the German side starting in the early 19th century, misled people to the common belief that the mechanical means of flood protection like dams and barrages can guarantee the security from floods and their impacts. This lead to widespread settlements and the establishment of infrastructure as well as modern industries in potentially unsafe areas until today. The legal status in Alsace on the French side of the Rhine did not allow for continuous flood protection measurements, leading to a constant - and probably at last annoying - reminder that the floodplains are a potentially unsafe place to be. From a modern perspective of flood risk management, this leads to a significant lower aggregation of value in the floodplains of the small rivers in Alsace compared to those on the Baden side - an interesting fact - especially if the modern European Flood directive is taken into account.

  2. 78 FR 21143 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  3. 78 FR 52954 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  4. 78 FR 52953 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  5. 78 FR 5821 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  6. 78 FR 5820 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  7. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  8. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  9. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic response

    NASA Astrophysics Data System (ADS)

    Dean, David J.; Schmidt, John C.

    2013-11-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic changes have occurred at and downstream from ephemeral tributaries that contribute large volumes of sediment.

  10. Probable maximum flood control; Yucca Mountain Site Characterization Project

    SciTech Connect

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

  11. Estimating magnitude and frequency of floods using the PeakFQ 7.0 program

    USGS Publications Warehouse

    Veilleux, Andrea G.; Cohn, Timothy A.; Flynn, Kathleen M.; Mason, Robert R.; Hummel, Paul R.

    2014-01-01

    Flood-frequency analysis provides information about the magnitude and frequency of flood discharges based on records of annual maximum instantaneous peak discharges collected at streamgages. The information is essential for defining flood-hazard areas, for managing floodplains, and for designing bridges, culverts, dams, levees, and other flood-control structures. Bulletin 17B (B17B) of the Interagency Advisory Committee on Water Data (IACWD; 1982) codifies the standard methodology for conducting flood-frequency studies in the United States. B17B specifies that annual peak-flow data are to be fit to a log-Pearson Type III distribution. Specific methods are also prescribed for improving skew estimates using regional skew information, tests for high and low outliers, adjustments for low outliers and zero flows, and procedures for incorporating historical flood information. The authors of B17B identified various needs for methodological improvement and recommended additional study. In response to these needs, the Advisory Committee on Water Information (ACWI, successor to IACWD; http://acwi.gov/, Subcommittee on Hydrology (SOH), Hydrologic Frequency Analysis Work Group (HFAWG), has recommended modest changes to B17B. These changes include adoption of a generalized method-of-moments estimator denoted the Expected Moments Algorithm (EMA) (Cohn and others, 1997) and a generalized version of the Grubbs-Beck test for low outliers (Cohn and others, 2013). The SOH requested that the USGS implement these changes in a user-friendly, publicly accessible program.

  12. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    NASA Astrophysics Data System (ADS)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  13. Comparison of methods for separating flood frequency of reservoir by sub-seasons

    NASA Astrophysics Data System (ADS)

    Li, J.; Xie, M.; Xie, K.; Li, R.

    2015-10-01

    The development of separate flood frequency distributions for different sub-seasons within a year can be useful for protection, storage and utilization of flood flows for the reservoir operation management. This paper applies conventional statistical method, fractal method and the mixed Von Mises distribution to the separation of flood sub-seasons for inflows to Hongfeng Reservoir in China. Design floods are found for different sub-seasons, along with flood control levels for flood regulation. The flood season is divided into four sub-seasons using the fractal method: the pre-rainy season (May), main-flood season (June and July), late-flood season I (August) and late-flood season II (September). The mixed Von Mises distribution method accounts for the general flood pattern and combines August and September as one late-flood season, for three sub-seasons with different frequency distributions. The flood regulation calculation results show little difference between the control water levels in August and September, so the two can be combined into one period.

  14. Emotions, trust, and perceived risk: affective and cognitive routes to flood preparedness behavior.

    PubMed

    Terpstra, Teun

    2011-10-01

    Despite the prognoses of the effects of global warming (e.g., rising sea levels, increasing river discharges), few international studies have addressed how flood preparedness should be stimulated among private citizens. This article aims to predict Dutch citizens' flood preparedness intentions by testing a path model, including previous flood hazard experiences, trust in public flood protection, and flood risk perceptions (both affective and cognitive components). Data were collected through questionnaire surveys in two coastal communities (n= 169, n= 244) and in one river area community (n= 658). Causal relations were tested by means of structural equation modeling (SEM). Overall, the results indicate that both cognitive and affective mechanisms influence citizens' preparedness intentions. First, a higher level of trust reduces citizens' perceptions of flood likelihood, which in turn hampers their flood preparedness intentions (cognitive route). Second, trust also lessens the amount of dread evoked by flood risk, which in turn impedes flood preparedness intentions (affective route). Moreover, the affective route showed that levels of dread were especially influenced by citizens' negative and positive emotions related to their previous flood hazard experiences. Negative emotions most often reflected fear and powerlessness, while positive emotions most frequently reflected feelings of solidarity. The results are consistent with the affect heuristic and the historical context of Dutch flood risk management. The great challenge for flood risk management is the accommodation of both cognitive and affective mechanisms in risk communications, especially when most people lack an emotional basis stemming from previous flood hazard events. PMID:21477090

  15. Koaping River Flood Simulation due to Climate Change

    NASA Astrophysics Data System (ADS)

    Lin, Y. J.; Ma, K. C.; Tan, Y. C.; Chang, T. J.; Lai, J. S.

    2012-04-01

    The Koaping River suffered huge damages from the Typhoon Morakot in 2009 and Typhoon Fanapi in 2010. Climate change will bring huge impacts to nations all over the world. Those impacts including the followings: change in biosphere, long-duration drought, large floods trigger by extreme torrential rain, spatial change in homelands, and food scarcity. The extreme weather induced by climate change is the most direct factor influencing the floods, e.g. the extreme rainfall increases discharge and inundation area, sea level and estuary water level raising induce overbank floods, and land-use abuse and land-slides trigger high concentration of sediment discharge and river bed aggradations. This study aims at the settings of hydrological scenarios due to climate change, evaluation of hydraulic structures (e.g. levees), vulnerability and risk analysis, and adaption strategy and practices. The study area is focused on Kaoping River Basin. First, the hydrological scenarios due to climate change are set. Secondly, based on those scenarios, the hydraulic structures are evaluated. Thirdly, the vulnerability and risk analysis are performed. Last, adaption strategy and action plans are proposed by referencing to actions taken by the Netherlands, Japan, Korea, and USA for improving the capacity of the hydraulic structures of Kaoping River.

  16. Development of flood index by characterisation of flood hydrographs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA, Oc-gok Basin in Republic of Korea and the haor region of Bangladesh. Keywords: flood index, flood risk management, flood characteristics

  17. Characterizing the impacts of water resources infrastructure, humans, and hydrologic nonstationarity on changes in flood risk across the Himalaya region

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.

    2014-12-01

    As flood control infrastructure reaches its design life, and climate change, population growth, and urban migration increase flood risk, the historical paradigm of store-then-release floodwaters behind rigid infrastructure is of decreasing physical and socioeconomic value. Instead, a new paradigm of sustainable flood management is emerging, which can be framed in the context of three elements that can contribute to and/or mitigate flood risk: 1) water resources infrastructure, 2) policies and socioeconomics, and 3) changing climates and land use. In this presentation, I present the results of analysis on the role of these three elements in contributing to flood risk of the Sutlej River (India) and the Koshi River (Nepal) basins for six historical flood events. The Himalaya region was selected based on the a) increasing intensity of monsoonal rains, b) increasing prevalence of glacial lake outburst floods, c) water resources management that achieves short-term development goals but lacks long-term sustainability, and d) other socio-economic, environmental, and geopolitical factors. I develop and apply a flood risk management framework that is based on metrics for characterizing the losses associated with the three elements contributing to major floods in the Himalaya region. Derived from a variety of data sources, results highlight how, across different hydrogeologic settings and various flood magnitudes, the largest influences on high flood losses are associated with inflexible water resources infrastructure and inappropriate development and flood management policies. Particularly for the most destructive events, which are generally associated with landslides and other natural hazards in this region, the effectiveness of some types of traditional and inflexible flood management infrastructure, including large dams and levees, is limited. As opposed to the probability of a particular flood event, findings illustrate the importance of the damages side of the flood risk equation, which is often the most controllable but disregarded element of flood risk management. In addition, results lead to a hypothesized matrix of appropriate flood management strategies for the types of flood events that occur in the hydrogeology and cultural settings of high mountain areas and the lowlands to which they drain.

  18. Flooding and Fire Ants 

    E-print Network

    Nester, Paul

    2008-08-05

    until they build new mounds in the soil. During flooding Avoid contact with floating mats of fire ants. If you are in a row boat, do not touch the ants with the oars. If you must work in flood water, try to dress appropriately in rubber boots, rain... the soil, form a loose ball or ribbon, and float or flow with the water until they reach a dry area or object that the ants can crawl up on. As the flood water recedes, these colonies can be found on piles of debris or in homes and other build- ings...

  19. Nogales flood detention study

    USGS Publications Warehouse

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum

    2010-01-01

    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  20. Serbian Torrent Flood Defense Practice - Modeling, observation, forecasting and impact

    NASA Astrophysics Data System (ADS)

    Gavrilovic, Zoran; Stefnovic, Milutin

    2010-05-01

    Many areas in Europe have been affected by an increasing number of severe flood events in the past few years. Because of these floods numerous measures to improve the organization of disaster management have been taken. This includes the preparation of specific alarm plans for flood disaster events. Serbian Torrent Flood Defense methodology, combines observation by radar meteorology, torrential hydrology and new GIS techniques to enable quick determination and assessment of the detected situation in order to provide a sufficient time for the flood defense system to be put in operation. Alarm plans can be seen as one corner stone of disaster management but their practical use can still be optimized. For this end aims to support the risk analysis and risk communication process by improving the availability, reliability and communicability of hazard maps and alarm plans. The main focus will be on levels of population protection and critical infrastructure protection in respect to natural hazards. Paper presents Obtained results in the field of torrent defense in Serbia. Key words: Hydrology, Torrent Flood Analysis, Meteorology, Flood Defense

  1. Modeling and analysis of the vertical roots distribution in levees - a case study of the third Rhone correction

    NASA Astrophysics Data System (ADS)

    Gianetta, Ivan; Schwarz, Massimiliano; Glenz, Christian; Lammeranner, Walter

    2013-04-01

    In recent years the effects of roots on river banks and levees have been the subject of major discussions. The main issue about the presence of woody vegetation on levees is related to the possibility that roots increase internal erosion processes and the superimposed load of large trees compromise the integrity of these structures. However, ecologists and landscape managers argue that eliminating the natural vegetation from the riverbanks also means eliminating biotopes, strengthening anthropisation of the landscape, as well as limiting recreations areas. In the context of the third correction of the Rhone in Switzerland, the discussion on new levee geometries and the implementation of woody vegetation on them, lead to a detailed analysis of this issue for this specific case. The objective of this study was to describe quantitatively the processes and factors that influence the root distribution on levees and test modeling approaches for the simulation of vertical root distribution with laboratory and field data. An extension of an eco-hydrological analytic model that considers climatic and pedological condition for the quantification of vertical root distribution was validated with data provided by the University of Vienna (BOKU) of willows' roots (Salix purpurea) grown under controlled conditions. Furthermore, root distribution data of four transversal sections of a levee near Visp (canton Wallis, Switzerland) was used to validate the model. The positions of the levee's sections were chosen based on the species and dimensions of the woody vegetation. The dominant species present in the sections were birch (Betula pendula) and poplar (Populus nigra). For each section a grid of 50x50 cm was created to count and measure the roots. The results show that vertical distribution of root density under controlled growing conditions has an exponential form, decreasing with increasing soil depth, and can be well described by the eco-hydrological model. Vice versa, field data of vertical roots distribution show a non-exponential function and cannot fully be described by the model. A compacted layer of stones at about 2 m depth is considered as limiting factor for the rooting depth on the analyzed levee. The collected data and the knowledge gained from quantitative analysis represent the starting point for a discussion on new levee geometries and the development of new strategies for the implementation of woody vegetation on levees. A long term monitoring project for the analysis of the effectiveness of new implementation strategies of vegetation on levees, is considered an important prospective for future studies on this topic.

  2. Big Thompson River Flooding

    USGS Multimedia Gallery

    The USGS Big Thompson River at Loveland streamgage, pictured here, was damaged during the September 2013 Colorado flood event. USGS crews installed a temporary streamgage nearby to compensate for the lag in data....

  3. Souris River Flooding

    USGS Multimedia Gallery

    The Souris River flooding a road near Sherwood, North Dakota.On June 23, 2011, USGS personnel were there to measure the streamflow. Streamflow was approximately 27,100 cubic feet per second, stage approximately 27.98 feet....

  4. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  5. Japan: Tsunami Flooding

    Atmospheric Science Data Center

    2013-04-16

    ... Lingering Floods from Tohoku-oki Earthquake Tsunami     View Larger Image ... Tohoku-oki earthquake triggered a deadly and destructive tsunami whose impacts were felt along a wide portion of Japan's northeastern ...

  6. Flooding the market

    NASA Astrophysics Data System (ADS)

    Horn, Diane; McShane, Michael

    2013-11-01

    A flood insurance market with risk-based prices in the UK will only stimulate climate change adaptation if it is part of a wider strategy that includes land-use planning, building regulations and water management.

  7. Flood-prone areas and land-use planning; selected examples from the San Francisco Bay region, California

    USGS Publications Warehouse

    Waananen, Arvi O.; Limerinos, J.T.; Kockelman, W.J.; Spangle, W.E.; Blair, M.L.

    1977-01-01

    The common goal of flood-plain regulation and use is protecting life, minimizing public expenditures, and reducing flood loss. A comprehensive program combining structural and nonstructural measures can yield substantial benefits and may present a practical approach for managing a flood plain. A review of flood-plain planning, management, and regulation in the San Francisco Bay region, Calif., as shown by a study of Napa County , demonstrates complex multijurisdictional involvements. (Woodard-USGS)

  8. Flood resilience and uncertainty in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Beven, K.; Leedal, D.; Neal, J.; Bates, P.; Hunter, N.; Lamb, R.; Keef, C.

    2012-04-01

    Flood risk assessments do not normally take account of the uncertainty in assessing flood risk. There is no requirement in the EU Floods Directive to do so. But given the generally short series (and potential non-stationarity) of flood discharges, the extrapolation to smaller exceedance potentials may be highly uncertain. This means that flood risk mapping may also be highly uncertainty, with additional uncertainties introduced by the representation of flood plain and channel geometry, conveyance and infrastructure. This suggests that decisions about flood plain management should be based on exceedance probability of risk rather than the deterministic hazard maps that are common in most EU countries. Some examples are given from 2 case studies in the UK where a framework for good practice in assessing uncertainty in flood risk mapping has been produced as part of the Flood Risk Management Research Consortium and Catchment Change Network Projects. This framework provides a structure for the communication and audit of assumptions about uncertainties.

  9. Urban flood risk mitigation: from vulnerability assessment to resilient city

    NASA Astrophysics Data System (ADS)

    Serre, D.; Barroca, B.

    2009-04-01

    Urban flood risk mitigation: from vulnerability assessment to resilient city Bruno Barroca1, Damien Serre2 1Laboratory of Urban Engineering, Environment and Building (L G U E H) - Université de Marne-la-Vallée - Pôle Ville, 5, Bd Descartes - Bâtiment Lavoisier - 77454 Marne la Vallée Cedex 2 - France 2City of Paris Engineering School, Construction - Environment Department, 15 rue Fénelon, 75010 Paris, France In France, as in Europe and more generally throughout the world, river floods have been increasing in frequency and severity over the last ten years, and there are more instances of rivers bursting their banks, aggravating the impact of the flooding of areas supposedly protected by flood defenses. Despite efforts made to well maintain the flood defense assets, we often observe flood defense failures leading to finally increase flood risk in protected area during major flood events. Furthermore, flood forecasting models, although they benefit continuous improvements, remain partly inaccurate due to uncertainties populated all along data calculation processes. These circumstances obliged stakeholders and the scientific communities to manage flood risk by integrating new concepts like stakes management, vulnerability assessments and more recently urban resilience development. Definitively, the goal is to reduce flood risk by managing of course flood defenses and improving flood forecasting models, but also stakes and vulnerability of flooded areas to achieve urban resilience face to flood events. Vulnerability to flood is essentially concentrated in urban areas. Assessing vulnerability of a city is very difficult. Indeed, urban area is a complex system composed by a sum of technical sub-systems as complex as the urban area itself. Assessing city vulnerability consists in talking into account each sub system vulnerability and integrating all direct and indirect impacts generally depending from city shape and city spatial organization. At this time, although some research activities have been undertaken, there are no specific methods and tools to assess flood vulnerability at the scale of the city. Indeed, by studying literature we can list some vulnerability indicators and a few Geographic Information System (GIS) tools. But generally indicators and GIS are not developed specifically at the city scale: often a regional scale is used. Analyzing vulnerability at this scale needs more accurate and formalized indicators and GIS tools. The second limit of existing GIS is temporal: even if vulnerability could be assessed and localized through GIS, such tools cannot assist city managers in their decision to efficiency recover after a severe flood event. Due to scale and temporal limits, methods and tools available to assess urban vulnerability need large improvements. Talking into account all these considerations and limits, our research is focusing on: • vulnerability indicators design; • recovery scenarios design; • GIS for city vulnerability assessment and recovery scenarios. Dealing with vulnerability indicators, the goal is to design a set of indicators of city sub systems. Sub systems are seen like assets of high value and complex and interdependent infrastructure networks (i.e. power supplies, communications, water, transport etc.). The infrastructure networks are critical for the continuity of economic activities as well as for the people's basic living needs. Their availability is also required for fast and effective recovery after flood disasters. The severity of flood damage therefore largely depends on the degree that both high value assets and critical urban infrastructure are affected, either directly or indirectly. To face the challenge of designing indicators, a functional model of the city system (and sub systems) has to be built to analyze the system response to flood solicitation. Then, a coherent and an efficient set of vulnerability of indicators could be built up. With such methods city stakeholders will be informed on how and how much their systems are vulnerable. It is a first level of inform

  10. Erosional and depositional patterns associated with the 1993 Missouri River floods inferred from SIR-C and TOPSAR radar data

    USGS Publications Warehouse

    Izenberg, N.R.; Arvidson, R.E.; Brackett, R.A.; Saatchi, S.S.; Osburn, G.R.; Dohrenwend, J.

    1996-01-01

    The Missouri River floods of 1993 caused significant and widespread damage to the floodplains between Kansas City and St. Louis. Immediately downstream of levee breaks, flood waters scoured the bottoms. As the floodwaters continued, they spread laterally and deposited massive amounts of sand as crevasse splays on top of agricultural fields. We explore the use of radar interferometry and backscatter data for quantitative estimation of scour and deposition for Jameson Island/Arrow Rock Bottoms and Lisbon Bottoms, two bottoms that were heavily damaged during the floods and subsequently abandoned. Shuttle imaging radar C (SIR-C) L band (24 cm) HH (horizontally transmitted and horizontally received) radar backscatter data acquired in October 1994 were used together with a distorted Born approximation canopy scattering model to determine that the abundance of natural leafy forbs controlled the magnitude of backscatter for former agricultural fields. Forb areal density was found to be inversely correlated with thickness of sand deposited during the floods, presumably because thick sands prevented roots from reaching nutrient rich, moist bottoms soils. Using the inverse relationship, a lower bound for the mass of sand added was found to be 6.3 million metric tons over the 17 km2 study area. Digital elevation data from topographic synthetic aperture radar (TOPSAR) C band (5.6 cm) interferometric observations acquired in August 1994 were compared to a series of elevation profiles collected on the ground. Vertical errors in TOPSAR were estimated to range from 1 to 2 m, providing enough accuracy to generate an estimate of total mass (4.7 million metric tons) removed during erosion of levees and scour of the bottoms terrains. Net accretion of material to the study areas is consistent with the geologic record of major floods where sediment-laden floodwaters crested over natural levees, initially scoured into the bottoms, and then deposited sands as crevasse splays as the flows spread out and slowed by frictional dissipation. The addition of artificial levees to the Missouri River system has undoubtedly enhanced flood damage, although quantitative estimation of the degree of enhancement will require additional work. Copyright 1996 by the American Geophysical Union.

  11. The August 2002 flood in Salzburg / Austria experience gained and lessons learned from the ``Flood of the century''?

    NASA Astrophysics Data System (ADS)

    Wiesenegger, H.

    2003-04-01

    On the {12th} of August 2002 a low pressure system moved slowly from northern Italy towards Slovakia. It continuously carried moist air from the Mediterranean towards the northern rim of the Alps with the effect of wide-spread heavy rainfall in Salzburg and other parts of Austria. Daily precipitation amounts of 100 - 160 mm, in some parts even more, as well as rainfall intensities of 5 - 10 mm/h , combined with well saturated soils lead to a rare flood with a return period of 100 years and more. This rare hydrological event not only caused a national catastrophe with damages of several Billion Euro, but also endangered more than 200,000 people, and even killed some. As floods are dangerous, life-threatening, destructive, and certainly amongst the most frequent and costly natural disasters in terms of human hardship as well as economic loss, a great effort, therefore, has to be made to protect people against negative impacts of floods. In order to achieve this objective, various regulations in land use planning (flood maps), constructive measurements (river regulations and technical constructions) as well as flood warning systems, which are not suitable to prevent big floods, but offer in-time-warnings to minimize the loss of human lives, are used in Austria. HYDRIS (Hydrological Information System for flood forecasting in Salzburg), a modular river basin model, developed at Technical University Vienna and operated by the Hydrological Service of Salzburg, was used during the August 2002 flood providing accurate 3 to 4 hour forecasts within 3 % of the real peak discharge of the fast flowing River Salzach. The August {12^th}} flood was in many ways an exceptional, very fast happening event which took many people by surprise. At the gauging station Salzburg / Salzach (catchment area 4425 {km^2}) it took only eighteen hours from mean annual discharge (178 {m3/s}) to the hundred years flood (2300 {m3/s}). The August flood made clear, that there is a strong need for longer lead times in Salzburg's flood forecasts. Methods to incorporate precipitation forecasts, provided by the Met Office, as well as observations of actual soil conditions, therefore, have to be developed and should enable hydrologists to predict possible scenarios and impacts of floods, forecasted for the next 24 hours. As a further consequence of the August 2002 flood, building regulations, e.g. the use of oil tanks in flood prone areas, have to be checked and were necessary adapted. It is also necessary to make people, who already live in flood prone areas, aware of the dangers of floods. They also need to know about the limits of flood protection measurements and about what happens, if flood protection design values are exceeded. Alarm plans, dissemination of information by using modern communication systems (Internet) as well as communication failure in peak times and co-ordination of rescue units are also a subject to be looked at carefully. The above mentioned measurements are amongst others of a 10 point program, developed by the Government of the Province of Salzburg and at present checked with regards to feasibility. As it is to be expected, that the August 2002 flood was not the last rare one of this century, experience gained should be valuably for the next event.

  12. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood forecasting systems. In a cooperation between HR Wallingford and Deltares, the extended workflows are being integrated into the Delft-FEWS software system. Delft-FEWS provides modules for managing the data handling and forecasting process. Results of a pilot study that demonstrates the new tools are presented. The value of the newly generated information for decision support during a flood event is discussed.

  13. Modeling Flood Dynamics Along the Super-Elevated Channel Belt of the Yellow River, China, over the Last 3,000 Years

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Overeem, I.; Kettner, A. J.; Gao, S.; Syvitski, J. P.

    2014-12-01

    During the much of the 20th Century, the Yellow River, China, carried between 1.1 and 1.6 Gt y-1 of sediment derived from the over-used Loess Plateau. A portion of this sediment load accumulates inside the artificial levees, reducing the accommodation space and subsequently building up the modern channel-belt >10m above the surrounding floodplains. Historical levees often failed along the older Yellow River courses resulting in >1000 floods in 3000 yrs. In the last millennium, the river has shifted its lower course every ~25 years, breached its levees once a year; in mid 17th century up to 3 breaches occurred per year. A novel methodology is employed to quantitatively reconstruct and interpret flood dynamics on the Yellow River. A reduced-complexity model is developed to explore how climate change and human activity affect levee breaches and river avulsions. The model integrates yearly morphological change along a channel belt with daily river fluxes, and hourly evolution of levee breaches. The model calculates breach characteristics at the scale of 100yr and 200km. To cope with the sparseness in historical records and to incorporate the complex and uncertain nature of flood behavior, 17,118 experiments are conducted to explore dominant factors controlling flood frequency and their likely values in historical times. Model sensitivity analyses reveal that under natural conditions, super-elevation of the channel belt dominates flood frequency. However, when there is significant human-accelerated basin erosion and breach repair, the dominant factors shift to a combination of mean annual precipitation, super-elevation, critical shear stress of weak channel banks, and the interval between breach initiation and its repair. With human perturbation, breaching became more sensitive to precipitation and channel bank strength. Applying uncertainty analyses, the most likely values of the dominant factors for six historical periods between 850BC and 1839AD are explored and used to quantitatively reconstruct the history of Yellow River floods. During 850BC-1839AD when the sediment load increased fourfold, the major breach recurrence interval was shortened from more than 500 years to less than 6 years, and the breach outflow rate increased ~27 times.

  14. Flood-resilient waterfront development in New York City: bridging flood insurance, building codes, and flood zoning.

    PubMed

    Aerts, Jeroen C J H; Botzen, W J Wouter

    2011-06-01

    Waterfronts are attractive areas for many-often competing-uses in New York City (NYC) and are seen as multifunctional locations for economic, environmental, and social activities on the interface between land and water. The NYC waterfront plays a crucial role as a first line of flood defense and in managing flood risk and protecting the city from future climate change and sea-level rise. The city of New York has embarked on a climate adaptation program (PlaNYC) outlining the policies needed to anticipate the impacts of climate change. As part of this policy, the Department of City Planning has recently prepared Vision 2020: New York City Comprehensive Waterfront Plan for the over 500 miles of NYC waterfront (NYC-DCP, 2011). An integral part of the vision is to improve resilience to climate change and sea-level rise. This study seeks to provide guidance for advancing the goals of NYC Vision 2020 by assessing how flood insurance, flood zoning, and building code policies can contribute to waterfront development that is more resilient to climate change. PMID:21692807

  15. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al. 2000).

  16. Hydrology, vegetation, and soils of four north Florida River flood plains with an evaluation of state and federal wetland determinations

    USGS Publications Warehouse

    Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.

    1993-01-01

    A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not available. In this study, plots were located near long-term gaging stations, thus wetland determinations based on plant and soil characteristics could be evaluated at sites where long-term hydrologic conditions were known. Inconsistencies among hydrology, vegetation, and soil determinations were greatest on levee communities of the Ochlockonee and Aucilla River flood plains. Duration of average annual longest flood was almost 2 weeks for both plots. The wetland species list currently used (1991) by the State lacks many ground-cover species common to forested flood plains of north Florida rivers. There were 102 ground-cover species considered upland plants by the State that were present on the nine annually flooded plots of this study. Among them were 34 species that grew in areas continuously flooded for an average of 5 weeks or more each year. Common flood-plain species considered upland plants by the State were: Hypoxis leptocarpa (yellow star-grass), and two woody vines, Brunnichia ovata (ladies' eardrops) and Campsis radicans (trumpet-creeper), which were common in areas flooded continuously for 6 to 9 weeks a year; Sebastiania fruticosa (Sebastian-bush), Chasmanthium laxum (spikegrass), and Panicum dichotomum (panic grass), which typically grew in areas flooded an average of 2 to 3 weeks or more per year; Vitis rotundifolia (muscadine) and Toxicodendron radicans (poison-ivy), usually occurring in areas flooded an average of 1 to 2 weeks a year; and Quercus virginiana (live oak) present most often in areas flooded approximately 1 week a year. Federal wetland regulations (1989) limited wetland jurisdiction to only those areas that are inundated or saturated during the growing season. However, year-round hydrologic records were chosen in this report to describe the influence of hydrology on vegetation, because saturation, inundation, or flowing water can have a variety of both beneficial and adverse effects on flood-plain vegetation at any time of the

  17. Flooding in Bifurcation

    NASA Astrophysics Data System (ADS)

    Aoki, Masakazu; Matumoto, Aoki

    2010-05-01

    Edo River to diverge from Tone River on the right side flows away through Tokyo downtown, and into Tokyo Bay. Tone River of main stream flows through the north region of Kanto into Chiba prefecture of rural aria. Tone River originally flowed through present Edo River into Tokyo downtown. So when Tokyo (Edo era) became the political center of Japan 400 years ago, this place had been suffered from flood caused by augmenting downstream flowing of rainfall over watershed catchment area. Edo Government extended near independent small rivers and connected with Tone River and led away most of flood water transportation into Chiba prefecture to be a rural reason. The present rout of the river has been determined in the mass during the 16th century. Created artificial Edo River experimentally divided into 40 percentage and artificial Tone River divided into 60 percentage of flood water transportation. After that Japanese Government confirmed a safety against flood and confirmed to be a safety Tokyo by using SFM (storage function method) and SNFM (steady non-uniform flow method). Japanese Government estimated Plan High Water Discharge 17,500m3/s at upstream of the divergent point and Edo river flowing through 40 percentage (7,000m3/s) of 17,500m3/s which was same ratio as Edo era. But SFM and SNFM could not explain dynamic flow phenomena. We surveyed how many channel storage amount were there in this river by using UFM (unsteady flow method). We reproduce real flowing shape and carried out more detail dynamic phenomena. In this research, we had taken up diverse and various 11floods from 1981. These floods were confirmed that Edo River to be bifurcated less than 40 percentages. Large flood are not always high ratio of diversion in to Edo River. It's almost smaller ratio rather than higher ratio. For example, peak discharge 11,117m3/s, Aug. 1982 flood was bifurcated into Edo river flowing through 20 percentage of 11,117m3/s. Small flood peak discharge 1,030m3/s, Aug. 1992 flood was diverted into Edo river flowing through 33 percentage of 1,030m3/s. The case of these phenomena was arisen from channel storage. In right side of upstream, a lot of spur dike that Japanese Government constructed in 300 years ago invented storage effect. Otherwise, channel storage effect delayed the reach of peak discharge from upstream to Edo River downstream. We realized that channel storage have a ability to make a safe river and save person's life from flood water. We will show you each floods hydrograph at the EGU 2010. It is testified the channel storage that the difference between discharge of upstream and downstream during inverse phenomena which upstream is higher discharge than downstream. And more over, we will show you our UFM equation and current direction graph in design flood.

  18. Agricultural damages and losses from ARkStorm scenario flooding in California

    USGS Publications Warehouse

    Wein, Anne; David Mitchell; Peters, Jeff; John Rowden; Johnny Tran; Alessandra Corsi; Dinitz, Laura B.

    2015-01-01

    Scientists designed the ARkStorm scenario to challenge the preparedness of California communities for widespread flooding with a historical precedence and increased likelihood under climate change. California is an important provider of vegetables, fruits, nuts, and other agricultural products to the nation. This study analyzes the agricultural damages and losses pertaining to annual crops, perennial crops, and livestock in California exposed to ARkStorm flooding. Statewide, flood damage is incurred on approximately 23% of annual crop acreage, 5% of perennial crop acreage, and 5% of livestock, e.g., dairy, feedlot, and poultry, acreage. The sum of field repair costs, forgone income, and product replacement costs span $3.7 and $7.1 billion (2009) for a range of inundation durations. Perennial crop loss estimates dominate, and the vulnerability of orchards and vineyards has likely increased with recent expansion. Crop reestablishment delays from levee repair and dewatering more than double annual crop losses in the delta islands, assuming the fragile system does not remain permanently flooded. The exposure of almost 200,000 dairy cows to ARkStorm flooding poses livestock evacuation challenges. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000174

  19. A vulnerability function for Mediterranean flash flood risk assessment

    NASA Astrophysics Data System (ADS)

    Karagiorgos, Konstantinos; Hübl, Johannes; Thaler, Thomas; Fuchs, Sven

    2014-05-01

    Flood risk is a major type of environmental hazard jeopardizing human development, and is usually defined as a functional relation between the hazard, such as the physical and statistical aspects of flooding (e.g. return period of a certain flow height, spatial extend of inundation), and the associated vulnerability, i.e. the exposure of people and assets to floods and the susceptibility of the elements at risk to suffer from flood damage. The assessment of vulnerability -from the quantitative point of view- expresses vulnerability as the expected degree of loss for a given element at risk as a consequence of a certain event. It is ranges on a scale from 0 (no damage) to 1 (complete destruction) and focuses on direct flood loss which is estimated by damage or loss functions. A methodology for the development of a vulnerability curve for Mediterranean flash flood risk assessment is presented. This curve is based on a relationship between the intensity of the process and the associated degree of loss of elements at risk. The computation procedure is based on a method combining spatially explicit loss data, data on the value of exposed elements at risk and data on flood intensities on an individual building scale (local scale). The developed methodology is applied for the district of East Attica in Greece, a Mediterranean region influenced by mountain and coastal characteristics of land development. The aim of the study is to provide a valuable tool for the local authorities and the decision makers, a necessary implementation of flood risk management emerging from the requirements laid down in the European Flood Directive, as well as for an assessment of potential costs emerging from future flood events in order to protect individual households.

  20. 77 FR 18839 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  1. 77 FR 18846 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  2. 78 FR 5826 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  3. 78 FR 49278 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  4. 78 FR 21143 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  5. 78 FR 5824 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  6. 77 FR 18841 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  7. 78 FR 5822 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  8. 77 FR 18835 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  9. 77 FR 18842 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  10. 77 FR 18844 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  11. 77 FR 18837 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  12. 78 FR 49277 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  13. 77 FR 74859 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  14. 78 FR 48701 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  15. 78 FR 21143 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ...Docket No. FEMA-B-1307] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  16. 77 FR 39721 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...Docket No. FEMA-B-1256] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  17. 77 FR 44650 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...Docket No. FEMA-B-1259] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  18. 7 CFR 1788.3 - Flood insurance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...2013-01-01 2013-01-01 false Flood insurance. 1788.3 Section 1788...Borrower Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood...

  19. 78 FR 32679 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...Docket No. FEMA-B-1309] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  20. 78 FR 28891 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...Docket No. FEMA-B-1312] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  1. 7 CFR 1788.3 - Flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 2010-01-01 false Flood insurance. 1788.3 Section 1788...Borrower Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood...

  2. 78 FR 36222 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...Docket No. FEMA-B-1326] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  3. 77 FR 40627 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...Docket No. FEMA-B-1258] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  4. 78 FR 43906 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...Docket No. FEMA-B-1330] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  5. 77 FR 27076 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ...Docket No. FEMA-B-1254] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  6. 78 FR 36215 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...Docket No. FEMA-B-1321] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  7. 7 CFR 1788.3 - Flood insurance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...2014-01-01 2013-01-01 true Flood insurance. 1788.3 Section 1788...Borrower Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood...

  8. 7 CFR 1788.3 - Flood insurance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...2012-01-01 2012-01-01 false Flood insurance. 1788.3 Section 1788...Borrower Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood...

  9. 7 CFR 1788.3 - Flood insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 2011-01-01 false Flood insurance. 1788.3 Section 1788...Borrower Insurance Requirements § 1788.3 Flood insurance. (a) Borrowers shall purchase and maintain flood insurance for buildings in flood...

  10. 78 FR 57646 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ...Docket No. FEMA-B-1343] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  11. 78 FR 48888 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...Docket No. FEMA-B-1344] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  12. 78 FR 72920 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ...Docket No. FEMA-B-1351] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  13. 78 FR 43910 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...Docket No. FEMA-B-1339] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  14. 78 FR 20343 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ...Docket No. FEMA-B-1304] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  15. 77 FR 44651 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...Docket No. FEMA-B-1261] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  16. 78 FR 36220 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...Docket No. FEMA-B-1322] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  17. 78 FR 49277 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ...Docket No. FEMA-B-1345] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  18. 78 FR 49278 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ...Docket No. FEMA-B-1332] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  19. 78 FR 20339 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ...Docket No. FEMA-B-1301] Proposed Flood Hazard Determinations AGENCY: Federal...SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  20. Management of hazardous waste at RCRA facilities during the flood of `93 -- Methods used and lessons learned

    SciTech Connect

    Martin, T.; Jacko, R.B.

    1996-11-01

    During the summer of 1993, the state of Iowa experienced severe flooding that caused the release of many hazardous materials into the environment. Six months after the flood, the Iowa section of the RCRA branch, US EPA Region 7, sent inspectors to survey every RCRA facility in Iowa. Information was gathered through questionnaires to determine the flood`s impact and to learn potential lessons that could be beneficial in future flood disasters. The objective of this project was to use the information gathered to determine effective storage methods and emergency procedures for handling hazardous material during flood disasters. Additional data were obtained through record searches, phone interviews, and site visits. Data files and statistics were analyzed, then the evident trends and specific insights observed were utilized to create recommendations for RCRA facilities in the flood plain and for the federal EPA and state regulatory agencies. The recommendations suggest that RCRA regulated facilities in the flood plain should: employ the safest storage methods possible; have a flood emergency plan that includes the most effective release prevention available; and take advantage of several general suggestions for flood protection. The recommendations suggest that the federal EPA and state regulatory agencies consider: including a provision requiring large quantity generators of hazardous waste in the flood plain to include flood procedures in the contingency plans; establishing remote emergency storage areas during the flood disasters; encouraging small quantity generators (SQGs) within the flood plain to establish flood contingency plans; and promoting sound flood protection engineering practices for all RCRA facilities in the flood plain.

  1. Flood Hazards: Communicating Hydrology and Complexity to the Public

    NASA Astrophysics Data System (ADS)

    Holmes, R. R.; Blanchard, S. F.; Mason, R. R.

    2010-12-01

    Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL: http://water.usgs.gov/wateralert/), allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the user specifies. In the future, with new GPS enabled cell-phones, notifications could be sent to users based on their proximity to flood hazards. Educational measures also should communicate the hydrologic underpinnings and uncertainties of the complex science of flood hydrology in an understandable manner to a non-technical public. Education can be especially beneficial and important for those in a policy-making role or those who find themselves in an area of potential flood hazards. Case studies, such as the fatal June 11, 2010 flash flood on the Little Missouri River in Arkansas, if presented in a way that the public will absorb, powerfully illustrate the importance of flood hazard awareness and the cost of living unaware. Additionally, such crucial points as the connection between the accuracy of flood-probability estimates and the density (and longevity) of the basic data sources (such as the USGS streamgage or the National Weather Service raingage networks) and the residual risks that both communities and individuals face have to continually be stressed to the general public and policy makers alike. In short, success in flood hazards communication (both prescriptive warnings and education) requires a fusion of the social sciences and hydrology.

  2. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC)

    NASA Astrophysics Data System (ADS)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.

    2013-11-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET (http://www.crue-eranet.net/) Funding Initiative: FREEMAN, IMRA and URFlood.

  3. 78 FR 36220 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  4. 78 FR 14318 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  5. 78 FR 8175 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  6. 78 FR 20337 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  7. 78 FR 36216 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  8. 78 FR 20338 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  9. 78 FR 14316 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ...Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table......

  10. 77 FR 25495 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in......

  11. Flood, Francis Xavier (`Frank') by Sean Kearns

    E-print Network

    Flood, Francis Xavier (`Frank') by Sean Kearns Flood, Francis Xavier (`Frank') (1901 of John Flood, constable in the DMP, and Sarah Flood (née Murphy). Flood was educated at the CBS, North Richmond St., and from there gained a scholarship to study engineering at UCD. A diligent student, Flood

  12. 77 FR 58562 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in......

  13. 78 FR 78995 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in......

  14. Geophysical Characterization of the American River Levees, Sacramento, California, using Electromagnetics, Capacitively Coupled Resistivity, and DC Resistivity

    USGS Publications Warehouse

    Asch, Theodore H.; Deszcz-Pan, Maria; Burton, Bethany L.; Ball, Lyndsay B.

    2008-01-01

    A geophysical characterization of a portion of American River levees in Sacramento, California was conducted in May, 2007. Targets of interest included the distribution and thickness of sand lenses that underlie the levees and the depth to a clay unit that underlies the sand. The concern is that the erosion of these sand lenses can lead to levee failure in highly populated areas of Sacramento. DC resistivity (Geometric?s OhmMapper and Advanced Geosciences, Inc.?s SuperSting R8 systems) and electromagnetic surveys (Geophex?s GEM-2) were conducted over a 6 mile length of the levee on roads and bicycle and horse trails. 2-D inversions were conducted on all the geophysical data. The OhmMapper and SuperSting surveys produced consistent inversion results that delineated potential sand and clay units. GEM-2 apparent resistivity data were consistent with the DC inversion results. However, the GEM-2 data could not be inverted due to low electromagnetic response levels, high ambient electromagnetic noise, and large system drifts. While this would not be as large a problem in conductive terrains, it is a problem for a small induction number electromagnetic profiling system such as the GEM-2 in a resistive terrain (the sand lenses). An integrated interpretation of the geophysical data acquired in this investigation is presented in this report that includes delineation of those areas consisting of predominantly sand and those areas consisting predominantly of clay. In general, along most of this part of the American River levee system, sand lenses are located closest to the river and clay deposits are located further away from the river. The interpreted thicknesses of the detected sand deposits are variable and range from 10 ft up to 60 ft. Thus, despite issues with the GEM-2 inversion, this geophysical investigation successfully delineated sand lenses and clay deposits along the American River levee system and the approximate depths to underlying clay zones. The results of this geophysical investigation should help the USACE to maintain the current levee system while also assisting the designers and planners of levee enhancements with the knowledge of what is to be expected from the near-surface geology and where zones of concern may be located.

  15. Analyses of water, core material, and elutriate samples collected near Sicily Island, Louisiana (Sicily Island area levee project)

    USGS Publications Warehouse

    Demcheck, Dennis K.; Dupuy, Alton J.

    1980-01-01

    Samples consisting of composited core material were collected from five areas by the U.S. Army Corps of Engineers and analyzed by the U.S. Geological Survey to provide data on the impact of proposed channel excavation and levee construction in the Sicily Island area, Louisiana. Samples of receiving water from the five areas, selected to represent the water that will contact the proposed dredged material of the levee fill material, also were collected. Chemical and physical analyses were performed on samples of core material and native water and on elutriate samples of specific core material-receiving water mixtures. The results of these analyses are presented without interpretation. (USGS)

  16. Characterizing land surface change and levee stability in the Sacramento-San Joaquin Delta using UAVSAR radar imagery

    USGS Publications Warehouse

    Jones, C.; Bawden, G.; Deverel, S.; Dudas, J.; Hensley, S.

    2011-01-01

    The islands of the Sacramento-San Joaquin Delta have been subject to subsidence since they were first reclaimed from the estuary marshlands starting over 100 years ago, with most of the land currently lying below mean sea level. This area, which is the primary water resource of the state of California, is under constant threat of inundation from levee failure. Since July 2009, we have been imaging the area using the quad-polarimetric UAVSAR L-band radar, with eighteen data sets collected as of April 2011. Here we report results of our polarimetric and differential interferometric analysis of the data for levee deformation and land surface change. ?? 2011 IEEE.

  17. The future of flood insurance in the UK

    NASA Astrophysics Data System (ADS)

    Horn, Diane

    2013-04-01

    Approximately one in seven properties in the UK (3.6 million homes and businesses) are at risk of flooding. The Adaptation Sub-Committee of the UK Committee on Climate Change reported in 2012 that development on the floodplain grew at a faster rate than elsewhere in England over the past ten years, with one in five properties in the floodplain in areas of significant risk. They concluded that current levels of investment will not keep pace with the increasing risk, noting that without additional action, climate change could almost double the number of properties at significant risk by 2035. Flood insurance can contribute to risk reduction by using pricing or restrictions on availability of cover to discourage new development in flood risk areas, or to encourage the uptake of flood resilience measures. The UK insurance market currently offers flood cover as a standard feature of domestic and small business policies, with central government providing physical protection backed up by financial protection provided by the insurance industry. This approach is unusual in not passing all or part of the flood risk to government schemes. At present, flood insurance in the UK is conducted under a series of informal agreements established between the insurance industry and the Government known as the Statement of Principles. Members of the Association of British Insurers (ABI) currently agree to cover homes at risk of flooding in return for government commitment to manage flood risk. However, this arrangement is now under threat, as the insurance industry is increasingly reluctant to bear the financial burden of flooding alone. The current Statement of Principles ends on 30 June 2013 and will not be renewed. High-risk properties may be unable to obtain insurance after the Statement of Principles expires. Unusually, insurers are arguing against a free market solution, arguing that no country in the world provides universal flood cover without some form of government-led support. The UK insurance industry prefers a risk-pooling approach, while to date the government has not taken a position on the future of flood insurance after 2013.

  18. Service Assessment Hurricane Floyd Floods

    E-print Network

    Service Assessment Hurricane Floyd Floods of September 1999 mm r u, /"' r U.S.DEPARTMENTOF COMMERCE: Hurricane Floyd Floods of September 1999. Aerial view of Grifton, North Carolina, with flooding from the Neuse River. (Photograph courtesy of the U.S. Army Corps of Engineers.) #12;Service Assessment Hurricane

  19. Torrential floods and town and country planning in Serbia

    NASA Astrophysics Data System (ADS)

    Risti?, R.; Kostadinov, S.; Abolmasov, B.; Dragi?evi?, S.; Trivan, G.; Radi?, B.; Trifunovi?, M.; Radosavljevi?, Z.

    2012-01-01

    Torrential floods are the most frequent natural catastrophic events in Serbia, causing the loss of human lives and huge material damage, both in urban and rural areas. The analysis of the intra-annual distribution of maximal discharges aided in noticing that torrential floods have a seasonal character. The erosion and torrent control works (ETCWs) in Serbia began at the end of the 19th century. Effective protection from torrential floods encompasses biotechnical works on the slopes in the watershed and technical works on the torrent beds, within a precisely defined administrative and spatial framework in order to achieve maximal safety for people and their property. Cooperation to overcome the conflicts between the sectors of the water resources management, forestry, agriculture, energetics, environmental protection and local economic development groups is indispensable at the following levels: policy, spatial planning, practice, investments and education. The lowest and most effective level is through the Plans for Announcement of Erosive Regions (PAERs) and the Plans for Protection from Torrential Floods (PPTFs), with Hazard Zones (HZs) and Threatened Areas (TAs) mapping on the basis of the hydrologic, hydraulic and spatial analysis of the factors that are important for the formation of torrential floods. Solutions defined through PAERs and PPTFs have to be integrated into Spatial Plans at local and regional levels.

  20. Modelling muddy floods in urban areas

    NASA Astrophysics Data System (ADS)

    Arévalo, S. A.; Schmidt, J.

    2012-04-01

    Muddy floods are sediment loaded runoff from agricultural land. The related flooding and mud depositions become a major problem when occuring in settling areas to cover streets, private properties, industrial areas etc. Beside of the psychological strain for the affected residents the costs for mud removal are a burden that has to be considered. Up to now, the threat of muddy floods has poorly been considered in the planing processes of settling or industrial areas. This is because there is no adequate tool to predict the exact places where the mud is transported and where it might be deposited during flash floods. At present the structures of settlements have not been considered in digital elevation models (DEM) wich are used for erosion and deposition modelling. As these structures notably influence surface runoff, it is necessary to develop a method that integrates the elements of settlements into the DEM. We use GIS to alter DEMs with informations about settlement structures (buildings, streets, sidewalks, ditches, walls etc.) and also with information about planed constructions. This altered DEM will than be applied in an event-based soil erosion model (Erosion 3D) that is able to predict both runoff and transported sediment. The aim of this study is to find out runoff and deposition patterns in settlements in case of flash floods, but also to test the impact of changes in the anthropogenic surface due to new constructions. Such a tool would be useful in the planning process of new settlements or industrial areas or to evaluate possible protection measures.