Science.gov

Sample records for florida coastal waters

  1. Biogeochemical classification of South Florida's estuarine and coastal waters.

    PubMed

    Briceño, Henry O; Boyer, Joseph N; Castro, Joffre; Harlem, Peter

    2013-10-15

    South Florida's watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida's estuarine and coastal waters is important to Everglades' restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida's coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria. PMID:23968989

  2. New Kinorhyncha from Florida coastal waters

    NASA Astrophysics Data System (ADS)

    Herranz, María; Sánchez, Nuria; Pardos, Fernando; Higgins, Robert P.

    2014-03-01

    Four new species of Kinorhynchs are described from the West Atlantic coast off Fort Pierce, Florida, USA. They are the following: Antygomonas gwenae n. sp., Echinoderes riceae n. sp., Echinoderes adrianovi n. sp. and Pycnophyes norenburgi n. sp. All species were collected at the same locality called "20 miles station." Samples were processed for standard granulometric data, yielding an estimated average particle diameter of 250 μm. The diagnostic characters and the general morphology of the new species are discussed in depth as well as the diversity and distribution of Kinorhyncha in the area.

  3. CDOM PRODUCTION BY MANGROVE LEAF LITTER AND SARGASSUM COLONIES IN FLORIDA KEYS COASTAL WATERS

    EPA Science Inventory

    We have investigated the importance of leaf litter from red mangroves (Rhizophora mangle) and living Sargassum plants as sources of chromophoric dissolved organic matter (CDOM) to the coastal ocean waters and coral reef system of the Florida Keys. The magnitude of UVB exposure t...

  4. Assessment of satellite derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters

    EPA Science Inventory

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...

  5. Cyanobacterial blooms and biomagnification of the neurotoxin BMAA in South Florida coastal waters

    NASA Astrophysics Data System (ADS)

    Brand, L.; Mash, D.

    2008-12-01

    Blooms of cyanobacteria have developed in Florida Bay, Biscayne Bay and other coastal waters of South Florida. It has recently been shown that virtually all cyanobacteria produce the potent neurotoxin, beta-N- methylamino-L-alanine (BMAA). Studies in Guam indicate that BMAA can biomagnify up the food chain from cyanobacteria to human food and humans. Recent studies in Guam and on human brains in North America suggest an association between BMAA and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS). A variety of organisms from South Florida coastal waters are being analyzed for BMAA content to determine if BMAA is biomagnifying in these food chains and if it is a potential human health hazard. Some have extremely high concentrations of BMAA.

  6. 77 FR 74923 - Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... for the State of Florida's Lakes and Flowing Waters (75 FR 4173) that are addressed in this proposal... detail in Sections III.B and III.C. \\7\\ This area includes waters offshore of Apalachicola Bay,...

  7. Winter mortality of common loons in Florida coastal waters

    USGS Publications Warehouse

    Forrester, Donald J.; Davidson, W.R.; Lange, R.E., Jr.; Stroud, R.K.; Alexander, L.L.; Franson, J.C.; Haseltine, S.D.; Littell, R.C.; Nesbitt, S.A.

    1997-01-01

    Diagnostic findings are presented for 434 common loons (Gavia imrner) found sick or dead on Florida beaches from 1970 through 1994, primarily during the months of December to April. The most commonly recognized problem was an emaciation syndrome (66%), followed by oiling (18%), aspergillosis (7%), trauma (5%) and miscellaneous disease entities (1%). The cause-of-death for 3% of the birds was not determined. Many of the carcasses examined (n = 173) were obtained during an epizootic which occurred from January to March of 1983 in which more than 13,000 loons were estimated to have died. An emaciation syndrome, characterized by severe atrophy of pectoral muscles, loss of body fat and hemorrhagic enteritis, was the primary finding in this epizootic. It was postulated to have a complex etiologic basis involving synergistic effects and energy costs of migration, molting and replacement of flight feathers, food resource changes, salt-loading, intestinal parasitism, environmental contaminants, and inclement weather.

  8. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    USGS Publications Warehouse

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  9. Brevetoxin persistence in sediments and seagrass epiphytes of east Florida coastal waters

    PubMed Central

    Hitchcock, Gary L.; Fourqurean, James W.; Drake, Jeana L.; Mead, Ralph N.; Heil, Cynthia A.

    2012-01-01

    A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L−1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L−1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11–15 ng PbTx-3 equivalents (g dry wt sediment)−1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6–18 ng (g dry wt epiphytes)−1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)−1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent. PMID:23762030

  10. Brevetoxin persistence in sediments and seagrass epiphytes of east Florida coastal waters.

    PubMed

    Hitchcock, Gary L; Fourqurean, James W; Drake, Jeana L; Mead, Ralph N; Heil, Cynthia A

    2012-01-01

    A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 10(6) cells L(-1) through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 10(4) cells L(-1) in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11-15 ng PbTx-3 equivalents (g dry wt sediment)(-1) in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6-18 ng (g dry wt epiphytes)(-1). The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)(-1). In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent. PMID:23762030

  11. Long time-series of turbid coastal water using AVHRR: An example from Florida Bay, USA

    USGS Publications Warehouse

    Stumpf, R.P.; Frayer, M.L.

    1997-01-01

    The AVHRR can provide information on the reflectance of turbid case II water, permitting examination of large estuaries and plumes from major rivers. The AVHRR has been onboard several NOAA satellites, with afternoon overpasses since 1981, offering a long time-series to examine changes in coastal water. We are using AVHRR data starting in December 1989, to examine water clarity in Florida Bay, which has undergone a decline since the late 1980's. The processing involves obtaining a nominal reflectance for red light with standard corrections including those for Rayleigh and aerosol path radiances. Established relationships between reflectance and the water properties being measured in the Bay provide estimates of diffuse attenuation and light limitation for phytoplankton and seagrass productivity studies. Processing also includes monthly averages of reflectance and attenuation. The AVHRR data set describes spatial and temporal patterns, including resuspension of bottom sediments in the winter, and changes in water clarity. The AVHRR also indicates that Florida Bay has much higher reflectivity relative to attenuation than other southeastern US estuaries. ??2005 Copyright SPIE - The International Society for Optical Engineering.

  12. Environmental setting and factors that affect water quality in the Georgia-Florida Coastal Plain study unit

    USGS Publications Warehouse

    Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers an area of nearly 62,000 square miles in the southeastern United States, mostly in the Coastal Plain physiographic province. Land resource provinces have been designated based on generalized soil classifications. Land resource provinces in the study area include: the Coastal Flatwoods, the Southern Coastal Plain, the Central Florida Ridge, the Sand Hills, and the Southern Piedmont. The study area includes all or parts of seven hydrologic subregions: the Ogeechee-Savannah, the Altamaha- St.Marys, the Suwannee, the Ochlockonee, the St. Johns, the Peace-Tampa Bay, and the Southern Florida. The primary source of water for public supply in the study area is ground water from the Upper Floridan aquifer. In 1990, more than 90 percent of the 2,888 million gallons per day of ground water used came from this aquifer. The population of the study area was 9.3 million in 1990. The cities of Jacksonville, Orlando, St. Petersburg, Tallahassee, and Tampa, Florida, and parts of Atlanta and Savannah, Georgia, are located in the study area. Forest and agricultural areas are the most common land uses in the study area, accounting for 48 percent and 25 percent of the study area, respectively. Climatic conditions range from temperate in Atlanta, Georgia, where mean annual temperature is about 61.3 degrees Fahrenheit, to subtropical in Tampa, Florida, where mean annual temperature is about 72.4 degrees Fahrenheit. Long-term average precipitation (1961-90) ranges from 43.9 inches per year in Tampa, Florida, and 44.6 in Macon, Georgia, to 65.7 inches per year in Tallahassee, Florida. Floods in the study area result from frontal systems, hurricanes, tropical storms, or severe thunderstorms. Droughts are not common in the study area,especially in the Florida part of the study area due to extensive maritime exposure. The primary physical and cultural characteristics in the study area include physiography, soils and land resource provinces

  13. FLORIDA ATLANTIC COASTAL ENVIRONMENTAL INITIATIVE

    EPA Science Inventory

    The Florida Atlantic Coastal Environmental Initiative (FACEI) will consist of a multiyear, multidisciplinary research and monitoring program designed to detect and trace a variety of nutrient sources (point and non-point sources) and other major environmental stressors to the coa...

  14. Characterizing the Sources and Sinks of Methyl Halides in the Florida Everglades and Coastal Waters by Isotopic Analysis

    NASA Astrophysics Data System (ADS)

    Scully, N. M.; Jones, R. D.; Raffel, A.; Rice, A. L.

    2012-12-01

    Recent studies have demonstrated that the methyl halides, methyl chloride and methyl bromide, are produced in significant quantities by phytoplankton and by the photochemical oxidation of dissolved organic matter (DOM). However, we know little of the mechanisms responsible for the photochemical production of methyl halides and also the factors which affect the microbial formation and consumption in the surface waters. We are currently conducting laboratory experiments to elucidate the mechanisms responsible for the photochemical and microbial formation and consumption of methyl chloride and methyl bromide in the Florida Everglades and coastal waters. We present data from laboratory experiments using a stable isotope spiking tracer method to quantify photochemical flux rates of methyl chloride and methyl bromide from wetland and estuarine water samples collected at FCE-LTER sites located in Taylor Slough and Florida Bay. These photochemical experiments include waters that span a wide range of halide and DOM concentrations. We use these results to estimate the net photochemical flux of methyl chloride and methyl bromide from the Florida Everglades. We have also conducted stable carbon isotope analysis of the methyl chloride. These experiments are being conducted to determine the carbon isotopic ratios (d13C) of methyl chloride produced from the photolysis of organic matter in natural waters and will provide an inventory of d13C values from one of the sources within the studied Everglades ecotones. This research was supported by the National Science Foundation Chemical Oceanography Program Award No. 1029710.

  15. Effects of Hydrologic Restoration on the Residence Times and Water Quality of a Coastal Wetland in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Sandoval, E.; Price, R. M.; Melesse, A. M.; Whitman, D.

    2013-05-01

    The Everglades, located in southern Florida, is a dominantly freshwater coastal wetland ecosystem that has experienced many alterations and changes led by urbanization and water management practices with most cases resulting in decreased water flow across the system. The Comprehensive Everglades Restoration Plan, passed in 2000, has the final goal of restoring natural flow and clean water to the Everglades while also balancing flood control and water supply needs of the south Florida population with approximately 60 projects to be constructed and completed in the following 30 years. One way to assess the success of restoration projects is to observe long-term hydrological and geochemical changes as the projects undergo completion. The purpose of this research was to investigate the effects of restoration on the water balance, flushing time, and water chemistry of Taylor Slough; one of the main natural waterways located within the coastal Everglades. A water balance equation was used to solve for groundwater-surface water exchange. The major parameters for the water balance equation (precipitation, evapotranspiration (ET), surface water storage, inflow and outflow) were obtained from the U.S. Geological Survey and Everglades National Park databases via the Everglades Depth Estimation Network (EDEN). Watershed flushing times were estimated as the surface water volume divided by the total outputs from the watershed. Both the water balance equation and water flushing time were calculated on a monthly time step from 2001 - 2011. Water chemistry of major ions and Total Nitrogen (TN) and Total Phosphorus (TP) was analyzed on water samples, 3-day composites collected every 18 hours from 2008 - 2012, and correlated with water flushing times. Stable isotopes of oxygen and hydrogen of water samples were obtained to support the dominant inputs of water into Taylor Slough as identified by the water budget equation. Results for flushing times varied between 3 and 78 days, with

  16. Review of Methods and Approaches for Deriving Numeric Criteria for Nitrogen/ Phosphorus Pollution in Florida's Estuaries, Coastal, and Soutnern Inland Flowing Waters

    EPA Science Inventory

    EPA will propose numeric criteria for nitrogen/phosphorus pollution to protect estuaries, coastal areas and South Florida inland flowing waters that have been designated Class I, II and III , as well as downstream protective values (DPVs) to protect estuarine and marine waters. ...

  17. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida.

    PubMed

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-06-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled - the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  18. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida

    PubMed Central

    Campbell, Alexandra M; Fleisher, Jay; Sinigalliano, Christopher; White, James R; Lopez, Jose V

    2015-01-01

    Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program. PMID:25740409

  19. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  20. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA.

    PubMed

    Hitchcock, Gary L; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2010-05-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis. The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O2 L(-1) day(-1) with highest rates in bloom waters where abundances exceeded 10(5) cells L(-1). Community dark respiration (R) rates in dark bottles ranged from <10 to 70 µmole O2 L(-1) day(-1) over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O2 L(-1) day(-1). The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R) over 24 h, although heterotrophy (NCP < R) characterized the densest sample where K. brevis cell densities exceed 10(6) cells L(-1). PMID:24179460

  1. Coastal land loss in Florida

    SciTech Connect

    Clark, R.R. )

    1990-09-01

    Florida has approximately 593 mi of shoreline fronting on the Atlantic Ocean and Straits of Florida and approximately 673 mi of shoreline fronting on the Gulf of Mexico with an additional 5,000 mi of bay and estuary shoreline. Of a statewide total of 818.9 mi of open coast sandy beaches, 337.2 mi or 41.2% of the beaches are identified as erosion problem areas. These erosion problem areas include those beaches with a moderate or low erosion rate, but with a narrow width fronting a highly developed area, and those restored beaches with an active maintenance nourishment program. Of these erosion problem areas, 217.8 mi or 26.6% of the statewide beach length are areas of critical erosion; that is, segments of the shoreline where substantial development or recreation interests are threatened by the erosion processes. On a shorewide basis, the Atlantic Ocean beaches of Florida typically have historical erosion rates of between 0 and {minus}3 ft per year, while the Gulf of Mexico beaches typically have historical erosion rates of between 0 and {minus}2 ft per year. Many of the problem areas have shoreline erosion rates in the magnitude of between {minus}3 and {minus}5 ft per year. The most extreme erosion rates are occurring along the southern portion of St. Joseph Peninsula at Cape San Bias where the annual shoreline recession exceeds {minus}20 ft. Erosion conditions in Florida are most apparent as a result of storm tides and storm wave activity. Extreme meteorological events inflict significant erosion conditions in all beach areas of the state. Historical shoreline changes are often the cumulative effect of a number of storm events and their cycles of poststorm recovery. Erosion and damage from recent storms as well as efforts to mitigate storm damage have heightened the erosion problems and incited a public response through coastal construction regulation and beach management planning.

  2. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  3. Ground-water resources of coastal Citrus, Hernando, and southwestern Levy counties, Florida

    USGS Publications Warehouse

    Fretwell, J.D.

    1983-01-01

    Ground water in the coastal parts of Citrus, Hernando, and Levy Counties is obtained almost entirely from the Floridan aquifer. The aquifer is unconfined near the coast and semiconfined in the ridge area. Transmissivity ranges from 20,000 feet squared per day in the ridge area to greater than 2,000,000 feet squared per day near major springs. Changes in the potentiometric surface of the aquifer are small between the wet and dry seasons. Water quality within the study area is generally very good except immediately adjacent to the coast where saltwater from the Gulf of Mexico poses a threat to freshwater supply. This threat can be compensated for by placing well fields a sufficient distance away from the zone of transition from saltwater to freshwater so as not to reduce or reverse the hydraulic gradient in that zone. Computer models are presently available to help predict the extent of influence of ground-water withdrawals in an area. These may be used as management tools in planning ground-water development of the area. (USGS)

  4. Climate change impact on the annual water balance in the northwest Florida coastal

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.

    2012-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the

  5. Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91

    USGS Publications Warehouse

    Ham, L.K.; Hatzell, H.H.

    1996-01-01

    Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with

  6. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    USGS Publications Warehouse

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  7. Assigning Boundary Conditions to the Southern Inland and Coastal Systems (SICS) Model Using Results from the South Florida Water Management Model (SFWMM)

    USGS Publications Warehouse

    Wolfert, Melinda A.; Langevin, Christian D.; Swain, Eric D.

    2004-01-01

    The Comprehensive Everglades Restoration Plan (CERP) requires the testing and evaluation of different water-management scenarios for southern Florida. As part of CERP, the South Florida Water Management District is using its regional hydrologic model, the South Florida Water Management Model (SFWMM), to evaluate different hydrologic scenarios. The SFWMM was designed specifically for the inland freshwater areas in southern Florida, and extends only slightly into Florida Bay. Thus, the U.S. Geological Survey developed the Southern Inland and Coastal Systems (SICS) model, which is an integrated surface-water and ground-water model designed to simulate flows, stages, and salinities in the southern Everglades and Florida Bay. Modifications to the SICS boundary conditions allow the local-scale SICS model to be linked to the regional-scale SFWMM. The linked model will be used to quantify the effects of restoration alternatives on flows, stages, and salinities in the SICS area. This report describes the procedure for linking the SICS model with the SFWMM. The linkage is shown to work by comparing the results of a linked 5-year simulation with the results from a simulation in which the model boundaries are assigned using field data. The surface-water module of the SICS model is driven by areal influences and lateral boundaries. The areal influences (wind, rainfall, and evapotranspiration) remain the same when the SICS model is modified to link to the SFWMM. Four types of lateral boundaries (discharge, water level, no flow, and salinity) are used in the SICS model. Two of three discharge boundaries (at Taylor Slough Bridge and C-111 Canal) in the current SICS model domain are converted to water-level boundaries to increase accuracy. The only change to the third discharge boundary (at Levee 31W) is that the flow data are derived from SFWMM model output instead of using measured field data flows. Three water-level boundaries are modified only by receiving their data from SFWMM

  8. Whiting events in SW Florida coastal waters: a case study using MODIS medium-resolution data

    USGS Publications Warehouse

    Long, Jacqueline; Hu, Chuanmin; Robbins, Lisa

    2014-01-01

    Whitings, floating patches of calcium carbonate mud, have been found in both shallow carbonate banks and freshwater environments around the world. Although these events have been studied for many decades, much of their characteristics remain unknown. Recent sightings of whitings near Ten Thousand Islands, Florida suggest a phenomenon that has not previously been documented in this area. Using medium-resolution (250-m) data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) from December 2010 to November 2013, we documented whiting events and their spatial and temporal patterns in this region. Classification rules were first established, and then applied to all 474 cloud-free and sun glint-free MODIS images. Whiting occurrences were found between 25°46′N and 25°20′N and less than 40 km from the southwest Florida coastline. Over the 3-year period, whiting occurrence peaked in spring and autumn and reached a minimum during the winter and summer months. Further field and laboratory research are needed to explain driving force(s) behind these events.

  9. Mercury accumulation in sharks from the coastal waters of southwest Florida.

    PubMed

    Rumbold, Darren; Wasno, Robert; Hammerschlag, Neil; Volety, Aswani

    2014-10-01

    As large long-lived predators, sharks are particularly vulnerable to exposure to methylmercury biomagnified through the marine food web. Accordingly, nonlethal means were used to collect tissues for determining mercury (Hg) concentrations and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from a total of 69 sharks, comprising 7 species, caught off Southwest Florida from May 2010 through June 2013. Species included blacknose (Carcharhinus acronotus), blacktip (C. limbatus), bull (C. leucas), great hammerhead (Sphyrna mokarran), lemon (Negaprion brevirostris), sharpnose (Rhizoprionodon terraenovae), and tiger sharks (Galeocerdo cuvier). The sharks contained Hg concentrations in their muscle tissues ranging from 0.19 mg/kg (wet-weight basis) in a tiger shark to 4.52 mg/kg in a blacktip shark. Individual differences in total length and δ(13)C explained much of the intraspecific variation in Hg concentrations in blacknose, blacktip, and sharpnose sharks, but similar patterns were not evident for Hg and δ(15)N. Interspecific differences in Hg concentration were evident with greater concentrations in slower-growing, mature blacktip sharks and lower concentrations in faster-growing, young tiger sharks than other species. These results are consistent with previous studies reporting age-dependent growth rate can be an important determinant of intraspecific and interspecific patterns in Hg accumulation. The Hg concentrations observed in these sharks, in particular the blacktip shark, also suggested that Hg may pose a threat to shark health and fitness. PMID:24942905

  10. Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis) in coastal waters of northeastern Florida, USA.

    PubMed

    Hain, James H W; Hampp, Joy D; McKenney, Sheila A; Albert, Julie A; Kenney, Robert D

    2013-01-01

    In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis) occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement--with photo-identification of individual whales--were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001-2007), 109 tracking periods or "follows" were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two--and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn), with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment). At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h) that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to conservation biology

  11. Swim Speed, Behavior, and Movement of North Atlantic Right Whales (Eubalaena glacialis) in Coastal Waters of Northeastern Florida, USA

    PubMed Central

    Hain, James H. W.; Hampp, Joy D.; McKenney, Sheila A.; Albert, Julie A.; Kenney, Robert D.

    2013-01-01

    In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis) occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement – with photo-identification of individual whales – were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001–2007), 109 tracking periods or “follows” were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two – and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn), with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment). At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h) that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to

  12. Two-Dimensional Hydrodynamic Simulation of Surface-Water Flow and Transport to Florida Bay through the Southern Inland and Coastal Systems (SICS)

    USGS Publications Warehouse

    Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.

    2004-01-01

    Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly

  13. Groundwater-surface water interactions and their effects on ecosystem metabolism in a coastal wetland: example from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Price, R. M.; Zapata, X.; Koch, G. R.

    2013-05-01

    Groundwater typically has higher concentrations of salts and nutrients as compared to surface waters in coastal wetlands affected by saltwater intrusion. Discharge of the nutrient-laden brackish groundwater is expected to influence ecosystem function in the overlying surface water. In the coastal Everglades, elevated concentrations of phosphorus have been observed in the underlying groundwater due to water-rock interactions occurring as seawater intrudes into the coastal carbonate aquifer. The objective of this research was to determine the timing and amount of brackish groundwater discharge to the coastal wetlands of the Everglades and to evaluate the effects of the groundwater discharge on the surface water chemistry and ecosystem metabolism. The timing of groundwater discharge was determined by four techniques including a water balance, hydraulic gradient, temperature, and geochemical tracers. Groundwater discharge rates were quantified from well data using Darcy's Law. Ecosystem metabolism was estimated as daily rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) from free-water, diel changes in dissolved oxygen. Over 2 years, all four groundwater discharge techniques converged as to the timing of groundwater discharge which was greatest between May and July. Surface water chemistry was fresh from September through February, but became brackish to hypersaline between March and July, concurrent with the times of highest brackish groundwater discharge. Phosphorus concentrations as well as GPP and R were observed to spike in the surface water during the times of greatest groundwater discharge. The results of this research support the conclusions that brackish groundwater discharge effects surface water chemistry and ecosystem function in the coastal Everglades.

  14. Isotopic evidence for dead fish maintenance of Florida red tides, with implications for coastal fisheries over both source regions of the West Florida shelf and within downstream waters of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Weisberg, R. H.; Lenes, J. M.; Chen, F. R.; Dieterle, D. A.; Zheng, L.; Carder, K. L.; Vargo, G. A.; Havens, J. A.; Peebles, E.; Hollander, D. J.; He, R.; Heil, C. A.; Mahmoudi, B.; Landsberg, J. H.

    2009-01-01

    Toxic Florida red tides of the dinoflagellate Kareniabrevis have downstream consequences of 500-1000 km spatial extent. Fish stocks, shellfish beds, and harmful algal blooms of similar species occupy the same continental shelf waters of the southeastern United States, amounting to economic losses of more than 25 million dollars in some years. Under the aegis of the Center for Prediction of Red tides, we are now developing coupled biophysical models of the conditions that lead to red tides and impacted coastal fisheries, from the Florida Panhandle to Cape Hatteras. Here, a nitrogen isotope budget of the coastal food web of the West Florida shelf (WFS) and the downstream South Atlantic Bight (SAB) reaffirms that diazotrophs are the initial nutrient source for onset of red tides and now identifies clupeid fish as the major recycled nutrient source for their maintenance. The recent isotope budget of WFS and SAB coastal waters during 1998-2001 indicates that since prehistoric times of Timacua Indian settlements along the Georgia coast during 1075, ∼50% of the nutrients required for large red tides of >1 μg chl l -1 of K.brevis have been derived from nitrogen-fixers, with the other half from decomposing dead sardines and herrings. During 2001, >90% of the harvest of WFS clupeids was by large ichthyotoxic red tides of >10 μg chl l -1 of K.brevis, rather than by fishermen. After onset of the usual red tides in summer of 2006 and 2007, the simulated subsequent fall exports of Florida red tides in September 2007 to North Carolina shelf waters replicate observations of just ∼1 μg chl l -1 on the WFS that year. In contrast, the earlier red tides of >10 μg chl l -1 left behind off West Florida during 2006, with less physical export, are instead 10-fold larger than those of 2007. Earlier, 55 fish kills were associated with these coastal red tides during September 2006, between Tampa and Naples. Yet, only six fish kills were reported there in September 2007. With little

  15. Polychlorinated biphenyls, organochlorine pesticides, tris(4-chlorophenyl)methane, and tris(4-chlorophenyl)methanol in livers of small cetaceans stranded along Florida coastal waters, USA

    SciTech Connect

    Watanabe, Mafumi; Kannan, Kurunthachalam; Takahashi, Atsushi; Loganathan, B.G.; Odell, D.K.; Tanabe, Shinsuke; Giesy, J.P.

    2000-06-01

    Concentrations of polychlorinated biphenyl congeners (PCBs) and organochlorine pesticides were determined in the livers of bottlenose dolphins, Atlantic spotted dolphins, and pygmy sperm whales found stranded along the coastal waters of Florida, USA, during 1989 to 1994. The PCBs were the most predominant contaminants followed in order by DDTs, chlordanes, tris(4-chlorophenyl)methane (TCPMe), tris(4-chlorophenyl)methanol (TCPMOH), hexachlorobenzene, and hexachlorocyclohexane isomers. Among the cetaceans analyzed, organochlorine concentrations were greatest in bottlenose dolphins followed by Atlantic spotted dolphins and pygmy sperm whales. Hexa- and heptachlorobiphenyls were the predominant PCB congeners found in the livers of dolphins. Patterns of relative concentrations of PCB congeners varied among individual bottlenose dolphins. A few individuals contained predominant concentrations of octa- (CB-199, 196/201) and nonachlorobiphenyl (CB-206, 208) congeners, which suggested exposure to the highly chlorinated PCB formulation, Aroclor{reg_sign} 1268, a contaminant at a coastal site in Georgia bordering northern Florida. The estimated 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) of coplanar PCBs in bottlenose dolphins were 170 to 18,000 pg/g, lipid weight (mean:5,400 pg/g) with mono-ortho congeners 118, 105, and 156 contributing more than 80% of the TEQs. The ratios of CB-169 to CB-126 in cetacean livers were linearly related to total PCB concentrations, which suggested a strong induction of microsomal monooxygenase enzymes in the liver. The hepatic concentrations of TCPMe and TCPMOH in bottlenose dolphins and Atlantic spotted dolphins were greater than those in the blubber of marine mammals of various regions, which suggested the presence of sources for these chemicals along the Atlantic coast of Florida.

  16. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    USGS Publications Warehouse

    Fernandez, Mario, Jr.

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  17. South Florida Coastal Sediment Ecological Risk Assessment.

    PubMed

    Julian, Paul

    2015-08-01

    This study evaluated the degree of sediment contamination in several South Florida estuaries. During the 2010 National Condition Assessment, Florida Fish and Wildlife Research Institute collected water column, sediment and biotic data from estuaries across the entire state of Florida. Sediments were analyzed for arsenic, cadmium, chromium, lead, mercury, zinc and total polychlorinated biphenyls and were compared relative to empirically derived sediment quality guidelines. As a result of this data collection and assessment effort, it was determined that the degree of contamination with respect to sediment was low for all southern Florida estuaries assessed, except the Miami River which was determined to be considerably contaminated. However only one monitoring location was used to assess the Miami River, and as such should be viewed with caution. A low degree of contamination was determined for Biscayne Bay sediments, possibly indicating a recovery from its previously reported higher contaminant level. PMID:26084967

  18. Simulating coastal to offshore interactions around the South Florida coastal seas and implications on management issues

    NASA Astrophysics Data System (ADS)

    Kang, H.; Kourafalou, V. H.; Hogan, P. J.; Smedstad, O.

    2008-12-01

    The South Florida coastal seas include shelf areas and shallow water bodies around ecologically fragile environments and Marine Protected Areas, such as Florida Bay, the Florida Keys National Marine Sanctuary (around the largest coral reef system of the continental U.S.) and the Dry Tortugas Ecological Reserve. Man- made changes in the hydrology of the Everglades have caused dramatic degradation of the coastal ecosystem through discharge in Florida Bay. New management scenarios are under way to restore historical flows. The environmental impacts of the management propositions are examined with an inter-disciplinary, multi-nested modeling system. The HYbrid Coordinate Ocean Model (HYCOM) has been employed for the Regional Model for South Florida Coastal Seas (SoFLA-HYCOM, 1/25 degree resolution) and for the embedded, high resolution coastal Florida Keys model (FKEYS- HYCOM, 1/100 degree). Boundary conditions are extracted from GODAE products: the large scale North Atlantic model (ATL-HYCOM, 1/12 degree) and the intermediate scale Gulf of Mexico model (GOM-HYCOM, 1/25 degree). The study targets the impacts of large scale oceanic features on the coastal dynamics. Eddies that travel along the Loop Current/Florida Current front are known to be an important mechanism for the interaction of nearshore and offshore flows. The high resolution FKEYS simulations reveal both mescoscale and sub- mesoscale eddy passages during a targeted 2-year simulation period (2004-2005), forced with high resolution/high frequency atmospheric forcing. Eddies influence sea level changes in the vicinity of Florida Bay with possible implications on current and future flushing patterns. They also enable upwelling of cooler, nutrient-rich waters in the vicinity of the Reef Tract and they influence transport and recruitment pathways for coral fish larvae, as they carry waters of different properties (such as river-borne low-salinity/nutrient-rich waters from as far as the Mississippi River) and

  19. Water withdrawals in Florida, 2012

    USGS Publications Warehouse

    Marella, Richard L.

    2015-01-01

    The largest percentage of freshwater withdrawals was from the South Florida Water Management District (46 percent), followed by the St. Johns River Water Management District (20 percent), Southwest Florida Water Management District (19 percent), Northwest Florida Water Management District (9 percent), and Suwannee River Water Management District (6 percent). The South Florida Water Management District accounted for the largest percentage of freshwater withdrawals for public-supply use (46 percent), commercial-industrial-mining self-supplied use (24 percent), agricultural self-supplied use (59 percent), and recreational-landscape irrigation use (63 percent). The Northwest Florida Water Management District accounted for the largest percentage of freshwater withdrawals for power-generation use (44 percent), and the Southwest Florida Water Management District accounted for the largest percentage of saline-water withdrawals for power-generation use (58 percent).

  20. Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop

    USGS Publications Warehouse

    Robbins, Lisa; Wolfe, Steven; Raabe, Ellen

    2008-01-01

    The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection

  1. South Florida Ecosystem Program: quantifying freshwater discharge for coastal hydraulic control structures in eastern Dade County, Florida

    USGS Publications Warehouse

    Kapadia, Amit; Swain, Eric D.

    1996-01-01

    The South Florida Ecosystem Restoration Program is an intergovernmental effort, involving a number of agencies, to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making. The U.S. Geological Survey (USGS), one of the agencies, provides scientific information as part of the South Florida Ecosystem Restoration Program. The USGS began their ow program, called the South Florida Ecosystem Program, in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. As part of the South Florida Ecosystem Program, the USGS, in cooperation with the South Florida Water Management District (SFWMD), has conducted a study to determine discharge ratings for 16 coastal hydraulic control structures in eastern Dade County, Fla. (fig. 1 ). Discharge data are needed to quantify water that can be made available for water supply and ecosystem restoration and to calibrate regional hydrologic models.

  2. The use of multiple tracers to evaluate the impact of sewered and non-sewered development on coastal water quality in a rural area of Florida.

    PubMed

    Meeroff, Daniel E; Bloetscher, Frederick; Long, Sharon C; Bocca, Thais

    2014-05-01

    When onsite wastewater treatment and disposal systems (OSTDS) are not sited appropriately or installed properly, wastewater constituents can be a source of adverse environmental impacts to soil and groundwater, which can lead to potential public health risks. A paired monitoring design developed to compare water quality in sewered and non-sewered areas is presented here. It is suggested as a possible monitoring scheme for assessing the impact of sewer installation projects. As such, two sets of single-family, rural residential Florida neighborhoods were evaluated over a two-year period to gain insight into the effects of small-community use of OSTDS on coastal water quality. One set of two neighborhoods were connected to the sanitary sewer network and the other set of two were served exclusively by OSTDS. Water quality sampling was conducted at the paired sites during seasonal high water table (SHWT) and seasonal low water table (SLWT) events. Measured surface water quality during the SHWT showed indications of environmental impacts from OSTDS in terms of nutrients, microbial pathogen indicators, and other water quality measures, such as turbidity and conductivity. However, during the SLWT events, no obvious impacts attributable to OSTDS were detected. The water quality results indicate that OSTDS impacts may be measureable in rural areas. Other factors, such as microbial indicator survival and regrowth potential, may confound the understanding of water quality impacts of sewer projects. For example, the microbial indicators Escherichia coli and enterococci were found to persist over time and therefore did not always represent true comparisons of OSTDS and sewered areas between seasons. The timeframe for evaluating the effects of sewer projects may be longer than anticipated because of this survival and regrowth phenomenon. PMID:24961071

  3. Submarine groundwater discharge is an important net source of light and middle REEs to coastal waters of the Indian River Lagoon, Florida, USA

    NASA Astrophysics Data System (ADS)

    Johannesson, Karen H.; Chevis, Darren A.; Burdige, David J.; Cable, Jaye E.; Martin, Jonathan B.; Roy, Moutusi

    2011-02-01

    Porewater (i.e., groundwater) samples were collected from multi-level piezometers across the freshwater-saltwater seepage face within the Indian River Lagoon subterranean estuary along Florida's (USA) Atlantic coast for analysis of the rare earth elements (REE). Surface water samples for REE analysis were also collected from the water column of the Indian River Lagoon as well as two local rivers (Eau Gallie River, Crane Creek) that flow into the lagoon within the study area. Concentrations of REEs in porewaters from the subterranean estuary are 10-100 times higher than typical seawater values (e.g., Nd ranges from 217 to 2409 pmol kg -1), with submarine groundwater discharge (SGD) at the freshwater-saltwater seepage face exhibiting the highest REE concentrations. The elevated REE concentrations for SGD at the seepage face are too high to be the result of simple, binary mixing between a seawater end-member and local terrestrial SGD. Instead, the high REE concentrations indicate that geochemical reactions occurring within the subterranean estuary contribute substantially to the REE cycle. A simple mass balance model is used to investigate the cycling of REEs in the Indian River Lagoon and its underlying subterranean estuary. Mass balance modeling reveals that the Indian River Lagoon is approximately at steady-state with respect to the REE fluxes into and out of the lagoon. However, the subterranean estuary is not at steady-state with respect to the REE fluxes. Specifically, the model suggests that the SGD Nd flux, for example, exported from the subterranean estuary to the overlying lagoon waters exceeds the combined input to the subterranean estuary from terrestrial SGD and recirculating marine SGD by, on average, ˜100 mmol day -1. The mass balance model also reveals that the subterranean estuary is a net source of light REEs (LREE) and middle REEs (MREE) to the overlying lagoon waters, but acts as a sink for the heavy REEs (HREE). Geochemical modeling and

  4. Simulation of steady-state ground water and spring flow in the upper Floridan aquifer of coastal Citrus and Hernando Counties, Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    1989-01-01

    A digital groundwater flow model was developed to approximate steady-state predevelopment flow conditions in the Upper Floridan aquifer of coastal west-central Florida. The aquifer is the major source of water and natural spring flow in the area. The aquifer was simulated as a one-layer system with constant vertical recharge and discharge rates. Calibrated transmissivities ranged from 8,640 sq ft/day in the northern part of the area to nearly 13,000,000 sq ft/day near large springs. Calibrated inflows were about 2,708 cu ft/sec; of this, about 2,565 cu ft/sec discharged as natural spring flow and 137 cu ft/sec discharged as upward leakage along the coast. The model was used to show how the system might respond to large manmade stresses. Withdrawal of 116 cu ft/sec from a hypothetical regional well field resulted in potentiometric-surface drawdowns ranging from 0.1 to 1.7 ft and declines of generally less than 0.2 ft along the coast. Total spring flow decreased 5%, and the effect on individual springs varied from 0.1 to 8.0%. Withdrawal of 62 cu ft/sec from the 4-sq-mi node at each spring resulted in six of seven springs to the south of the Chassahowitzka River contributing 50% of their flow to pumpage. Springs located north of the Chassahowitzka River contributed as much as 18% of their flow to pumpage. (USGS)

  5. Geospatial characteristics of Florida's coastal and offshore environments: Coastal habitats, artificial reefs, wrecks, dumping grounds, harbor obstructions and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, coastal habitats, artificial reefs, shipwrecks, dumping grounds, and harbor obstructions. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are provided as attached xml files for all geographic information system (GIS) layers.

  6. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    USGS Publications Warehouse

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  7. A SUSTAINABLE APPROACH TO PRESERVE THE CHOCTAWHATCHEE COASTAL DUNE LAKES OF FLORIDA

    EPA Science Inventory

    Scattered along a 30 mile coastline just east of Destin, Florida, lies a series of 18 named coastal dune lakes distributed between Walton and Bay County. The lakes are irregularly shaped, typically shallow (2-6 m deep), located within a mile inland from the coast. The water is...

  8. Troubled waters: a Florida nightmare

    SciTech Connect

    Cooper, W.

    1984-12-01

    Results of studies of pollution of groundwater in Florida are reported. Vast amounts of the underground water were found to be polluted with ethylene dibromide (EDB) used by Florida farmers since the 1950s as an insecticide. Pollution levels of water in the middle of the citrus belt were found to be as high as 775 ppB when 0.02 ppB has been set by the Florida Agriculture Department as the level for concern. EDB can be removed using activated charcoal filters, or new wells can tap aquifers separated from contaminated ones by beds of impermeable clay. Evidences of contamination of water in specific sites by cresote, sulfuric acid, and heavy metals such as lead and arsenic are mentioned.

  9. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  10. Inland and coastal waters

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen; Greb, Steven

    2012-09-01

    Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.

  11. Florida submergence curve revised: Its relation to coastal sedimentation rates

    USGS Publications Warehouse

    Scholl, D. W.; Craighead, F.C., Sr.; Stuiver, M.

    1969-01-01

    New data substantiate as well as modify the south Florida submergence curve, which indicates that eustatic sea level has risen continuously, although at a generally decreasing rate, during the last 6500 to 7000 sidereal years (5500 standard radiocarbon years) to reach its present position. Accumulation rates of coastal deposits are similar to the rate of sea-level rise, thus supporting the generalization that submergence rates largely determine as well as limit rates of coastal sedimentation in lagoonal and estuarine areas.

  12. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  13. HYDROBIOLOGICAL CHARACTERISTICS OF THE COASTAL LAGOONS AT HUGH TAYLOR BIRCH STATE RECREATION AREA, FORT LAUDERDALE, FLORIDA: A HISTORICAL PERSPECTIVE.

    USGS Publications Warehouse

    Brock, Robert J.

    1987-01-01

    The author presents initial results of an ongoing study of Southeast Florida coastal lagoon lakes. Objectives include presenting environmental conditions within and adjacent to the lagoons under a variety of hydrologic conditions and to determine water-quality changes in ground water and surface water and how these changes in water quality affect lagoonal biological communities within the lagoons.

  14. Hurricane Properties for KSC and Mid-Florida Coastal Sites

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Rawlins, Michael A.; Kross, Dennis A.

    2000-01-01

    Hurricane information and climatologies are needed at Kennedy Space Center (KSC) Florida for launch operational planning purposes during the late summer and early fall Atlantic hurricane season. Also these results are needed to be used in estimating the potential magnitudes of hurricane and tropical storm impact on coastal Florida sites when passing within 50, 100 and 400 nm of that site. Roll-backs of the Space Shuttle and other launch vehicles, on pad, are very costly when a tropical storm approaches. A decision for the vehicle to roll-back or ride-out needs to be made. Therefore the historical Atlantic basin hurricane climatological properties were generated to be used for operational planning purposes and in the estimation of potential damage to launch vehicles, supporting equipment, buildings, etc.. The historical 1885-1998 Atlantic basin hurricane data were compiled and analyzed with respect to the coastal Florida site of KSC. Statistical information generated includes hurricane and tropical storm probabilities for path, maximum wind, and lowest pressure, presented for the areas within 50, 100 and 400 nm of KSC. These statistics are then compared to similar parametric statistics for the entire Atlantic basin.

  15. Water resources inventory of northwest Florida

    USGS Publications Warehouse

    Dysart, J.E.; Pascale, C.A.; Trapp, Henry

    1977-01-01

    Water resources of the 16 counties of the northwest Florida appear adequate unitl at least 2020. In the 4 westernmost counties, the sand-and-gravel aquifer and streams combined could provide 2,200 to 3,600 million gallons per day of water. Streams outside these counties could provide 5,600 million gallons per day. The Floridan aquifer could provide 220 million gallons per day. Generally, water of quality suitable for most purposes is available throughout the area, although water in smaller streams and in the sand-and-gravel aquifer is acidic and locally contains excessive iron. Water in the upper part of the Floridan aquifer is generally fresh, but saline at depth and in some coastal areas. The quantity of water available in the study area is about 8,020 to 9,420 million gallons per day and projected needs for the year 2020 range from 2,520 to 4,130 million gallons per day. ' Approximate method ' flood-prone area maps cover most of the area. (Woodard-USGS)

  16. Investigation of Carbon, Nutrients, and Groundwater Inputs in Coastal Florida Using Colored Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Arellano, A. R.; Coble, P. G.; Conmy, R. N.; Marine Spectrochemistry Group

    2010-12-01

    Very few studies of the exchange of water between aquifers and the ocean have been conducted along the Florida coast. Progression of residential and agricultural development in coastal areas is leading to increased nutrients from fertilizers and wastewaters to groundwater. A portion of these nutrients ultimately is released to coastal surface waters. Groundwater mining has increased salt water intrusions in coastal aquifers which may further enhance nutrient fluxes to coastal surface waters. Nutrient concentration in coastal groundwater is sometimes higher than those in river water, counterbalancing for the lower mass flux of groundwater relative to surface waters. Nutrient and carbon inputs through groundwater in certain areas may play an important role in cycling and primary productivity in the coastal ocean. King’s Bay is a spring-fed watershed and manatee sanctuary located on the West Florida Shelf. Over the past 25 years, springs supplying groundwater to King’s Bay have shown a three-fold increase in nitrate concentration and increased invasion of nuisance algae. It has been challenging to track sources of both nutrients and other water quality parameters because there are multiple water supplies to King’s Bay. The goal of this project is to improve the estimate of water, nutrients, and carbon from groundwater discharge into the coastal zone. This paper will present preliminary results of high resolution fluorescence spectroscopy analyses of the various source water types in the King's Bay watershed, including deep and shallow aquifers, wells, springs, and surface water sources. Samples were obtained from various sites--5 springs, 27 wells, 12 surface, and 9 lakes and rivers-- within the King’s Bay area during one dry season. Lakes and rivers had the highest fluorescence intensities and showed similar composition, with the most red-shifted emission maxima. Second highest concentration was seen in some of the wells which had wide range in both

  17. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  18. Lessons learned from an integrated coastal ocean observing system on the West Florida Shelf

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert

    Concurrent in situ observations of coastal ocean water properties from autonomous underwater gliders and bottom-stationed oceanographic profilers (BSOP), plus in situ observations of veloc-ity from moored acoustic Doppler current profilers, supplemented by surface velocity remotely sensed by land-based HF radars and surface temperature and chlorophyll remotely sensed by satellites, are used to study the coastal ocean processes on the West Florida Shelf. Some of these observing systems have been in place for many years, others (gliders and profilers) are new additions. Recognizing that the coastal ocean circulation is fully three-dimensional and no single measurement system is adequate to sample coastal ocean processes, these data are used in combination to examine a few individual events, revealing transport pathways for coastal ocean water properties and demonstrating how a mix of instrumentation may be useful in in-terpreting variability that may be aliased by only using one type of data. Examples of satellite data validation (sea surface height) are also given by integrating various components of in situ observations in the frame of coastal ocean dynamics.

  19. Mysterious Black Water off Florida's Gulf Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In mid-December last year, a mysterious black water overtook the normally bluish green waters of Florida Bay. Over the course of the winter, the extent of the water grew to encompass an area as big as Lake Okeechobee, Florida, before subsiding over the last few weeks. These images taken by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite, show the progression of the black water over the last three months. The affected water sits along the southeastern coast of Florida about fifty miles north of the Florida Keys. As of now, scientists do not know why the water appears black in satellite and aerial images or whether the water is harming the wildlife. They speculate that it could be due to an exotic algae bloom, an underwater fountain pushing up sediments from the ocean floor, or possibly chemical and sediment run-off from the nearby Shark River. Researchers at the Florida Marine Research Institute in St. Petersburg and the Mote Marine Research Institute in Sarasota are running tests to determine the chemical make-up of the water. No big fish kills have been reported in the area. But fishermen say the catch has been low this winter. In addition, the black water sits just north of the Florida Keys National Marine Sanctuary, which is home to one of the largest coral reef habitats in the United States. Toxic run-off from the Florida coastline and motor boats in the area have already destroyed many of Florida's reefs. Scientists are concerned that if the extent of the black water grows again, it could endanger these reefs. Information provided by the Naples Daily News. For up-to-date images of the area, view these SeaWiFS Images of Florida Bay. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  20. Use of SeaWiFS, MODIS, and MERIS in developing water quality numeric criteria for Florida’s coastal waters

    EPA Science Inventory

    Human activities on land often increase nutrient loads to coastal waters and may cause increased phytoplankton production, algal biomass, and eutrophication. The U. S. Environmental Protection Agency determined that numeric criteria were necessary to protect Florida's coastal wa...

  1. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys

    SciTech Connect

    LaPointe, B.E. ); Clark, M.W. )

    1992-12-01

    Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone ground waters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems, seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems, while dissolved inorganic nitrogen (DIN; NH[sub 4][sup =] and NO[sub 3][sup [minus

  2. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

    PubMed Central

    Henry, M. S.

    2009-01-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  3. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems.

    PubMed

    Pierce, R H; Henry, M S

    2008-10-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  4. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  5. Water quality in southern Florida; Florida, 1996-98

    USGS Publications Warehouse

    McPherson, Benjamin F.; Miller, Ronald L.; Haag, Kim H.; Bradner, Anne

    2000-01-01

    Major influences and findings for water quality and biology in southern Florida, including the Everglades, are described and illustrated. Samples were collected to determine total phosphorus, dissolved organic carbon, pesticides, mercury, nitrate, volatile organic carbon compounds, and radon-222. Water-management, agricultural, and land-use practices are discussed. Sixty-three species of fish in 26 families were collected; 43 native species, 10 exotic or nonnative species, and 10 species of marine fish that periodically inhabit canals and rivers were identified.

  6. Assessment of saltwater intrusion in southern coastal Broward County, Florida

    USGS Publications Warehouse

    Merritt, M.L.

    1996-01-01

    Of the counties in southeastern Florida, Broward County has experienced some of the most severe effects of saltwater intrusion into the surficial Biscayne aquifer because, before 1950, most public water-supply well fields in the county were constructed near the principal early population centers located less than 5 miles from the Atlantic Ocean. The construction of major regional drainage canals in the early 20th century caused a lowering of the water table and a gradual inland movement of the saltwater front toward the well fields. The U.S. Geological Survey began field investigations of saltwater intrusion in the Biscayne aquifer of southeastern Broward County in 1939. As part of the present study, the positions of the saltwater front in 1945, 1969, and 1993 were estimated using chloride concentrations of water samples collected between 1939 and 1994 from various monitoring and exploratory wells. The data indicate that, between 1945 and 1993, the saltwater front has moved as much as 0.5 mile inland in parts of the study area. The position and movement of the saltwater front were simulated numerically to help determine which of the various hydrologic factors and water-management features characterizing the coastal subsurface environment and its alteration by man are of significance in increasing or decreasing the degree of saltwater intrusion. Two representational methods were applied by the selection and use of appropriate model codes. The SHARP code simulates the position of the saltwater front as a sharp interface, which implies that no transition zone (a zone in which a gradational change between freshwater and saltwater occurs) separates freshwater and saltwater. The Subsurface Waste Injection Program (SWIP) code simulates a two-fluid, variable-density system using a convective-diffusion approach that includes a representation of the transition zone that occurs between the freshwater and saltwater bodies. The models were applied to: (1) approximately

  7. Geospatial characteristics of Florida's coastal and offshore environments: Administrative and political boundaries and offshore sand resources

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics Geopdf of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, military areas, marine protected areas, cultural resources, locations of submerged cables, and shipping routes. The map should be useful to coastal resource managers and others interested in the administrative and political boundaries of Florida's coastal and offshore region. In particular, as oil and gas explorations continue to expand, the map may be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will find that they have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers.

  8. Stable isotope analyses reveal the importance of seagrass beds as feeding areas for juvenile Myrophis punctatus (Angulliformes: Ophichthidae) inthe coastal waters of Florida

    EPA Science Inventory

    The feeding habits and habitats of the speckled worm eel Myrophis punctatus were studied on the mangrove edge of the Indian River Lagoon (Florida) using stomach contents and stable isotope analyses of carbon (δ13C) and nitrogen (δ15N). Stomach dietary analyses identified four tax...

  9. Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments.

    PubMed

    Singh, Simrat P; Azua, Arlette; Chaudhary, Amit; Khan, Shabana; Willett, Kristine L; Gardinali, Piero R

    2010-02-01

    The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home of many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Because, large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of septic systems, a comprehensive survey of selected human waste contamination markers was conducted in three areas to assess water quality with respect to non-traditional micro-constituents. This study documents the occurrence and distribution of fifteen hormones and steroids and five commonly detected pharmaceuticals in surface water samples collected from different near shore environments along South Florida between 2004 and 2006. The compounds most frequently detected were: cholesterol, caffeine, estrone, DEET, coprostanol, biphenol-A, beta-estradiol, and triclosan. The concentration detected for estrone and beta-estradiol were up to 5.2 and 1.8 ng/L, respectively. Concentrations of caffeine (5.5-68 ng/L) and DEET (4.8-49 ng/L) were generally higher and more prevalent than were the steroids. Distribution of microconstituents was site specific likely reflecting a diversity of sources. In addition to chemical analysis, the yeast estrogen screen assay was used to screen the samples for estrogen equivalency. Overall, the results show that water collected from inland canals and restricted circulation water bodies adjacent to heavily populated areas had high concentrations of multiple steroids, pharmaceuticals, and personal care products while open bay waters were largely devoid of the target analytes. PMID:19779818

  10. Water Flows and Nutrient Loads to the Southwest Coast of Florida

    USGS Publications Warehouse

    Levesque, Victor A.

    1996-01-01

    The embayments and estuaries of Florida's southwest coast are an integral part of the south Florida ecosystem. Nutrients and other constituents are transported to these coastal waters by surface water and ground-water flow from the Everglades National Park (ENP) and the Big Cypress Preserve and by longshore and offshore tidal currents. The coastal area is an essential breeding ground for many estuarine and marine species and is a popular location for wilderness recreational pursuits as well as sport fishing. The volume of flow and the loads of nutrients being discharged from the streams draining the upland areas of ENP and Big Cypress Preserve currently are unknown.

  11. Water resources data, Florida, water year 2005. Volume 3B: Southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 108 wells; periodic ground-water elevations at 24 wells; miscellaneous ground-water elevations at 354 wells; and water quality at 2 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  12. Water resources data Florida, water year 2004: Volume 3B: southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 98 wells; periodic ground-water elevations at 56 wells; miscellaneous ground-water elevations at 374 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  13. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  14. Linkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Muller-Karger, Frank E.; Vargo, Gabriel A.; Neely, Merrie Beth; Johns, Elizabeth

    2004-08-01

    Using data collected by satellite sensors, rain and river gauges, and ship surveys, we studied the development and wind-driven transport of a dark water plume from near Charlotte Harbor, Florida, to the Dry Tortugas in the Florida Keys in mid-October 2003. MODIS and SeaWiFS imagery showed that the patch contained an extensive (~5,500 km2) phytoplankton bloom that formed originally near the central coast of Florida. The data linked the bloom to high nutrient coastal runoff caused by heavy rainfall in June and August. Total N and P required for the bloom, which may contain some Karenia brevis cells, was estimated to be 2.3 × 107 and 1.5 × 106 moles, respectively. The dark color became increasingly dominated by colored dissolved organic matter, toward the Dry Tortugas, where CDOM absorption coefficients (0.08-0.12 m-1 at 400 nm) were 2-3 times higher than the surrounding shelf waters, while chlorophyll and inorganic nutrients decreased to negligible levels.

  15. Water resources data, Florida, water year 2005. Volume 3A: Southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.; Dickman, Mark

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains records for continuous or daily discharge for 113 streams, periodic discharge for 4 streams, continuous or daily stage for 80 streams, periodic stage for 2 stream, peak stage and discharge for 8 streams, continuous or daily elevations for 3 lakes, continous or daily elevations for 3 lakes, and quality of water for 75 surface water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  16. Water resources data, Florida, water year 2004, volume 3A: southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 104 streams, periodic discharge for 6 streams, continuous or daily stage for 36 streams, periodic stage for 14 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 3 lakes, and quality-of-water data for 58 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Waterbird use of coastal impoundments and management implications in east-central Florida

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Smith, Rebecca B.

    1990-01-01

    Monthly surveys were conducted on Kennedy Space Center for one year to determine densities of waterbirds within impounded salt marshes that were predominantly open water with little emergent vegetation. The objective was to assess the importance of these impoundments to waterbirds, particularly wading birds, which are species of special conservation concern. Water-level management for mosquito control and waterfowl provided habitat for an abundance of ducks, shorebirds, coots, and wading birds. Average densities throughout the year for these groups were 5.26, 412, 2.80, and 2.20 birds/ha, respectively. The majority of waterfowl were present during the winter. Shorebirds were most common during spring migration. Wading bird densities increased with declining water level. Due to the extensive alteration and development of coastal wetlands in central Florida, properly managed impoundments may provide important feeding areas for maintaining certain waterbird populations.

  18. Spatial and Temporal Variations of Dissolved Organic Matter in Florida Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Chen, M.; Maie, N.; Jaffe, R.

    2010-12-01

    The Florida Everglades is a coastal wetland, which is characterized by a freshwater to marine gradient ranging from freshwater marshes, through mangrove fringe to the seagrass dominated Florida Bay estuary. Dissolved organic matter (DOM) in this system is am important biogeochemical component as most of the N and P are in an organic form. The dynamics of DOM in the Everglades is complex given its versatile sources and the effects of geomorphology, hydrology, water chemistry, and degradation processes on DOM composition and fate. Here we present long-term DOM characterization data (4 yrs) from monthly surface water samples collected at fourteen sampling stations within the Everglades. We applied a high throughput and sensitive spectroscopic method, namely Excitation Emission Matrix (EEM) fluorescence coupled with Parallel Factor Analysis (PARAFAC) in an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales. Eight fluorescence components were modeled through PARAFAC with six humic-like and two protein-like components being identified. The results presented clear spatial clustering and seasonal variations. For example, freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, while estuarine sites were more enriched in algae- and microbial-derived humic-like and protein-like inputs. Coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. Peat-based sites could be clearly differentiated from marl-based sites based on EEM-PARAFAC data. Bulk DOC data and proxies like FI, SR, and a (254nm m-1)* displayed clear spatial and seasonal variations as well. This study highlights the use of optical properties monitoring and in particular EEM-PARAFAC as an effective technique to investigate the DOM dynamics in the aquatic ecosystems.

  19. Ecology and management of Sheoak (Casuarina spp.), an invader of coastal Florida, U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Casuarina spp. are invasive weeds in Florida that threaten biological diversity and beach integrity of coastal habitats. The trees include three species and their hybrids that aggressively invade riverine and coastal areas. Of the three species, C. equisetifolia and C. glauca are highly salt tol...

  20. Interannual Variability in Carbon and Nitrogen Stable Isotopic Signatures of Size-Fractionated POM from the South Florida Coastal Zone

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Anderson, W. T.; Jochem, F. J.; Fourqurean, J. W.

    2004-12-01

    Environmental conditions in South Florida coastal waters have been of local and national concern over the past 15 years. Attention has focused on the ecosystem impacts of salinity increases, seagrass die-off, increased algal bloom frequency, waste water influence, groundwater discharge, and exchange between Florida Bay, the Gulf of Mexico, and the Atlantic Ocean. Changes in water quality and productivity levels may be reflected in the isotopic signatures of coastal zone primary producers. Recent work with seagrasses in South Florida has demonstrated high seasonal and spatial variability in C and N isotopic signatures and decoupling between the two isotopic systems as they vary. To better understand the sources of seasonal and spatial fluctuation, size fractionated POM (particulate organic matter) samples have been collected on a quarterly basis since Sept. 2002. Fractions collected include >150μ m, 50-150μ m, and 0.1-50μ m using Nitex mesh sieves and a portable pump system deployed from a small boat at 10 sites around the Florida Keys and Florida Bay. It was hypothesized that planktonic groups respond more quickly to changes in water quality then seagrasses, and thus variations may be more clearly attributed to environmental parameters. Significant spatial and temporal variability is evident both within site between size fractions and between sites. Seasonal oscillations of up to 4‰ were observed in N isotopic values and 6‰ in C isotopic values of the 50-150μ m size fraction, which is dominated by diatoms and dinoflagellates. δ 13C values are depleted in the late winter/early spring sampling period possibly reflecting decreased productivity stress on available C pools. 13C depletion is generally coincident with δ 15N enrichment in the late winter/early spring, possibly demonstrating changes in DIN pools (NO3- and NH4+ concentrations) or changes in decomposition or denitrification rates. Broad groupings appear to separate Atlantic coral reef sites

  1. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  2. Mapping Porewater Salinity with Electromagnetic Methods in Shallow Coastal Environments: Tampa Bay, Florida

    NASA Astrophysics Data System (ADS)

    Greenwood, W. J.; Kruse, S. E.; Swarzenski, P. W.; Meunier, J. K.

    2004-05-01

    The feasibility of predicting porewater salinity based on surface electromagnetic and resistivity methods was assessed in the shallow coastal waters and wetlands of Tampa Bay, Florida. The most successful method combined an initial core or surface resistivity measurement with pore water samples in order to determine formation factors in the shallow marine sediment. Data were collected over broader areas of interest using Geonics, Inc. EM-31 and EM-34 electromagnetic instruments and the Advanced Geosciences, Inc. SuperSting R8 marine resistivity instrument. To map coastal porewater conductivities, the EM instruments were adapted for use in shallow marine waters (<1 meter). In such high-conductivity environments, interpretation of EM readings requires processing with layered models of terrain conductivity that include direct sampling data. Typically, nearby marine resistivity readings are necessary to distinguish between equivalent EM model solutions. Porewater conductivities estimated from the layered EM models and the resistivity-derived formation factors show very good agreement with measured pore water conductivities. The use of EM systems in very shallow waters has potential application in locating prospective submarine groundwater discharge in areas that are difficult to reach with conventional towed marine resistivity arrays. Electromagnetic and direct sampling data show that salt exclusion by mangroves significantly increases pore water conductivities, and hence terrain conductivity readings within 10m of a mangrove shoreline. Terrain conductivities fall off to background values within 15m of the mangrove shoreline. The marine EM-31 measurements were effective at sensing the magnitude and lateral extent of high and low salinity porewaters within wetlands and mangrove lined ditches and ponds, which may be useful for interdisciplinary studies of coastal ecosystems.

  3. Water Use in Florida, 2005 and Trends 1950-2005

    USGS Publications Warehouse

    Marella, Richard L.

    2008-01-01

    Water is among Florida's most valued resources. The State has more than 1,700 streams and rivers, 7,800 freshwater lakes, 700 springs, 11 million acres of wetlands, and underlying aquifers yielding quantities of freshwater necessary for both human and environmental needs (Fernald and Purdum, 1998). Although renewable, these water resources are finite, and continued growth in population, tourism, and agriculture will place increased demands on these water supplies. The permanent population of Florida in 2005 totaled 17.9 million, ranking fourth in the Nation (University of Florida, 2006); nearly 86 million tourists visited the State (Orlando Business Journal, 2006). In 2005, Florida harvested two-thirds of the total citrus production in the United States and ranked fifth in the Nation net farm income (Florida Department of Agriculture and Consumer Services, 2006). Freshwater is vital for sustaining Florida's population, economy, and agricultural production. Accurate estimates reflecting water use and trends in Florida are compiled in 5-year intervals by the U.S. Geological Survey (USGS) in cooperation with the Florida Department of Environmental Protection (FDEP) and the Northwest Florida, St. Johns River, South Florida, Southwest Florida, and Suwannee River Water Management Districts (Marella, 2004). This coordinated effort provides the necessary data and information for planning future water needs and resource management. The purpose of this fact sheet is to present the highlights of water use in Florida for 2005 along with some significant trends in withdrawals since 1950.

  4. Definition and interpretation of Holocene shorelines in the south Atlantic coastal zone, southeast Florida

    SciTech Connect

    Finkl, C.W. Jr.

    1985-01-01

    There is a wide variety of contemporary shorelines in southeastern Florida. Distinctive types range from rocky platforms, tidal flats, mangroves and marshes, to sand and gravel beaches. Because the natural sequence of shorelines in the urban coastal corridor from Miami to Palm Beach is partly obscured by dredge and fill operations initiated in the early 1920's, some coastal segments are subject to re-interpretation. Analysis of early aerial photographs, old coastal charts and bore log data indicates a much more complicated sequence of Recent coastlines than is generally appreciated. Before development, much of the coastal zone contained complicated networks of fresh-water marshes and lakes with lagoons, bays, and sounds lying behind extensively developed spits. The larger spits prograded southward (downdrift) forming long coastwise sounds that eventually led into fresh-water marshes such as Lake Mabel (now Port Everglades). When new inlets were cut to link the ICW with the sea, the spits were beheaded to form what are now called barrier islands. After subsequent inlet stabilization with inadequate sand bypassing, some spits became welded to the shore and others eroded away. Extension of boundaries marking the back sides of barriers landward into the marshes, to the position of the ICW, is not only an erroneous definition of barrier island width but dangerous for emergency (storm surge) planning because the barriers were never this wide. Beach ridge plains, ridge and swale topography, dune-covered limestone ridges, and some fossil reefs such as Key Biscayne have in addition been mistakenly identified as barrier islands.

  5. Nitrous oxide in coastal waters

    SciTech Connect

    Bange, H.W.; Rapsomanikis, S.; Andreae, M.O.

    1996-03-01

    Measurements of dissolved and atmospheric nitrous oxide (N{sub 2}O) are presented for three coastal environments: (1) the central North Sea, (2) the German Bight, and (3) the Gironde estuary. The contribution of coastal regions to the oceanic emissions of atmospheric N{sub 2}O were also determined. N{sub 2}O was measured with a gas chromatograph equipped with an electron capture detector and analyzed. The surface waters of the central North Sea and the German bight were found to be near equilibrium with the overlying atmosphere, while the mean saturation in the Gironde estuary was 132%. Mean saturations in coastal regions without estuaries or upwelling phenomena were only slightly higher than in the open ocean. When estuaries and regions with upwelling are included, however, approximately 60% of the oceanic N{sub 2}O flux is attributable to coastal regions. A review of published data indicated that previous studies have seriously underestimated N{sub 2}O sea-to-air flux from coastal regions. 69 refs., 8 figs., 4 tabs.

  6. Biomagnification of mercury through a subtropical coastal food web off southwest Florida.

    PubMed

    Thera, Jennifer C; Rumbold, Darren G

    2014-01-01

    Total mercury and stable isotopes of nitrogen (δ(15) N) were measured in samples from 57 species of invertebrates (17 species) and finfish (40 species) from the coastal waters off southwest Florida, USA, to evaluate the biomagnification of mercury through the food web. Mercury concentrations (wet wt) and δ(15) N values were highly variable among species, ranging from 0.004 mg/kg in an unidentified species of brittlestar (class Ophiuroidea) to 2.839 ± 1.39 mg/kg in king mackerel (Scomberomorus cavalla) and from 4.67‰ in a Florida fighting conch (Strombus alatus) to 13.68‰ in crevalle jack (Caranx hippos). In general, observed Hg levels were in the upper range of levels previously reported for other Gulf populations. Species means of log-transformed Hg concentrations were positively correlated with δ(15) N (p < 0.001, r(2)  = 0.66) and had a slope of 0.21. A trophic magnification factor of 5.05 was calculated from the relationship between log-transformed mean Hg concentrations and trophic level (calculated from δ(15) N), indicating that Hg increased by a factor of 5 with each increase in trophic level. The log10 [Hg]-δ(15) N slope and trophic magnification factor were also in the upper range of values reported from other regions and ecosystems. PMID:24123350

  7. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Florida): Spiny lobster. [Panulirus argus

    SciTech Connect

    Marx, J.M.; Herrnkind, W.F.

    1986-08-01

    The Florida spiny lobster (Panulirus argus) supports major commercial fisheries in south Florida and the Caribbean Sea. Its life history includes several life stages that live in the open ocean, inshore bays, and coastal reefs. The Florida population spawns along deeper offshore reefs in spring and early summer. Fate of locally spawned larvae is uncertain, but significant postlarval recruitment may originate from larvae spawned in foreign waters. After settlement in inshore vegetated habitats, juveniles reach legal harvestable size in about 2 years. The onset of maturity is coincident with a marked emigration offshore. Subsequent seasonal movements cued by reproductive activity and weather disturbances are pronounced. Excessive fishing has caused a decline in the size of the south Florida population and a corresponding reduction in total spawn. The relevance of spawn reduction is uncertain because of questions regarding larval origins and stock-recruitment relations. Water temperatures probably regulate population distribution and the seasonal dynamics of growth and reproduction. Postlarval recruitment is limited to high salinity inshore environments. Hydrodynamic stimuli and water circulation patterns play critical roles throughout the life cycle.

  8. Visualizing Water Quality Sampling-Events in Florida

    NASA Astrophysics Data System (ADS)

    Bolt, M. D.

    2015-07-01

    Water quality sampling in Florida is acknowledged to be spatially and temporally variable. The rotational monitoring program that was created to capture data within the state's thousands of miles of coastline and streams, and millions of acres of lakes, reservoirs, and ponds may be partly responsible for inducing the variability as an artifact. Florida's new dissolved-oxygen-standard methodology will require more data to calculate a percent saturation. This additional data requirement's impact can be seen when the new methodology is applied retrospectively to the historical collection. To understand how, where, and when the methodological change could alter the environmental quality narrative of state waters requires addressing induced bias from prior sampling events and behaviors. Here stream and coastal water quality data is explored through several modalities to maximize understanding and communication of the spatiotemporal relationships. Previous methodology and expected-retrospective calculations outside the regulatory framework are found to be significantly different, but dependent on the spatiotemporal perspective. Data visualization is leveraged to demonstrate these differences, their potential impacts on environmental narratives, and to direct further review and analysis.

  9. 76 FR 28130 - Coastal Bank, Cocoa Beach, Florida; Notice of Appointment of Receiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Office of Thrift Supervision Coastal Bank, Cocoa Beach, Florida; Notice of Appointment of Receiver Notice is hereby given that, pursuant to the authority contained in section 5(d)(2) of the Home Owners' Loan Act, the Office of Thrift Supervision...

  10. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    USGS Publications Warehouse

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  11. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...EPA is proposing a rule that would identify provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus Rule) and Florida's Amended Everglades Forever Act (EFA) that EPA has disapproved and that therefore are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing today's rule following EPA's disapproval of......

  12. Investigation of Coastal Hydrogeology Utilizing Geophysical and Geochemical Tools along the Broward County Coast, Florida

    USGS Publications Warehouse

    Reich, Christopher D.; Swarzenski, Peter W.; Greenwood, W. Jason; Wiese, Dana S.

    2008-01-01

    Geophysical (CHIRP, boomer, and continuous direct-current resistivity) and geochemical tracer studies (continuous and time-series 222Radon) were conducted along the Broward County coast from Port Everglades to Hillsboro Inlet, Florida. Simultaneous seismic, direct-current resistivity, and radon surveys in the coastal waters provided information to characterize the geologic framework and identify potential groundwater-discharge sites. Time-series radon at the Nova Southeastern University National Coral Reef Institute (NSU/NCRI) seawall indicated a very strong tidally modulated discharge of ground water with 222Rn activities ranging from 4 to 10 disintegrations per minute per liter depending on tidal stage. CHIRP seismic data provided very detailed bottom profiles (i.e., bathymetry); however, acoustic penetration was poor and resulted in no observed subsurface geologic structure. Boomer data, on the other hand, showed features that are indicative of karst, antecedent topography (buried reefs), and sand-filled troughs. Continuous resistivity profiling (CRP) data showed slight variability in the subsurface along the coast. Subtle changes in subsurface resistivity between nearshore (higher values) and offshore (lower values) profiles may indicate either a freshening of subsurface water nearshore or a change in sediment porosity or lithology. Further lithologic and hydrologic controls from sediment or rock cores or well data are needed to constrain the variability in CRP data.

  13. Geohydrologic evaluation of a landfill in a coastal area, St Petersburg, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.; Stewart, Joseph W.

    1978-01-01

    The 250-acre Toytown landfill site is in a poorly-drained area in coastal Pinellas County, Florida. Average altitude of land surface at the landfill is less than 10 feet. About 1000 tons of solid waste and about 200,000 gallons of digested sewage sludge are disposed of daily at the landfill. The velocity of ground-water flow through the 23-foot thick surficial aquifer northeast from the landfill toward Old Tampa Bay probably ranges from 1 to 10 feet per year, and downward velocity through the confining bed is about 0.00074 foot per day. The horizontal and vertical flow velocities indicate that leachate moves slowly downgradient, and that leachate has not yet seeped through the confining bed after 12 years of landfill operation. Untreated surface run-off from the site averages about 15 inches per year, and ground-water outflow averages about 3.3 inches per year. The Floridan aquifer is used as a limited source of water for domestic supply in this area. (Woodard-USGS)

  14. Water-use computer programs for Florida

    USGS Publications Warehouse

    Geiger, L.H.

    1984-01-01

    Using U.S. Geological Survey computer programs L149-L153, this report shows how to process water-use data for the functional water-use categories: public supply, rural supply, industrial self-supplied, irrigation, and thermo-electric power generation. The programs are used to selectively retrieve entries and list them in a format suitable for publication. Instructions are given for coding cards to produce tables of water-use data for each of the functional use categories. These cards contain entries that identify a particular water-use data-collection site in Florida. Entries on the cards include location information such as county code, water management district code, hydrologic unit code, and, where applicable, a site name and number. Annual and monthly pumpage is included. These entries are shown with several different headings; for example, surface water or ground water, freshwater or saline pumpages, or consumptive use. All the programs use a similar approach; however, the actual programs differ with each functional water-use category and are discussed separately. Data prepared for these programs can also be processed by the National Water-Use Data System. (USGS)

  15. Estimated water use in Florida, 1977

    USGS Publications Warehouse

    Leach, Stanley D.; Healy, Henry G.

    1980-01-01

    During 1977, an average of 21,466 million gallons of water was withdrawn daily for use in Florida--an increase of 6,153 million gallons per day since 1970. The 1977 daily use was 14,812 million gallons of saline water and 6,654 million gallons of freshwater. Most of the saline water, largely surface water, was pumped from tidal estuaries. Only 107.6 million gallons per day of saline water--less than 1 percent--was obtained from wells. Thermoelectric power generation used virtually all the saline water, 14,738 million gallons per day, whereas all other industrial uses were only 73 million gallons of saline water per day. The freshwater supply was almost equally divided between ground water (53 percent) and surface water (47 percent). Of the total freshwater used, 43 percent was for irrigation--an average of 2,873 million gallons of freshwater daily on the average. The remaining daily use of freshwater was 21 percent for thermoelectric power generation, 19 percent for public supply; 14 percent for industrial use other than thermoelectric power generation; and 3 percent for domestic and rural use. Irrigation was also responsible for the greatest consumption during 1977, with 1,255 million gallons consumed daily which also includes 192 million gallons per day conveyance loss. (Kosco-USGS)

  16. Water use trends and demand projections in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael

    1998-01-01

    The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020

  17. Modeling the west Florida coastal ocean by downscaling from the deep ocean, across the continental shelf and into the estuaries

    NASA Astrophysics Data System (ADS)

    Zheng, Lianyuan; Weisberg, Robert H.

    2012-05-01

    We arrive at a coastal ocean circulation model, suitable for downscaling from the deep ocean, across the continental shelf and into the estuaries, by nesting the unstructured grid, Finite Volume Coastal Ocean Model (FVCOM, inner model) into the structured grid, Global Hybrid Coordinate Model (HYCOM, outer model). The coastal ocean circulation model is three-dimensional, density dependent and inclusive of tides (eight constituents). A calendar year 2007 simulation for the west Florida continental shelf is quantitatively tested against in situ observations of sea level from coastal tide gauges and water column currents and temperature from moored acoustic Doppler current profilers. Agreements between model simulations and observations for both tides and low frequency variability over the calendar year demonstrate the usefulness of our approach. Model horizontal resolution varies from around 12 km at the open boundary to 150 m in the estuaries. Sensitivity experiments for vertical resolution led to the adoption of 21 σ-layers. Several model limitations are discussed, including seasonal steric effects and deep ocean (outer) model errors that may propagate through the inner model. With adequate observations spanning the inner model domain, we may determine when the outer model is in error at the nesting zone. This finding further highlights the need for coordinating coastal ocean observing and modeling programs. The nesting of unstructured and structured grid models is a new approach to coastal ocean circulation modeling. It provides a means for circulation hindcasts and nowcasts/forecasts, and, after combining with biological process models, may provide a framework for multi-disciplinary modeling of coastal ocean ecology from the deep ocean to the head of tides.

  18. MODIS water quality algorithms for northwest Florida estuaries

    EPA Science Inventory

    Synoptic and frequent monitoring of water quality parameters from satellite is useful for determining the health of aquatic ecosystems and development of effective management strategies. Northwest Florida estuaries are classified as optically-complex, or waters influenced by chlo...

  19. Lower survival probabilities for adult Florida manatees in years with intense coastal storms

    USGS Publications Warehouse

    Langtimm, C.A.; Beck, C.A.

    2003-01-01

    The endangered Florida manatee (Trichechus manatus latirostris) inhabits the subtropical waters of the southeastern United States, where hurricanes are a regular occurrence. Using mark-resighting statistical models, we analyzed 19 years of photo-identification data and detected significant annual variation in adult survival for a subpopulation in northwest Florida where human impact is low. That variation coincided with years when intense hurricanes (Category 3 or greater on the Saffir-Simpson Hurricane Scale) and a major winter storm occurred in the northern Gulf of Mexico. Mean survival probability during years with no or low intensity storms was 0.972 (approximate 95% confidence interval = 0.961-0.980) but dropped to 0.936 (0.864-0.971) in 1985 with Hurricanes Elena, Kate, and Juan; to 0.909 (0.837-0.951) in 1993 with the March "Storm of the Century"; and to 0.817 (0.735-0.878) in 1995 with Hurricanes Opal, Erin, and Allison. These drops in survival probability were not catastrophic in magnitude and were detected because of the use of state-of-the-art statistical techniques and the quality of the data. Because individuals of this small population range extensively along the north Gulf coast of Florida, it was possible to resolve storm effects on a regional scale rather than the site-specific local scale common to studies of more sedentary species. This is the first empirical evidence in support of storm effects on manatee survival and suggests a cause-effect relationship. The decreases in survival could be due to direct mortality, indirect mortality, and/or emigration from the region as a consequence of storms. Future impacts to the population by a single catastrophic hurricane, or series of smaller hurricanes, could increase the probability of extinction. With the advent in 1995 of a new 25- to 50-yr cycle of greater hurricane activity, and longer term change possible with global climate change, it becomes all the more important to reduce mortality and injury

  20. EAARL coastal topography-western Florida, post-Hurricane Charley, 2004: seamless (bare earth and submerged.

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel, Jamie M.; Wright, C. Wayne; Sallenger, A.H.; Brock, John C.; Yates, Xan

    2010-01-01

    Project Description These remotely sensed, geographically referenced elevation measurements of lidar-derived seamless (bare-earth and submerged) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Coastal and Marine Geology Program (CMGP), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the western Florida coastline beachface, acquired post-Hurricane Charley on August 17 and 18, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  1. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used

  2. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create

  3. Freshwater and Nutrient Fluxes to Coastal Waters of Everglades National Park - A Synthesis

    USGS Publications Warehouse

    McPherson, Benjamin F.; Torres, Arturo E.

    2006-01-01

    Freshwater in the Everglades and the Big Cypress Swamp drains south and southwest into coastal regions where it mixes with seawater to create the salinity gradients characteristic of productive estuarine and marine systems. Studies in Florida Bay have shown that over the last 100-200 years, salinity and seagrass distributions have fluctuated substantially in response to natural climatic cycles. The timing of this change coincides at least in part with the canal construction and landscape alterations in the Everglades that have altered the quantity, timing, distribution, and quality of surface water that flows south into the coastal waters. Federal and State agencies have undertaken a massive Everglades restoration project that will require changes in water management throughout the Everglades, and this will affect water flows to the coastal region. A major concern involves how changes in water flow could affect salinity and nutrient availability in coastal waters.

  4. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades

    USGS Publications Warehouse

    Troxler, Tiffany G.; Barr, Jordan G.; Fuentes, Jose D.; Engel, Victor C.; Anderson, Gordon H.; Sanchez, Christopher; Lagomosino, David; Price, Rene; Davis, Stephen E.

    2015-01-01

    Carbon cycling in mangrove forests represents a significant portion of the coastal wetland carbon (C) budget across the latitudes of the tropics and subtropics. Previous research suggests fluctuations in tidal inundation, temperature and salinity can influence forest metabolism and C cycling. Carbon dioxide (CO2) from respiration that occurs from below the canopy is contributed from different components. In this study, we investigated variation in CO2 flux among different below-canopy components (soil, leaf litter, course woody debris, soil including pneumatophores, prop roots, and surface water) in a riverine mangrove forest of Shark River Slough estuary, Everglades National Park (Florida, USA). The range in CO2 flux from different components exceeded that measured among sites along the oligohaline-saline gradient. Black mangrove (Avicennia germinans) pneumatophores contributed the largest average CO2 flux. Over a narrow range of estuarine salinity (25–35 practical salinity units (PSU)), increased salinity resulted in lower CO2 flux to the atmosphere. Tidal inundation reduced soil CO2 flux overall but increased the partial pressure of CO2 (pCO2) observed in the overlying surface water upon flooding. Higher pCO2 in surface water is then subject to tidally driven export, largely as HCO3. Integration and scaling of CO2 flux rates to forest scale allowed for improved understanding of the relative contribution of different below-canopy components to mangrove forest ecosystem respiration (ER). Summing component CO2fluxes suggests a more significant contribution of below-canopy respiration to ER than previously considered. An understanding of below-canopy CO2 component fluxes and their contributions to ER can help to elucidate how C cycling will change with discrete disturbance events (e.g., hurricanes) and long-term change, including sea-level rise, and potential impact mangrove forests. As such, key controls on below-canopy ER must be taken into consideration when

  5. EAARL Coastal Topography-Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    USGS Publications Warehouse

    Fredericks, Xan; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Klipp, E.S.; Nagle, D.B.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired post-Hurricane Jeanne (September 2004 hurricane) on October 1, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the

  6. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  7. Estuaries and coastal waters need help

    SciTech Connect

    Levenson, H.

    1987-11-01

    For years, our marine environments-estuaries, coastal waters, and the open ocean-have been used extensively by coastal communities and industries for the disposal of various wastes. Historically, marine waste disposal has been relatively cheap and has solved some short-term waste-management problems; however, its consequences include a general trend toward environmental degradation, particularly in estuaries and coastal waters. Thus, without protective measures, the next few decades will witness degradation in many estuaries and some coastal waters around the country. The extent of current degradation varies greatly around the country. Although it is difficult to ascertain cause and effect relationships, enough evidence exists to conclude that the pollutants in question include disease-causing microorganisms, oxygen-demanding substances, particulate material, metals, and organic chemicals. Two statutes form the basis of most federal regulatory efforts to combat marine pollution: the Marine Protection, Research, and Sanctuaries Act (MPRSA) and the Clean Water Act (CWA). The MPRSA regulates the dumping of wastes in coastal and open-ocean waters, whereas the CWA has jurisdiction over pipeline discharges in all marine waters, wastes dumped in estuaries, and runoff. Many people consider that the passage and implementation of these two acts and their ensuing amendments established a statutory structure sufficient to protect the nation's waters from pollution. However, these provisions have not protected some estuaries and coastal waters from degradation.

  8. Water-management models in Florida from LANDSAT-1 data

    NASA Technical Reports Server (NTRS)

    Higer, A. L.; Cordes, E. H.; Coker, A. E.; Rogers, R. H.

    1977-01-01

    ERTS-1 is described as a near real time, data relay system for south Florida water quantity and quality monitoring. An ecological model of the Shark River Slough in Everglades National Park is also presented.

  9. Climate change and coastal environmental risk perceptions in Florida.

    PubMed

    Carlton, Stuart J; Jacobson, Susan K

    2013-11-30

    Understanding public perceptions of climate change risks is a prerequisite for effective climate communication and adaptation. Many studies of climate risk perceptions have either analyzed a general operationalization of climate change risk or employed a case-study approach of specific adaptive processes. This study takes a different approach, examining attitudes toward 17 specific, climate-related coastal risks and cognitive, affective, and risk-specific predictors of risk perception. A survey of 558 undergraduates revealed that risks to the physical environment were a greater concern than economic or biological risks. Perceptions of greater physical environment risks were significantly associated with having more pro-environmental attitudes, being female, and being more Democratic-leaning. Perceptions of greater economic risks were significantly associated with having more negative environmental attitudes, being female, and being more Republican-leaning. Perceptions of greater biological risks were significantly associated with more positive environmental attitudes. The findings suggest that focusing on physical environment risks maybe more salient to this audience than communications about general climate change adaptation. The results demonstrate that climate change beliefs and risk perceptions are multifactorial and complex and are shaped by individuals' attitudes and basic beliefs. Climate risk communications need to apply this knowledge to better target cognitive and affective processes of specific audiences, rather than providing simple characterizations of risks. PMID:24056234

  10. Extending electromagnetic methods to map coastal pore water salinities

    USGS Publications Warehouse

    Greenwood, Wm. J.; Kruse, S.; Swarzenski, P.

    2006-01-01

    The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/ salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems. Copyright ?? 2005 National Ground Water Association.

  11. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  12. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    USGS Publications Warehouse

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  13. EAARL Coastal Topography and Imagery-Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

    USGS Publications Warehouse

    Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) topography, first-surface (FS) topography, and canopy-height (CH) datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore, acquired June 30, 2007. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area

  14. Effect of sea-level rise on future coastal groundwater resources in southern Florida, USA

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael R.; White, Jeremy T.; Hughes, Joseph D.

    2010-01-01

    An existing variable‐density groundwater flow and solute transport model, developed for the northern part of Broward County, Florida, was used to predict the effect of sealevel rise on future coastal groundwater resources. Using average annual conditions from 2005, simulations were performed for 100 years into the future using four different rates of sea‐level rise: 0, 24, 48, and 88 centimeters per century. Results from these predictive analyses suggest that the average concentration of groundwater withdrawn at the municipal well field will exceed the potable limit after 70, 60, 55, and 49 years, respectively, for the four simulations.

  15. Florida coastal ecological characterization: a socioeconomic study of the northwestern region. Volume I. Text

    SciTech Connect

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the Northwestern coastal region of Florida, which is made up of Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf, and Franklin Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. 40 figures, 108 tables.

  16. Optical classification of contrasted coastal waters

    NASA Astrophysics Data System (ADS)

    Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mériaux, X.

    2012-04-01

    The high optical complexity of the coastal ocean prevents the development of general open ocean-like inversion algorithms needed to derive in-water bio-optical and biogeochemical parameters from satellite information. To overcome this issue, regional algorithms are generally used in order to focus on the range of optical variability specific to a defined coastal region. This regional approach presents however various limitations including its high dependency on the data set used for its development as well as its limited applicability for large scale applications. Another and more universal approach consists in classifying coastal waters according to their optical properties (independently of their location) and then in applying a class-specific algorithm (empirical or semi-analytical). The framework associated with the development of such classification-based approach is detailed from an in situ data set collected in contrasted coastal waters of the eastern English Channel, north Sea and French Guyana. The advantages of defining an optical typology of the coastal domain for monitoring coastal water masses optical quality and improving the performance of the inversion procedure is emphasized. Further, the representativeness of optical classes defined in the latter training areas for global scale applications is also illustrated.

  17. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  18. An Approach to Developing Numeric Water Quality Criteria for Coastal Waters Using the SeaWiFS Satellite Data Record

    PubMed Central

    2011-01-01

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062

  19. Transport of anomalous low-salinity waters from the Mississippi River flood of 1993 to the Straits of Florida

    NASA Astrophysics Data System (ADS)

    Gilbert, Paula S.; Lee, Thomas N.; Podesta, Guillermo P.

    1996-07-01

    Recent field studies in the southern Straits of Florida revealed the existence of Mississippi River outflow embedded in the Florida Current and adjacent coastal waters. Surface thermosalinograph measurements for the period of 10-13 September 1993 indicated a band of low-salinity water measuring approximately 40 km wide and 30 m in depth extending from south of Key West to Miami, a distance of 260 km. Surface salinity values as low as 31 psu were found. The estimated volume of the band is approximately 33.3 × 10 10 m 3 for the Key West to Miami region, thereby requiring roughly 1.2 × 10 10 m 3 of fresh water to mix with oceanic waters to produce this low-salinity band. The only nearby, dynamically viable, source for such a large volume of fresh water is the Mississippi River during its flood stage in 1993. The proposed transport mechanism for the transport of flood waters from the shelf in the northeastern Gulf of Mexico to the Straits of Florida is via the Loop Current through entrainment. Salinity records from offshore C-MAN towers indicate that the low-salinity band persisted off the lower Florida Keys for approximately 3 months. The variability in the flow field in the southern Straits occurs in a 30-70 day band due to the meandering of the Florida Current and the subsequent formation, and propagation, of cyclonic gyres off the Dry Tortugas. This variability in the flow field had a clear affect on the evolution of the low-salinity band, as observed by the salinity records from the C-MAN towers. Because the band traveled as a lens in the upper 30 m of the water column and because its evolution was highly dependent on the variability within the Gulf Stream System, it was a good indicator of the mixing and exchange of offshore waters with shallow waters of the Florida reef tract and Florida Bay.

  20. Inverse modeling of surface-water discharge to achieve restoration salinity performance measures in Florida Bay, Florida

    USGS Publications Warehouse

    Swain, E.D.; James, D.E.

    2008-01-01

    The use of numerical modeling to evaluate regional water-management practices involves the simulation of various alternative water-delivery scenarios, which typically are designed intuitively rather than analytically. These scenario simulations are used to analyze how specific water-management practices affect factors such as water levels, flows, and salinities. In lieu of testing a variety of scenario simulations in a trial-and-error manner, an optimization technique may be used to more precisely and directly define good water-management alternatives. A numerical model application in the coastal regions of Florida Bay and Everglades National Park (ENP), representing the surface- and ground-water hydrology for the region, is a good example of a tool used to evaluate restoration scenarios. The Southern Inland and Coastal System (SICS) model simulates this area with a two-dimensional hydrodynamic surface-water model and a three-dimensional ground-water model, linked to represent the interaction of the two systems with salinity transport. This coastal wetland environment is of great interest in restoration efforts, and the SICS model is used to analyze the effects of alternative water-management scenarios. The SICS model is run within an inverse modeling program called UCODE. In this application, UCODE adjusts the regulated inflows to ENP while SICS is run iteratively. UCODE creates parameters that define inflow within an allowable range for the SICS model based on SICS model output statistics, with the objective of matching user-defined target salinities that meet ecosystem restoration criteria. Preliminary results obtained using two different parameterization methods illustrate the ability of the model to achieve the goals of adjusting the range and reducing the variance of salinity values in the target area. The salinity variance in the primary zone of interest was reduced from an original value of 0.509 psu2 to values 0.418 psu2 and 0.342 psu2 using different

  1. DESIGNING A COMPREHENSIVE, INTEGRATED WATER RESOURCES MONITORING PROGRAM FOR FLORIDA

    EPA Science Inventory

    Proceedings of the National Water Quality Monitoring Conference "Monitoring Critical Foundations to Protect Our Waters," 7-9 July 1998, Reno, NV.

    In late 1996, Florida Department of Environmental Protection (FDEP) initiated an effort to design a multi-tiered monitoring and...

  2. Sewage in ground water in the Florida Keys

    SciTech Connect

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels were beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.

  3. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants.

    PubMed

    Lewis, Michael A; Quarles, Robert L; Dantin, Darrin D; Moore, James C

    2004-02-01

    Contaminant fate in coastal areas impacted by golf course runoff is not well understood. This report summarizes trace metal, pesticide and PCB residues for colonized periphyton, Ruppia maritima (widgeon grass), Callinectes sapidus Rathbun (blue crabs) and Crassostrea virginica Gemlin (Eastern oyster) collected from areas adjacent to a Florida golf course complex which receive runoff containing reclaimed municipal wastewater. Concentrations of 19 chlorinated pesticides and 18 PCB congeners were usually below detection in the biota. In contrast, 8 trace metals were commonly detected although concentrations were not usually significantly different for biota collected from reference and non-reference coastal areas. Residue concentrations in decreasing order were typically: zinc, arsenic, copper, chromium, lead, nickel, cadmium and mercury. Mean BCF values for the eight trace metals ranged between 160-57000 (periphyton), 79-11033 (R. maritima), 87-162625 (C. virginica) and 12-9800 (C. sapidus). Most trace metal residues in periphyton colonized adjacent to the golf complex, were either similar to or significantly less than those reported for periphyton colonized in nearby coastal areas impacted by urban stormwater runoff and treated municipal and industrial wastewater discharges. Consequently, the recreational complex does not appear to be a major source of bioavailable contaminants locally nor in the immediate watershed based on results for the selected biota. PMID:14972577

  4. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  5. PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF CDOM IN WATERS FROM SELECTED COASTAL REGIONS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Biological and photochemical degradation of colored dissolved organic matter (CDOM) were investigated in controlled experiments using waters from southeastern U.S. estuaries, from the Mississippi River plume and Gulf of Mexico, and from the coastal shelf region in the Florida Key...

  6. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  7. Saltwater intrusion in the Floridan aquifer, coastal Citrus and Hernando Counties, Florida, 1975

    USGS Publications Warehouse

    Mills, L.R.; Ryder, Paul D.

    1977-01-01

    The coastal parts of Citrus and Hernando Counties, Fla., are undergoing extensive urban development along U.S. Highway 19. The Floridan aquifer, a thick sequence of limestone and dolomite , is the principal source of water supply for the coastal parts of these two counties. The construction of canals that penetrate the Floridan aquifer, deficient rainfall during 1964-75, and pumping of ground water, have caused saltwater to intrude the aquifer. A map shows the inland extend of that intrusion as of 1975. The report is based on field data collected in 1964, 1973, and 1975. (Woodard-USGS)

  8. The use of remote sensing in solving Florida's geological and coastal engineering problems

    NASA Technical Reports Server (NTRS)

    Brooks, H. K.; Ruth, B. E.; Wang, Y. H.; Ferguson, R. L.

    1977-01-01

    LANDSAT imagery and NASA high altitude color infrared (CIR) photography were used to select suitable sites for sanitary landfill in Volusia County, Florida and to develop techniques for preventing sand deposits in the Clearwater inlet. Activities described include the acquisition of imagery, its analysis by the IMAGE 100 system, conventional photointerpretation, evaluation of existing data sources (vegetation, soil, and ground water maps), site investigations for ground truth, and preparation of displays for reports.

  9. Remote sensing of ALGAL pigments to determine coastal phytoplankton dynamics in Florida Bay

    SciTech Connect

    Richardson, L.L.; Ambrosia, V.G.

    1997-06-01

    An important component of remote sensing of marine and coastal environments is the detection of phytoplankton to estimate biological activity. Traditionally the focus has been on detection of chlorophyll a, a photosynthetic pigment common to all algal groups. Recent advances in remote sensing instrumentation, in particular the development of hyperspectral imaging sensors, allow detection of additional algal pigments that include taxonomically significant photosynthetic and photoprotective accessory pigments. We are working with the hyperspectral imaging sensor AVIRIS (the Airborne Visible-Infrared Imaging Spectrometer) to characterize phytoplankton blooms in Florida Bay. Our data analysis focuses on intersection of image data (and image-derived spectral data) with our in-house library of algal pigment signatures.

  10. Modeling landscape dynamics and effects of sea-level rise on coastal wetlands of northwest Florida

    SciTech Connect

    Doyle, T.W.; Day, R.H.; Biagas, J.M.

    1997-06-01

    A research study to examine the ability to predict changes in coastal vegetation caused by sea level rise is very briefly summarized. A field survey was carried out on the northwest coast of Florida. A predictive elevation model was then generated from digitized US Geologic Survey 1:2400 hypsographic data using surface modeling techniques. Sea-level rise model simulations were generated to predict a likelihood index of habitat change and conversions under different scenarios. Maps were produced depicting location of the coastline and inland extent of salt marsh using a range of sea level rise rates through the year 2100. This modeling approach offers a technological tool to researchers and wetland managers for effective cumulative impact analysis of wetlands affected by sea-level rise.

  11. Seasonal and spatial distribution patterns of finfish and selected invertebrates in coastal lagoons of northeastern Florida, 2002-2004

    USGS Publications Warehouse

    Turtora, Michael; Schotman, Elizabeth M.

    2010-01-01

    The U.S. Geological Survey conducted a survey of juvenile fisheries resources, in cooperation with the St. Johns River Water Management District and Volusia County, to establish baseline data on spatial and temporal distribution patterns of estuarine fish. The survey was conducted from November 2001 to March 2005 and the baseline data established for the survey in the Northern Coastal Basins were collected from January 2002 to December 2004. The study area included the bar-built estuaries ranging from just north of St. Augustine, Florida, south to Ponce de Leon Inlet. Sampling protocols developed by the Florida Fish and Wildlife Research Institute for their statewide Fisheries Independent Monitoring (FIM) program were replicated to allow for comparability with FIM program results. Samples were collected monthly from randomly selected stations based on a geographically stratified design. Finfish and selected invertebrates were collected using a 21.3-meter center-bag seine with a 3-millimeter mesh, and a 6.1-meter otter trawl with a 3-millimeter mesh liner. Total estimated fish and selected invertebrate densities were similar to estimates from FIM projects in adjacent areas and were characterized by similar dominant species. Preliminary analysis indicates that observed species distribution patterns were mainly a function of proximity to the three inlets within the study area. The two regions encompassing the northern Tolomato River and the Tomoka River and Basin are farthest from inlets and appear to function as oligohaline nursery areas. Those two areas had the greatest estimated densities of shellfish and juvenile sciaenid (drum) species associated with oligohaline waters (for example, Micropogonias undulatus, Sciaenops ocellatus and Cynoscion nebulosus). Samples near inlets, and between the two northern inlets, had greater estimated densities of species limited to euhaline waters, including juvenile clupeids collected at relatively high abundance and species of

  12. Hydrologic Conditions in Florida during Water Year 2007

    USGS Publications Warehouse

    Verdi, Richard Jay; Tomlinson, Stewart A.; Irvin, Ronald B.; Fulcher, David L.

    2009-01-01

    Record-high and record-low hydrologic conditions occurred during water year 2007 (October 1, 2006 - September 30, 2007) based on analyses of precipitation, surface-water flows, lake elevations, and ground-water levels. For example, the streamgage at Suwannee River at White Springs in northwest Florida recorded an annual streamflow of 103 cubic feet per second during 2007, or about 6 percent of the period-of-record average since monitoring began in 1906. Lake Okeechobee in south Florida reached record-low elevations (8.82 feet on July 2) since monitoring began in 1912. Several wells throughout the State registered period-of-record lowest daily maximum water levels.

  13. Hydrologic Conditions in Northwest Florida: 2006 Water Year

    USGS Publications Warehouse

    Verdi, Richard Jay

    2007-01-01

    Introduction National data for streamflow, ground-water levels, and quality of water for the 2006 water year are accessible to the public on the U.S. Geological Survey's (USGS) Site Information Management System (SIMS) website http://web10capp.er.usgs.gov/adr06_lookup/search.jsp. This fact sheet describes data and hydrologic conditions throughout northwest Florida during the 2006 water year (fig. 1), when record-low monthly streamflow conditions were reported at several streamgage locations. Prior to 1960, these data were published in various USGS Water-Supply Papers and included water-related data collected by the USGS during the water year (October 1 to September 30). In 1961, a series of annual reports, 'Water Resources Data-Florida,' was introduced that published surface-water data. In 1964, a similar report was introduced for the purposes of publishing water-quality data. In 1975, the reports were merged to a single volume and were expanded to publish data for surface water, water quality, and ground-water levels. Formal publication of the annual report series was discontinued at the end of the 2005 water year, upon activation of the SIMS website database.

  14. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    USGS Publications Warehouse

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the

  15. Barnacles as biomonitors of metal contamination in coastal waters

    NASA Astrophysics Data System (ADS)

    Reis, Pedro A.; Salgado, Maria Antónia; Vasconcelos, Vitor

    2011-07-01

    The use of barnacles as biomonitors of metal contamination in coastal waters worldwide is reviewed as a critique compilation of the reported studies and presents resume-tables of available data for future reference. The barnacle body reflects both short and long-term metal level environmental variations and the metal bioaccumulation occurs mainly in their granules (relatively inactive pools). The barnacle body is considered as good biomonitoring material and different barnacle species could bioaccumulate metal concentration ranges of 40-153,000 μg/g of Zn, 20-22,230 μg/g de Fe, 1.5-21,800 μg/g of Cu, 5.9-4742 μg/g of Mn, 0.1-1000 μg/g of Pb, 0.7-330 μg/g of Cd, 0.4-99 μg/g of Ni and 0.2-49 μg/g of Cr. However, as the plates ('shells') of barnacle exoskeletons can be affected by metal levels in coastal waters, mainly in their composition and morphology, they are not considered good biomonitoring material. Despite this, the use of a specific barnacle species or group of species in a specific region must firstly be carefully validated and the interpretation of the contaminant bioaccumulation levels should involve specific environmental variations of the region, physiological parameters of the barnacle species and the relationship between the potential toxicity of the contaminant for the environment and their significance for the barnacle species. Barnacles, particularly a widespread cosmopolitan species such as Amphibalanus amphitrite, have a great potential as biomonitors of anthropogenic contamination in coastal waters and have been used worldwide, including Europe (United Kingdom, Turkey, Poland, Croatia, Spain and Portugal), Asia (India and China), Oceania (Australia), North America (Florida, Massachusetts and Mexico) and South America (Brazil). The use of barnacle species as biomonitors of metal contamination in coastal waters is considered an important and valuable tool to evaluate and predict the ecological quality of an ecosystem.

  16. Dissolved solids, hardness, and orthophosphate of surface-water runoff in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Earle, J.E.

    1976-01-01

    Historical water-quality data collected from January 1965 to September 1970 were used to prepare maps showing the generalized distribution of dissolved solids, hardness, and orthophosphate in streams and lakes in the Northwest Florida Water Management District. The regional concentration patterns shown on the maps are generalized and local variations may be expected. The dissolved-solids concentrations generally range from 10 to 150 milligrams per liter. Higher concentrations are found in the coastal area on tide affected streams. The concentrations of hardness as CaCO3 generally range from 5 to 140 milligrams per liter. The concentrations of dissolved orthophosphate generally range from 0 to 0.75 milligrams per liter. These maps provide information to those concerned with water resources management and establish a basis for comparing future water-quality data. (Woodard-USGS)

  17. Hydrologic conditions in Florida during Water Year 2008

    USGS Publications Warehouse

    Verdi, Richard J.; Holt, Sandra L.; Irvin, Ronald B.; Fulcher, David L.

    2010-01-01

    Record-high and record-low hydrologic conditions occurred during water year 2008 (October 1, 2007-September 30, 2008). Record-low levels were caused by a continuation of the 2007 water year drought conditions into the 2008 water year and persisting until summer rainfall. The gage at the Santa Fe River near Fort White site recorded record-low monthly mean discharges in October and November 2007. The previous records for this site were set in 1956 and 2002, respectively. Record-high conditions in northeast and northwest Florida were caused by the rainfall and runoff associated with Tropical Storm Fay. For example, St. Mary's River near Macclenny recorded a new record-high monthly mean discharge in August 2008. The previous record for this site was set in 1945. Lake Okeechobee in south Florida reached new minimum monthly mean lake levels since monitoring began in 1912 from October to March during the 2008 water year. Some wells throughout northwest and south Florida registered period-of-record lowest daily maximum water levels.

  18. Water withdrawals, use, discharge, and trends in Florida, 2000

    USGS Publications Warehouse

    Marella, Richard L.

    2004-01-01

    In 2000, the estimated amount of water withdrawn in Florida was 20,148 million gallons per day (Mgal/d), of which 59 percent was saline and 41 percent was fresh. Ground water accounted for 62 percent of freshwater withdrawals and surface water accounted for the remaining 38 percent. Ninety-two percent of the 15.98 million people in Florida relied on ground water for their drinking water needs in 2000. Almost all of the saline water withdrawals (99.9 percent) were from surface water. Public supply accounted for 43 percent of ground water withdrawn in 2000, followed by agricultural self-supplied (39 percent), commercial-industrial self-supplied (including mining) (8.5 percent), recreational irrigation (4.5 percent), domestic self-supplied (4 percent), and power generation (1 percent). Agricultural self-supplied accounted for 62 percent of fresh surface water withdrawn in 2000, followed by power generation (20 percent), public supply (8 percent), recreational irrigation (6 percent), and commercial-industrial self-supplied (4 percent). Almost all of saline water withdrawn was used for power generation. The largest amount of freshwater was withdrawn in Palm Beach County and the largest amount of saline water was withdrawn in Hillsborough County. Significant withdrawals (more than 200 Mgal/d) of fresh ground water occurred in Miami-Dade, Polk, Orange, Palm Beach, Broward, and Collier Counties. Significant withdrawals (more than 200 Mgal/d) of fresh surface water occurred in Palm Beach, Hendry, and Escambia Counties. The South Florida Water Management District accounted for the largest amount of freshwater withdrawn (49 percent). About 62 percent of the total ground water withdrawn was from the Floridan aquifer system; 17 percent was from the Biscayne aquifer. Most of the surface water used in Florida was from managed and maintained canal systems or large water bodies. Major sources of fresh surface water include the Caloosahatchee River, Deer Point Lake, Hillsborough

  19. Measuring mercury in coastal fog water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)

  20. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (south Florida)

    SciTech Connect

    Jory, D.E.; Iversen, E.S. . Rosenstiel School of Marine and Atmospheric Sciences)

    1989-08-01

    Black, red, and Nassau groupers (Mycteroperca bonaci, Epinephelus morio, and E. striatus, respectively) are widely distributed on rocky bottoms and reefs along the south Florida coast. They are the most valuable marine finfish group in Florida, comprising about 25% of the total value of landings in 1984. The three species can be distinguished by morphometric, meristic, and body color characteristics. Younger fish are typically found in shallow, inshore grass beds, and larger, older fish are generally restricted to deep waters. The three species are protogynous hermaphrodites. Sexual transition can occur at any length over about 300 mm SL. An offshore movement apparently coincides with the onset of sexual maturity. Spawning aggregations have been observed throughout the year, but occur mostly between late spring and early summer. Fecundity estimates range from about 800,000 to 5,000,000 eggs per female. Both the eggs and the larvae are planktonic. Their early life history is poorly known. Larvae probably leave the plankton and become benthic at around 20--30 mm SL. Growth rates range from about 2 to 10 mm/month. The three species are unspecialized carnivores, feeding on a variety of fishes, crustaceans, and mollusks. Interspecific competition for food and shelter may be common because of the overlap in distribution, habitat, size, and food habitats. For the three species, a number of predators and parasites have been reported. Both the black and red groupers have been implicated in ciguatera poisonings in south Florida. 70 refs., 3 figs., 3 tabs.

  1. The Carbon Budget of Coastal Waters of Eastern North America

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Boyer, E. W.; Burdige, D.; Butman, D. E.; Cai, W. J.; Canuel, E. A.; Chen, R. F.; Friedrichs, M. A.; Griffith, P. C.; Herrmann, M.; Kemp, W. M.; Kroeger, K. D.; Mannino, A.; McCallister, S. L.; McGillis, W. R.; Mulholland, M. R.; Salisbury, J.; Signorini, S. R.; Tian, H.; Tzortziou, M.; Vlahos, P.; Wang, A. Z.; Zimmerman, R. C.; Pilskaln, C. H.

    2015-12-01

    Observations and the output of numerical and statistical models are synthesized to construct a carbon budget of the coastal waters of eastern North America. The domain extends from the head of tide to (roughly) the continental shelf break and from southern Florida to southern Nova Scotia. The domain area is 2% tidal wetlands, 19% estuarine open water, and 78% shelf water. Separate budgets are constructed for inorganic and organic carbon; for tidal wetlands, estuaries, and shelf waters; and for three main subregions: the Gulf of Maine, the Mid-Atlantic Bight, and the South Atlantic Bight. Net primary production for the study region is about 150 Tg C yr-1, with 12% occurring in tidal wetlands and 7% in estuaries. Though respiration and photosynthesis are nearly balanced in most systems and regions, tidal wetlands and shelf waters are each found to be net autotrophic whereas estuaries are net heterotrophic. The domain as a whole is a sink of 5 Tg C yr-1 of atmospheric CO2, with tidal wetlands and shelf waters taking up 10 Tg C yr-1 (split roughly equally) and estuaries releasing 5 Tg C yr-1 to the atmosphere. Carbon burial is about 3 Tg C yr-1, split roughly equally among tidal wetlands, estuaries, and shelf waters. Rivers supply 6-7 Tg C yr-1 to estuaries, about 2/3 of which is organic. Tidal wetlands supply an additional 4 Tg C yr-1 to estuaries, about half of which is organic. Carbon in organic and inorganic forms is exported from estuaries to shelf waters and from shelf waters to the open ocean. In summary, tidal wetlands and estuaries, though small in area, contribute substantially to the overall carbon budget of the region.

  2. Evaluation of sewage source and fate on southeast Florida coastal reefs

    USGS Publications Warehouse

    Carrie, Futch J.; Griffin, Dale W.; Banks, K.; Lipp, E.K.

    2011-01-01

    Water, sponge and coral samples were collected from stations impacted by a variety of pollution sources and screened for human enteric viruses as conservative markers for human sewage. While human enteroviruses and adenoviruses were not detected, noroviruses (NoV; human genogroups I and II) were detected in 31% of samples (especially in sponge tissue). Stations near inlets were the only ones to show multiple sample types positive for NoV. Fecal indicator bacteria and enteric viruses were further evaluated at multiple inlet stations on an outgoing tide. Greatest indicator concentrations and highest prevalence of viruses were found at the mouth of the inlet and offshore in the inlet plume. Results suggest that inlets moving large volumes of water into the coastal zone with tides may be an important source of fecal contaminants. Efforts to reduce run-off or unintended release of water into the Intracoastal Waterway may lower contaminants entering sensitive coastal areas. ?? 2011 Elsevier Ltd.

  3. Water withdrawals, use, and trends in Florida, 2010

    USGS Publications Warehouse

    Marella, Richard L.

    2014-01-01

    In 2010, the total amount of water withdrawn in Florida was estimated to be 14,988 million gallons per day (Mgal/d). Saline water accounted for 8,589 Mgal/d (57 percent) and freshwater accounted for 6,399 Mgal/d (43 percent). Groundwater accounted for 4,166 Mgal/d (65 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,233 Mgal/d (35 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 659 Mgal/d of reclaimed wastewater was used in Florida during 2010. Freshwater withdrawals were greatest in Palm Beach County (707 Mgal/d), and saline-water withdrawals were greatest in Hillsborough County (1,715 Mgal/d). Fresh groundwater provided drinking water (public supplied and self-supplied) for 17.33 million people (92 percent of Florida’s population), and fresh surface water provided drinking water for 1.47 million people (8 percent). The statewide public-supply gross per capita use for 2010 was 134 gallons per day, whereas the statewide public-supply domestic per capita use was 85 gallons per day. The majority of groundwater withdrawals (almost 62 percent) in 2010 were obtained from the Floridan aquifer system, which is present throughout most of the State. The majority of fresh surface-water withdrawals (56 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 35 percent. Public supply accounted for 48 percent of groundwater withdrawals, followed by agricultural self-supplied (34 percent), commercial-industrial-mining self-supplied (7 percent), recreational

  4. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  5. Mississippi waters reaching South Florida reefs under no flood conditions: synthesis of observing and modeling system findings

    NASA Astrophysics Data System (ADS)

    Le Hénaff, Matthieu; Kourafalou, Vassiliki H.

    2016-03-01

    In August 2014, in situ measurements revealed an intense salinity drop impacting South Florida coral reefs, between Pulley Ridge (Southwest Florida Shelf) and the Florida Keys. The low salinity waters had a surface signal of 32 (down from 35.2) and extended over a 15-20-m deep lens. Satellite observations showed that this abrupt drop in salinity was due to a southeastward export of Mississippi River waters from the Northern Gulf of Mexico (GoM), revealing strong interaction between coastal and oceanic flows. Unlike previous events of marked long-distance Mississippi water export, this episode is not associated with Mississippi flooding conditions, which makes it a unique study case. We have developed a high-resolution (~2 km) comprehensive hydrodynamic numerical model of the GoM to study the conditions that controlled the 2014 Mississippi River water export episode. It is based on the Hybrid Coordinate Ocean Model (HYCOM) and assimilates remotely sensed altimetry and sea surface temperature observations, to ensure that the simulated upper-ocean is realistic. This regional model has a detailed representation of coastal physics (especially river plume dynamics) and employs high-frequency river discharge and atmospheric forcing. The combined use of the simulation and observations reveals a unique pathway that brought Mississippi waters first eastward along the Northern GoM continental shelf, under prevailing winds and the presence of an anticyclonic Loop Current eddy, then southward along the edge of the West Florida Shelf, before reaching the deep GoM. Unlike usually observed, the offshore advection of Mississippi River waters thus took place far from the Delta area, which is another specificity of the 2014 episode. Finally, in the Florida Straits, Mississippi waters were advected from the deep ocean to the continental shelf under the influence of both deep sea (particularly a cyclonic Loop Current frontal eddy) and shelf flows (wind-induced Ekman transport). The

  6. Water Withdrawals, Use, and Trends in Florida, 2005

    USGS Publications Warehouse

    Marella, Richard L.

    2009-01-01

    In 2005, the total amount of water withdrawals in Florida was estimated at 18,359 million gallons per day (Mgal/d). Saline water accounted for 11,486 Mgal/d (63 percent), and freshwater accounted for 6,873 Mgal/d (37 percent). Groundwater accounted for 4,247 Mgal/d (62 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,626 Mgal/d (38 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 660 Mgal/d of reclaimed wastewater was used in Florida during 2005. The largest amount of freshwater was withdrawn from Palm Beach County, and the largest amount of saline water was withdrawn from Pasco County. Fresh groundwater provided drinking water (public supplied and self-supplied) for 16.19 million people (90 percent of Florida's population), and fresh surface water provided drinking water for 1.73 million people (10 percent). The majority of groundwater withdrawals (nearly 60 percent) in 2005 was obtained from the Floridan aquifer system which is present throughout the entire State. The majority of fresh surface-water withdrawals (59 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 37 percent. Public supply accounted for 52 percent of groundwater withdrawals, followed by agricultural self-supplied (31 percent), ommercial-industrial-mining self-supplied (8.5 percent), recreational irrigation and domestic self-supplied (4 percent each), and power generation (0.5 percent). Agricultural self-supplied accounted for 56 percent of fresh surface-water withdrawals, followed by power

  7. Water-management model in Florida from LANDSAT-1 data

    NASA Technical Reports Server (NTRS)

    Higer, A. L.; Cordes, E. H.; Coker, A. E.; Rogers, R. H.

    1975-01-01

    A prototype data acquisition and dissemination network and its effectiveness in improving and/or solving hydrologic problems in southern Florida are evaluated. The network utilized LANDSAT MSS imagery and in situ monitoring by LANDSAT-DCS. Results show water level and rain fall measurements were collected and disseminated in less than two hours, a significant improvement over conventional methods which took up to two months. Improved network performance has also aided the development of water budgets and water distribution to the people, funa, and flora in the area. Imagery from LANDSAT was also found to enhance the utility of ground measurements.

  8. Water-resources investigations, Collier County, Florida

    USGS Publications Warehouse

    Klein, Howard

    1980-01-01

    Early water-resources investigations in Collier County, Fla., were related to saltwater intrusion in Naples. With the advent of canal drainage and land reclamation farther inland, investigations were directed at effects of canals on water resources and the environment. High on the list of investigative needs are: (1) areal and vertical delineation of the shallow aquifer, the prime source of freshwater; (2) delineation of areas of poor quality ground water and the sources of the poor quality; (3) establishment of network of hydrologic data stations; and (4) determination of the relation between canals and the shallow aquifer. (USGS)

  9. Effects of a coastal golf complex on water quality, periphyton, and seagrass

    USGS Publications Warehouse

    Lewis, M.A.; Boustany, R.G.; Dantin, D.D.; Quarles, R.L.; Moore, J.C.; Stanley, R.S.

    2002-01-01

    The objective of this study was to provide baseline information on the effects of a golf course complex on water quality, colonized periphyton, and seagrass meadows in adjacent freshwater, near-coastal, and wetland areas. The chemical and biological impacts of the recreational facility, which uses reclaimed municipal wastewater for irrigation, were limited usually to near-field areas and decreased seaward during the 2-year study. Concentrations of chromium, copper, and organochlorine pesticides were below detection in surface water, whereas mercury, lead, arsenic, and atrazine commonly occurred at all locations. Only mercury and lead exceeded water quality criteria. Concentrations of nutrients and chlorophyll a were greater in fairway ponds and some adjacent coastal areas relative to reference locations and Florida estuaries. Periphyton ash free dry weight and pigment concentrations statistically differed but not between reference and non-reference coastal areas. Biomass of Thalassia testudinum (turtle grass) was approximately 43% less in a meadow located adjacent to the golf complex (P < 0.05). The results of the study suggest that the effects of coastal golf courses on water quality may be primarily localized and limited to peripheral near-coastal areas. However, this preliminary conclusion needs additional supporting data. ?? 2002 Elsevier Science (USA).

  10. Evaluation of the effects of sea-level change and coastal canal management on saltwater intrusion in the Biscayne aquifer of south Florida, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Sifuentes, D. F.; White, J.

    2015-12-01

    Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.

  11. Water resources of Okaloosa County and adjacent areas, Florida

    USGS Publications Warehouse

    Trapp, Henry; Pascale, C.A.; Foster, J.B.

    1977-01-01

    Okaloosa County, in the northwest Florida panhandle, uses the Floridan aquifer for water supply, although it also has abundant surface water and ground water in the surficial sand-and-gravel aquifer. Water levels have declined locally more than 90 feet in the upper limestone of the Floridan aquifer. The Floridan aquifer is overlain by the Pensacola clay confining bed, and the Bucatunna Clay subdivides it into two limestone units. Water in the upper limestone is generally of good quality. The lower limestone probably contains saline water. Average daily stream discharge is about 2,500 million gallons. Stream discharge does not diminish excessively during droughts, owing to high base runoff. Water levels in the Floridan aquifer will decline as long as pumping increases in the present areas of withdrawal. The decline could be alleviated by redistribution of pumping, artificial recharge, and the use of the sand-and-gravel aquifer or streams. (Woodard-USGS)

  12. Water Foundations Teachers Guide. The Science of Florida's Water Resources: Lesson Plans for Teachers and Students.

    ERIC Educational Resources Information Center

    2001

    This document features lesson plans for teachers and students on Florida's water resources. The guide is divided into four grade levels: K-2, 3-5, 6-8, and 9-12. Each grade level includes objectives, guides, and five lesson plans. K-2 lesson plans include: (1) "We Are Water"; (2) "Why Water is Extra Special"; (3) "Water's Changing Shapes"; (4)…

  13. Water-management models in Florida from ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Higer, A. L. (Principal Investigator); Rogers, R. H.; Coker, A. E.; Cordes, E. H.

    1975-01-01

    The author has identified the following significant results. The usefullness of ERTS 1 to improving the overall effectiveness of collecting and disseminating data was evaluated. ERTS MSS imagery and in situ monitoring by DCS were used to evaluate their separate and combined capabilities. Twenty data collection platforms were established in southern Florida. Water level and rainfall measurements were collected and disseminated to users in less than 2 hours, a significant improvement over conventional techniques requiring 2 months. ERTS imagery was found to significantly enhance the utility of ground measurements. Water stage was correlated with water surface areas from imagery in order to obtain water stage-volume relations. Imagery provided an economical basis for extrapolating water parameters from the point samples to unsampled data and provided a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  14. An optical method to assess water clarity in coastal waters.

    PubMed

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2015-12-01

    Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m(-1)) and beam attenuation coefficient c (m(-1)). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1%)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters. PMID:26559556

  15. Passive microwave sensing of coastal area waters

    NASA Technical Reports Server (NTRS)

    Kendall, B. M.

    1980-01-01

    A technique to remotely measure sea-surface temperature and salinity was demonstrated during the 1970's with a dual-frequency microwave radiometer system developed at the NASA Langley Research Center. Accuracies in temperature of 1 C and 1 part per thousand in salinity were obtained using state-of-the-art radiometers. Several aircraft programs for the measurement of coastal area waters demonstrating the application of the microwave radiometer system are discussed. Improvements of the microwave radiometer system during the 1980's and the design and development of new radiometer systems at other frequencies are outlined and related to potential applications.

  16. Index of ground-water quality data for Florida

    USGS Publications Warehouse

    Seaber, P.R.; Williams, O.O.

    1985-01-01

    The Master Water Data Index of the U.S. Geological Survey contains records and information for 13,925 ground-water quality collection sites in Florida as follows: 2,180 active and 11,559 inactive well sites, and 39 active and 147 inactive spring sites. Ground-water quality data have been and are being collected at more sites in Florida than are other types of ground- and surface-water hydrologic data. Information available from the Master Water Data Index includes location (county, hydrologic unit, and latitude-longitude); reporting agency; agency identifying number; period and frequency of record; types of data (parameter sampled); and for wells, the principal aquifer sampled and well depth. This information may be retrieved, upon request, in a variety of formats. This report contains an index of the information available, not the actual water-quality data itself. The actual data may be obtained from the reporting agency that collected and stored the data. (USGS)

  17. Uranium and strontium isotopes in Boulder Zone waters, South Florida

    SciTech Connect

    Cowart, J.B. . Dept. of Geology)

    1993-03-01

    The Boulder Zone of southern peninsular Florida, which is at a depth of approximately 1,000 m, is a cavernous, dolomitized zone which contains anomalously cool water which appears to be of marine composition. Samples of this water, as they have become available, have been analyzed for uranium concentration, U-234/U-238 alpha activity ratio, and, in a few cases, Sr-87/Sr-86 ratio and concentration. Boulder Zone samples collected in the vicinity of Ft. Lauderdale have analyzed values of the above mentioned parameters which are virtually indistinguishable from those of sea water. In a fan-like radial pattern, the uranium concentrations decrease and the U-234/U-238 activity ratios increase away from the apex at Ft. Lauderdale. It has been hypothesized by others that the Ft. Lauderdale area is the location on land that is nearest to an intake area where sea water moves into the Boulder Zone. The isotopic and concentration values reported here are consistent with this hypothesis. Waters collected from well located near the Atlantic coast north of Ft. Lauderdale do not display the same U and Sr isotopic pattern as those in the remainder of south Florida. This may be due to increased mixing between water bearing units which have been fractured and/or faulted by the extention of a flexure which has been postulated in the northern part of the study area.

  18. Determining discharge-coefficient ratings for selected coastal control structures in Broward and Palm Beach counties, Florida

    USGS Publications Warehouse

    Tillis, G.M.; Swain, E.D.

    1998-01-01

    Discharges through 10 selected coastal control structures in Broward and Palm Beach Counties, Florida, are presently computed using the theoretical discharge-coefficient ratings developed from scale modeling, theoretical discharge coefficients, and some field calibrations whose accuracies for specific sites are unknown. To achieve more accurate discharge-coefficient ratings for the coastal control structures, field discharge measurements were taken with an Acoustic Doppler Current Profiler at the coastal control structures under a variety of flow conditions. These measurements were used to determine computed discharge-coefficient ratings for the coastal control structures under different flow regimes: submerged orifice flow, submerged weir flow, free orifice flow, and free weir flow. Theoretical and computed discharge-coefficient ratings for submerged orifice and weir flows were determined at seven coastal control structures, and discharge ratings for free orifice and weir flows were determined at three coastal control structures. The difference between the theoretical and computed discharge-coefficient ratings varied from structure to structure. The theoretical and computed dischargecoefficient ratings for submerged orifice flow were within 10 percent at four of seven coastal control structures; however, differences greater than 20 percent were found at two of the seven structures. The theoretical and computed discharge-coefficient ratings for submerged weir flow were within 10 percent at three of seven coastal control structures; however, differences greater than 20 percent were found at four of the seven coastal control structures. The difference between theoretical and computed discharge-coefficient ratings for free orifice and free weir flows ranged from 5 to 32 percent. Some differences between the theoretical and computed discharge-coefficient ratings could be better defined with more data collected over a greater distribution of measuring conditions.

  19. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    USGS Publications Warehouse

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (<100 ??S/cm), but increased post-storm at the overwashed wetlands (x?? = 7,613 ??S/cm). Increased specific conductance was strongly correlated with increases in chloride concentrations. Amphibian species richness showed no correlation with specific conductance. One month post-storm we observed slightly fewer species in overwashed compared with non-overwashed wetlands, but this trend did not continue in 2006. More species were detected across all wetlands pre-storm, but there was no difference between overwashed and non-overwashed wetlands when considering all amphibian species or adult anurans and larval anurans separately. Amphibian species richness did not appear to be correlated with pH or presence of fish although the amphibian community composition differed between wetlands with and without fish. Our results suggest that amphibian communities in wetlands in the southeastern United States adjacent to marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  20. Water Use and Quality Footprints of Biofuel Crops in Florida

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  1. Mysterious Black Water off Florida's Gulf Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An unusually wide swath of significant snow cover resulted from a series of winter storms moving northeastward across the central United States during January 29-31, 2002. Total snowfall accumulations across the Great Plains, Midwest, and Great Lakes regions were as high as 6-18 inches. Along the southeastern edge of the heavy snow band, significant freezing rain resulted in a 1-3 inch coating of ice across parts of Oklahoma, Kansas, and Missouri. This was one of the worst ice storms in Oklahoma history, downing 4,000 electric power poles and causing loss of power to a quarter of a million homes and businesses. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite produced an image of the area on February 1, 2002. In visible wavelengths (above, top) the ice appears transluscent, in contrast to the bright white snow and darker ground. The ice is visible as a thick black stripe along the lower right edge of the medium gray snow in the near infrared image (above, lower). Because water absorbs near-infrared light so strongly, bare ground is actually brighter than the snow in this image. full resolution image (1.1 MB JPEG) A clear, dry wind from the north blew southward across the Great Lakes yesterday, picking up moisture from the lakes and pushing it high into the air. The resulting cloud formation can be seen in this image of United States taken on February 4, 2002, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFs) aboard the OrbView-2 satellite. The cloud formation stretches across Indiana, Ohio, and northeastern Pennsylvania before stopping abruptly at central and southern Appalachian Mountains. A band of snowfall can also be seen lying across southern Nebraska, Oklahoma, Iowa, and Michegan. The crisp, straight boundaries of the snow are easily discernable in the image. In general, clouds appear streaky and uneven on a satellite image, and snow cover appears solid with definable borders. MODIS image courtesy University of

  2. Hydrogeology and quality of ground water in Orange County, Florida

    USGS Publications Warehouse

    Adamski, James C.; German, Edward R.

    2004-01-01

    Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based

  3. The St. Johns River, Florida: a Unique Lentic/Lotic Waterbody on the Southeastern Coastal Plain.

    NASA Astrophysics Data System (ADS)

    Dobberfuhl, D. R.

    2005-05-01

    The St. Johns River is a 500-km, low-gradient, black water river located in northeast Florida. Tidal effects, reverse flow events, and numerous saline springs result in estuarine conditions sometimes extending far upstream. Invertebrate sampling has occurred aperiodically in the lower mainstem of the river since 1974. In general, fresher areas of the river exhibited higher taxa richness but relatively little difference in diversity. The river shows differences in invertebrate populations throughout the lower estuarine section related to salinity. The watershed is facing tremendous development pressure and is subsequently challenged by typical problems, although little historical change was detected using this 30-year dataset. However, data suggested that there was evidence of localized impairment to the benthic community. Finally, areas with submerged aquatic vegetation (SAV) demonstrated higher richness and diversity than comparable bare areas, underscoring the importance of SAV to the health and productivity of the river.

  4. Impact of Willow Invasion on Vegetation Water and Carbon Exchange in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Budny, M. L.; Benscoter, B.

    2014-12-01

    Southern coastal willow (Salix caroliniana) is native to the Florida Everglades, commonly found on drier landforms like levees and tree islands. Shortened periods of inundation due to water management have led to the encroachment and expansion of these shrubs in sawgrass (Cladium jamaicense) marsh communities. The broadleaf willow is morphologically and physiologically different from the graminoid sedge sawgrass, with possible consequence for microhabitat conditions and ecosystem function. Willow is often assumed to have greater rates of transpiration, thereby affecting wetland water management, and may have concurrent differences in photosynthesis and carbon exchange. However, the ecophysiological impact of the willow invasion has not been quantified. We assessed differences in plant water and carbon exchange between willow and sawgrass at Blue Cypress Conservation Area, an impounded sawgrass peatland within the St. John's River Water Management District (SJRWMD). Plant transpiration and net CO2 exchange (photosynthesis and autotrophic respiration) were measured on fully expanded, non-damaged leaves of sawgrass and willow using a portable infrared gas analyzer (LI-6400XT, LI-COR, Lincoln, NE, U.S.A.). The results obtained from this study will provide a better understanding of ecophysiological changes that occur within marsh communities with shrub expansion, which will have cascading impacts on soil accretion and turnover, microclimate, and water quality Understanding the implications of willow expansion will improve landscape models of wetland water and carbon exchange as well as inform water management decisions.

  5. A ground-water sapping landscape in the Florida Panhandle

    NASA Astrophysics Data System (ADS)

    Schumm, S. A.; Boyd, K. F.; Wolff, C. G.; Spitz, W. J.

    1995-07-01

    Drainage networks that have formed by ground-water sapping are developed in the highly permeable sands of the Citronelle Formation in the Florida Panhandle. The valleys resemble those formed on Hawaii, the Colorado Plateau and on Mars, but they have developed without significant lithologic controls. Drainage patterns range from trellis to dentritic depending on the effect of beach ridges and relative relief. Many of the drainage networks are not fully developed, and the adjacent uplands have been modified by marine, aeolian, and to a limited extent fluvial processes. Extension of the networks appears to be episodic, as a result of fires, hurricanes, and human activities, which damage or destroy vegetation.

  6. Analysis for water level data for Everglades National Park, Florida

    USGS Publications Warehouse

    Buchanan, T.J.; Hartwell, J.H.

    1972-01-01

    Stage-duration curves were developed for five gaging stations in Everglades National Park, Florida. Four of the five curves show similar characteristics with an increase in the slope when the water level is below land surface. Monthly stage-duration curves, developed for one of the stations, reflect the seasonal trends of the water level. Recession curves were prepared for the same five stations. These curves represent the average water-level decline during periods of little or no rainfall. They show the decline in level at the end of 10, 20, and 60 days for any given initial stage. A family of curves was also prepared to give the recession from various initial stages for any period up to 60 days.

  7. Response of ground-water levels of flood control operations in three basins, south-eastern Florida

    USGS Publications Warehouse

    Pitt, William A.J.

    1974-01-01

    Three basins in southeastern Florida were investigated to determine the changes in ground-water levels and canal flows that occurred in response to operation of coastal water-control structures in each canal. All three basins are underlain by the Biscayne aquifer. They are, Snapper Creek Canal basin, where the Biscayne aquifer is of high permeability; the Snake Creek Canal basin, where the aquifer is of moderate permeability; and the Pompano-Cypress Canal basin, where the aquifer is of low permeability. In each basin, drainage is a function of permeability; thus, where the permeability of the aquifer is high, drainage is excellent. The coastal water-conrol structures are intended to afford flood protection in the three basins. In general the control operation criteria for flood control in newly developing areas in southeastern Florida do not provide adequate protection from flooding because of the time required for the aquifer to respond to changes in the controls. Adequate protection would require increasing the density of secondary drainage canals, but this could achieved only by reducing the quantity of water available for recharging those segments of the Biscayne aquifer adjacent to the canals. (Woodrad-USGS)

  8. CLASSIFYING COASTAL WATERS:CURRENT NECESSITY AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the c...

  9. Florida coastal ecological characterization: a socioeconomic study of the Northwestern Region. Volume II. Data appendix. Part 2

    SciTech Connect

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the Northwestern coastal region of Florida, which is made up of Escambia, Santa Rosa, Okaloosa, Walton, Bay, Gulf, and Franklin Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. This volume contains appendices presenting data on public utilities, transportation, recreation and tourism, mineral and oil production, and environmental issues and regulations. 31 figures, 187 tables.

  10. Florida coastal ecological characterization: a socioeconomic study of the southwestern region. Volume II. Data appendix, Part 2

    SciTech Connect

    French, C.O.; Parsons, J.W.

    1983-08-01

    Data are compiled from existing sources on the social and economic characteristics of the southwestern coastal region of Florida, which is made up of Charlotte, Collier, DeSoto, Hillsborough, Lee, Manatee, Monroe, Pasco, Pinellas, and Sarasota Counties. Described are the components and interrelationships among complex processes that include population and demographics characteristics, mineral production, multiple-use conflicts, recreation and tourism, agricultural production, sport and commercial fishing, transportation, industrial and residential development, and environmental issues and regulations. Energetics models of socioeconomic systems are also presented. This volume contains appendices presenting data on land use, public utilities, transportation, recreation and tourism. 21 figures, 141 tables.

  11. Can humic water discharge counteract eutrophication in coastal waters?

    PubMed

    Andersson, Agneta; Jurgensone, Iveta; Rowe, Owen F; Simonelli, Paolo; Bignert, Anders; Lundberg, Erik; Karlsson, Jan

    2013-01-01

    A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy. PMID:23637807

  12. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Florida): Reef-building tube worm

    SciTech Connect

    Zale, A.V.; Merrifield, S.G. )

    1989-12-01

    Species profiles are literature summaries of the taxonomy, morphology, distribution, life history, habitats, and environmental requirements of coastal species of fishes and aquatic invertebrates. They are designed to assist in environmental impact assessment. The reef-building tube worm is an ecologically and geologically significant invertebrate inhabiting the coastal zone of southeastern Florida. The reefs constructed by the worms retain beach sediments, protect shorelines from storm damage, and are the basis for an elaborate marine community of fishes and invertebrates. The reefs provide substrate, shelter, and food in the relatively inhospitable surf zone. Reef-building tube worms require stable settlement substrates within sandy beam habitats and intense turbulence to maintain suspension of sand grains and other particles for tube building. 37 refs., 2 figs.

  13. Species profiles: Life history and environmental requirements of coastal fishes and invertebrates (South Florida): King mackerel and Spanish mackerel. [Scomberomorus cavalla; Scomberomorus maculatus

    SciTech Connect

    Godcharles, M.F.; Murphy, M.D.

    1986-06-01

    This Species Profile on king and Spanish mackerel summarizes the taxonomy, morphology, distribution, life history, fishery descriptions, ecological role, and environmental requirements of these coastal pelagic fish to assist environmental impact assessment. King and Spanish mackerel support major commercial and sport fisheries in south Florida. In 1974 to 1983, Gulf of Mexico and Atlantic commercial landings of king mackerel declined from 10.4 to 4.3 million lb.; Spanish mackerel have fluctuated between 4.9 to 17.4 million lb. Both inhabit coastal waters, but Spanish mackerel are generally found closer to beaches and in outer estuarine waters. Both species feed principally on estuarine-dependent species. They are highly migratory, exhibiting seasonal migrations to winter feeding grounds off south Florida and summer spawning/feeding grounds in the northern Gulf of Mexico and off the Atlantic coast of the Southeastern US. Spawning occurs from March/April through September/October between the middle and Outer Continental Shelf (35 to 183 mi) for king mackerel and the inner shelf (12 to 34 mi) for Spanish mackerel. King mackerel reach sexual maturity in their 3rd and 4th years and Spanish, between their 2nd and 3rd. Female king mackerel live longer and grow larger and faster than males. Spanish mackerel live to 8 years; females also grow faster than males. King and Spanish mackerel feed principally on schooling fishes. Larvae and juveniles of both species are prey to little tunny and dolphin; adults are prey for sharks and bottlenose dolphin. Temperature and salinity are important factors regulating mackerel distribution.

  14. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    NASA Technical Reports Server (NTRS)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  15. Sediment Surface Elevation Changes in Relation to Groundwater Hydrologic Variation in the Coastal Florida Everglades

    NASA Astrophysics Data System (ADS)

    Smith III, T. J.; Cahoon, D.

    2002-05-01

    Mangrove forests dominate the downstream end of the Greater Florida Everglades. Restoration of the Everglades has concentrated on surface water flow. We measured rates of sediment (surface) elevation change and soil accretion in relation to both surface and groundwater elevation at six sites in the lower Everglades, including freshwater marsh and mangrove habitats. Three sites were located along the two major distributaries of the Everglades: Shark River and Lostmans River. Accretion was negligible in upstream, freshwater marsh sites and greatest in downstream mangrove forest sites. Sediment elevation changes were substantial at all sites. More importantly, the pattern of sediment elevation change differed from upstream to downstream, and was different between downstream sites on each river. The rate of sediment elevation change was related to the rate of groundwater elevation change at many, but not all, sites. For freshwater sites, as groundwater elevation increased, sediment elevation decreased, an unexpected finding. For downstream, mangrove sites, a weak positive relationship was found whereby increasing groundwater elevations lead to increasing sediment surface elevation. Important seasonal patterns also appear to be present indicating that subsurface processes (root growth, decomposition, water storage) may play important roles in marsh / mangrove surface elevation. If restoration of freshwater sheetflow in the upstream Everglades leads to increased groundwater elevations in the downstream system, mangrove forests may be able to keep even with current rates of sea level rise.

  16. Estimation of water surface elevations for the Everglades, Florida

    NASA Astrophysics Data System (ADS)

    Palaseanu, Monica; Pearlstine, Leonard

    2008-07-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000-present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades. This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  17. Remotely Sensed Optical Water Quality for Water Quality Assessment and Seagrass Protection in Florida's Big Bend Region

    NASA Astrophysics Data System (ADS)

    Carlson, P. R.; Hu, C.; Cannizarro, J.; Yarbro, L. A.; English, D. C.; Magley, W.; Charbonneau, M.; Barnes, B.

    2012-12-01

    Florida's Big Bend coastal region contains the second largest contiguous seagrass bed in the continental US. Approximately 250,000 ha of seagrass have been mapped in the region, but the total area of offshore seagrass beds might be several times greater. The Suwannee River drains a largely agricultural watershed (26,000 km2) in Georgia and Florida, and its discharge (x= 280 m3/s) affects water clarity over most of the Big Bend seagrass beds. Seagrass density, species composition and areal extent were severely affected by discharge associated with tropical cyclones in 2004 and 2005, focusing attention on this important resource and the near- and far-field impacts of the Suwannee River discharge. The Lower Suwannee River also has been identified by the Florida Department of Environmental Protection as an impaired water body due to high nitrogen and algal biomass. This project attempts to improve water quality and to protect Big Bend seagrasses by making remotely sensed optical water quality data more accessible to managers and stakeholders involved in the process of regulating nutrient loads in the Suwannee River and to provide data to assess effectiveness of management actions. To accomplish these goals, we have developed and tested new algorithms for retrieval of Kd, chlorophyll, and CDOM from Modis imagery, created a time series of optical water quality (OWQ) for the Suwannee River Estuary (SRE), and related seagrass gains and losses to annual variations in optical water quality. During two years of bimonthly ground-truth cruises, chlorophyll concentrations, Aph, Ad, and Acdom in the SRE were 0.3-38.3 mgm-3, 0.013-1.056, 0.013-0.735, and 0.042-7.24, respectively. For most locations and most cruises, CDOM was the dominant determinant of Kd. In the Modis time series, Kd488 estimates (calculated using the Quasi-Analytic Algorithm of Lee et al. 2006) covaried with Suwannee River discharge between 2002 and 2011 with an overall r2 value of 0.64. This relationship is

  18. Historic topographic sheets to satellite imagery—A methodology for evaluating coastal change in Florida's Big Bend tidal marsh

    USGS Publications Warehouse

    Raabe, Ellen A.; Streck, Amy E.; Stumpf, Richard P.

    2004-01-01

    This open-file report details the methodology used to rectify, digitize, and mosaic nineteen 19th century topographic sheets on the marsh-dominated Big Bend Gulf coast of Florida. Historic charts of tidal marshes in Florida's Big Bend were prepared in a digital grid-based format for comparison with modern features derived from 1995 satellite imagery. The chart-by-chart rectification process produced a map accuracy of ± 8 m. An effort was made to evaluate secondary map features, such as tree islands, but changes during the intervening years exceed standard surveying errors and rendered the analysis ineffective. A map, at 1:300,000 comparing historic and modern features, is provided to illustrate major changes along the coastline. Shoreline erosion is exceeded by the inland migration of the intertidal zone onto adjoining coastal forest lands. While statements of mapping accuracy are provided in the text, graphic representation of changes in the intertidal zone may be inexact at any given location. Thus caution is advised for site-specific applications. Maps and digital files provided should be used to visualize overall trends and regional anomalies, and not used to critically assess features at a particular location. Final product includes mosaic of historic coastal features and comparison to modern features.

  19. A Citizen's Guide to Coastal Water Resource Management.

    ERIC Educational Resources Information Center

    Kennedy, Jim; Miller, Todd

    More people than ever are using coastal waters for recreation and business activities and living along the shores. This puts more pressure on natural resources and creates more conflicts between the people using the resources. This guidebook is designed to help citizens develop an understanding of how coastal management works. Four chapters in…

  20. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  1. Water resources of the Ochlockonee River area, Northwest Florida

    USGS Publications Warehouse

    Pascale, Charles A.; Wagner, Jeffry R.

    1982-01-01

    The Ochlockonee River area, in the northwest Florida panhandle, receives an average of 57 inches of rainfall per year. Water use in 1975 averaged 11.4 million gallons per day. Much of the rainfall that is not lost to evaporation enters the surficial sand aquifer, seeps to streams, or enters the water-bearing zone of the upper confining unit above the Floridan aquifer. The water-bearing zone of the upper confining unit is important for rural domestic supplies, storage of water and recharge to the Floridan aquifer. The Floridan aquifer underlies all the area and is the principal source of municipal supplies. The potentiometric surface of the upper part of the Floridan aquifer ranges from about 50 feet higher than that of the middle and lower part of the aquifer in southwestern Gadsden County to about 10 feet higher in southeastern Gadsden County. Saline water occurs naturally at relatively shallow depths within the Floridan aquifer. Stream discharge is about 1,000 million gallons per day; minimum discharge is about 285 million gallons per day. The chemical quality of most streams in the study area is acceptable for most uses. (USGS)

  2. Water quality of the Boca Raton canal system and effects of the Hillsboro Canal inflow, southeastern Florida, 1990-91

    USGS Publications Warehouse

    McKenzie, D.J.

    1995-01-01

    The City of Boca Raton in southeastern Palm Beach County, Florida, is an urban residential area that has sustained a constant population growth with subsequent increase in water use. The Boca Raton network of canals is controlled to provide for drainage of excess water, to maintain proper coastal ground-water levels to prevent saltwater intrusion, and to recharge the surficial aquifer system from which the city withdraws potable water. Most of the water supplied to the Boca Raton canal system and the surficial aquifer system, other than rainfall and runoff, is pumped from the Hillsboro Canal. The Biscayne aquifer, principal hydrogeologic unit of the surficial aquifer system, is highly permeable and there is a close relation between water levels in the canals and the aquifer. The amount of water supplied by seepage from the conservation areas is unknown. Because the Hillsboro Canal flows from Lake Okeechobee and Water Conservation Areas 1 and 2, which are places of more highly mineralized ground water and surface water, the canal is a possible source of contamination. Water samples were collected at 10 canal sites during wet and dry seasons and analyzed for major inorganic ions and related characteristics, nutrients, and trace elements. All concentrations were generally within or less than the drinking-water standards established by the Florida Department of Environmental Protection. The high concentrations of sodium and chloride that were detected in samples from the Boca Raton canal system are probably from the more mineralized water of the Hillsboro Canal. Other water-quality data, gathered from various sources from 1982 through 1991, did not indicate any significant changes nor trends. The effects of the Hillsboro Canal on the water quality of the Boca Raton canal system are indicated by increased concentrations of sodium, chloride, dissolved solids, and total organic carbon. Concentrations of the constituents in the canal water generally decrease with distance

  3. Connectivity of the South Florida Coral Reef Ecosystem to Upstream Waters of the Western Caribbean and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.

    2008-05-01

    The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale

  4. Utilizing Depth of Colonization of Seagrasses to Develop Numeric Water Quality Criteria for Florida Estuaries

    EPA Science Inventory

    US EPA is working with state and local partners in Florida to develop numeric water quality criteria to protect estuaries from nutrient pollution. Similar to other nutrient management programs in Florida, EPA is considering status of seagrass habitats as an indicator of biologic...

  5. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  6. Organophosphate pesticide concentrations in coral tissues of Indonesian coastal waters.

    PubMed

    Sabdono, Agus; Kang, Suil; Hur, Hor-Gil; Grossart, Hans-Peter; Simon, Meinhard; Radjasa, Ocky Kama

    2007-06-01

    In this study we evaluated the persistence of diazinon, chlorpyrifos, profenofos, parathion, malathion and ethion in dead coral tissues of Indonesian coastal waters (Java, Bali, Sulawesi and Komodo). Comparison of the residue levels in coral tissues showed that the highest presence of organophosphate concentrations was detected in a coral sample collected from Java coastal waters. While medium amounts of a contaminant diazinon can still lead to detectable in Bali and Sulawesi coastal waters. Prominent contamination of organophosphate was not found in a sample collected from Komodo. Neither parathion nor malathion were detected in any of the samples. This result implies that the geographical variations of organophosphate compounds are determined by the possible usage of these chemicals around coastal waters at the present or in the past. There is need for further work to identify sources and fate of pesticide contaminants, as well as to improve monitoring of pesticide use. PMID:19086563

  7. Phytoplankton Communities in Louisiana coastal waters and the continental shelf

    EPA Science Inventory

    Louisiana coastal waters and the adjacent continental shelf receive large freshwater and nutrient inputs from the Mississippi and Atchafalaya Rivers, creating favorable conditions for increased phytoplankton productivity. To examine inshore-offshore patterns in phytoplankton comm...

  8. Energy-water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California.

    PubMed

    Mo, Weiwei; Wang, Ranran; Zimmerman, Julie B

    2014-05-20

    Increased water demand and scarce freshwater resources have forced communities to seek nontraditional water sources. These challenges are exacerbated in coastal communities, where population growth rates and densities in the United States are the highest. To understand the current management dilemma between constrained surface and groundwater sources and potential new water sources, Tampa Bay, Florida (TB), and San Diego, California (SD), were studied through 2030 accounting for changes in population, water demand, and electricity grid mix. These locations were chosen on the basis of their similar populations, land areas, economies, and water consumption characters as well as their coastal locations and rising contradictions between water demand and supply. Three scenarios were evaluated for each study area: (1) maximization of traditional supplies; (2) maximization of seawater desalination; and (3) maximization of nonpotable water reclamation. Three types of impacts were assessed: embodied energy, greenhouse gas (GHG) emission, and energy cost. SD was found to have higher embodied energy and energy cost but lower GHG emission than TB in most of its water infrastructure systems because of the differences between the electricity grid mixes and water resources of the two regions. Maximizing water reclamation was found to be better than increasing either traditional supplies or seawater desalination in both regions in terms of the three impact categories. The results further imply the importance of assessing the energy-water nexus when pursuing demand-side control targets or goals as well to ensure that the potentially most economical options are considered. PMID:24730467

  9. Ground Water Atlas of the United States: Segment 6, Alabama, Florida, Georgia, South Carolina

    USGS Publications Warehouse

    Miller, James A.

    1990-01-01

    The four States-Alabama, Florida, Georgia, and South Carolina-that comprise Segment 6 of this Atlas are located adjacent to the Atlantic Ocean or the Gulf of Mexico, or both. These States are drained by numerous rivers and streams, the largest being the Tombigbee, Alabama, Chattahoochee, Suwannee, St. Johns, Altamaha, and Savannah Rivers. These large rivers and their tributaries supply water to cities such as Columbia, S.C., Atlanta, Ga., and Birmingham, Ala. However, the majority of the population, particularly in the Coastal Plain which comprises more than one-half of the four-State area, depends on ground water as a source of water supply. The aquifers that contain the water are mostly composed of consolidated to unconsolidated sedimentary rocks, but also include hard, crystalline rocks in parts of three of the States. This chapter describes the geology and hydrology of each of the principal aquifers throughout the four-State area. Precipitation is the source of all the water in the four States of Segment 6. Average annual precipitation (1951-80) ranges from about 48 inches per year over a large part of central South Carolina and Georgia to about 80 inches per year in mountainous areas of northeastern Georgia and western South Carolina. (fig. 1) In general, precipitation is greatest in the mountains (because of their orographic effect) and near the coast, where water vapor, which has been evaporated primarily from the ocean and the gulf, is picked up by prevailing winds and subsequently condenses and falls as precipitation when reaching the shoreline. Much of the precipitation either flows directly into rivers and stream as overland runoff or indirectly as baseflow discharging from aquifers where the water has been stored for a short time. Accordingly, the areal distribution of average annual runoff from 1951 to 1980 (fig. 2) directly reflects that of average annual precipitation during the same period: runoff is greater in mountainous areas and near the coast

  10. Florida

    Atmospheric Science Data Center

    2014-05-15

    ...     View Larger Image These Multi-angle Imaging SpectroRadiometer (MISR) nadir-camera ... Canaveral, home of the Kennedy Space Center. The large body of water in the middle of the land area is Lake Okeechobee. On the western ...

  11. Water column and sediment nitrogen and phosphorus distribution patterns in the Florida Keys, USA

    NASA Astrophysics Data System (ADS)

    Szmant, A. M.; Forrester, A.

    1996-03-01

    Measurements of the distribution patterns of nutrients (ammonium, nitrate, orthophosphate, total N and total P) and chlorophyll concentrations were conducted under an interdisciplinary program known as SEAKEYS, initiated because of concern that anthropogenic nutrients may be impacting Florida coral reefs. Samples were collected along transects that extended from passes or canals to 0.5 km offshore of the outermost reefs. Seven of the transects were either in the Biscayne National Park (BNP) and Key Largo (upper keys) or Seven Mile Bridge/Looe Key (upper part of lower keys) areas, which have the best present-day reef development; the two in the middle keys off Long Key were in an area of minimal reef development where passes allow estuarine Florida Bay water to flow onto the Florida reef platform. Off the upper keys, water column concentrations of N and chl a were elevated near marinas and canals (1 μM NO3, 1 μg/l chl a), but returned to oligotrophic levels (e.g., chl a ⩽ 0.25 μg/l; NO3 ⩽ 0.25 μM; NH4 ⩽ 0.10 μM) within 0.5 km of shore. Phosphorus concentrations, however, were often higher offshore ⩾ 0.2 μM PO4). Sediment interstitial nutrient concentrations decreased from inshore to the offshore reef areas (e.g., ⩾ 100 μM NH4 inshore to ⩽ 50 μM NH4 offshore) and were comparable to those of some presumably pristine coastal and reef carbonate sediments. Sediment bulk N was higher nearshore and decreased steeply offshore ( ⩾ 60 μg-at N/gm sediment to ⩽ 20 μg-at N/gm sediment, respectively); bulk P concentrations (⩽ 6 μg- at P/gm sediment) varied little or exhibited the reverse pattern. Sediment N:P ratios were consistently lower offshore (1 10 vs. 20 40 nearshore). Higher offshore P concentrations are attributed to periodic upwelling along the shelf edge. In the middle keys water column nutrients and chl a concentrations were both higher than those in the upper keys, and there was less of an inshore-offshore decrease than that noted in the

  12. Coastal Water Protection the Navy Way

    ERIC Educational Resources Information Center

    Hura, Myron; And Others

    1976-01-01

    This article describes procedures taken by the U.S. Navy to minimize the environmental import and pollution in harbors and coastal areas resulting from ships, aircraft and shore-based Navel operations. (SL)

  13. Water-Quality Assessment of Southern Florida - Wastewater Discharges and Runoff

    USGS Publications Warehouse

    Marella, Richard L.

    1998-01-01

    Nearly 800 million gallons per day of treated wastewater was discharged in the Southern Florida National Water-Quality Assessment (NAWQA) study unit in 1990, most to the Atlantic Ocean (44 percent) and to deep, saline aquifers (25 percent). About 9 percent was discharged to fresh surface waters and about 22 percent to shallow ground water, of which septic tanks accounted for 9 percent. Runoff from agricultural and urban lands, though not directly measured, is a large source of wastewater in southern Florida.

  14. Remote-sensing applications as utilized in Florida's coastal zone management program

    NASA Technical Reports Server (NTRS)

    Worley, D. R.

    1975-01-01

    Land use maps were developed from photomaps obtained by remote sensing in order to develop a comprehensive state plan for the protection, development, and zoning of coastal regions. Only photographic remote sensors have been used in support of the coastal council's planning/management methodology. Standard photointerpretation and cartographic application procedures for map compilation were used in preparing base maps.

  15. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    EPA Science Inventory

    Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183).

    Contaminant fate in coastal areas impacte...

  16. Temporal and spatial change in coastal ecosystems using remote sensing: Example with Florida Bay, USA, emphasizing AVHRR imagery

    SciTech Connect

    Stumpf, R.P.; Frayer, M.L.

    1997-06-01

    Florida Bay, at the southern tip of Florida, USA, has undergone dramatic changes in recent years. Following seagrass dieoffs starting in the late 1980`s, both algal blooms and high turbidity (the latter from resuspended sediments) have been reported as more common in the Bay. Remotely sensed data, particularly from the AVHRR (advanced very high resolution radiometer), can provide information on conditions prior to the start of monitoring programs as well as provide additional spatial detail on water clarity and particulate loads in this estuary . The AVHRR record currently available to us consists of over 600 usable scenes from December, 1989. Comparisons with field data have provided relationships with light attenuation, total suspended solids, and other turbidity measures. The imagery shows the seasonal change in turbidity resulting from high winds associated with winter cold fronts. Over the seven-year record, areas of clear water have decreased in the north-central Bay, while expanding in the southwestern Bay.

  17. Empirical Modeling of Stream Water Quality for Complex Coastal-Urban Watersheds

    NASA Astrophysics Data System (ADS)

    Al-Amin, S.; Abdul-Aziz, O.

    2013-12-01

    This study develops an understanding of the relative influence of land uses, surface hydrology, groundwater, seawater, and upstream contributions on the in-stream water quality of six highly urbanized, complex urban watersheds of South Florida by analyzing seasonal (Winter, Spring, Summer, and Fall) time-series of field data. We first explored the correlations among quality parameters (i.e., total nitrogen, total phosphorus, dissolved oxygen and specific conductance) and their changes with distance and time. Principle component analysis was then conducted to investigate the mutual correlations and potential group formations among the predictor and response variables. The findings were leveraged to develop regression-based non-linear empirical models for explaining stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors, while external stressors were dominant for total nitrogen and specific conductance. The research findings provide important insights into the dominant stressors of seasonal stream water quality of complex coastal-urban watersheds under a changing environment. The research tools will be useful for developing proactive monitoring and seasonally exclusive management strategies for urban stream water quality improvement in South Florida and around the world.

  18. Occurrence of fecal indicator bacteria in surface waters and the subsurface aquifer in Key Largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Jiang, S; Kellogg, C; Shinn, E A

    1995-06-01

    Sewage waste disposal facilities in the Florida Keys include septic tanks and individual package plants in place of municipal collection facilities in most locations. In Key Largo, both facilities discharge into the extremely porous Key Largo limestone. To determine whether there was potential contamination of the subsurface aquifer and nearby coastal surface waters by such waste disposal practices, we examined the presence of microbial indicators commonly found in sewage (fecal coliforms, Clostridium perfringens, and enterococci) and aquatic microbial parameters (viral direct counts, bacterial direct counts, chlorophyll a, and marine vibriophage) in injection well effluent, monitoring wells that followed a transect from onshore to offshore, and surface waters above these wells in two separate locations in Key Largo in August 1993 and March 1994. Effluent and waters from onshore shallow monitoring wells (1.8- to 3.7-m depth) contained two or all three of the fecal indicators in all three samples taken, whereas deeper wells (10.7- to 12.2-m depth) at these same sites contained few or none. The presence of fecal indicators was found in two of five nearshore wells (i.e., those that were < or = 1.8 miles [< or = 2.9 km] from shore), whereas offshore wells (> or = 2.1 to 5.7 miles [< or = 3.4 to 9.2 km] from shore) showed little sign of contamination. Indicators were also found in surface waters in a canal in Key Largo and in offshore surface waters in March but not in August. Collectively, these results suggest that fecal contamination of the shallow onshore aquifer, parts of the nearshore aquifer, and certain surface waters has occurred.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793943

  19. Ant Distribution in Relation to Ground Water in North Florida Pine Flatwoods

    PubMed Central

    Tschinkel, Walter R.; Murdock, Tyler; King, Joshua R.; Kwapich, Christina

    2012-01-01

    Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from < 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known. PMID:23445122

  20. Altitude of water table, surficial aquifer, Palm Beach County, Florida, April 24-26, 1984

    USGS Publications Warehouse

    Miller, Wesley L.

    1985-01-01

    Water levels in Palm Beach County, Florida, were measured in April 1984 to determine the altitude of the water table in the surficial aquifer. A total of 104 wells and 50 surface-water measurement sites were used to contour the altitude of the water table at 2 and 4-foot intervals. The water-level measurements made in April represent low-water levels near the end of south Florida 's dry season. Contours of the water table at this time ranged from 22 feet above sea level in the north-central part of the county to 2 feet near the coast. (USGS)

  1. Modeling Tidal Water Levels for Canadian Coastal and Offshore waters

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; MacAulay, P.; Nudds, S.; Godin, A.; de Lange Boom, B.; Bartlett, J.; Maltais, L.; Herron, T.; Craymer, M. R.; Veronneau, M.; Fadaie, K.

    2014-12-01

    IIn 2010, the Canadian Hydrographic Service initiated the Continuous Vertical Datum for Canadian Waters (CVDCW) project, the aim of which is to connect tidal water level datums (high and low water levels, chart datum, etc.) to a national geodetic reference frame over all Canadian tidal waters. Currently, water level datums are tied to a geodetic reference frame at approximately 400 tide stations which have been surveyed with GPS, whereas water levels vary significantly in space even a short distance away from tide stations. The CVDCW captures the relevant spatial variability between stations and offshore by integrating ocean models, gauge data (water level analyses and/or GPS observations), sea level trends, satellite altimetry, and a geoid model. The CVDCW will enable the use of Global Navigation Satellite System technologies (primarily GPS) for hydrographers and navigators. It will also be important for other users including oceanographers, environmental and climate scientists, surveyors and engineers. For instance, it will allow easier integration of hydrographic and terrestrial data, provide a baseline for storm surge modeling and climate change adaptation, and aid with practical issues such as sovereignty and the definition of the coastline. Once high and low water surfaces are complete, they will define a large portion of the vertical link between land and ocean, helping to delineate flooding thresholds and inter-tidal ecosystem zones and boundaries. Here we present an overview of the methodology using a set of prototype model results, and will outline features of interest for studies in coastal stability, climate change adaptation, and sea level change.

  2. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    USGS Publications Warehouse

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  3. Estimated water use in the Southwest Florida Water Management District and adjacent areas, 1980

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1981-01-01

    Water-use data for 1980 are summarized in this report for 16 counties in the Southwest Florida Water Management District. Data include total use of ground water and surface water for each of five water-use categories. The 1980 withdrawals for each category were as follows: 290 million gallons per day for public supply, 63 million gallons per day for rural, 325 million gallons per day for industry, 416 million gallons per day for irrigation, and 6,605 million gallons per day for thermoelectric power generation. Withdrawals totaled 7,699 million gallons per day and included 983 million gallons per day of ground water and 6,716 million gallons per day of surface water. Excluding thermoelectric power generation, all water withdrawn was freshwater except 38 million gallons per day of saline ground water withdrawn for industrial use in Hillsborough County. (USGS)

  4. Multiple Stressors: Lessons from Louisiana Coastal Waters (Invited)

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2013-12-01

    Coastal Louisiana is a Mississippi River-dominated landscape driven by the long-term (millennia) and short-term (decades to hundreds of years) changes in materials flux, nature and human activities. The results are a highly productive coastal landscape and nearshore coastal waters that support rich natural and non-renewable resources. The ecosystem and socio-economic systems are intimately linked. Several factors have led to the demise of many of the healthy features of this coastal system, including long-term changes in the landscape of the Mississippi River basin watershed, alterations to the structure and flow of the Mississippi River and its tributaries, coastal landscape alterations leading to loss of productive marshes and protective barrier islands, increases in nitrogen and phosphorus loads to the coastal ocean and their detrimental effects, and reduction in the sediments delivered by the river. Increases in population and extraction of living resources and oil and gas reserves continue to drive many actions taken in the coastal landscape and waters. As a result, Louisiana is in a state of major disrepair (to be charitable) and needs thoughtful consideration of restoration actions taken in the river basin and within the coastal landscape. The first thought is to cause no further harm. The second is to proceed acknowledging that human and natural forces (particularly climate change, rising sea level and changing global economies) must be taken into account. Thirdly, a broader consideration of the river basin and coastal landscapes, their interconnectivity, and ecosystem health and social welfare must be taken into account.

  5. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  6. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    NASA Astrophysics Data System (ADS)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  7. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System

    PubMed Central

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  8. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System.

    PubMed

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  9. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Yao, Qiang; Liu, Kam-biu; Platt, William J.; Rivera-Monroy, Victor H.

    2015-05-01

    Palynological, loss-on-ignition, and X-ray fluorescence data from a 5.25 m sediment core from a mangrove forest at the mouth of the Shark River Estuary in the southwestern Everglades National Park, Florida were used to reconstruct changes occurring in coastal wetlands since the mid-Holocene. This multi-proxy record contains the longest paleoecological history to date in the southwestern Everglades. The Shark River Estuary basin was formed ~ 5700 cal yr BP in response to increasing precipitation. Initial wetlands were frequently-burned short-hydroperiod prairies, which transitioned into long-hydroperiod prairies with sloughs in which peat deposits began to accumulate continuously about 5250 cal yr BP. Our data suggest that mangrove communities started to appear after ~ 3800 cal yr BP; declines in the abundance of charcoal suggested gradual replacement of fire-dominated wetlands by mangrove forest over the following 2650 yr. By ~ 1150 cal yr BP, a dense Rhizophora mangle dominated mangrove forest had formed at the mouth of the Shark River. The mangrove-dominated coastal ecosystem here was established at least 2000 yr later than has been previously estimated.

  10. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  11. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  12. EAARL Coastal Topography-Western Florida, Post-Hurricane Charley, 2004: First Surface

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Sallenger, A.H.; Brock, John C.; Yates, Xan; Klipp, Emily S.

    2009-01-01

    This DVD contains lidar-derived first-surface (FS) topography GIS datasets of a portion of the western Florida coastline beachface, acquired post-Hurricane Charley on August 16 and 18, 2004. Click on a tile number (1 - 68) to view the corresponding 1-meter-resolution images and links to each data directory. Click on the red tile in the index map to view the 3-meter-resolution mosaic and link to the corresponding directory.

  13. Planning for Water Resources of South Florida: A system dynamics modeling approach

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2006-12-01

    With enormous growth in population, changes in land use, substantial agriculture activity, and need to protect vital environmental resources such as Everglades, south Florida presents a very challenging case for water resources planning. Working with stakeholders to meet challenges of water resources planning in south Florida, we are exploring important questions: (a) What are some major changes in terms of population growth, land use, water demand, and water availability that can be expected in south Florida in the short and long term?; (b) What would be the major hydrologic effects of climate variability and change on south Florida's water system?; (c) How could Florida's water system adapt to anticipated population growth, urban sprawl, and climate change?; and (d) What are the most promising (cost effective) policies for south Florida's water management in response to growth and climate change? We are developing a decision support (DS) framework, using system dynamics modeling approach, to evaluate and compare different short and long term water management policies. Besides climate information, the integrated DS framework considers other major factors that influence water demand and availability including: demographic changes, land use changes, economy, and environment. We analyze how increased or better use of climate information can lead to better, more cost-effective decisions for sustainable management of water resources. Using games/scenarios involving decision makers, we evaluate cost-effectiveness of different policy choices for short and long term water management in the region. We evaluate policies based on both demand side management through efficiency and conservation (low flow appliances, xeriscaping, pricing) and supply side management (desalination, water reuse). The outcome is a framework for exploring cost-effectiveness of alternative water management policies. The research advances work on water resources planning considering the impacts of

  14. Preliminary evaluation of the water-supply potential of the spring-river system in the Weeki Wachee area and the Lower Withlacoochee River, west-central Florida

    USGS Publications Warehouse

    Sinclair, William C.

    1978-01-01

    Coastal springs and seeps, including Rainbow Springs, a tributary of Withlacoochee River, discharge as much as a billion gallons of water per day to low-lying coastal swamps and estuarine marshes along the Guld Coast of Citrus and Hernando Counties, Florida. Although Weeki Wachee Spring has long been regarded as an obvious source of freshwater supply, long-term diversion of large volumes of water from Weeki Wachee River will cause encroachment of brackish water throughout the residential canals in the lower reach of the river to about 4.4 miles below Weeki Wachee Spring. Weeki Wachee Spring is analogous to a flowering well tapping an artesian aquifer. Flow characteristics of Withlacoochee River and Rainbow Springs indicate that about 600 cubic feet per second is available on a perennial basis, disregarding the downstream requirements for control of saltwater encroachment. (Woodard-USGS)

  15. Timescales for nitrate contamination of spring waters, northern Florida, USA

    USGS Publications Warehouse

    Katz, B.G.; Böhlke, J.K.; Hornsby, H.D.

    2001-01-01

    Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium (3H), and tritium/helium-3 (3H/3He) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997-1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20 ?? 2 years from CFC-12, CFC-113, 3H, and 3He, with evidence of partial CFC-11 degradation. The EMM gave a reasonable fit to CFC-113, CFC-12, and 3H data, but did not reproduce the observed 3He concentrations or 3H/3He ratios, nor did a combination PFM-EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had 3H concentrations not much different from modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC-113, with evidence of partial CFC-11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10-20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwanee County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio of

  16. GOLF COURSES AS A SOURCE OF COASTAL CONTAMINATION AND TOXICITY: A FLORIDA EXPERIENCE

    EPA Science Inventory

    The chemical and biological impacts of two coastal golf courses that receive wastewater spray irrigation were determined during a two-year period. A variety of techniques were used to assess the spatial and temporal variability of contaminant levels and their bioavailability in t...

  17. Nitrogen, phosphorus, organic carbon, and biochemical oxygen demand : in Florida surface waters, 1972

    USGS Publications Warehouse

    Kaufman, Matthew I.; Dysart, J.E.

    1978-01-01

    Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)

  18. A remotely-sensed disturbance history and decrease in basal area of coastal forests of the lower Florida Keys, FL, USA

    NASA Astrophysics Data System (ADS)

    Ogurcak, D. E.; Ross, M. S.; Zhang, K.

    2013-12-01

    Global climate change and ensuing sea level rise are predicted to have serious impacts on the severity of disturbance from tropical storms experienced by coastal forest communities worldwide, resulting in changes in terrestrial carbon dynamics. In the lower Florida Keys, with elevations averaging 1 meter and where an increase in sea level rise of 23 cm has been documented over the past century (Key West, NOAA 2001), these impacts are already evident. While freshwater requiring coastal forests of the Florida Keys, specifically hardwood hammock and pine rockland communities, have co-existed with hurricanes and fires over the past several thousand years, recent decades have seen the extent of these forests seriously diminished. Using an approach that combines remote sensing techniques and ground-based measurements of tree basal area, this study quantifies changes to coastal forests of the lower Florida Keys over the last three decades (1983-2012) in reference to known disturbances and looks at recovery from Hurricane Wilma (2005), which flooded the islands with up to 8 feet of salt water. Yearly vegetation indices were derived from a 30-year catalog of Landsat TM 4-5 satellite imagery, with cloud-free images available for most years. Images were acquired mostly in the months of January through March (mid-dry season). Whenever possible, cloud-free images acquired in other months were used to track how indices changed seasonally. The normalized differenced vegetation index (NDVI) was used to document changes in vegetation drought stress and TM band 5 was used to approximate changes in tree basal area. Areas of hardwood hammock and pine rockland occurring on eight islands were extracted for the analysis from a landcover map digitized from a combination of elevation, canopy height, and high resolution aerial imagery. Additionally, seven 60 m by 10 m permanent plots, established and first sampled in 1990 on 2 of the islands, were resampled for tree basal area and shrub

  19. MERCURY LEVELS IN HARVESTED FISHES FROM FLORIDA GULF COAST MX964229

    EPA Science Inventory

    This project supports the collection of fish tissue samples and associated biological and environmental data from coastal waters of Florida in the Gulf of Mexico to determine total mercury levels and relationship to species, size, age, sex and capture location.

  20. Distribution of selected chemical constituents in water from the Floridan aquifer, Southwest Florida Water Management District

    USGS Publications Warehouse

    Corral, M.A., Jr.

    1983-01-01

    Generalized maps showing variations in concentration of chlorides, sulfates, hardness, and dissolved solids in the Floridan aquifer have been prepared as part of a cooperative program with the Southwest Florida Water Management District. This report covers 10 counties and parts of 6 others comprising the District. Data used to develop the report were retrieved from the water-quality files of the U.S. Geological Survey. Considerable vertical and areal variation of chemical constituents was found in ground water of the Floridan aquifer. In general, ground water becomes more mineralized with increasing depth and with increasing distance from recharge areas due to solution of minerals from the aquifer. Ground water was also more mineralized with proximity to the coast, due to saltwater intrusion. (USGS)

  1. Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral Florida

    USGS Publications Warehouse

    Goodwin, Carl R.

    1991-01-01

    Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.

  2. Application of Hyperspectral Imager for the Coastal Ocean (HICO) Imagery for Coastal and Ocean Protection - A Case Study from Florida

    EPA Science Inventory

    Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...

  3. Linking integrated water resources management and integrated coastal zone management.

    PubMed

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents. PMID:16114636

  4. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    USGS Publications Warehouse

    Swancar, Amy

    1996-01-01

    Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in

  5. H.R. 73: A Bill to protect the ecologically fragile coastal resources of south Florida by prohibiting offshore oil and gas activities and by cancelling Federal leases in the area of the Outer Continental Shelf adjacent to the south Florida coast. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect

    1995-12-31

    This document contains H.R. 73, A Bill to protect the ecologically fragile coastal resources of south Florida by prohibiting offshore oil and gas activities and by cancelling Federal leases in the area of the Outer Continental Shelf adjacent to south Florida. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 4, 1995.

  6. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida.

    PubMed

    Lee, Mengshan; Tansel, Berrin

    2013-10-15

    During 2006-2007, Miami-Dade County, Florida, USA, provided incentives for low income and senior residents in single family homes for retrofitting with high efficiency fixtures. The participating residences were retrofitted with high-efficiency toilets, showerheads, and aerators. In 2012, a telephone survey was conducted to evaluate the satisfaction of the participants and the associated effects on water conservation practices. This study evaluates the attitudes and opinions of the participants relative to water use efficiency measures and the actual reduction in water consumption characteristics of the participating households. The participant characteristics were analyzed to identify correlations between the socio-demographic factors, program satisfaction and actual water savings. Approximately 65.5% of the survey respondents reported changes in their water use habits and 76.6% reported noticeable reduction in their water bills. The analyses showed that the satisfaction levels of the participants were closely correlated with the actual water savings. The results also showed that satisfaction level along with water saving potential (i.e., implementation of water efficiency devices) or change of water use habits has provided positive synergistic effect on actual water savings. The majority of the participants surveyed (81.3-89.1%) reported positive attitudes for water conservation incentive program and the benefits of the high efficiency fixtures. PMID:23850763

  7. Mapping water quality and substrate cover in optically complex coastal and reef waters: an integrated approach.

    PubMed

    Phinn, S R; Dekker, A G; Brando, V E; Roelfsema, C M

    2005-01-01

    Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. PMID:15757744

  8. Phosphorus in drainage waters of the Atlantic Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Atlantic Coastal Plain region has had a long history of experimental and applied efforts to exclude phosphorus (P) from drainage waters. Early research focusing upon the chemical controls of soil and sediment P has given way to field studies aimed at refining our understanding of hydrologic path...

  9. Phytoplankton community composition in nearshore coastal waters of Louisiana

    EPA Science Inventory

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by relative abundance, biovolume, and taxonomic identification to genus and species when possible. The range of total nitrogen was 0.5 to 1.3 mg L-1 and total phos...

  10. Possible satellite oceanography on coastal waters during the NPP stage

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Asanuma, I.; Zhao, C.; Huang, B.

    2007-09-01

    Ocean color monitoring on the coastal water is still under study because of an incomplete atmospheric correction over the turbid water like over the coastal water along the China main land. Currently available sensors for science as MODIS on Terra or Aqua will terminate their service in the near future and the NPOESS Preparatory Project (NPP) will be the next satellite to support the satellite oceanography on the coastal water. The Tokyo University of Information Sciences (TUIS) has updated the MODIS receiving system to capture and ingest the Visible/Infrared Imager/Radiometer Suite (VIIRS) data from NPP, which will be launched in 2008. Data processing software from the Direct Readout Laboratory (DRL), such as the Real-time Software Telemetry Processing (RT-STPS), Simulcast, and DB algorithms, will be core programs in our system. VIIRS has seven bands in VIS&NIR, which are for ocean color research. The spatial resolution is 0.742×0.259 meters at nadir. While the MODIS spatial resolution of the nine ocean color bands is 1000m. The higher spatial resolution MODIS data (250 meters) is used to illustrate the advantage of the higher spatial resolution remote sensing data, such as data from VIIRS. In this study, we propose to combine the higher spatial resolution data with the traditional products of chlorophyll-a and sea surface temperature in the low resolution so as to extract further information on the coastal ocean.

  11. The use of satellites in environmental monitoring of coastal waters

    NASA Technical Reports Server (NTRS)

    Philpot, W.; Klemas, V.

    1979-01-01

    The feasibility of using satellites in an operational system for monitoring the type, concentration, location, drift, and dispersion of pollutants in coastal waters is evaluated. Visible, microwave, and thermal infrared sensing are considered. Targets to be detected include photosynthetic pigments, iron acid waste, and sewage sludge.

  12. Water-ice and water-updraft relationships near -10 C within populations of Florida cumuli

    NASA Technical Reports Server (NTRS)

    Sax, R. I.; Keller, V. W.

    1980-01-01

    Evidence is presented for a sequential development of cloud water, rainwater, graupel, and crystalline ice with the aging of the cloud. This evidence is based on in-cloud microphysical data set collected in Florida convective towers that were penetrated close to their tops near -10 C; the very rapid onset of graupel that appears on repeat penetrations of some towers is of particular interest. A separate data set shows a large scatter in the relationship between the maximum value of cloud water and vertical velocity which indicates that measurements of cloud water can be misleading as an indication of growth activity. The sequential pass data showing the evolution of ice and water are consistent with a rime-splintering, secondary ice production hypothesis.

  13. CLASSIFYING COASTAL WATERS: HISTORICAL PERSPECTIVE AND CURRENT FOCUS ON AQUATIC STRESSORS

    EPA Science Inventory

    Coastal ecosystems are ecologically and commercially productive habitats that are experiencing significant impacts associated with accelerated population growth in coastal zones. The Clean Water Act requires identification of impaired water bodies and determination of the causes ...

  14. Remote Sensing Applications to Water Quality Management in Florida

    EPA Science Inventory

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  15. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    NASA Astrophysics Data System (ADS)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  16. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    USGS Publications Warehouse

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  17. Transmissivity and water quality of water-producing zones in the intermediate aquifer system, Sarasota County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Bowman, Geronia

    1998-01-01

    The intermediate aquifer system is an important water source in Sarasota County, Florida, because the quality of water in it is usually better than that in the underlying Upper Floridan aquifer. The intermediate aquifer system consists of a group of up to three water-producing zones separated by less-permeable units that restrict the vertical movement of ground water between zones. The diverse lithology, that makes up the intermediate aquifer system, reflects the variety of depositional environments that occurred during the late Oligocene and Miocene epochs. Slight changes in the depositional environment resulted in aquifer heterogeneity, creating both localized connection between water-producing zones and abrupt culmination of water-producing zones that are not well documented. Aquifer heterogeneity results in vertical and areal variability in hydraulic and water-quality properties. The uppermost water-producing zone is designated producing zone 1 but is not extensively used because of its limited production capability and limited areal extent. The second water-producing zone is designated producing zone 2, and most of the domestic- and irrigation-supply wells in the area are open to this zone. Additionally, producing zone 2 is utilized for public supply in southern coastal areas of Sarasota County. Producing zone 3 is the lowermost and most productive water-producing zone in the intermediate aquifer system. Public-supply well fields serving the cities of Sarasota and Venice, as well as the Plantation and Mabry Carlton Reserve well fields, utilize producing zone 3. Heads within the intermediate aquifer system generally increase with aquifer depth. However, localized head-gradient reversals occur in the study area, coinciding with sites of intense ground-water withdrawals. Heads in producing zones 1, 2, and 3 range from 1 to 23, 0.2 to 34, and 7 to 42 feet above sea level, respectively. Generally, an upward head gradient exists between producing zones 3 and 2

  18. Recent measurements of the spectral backward-scattering coefficient in coastal waters

    NASA Astrophysics Data System (ADS)

    Maffione, Robert A.; Dana, David R.

    1997-02-01

    The backward scattering coefficient bb was measured in various coastal waters with fixed-angle backscattering sensors developed by the authors. Measurements were made at four discrete wavelengths covering the spectral range 440 to 675 nm. A power law spectral dependence of bb due to scattering by particles was investigated of the form bbp((lambda) ) equals bbp ((lambda) 0) ((lambda) 0/(lambda) )(gamma , where the superscript p denotes particle scattering and (lambda) is the wavelength. The exponent (gamma) depends on the particle size distribution and composition of particles. Extensive measurements in Monterey Bay, California, showed that 0.1 waters generally below 10 m. For the upper 10 m, 0.7 waters near Panama City, Florida, (gamma) for the upper 10 m was found to be in the range, 0.9 water, 0.9 waters of East Sound, Washington, 0 waters measured.

  19. GPS Monitoring of Cattle Location Near Water Features in South Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to quantify the amount of time spent by grazing cattle near or in water locations (wetlands, ditches, and water troughs) across seasons of a cow-calf production ranch in South Florida. Prolonged hot summers in these regions can cause physiological heat stress in cattle and driv...

  20. Evolution of a Man-Made Plume in Coastal Waters

    SciTech Connect

    Steinmaus, Karen L.; Bowles, Jeff; Woodruff, Dana L.; Donato, Tim; Rhea, William J.; Snyder, W. A.; Korwan, Daniel R.; Miller, Lee M.; Petrie, Gregg M.; Maxwell, Adam R.; Hibler, Lyle F.

    2006-12-19

    The ability to understand the biogeophysical parameters that create ocean color in coastal waters is fundamental to the ability to exploit remote sensing for coastal applications. This article describes an experiment in which a controlled quantity of a single inorganic material with known absorption and scattering properties was released into a coastal environment. The plume experiment was conducted in conjunction with a Pacific Northwest National Laboratory (PNNL) field collection campaign in and around Sequim Bay on the Strait of Juan de Fuca in Washington State. The objective of the field campaign was to identify and characterize features in the near shore environment from the standpoint of quantifying environmental parameters to improve operational planning in littoral regions. The aerial component of the mission involved imagery acquisitions from the NRL's PHILLS hyperspectral sensor, and two commercial IR cameras. Coincident satellite data was obtained from commercial sources. Ground truth activities included atmospheric profiles, ground, surface water, and in-water spectral measurements, panels for radiometric calibration, water column water optics, water samples and profiles from support vessels, in-situ tide and weather measurements, and beach and intertidal transects and surveys (via scientific dive teams). This field collection campaign provided a unique opportunity for a multisensor data collection effort in littoral regions, to identify and characterize features from multiple platforms (satellite, aerial, water surface and subsurface) and sensors. Data from this mission is being used as input to both radiative transfer and ocean transport models, for characterizing the water column and the near-shore, and quantitatively estimating circulation and transport in coastal environments.

  1. Contamination of diuron in coastal waters around Malaysian Peninsular.

    PubMed

    Ali, Hassan Rashid; Arifin, Marinah Mohd; Sheikh, Mohammed Ali; Shazili, Noor Azhar Mohamed; Bakari, Said Suleiman; Bachok, Zainudin

    2014-08-15

    The use of antifouling paints to the boats and ships is one among the threats facing coastal resources including coral reefs in recent decades. This study reports the current contamination status of diuron and its behaviour in the coastal waters of Malaysia. The maximum concentration of diuron was 285 ng/L detected at Johor port. All samples from Redang and Bidong coral reef islands were contaminated with diuron. Temporal variation showed relatively high concentrations but no significant difference (P>0.05) during November and January (North-East monsoon) in Klang ports (North, South and West), while higher levels of diuron were detected during April, 2012 (Inter monsoon) in Kemaman, and Johor port. Although no site has shown concentration above maximum permissible concentration (430 ng/L) as restricted by the Dutch Authorities, however, long term exposure studies for environmental relevance levels of diuron around coastal areas should be given a priority in the future. PMID:24934440

  2. Intermittent particle dynamics in marine coastal waters

    NASA Astrophysics Data System (ADS)

    Renosh, P. R.; Schmitt, F. G.; Loisel, H.

    2015-10-01

    Marine coastal processes are highly variable over different space scales and timescales. In this paper we analyse the intermittency properties of particle size distribution (PSD) recorded every second using a LISST instrument (Laser In-Situ Scattering and Transmissometry). The particle concentrations have been recorded over 32 size classes from 2.5 to 500 μm, at 1 Hz resolution. Such information is used to estimate at each time step the hyperbolic slope of the particle size distribution, and to consider its dynamics. Shannon entropy, as an indicator of the randomness, is estimated at each time step and its dynamics is analysed. Furthermore, particles are separated into four classes according to their size, and the intermittent properties of these classes are considered. The empirical mode decomposition (EMD) is used, associated with arbitrary-order Hilbert spectral analysis (AHSA), in order to retrieve scaling multifractal moment functions, for scales from 10 s to 8 min. The intermittent properties of two other indicators of particle concentration are also considered in the same range of scales: the total volume concentration Cvol-total and the particulate beam attenuation coefficient cp(670). Both show quite similar intermittent dynamics and are characterised by the same exponents. Globally we find here negative Hurst exponents (meaning the small scales show larger fluctuation than large scales) for each time series considered, and nonlinear moment functions.

  3. Development and application of a new comprehensive image-based classification scheme for coastal and benthic environments along the southeast Florida continental shelf

    NASA Astrophysics Data System (ADS)

    Makowski, Christopher

    The coastal (terrestrial) and benthic environments along the southeast Florida continental shelf show a unique biophysical succession of marine features from a highly urbanized, developed coastal region in the north (i.e. northern Miami-Dade County) to a protective marine sanctuary in the southeast (i.e. Florida Keys National Marine Sanctuary). However, the establishment of a standard bio-geomorphological classification scheme for this area of coastal and benthic environments is lacking. The purpose of this study was to test the hypothesis and answer the research question of whether new parameters of integrating geomorphological components with dominant biological covers could be developed and applied across multiple remote sensing platforms for an innovative way to identify, interpret, and classify diverse coastal and benthic environments along the southeast Florida continental shelf. An ordered manageable hierarchical classification scheme was developed to incorporate the categories of Physiographic Realm, Morphodynamic Zone, Geoform, Landform, Dominant Surface Sediment, and Dominant Biological Cover. Six different remote sensing platforms (i.e. five multi-spectral satellite image sensors and one high-resolution aerial orthoimagery) were acquired, delineated according to the new classification scheme, and compared to determine optimal formats for classifying the study area. Cognitive digital classification at a nominal scale of 1:6000 proved to be more accurate than autoclassification programs and therefore used to differentiate coastal marine environments based on spectral reflectance characteristics, such as color, tone, saturation, pattern, and texture of the seafloor topology. In addition, attribute tables were created in conjugation with interpretations to quantify and compare the spatial relationships between classificatory units. IKONOS-2 satellite imagery was determined to be the optimal platform for applying the hierarchical classification scheme

  4. Water-management models in Florida from ERTS-1 data. [Everglades National Park

    NASA Technical Reports Server (NTRS)

    Higer, A. L.; Coker, A. E.; Cordes, E. H.

    1974-01-01

    A prototype multiparameter data acquisition network, installed and operated by the U.S. Geological Survey is a viable approach for obtaining near real-time data needed to solve hydrologic problems confronting nearly 2.5 million residents of south Florida. Selected water quantity and quality data obtained from ground stations are transmitted for relay via ERTS-1 to NASA receiving stations in virtual real time. This data relay system has been very reliable and, by coupling the ground information with ERTS imagery, a modeling technique is available for water resource management in south Florida. An ecological model has been designed for the Shark River Slough in Everglades National Park.

  5. Bacterial pollution of Messina coastal waters: a one year study.

    PubMed

    Caruso, G; Zaccone, R; Monticelli, L; Crisafi, E; Zampino, D

    2000-07-01

    A year's monitoring of faecal pollution of marine coastal waters surrounding Messina was carried out in 1996/97. The distribution of faecal coliforms was evaluated in 15 stations located along the Sicilian coastline, sampled monthly in coincidence of the two opposing current phases ("montante" and "scendente" currents) which characterise the Straits of Messina. The data obtained provided a complete picture of hygienic-sanitary conditions of the area and highlighted the presence of heavily polluted sites in correspondence with river outflows. Higher bacterial counts were associated with lower salinity values and higher ammonia concentrations; over an annual study, they occurred during the coldest months, showing the negative impact of continental water inputs on the bacteriological quality of coastal waters. PMID:10939045

  6. A Screening-Level Hydroeconomic Model of South Florida Water Resources System

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Watkins, D. W., Jr.; Flaxman, M.; Wiesmann, D.

    2014-12-01

    South Florida's water resources management is characterized by system-wide tradeoffs associated with maintaining the ecological integrity of natural environments such as the Everglades while meeting the water demands of the agricultural sector and growing urban areas. As these tradeoffs become more pronounced due to pressures from climate change, sea level rise, and population growth, it will be increasingly challenging for policy makers and stakeholders to reach consensus on water resources management objectives and planning horizons. A hydroeconomic optimization model of south Florida's water resources system is developed to incorporate the value of water for preserving ecosystem services alongside water supplies to the Everglades Agricultural Area and urban areas. Results of this screening-level network flow model facilitate quantitative analysis and provide insights for long-term adaptive management strategies for the region's water resources.

  7. Gopher Tortoise (Gopherus polyphemus) Densities in Coastal Scrub and Slash Pine Flatwoods in Florida

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Schmalzer, Paul A.; Hinkle, C. Ross

    1994-01-01

    Densities of gopher tortoises were compared with habitat characteristics in scrub and in flatwood habitats on the Kennedy Space Center, Florida. Tortoises were distributed widely among habitat types and did not have higher densities in well-drained (oak-palmetto) than in poorly-drained (saw palmetto) habitats. Fall densities of tortoises ranged from a mean of 2.7 individuals/ha in disturbed habitat to 0.0 individuals/ha in saw palmetto habitat. Spring densities of tortoises ranged from a mean of 2.5 individuals/ha in saw palmetto habitat to 0.7 individuals/ha in oak-palmetto habitat. Densities of tortoises were correlated positively with the percent herbaceous cover, an indicator of food resources. Plots were divided into three burn classes; these were areas burned within three years, burned four to seven years, and unburned for more than seven years prior to the study. Relationships between densities of tortoises and time-since-fire classes were inconsistent.

  8. Summary of data from onsite and laboratory analyses of surface water and marsh porewater from South Florida Water Management District Water Conservation Areas, the Everglades, South Florida, March 1995

    USGS Publications Warehouse

    Reddy, Michael M.; Gunther, Charmaine D.

    2012-01-01

    This report presents results of chemical analysis for samples collected during March, 1995, as part of a study to quantify the interaction of aquatic organic material (referred to here as dissolved organic carbon with dissolved metal ions). The work was done in conjunction with the South Florida Water Management District, the U.S. Environmental Protection Agency, the U.S. Geological Survey South Florida Ecosystems Initiative, and the South Florida National Water Quality Assessment Study Unit. Samples were collected from surface canals and from marsh sites. Results are based on onsite and laboratory measurements for 27 samples collected at 10 locations. The data file contains sample description, dissolved organic carbon concentration and specific ultraviolet absorbance, and additional analytical data for samples collected at several sites in the Water Conservation Areas, the Everglades, south Florida.

  9. Analysis of bathymetric surveys to identify coastal vulnerabilities at Cape Canaveral, Florida

    USGS Publications Warehouse

    Thompson, David M.; Plant, Nathaniel G.; Hansen, Mark E.

    2015-01-01

    The purpose of this work is to describe an updated bathymetric dataset collected in 2014 and compare it to previous datasets. The updated data focus on the bathymetric features and sediment transport pathways that connect the offshore regions to the shoreline and, therefore, are related to the protection of other portions of the coastal environment, such as dunes, that support infrastructure and ecosystems. Previous survey data include National Oceanic and Atmospheric Administration’s (NOAA) National Ocean Service (NOS) hydrographic survey from 1956 and a USGS survey from 2010 that is augmented with NOS surveys from 2006 and 2007. The primary result of this analysis is documentation and quantification of the nature and rates of bathymetric changes that are near (within about 2.5 km) the current Cape Canaveral shoreline and interpretation of the impact of these changes on future erosion vulnerability.

  10. BACTERIAL SOURCE TRACKING IN MISSISSIPPI COASTAL WATERS

    EPA Science Inventory

    The primary objective of the proposed study is to apply secretory immunoglobulin A (sIgA) analysis to surface waters in eastern Mississippi and to clarify the source(s) of pollution entering the Wolf and Jordan River watersheds. The method would attempt to determine if bovine fe...

  11. Water quality and restoration in a coastal subdivision stormwater pond.

    PubMed

    Serrano, Lorimar; DeLorenzo, Marie E

    2008-07-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to a number of water quality problems including high nutrient, chemical contaminant, and bacterial levels. This study examined the interaction between land use and coastal pond water quality in a South Carolina residential subdivision pond. Eutrophic levels of chlorophyll and phosphorus were present in all seasons. Harmful cyanobacterial blooms were prevalent during the summer months. Microcystin toxin and fecal coliform bacteria levels were measured that exceeded health and safety standards. Low concentrations of herbicides (atrazine and 2,4-D) were also detected during summer months. Drainage from the stormwater pond may transport contaminants into the adjacent tidal creek and estuary. A survey of residents within the pond's watershed indicated poor pet waste management and frequent use of fertilizers and pesticides as possible contamination sources. Educational and outreach activities were provided to community members to create an awareness of the water quality conditions in the pond. Pond management strategies were then recommended, and selected mitigation actions were implemented. Water quality problems identified in this study have been observed in other coastal stormwater ponds of varying size and salinity, leading this project to serve as a potential model for coastal stormwater pond management. PMID:17368919

  12. Ground-water resources of the Florida Mesa area, La Plata County, Colorado

    USGS Publications Warehouse

    Robson, S.G.; Wright, W.G.

    1995-01-01

    Rapid population growth in La Plata County, Colorado, has increased the demand for ground water in the Florida Mesa area. This report was prepared in cooperation with La Plata County to provide needed information about the geology, extent, thickness, and depth of the aquifers in the area; sources of ground-water recharge and discharge; direction of ground-water movement; water-level changes; and water quality in the alluvial and bedrock aquifers. Ground water in the study area is present in bedrock formations and in terrace deposits on Florida Mesa. Porous or fractured sandstone beds that contain bedrock aquifers are present near land surface along the northern margin of the study area and are present at depths less than 3,000 feet throughout the study area. Terrace deposits as much as 200 feet thick and consisting of gravel, sand, silt, and clay are present on Florida Mesa. The terrace deposits and the upper part of the underlying Animas and Nacimiento Formations form the principal aquifer under the mesa. Ground water under the mesa is supplied from precipitation and irrigation water. A small part of the precipitation and irrigation water on the mesa percolates to depth in the soil and recharges the aquifer. Irrigation water is the largest source of this recharge. Water levels in the aquifer can decline because of a reduction in irrigation recharge, or because of an increase in well pumping. Because irrigation recharge is so much larger than pumping, changes in recharge can have a much larger effect on ground-water levels than can changes in pumping. Factors that tend to increase ground-water recharge and thereby increase or maintain ground- water levels include: maintaining large rates of surface-water diversion onto Florida Mesa, reducing surface flow off the mesa, increasing use of ponds and spreading basins to promote infiltration, and irrigating by use of flood irrigation. The general direction of ground-water movement on the mesa is from the northern part of

  13. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  14. Pathogenic Human Viruses in Coastal Waters

    PubMed Central

    Griffin, Dale W.; Donaldson, Kim A.; Paul, John H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and important field. PMID:12525429

  15. Backscattering by very small particles in coastal waters

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Gray, Deric J.

    2015-10-01

    The volume scattering and backscattering by very small particles (VSPs) of sizes <0.2 µm in four coastal waters in U.S. (Chesapeake Bay, Monterey Bay, Mobile Bay, and the LEO-15 site) were estimated by inverting the measured volume scattering functions (VSFs) at 532 nm. The measured VSFs are consistent with concurrent measurements of total scattering coefficients by the ac-meters and angular scattering at 100, 125, and 150° by the ECO-VSF sensor and at 140° by the HydroScat-6 sensor. The inferred backscattering coefficients by the VSPs correlate strongly with the absorption coefficients measured for the colored dissolved organic matter, indicating that the dissolved portion of particles do scatter light. In the coastal waters that we studied, the backscattering by VSPs dominate over larger particles (of sizes >0.2 µm), accounting for 40-80% of total backscattering at 532 nm, while only account for <5% of total scattering.

  16. Data for periphyton and water samples collected from the south Florida ecosystem, 1995 and 1996

    USGS Publications Warehouse

    Simon, N.S.; Cox, T.; Spencer, R.

    1998-01-01

    This report presents data for samples of periphyton and water collected in 1995 and 1996 from Water Conservation Areas, the Big Cypress National Preserve, and the Everglades National Park in south Florida. Periphyton samples were analyzed for concentrations of total mercury, methyl mercury, nitrogen, phosphorus, organic carbon, and inorganic carbon . Water-column samples collected on the same dates as the periphyton samples were analyzed for concentrations of major ions.

  17. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  18. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    USGS Publications Warehouse

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  19. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  20. Bidirectional reflectance function in coastal waters: modeling and validation

    NASA Astrophysics Data System (ADS)

    Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir

    2011-11-01

    The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.

  1. Development of a coastal information system for the management of Jeddah coastal waters in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.

    2016-04-01

    This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.

  2. Compartment-based hydrodynamics and water quality modeling of a NorthernEverglades Wetland, Florida, USA

    EPA Science Inventory

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km c...

  3. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    PubMed

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  4. Bio-optical water quality dynamics observed from MERIS in Pensacola Bay, Florida

    EPA Science Inventory

    Observed bio-optical water quality data collected from 2009 to 2011 in Pensacola Bay, Florida were used to develop empirical remote sensing retrieval algorithms for chlorophyll a (Chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM). Time-series ...

  5. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  6. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    USGS Publications Warehouse

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  7. Phytoplankton response to intrusions of slope water on the West Florida Shelf: Models and observations

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Weisberg, Robert H.; Dieterle, Dwight A.; He, Ruoying; Darrow, Brian P.; Jolliff, Jason K.; Lester, Kristen M.; Vargo, Gabriel A.; Kirkpatrick, Gary J.; Fanning, Kent A.; Sutton, Tracey T.; Jochens, Ann E.; Biggs, Douglas C.; Nababan, Bisman; Hu, Chuanmin; Muller-Karger, Frank E.

    2003-06-01

    Previous hypotheses had suggested that upwelled intrusions of nutrient-rich Gulf of Mexico slope water onto the West Florida Shelf (WFS) led to formation of red tides of Karenia brevis. However, coupled biophysical models of (1) wind- and buoyancy-driven circulation, (2) three phytoplankton groups (diatoms, K. brevis, and microflagellates), (3) these slope water supplies of nitrate and silicate, and (4) selective grazing stress by copepods and protozoans found that diatoms won in one 1998 case of no light limitation by colored dissolved organic matter (CDOM). The diatoms lost to K. brevis during another CDOM case of the models. In the real world, field data confirmed that diatoms were indeed the dominant phytoplankton after massive upwelling in 1998, when only a small red tide of K. brevis was observed. Over a 7-month period of the CDOM-free scenario the simulated total primary production of the phytoplankton community was ˜1.8 g C m-2 d-1 along the 40-m isobath of the northern WFS, with the largest accumulation of biomass on the Florida Middle Ground (FMG). Despite such photosynthesis, these models of the WFS yielded a net source of CO2 to the atmosphere during spring and summer and suggested a small sink in the fall. With diatom losses of 90% of their daily carbon fixation to herbivores the simulation supported earlier impressions of a short, diatom-based food web on the FMG, where organic carbon content of the surficial sediments is tenfold those of the surrounding seabeds. Farther south, the simulated near-bottom pools of ammonium were highest in summer, when silicon regeneration was minimal, leading to temporary Si limitation of the diatoms. Termination of these upwelled pulses of production by diatoms and nonsiliceous microflagellates mainly resulted from nitrate exhaustion in the model, however, mimicking most del15PON observations in the field. Yet, the CDOM-free case of the models failed to replicate the observed small red tide in December 1998, tagged

  8. Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local shores.

    PubMed

    Thiel, M; Hinojosa, I A; Miranda, L; Pantoja, J F; Rivadeneira, M M; Vásquez, N

    2013-06-15

    Anthropogenic marine debris (AMD) is frequently studied on sandy beaches and occasionally in coastal waters, but links between these two environments have rarely been studied. High densities of AMD were found in coastal waters and on local shores of a large bay system in northern-central Chile. No seasonal pattern in AMD densities was found, but there was a trend of increasing densities over the entire study period. While plastics and Styrofoam were the most common types of AMD both on shores and in coastal waters, AMD composition differed slightly between the two environments. The results suggest that AMD from coastal waters are deposited on local shores, which over time accumulate all types of AMD. The types and the very low percentages of AMD with epibionts point to mostly local sources. Based on these results, it can be concluded that a reduction of AMD will require local solutions. PMID:23507233

  9. Remote sensing of water clarity and suspended sediments in coastal waters

    USGS Publications Warehouse

    Stumpf, R.P.

    1992-01-01

    Processing of data for estimation of suspended sediment concentrations and water clarity in turbid coastal water requires three components: (1) correction of raw data to water reflectance; (2) establishment of appropriate general models relating reflectance characteristics to materials in the water; and (3) determination of the coefficients of the models appropriate for the area under study. This paper presents equations and procedures appropriate for this processing. It provides example coefficients and data for the NOAA advanced very high resolution radiometer, which is the most appropriate sensor for investigating larger estuaries and turbid coastal systems until the launch of an ocean color imager (SeaWiFS) in late 1993.

  10. A Technique for Remote Sensing of Suspended Sediments and Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.

    2002-01-01

    We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  11. FLOOD REDUCTION EFFICIENCY OF THE WATER-MANAGEMENT SYSTEM IN DADE COUNTY (MIAMI), FLORIDA.

    USGS Publications Warehouse

    Waller, Bradley G.

    1986-01-01

    Two tropical weather systems, Hurricane Donna (1960) and Tropical Storm Dennis (1981), produced nearly equivalent amounts of rainfall in a 48-hour period south of the Miami (Florida) area. These two systems caused extensive flooding over a 600-square mile area, which is primarily agricultural and low density residential. The 1960 and 1981 storms caused the highest water levels recorded in south Dade County since flood-control measures were initiated for south Florida in 1949. Ground-water levels during both storms rose 4 to 8 feet over most of the area causing widespread inundation. Operation of the water-management system in 1981 provided flood protection and rapid recession of ground-water levels thereby minimizing damage.

  12. Echolocation by the harbour porpoise: life in coastal waters.

    PubMed

    Miller, Lee A; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals. PMID:23596420

  13. Echolocation by the harbour porpoise: life in coastal waters

    PubMed Central

    Miller, Lee A.; Wahlberg, Magnus

    2013-01-01

    The harbor porpoise is one of the smallest and most widely spread of all toothed whales. They are found abundantly in coastal waters all around the northern hemisphere. They are among the 11 species known to use high frequency sonar of relative narrow bandwidth. Their narrow biosonar beam helps isolate echoes from prey among those from unwanted items and noise. Obtaining echoes from small objects like net mesh, net floats, and small prey is facilitated by the very high peak frequency around 130 kHz with a wavelength of about 12 mm. We argue that such echolocation signals and narrow band auditory filters give the harbor porpoise a selective advantage in a coastal environment. Predation by killer whales and a minimum noise region in the ocean around 130 kHz may have provided selection pressures for using narrow bandwidth high frequency biosonar signals. PMID:23596420

  14. Onshore Winds and Coastal Fog Enhance Bacterial Connections Between Water and Air In the Coastal Environment (Invited)

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Juhl, A. R.; Weathers, K. C.; Uriarte, M.

    2013-12-01

    Globally, bacteria suspended in the atmosphere, or microbial aerosols, can range in concentration from 10^4 to 10^5 cells m^-3. They can be either attached to ambient aerosol particles or exist singly in the air, and can serve as ice, cloud and fog nucleators. To better understand sources for bacterial aerosols in the coastal environment, we assessed the effect of onshore wind speed on bacterial aerosol production and fallout in urban and non-urban coastal settings. We found that the fallout rate of culturable (viable) bacterial aerosols increased with onshore wind speeds. Furthermore, molecular characterization of the 16S rRNA gene diversity of bacteria from aerosols and surface waters revealed a similar species-level bacterial composition. This bacterial connection between water and air quality was strengthened at wind speeds above 4 m s^-1, with similar temporal patterns for coarse aerosol concentrations, culturable bacterial fallout rates, and presence of aquatic bacteria in near-shore aerosols. The water-air connection created by onshore winds in the coastal environment may be further modulated by coastal fog. Previous work has shown that the deposition of viable microbial aerosols increases by several orders of magnitude when fog is present in the coastal environment. Also, molecular analyses of bacteria in fog provide evidence that coastal fog enhances the viability of aerosolized marine bacteria, potentially allowing these bacteria to be transported further inland in a viable state with onshore winds. Implications for the coupling of wind-based aerosol production from surface waters with fog presence in the coastal environment include bi-directional atmospheric feedbacks between terrestrial and coastal ocean systems and the potential for water quality to affect air quality at coastal sites.

  15. Environmental Controls on Aerobic Methane Oxidation in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Steinle, L.; Maltby, J.; Engbersen, N.; Zopfi, J.; Bange, H. W.; Elvert, M.; Hinrichs, K. U.; Kock, A.; Lehmann, M. F.; Treude, T.; Niemann, H.

    2015-12-01

    Large quantities of the greenhouse gas CH4 are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, and later into the atmosphere. Indeed, coastal seas account for more than 75% of global oceanic CH4 emissions. Yet, aerobic CH4 oxidizing bacteria (MOB) consume an important part of CH4 in the water column, thus mitigating CH4 release to the atmosphere. Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity and oxygen concentrations, all of which are potential key environmental factors controlling MOx. To determine the most important controlling factors, we conducted a two-year time-series study with measurements of CH4, MOx, the composition of the MOB community, and physicochemical water column parameters in a coastal inlet in the Baltic Sea (Eckernförde(E-) Bay, Boknis Eck Time Series Station). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, seasonal stratification leads to hypoxia in bottom waters towards the end of the stratification period. Methane is produced year-round in the sediments, resulting in accumulation of methane in bottom waters, and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were a) perturbations of the water column caused by storm events, currents or seasonal mixing, b) temperature and c) oxygen concentration. a) Perturbations of the water column led to a sharp decrease in MOx within hours, probably caused by replacement of 'old' water with a high standing stock of MOB by 'new' waters with a lower abundance of MOB. b) An increase in temperature generally led to higher MOx rates. c) Even though CH4 was abundant at all depths, MOx was highest in bottom waters (1-5 nM/d), which usually contain the lowest O2 concentrations. Lab-based experiments with adjusted O2

  16. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District, May 1984

    USGS Publications Warehouse

    Barr, G.L.; Schiner, George R.

    1984-01-01

    A May 1984 potentiometric surface map of the Southwest Florida Water Management District depicts the annual low water-level period. Water levels in most wells measured in May 1984 were lower than in September 1983. May levels averaged about 1 foot lower than September levels in areas north of latitude 28 07'10' ' and about 9 feet lower in southern areas. Generally, water levels in May 1984 were lower when compared to May 1983. Water levels in most wells measured in May 1984 averaged less than 1 foot lower than May 1983 levels in the north and about 2 feet lower in the south. (USGS)

  17. Hydrologic, geologic, and water-quality data, Ochlockonee River basin area, Florida

    USGS Publications Warehouse

    Pascale, Charles A.; Wagner, Jeffrey R.; Sohm, James E.

    1978-01-01

    This report presents hydrologic, geologic, and water-quality data collected within the Ochlockonee River basin area, in the panhandle of northwest Florida. The data are presented in graphs and tables. Surface-water data include streamflow measurements and analyses of water collected at 58 sites; ground-water data include descriptions of 360 wells and core holes, analyses of water and hydrographs of selected wells, lithologic logs of 131 wells and test borings, and natural-gamma logs of selected wells ranging in depth from 110 to 1,346 feet. Rainfall and municipal pumpage data also are compiled. Maps show the location of the data-collection sites. (Woodard-USGS)

  18. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... the State of Florida's Lakes and Flowing Waters'' (75 FR 4173). EPA conducted 13 public hearing... stream regions (75 FR 4195-96). EPA received public comments and information that suggested refining the... maintenance of the lake numeric nutrient criteria also included in the proposal (75 FR 4198). \\2\\...

  19. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203

  20. Analysis of changes in water-level dynamics at selected sites in the Florida Everglades

    USGS Publications Warehouse

    Conrads, Paul A.; Benedict, Stephen T.

    2013-01-01

    The historical modification and regulation of the hydrologic patterns in the Florida Everglades have resulted in changes in the ecosystem of South Florida and the Florida Everglades. Since the 1970s, substantial focus has been given to the restoration of the Everglades ecosystem. The U.S. Geological Survey through its Greater Everglades Priority Ecosystem Science and National Water-Quality Assessment Programs has been providing scientific information to resource managers to assist in the Everglades restoration efforts. The current investigation included development of a simple method to identify and quantify changes in historical hydrologic behavior within the Everglades that could be used by researchers to identify responses of ecological communities to those changes. Such information then could be used by resource managers to develop appropriate water-management practices within the Everglades to promote restoration. The identification of changes in historical hydrologic behavior within the Everglades was accomplished by analyzing historical time-series water-level data from selected gages in the Everglades using (1) break-point analysis of cumulative Z-scores to identify hydrologic changes and (2) cumulative water-level frequency distribution curves to evaluate the magnitude of those changes. This analytical technique was applied to six long-term water-level gages in the Florida Everglades. The break-point analysis for the concurrent period of record (1978–2011) identified 10 common periods of changes in hydrologic behavior at the selected gages. The water-level responses at each gage for the 10 periods displayed similarity in fluctuation patterns, highlighting the interconnectedness of the Florida Everglades hydrologic system. While the patterns were similar, the analysis also showed that larger fluctuations in water levels between periods occurred in Water Conservation Areas 2 and 3 in contrast to those in Water Conservation Area 1 and the Everglades

  1. Analysis of impacts: Produced waters in sensitive coastal habitats. Central coastal Gulf of Mexico

    SciTech Connect

    Boesch, D.F.; Rabalais, N.N.

    1989-06-01

    This study quantified the location and characteristics of outer continental shelf (OCS) produced waters discharged into coastal environments of the Gulf of Mexico and provided an assessment of the environmental fate and effects of selected discharges. An inventory of produced-water discharges based on records of regulatory agencies in Texas and Louisiana was compiled. The other Gulf states do not permit the discharge of produced water into surface waters. Three sites representing large volumes of OCS-generated produced water discharges and different hydrological conditions were selected for field assessment. Produced water contained elevated levels of dissolved and dispersed petroleum hydrocarbons, organic acids, and tract metals. Concentrations of the organic constituents may depend on the separation and treatment technologies employed. Substantial contamination of fine-grained bottom sediments with petroleum hydrocarbons was observed near the discharges at the three sites studied. General surveys at the three sites showed evidence of biological effects in terms of reduced density and diversity of macrobenthic organisms in contaminated sediments and the accumulation of petroleum hydrocarbons in the tissues of filter-feeding bivalves proximate to the discharge sites.

  2. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor

    EPA Science Inventory

    The Hyperspectral Imager for the Coastal Ocean (HICO) offers the coastal environmental monitoring community an unprecedented opportunity to observe changes in coastal and estuarine water quality across a range of spatial scales not feasible with traditional field-based monitoring...

  3. Predicting Salmonella Populations from Biological, Chemical, and Physical Indicators in Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Mootian, Gabriel; Goodridge, Lawrence D.; Schaffner, Donald W.

    2013-01-01

    Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R2 < 0.1) and between physicochemical indicators and Salmonella levels (R2 < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression. PMID:23624476

  4. Unusual larval abundance of Scyllarides nodifer and Albunea sp. during an intrusion of low-salinity Mississippi flood water in the Florida Keys in September 1993: Insight into larval transport from upstream

    NASA Astrophysics Data System (ADS)

    Yeung, Cynthia; Criales, Maria M.; Lee, Thomas N.

    2000-12-01

    A massive intrusion of low-salinity water (salinity = 31-35) from the Mississippi River to the Florida Keys in September 1993 coincided with an unusual abundance of the phyllosoma larvae (stages IV-VII) of a slipper lobster, Scyllarides nodifer, and the zoeae (stages III-V) of a sand crab, Albunea sp. These species are abundant in the northeastern Gulf of Mexico, but their adults and early stage larvae are not common in the Florida Keys. The influx of S. nodifer and Albunea sp. larvae into the Florida Keys is believed to have originated on the northeastern Gulf of Mexico shelf. The southward transport of the larvae within a low-salinity plume from the Mississippi River was apparently caused by anomalous eastward winds moving shelf waters into the Loop Current, which had extended to within ˜170 km of the Mississippi Delta. During normal-salinity conditions (salinity > 36) the spiny lobster Panulirus argus is the most numerous species of phyllosoma larvae in the coastal waters of the Florida Keys. A wide range of stages of P. argus is present year-round in the Florida Keys, suggesting multiple larval sources upstream possibly in the Yucatan Peninsula and the Caribbean. In contrast, the source of S. nodifer and Albunea sp. recruits for the Florida Keys may lie principally in the northeastern gulf. The recruitment success of larvae of gulf origin to the Florida Keys may depend partly on the coincidence of specific wind and Loop Current transport conditions with an availability of larvae for expatriation at the source.

  5. Land use, water use, streamflow characteristics, and water-quality characteristics of the Charlotte Harbor inflow area, Florida

    USGS Publications Warehouse

    Hammett, K.M.

    1990-01-01

    Charlotte Harbor is a 270-square-mile estuarine system in west-central Florida. It is being subjected to increasing environmental stress by rapid population growth and development. By 2020, population in the inflow area may double, which will result in increased demands for freshwater and increased waste loads. The Charlotte Harbor inflow area includes about 4,685 square miles. The Myakka, the Peace, and the Caloosahatchee are the major rivers emptying into the harbor. About 70 percent of the land in these three river basins is used for agriculture and range. In the coastal basin around Charlotte Harbor, about 50 percent of the total land area is devoted to commercial or residential uses. Water use in the inflow area is about 565 million gallons per day, of which 59 percent is used for irrigation, 26 percent for industry, 11 percent for public supply, and 4 percent for rural supply. Total freshwater inflow from the three major rivers, the coastal area, and rainfall directly into Charlotte Harbor averages between 5,700 and 6,100 cubic feet per second, which is more than 3,500 million gallons per day. A trend analysis of about 50 years of streamflow data shows a statistically significant decreasing trend for the Peace River stations at Bartow, Zolfo Springs, and Arcadia. No significant trend has been observed in the Myakka or the Caloosahatchee River data. In the Peace River, the decrease in flow may be related to a long-term decline in the potentiometric surface of the underlying Floridan aquifer system, which resulted from ground-water withdrawals. It is not possible to determine whether the trend will continue. However, if it does continue at the same rate, then, except for brief periods of storm runoff, the Peace River at Zolfo Springs could be dry year-round in about 100 years. Of the 114 facilities permitted to discharge domestic or industrial effluent to waters tributary to Charlotte Harbor, 88 are in the Peace River basin. Phosphate ore and citrus processing

  6. The South Florida Environment: A Region Under Stress

    USGS Publications Warehouse

    McPherson, Benjamin F.; Halley, Robert B.

    1996-01-01

    This report provides an overview of the environmental setting in South Florida and serves as review and framework for developing U.S. Geological Survey programs in the region. The report describes the predevelopment and the current (present-day) environmental conditions in South Florida with emphasis on the quantity and quality of water. The geographical area covered is the southern one-half of the State and includes the South Florida National Water-Quality Assessment study area and adjacent coastal waters. This study area covers about 19,500 square miles and is the watershed of the larger regional ecosystem. The regional ecosystem includes the coastal waters between Charlotte Harbor on the Gulf of Mexico and the St. Lucie River on the Atlantic Ocean and the lands that drain into these waters.

  7. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine

    PubMed Central

    Tilburg, Charles E.; Jordan, Linda M.; Carlson, Amy E.; Zeeman, Stephan I.; Yund, Philip O.

    2015-01-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18–24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258

  8. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine.

    PubMed

    Tilburg, Charles E; Jordan, Linda M; Carlson, Amy E; Zeeman, Stephan I; Yund, Philip O

    2015-07-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18-24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258

  9. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    EPA Science Inventory

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  10. Sunscreen Products as Emerging Pollutants to Coastal Waters

    PubMed Central

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L.; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO2 and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6–577.5 ng L-1 BZ-3; 51.4–113.4 ng L-1 4-MBC; 6.9–37.6 µg L-1 Ti; 1.0–3.3 µg L-1 Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC50 = 125±71 mg L-1). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO43− is released by these products in notable amounts (up to 17 µmol PO43− g−1). We conservatively estimate an increase of up to 100% background PO43− concentrations (0.12 µmol L-1 over a background level of 0.06 µmol L-1) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem. PMID:23755233

  11. Geophysical surveys for monitoring coastal salt water intrusion

    NASA Astrophysics Data System (ADS)

    Loperte, A.; Satriani, A.; Simoniello, T.; Imbrenda, V.; Lapenna, V.

    2009-04-01

    Geophysical surveys have been exploited in a coastal forest reserve, at the mouth of the river Bradano in South Italy (Basilicata, southern Italy, N 40°22', E 16°51'), to investigate the subsurface saltwater contamination. Forest Reserve of Metapontum is a wood of artificial formation planted to protect fruit and vegetable cultivations from salt sea-wind; in particular it is constituted by a back dune pine forest mainly composed of Aleppo Pine trees (Pinus halepensis) and domestic pine trees (Pinus pinea). Two separate geophysical field campaigns, one executed in 2006 and a second executed in 2008, were performed in the forest reserve; in particular, electrical resistivity tomographies, resistivity and ground penetrating radar maps were elaborated and analyzed. In addition, chemical and physical analyses on soil and waters samples were performed in order to confirm and integrate geophysical data. The analyses carried out allowed an accurate characterization of salt intrusion phenomenon: the spatial extension and depth of the saline wedge were estimated. Primary and secondary salinity of the Metapontum forest reserve soil occurred because of high water-table and the evapo-transpiration rate which was much higher than the rainfall rate; these, of course, are linked to natural factors such as climate, natural drainage patterns, topographic features, geological structure and distance to the sea. Naturally, since poor land management, like the construction of river dams, indiscriminate extraction of inert from riverbeds that subtract supplies sedimentary, the alteration of the natural water balance, plays an important role in this process. The obtained results highlighted that integrated geophysical surveys gave a precious contribute for better evaluating marine intrusion wedge in coastal aquifers and providing a rapid, non-invasive and low cost tool for coastal monitoring.

  12. Sunscreen products as emerging pollutants to coastal waters.

    PubMed

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO₂ and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6-577.5 ng L⁻¹ BZ-3; 51.4-113.4 ng L⁻¹ 4-MBC; 6.9-37.6 µg L⁻¹ Ti; 1.0-3.3 µg L⁻¹ Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC₅₀ = 125±71 mg L⁻¹). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO₄³⁻ is released by these products in notable amounts (up to 17 µmol PO₄³⁻g⁻¹). We conservatively estimate an increase of up to 100% background PO₄³⁻ concentrations (0.12 µmol L⁻¹ over a background level of 0.06 µmol L⁻¹) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem. PMID:23755233

  13. Metropolitan Water Availability Forecasting Methods and Applications in South Florida

    EPA Science Inventory

    The availability of adequate fresh water is fundamental to the sustainable management of water infrastructures that support both urban needs and agricultural uses in human society. Recent drought events in the U.S. have threatened drinking water supplies for communities in Maryl...

  14. Dispersal of fine sediment in nearshore coastal waters

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore

  15. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40

  16. Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy

    NASA Astrophysics Data System (ADS)

    Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat

    2016-01-01

    The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.

  17. Modeling of coastal water contamination in Fortaleza (Northeastern Brazil).

    PubMed

    Pereira, S P; Rosman, P C C; Alvarez, C; Schetini, C A F; Souza, R O; Vieira, R H S F

    2015-01-01

    An important tool in environmental management projects and studies due to the complexity of environmental systems, environmental modeling makes it possible to integrate many variables and processes, thereby providing a dynamic view of systems. In this study the bacteriological quality of the coastal waters of Fortaleza (a state capital in Northeastern Brazil) was modeled considering multiple contamination sources. Using the software SisBaHiA, the dispersion of thermotolerant coliforms and Escherichia coli from three sources of contamination (local rivers, storm drains and submarine outfall) was analyzed. The models took into account variations in bacterial decay due to solar radiation and other environmental factors. Fecal pollution discharged from rivers and storm drains is transported westward by coastal currents, contaminating strips of beach water to the left of each storm drain or river. Exception to this condition only occurs on beaches protected by the breakwater of the harbor, where counterclockwise vortexes reverse this behavior. The results of the models were consistent with field measurements taken during the dry and the rainy season. Our results show that the submarine outfall plume was over 2 km from the nearest beach. The storm drains and the Maceió stream are the main factors responsible for the poor water quality on the waterfront of Fortaleza. The depollution of these sources would generate considerable social, health and economic gains for the region. PMID:26360752

  18. Toxic and harmful algae in the coastal waters of Russia

    NASA Astrophysics Data System (ADS)

    Vershinin, A. O.; Orlova, T. Yu.

    2008-08-01

    Toxic algal species of marine and brackish-water plankton, as well as nontoxic microalgae, which are capable of initiating harmful blooms, cause a detriment to human health (seafood poisoning) and often lead to a total crisis of coastal water ecosystems. The Russian coastal waters are inhabited by dozens of toxic and bloom-causing algal species, their toxins are accumulated in the tissues of edible mollusks, and there have been incidents of human poisonings and marine fauna mortality due to these blooms. An analysis of the current situation concerning the problem of toxic algae and harmful blooms of nontoxic species in the seas of Russia provides evidence that it is necessary to create a system of compulsory governmental monitoring of the exploited marine areas to serve as the basis of ecological safety control in the exploitation of the biological resources of the Russian Federation, as well to introduce compulsory sanitary control of diarrheic, paralytic, and amnesic phycotoxins. The compiled summary of algal toxic and potentially toxic species met in the European and Far Eastern seas of Russia is given with notes on their toxicity type and its manifestations.

  19. 75 FR 75761 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Commission. 2010. The economic impact of freshwater fishing in Florida. http://www.myfwc.com/CONSERVATION... economic impact of freshwater fishing in Florida. http://www.myfwc.com/CONSERVATION/Conservation_Valueof... hard copy form. Publicly available docket materials are available either electronically in...

  20. Computer derived coastal water classifications via spectral signatures

    NASA Technical Reports Server (NTRS)

    Clark, D. K.; Zaitzeff, J. B.; Strees, L. V.; Glidden, W. S.

    1974-01-01

    In April 1973, the National Environmental Satellite Service conducted a remote sensing investigation within the coastal waters of the New York Bight. Remote sensor records acquired from the ERTS-1 Multispectral Scanner and the Bendix 24 Channel Multispectral Scanner records flown on the NASA C-130 were used for water mass classification. Computer-derived classifications are discussed and compared. Such features as the Hudson River's turbid discharge plumes, acid waste and shelf water are examined in terms of their distribution of suspended particulates (2-203 microns), transmissivity, diffuse attenuation, incident and returned spectral irradiances. The characteristics of these features and their relationship to the computer derived classifications are presented and discussed with respect to radiative transfer theory.

  1. Challenges in collecting hyperspectral imagery of coastal waters using Unmanned Aerial Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    English, D. C.; Herwitz, S.; Hu, C.; Carlson, P. R., Jr.; Muller-Karger, F. E.; Yates, K. K.; Ramsewak, D.

    2013-12-01

    Airborne multi-band remote sensing is an important tool for many aquatic applications; and the increased spectral information from hyperspectral sensors may increase the utility of coastal surveys. Recent technological advances allow Unmanned Aerial Vehicles (UAVs) to be used as alternatives or complements to manned aircraft or in situ observing platforms, and promise significant advantages for field studies. These include the ability to conduct programmed flight plans, prolonged and coordinated surveys, and agile flight operations under difficult conditions such as measurements made at low altitudes. Hyperspectral imagery collected from UAVs should allow the increased differentiation of water column or shallow benthic communities at relatively small spatial scales. However, the analysis of hyperspectral imagery from airborne platforms over shallow coastal waters differs from that used for terrestrial or oligotrophic ocean color imagery, and the operational constraints and considerations for the collection of such imagery from autonomous platforms also differ from terrestrial surveys using manned aircraft. Multispectral and hyperspectral imagery of shallow seagrass and coral environments in the Florida Keys were collected with various sensor systems mounted on manned and unmanned aircrafts in May 2012, October 2012, and May 2013. The imaging systems deployed on UAVs included NovaSol's Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK), a Tetracam multispectral imaging system, and the Sunflower hyperspectal imager from Galileo Group, Inc. The UAVs carrying these systems were Xtreme Aerial Concepts' Vision-II Rotorcraft UAV, MLB Company's Bat-4 UAV, and NASA's SIERRA UAV, respectively. Additionally, the Galileo Group's manned aircraft also surveyed the areas with their AISA Eagle hyperspectral imaging system. For both manned and autonomous flights, cloud cover and sun glint (solar and viewing angles) were dominant constraints on retrieval of quantitatively

  2. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    SciTech Connect

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  3. Seasonal variation in sea turtle density and abundance in the southeast Florida current and surrounding waters

    DOE PAGESBeta

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-12-30

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less

  4. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    PubMed Central

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  5. SPATIAL AND TEMPORAL DISTRIBUTION OF COLORED DISSOLOVED ORGANIC MATTER (CDOM) IN SOUTHERN NEW ENGALND COASTAL WATERS

    EPA Science Inventory

    The concentration of colored dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. CDOM is extracted from water-soluble humic substances and transported by runoff into lakes and coastal waters. CDOM is a...

  6. Temperature inverted haloclines provide winter warm-water refugia for manatees in southwest Florida

    USGS Publications Warehouse

    Stith, Bradley M.; Reid, James P.; Langtimm, Catherine A.; Swain, Eric D.; Doyle, Terry J.; Slone, Daniel H.; Decker, Jeremy D.; Soderqvist, Lars E.

    2010-01-01

    Florida manatees (Trichechus manatus latirostris) overwintering in the Ten Thousand Islands and western Everglades have no access to power plants or major artesian springs that provide warm-water refugia in other parts of Florida. Instead, hundreds of manatees aggregate at artificial canals, basins, and natural deep water sites that act as passive thermal refugia (PTR). Monitoring at two canal sites revealed temperature inverted haloclines, which provided warm salty bottom layers that generally remained above temperatures considered adverse for manatees. At the largest PTR, the warmer bottom layer disappeared unless significant salt stratification was maintained by upstream freshwater inflow over a persistent tidal wedge. A detailed three-dimensional hydrology model showed that salinity stratification inhibited vertical convection induced by atmospheric cooling. Management or creation of temperature inverted haloclines may be a feasible and desirable option for resource managers to provide passive thermal refugia for manatees and other temperature sensitive aquatic species.

  7. Decadal Change of the Nordic Seas Coastal Waters Quality

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Pettersson, Lasse

    2010-12-01

    During the last decades, there has been a significant warming trend over the Arctic, corresponding in average to approximately 5°C/century [1, 2, 3]. Due to combination of marine and terrestrial abiotic factors the most evident influence of the climate change on aquatic ecosystems occurs in the coastal zones [4]. These waters are characterized by high concentrations of suspended matter and organic constituents and this is the reason why most of the standard algorithms, originally developed for open ocean waters fail. Advanced algorithms based on neural networks or multivariate optimization approach and additionally adjusted for regional conditions should be applied [5, 6]. The objective of the presented study was to detect decadal changes of water quality parameters based of consistent satellite observations of coastal aquatic ecosystems of the Nordic Seas and relate observed trends to changes in essential climate variables. We focus our research at the region shown on the map on Fig. 1. Satellite data acquired during the first ten years of SeaWIFS operation (1998 - 2007) were analyzed in the following steps: A) An archive of consistent satellite observations of the Nordic Sea coastal waters quality was created; B) Remote sensing data were processed with the developed bio-optical algorithms for retrieving water quality parameters (chlorophyll-a, total suspended matter, dissolved organic carbon, coccoliths) with account for the local hydro-optical conditions; C) An archive of essential climate variables (sea surface temperature, cloudiness, wind speed) was created ; D) Significant decadal changes of water quality parameters were detected and related to the observed changes of the essential climate variables It was found that statistically significant change of chlorophyll (decrease by ~80% in April - June in the Northern Sea and increase by ~70% in July in the Barents Sea) is reciprocally proportional to SST. Statistically significant change of coccoliths (decrease

  8. Atmospheric nitrogen deposition in estuarine and coastal waters: Biogeochemical and water quality impacts

    SciTech Connect

    Paerl, H.W.; Peierls, B.L.; Fogel, M.L.; Aguilar, C. |

    1994-12-31

    Atmospheric deposition (AD) is a significant source of biologically-available ``new`` nitrogen in N-limited estuarine and coastal ocean waters. From 10 to over 50% of ``new`` N inputs are attributable to AD in waters ``downwind`` of emissions. In situ microcosm and mesocosm bioassays indicate that this ``new`` N source can enhance microalgal primary production and may alter community composition. Relative to terrestrial and regenerated N inputs, the dominant AD-N sources, NO{sub 3}k{sup {minus}}, NH{sub 4}{sup {plus}}, and dissolves organic nitrogen (DON) reveal stable N isotope ratios ({delta}{sup 15}N) generally deplete in {sup 15}N. The relatively low {delta}{sup 15}N ratio of AD-N has been used as a tracer of the incorporation and fate of this ``new`` N source in receiving water. Diagnostic biomarker molecules, including proteins and pigments (chlorophylls), indicate rapid algal utilization and transformation of AD-N. Seasonal production and N isotope studies in mixed and stratified North Carolina Atlantic coastal and offshore (i.e. Gulf Stream) waters indicate a marked impact of AD-N on microbial production. AD-N is an important and thus far poorly recognized source of ``new`` N in N-limited waters; these waters characterized a large proportion of the world`s estuarine and coastal zones. AD-N may additionally play a role in recently-noted coastal eutrophication and algal nuisance bloom dynamics.

  9. Chemical, physical, and radiological quality of selected public water supplies in Florida, February-April 1980

    USGS Publications Warehouse

    Franks, Bernard J.; Irwin, G.A.

    1981-01-01

    Virtually all treated public water supplies in Florida meet the National Interim Primary and Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 126 raw and treated public water supplies throughout the State during the period February through April 1980. Primary drinking water regulations maximum contaminant levels were rarely exceeded, although mercury (1 site), fluoride (2 sites), and radionuclides (3 sites) in water supplies were above established maximum contaminant levels. Dissolved solids, chloride, copper, manganese, iron, color, sulfate, and pH, were occasionally slightly in excess of the recommended maximum contaminant levels of the secondary drinking water regulation. The secondary regulations, however, pertain mainly to the esthetic quality of drinking water and not directly to public health aspects. (USGS)

  10. Potentiometric surface of the Floridan aquifer in the Northwest Florida Water Management District, May 1980

    USGS Publications Warehouse

    Rosenau, J.C.; Milner, R.S.

    1981-01-01

    A May 1980 potentiometric surface map of the Northwest Florida Water Management District depicts water levels in wells tapping the Floridan aquifer prior to summer pumpage. Compared to earlier potentiometric maps of the area, there are no significant differences in the 1980 map that are the result of hydrologic conditions. The addition of numerous new monitor wells in Jackson, Calhoun, Gadsden, and Liberty Counties, however, permitted refinement or better delineation of contours and a separation of water-bearing zones of the Floridan aquifer in the latter two counties. (USGS)

  11. Water-Level Measurements for the Coastal Plain Aquifers of South Carolina Prior to Development

    USGS Publications Warehouse

    Aucott, Walter R.; Speiran, Gary K.

    1984-01-01

    Tabulations of water-level measurements for the Coastal Plain aquifers of South Carolina representing water levels prior to man-made development are presented. Included with the tabulations are local well number, location, land-surface altitude, well depth, screened interval, depth to water, water- level altitude, and date measured. These water-level measurements were used in compiling regional potentiometric maps for the Coastal Plain aquifers. This data set will be useful in the planning for future water-resource development.

  12. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    PubMed

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. PMID:26346804

  13. Continuous water quality monitoring for the hard clam industry in Florida, USA.

    PubMed

    Bergquist, Derk C; Heuberger, David; Sturmer, Leslie N; Baker, Shirley M

    2009-01-01

    In 2000, Florida's fast-growing hard clam aquaculture industry became eligible for federal agricultural crop insurance through the US Department of Agriculture, but the responsibility for identifying the cause of mortality remained with the grower. Here we describe the continuous water quality monitoring system used to monitor hard clam aquaculture areas in Florida and show examples of the data collected with the system. Systems recording temperature, salinity, dissolved oxygen, water depth, turbidity and chlorophyll at 30 min intervals were installed at 10 aquaculture lease areas along Florida's Gulf and Atlantic coasts. Six of these systems sent data in real-time to a public website, and all 10 systems provided data for web-accessible archives. The systems documented environmental conditions that could negatively impact clam survival and productivity and identified biologically relevant water quality differences among clam aquaculture areas. Both the real-time and archived data were used widely by clam growers and nursery managers to make management decisions and in filing crop loss insurance claims. While the systems were labor and time intensive, we recommend adjustments that could reduce costs and staff time requirements. PMID:18320336

  14. Statistical comparisons of ground-water quality underlying different land uses in central Florida

    SciTech Connect

    Rutledge, A.T.; German, E.R. Geological Survey, Altamonte Springs, FL )

    1988-09-01

    Human activities at land surface can affect the quality of water recharging groundwater systems. Because ground water is the principal source of drinking water in many areas, it is necessary to know the relation between land use and ground-water quality. This study is 1 of 7 being made throughout the US as part of the Toxic Waste - Ground-Water Contamination Program of the US Geological Survey. This report documents statistical comparisons of ground-water quality for three test areas in central Florida: (1) a control area where land use is minimal, (2) a citrus-growing area where effects of agriculture may be expected, and (3) a phosphate-mining area where effects of mining activities may be expected. This study addresses water-quality conditions in the surficial aquifer, which consists of sand and shell beds of Pleistocene and Holocene age. The two developed areas are representative of land uses that characterize large areas of Florida, and the control area is representative of near-pristine conditions that exist over a large area, so results of this study may be transferable. The water-quality variables of interest include physical properties, major ions, nutrients, and trace elements.

  15. A baseline study of tropical coastal water quality in Port Dickson, Strait of Malacca, Malaysia.

    PubMed

    Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2013-02-15

    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources. PMID:23260650

  16. Water-resources data index for Osceola National Forest, Florida

    USGS Publications Warehouse

    Seaber, Paul R.; Hull, Robert W.

    1979-01-01

    The U.S. Geological Survey conducted an intensive investigation from December 1975 to December 1977 of the geohydrology of Osceola National Forest, Fla. The primary purpose was to provide the geohydrological understanding needed to predict the impact of potential phosphate industry operations in the forest on the natural hydrologic system. The investigation involved test drilling, implementation of a hydrologic monitoring network, water-quality sampling, comprehensive aquifer tests, and literature study. This report is an index to the type, source, location, and availability of the data used in the interpretive investigation. The indexes include: geological, geophysical, ground water, surface water, quality of water, meteorological, climatological, aquifer tests, maps, photographs, elevations, and reference publications. The manner of storage and retrieval of the data is decribed also. (Woodard-USGS).

  17. Elevated Accumulation of Parabens and their Metabolites in Marine Mammals from the United States Coastal Waters.

    PubMed

    Xue, Jingchuan; Sasaki, Nozomi; Elangovan, Madhavan; Diamond, Guthrie; Kannan, Kurunthachalam

    2015-10-20

    The widespread exposure of humans to parabens present in personal care products is well-known. Nevertheless, little is known about the accumulation of parabens in marine organisms. In this study, six parabens and four common metabolites of parabens were measured in 121 tissue samples from eight species of marine mammals collected along the coastal waters of Florida, California, Washington, and Alaska. Methyl paraben (MeP) was the predominant compound found in the majority of the marine mammal tissues analyzed, and the highest concentration found was 865 ng/g (wet weight [wet wt]) in the livers of bottlenose dolphins from Sarasota Bay, FL. 4-Hydroxybenzoic acid (4-HB) was the predominant paraben metabolite found in all tissue samples. The measured concentrations of 4-HB were on the order of hundreds to thousands of ng/g tissue, and these values are some of the highest ever reported in the literature. MeP and 4-HB concentrations showed a significant positive correlation (p < 0.05), which suggested a common source of exposure to these compounds in marine mammals. Trace concentrations of MeP and 4-HB were found in the livers of polar bears from the Chuckchi Sea and Beaufort Sea, which suggested widespread distribution of MeP and 4-HB in the oceanic environment. PMID:26379094

  18. Use of oysters to mitigate eutrophication in coastal waters

    NASA Astrophysics Data System (ADS)

    Kellogg, M. Lisa; Smyth, Ashley R.; Luckenbach, Mark W.; Carmichael, Ruth H.; Brown, Bonnie L.; Cornwell, Jeffrey C.; Piehler, Michael F.; Owens, Michael S.; Dalrymple, D. Joseph; Higgins, Colleen B.

    2014-12-01

    Enhancing populations of suspension feeding bivalves, particularly the eastern oyster, Crassostrea virginica, has been proposed as a means of mitigating eutrophication in coastal waters. Review of studies evaluating the effects of C. virginica on nitrogen (N) cycling found that oysters can have effects on water quality that vary by orders of magnitude among sites, seasons, and growing condition (e.g., oyster reefs, aquaculture). Nitrogen contained in phytoplankton consumed by oysters may be returned to the water column, assimilated into oyster tissue and shell, buried in the sediments, or returned to the atmosphere as dinitrogen gas, primarily via denitrification. Accurately quantifying oyster-related N removal requires detailed knowledge of these primary fates of N in coastal waters. A review of existing data demonstrated that the current state of knowledge is incomplete in many respects. Nitrogen assimilated into oyster tissue and shell per gram of dry weight was generally similar across sites and in oysters growing on reefs compared to aquaculture. Data on long-term burial of N associated with oyster reefs or aquaculture are lacking. When compared to suitable reference sites, denitrification rates were not consistently enhanced. Depending on environmental and oyster growing conditions, changes in denitrification rates varied by orders of magnitude among studies and did not always occur. Oyster aquaculture rarely enhanced denitrification. Unharvested oyster reefs frequently enhanced denitrification rates. Incorporating oysters into nutrient reduction strategies will require filling gaps in existing data to determine the extent to which relationships between N removal and environmental and/or growing conditions can be generalized.

  19. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. PMID:26763325

  20. Chemical, physical, and radiological quality of selected public water supplies in Florida, November 1977-February 1978

    USGS Publications Warehouse

    Irwin, G.A.; Hull, Robert W.

    1979-01-01

    Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids , chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects. (Woodard-USGS)

  1. Quality of surface water in the Suwannee River Basin, Florida, August 1968 through December 1977

    USGS Publications Warehouse

    Hull, Robert W.; Dysart, Joel E.; Mann, William B., IV

    1981-01-01

    In the 9,950-square mile area of the Suwannee River basin in Florida and Georgia, 17 surface-water stations on 9 streams and several springs were sampled for selected water-quality properties and constituents from August 1968 through December 1977. Analyses from these samples indicate that: (1) the water quality of tributary wetlands controls the water quality of the upper Suwannee River headwaters; (2) groundwater substantially affects the water quality of the Suwannee River basin streams below these headquarters; (3) the water quality of the Suwannee River, and many of its tributaries, is determined by several factors and is not simply related to discharge; and (4) development in the Suwannee River basin has had observable effects on the quality of surface waters. (USGS)

  2. Water-use patterns of woody species in pineland and hammock communities of South Florida

    USGS Publications Warehouse

    Ewe, S.M.L.; da Silveira Lobo Sternberg, Leonel; Sternberg, L.; Busch, D.E.

    1999-01-01

    Rockland pine forests of south Florida dominated by Pinus elliottii var. densa characteristically have poor soil development in relation to neighboring hardwood hammocks. This has led to the hypothesis that Everglades hammock trees are more reliant on soil moisture derived from local precipitation whereas pineland plants must depend more on groundwater linked to broader regional hydrologic patterns. Because soil moisture sources are likely to vary more than groundwater sources, we hypothesized that hammock plants would exhibit correspondingly higher levels of dry season water stress. This was examined by measuring predawn water potentials, and by analyzing water uptake in representative hammock and pineland woody species using stable isotopes of plant water and that of potential sources during wet and dry seasons. Two species typical of each of the two communities were selected; a fifth species which was found in both communities, Lysiloma latisiliqua Benth., was also analyzed. Water content of soils in both communities decreased from wet to dry season. Consistent with our hypothesis, the change in predawn water potentials between the wet and dry season was less in pineland species than that of hammock species. Water potential changes in L. latisiliqua in both communities resembled that of hammock species more than pineland plants. Isotopic data showed that pineland species rely proportionately more on groundwater than hammock species. Nevertheless, unlike hammock species in the Florida Keys, mainland hammock species utilized a substantial amount of groundwater during the dry season.

  3. Ground-water levels in selected well fields and in west-central Florida, May 1980

    USGS Publications Warehouse

    Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1980-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are prepared showing water levels measured in wells each May to coincide with seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well-field areas that supplied 155 million gallons to municipalities on May 12, 1980. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Water levels were lower in May 1980 than in September 1979 and a little higher than the average May levels. Change of water levels ranged from a decrease of 12 feet at Verna well field to an increase of 7 feet at Eldridge-Wilde well field. (USGS)

  4. Ground-water levels in selected well fields and in west-central Florida, September 1979

    USGS Publications Warehouse

    Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1980-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with seasonal low levels, and each September to coincide with seasonal high levels. The mapped area shows 16 well fields which supplied 123.7 million gallons to municipalities on September 18, 1979. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Water levels were generally higher in September 1979 than in May 1979 and higher than the average September levels. Change of water levels ranged from an increase of 15 feet at Cosme well field to a decrease of 9 feet at Verna well field. (USGS)

  5. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  6. Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III

    USGS Publications Warehouse

    Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.

    2007-01-01

    The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.

  7. Assessment of water quality in the South Indian River Water Control District, Palm Beach County, Florida, 1989-94

    USGS Publications Warehouse

    Lietz, A.C.

    1996-01-01

    A study was conducted to assess ground-water and surface-water quality in the South Indian River Water Control District in northern Palm Beach County from 1989 to 1994. Contamination of the surficial aquifer system and availability of a potable water supply have become of increasing concern. The study consisted of sampling 11 ground-water wells and 14 surface- water sites for determination of major inorganic constituents and physical characteristics, trace metals, nitrogen and phosphorus species, and synthetic organic compounds. Sodium and chloride concentrations exceeded Florida drinking-water standards in ground water at two wells, dissolved- solids concentrations at five ground-water wells and one surface-water site, and color values at all 11 ground-water wells and all 14 surface-water sites. Other constituents also exhibited concentrations that exceeded drinking-water standards. Cadmium and zinc concentrations exceeded the standards in ground water at one well, and lead concentrations exceeded the standard in ground water at five wells. Nitrogen and phosphorus specie concentrations did not exceed respective drinking-water standards in any ground-water or surface-water samples. Several synthetic organic compounds were detected at or above 50 micrograms per liter in water samples collected from six ground-water wells and three surface-water sites.

  8. A new source of freshwater for Antarctica's coastal waters

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-06-01

    Research into submarine groundwater discharge (SGD), predominantly regarding its prevalence as a source of freshwater and nutrients to coastal ecosystems, has recently grown in prominence. Using a new groundwater discharge sensor specifically designed for use in the cold polar ocean, Uemura et al. measured the flows of freshwater streaming through the Antarctic subsurface and into the surrounding coastal waters. The researchers found that SGD rates measured in Lützow-Holm Bay in eastern Antarctica showed important differences from SGD rates measured elsewhere on Earth. At midlatitudes, discharge rates drop with increasing ocean depth, while the Antarctic flows were relatively consistent despite differences in depth among the seven survey sites scattered throughout the bay. In addition, the measured average flow rates, ranging from 0.85 × 10-7 to 9.5 × 10-7 meters per second, were 10-100 times higher than flow rates at similar depths made at midlatitudes. The authors also found that SDG rates oscillated with a period of 12.8 hours, peaking at low tide. Further, the discharge rates roughly tracked the size of the tide, having higher peaks in spring, when tides were strongest. The researchers propose that the most likely source of the freshwater flow is meltwater formed beneath the massive glaciers surrounding the bay. (Geophysical Research Letters, doi:10.1029/2010GL046394, 2011)

  9. Setting background nutrient levels for coastal waters with oceanic influences

    NASA Astrophysics Data System (ADS)

    Smith, Alastair F.; Fryer, Rob J.; Webster, Lynda; Berx, Bee; Taylor, Alison; Walsham, Pamela; Turrell, William R.

    2014-05-01

    Nutrient enrichment of coastal water bodies as a result of human activities can lead to ecological changes. As part of a strategy to monitor such changes and detect potential eutrophication, samples were collected during research cruises conducted around the Scottish coast each January over the period 2007-2013. Data were obtained for total oxidised nitrogen (TOxN; nitrite and nitrate), phosphate and silicate, and incorporated into data-driven spatial models. Spatial averages in defined sea areas were calculated for each year in order to study inter-annual variability and systematic trends over time. Variation between some years was found to be significant (p < 0.05) but no evidence was found for any trends over the time period studied. This may have been due to the relatively short time series considered here. Modelled distributions were developed using data from groups of years (2007-2009, 2010-2011 and 2012-2013) and compared to the OSPAR Ecological Quality Objectives (EcoQOs) for dissolved inorganic nitrogen (DIN; the concentration of TOxN and ammonia), the ratio of DIN to dissolved inorganic phosphorous (N/P) and the ratio of DIN to dissolved silicate (N/S). In these three models, TOxN was below the offshore background concentration of 10 μM (12 μM at coastal locations) over more than 50% of the modelled area while N/S exceeded the upper assessment criterion of 2 over more than 50% of the modelled area. In the 2007-2009 model, N/P was below the background ratio (16) over the entire modelled area. In the 2010-2011 model the N/P ratio exceeded the background in 91% of the modelled area but remained below the upper assessment criterion (24). Scottish shelf sea waters were found to be depleted in TOxN relative to oceanic waters. This was not accounted for in the development of background values for the OSPAR EcoQOs so new estimates of these background values were derived. The implications of these results for setting reasonable background nutrient levels when

  10. Reconnaissance water sampling for radium-226 in central and northern Florida, December 1974-March 1976

    USGS Publications Warehouse

    Irwin, G.A.; Hutchinson, C.B.

    1976-01-01

    Analyses of 115 water samples collected from December 1974 through March 1976 in eight Florida Counties indicated that 22 samples (19 percent) had radium-226 activities equal to or in excess of 3 piC/liter (picocuries per liter), the concentration limit recommended for drinking water by the U.S. Public Health Service. The maximum radium-226 activity was 90 piC/liter in water from a shallow well in Polk County. The sampling reconnaissance was generally limited to areas of active phosphate mining and areas of undisturbed phosphate deposits. Most of the sampling was from water wells. Thirteen surface-water samples were collected in the Peace River drainage basin. The maximum radium-226 detected in surface-water samples was 3.6 piC/liter in Little Charlie Creek at State Road 664A in Hardee County. (Woodard-USGS)

  11. Ground-water levels in selected well fields and in west-central Florida, September 1980

    USGS Publications Warehouse

    Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1980-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are based on water levels measured in wells each May to coincide with seasonal low levels and each September to coincide with seasonal high levels. The mapped area shows 14 well fields that supplied 141.8 million gallons to municipalities on September 18, 1980. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as depressions in both the potentiometric and water-table surfaces. Potentiometric levels in the Floridan aquifer were higher in September 1980 than in May 1980 and generally lower than in September 1979. Annual change of water levels ranged from a decrease of 6 feet at Morris Bridge well field to an increase of 2 feet at Eldridge-Wilde well field. (USGS)

  12. Water pollution in estuaries and coastal zones. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the studies of water pollution in estuaries and coastal zones. Citations examine the development, management, and protection of estuary and coastal resources. Topics include pollution sources, environmental monitoring, water chemistry, eutrophication, models, land use, government policy, and laws and regulations. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. ROLE OF SEAGRASS (THALASSIA TESTUDINUM) AS A SOURCE OF CHROMOPHORIC DISSOLVED ORGANIC MATTER IN COASTAL SOUTH FLORIDA

    EPA Science Inventory

    Seagrasses play a variety of important ecological roles in coastal ecosystems. Here we present evidence that seagrass detritus from the widespread species, Thalassia testudinum, is an important source of ocean color and UV-protective substances in a low latitude coastal shelf re...

  14. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society

  15. Applications of remote sensing for water quality and biological measurements in coastal waters

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Harriss, R. C.

    1979-01-01

    Potential applications of remote sensing technology to the study of coastal marine environments are reviewed, emphasizing water quality and biological measurements. Parameters measurable by airborne or spaceborne remote sensors include particulates, measured by visual or multispectral photography, chlorophyll a, measured by the Ocean Color Scanner or Coastal Zone Color Scanner, temperature distributions, by IR or microwave sensors, and salinity, by means of microwave radiometers. Research projects in which wide area synoptic or repetitive remote sensing can make a major contribution include the study of estuarine and continental shelf sediment transport dynamics, marine pollutant transport, marine phytoplankton dynamics and ocean fronts.

  16. Percentage of microbeads in pelagic microplastics within Japanese coastal waters.

    PubMed

    Isobe, Atsuhiko

    2016-09-15

    To compare the quantity of microbeads with the quantity of pelagic microplastics potentially degraded in the marine environment, samples were collected in coastal waters of Japan using neuston nets. Pelagic spherical microbeads were collected in the size range below 0.8mm at 9 of the 26 stations surveyed. The number of pelagic microbeads smaller than 0.8mm accounted for 9.7% of all microplastics collected at these 9 stations. This relatively large percentage results from a decrease in the abundance of microplastics smaller than 0.8mm in the upper ocean, as well as the regular loading of new microbeads from land areas, in this size range. In general, microbeads in personal care and cosmetic products are not always spherical, but rather are often a variety of irregular shapes. It is thus likely that this percentage is a conservative estimate, because of the irregular shapes of the remaining pelagic microbeads. PMID:27297592

  17. Surface water sulfate dynamics in the northern Florida Everglades.

    PubMed

    Wang, Hongqing; Waldon, Michael G; Meselhe, Ehab A; Arceneaux, Jeanne C; Chen, Chunfang; Harwell, Matthew C

    2009-01-01

    Sulfate contamination has been identified as a serious environmental issue in the Everglades ecosystem. However, it has received less attention compared to P enrichment. Sulfate enters the Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge), a remnant of the historic Everglades, in pumped stormwater discharges with a mean concentration of approximately 50 mg L(-1), and marsh interior concentrations at times fall below a detection limit of 0.1 mg L(-1). In this research, we developed a sulfate mass balance model to examine the response of surface water sulfate in the Refuge to changes in sulfate loading and hydrological processes. Meanwhile, sulfate removal resulting from microbial sulfate reduction in the underlying sediments of the marsh was estimated from the apparent settling coefficients incorporated in the model. The model has been calibrated and validated using long-term monitoring data (1995-2006). Statistical analysis indicated that our model is capable of capturing the spatial and temporal variations in surface water sulfate concentrations across the Refuge. This modeling work emphasizes the fact that sulfate from canal discharge is impacting even the interior portions of the Refuge, supporting work by other researchers. In addition, model simulations suggest a condition of sulfate in excess of requirement for microbial sulfate reduction in the Refuge. PMID:19244495

  18. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl‑ and Br‑ by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  19. Halogen radicals contribute to photooxidation in coastal and estuarine waters.

    PubMed

    Parker, Kimberly M; Mitch, William A

    2016-05-24

    Although halogen radicals are recognized to form as products of hydroxyl radical ((•)OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM ((3)DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater (•)OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark (•)OH generation by gamma radiolysis demonstrates that halogen radical production via (•)OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl(-) and Br(-) by (3)DOM*, an (•)OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  20. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    EPA Science Inventory

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  1. 75 FR 11079 - Extension of Public Comment Period for Water Quality Standards for the State of Florida's Lakes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... rule entitled ``Water Quality Standards for the State of Florida's Lakes and Flowing Waters.'' On January 26, 2010 (75 FR 4174), EPA published this proposed rule. Written comments on the proposed... AGENCY 40 CFR Part 131 RIN 2040-AF11 Extension of Public Comment Period for Water Quality Standards...

  2. Effects of treated municipal effluent irrigation on ground water beneath sprayfields, Tallahassee, Florida

    USGS Publications Warehouse

    Pruitt, J.B.; Elder, J.F.; Johnson, I.K.

    1988-01-01

    Groundwater quality data collection began in November 1979 at a spray-irrigation site near Tallahassee, Florida, before the initial application of secondary-treated municipal wastewater in November 1980. Effects of effluent irrigation on groundwater quality were evident about 1 year after spraying began and have continued to increase during the study period of 1983-85. Chloride and nitrate concentrations in groundwater have continued to increase since about 1 year after spraying began. Nitrate-nitrogen concentrations have increased from 0.03 mg/L to as much as 11 mg/L in water from one well in the surficial aquifer and from 0.07 to 15 mg/L in one well in the Floridan aquifer system. The greatest increases in concentrations have occurred in water from wells that top the surficial and Floridan aquifers. Increase in concentration occurred in water from some wells in the Floridan outside and downgradient of pivots, indicating lateral movement within the Floridan. The increase in sodium concentrations has been similar to the in chloride concentrations. Increases increases in the concentrations of other inorganic constituents have been minor compared to increases in chloride, sodium and nitrate concentrations. Nine volatile organic halocarbon compounds were detected in 18 effluent samples. Low concentrations of two of these halocarbons--chloroform and trichloroethene (TCE)--were detected intermittently in water sampled from six wells. None of the organic compounds detected in effluent or groundwater exceeded Florida drinking water standards. (USGS)

  3. Near-surface water balance of an undeveloped upland site in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Boetcher, P.F.

    1996-01-01

    A study was made to examine the near-surface water balance of a dry prairie site in west-central Florida. The water balance, which was defined on a unit area basis and for a depth of 5.5 meters, was described for the period June 1991 to October 1992. Precipitation during the 498 days of field measurements was 2,245 millimeters. Evapotranspiration, the second largest component, was 1,419 millimeters. Water yield was 808 millimeters and the change in soil water storage was 19 millimeters. Computed vertical water flux was less than 4 percent of evapotranspiration because of the small hydraulic conductivity of a clay layer that began at a depth of 5.5 meters.

  4. Chemical and physical quality of selected public water supplies in Florida, August-September 1976

    USGS Publications Warehouse

    Irwin, G.A.; Healy, Henry G.

    1978-01-01

    Results of a 1976 water-quality reconnaissance made by the U.S. Geological Survey indicated that, with few exceptions, all public water supplies in Florida are of high quality and meet the standards set forth in the National Interim Primary Drinking Water Regulations. Occasionally the concentrations of fluoride, turbidity, cadmium, chromium, and lead approximated, equaled, or exceeded maximum contaminant levels with exceedences occurring very infrequently. The pesticides 2,4-D and silvex, were detected in some public supplies throughout the State mainly in surface water. Although pesticides were not detected in concentrations approaching the maximum levels established in the regulations, their presence does signal that the activities of man are beginning to affect some water resources. (Woodard-USGS)

  5. Effects on ground-water quality of seepage from a phosphatic clayey waste settling pond, north-central Florida

    USGS Publications Warehouse

    Hunn, J.D.; Seaber, P.R.

    1986-01-01

    Water samples were taken from test wells drilled near an inactive phosphatic clayey waste storage settling pond, from the settling pond and its perimeter ditch, and from an active settling pond near White Springs, Hamilton County, in north-central Florida. The purpose was to document the seepage of chemical constituents from the inactive settling pond and ditch into the adjacent surficial groundwater system, and to assess the potential for movement of these constituents into the deeper Floridan aquifer system which is the major source of public supply in the area. The study area is underlain by a 2 ,500-ft-thick sequence of Coastal Plain sediments of Early Cretaceous to Holocene age. The rocks of Tertiary and Quaternary age that underlie the test site area can be grouped into three major geohydrologic units. In descending order, these units are: surficial aquifer, Hawthorn confining unit, and Floridan aquifer system. Phosphate deposits occur in the upper part of the surficial aquifer. Water in the active settling pond is a calcium magnesium sulfate type with a dissolved solids concentration of 250 mg/L, containing greater amounts of phosphorus, iron, aluminum, barium, zinc, and chromium than the other surface waters. Water in the perimeter ditch is a calcium sulfate type with a dissolved solids concentration of 360 to 390 mg/L, containing greater amounts of calcium, sulfate, nitrogen, and fluoride than other surface waters. Water from the inactive settling pond is a calcium magnesium bicarbonate type with a dissolved solids concentration of 140 mg/L, containing more bicarbonate than the other surface waters. Large amounts of chemical constituents in the phosphate waste disposal slurry are apparently trapped in the sediments of the settling ponds. The quality of water in the upper part of the surficial aquifer from wells within 200 to 400 ft of the inactive settling pond shows no signs of chemical contamination from phosphate industry operations. The horizontal

  6. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997

    USGS Publications Warehouse

    Stumpf, R.P.; Frayer, M.L.; Durako, M.J.; Brock, J.C.

    1999-01-01

    Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated fight attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and fight attenuation in both winter and summer beginning in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a major Syringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward

  7. /sup 40/Ar//sup 39/Ar age of detrital muscovite within Lower Ordovician sandstone in the coastal plain basement of Florida: implications for west African terrane linkages

    SciTech Connect

    Dallmeyer, R.D.

    1987-11-01

    Detrital muscovite was concentrated from a core of Lower Ordovician sandstone recovered from 1282 m in the Sun Oil Company, H.T. Parker No.1 well, Marion County, Florida. The concentrate records a /sup 40/Ar//sup 39/Ar plateau age of 504.1 +/- 2.1 Ma. The Paleozoic sedimentary section penetrated in this well is part of an extensive subsurface Lower Ordovician-Middle Devonian sedimentary succession characterized by Gondwanan paleontological affinities. The succession has been correlated with sequences of similar age in the Bove Basin of west Africa which unconformably overlie metamorphic units of the Bassaride and Rokelide orogens in Senegal and Guinea. Muscovite within these metamorphic rocks records ca. 500-510 Ma postmetamorphic /sup 40/Ar//sup 39/Ar cooling ages and was likely a proximal source for the lower Paleozoic clastic detritus represented in the pre-Mesozoic sedimentary sequences beneath the southeastern US coastal plain.

  8. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  9. Water quality in the shingle creek basin, Florida, before and after wastewater diversion

    SciTech Connect

    O`Dell, K.M.

    1994-05-01

    Shingle Creek is a major inflow to Lake Tohopekaliga, Florida. Water quality and the trophic status of Lake Tohopekaliga are affected strongly by the water quality of Shingle Creek. This report documents 10 yr of water quality data in Shingle Creek at the lake outfall; for a pre- (October 1981-December 1986) and a post-wastewater discharge (January 1987-September 1991) removal period. Nutrient budgets for the subbasins were calculated from an intense research program (January 1983-December 1985) to document instream impacts attributable to wastewater, determine the role of the cypress swamp in the middle subbasin, and document relationships between water quality and land uses. Rapid urbanization converted forested uplands and agricultural lands to housing and commercial land use during the study. Stormwater runoff in Florida has been identified as a major pollution source. Treatment of stormwater pollution, through Best Management Practices (BMPs), has been regulated by the State of Florida in this area since 1982. By 1988, 84% of the urban landuse in the upper basin was subject to stormwater treatment prior to being discharged to the creek. Potential increases in urban derived nutrient inputs were offset by stormwater management, and alum treatment and diversion of municipal wastewater. Nitrogen loading and P loads and variance decreased significantly during the 10-yr period, despite rapid urbanization in the northern and central subbasins. Nutrient export from the subbasins was influenced by the dominant land use. The middle subbasin contains a swamp that contributed the greatest P and Cl{sup -} loads because of the increase in discharge to the swamp from sources other than the canal. The northern urban subbasin received the wastewater discharges and served as a net sink for N and P exported from the subbasin. 24 refs., 9 figs., 1 tab.

  10. ERTS imagery applied to Alaskan coastal problems. [surface water circulation

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.

    1974-01-01

    Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.

  11. Determination of inherent optical properties of Lake Ontario coastal waters.

    PubMed

    Bukata, R P; Jerome, J H; Bruton, J E; Jain, S C

    1979-12-01

    Two optical models (one based upon Monte Carlo simulations of the solutions of the radiative transfer equations and one based upon exponential/quasi-single scattering simulations) relating the apparent and inherent optical properties of natural water masses are utilized in conjunction with directly measured values of the irradiance attenuation coefficient K(0), the diffuse reflectance R(0), and the total attenuation coefficient c to determine the inherent optical properties of Lake Ontario coastal waters. Tables are presented displaying the calculated values of scattering albedo omega(0), forwardscattering probability F, backscattering probability B, absorption coefficient a, and scattering coefficient b as a function of wavelength. From the tables of calculated values, it is shown that both F and b display a spectral invariance, while omega(0) displays distinct spectral variations, the spectral variations apparent in the measured values of c may be attributable to spectral variations in a, and B displays a spectral change that varies inversely with the spectral change in a and c. The volume scattering phase function beta(theta) appears to be altered by the absorption characteristics of the water mass, contrary to the generally accepted premise that absorption and particulate backscattering are independent processes. PMID:20216727

  12. Holocene sedimentation and coastal wetlands response to rising sea level at the Aucilla river mouth, a low energy coast in the Big Bend area of Florida

    USGS Publications Warehouse

    Garrett, Connie; Hertler, Heidi; Hoenstine, Ronald; Highley, Brad

    1993-01-01

    The shallow dip of the Florida carbonate platform results in low wave energy on Florida ???Big Bend??? coasts. Therefore sedimentation is dominated by river-and tidal-hydrodynamics near the Aucilla River mouth. Where present, Holocene sediments are thin and unconformably overlie Oligocene-aged Suwannee Limestone. The oldest unlithified sediments include reworked carbonate rubble with clay and wood fragments (seven thousand years old or less, based on wood radio-carbon dating). Although this basal sequence is observed in most areas, the sediments that overlie it vary. Sediment sequences from the outer littoral to submarine environments include organic-rich sands, oyster biotherm remains, and cleaner sands with organic-filled burrows. Inner littoral (salt-marsh) sequences generally consist of sandy, fining-upwards sequences in which dry weights of fine-grained clastics and organic components increase up-sequence at similar rates. Offshore sediments preserve greatly attenuated fluvial and salt-marsh facies, if these facies are preserved at all. With sea-level rise, erosion can result from insufficient sediment supply and down-cutting by tidal currents (Dolotov, 1992; and Dalrymple et al., 1992). Dolotov (1992) attributes displacement of original coastal stratigraphy to insufficient sediments for beach profile maintenance, while Dalrymple et al. (1992) attribute erosional truncation (ravinement) or complete removal of portions of typical estuarine sequences to headward migration of tidal channels.

  13. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046

  14. Water-resources potential of the freshwater lens at Key West, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1990-01-01

    The island of Key West lies at the end of the Florida Keys, about 150 miles southwest of Miami. The public-water supply for the island is provided by the Florida Keys Aqueduct Authority Well Field near Miami. However, there are many privately owned wells on the island that tap the local fresh ground-water lens for potable and nonpotable water supply. The number of people who use water from the wells for drinking purposes is unknown. From 1985 to 1988, the U.S. Geological Survey, in cooperation with the South Florida Water Management District, conducted an investigation to characterize the Key West freshwater lens. Observation wells were drilled to determine the extent of the lens and to characterize the water quality. Previous well logs and well-core data collected during the investigation showed the aquifer to be a highly permeable, porous, solution-riddled, oolitic limestone that allows rainfall recharge to quickly seep into the ocean and saltwater to easily intrude the aquifer. The small freshwater lens (250 milligrams per liter of chloride concentration, or less) averages 5 feet in thickness below the center of the western half (Old Town) of the island. The lens contains about 20 million gallons of fresh-water during the dry season and about 30 million gallons during the wet season. Underlying the freshwater lens is a transition zone of freshwater-saltwater mix that extends to the saltwater interface (19,000 milligrams per liter of chloride concentration), which is about 40-feet deep at the center of the lens. The water table fluctuates and the configuration of the lens constantly changes, largely as a result of tidal effects. Other events, such as rainfall, pumping, and evapotranspiration, are masked by the tidal effects. The freshwater lens is a calcium bicarbonate water that grades to a sodium chloride type near the saltwater interface. Elevated concentrations of nitrate nitrogen were found in water samples from wells in the Old Town district. However

  15. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  16. Following the Water: A Controlled Study of Drinking Water Storage in Northern Coastal Ecuador

    PubMed Central

    Levy, Karen; Nelson, Kara L.; Hubbard, Alan; Eisenberg, Joseph N.S.

    2008-01-01

    Background To design the most appropriate interventions to improve water quality and supply, information is needed to assess water contamination in a variety of community settings, including those that rely primarily on unimproved surface sources of drinking water. Objectives We explored the role of initial source water conditions as well as household factors in determining household water quality, and how levels of contamination of drinking water change over time, in a rural setting in northern coastal Ecuador. Methods We sampled source waters concurrently with water collection by household members and followed this water over time, comparing Escherichia coli and enterococci concentrations in water stored in households with water stored under controlled conditions. Results We observed significant natural attenuation of indicator organisms in control containers and significant, although less pronounced, reductions of indicators between the source of drinking water and its point of use through the third day of sampling. These reductions were followed by recontamination in approximately half of the households. Conclusions Water quality improved after water was transferred from the source to household storage containers, but then declined because of recontamination in the home. Our experimental design allowed us to observe these dynamics by controlling for initial source water quality and following changes in water quality over time. These data, because of our controlled experimental design, may explain why recontamination has been reported in the literature as less prominent in areas or households with highly contaminated source waters. Our results also suggest that efforts to improve source water quality and sanitation remain important. PMID:19057707

  17. The Ecological Condition of Gulf of Mexico Resources from Perdido Key to Port St. Joe, Florida, USA: Part I. Coastal Beach Resources

    EPA Science Inventory

    Using the approach established by EPA's Environmental Monitoring and Assessment Program (EMAP), a shoreline monitoring survey was conducted in August and September 1999, encompassing the Florida Panhandle from Perdido Key, Florida to Port St. Joe, Florida. The objective of this ...

  18. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  19. Effects on ground-water quality from irrigating pasture with sewage effluent near Lakeland, Florida

    USGS Publications Warehouse

    Reichenbaugh, R.C.

    1977-01-01

    Since 1969 an average of 25,000 gpd of domestic secondary-treated effluent has been used to supplement irrigation of 30 acres of grazed pasture north of Lakeland, Florida. Monitor wells were contructed near the effluent-irrigated pasture. The water table in the surficial aquifer under the pasture varied from 1.0 to 3.3 feet below land surface. Total nitrogen was less than 20 percent of the effluent content after percolating 8 feet; no increase in nitrogen was detected 20 feet below the surface, or in down-gradient ground water. There was no evidence of phosphorus or carbon contamination of ground water. Low numbers of bacteria (generally coliform) were noted in some samples from nine wells. Four wells sampled contained bacteria of probable fecal origin. Low-rate application of the effluent to the pasture apparently has had little effect on the soil and ground water. (Woodard-USGS)

  20. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  1. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  2. Hyperspectral data and methods for coastal water mapping

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Karathanassi, Vassilia; Rokos, Demetrius

    2006-09-01

    Motivated by the increasing importance of hyperspectral remote sensing, this study investigates the potential of the current-generation satellite hyperspectral data for coastal water mapping. Two narrow-band Hyperion images, acquired in summer 2004 within a nine day period, were used. The study area is situated at the northern sector of south Evvoikos Gulf, in Central Greece. Underwater springs, inwater streams, urban waste and industrial waste are present in the gulf. Thus, further research regarding the most appropriate methods for coastal water mapping is advisable. In situ measurements with a GPS have located the positions of all sources of water and waste. At these positions groundspectro-radiometer measurements were also implemented. Two different approaches were used for the reduction of the Hyperion bands. First, on the basis of histogram statistics the uncalibrated bands were selected and removed. Then the Minimum Noise Fraction was used to classify the bands according to their signal to noise ratio. The noisiest bands were removed and thirty-eight bands were selected for further processing. Second, mathematical and statistical criteria were applied to the in situ radiometer measurements of reflectance and radiance in order to identify the most appropriate parts of the spectrum for the detection of underwater springs and urban waste. This approach has determined nine hyperspectral bands. Τhe Pixel Purity Index and the n-D Visualiser methods were used for the identification of the spectra endmembers. Both whole (Spectral Angle Mapper or Spectral Feature Fitting) and sub pixel methods (Linear Unmixing or Mixture-Tuned Matched Filtering) were used for further analysis and classification of the data. Bands resulting from processing the groundspectro-radiometer measurements produced the highest classification results. The spatial resolution of the Hyperion hyperspectral data hardly allows the detection and classification of underwater springs. Contrary

  3. Risk assessment of triazine herbicides in surface waters and bioaccumulation of Irgarol and M1 by submerged aquatic vegetation in Southeast Florida.

    PubMed

    Fernandez, Melissa Victoria; Gardinali, Piero R

    2016-01-15

    Irgarol is a common antifoulant present in coastal environments experiencing high boating activities. Irgarol, its degradation product M1, and the similarly structured herbicide Atrazine, are highly toxic to non-target marine organisms and thus pose a continual risk to the environment. Nearshore areas with intensive boating activity were assessed for environmental exposure to Irgarol, M1, and Atrazine. Irgarol levels up to 241 ng/L were measured in surface water collected at Key Largo Harbor. Irgarol's metabolite, M1, was detected at levels up to 50 ng/L. Atrazine levels reached 21 ng/L throughout Miami River, and were also detected in waters within Biscayne Bay Aquatic Preserve at 7 ± 4 ng/L. The Irgarol 90th percentile exposure concentration (176 ng/L) in Southeast Florida--including Biscayne Bay--surface waters were found to exceed most toxicity benchmarks, suggesting Irgarol concentrations may be high enough to cause undesired effects on aquatic plants. Indigenous species of SAVs were also collected throughout Southeast Florida and assessed for their Irgarol and M1 bioaccumulation capabilities. All SAV species collected revealed Irgarol bioaccumulation capabilities and a 90th centile bioconcentration factor (BCF) of 9830. Several of those species were also capable of bioaccumulating M1, with a 90th centile BCF of 391. A 43-day in situ transplant between an impacted area and a pristine area within Biscayne Bay waters showed SAVs were able to uptake Irgarol from the environment with quick kinetics: tissue concentrations were 66 times greater than the water concentration within 6 weeks. Halodule and Syringodium had the highest capacity to bioaccumulate from marina surface waters, as indicated by the Irgarol BCF (Halodule=6809, Syringodium=6681) and M1 BCF (Halodule=277, Syringodium=558). Halodule and Syringodium are therefore the best candidate species to serve as bioindicators indicators of acute Irgarol contamination. PMID:26490533

  4. Strange bedfellows - A deep-water hermatypic coral reef superimposed on a drowned barrier island; Southern Pulley Ridge, SW Florida platform margin

    USGS Publications Warehouse

    Jarrett, B.D.; Hine, A.C.; Halley, R.B.; Naar, D.F.; Locker, S.D.; Neumann, A.C.; Twichell, D.; Hu, C.; Donahue, B.T.; Jaap, W.C.; Palandro, D.; Ciembronowicz, K.

    2005-01-01

    The southeastern component of a subtle ridge feature extending over 200 km along the western ramped margin of the south Florida platform, known as Pulley Ridge, is composed largely of a non-reefal, coastal marine deposit. Modern biostromal reef growth caps southern Pulley Ridge (SPR), making it the deepest hermatypic reef known in American waters. Subsurface ridge strata are layered, lithified, and display a barrier island geomorphology. The deep-water reef community is dominated by platy scleractinian corals, leafy green algae, and coralline algae. Up to 60% live coral cover is observed in 60-75 m of water, although only 1-2% of surface light is available to the reef community. Vertical reef accumulation is thin and did not accompany initial ridge submergence during the most recent sea-level rise. The delayed onset of reef growth likely resulted from several factors influencing Gulf waters during early stages of the last deglaciation (???14 kyr B.P.) including; cold, low-salinity waters derived from discrete meltwater pulses, high-frequency sea-level fluctuations, and the absence of modern oceanic circulation patterns. Currently, reef growth is supported by the Loop Current, the prevailing western boundary current that impinges upon the southwest Florida platform, providing warm, clear, low-nutrient waters to SPR. The rare discovery of a preserved non-reefal lowstand shoreline capped by rich hermatypic deep-reef growth on a tectonically stable continental shelf is significant for both accurate identification of late Quaternary sea-level position and in better constraining controls on the depth limits of hermatypic reefs and their capacity for adaptation to extremely low light levels. ?? 2004 Elsevier B.V. All rights reserved.

  5. Occurrence of carbapenemase-producing bacteria in coastal recreational waters.

    PubMed

    Montezzi, Lara Feital; Campana, Eloiza Helena; Corrêa, Laís Lisboa; Justo, Livia Helena; Paschoal, Raphael Paiva; da Silva, Isabel Lemos Vieira Dias; Souza, Maria do Carmo Maciel; Drolshagen, Marcia; Picão, Renata Cristina

    2015-02-01

    The spread of carbapenemase-producing Gram-negative rods is an emerging global problem. Although most infections due to carbapenemase producers are limited to healthcare institutions, reports of the occurrence of clinically relevant carbapenemase producers in sewage and polluted rivers are increasingly frequent. Polluted rivers flowing to oceans may contaminate coastal waters with multidrug-resistant bacteria, potentially threatening the safety of recreational activities in these locations. Here we assessed the occurrence of carbapenemase producers in water from touristic beaches located in Rio de Janeiro, Brazil, showing distinct pollution patterns. The presence of enterobacteria was noted, including the predominantly environmental genus Kluyvera spp., producing either Klebsiella pneumoniae carbapenemase (KPC) or Guyana extended-spectrum (GES)-type carbapenemases and often associated with quinolone resistance determinants. An Aeromonas sp. harbouring blaKPC and qnrS was also observed. These findings strengthen the role of aquatic matrices as reservoirs and vectors of clinically relevant antimicrobial-resistant bacteria, with potential to favour the spread of these resistance threats throughout the community. PMID:25499185

  6. Coastal processes influencing water quality at Great Lakes beaches

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  7. Microplastics in coastal sediments from Southern Portuguese shelf waters.

    PubMed

    Frias, J P G L; Gago, J; Otero, V; Sobral, P

    2016-03-01

    Microplastics are well-documented pollutants in the marine environment that result from fragmentation of larger plastic items. Due to their long chemical chains, they can remain in the environment for long periods of time. It is estimated that the vast majority (80%) of marine litter derives from land sources and that 70% will sink and remain at the bottom of the ocean. Microplastics that result from fragmentation of larger pieces of plastic are common to be found in beaches and in the water surface. The most common microplastics are pellets, fragments and fibres. This work provides original data of the presence of microplastics in coastal sediments from Southern Portuguese shelf waters, reporting on microplastic concentration and polymer types. Microplastic particles were found in nearly 56% of sediment samples, accounting a total of 31 particles in 27 samples. The vast majority were microfibers (25), identified as rayon fibres, and fragments (6) identified as polypropylene, through infrared spectroscopy (μ-FTIR). The concentration and polymer type data is consistent with other relevant studies and reports worldwide. PMID:26748246

  8. Phytoplankton community composition in nearshore coastal waters of Louisiana.

    PubMed

    Schaeffer, Blake A; Kurtz, Janis C; Hein, Michael K

    2012-08-01

    Phytoplankton community compositions within near-shore coastal and estuarine waters of Louisiana were characterized by group diversity, evenness, relative abundance and biovolume. Sixty-six taxa were identified in addition to eight potentially harmful algal genera including Gymnodinium sp. Phytoplankton group diversity was lowest at Vermillion Bay in February 2008, but otherwise ranged between 2.16 and 3.40. Phytoplankton evenness was also lowest at Vermillion Bay in February 2008, but otherwise ranged between 0.54 and 0.77. Dissolved oxygen increased with increased biovolume (R² = 0.85, p < 0.001) and biovolume decreased with increased light attenuation (R² = 0.34, p = 0.007), which supported the importance of light in regulating oxygen dynamics. Diatoms were dominant in relative abundance and biovolume at almost all stations and all cruises. Brunt-Väisälä frequency was used as a measure of water column stratification and was negatively correlated (p = 0.02) to diatom relative percent total abundance. PMID:22498318

  9. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  10. Digital surfaces and hydrogeologic data for the Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain in parts of Mississippi, Alabama, Georgia, South Carolina, and Florida

    USGS Publications Warehouse

    Cannon, Debra M.; Bellino, Jason C.; Williams, Lester J.

    2012-01-01

    A digital dataset of hydrogeologic data for Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain was developed using data from five U.S. Geological Survey (USGS) reports published between 1951 and 1996. These reports contain maps and data depicting the extent and elevation of the Southeast Coastal Plain stratigraphic and hydrogeologic units in Florida and parts of Mississippi, Alabama, Georgia, and South Carolina. The reports are: Professional Paper 1410-B (Renken, 1996), Professional Paper 1088 (Brown and others, 1979), Professional Paper 524-G (Applin and Applin, 1967), Professional Paper 447 (Applin and Applin, 1965), and Circular 91 (Applin, 1951). The digital dataset provides hydrogeologic data for the USGS Energy Resources Program assessment of potential reservoirs for carbon sequestration and for the USGS Groundwater Resource Program assessment of saline aquifers in the southeastern United States. A Geographic Information System (ArcGIS 9.3.1) was used to construct 33 digital (raster) surfaces representing the top or base of key stratigraphic and hydrogeologic units. In addition, the Geographic Information System was used to generate 102 geo-referenced scanned maps from the five reports and a geo-database containing structural and thickness contours, faults, extent polygons, and common features. The dataset also includes point data of well construction and stratigraphic elevations and scanned images of two geologic cross sections and a nomenclature chart.

  11. South Florida land-water use and its impact on the Everglades

    SciTech Connect

    Richardson, C.J.

    1995-12-31

    The Everglades National Park (ENP) is the largest marsh in the United States and is the only subtropical wetland ecosystem in the U.S. that is enrolled in the international Ramsar Convention of wetland preserves. Because of its size, floral and faunal diversity, geological history and hydrological functions on the Florida landscape it is considered by many ecologists and conservationists as one of the most unique and important wetlands in the world. Unfortunately, the Everglades is surrounded by agricultural and urban development in a state whose population has increased by 33% in the last 10 years. Approximately 50% of the original 900,000 ha Everglades were historically a rainfall driven, nutrient poor (oligotrophic) phosphorous limited wetland ecosystem whose primary vegetation, - sawgrass (Cladium jamaicense Crantz) developed peat soils (Histosols) 0.2 to 6 m in depth over the past 5,000 years. Hydroperiod, nutrient additions, water quantity as well as water delivery schedules in the Everglades, have been altered significantly during the past four decades due primarily to the development of 1600 km of canals by 1967, and the pumping of nutrient enriched water from the Everglades Agricultural Area and Lake Okeechobee during certain portions of the year. Water pumping into and withdrawls from the Everglades during drought periods have altered the natural hydroperiod, but more importantly movement of water through the Everglades via canals to the ocean has removed almost all natural surface water flow across the marsh. Simply stated, the water regime of south Florida has been intensely managed for human uses but not for Everglades sustainability.

  12. Relationship between body condition of American alligators and water depth in the Everglades, Florida

    USGS Publications Warehouse

    Fujisaki, Ikuko; Rice, Kenneth G.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2009-01-01

    Feeding opportunities of American alligators (Alligator mississippiensis) in freshwater wetlands in south Florida are closely linked to hydrologic conditions. In the Everglades, seasonally and annually fluctuating surface water levels affect populations of aquatic organisms that alligators consume. Since prey becomes more concentrated when water depth decreases, we hypothesized an inverse relationship between body condition and water depth in the Everglades. On average, condition of adult alligators in the dry season was significantly higher than in the wet season, but this was not the case for juveniles/subadults. The correlation between body condition and measured water depth at capture locations was weak; however, there was a significant negative correlation between the condition and predicted water depth prior to capture for all animals except for spring juveniles/subadults which had a weak positive condition-water depth relationship. Overall, a relatively strong inverse correlation occurred at 10-49 days prior to the capture day, suggesting that current body condition of alligators may depend on feeding opportunities during that period. Fitted regression of body condition on water depth (mean depth of 10 days when condition-water depth correlation was greatest) resulted in a significantly negative slope, except for spring adult females and spring juveniles/subadults for which slopes were not significantly different from zero. Our results imply that water management practices may be critical for alligators in the Everglades since water depth can affect animal condition in a relatively short period of time.

  13. Public supply water use, Palm Beach County, Florida, 1978-82

    USGS Publications Warehouse

    Miller, W.L.; Alvarez, J.A.

    1984-01-01

    Public supply water-use data are listed for 32 utilities in Palm Beach County, Florida, for 1978 through 1982. The data are tabulated as monthly and yearly untreated water withdrawals from each public supply utility. Utilities using ground water as a source are listed separately from those using surface-water sources. In 1978, the total public supply water withdrawal in the county was 37,580.64 million gallons, of which 74.0 percent (27,823.22 million gallons) was ground water. By 1982, the total withdrawal had increased to 43,264.16 million gallons, of which 77.5 percent (33,544.52 million gallons) was ground water. Nearly 57 percent of the ground-water withdrawal was in southeast Palm Beach County (Zone 1) during 1982. The greatest surface-water withdrawal during this time was from Clear Lake and Lake Mangonia (Zone 2) and amounted to 79.3 percent of the county 's total surface-water withdrawal. (USGS)

  14. Development of Benthic Indicators for Nearshore Coastal Waters of New Jersey - A REMAP Project

    EPA Science Inventory

    EPA's National Coastal Assessment (NCA) is providing the first complete, consistent dataset on the condition of benthic communities in the nation's estuaries. Prior to NCA, New Jersey based its evaluation of the ecological condition of its coastal waters solely on dissolved oxyg...

  15. Ecological Condition of Coastal Ocean Waters along the U.S. Western Continental Shelf: 2003

    EPA Science Inventory

    The western National Coastal Assessment program of EPA, in conjunction with the NOAA National Ocean Service, west coast states (WA, OR, and CA), and the Southern California Coastal Water Research Project Bight ’03 program, assessed the ecological condition of soft sediment habita...

  16. Toward N Criteria in Coastal Waters: Normalizing N Loading for Estuarine Volume and Local Residence Time

    EPA Science Inventory

    One approach to developing criteria for nitrogen (N) in coastal waters has been to determine quantitative relationships between N loading and ecological effects (e.g., hypoxia) in coastal estuaries. Although this approach has met with some success, data obtained from field sites ...

  17. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA (presentation)

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...

  18. Calculating the ecosystem service of water storage in isolated wetlands using LIDAR in north central Florida, USA

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We ...

  19. Assessment of Coastal Communities' Vulnerability to Hurricane Surge under Climate Change via Probabilistic Map - A Case Study of the Southwest Coast of Florida

    NASA Astrophysics Data System (ADS)

    Feng, X.; Shen, S.

    2014-12-01

    The US coastline, over the past few years, has been overwhelmed by major storms including Hurricane Katrina (2005), Ike (2008), Irene (2011), and Sandy (2012). Supported by a growing and extensive body of evidence, a majority of research agrees hurricane activities have been enhanced due to climate change. However, the precise prediction of hurricane induced inundation remains a challenge. This study proposed a probabilistic inundation map based on a Statistically Modeled Storm Database (SMSD) to assess the probabilistic coastal inundation risk of Southwest Florida for near-future (20 years) scenario considering climate change. This map was processed through a Joint Probability Method with Optimal-Sampling (JPM-OS), developed by Condon and Sheng in 2012, and accompanied by a high resolution storm surge modeling system CH3D-SSMS. The probabilistic inundation map shows a 25.5-31.2% increase in spatially averaged inundation height compared to an inundation map of present-day scenario. To estimate climate change impacts on coastal communities, socioeconomic analyses were conducted using both the SMSD based probabilistic inundation map and the present-day inundation map. Combined with 2010 census data and 2012 parcel data from Florida Geographic Data Library, the differences of economic loss between the near-future and present day scenarios were used to generate an economic exposure map at census block group level to reflect coastal communities' exposure to climate change. The results show that climate change induced inundation increase has significant economic impacts. Moreover, the impacts are not equally distributed among different social groups considering their social vulnerability to hazards. Social vulnerability index at census block group level were obtained from Hazards and Vulnerability Research Institute. The demographic and economic variables in the index represent a community's adaptability to hazards. Local Moran's I was calculated to identify the clusters

  20. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-07-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  1. The distribution of bromide in water in the Floridan aquifer system, Duval County, northeastern Florida

    USGS Publications Warehouse

    German, E.R.; Taylor, G.F.

    1995-01-01

    Although Duval County, Florida, has ample ground-water resources for public supply, the potential exists for a problem with excessive disinfectant by-products. These disinfectant by-products result from the treatment of raw water containing low concentrations of bromide and naturally occurring organic compounds. Because of this potential problem, the relation of bromide concentrations to aquifer tapped, well location and depth, and chemical characteristics of water in the Floridan aquifer system underlying Duval County were studied to determine if these relations could be applied to delineate water with low-bromide concentrations for future supplies. In 1992, water samples from 106 wells that tap the Floridan aquifer system were analyzed for bromide and major dissolved constituents. A comparison of bromide concentrations from the 1992 sampling with data from earlier studies (1979-80) indicates that higher bromide concentrations were detected during the earlier studies. The difference between the old and new data is probably because of a change in analytical methodology in the analysis of samples. Bromide concentrations exceeded the detection limit (0.10 milligrams per liter) in water from 28 of the 106 wells (26 percent) sampled in 1992. The maximum concentration was 0.56 milligrams per liter. There were no relations between bromide and major dissolved constituents, well depth, or aquifer tapped that would be useful for determining bromide concentrations. Areal patterns of bromide occurrence are not clearly defined, but areas with relatively high bromide concentrations tend to be located in a triangular area near the community of Sunbeam, Florida, and along the St. Johns River throughout Duval County.

  2. Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; Barr, Jordan G.; Engel, Victor C.; Fuentes, Jose D.; Wang, Hongqing

    2014-01-01

    Leaves from mangrove forests are often considered efficient in the use of water during photosynthesis, but less is known about whole-tree and stand-level water use strategies. Are mangrove forests as conservative in water use as experimental studies on seedlings imply? Here, we apply a simple model to estimate stand water use (S), determine the contribution of S to evapotranspiration (ET), and approximate the distribution of S versus ET over annual cycles for three mangrove forests in southwest Florida, USA. The value of S ranged from 350 to 511 mm year−1 for two mangrove forests in Rookery Bay to 872 mm year−1 for a mangrove forest along the Shark River in Everglades National Park. This represents 34–49% of ET for Rookery Bay mangroves, a rather conservative rate ofS, and 63–66% of ET for the Shark River mangroves, a less conservative rate of S. However, variability in estimates of S in mangroves is high enough to require additional study on the spatial changes related to forest structural shifts, different tidal regimes, and variable site-specific salinity concentrations in multiple mangrove forests before a true account of water use conservation strategies can be understood at the landscape scale. Evidence does suggest that large, well-developed mangrove forests have the potential to contribute considerably to the ET balance; however, regionally most mangrove forests are much smaller in stature in Florida and likely contribute less to regional water losses through stand-level transpiration.

  3. Prevalence of Acanthamoeba and other naked amoebae in South Florida domestic water.

    PubMed

    Shoff, M E; Rogerson, A; Kessler, K; Schatz, S; Seal, D V

    2008-03-01

    The purpose was to identify the prevalence of naked amoebae in tap water in south Florida to ascertain the risk of amoebal infections of the cornea in contact lens wearers. Over the course of a 2-year period, water samples were collected from sites throughout Broward, Palm Beach, and Dade counties, Florida. The presence of amoebae in samples was based on an enrichment cultivation method appropriate for Acanthamoeba. Amoebae were identified using diagnostic features discernable by light microscopy. A total of 283 water samples were processed and amoebae were noted in 80 of these. Acanthamoeba were found on 8 occasions (2.8%). The genera Hartmannella and Vahlkampfia, rarely involved in keratitis cases, were found in 3.5% and 2.8% of samples, respectively. A total of 19 different naked amoebae were recorded and amoebae (regardless of genus) were present in 19.4% of all samples. Previous surveys in England and Korea have shown that acanthamoebae are found in 15 to 30% of tap water samples in the home and have been associated with corneal infection in contact lens wearers. The incidence of acanthamoebae infection in the USA (2.8%) has been found to be lower than that in the UK and it has been postulated that this is related to the lack of a storage water tank in the roof loft space. However, the level of treatment of municipal water is clearly not effective at killing amoebal cysts (or trophozoites) as evidenced by the high occurrence of amoebae (19.4%) in this study. PMID:17998610

  4. Water Budget on Various Land Use Areas Using NARR Reanalysis Data in Florida

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Nnadi, F.

    2011-12-01

    In this study, 1992 to 2002 data from North American Regional Reanalysis (NARR) were used to investigate water budget on five land-use areas; urban, forest, agriculture, lake and wetland in the State of Florida, USA. The data were evaluated based on the anomalies of rainfall, evaporation and soil moisture from the average condition. The anomalies were used to investigate the effect of extreme conditions on water budget parameters for various land uses in both northeast and south of Florida. The results showed that annual mean water budget of Lake Okeechobee in the south and urban area located at St. Johns River basin in the northeast suggested higher evaporation, lower values of difference between potential evaporation and evaporation, and the precipitation-evaporation ratios closed to unity. The results also show that during drought years, the lower average annual precipitation and evaporation were observed in both study areas, hence drought strong effect on the water budget. Extreme events such as La Niña strongly affected the water budget on land-use areas in both regions as the negative monthly rainfall anomalies were observed during the 1999/2000 event, while EI Niño and thunderstorms in summer caused positive rainfall anomalies with more than 70% in all study areas. Higher rainfall led to higher soil moisture anomalies for the agriculture, forest and wetland from 1992 to May 1998 in both study regions. However, soil moisture becomes primary source for evaporation in drier conditions, and differences in capacity of plants access water, often dictated by the rooting depth, can result in contrasting evaporative losses across vegetation types. Hence, the forest, which had the deeper roots, had the lower soil moisture anomalies, but higher evaporation anomalies than agriculture area during the drought event. Moreover, the wetland area had the higher anomalies for soil moisture and evaporation during the drought event.

  5. Quality-of-water data, Palm Beach County, Florida, 1970-1975

    USGS Publications Warehouse

    Miller, Wesley L.; Lietz, Arthur C.

    1976-01-01

    One of the most pressing problems of Palm Beach County, Florida, is the present and potential contamination of the surface and ground-water resources. The canals which dissect the urban and agricultural areas are convenient receptacles for storm-water runoff, sewage effluent, and agricultural wastes. Contaminants in the canals may enter the shallow aquifer as the canal water infiltrates. The quality of water in the shallow aquifer is further influenced by constituents in infiltrating rainwater, septic tank effluent, and many other sources of contamination. The County Health Department has stated that many of the canals and lakes, including Lake Worth, an estuary, have reached levels of contamination rendering them unfit for recreation (Land and others, 1972). The purpose of this report is to: (1) Compile the basic water-quality data collected during 1970-75 as a part of the monitoring program. (2) Make these data available in a usable form to assist in urban and regional planning of the county 's water resources. The water-quality programs include 36 surface-water stations on canals and lakes and 136 ground-water stations which have been regularly sampled. Both urban and agricultural areas are included in the sampling programs. (Woodard-USGS)

  6. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C., Jr.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  7. ASSESSING COASTAL WATERS OF AMERICAN SAMOA: TERRITORY-WIDE WATER QUALITY DATA PROVIDE A CRITICAL 'BIG-PICTURE' VIEW FOR THIS TROPICAL ARCHIPELAGO

    EPA Science Inventory

    The coastal waters of American Samoa’s 5 high islands (Tutuila, Aunu’u, Ofu, Olosega,and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments,...

  8. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G., Jr.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  9. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  10. Assessing hazards due to contaminant discharge in coastal waters

    NASA Astrophysics Data System (ADS)

    Churchill, J. H.

    1987-02-01

    Models of contaminant dispersion in the marine environment have mostly sought to determine the mean concentration field. At a location not far from a pollution source, concentration is intermittently high, depending on whether the site is immersed in the concentrated contaminant plume which emanates from the source. At such a locale the probability of immersion, denoted by visitation frequency, is a more meaningful measure of nuisance than mean concentration. Two methods of computing visitation frequency from moored current meter data, each having particular advantages and drawbacks, are presented. One technique estimates visitation frequency from probability distributions of the position and velocity of water parcels originating from the effluent source. The second method entails simulating the configuration and movement of a contaminant plume. Required by both schemes is the plume cross-axial width as a function of time since release. A simple procedure of approximating this using the results of dye diffusion studies is described. These methods are applied to the coastal region off Long Island, New York, where current meter and dye diffusion data are available.

  11. Microplastics in mussels along the coastal waters of China.

    PubMed

    Li, Jiana; Qu, Xiaoyun; Su, Lei; Zhang, Weiwei; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-07-01

    Microplastic has been confirmed as an emerging pollutant in marine environments. One of the primary environmental risks of microplastics is their bioavailability for aquatic organisms. Bivalves are of particular interest because their extensive filter-feeding activity exposes them directly to microplastics present in the water column. In the present study, we investigated microplastic pollution in mussels (Mytilus edulis) from 22 sites along 12,400 mile coastlines of China in 2015. The number of total microplastics varied from 0.9 to 4.6 items/g and from 1.5 to 7.6 items/individual. M. edulis contained more microplastics (2.7 items/g) in wild groups than that (1.6 items/g) in farmed groups. The abundance of microplastics was 3.3 items/g in mussels from the areas with intensive human activities and significantly higher than that (1.6 items/g) with less human activities. The most common microplastics were fibers, followed by fragments. The proportion of microplastics less than 250 μm in size arranged from 17% to 79% of the total microplastics. Diatom was distinguished from microplastics in mussels for the first time using Scanning Electron Microscope. Our results suggested that the numbers of microplastic kept within a relatively narrow range in mussels and were closely related to the contamination of the environments. We proposed that mussels could be used as a potential bioindicator of microplastic pollution of the coastal environment. PMID:27086073

  12. Reflected GPS Power for the Detection of Surface Roughness Patterns in Coastal Water

    NASA Technical Reports Server (NTRS)

    Oertel, George, F.; Allen, Thomas R.

    2000-01-01

    Coastal bays formed by the barrier islands of Delaware, Maryland and Virginia are parts of a coastal region known as a "Coastal Compartment". The coastal compartment between the Chesapeake and Delaware Bays is actually the mosaic of landscapes on the headland of the interfluve that separates these large drainage basins. The coastal compartments form a variety of different-shaped waterways landward of the coastline. Shape differences along the boundaries produce differences in exposure to wind and waves. Different shoreface topographies seaward of the coastline also influence surface roughness by changing wave-refraction patterns. Surface-water roughness (caused by waves) is controlled by a number of parameters, including fetch, shielding, exposure corridors, water-mass boundary conditions, wetland vegetation and water depth in coastal bays. In the coastal ocean, surface roughness patterns are controlled by shoreface shoaling and inlet refraction patterns in the coastal ocean. Knowledge of wave phenomena in the nearshore and backbarrier areas is needed to understand how wave climate influences important ecosystems in estuaries and bays.

  13. Water quality at and adjacent to the south Dade County solid-waste disposal facility, Florida

    USGS Publications Warehouse

    McKenzie, D.J.

    1983-01-01

    A water-quality reconnaissance was conducted at the south Dade County solid-waste landfill near Goulds, Florida, from December 1977 through August 1978. The landfill is located directly on the unconfined Biscayne aquifer, which, in the study area, is affected by saltwater intrusion. Water samples collected from six monitor well sites at two depths and four surface-water sites were analyzed to determine the chemical, physical, and biological conditions of the ground water and surface water of the study area. Results indicated that water quality beneath the landfill was highly variable with location and depth. Leachate was generally more evident in the shallow wells and during the dry-season sampling, but was greatly diluted and dispersed in the deep wells and during the wet season. High concentrations of contaminants were generated primarily in areas of the landfill with the most recent waste deposits. Chloride (limited to the shallow wells and the dry season), alkalinity, ammonia, iron, manganese, lead, phosphorus, and organic nitrogen indicate leachate contamination of the aquifer. Water-quality characteristics in the surface waters were generally only slightly above background levels. (USGS)

  14. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  15. VALUATION OF BENEFITS FROM ENVIRONMENTAL IMPROVEMENT IN U.S. COASTAL WATERS

    EPA Science Inventory

    The purpose of this study is to estimate willingness to pay for water quality improvements in coastal waters. The United States Environmental Protection Agency's Office of Water is responsible for regulating and monitoring national water quality. In order to make sound policy d...

  16. Bicarbonate, sulfate, and chloride water in a shallow, clastic-dominated coastal flow system, Argentina

    SciTech Connect

    Logan, W.S.; Auge, M.P.; Panarello, H.O.

    1999-03-01

    Most of the cities southeast of Buenos Aires, Argentina, depend heavily on ground water for water supply. Whereas ground water quality is generally good in the region, economic development along the coastal plain has been constrained by high salinities. Fifty-four wells were sampled for major ions in zones of recharge, transport and discharge in an area near La Plata, 50 km southeast of Buenos Aires. The shallow, southwest to northeast coastal flow system is >30 km long but is only 50 to 80 m thick. It consists of Plio-Pleistocene fluvial sand overlain by Pleistocene eolian and fluvial silt and Holocene estuarine silty clay. Hydrochemical endmembers include HCO{sub 3}, SO{sub 4}, and Cl water. Bicarbonate-type water includes high plain recharge water that evolves through cation exchange and calcite dissolution to a high pH, pure Na-HCO{sub 3} endmember at the southwest edge of the coastal plain. Similar Na-HCO{sub 3} water is also found underlying recharge areas of the central coastal plain, and a lens of Ca-HCO{sub 3} water is associated with a ridge of shell debris parallel to the coast. Mixed cation-Cl water near the coastline represents intruded sea water that has undergone cation exchange. Chemically similar water underlying the southwest coastal plain, however, can be shown isotopically to have formed from fairly dilute solutions concentrated many times by evapotranspiration.

  17. Non-energy resources, Connecticut and Rhode Island coastal waters

    USGS Publications Warehouse

    Neff, N.F.; Lewis, R.S.

    1989-01-01

    Cores collected from Long Island Sound, Connecticut, were used to establish control on the geologic framework of the area. Lithologic and stratigraphic analyses verified the presence of the following units: (1) Cretaceous coastal plain, (2) Pleistocene glacial till, (3) late Pleistocene glacial lake, (4) late Pleistocene glacial outwash, and (5) Holocene fluvial, estuarine and marine deposits. Cores collected in Block Island Sound, Rhode Island, were obtained from inferred, relict shoreline features and were analyzed for heavy mineral content. Concentrations ranged from 0.3 to 3.4%; no significant downcore changes were found. The results indicated that surficial sediments in areas of high-velocity tidal flow yield greater amounts of heavy minerals than do inferred placer deposits. During the second phase of the program of study, Connecticut and Rhode Island pooled resources to develop a study plan for the comprehensive quantification of all non-energy resources in the adjacent waters of the states. A literature and data survey was conducted to assess the occurrence, extent, and accessibility of these resources. Sand and gravel and heavy minerals were found in concentrations offering potential for resource exploitation. Constraints on exploitation include (1) water depth restrictions for the protection of shellfish beds and public beaches, (2) fishing activities, (3) military, commercial, and fishing vessel traffic, (4) seafloor cable routes and (5) dump sites. Deposits composed of Pleistocene glacial sediments and/or Holocene marine sediments in regions of little or no user conflict were identified as sites potentially suitable for resource exploitation. The study plan stated additional data needs (geophysical profiling and vibracore sampling) at these sites. Subsequent to these recommendations, high-resolution seismic profiles and sidescan sonographs were obtained from these sites. Seismic stratigraphic analyses confirm the presence of extensive deposits of

  18. Rationale for a New Generation of Indicators for Coastal Waters

    PubMed Central

    Niemi, Gerald; Wardrop, Denice; Brooks, Robert; Anderson, Susan; Brady, Valerie; Paerl, Hans; Rakocinski, Chet; Brouwer, Marius; Levinson, Barbara; McDonald, Michael

    2004-01-01

    More than half the world’s human population lives within 100 km of the coast, and that number is expected to increase by 25% over the next two decades. Consequently, coastal ecosystems are at serious risk. Larger coastal populations and increasing development have led to increased loading of toxic substances, nutrients and pathogens with subsequent algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Recent climate change has led to the rise in sea level with loss of coastal wetlands and saltwater intrusion into coastal aquifers. Coastal resources have traditionally been monitored on a stressor-by-stressor basis such as for nutrient loading or dissolved oxygen. To fully measure the complexities of coastal systems, we must develop a new set of ecologic indicators that span the realm of biological organization from genetic markers to entire ecosystems and are broadly applicable across geographic regions while integrating stressor types. We briefly review recent developments in ecologic indicators and emphasize the need for improvements in understanding of stress–response relationships, contributions of multiple stressors, assessments over different spatial and temporal scales, and reference conditions. We provide two examples of ecologic indicators that can improve our understanding of these inherent problems: a) the use of photopigments as indicators of the interactive effects of nutrients and hydrology, and b) biological community approaches that use multiple taxa to detect effects on ecosystem structure and function. These indicators are essential to measure the condition of coastal resources, to diagnose stressors, to communicate change to the public, and ultimately to protect human health and the quality of the coastal environment. PMID:15198917

  19. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  20. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  1. Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk.

    PubMed

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der

    2014-08-30

    This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters. PMID:24439316

  2. Determining Sources of Water and Nutrients to Great Lakes Coastal Wetlands: A Classification Approach.

    EPA Science Inventory

    Water and associated nutrients can enter freshwater and marine coastal wetlands from both watershed and offshore sources. Identifying the relative contribution of these potential sources, and the spatial scale at which sources are influenced by anthropogenic activities, are crit...

  3. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  4. Ground-water hydrology of the Cocoa well-field area, Orange County, Florida

    USGS Publications Warehouse

    Tibbals, C.H.; Frazee, J.M.

    1976-01-01

    The city of Cocoa, Brevard County, Florida, supplies water for much of central Brevard County including Cape Kennedy and Patrick Air Force Base. The water supply is obtained from a well field in east Orange County. Many of the easternmost wells in that well field yield salty water (chloride concentration greater than 250 milligrams per liter). The interface between the fresh and salty water in the west part of the well field occurs at a depth of about 1,400 feet. An upward hydraulic gradient exists between the the lower (salty) zones and the upper, or pumped zones of the Floridan aquifer in the west part of the well field. Secondary artesian aquifers in the well-field area are relatively high-yielding but are of limited areal extent. However, they are suitable as a source of water for supplemental supply or for artificially recharging the Floridan aquifer. Fresh water was transferred by siphon from a secondary artesian aquifer to the Floridan aquifer at 90 gallons per minute. Artificial recharge and recovery experiments show that it is feasible to retrieve fresh water stored in salty zones of the Floridan aquifer. (Woodard-USGS)

  5. Remote estimation of in water constituents in coastal waters using neural networks

    NASA Astrophysics Data System (ADS)

    Ioannou, Ioannis; Gilerson, Alexander; Ondrusek, Michael E.; Hlaing, Soe; Foster, Robert; El-Habashi, Ahmed; Bastani, Kaveh; Ahmed, Samir

    2014-10-01

    Remote estimations of oceanic constituents from optical reflectance spectra in coastal waters are challenging because of the complexity of the water composition as well as difficulties in estimation of water leaving radiance in several bands possibly due to inadequacy of current atmospheric correction schemes. This work focuses on development of a multiband inversion algorithm that combines remote sensing reflectance measurements at several wavelengths in the blue, green and red for retrievals of the absorption coefficients of phytoplankton, color dissolved organic matter and nonalgal particulates at 443nm as well as the particulate backscatter coefficient at 443nm. The algorithm was developed, using neural networks (NN), and was designed to use as input measurements on ocean color bands matching those of the Visible Infrared Imaging Radiometer Suite (VIIRS). The NN is trained on a simulated data set generated through a biooptical model for a broad range of typical coastal water parameters. The NN was evaluated using several statistical indicators, initially on the simulated data-set, as well as on field data from the NASA bio-Optical Marine Algorithm Data set, NOMAD, and data from our own field campaigns in the Chesapeake Bay which represent well the range of water optical properties as well as chlorophyll concentrations in coastal regions. The algorithm was also finally applied on a satellite - in situ databases that were assembled for the Chesapeake Bay region using MODIS and VIIRS satellite data. These databases were created using in-situ chlorophyll concentrations routinely measured in different locations throughout Chesapeake Bay and satellite reflectance overpass data that coexist in time with these in-situ measurements. NN application on this data-sets suggests that the blue (412 and 443nm) satellite bands are erroneous. The NN which was assessed for retrievals from VIIRS using only the 486, 551 and 671 bands showed that retrievals that omitted the 671 nm

  6. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images

    PubMed Central

    Su, Yuan-Fong; Liou, Jun-Jih; Hou, Ju-Chen; Hung, Wei-Chun; Hsu, Shu-Mei; Lien, Yi-Ting; Su, Ming-Daw; Cheng, Ke-Sheng; Wang, Yeng-Fung

    2008-01-01

    This study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. SPOT satellite images nearly concurrent with the water quality sampling campaigns were also acquired. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model. Finally, quantitative coastal water quality mapping was accomplished by substituting the pixel-specific spectral reflectance into the multivariate water quality estimation model.

  7. EVALUATION OF FISH SAMPLING DESIGNS FOR COASTAL WATERS

    EPA Science Inventory

    Because no objective assessment of fish sampling methodologies has been completed for Great Lakes coastal wetlands we evaluated catches from several techniques and studies to determine the most effective combinations for these habitats. Data from six underdeveloped sites in Green...

  8. Data access and decision tools for coastal water resources management

    EPA Science Inventory

    US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...

  9. Relation of concealed faults to water quality and the formation of solution features in the Floridan aquifer, northeastern Florida, U.S.A.

    USGS Publications Warehouse

    Leve, G.W.

    1983-01-01

    Geological and hydrological information on the Floridan aquifer in northeastern Florida indicates that isolated occurrences of water having relatively high chloride concentration in the upper part of the aquifer may be associated with buried faults. Water having chloride concentrations of more than 700 mg l-1 occurs in the deeper zone of the aquifer at depths below ??? 600 m below sea level in the coastal and east-central part of the study area. This deep salty water is under higher artesian pressure than water in the shallower, generally freshwater zones, but it is restricted from moving upward by relatively impermeable dolomite beds. Two buried faults with vertical displacements of 30-45 m are in areas where relatively high concentrations of chloride have been detected in water in the upper part of the aquifer. Geochemical, artesian pressure, and water temperature data show that the source of the relatively high concentrations of chloride in water in the upper part of the aquifer is from the deeper zone. This indicates that the faults may have breached the dolomite confining beds and allowed the upward movement of salty water from the deeper zone. The upward movement of mineralized water along the faults may also have formed some of the solution features found in the aquifer near the faults. In this area, freshwater in the upper part of the aquifer is normally saturated with respect to calcite and dolomite. However, water from wells tapping the upper part of the aquifer near the faults is not fully saturated suggesting that the mixing of deep mineralized water with shallower freshwater produces a mixture that is not saturated with respect to these minerals and allows for the dissolution of limestone in the aquifer near the faults. Dissolution of limestone may also be occurring at the freshwater-saltwater interface in the deeper zones of the aquifer. ?? 1982.

  10. Bio-optical water quality dynamics observed from MERIS in Pensacola Bay, Florida

    NASA Astrophysics Data System (ADS)

    Le, Chengfeng; Lehrter, John C.; Schaeffer, Blake A.; Hu, Chuanmin; Murrell, Michael C.; Hagy, James D.; Greene, Richard M.; Beck, Marcus

    2016-05-01

    Observed bio-optical water quality data collected from 2009 to 2011 in Pensacola Bay, Florida were used to develop empirical remote sensing retrieval algorithms for chlorophyll a (Chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM). Time-series of the three bio-optical water quality variables were generated from MEdium Resolution Imaging Spectrometer (MERIS) observations from 2003 to 2011. Bio-optical water quality in this estuary exhibited spatial and temporal variations that were correlated to river discharge and wind. Both annual mean and monthly mean bio-optical water quality variables were positively correlated to river discharge. Monthly mean bio-optical water quality variables were also positively correlated to wind speed and wind density (defined by the number of days with daily mean wind speed > 3 m s-1 in a month) over this estuary. These results indicate that bio-optical water quality dynamics in this estuary are vulnerable to changes in river discharge and river constituent loads and local weather conditions such as winter storms and hurricanes.

  11. Potentiometric surface of the Floridan aquifer in the Suwannee River Water Management District, north Florida, May 1980

    USGS Publications Warehouse

    Rosenau, J.C.; Milner, R.S.

    1981-01-01

    A May 1980 potentiometric surface map of the Suwannee River Water Management District area, Florida, depicts water levels in wells tapping the Floridan aquifer. Compared to the May 1976 potentiometric map of the area, there are no significant differences in the general appearance of the contours. Water levels, however, are generally about 10 feet higher than in 1976 along the Suwannee River and for some 20 miles west of the river and in Gilchrist and Levy Counties to the east. (USGS)

  12. Potentiometric surface of Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, May 1979

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1979-01-01

    A May 1979 potentiometric-surface map depicts the annual low water-level period. Potentiometric levels declined 4 to 21 feet between September 1978 and May 1979, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level declines ranged from 0 to 6 feet in coastal, northern, and southern areas of the Water Management District. Generally potentiometric levels were higher than previous May levels due to heavy rains in April and May. In parts of Hillsborough, Pasco, and Pinellas Counties, May 1979 potentiometric levels were 18 feet higher than those of September 1978. (USGS)

  13. Opportunities to protect instream flows and wetland uses of water in Florida

    USGS Publications Warehouse

    Burkardt, Nina

    1990-01-01

    This document combines the efforts of several individuals, agencies, and organizations toward a common objective: the identification, description, and preliminary evaluation of promising opportunities for protecting instream uses of water under existing laws in Florida. this report is intended for the use of State and Federal planning and management personnel who need an overview of potential opportunities for preserving instream flows. It is not intended to replace or challenge the advice of agency counsel, nor is it written to provide legal advice. Instead, it is designed as a guide for the person trying to find his way among sometimes bewildering State statutes and administrative practices. This report is not, and should not be taken as, official policy or prediction of future actions by any agency. It is simply a summary of some potential opportunities for protecting instream uses. Toward these objectives, the U.S. Fish and Wildlife Service, through its Water Resource Analysis Project, contracted in 1977 with R. Dewsnup and D. Jensen to identify available strategies under State and Federal laws, interstate compacts, and water quality laws. A second firm, Enviro Control, Inc., was contracted to evaluate the most promising strategies. The resulting documents reported instream flow strategies for 11 States. These reports have been revised, updated, and combined in a number of new monographs, and the Service has added more States to this service over the years. The discussion of instream flow programs and opportunities for each State is written so that each report can be read independently, with minimal cross-referencing from one State report to another. The opportunities for Florida are summarized in the table.

  14. Climate Change Impact on Water Balance at the Chipola River Watershed in Florida

    NASA Astrophysics Data System (ADS)

    Griffen, J. M.; Chen, X.; Wang, D.; Hagen, S. C.

    2013-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through the Florida Panhandle and drains into the Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with an aridity index of approximately 1.0. However, climate change affects the hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this watershed. This research is mainly focused on assessing climate change impact on the partitioning of rainfall and the following runoff generation in Chipola watershed, from long-term mean annual to inter-annual and to seasonal and monthly scales. A comprehensive water balance model at inter-annual scale is built in this study based on Budyko's framework, two-stage runoff theory and proportionality hypothesis. The inter-annual scale model considers the impact of storage change, seasonality and landscape controls, which are normally assumed to be negligible on a long-term scale. The model is applied to the Chipola River Watershed in Florida to project future water balance pattern with the input from a Regional Climate Model projection. Based on the projection results: evaporation will increase in the future in all 12 months; runoff will increase only in dry months of July to October, while significantly decrease in wet months of December to April; storage change will increase in wet months of January to April, while decrease in the dry months of August to November.

  15. Characterizing storm water dispersion and dilution from small coastal streams

    NASA Astrophysics Data System (ADS)

    Romero, Leonel; Siegel, David A.; McWilliams, James C.; Uchiyama, Yusuke; Jones, Charles

    2016-06-01

    Characterizing the dispersion and dilution of storm water from small coastal creeks is important for understanding the importance of land-derived subsidies to nearby ecosystems and the management of anthropogenic pollutants. In Southern California, creek runoff is episodic, intense, and short-lived while the plumes are buoyant, all of which make the field sampling of freshwater plumes challenging. Numerical modeling offers a viable way to characterize these systems. The dilution and dispersion of freshwater from two creeks that discharge into the Santa Barbara Channel, California is investigated using Regional Ocean Modeling System (ROMS) simulations with a horizontal resolution of 100 m. Tight coupling is found among precipitation, hydrologic discharge, wind forcing, and submesoscale flow structures which all contribute to plume evolution. During flooding, plumes are narrow and attached to the coast, due to downwelling/onshore wind forcing and intense vorticity filaments lying parallel to the shelf. As the storm passes, the winds typically shift to offshore/upwelling favorable conditions and the plume is advected offshore which enhances its dilution. Plumes reach the bottom nearshore while they form thin layers a few meters thick offshore. Dilution field of passive tracers released with the runoff is strongly anisotropic with stronger cross-shelf gradients than along-shelf. Dispersion analysis of statistical moments of the passive tracer distribution results in scale-dependent diffusivities consistent with the particle-pair analysis of Romero et al. Model validation, the roles of submesoscale processes, and wind forcing on plume evolution and application to ecological issues and marine resource management are discussed.

  16. Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1985-01-01

    Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)

  17. Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Slomp, C. P.; Bouwman, A. F.

    2013-09-01

    The role of submarine groundwater discharge (SGD), the leakage of groundwater from aquifers into coastal waters, in coastal eutrophication has been demonstrated mostly for the North American and European coastlines, but poorly quantified in other regions. Here, we present the first spatially explicit global estimates of N inputs via SGD to coastal waters and show that it has increased from about 1.0 to 1.4 Tg of nitrate (NO3-N) per year over the second half of the 20th century. Since this increase is not accompanied by an equivalent increase of groundwater phosphorus (P) and silicon (Si), SGD transport of nitrate is an important factor for the development of harmful algal blooms in coastal waters. Groundwater fluxes of N are linked to areas with high runoff and intensive anthropogenic activity on land, with Southeast Asia, parts of North and Central America, and Europe being hot spots.

  18. Assessment of the hydrogeology and water quality in a near-shore well field, Sarasota, Florida

    USGS Publications Warehouse

    Broska, J.C.; Knochenmus, L.A.

    1996-01-01

    The city of Sarasota, Florida, operates a downtown well field that pumps mineralized water from ground water sources to supply a reverse osmosis plant. Because of the close proximity of the well field to Sarasota Bay and the high sulfate and chloride concentrations of ground-water supplies, a growing concern exists about the possibility of lateral movement of saltwater in a landward direction (intrusion) and vertical movement of relict sea water (upconing). In 1992, the U.S. Geological Survey began a 3-year study to evaluate the hydraulic characteristics and water quality of ground-water resources within the downtown well field and the surrounding 235-square-mile study area. Delineation of the hydrogeology of the study area was based on water- quality data, aquifer test data, and extensive borehole geophysical surveys (including gamma, caliper, temperature, electrical resistivity, and flow meter logs) from the six existing production wells and from a corehole drilled as part of the study, as well as from published and unpublished reports on file at the U.S. Geological Survey, the Southwest Florida Water Management District, and consultant's reports. Water-quality data were examined for spatial and temporal trends that might relate to the mechanism for observed water-quality changes. Water quality in the study area appears to be dependent upon several mechanisms, including upconing of higher salinity water from deeper zones within the aquifer system, interbore-hole flow between zones of varying water quality through improperly cased and corroded wells, migration of highly mineralized waters through structural deformities, and the presence of unflushed relict seawater. A numerical ground-water flow model was developed as an interpretative tool where field-derived hydrologic characteristics could be tested. The conceptual model consisted of seven layers to represent the multilayered aquifer systems underlying the study area. Particle tracking was utilized to delineate

  19. Pharmaceuticals, alkylphenols and pesticides in Mediterranean coastal waters: Results from a pilot survey using passive samplers

    NASA Astrophysics Data System (ADS)

    Munaron, Dominique; Tapie, Nathalie; Budzinski, Hélène; Andral, Bruno; Gonzalez, Jean-Louis

    2012-12-01

    21 pharmaceuticals, 6 alkylphenols and 27 hydrophilic pesticides and biocides were investigated using polar organic contaminant integrative samplers (POCIS) during a large-scale study of contamination of French Mediterranean coastal waters. Marine and transitional water-bodies, defined under the EU Water Framework Directive were monitored. Our results show that the French Mediterranean coastal waters were contaminated with a large range of emerging contaminants, detected at low concentrations during the summer season. Caffeine, carbamazepine, theophilline and terbutaline were detected with a detection frequency higher than 83% in the coastal waters sampled, 4-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and 4-nonylphenol diethoxylate (NP2EO) were detected in all coastal waters sampled, and diuron, terbuthylazine, atrazine, irgarol and simazine were detected in more than 77% of samples. For pharmaceuticals, highest time-weighted average (TWA) concentrations were measured for caffeine and carbamazepine (32 and 12 ng L-1, respectively). For alkylphenols, highest TWA concentrations were measured for 4-nonylphenol mono-ethoxylate and 4-nonylphenol (41 and 33 ng L-1, respectively), and for herbicides and biocides, they were measured for diuron and irgarol (33 and 2.5 ng L-1, respectively). Except for Diana lagoon, lagoons and semi-enclosed bays were the most contaminated areas for herbicides and pharmaceuticals, whilst, for alkylphenols, levels of contamination were similar in lagoons and coastal waters. This study demonstrates the relevance and utility of POCIS as quantitative tool for measuring low concentrations of emerging contaminants in marine waters.

  20. UTILIZING SHELLFISH RESPONSES TO SET TARGET WATER QUALITY CONDITIONS FOR THE RESTORATION OF OYSTER REEFS IN THE CALOOSAHATCHEE ESTUARY, FLORIDA.

    EPA Science Inventory

    Volety, Aswani K., S.G. Tolley and James T. Winstead. 2002. Utilizing Shellfish Responses to Set Target Water Quality Conditions for the Restoration of Oyster Reefs in the Caloosahatchee Estuary, Florida. Presented at the International Workshop on Restoration of Benthic Invertebr...

  1. The Florida citrus soil water atmosphere plant (SWAP) project: review and final summary of yields and tree health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida Citrus Soil Water Atmosphere Plant (SWAP) Project at the UF-IFAS Indian River Research and Education Center had three blocks each of soil tillage (mixing ) treatments of shallow tilled (ST), deep tilled (DT), and deep tilled plus lime (DTL) on a Spodosol (Oldsmar fine sandy loam). Each ...

  2. The Florida citrus soil water atmosphere plant (SWAP) project: final summary of cumulative yields and tree health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida Citrus Soil Water Atmosphere Plant (SWAP) Project at the Fort Pierce had three blocks each of soil tillage treatments of shallow tilled (ST), deep tilled (DT), and deep tilled plus lime (DTL) on a Spodosol (Oldsmar fine sandy loam). Each block had three adjacent submerged subsurface pla...

  3. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  4. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  5. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  6. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  7. USEPA'S APPROACH FOR ESTABLISHING NATIONAL NUTRIENT CRITERIA FOR ESTUARIES AND COASTAL WATER

    EPA Science Inventory

    The USEP A is developing procedures for establishing nutrient criteria to aid states and tribes in setting nutrient standards for the nation's water bodies and coastal waters. Criteria are being developed separately by water body type (e.g. lakes and reservoirs, rivers and stream...

  8. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b...; DEPARTMENT OF THE TREASURY VESSELS IN FOREIGN AND DOMESTIC TRADES Foreign Clearances § 4.66b Pollution of... shorelines, or into or upon the waters of the contiguous zone in violation of the Federal Water...

  9. Hanging by a coastal strand: breeding system of a federally endangered morning-glory of the south-eastern Florida coast, Jacquemontia reclinata

    PubMed Central

    Pinto-Torres, Elena; Koptur, Suzanne

    2009-01-01

    Background and Aims Coastal development has led to extensive habitat destruction and the near extinction of the beach clustervine, Jacquemontia reclinata (Convolvulaceae), an endangered, perennial vine endemic to dune and coastal strand communities in south-eastern Florida. We examined the breeding system of this rare species, and observed visitors to its flowers, as part of a larger effort to document its status and facilitate its recovery. Methods Reproductively mature experimental plants were grown from seed collected from wild plants in two of the largest remaining populations. Controlled hand pollinations on potted plants were conducted to determine the level of compatibility of the species and to investigate compatibility within and between populations. Seeds from the hand pollinations were planted in soil, and they were monitored individually, recording time to seed germination (cotyledon emergence). Wild plants were observed in several of the remaining populations to determine which species visited the flowers. Key Results Hand pollination and seed planting experiments indicate that J. reclinata has a mixed mating system: flowers are able to set fruit with viable seeds with self-pollen, but outcross pollen produces significantly greater fruit and seed set than self-pollen (≥50 % for crosses vs. <25 % for self-pollinations). Visitors included a wide array of insect species, primarily of the orders Diptera, Hymenoptera and Lepidoptera. All visitors captured and examined carried J. reclinata pollen, and usually several other types of pollen. Conclusions Remnant populations of beach clustervine will have greater reproductive success not only if floral visitor populations are maintained, but also if movement of either pollen or seed takes place between populations. Restoration efforts should include provisions for the establishment and maintenance of pollinator populations. PMID:19797424

  10. Application of remote sensing and colorimetry to classify water colors in Florida Bay

    SciTech Connect

    Lamb, A.P.; Leary, T.J.; Kuhl, D.; Stumpf, R.P.

    1997-08-01

    Since March of 1994, a monthly water color survey using visual observations from a light aircraft has been conducted in Florida Bay for the purpose of mapping algal bloom and sediment distributions. This mapping is based on a color classification-scheme consisting of nineteen colors that can also be reduced into five main color categories. Due to the subjective nature of the aerial surveys, a handheld hyperspectral radiometer (Spectrix) has been used to relate these observed water colors to a standard color system called the C.I.E. (Commission Internationale de L`Eclairage) color coordinate system. This ensures that the water colors are being classified on a consistent basis and it also describes the water colors in terms of a globally accepted and widely used color system. The C.I.E. color coordinate system provides an accurate and quantitative basis upon which to describe and predict color. The system is easily used to translate measured radiation in the visible spectrum to color coordinates by relating simple concepts of radiation theory to those of the C.I.E. system. A software application is currently being designed that allows for the seamless integration and analysis of Spectrix data with different spatial datasets. The initial analysis uses an expert based methodology. This tool will assist in the identification of algal bloom types and help to monitor the dynamics of different water bodies within the bay.

  11. Assessment of water quality in canals of eastern Broward County, Florida, 1969-74

    USGS Publications Warehouse

    Waller, Bradley G.; Miller, Wesley L.

    1982-01-01

    An intensive water-quality monitoring program was started in 1969 to determine the effects of man-induced contaminants on the water quality in the primary canal system of eastern Broward County, Florida. This report covers the first 6 years of the program and provides a data base that can be used to compare future changes in water-quality conditions. Most data indicate that beyond the small seasonal fluctuation in constituent level, the greatest adverse effect on the quality of water is caused by discharge of sewage and treated sewage effluent to the canals. The areas affected by sewage have greater concentrations of macronutrients, trace metals, and pesticides than unaffected areas. Major-ion concentrations were affected only by season and local lithology. Over the 6-year study a gradual decrease in macronutrient concentration and an increase in dissolved oxygen have occurred. This improvement in water quality is attributed to a decrease of sewage discharge into canals and better treatment of sewage effluents. (USGS)

  12. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    SciTech Connect

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms) I-95 and Cagle Road, Jacksonville, Florida, is described. The solar system was designed by ILI, Incorporated to provide 65 percent of the hot water demand. The system is one of eleven systems planned under this grant. Water (in the Solar Energy Products, Model CU-30ww liquid flat plate collector (900 square feet) system) automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature. This system was turned on June 19, 1979. The solar components were partly funded ($15,823 of $31,823 cost) by the Department of Energy.

  13. Availability and quality of water from shallow aquifers in Duval County, Florida

    USGS Publications Warehouse

    Causey, Lawson V.; Phelps, G.G.

    1978-01-01

    The shallow-aquifer system in Duval County, Fla., overlies the Florida aquifer and is composed chiefly of sand, clay, sandy clay, and limestone. Thickness of the system ranges from about 300 to 600 feet. The upper 150 feet of deposits, consisting of the water-table and shallow-rock zones, are the most dependable and economical source of supplemental water supply. The principal shallow water-bearing zone is a limestone bed 40 to 100 feet below land surface. Aquifer tests conducted at 13 sites in Duval County show that yields from the shallow aquifer vary from place to place within the county owing chiefly to variations in lithology of the saturated rocks and sediments. The limestone of the shallow-rock zone will yield as much as 200 gallons per minute to wells; the maximum yield at most of the sites tested was between 30 and 100 gallons per minute. The water-table zone generally yields 10 gallons per minute or less but at one site, where a water-table well tapped a shell bed near land surface, the well yielded more than 40 gallons per minute. The quality of water in the shallow aquifer system in Duval County is generally acceptable for most domestic, commercial, and industrial uses. In some places, however, it has a high iron concentration and is hard. The iron concentration exceeds 0.3 milligrams per liter in water from the water-table or shallow-rock zones at 7 of the 13 aquifer test sites. The hardness of water from the aquifer ranges from about 60 to about 180 milligrams per liter. (Kosco-USGS)

  14. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    USGS Publications Warehouse

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  15. Estuarine River Data for the Ten Thousand Islands Area, Florida, Water Year 2005

    USGS Publications Warehouse

    Byrne, Michael J.; Patino, Eduardo

    2008-01-01

    The U.S. Geological Survey collected stream discharge, stage, salinity, and water-temperature data near the mouths of 11 tributaries flowing into the Ten Thousand Islands area of Florida from October 2004 to June 2005. Maximum positive discharge from Barron River and Faka Union River was 6,000 and 3,200 ft3/s, respectively; no other tributary exceeded 2,600 ft3/s. Salinity variation was greatest at Barron River and Faka Union River, ranging from 2 to 37 ppt, and from 3 to 34 ppt, respectively. Salinity maximums were greatest at Wood River and Little Wood River, each exceeding 40 ppt. All data were collected prior to the commencement of the Picayune Strand Restoration Project, which is designed to establish a more natural flow regime to the tributaries of the Ten Thousand Islands area.

  16. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  17. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  18. The spectral signature analysis of inland and coastal water bodies acquired from field spectroradiometric measurements

    NASA Astrophysics Data System (ADS)

    Papoutsa, Christiana; Akylas, Evangelos; Hadjimitsis, Diofantos

    2013-08-01

    The main goal of this research is to examine the optical properties of different water bodies such as coastal water; oligotrophic and eutrophic inland water by observing their spectral signatures. Spectral profiles of sampling points, which correspond to water bodies with different water quality characteristics, are extracted and analyzed. Field spectroscopy is a very important tool giving critical information for the comprehension of spectral signatures of different water bodies. Field spectroradiometric measurements can assist to improve or develop new algorithms and methodology enables to classify several water bodies according to their water quality characteristics using remotely sensed data. Field spectroradiometric data presented at this study were obtained for inland water in Asprokremmos Dam, Paphos District/Cyprus; in Larnaca's Salt Lake, Larnaca District/Cyprus; and in Karla Lake, Volos District/Greece and for coastal water in Zugi-Vasilikos-Old Harbour, Limassol District/Cyprus.

  19. AUV Reveals Deep-Water Coral Mound Distribution, Morphology and Oceanography in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Eberli, G. P.; Viggiano, D. A.; Correa, T.; Rathwell, G.; Luo, J.

    2006-12-01

    Since the 1960's dredge sampling and submersible dives have discovered numerous mound-forming deep- water corals in water depths of 400-800 m in the Straits of Florida. This extensive collection of samples and observations however can not be put into a geomorphologic context as existing bathymetric charts do not resolve coral mounds. To make progress in understanding the distribution and genesis of coral mounds, maps of morphology and oceanographic conditions resolving features at the 1-10 m scale are needed. On 11-18 December 2005 the C-Surveyor II(TM) mapped five sites ranging from 14-48 km2 in 590-875 m water acquiring 1-3 m resolution bathymetry and acoustic backscatter together with subbottom profiles, current vectors, salinity, and temperature. The areas mapped with the AUV contain hundreds of coral mounds with heights of 1-120 m. Mound distribution, morphology and currents are different for each survey site. Coral mounds develop on off-bank transported sediment ridges and slump features at the toe-of-slope of Great Bahama bank, while chevron pattern ridges and sinusoidal ridges are found further east in the Straits. Currents range from 0.1-0.5 m/s. At two sites currents reversed every 6 hours indicating tidal control. The AUV surveys and subsequent ground truthing with a drop camera and a submersible revealed a surprising abundance and diversity of deep-water coral habitats. The boundaries between mound fields and the barren muddy or sandy seafloor are sharp. Hull- mounted multi-beam reconnaissance mapping helped us select the most promising coral mound areas to optimize the use of valuable AUV time. Such combined use of hull-mounted and AUV-based mapping enables efficient environmental characterization of large deep-water regions such as the Florida Straits. The synoptic high-resolution datasets acquired by the multiple sensors on board the AUV enable for the first time a comprehensive assessment of deep-water coral mound ecosystems. Utilization of such

  20. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    USGS Publications Warehouse

    Smith, Thomas J., III; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  1. Applications of MODIS Fluorescence Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity in Coastal and Estuarine Waters

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.

    2012-12-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths

  2. Sources of nitrate contamination and age of water in large karstic springs of Florida

    USGS Publications Warehouse

    Katz, B.G.

    2004-01-01

    In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge ???2.8 m3/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and ??15N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most ??15N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35 years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, 3H/3He) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and 3He data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix.

  3. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  4. Quality of the water in Borrow Ponds near a major highway interchange, Dade County, Florida, October-November 1977

    USGS Publications Warehouse

    Beaven, T.R.; McPherson, Benjamin F.

    1978-01-01

    Water, bottom sediment, and aquatic plants were sampled from ponds near a major south Florida highway interchange to document concentrations of selected constituents in an aquatic environment near heavy vehicular traffic. Generally, concentrations of constituents were within the range expected in an uncontaminated environment in south Florida. However, concentrations did exceed south Florida background levels or Environmental Protection Agency criteria in a few cases. Two trace elements--chromium (20 micrograms per liter) in ponded surface water and lead (500 micrograms per gram) in bottom sediment--exceeded background levels. Concentrations of dieldrin (22 micrograms per kilogram) and polychlorinated biphenyls (53 micrograms per kilogram) also exceed background levels in bottom sediment. The concentration of phenol (23 micrograms per liter) in ground water exceeded Environmental Protection Agency quality criteria by 22 micrograms per liter, but was within the background range for south Florida. Ten metals were detected in the cattail or algal samples, but only iron, manganese, and zinc were in higher concentrations than those in the bottom sediment. (Woodard-USGS)

  5. Reconnaissance of water quality at four swine farms in Jackson County, Florida, 1993

    USGS Publications Warehouse

    Collins, J.J.

    1996-01-01

    The quality of ground water on four typical swine farms in Jackson County, Florida, was studied by analyzing water samples from wastewater lagoons, monitoring wells, and supply wells. Water samples were collected quarterly for 1 year and analyzed for the following dissolved species: nitrate, nitrite, ammonium nitrogen, phosphorus, potassium, sulfate, chloride, calcium, magnesium, fluoride, total ammonium plus organic nitrogen, total phosphorus, alkalinity, carbonate, and bicarbonate. Additionally, the following field constituents were determined in the water samples: temperature, specific conductance, pH, dissolved oxygen, and fecal streptococcus and fecal coliform bacteria. Chemical changes in swine waste as it leaches and migrates through the saturated zone were examined by comparing median values and ranges of water- quality data from farm wastewater in lagoons, shallow pond, shallow monitoring wells, and deeper farm supply wells. The effects of hydrogeologic settings and swine farmland uses on shallow ground-water quality were examined by comparing the shallow ground-water-quality data set with the results of the chemical analyses of water from the Upper Floridan aquifer, and to land uses adjacent to the monitoring wells. Substantial differences occur between the quality of diluted swine waste in the wastewater lagoons, and that of the water quality found in the shallow pond, and the ground water frm all but two of the monitoring wells of the four swine farms. The liquid from the wastewater lagoons and ground water from two wells adjacent to and down the regional gradient from a lagoon on one site, have relatively high values for the following properties and constituents: specific conductance, dissolved ammonia nitrogen, dissolved potassium, and dissolved chloride. Ground water from all other monitoring wells and farm supply wells and the surface water pond, have relatively much lower values for the same properties and constituents. To determine the relation

  6. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak

    NASA Astrophysics Data System (ADS)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.

    2009-12-01

    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  7. Optical water quality of a blackwater river estuary: the Lower St. Johns River, Florida, USA

    NASA Astrophysics Data System (ADS)

    Gallegos, Charles L.

    2005-04-01

    This paper reports measurements of absorption and scattering coefficients in relation to standard water quality measurements in the St. Johns River (Florida, USA), a blackwater river in which phytoplankton chlorophyll and non-algal particulates as well as colored dissolved organic matter (CDOM) contribute substantially to the inherent optical properties of the water. Extremely high concentrations of CDOM in this river present special problems for the measurement of inherent optical properties, such as the presence of very fine particulate matter that passes through most glass fiber filters. Empirical relationships are presented for estimating true dissolved absorption at very high CDOM concentrations. Specific-absorption and -scattering coefficients of suspended particulate matter varied widely, but appeared to decline steadily with salinity at salinities above 5, consistent with increasing influence of large-sized, unconsolidated mineral particulates with increasing tidal energy near the estuary mouth. Relationships are given for prediction of inherent optical properties from water quality concentrations for use in radiative transfer modeling, and changes in water quality measurements are recommended that can avoid the need for empirical corrections.

  8. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters. PMID:23002593

  9. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  10. Ground-water quality and trends at two industrial wastewater-injection sites in northwestern Florida, 1975-91

    USGS Publications Warehouse

    Andrews, W.J.

    1994-01-01

    Industrial wastewater from two synthetic-fiber manufacturing plants has been injected into the Lower Floridan aquifer near Pensacola, Florida, since 1963, and near Milton, Florida, since 1975. Trend analysis of selected water-quality characteristics in water from four monitoring wells at each of these plants indicates that injected wastewater has affected ground-water quality in the Lower Floridan aquifer, which contains nonpotable water, up to 1.5 miles from the injection wells at the plant near Pensacola and at least 0.3 mile from the injection wells at the plant near Milton. No evidence for upward seepage of injected wastewater through the overlying Bucatunna Clay to the Upper Floridan aquifer was found at either of the plants.

  11. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  12. PRELIMINARY SURVEY OF CHEMICAL CONTAMINANTS IN WATER, SEDIMENT, AND AQUATIC BIOTA AT SELECTED SITES IN NORTHEASTERN FLORIDA BAY AND CANAL C-111

    EPA Science Inventory

    Several actions are under way to alter water management capabilities and practices in south Florida in order to restore a more natural hydroperiod for the Everglades. Because relatively little research has been conducted on contaminants entering Florida Bay, we undertook a prelim...

  13. Water clarity in the Florida Keys, USA, as observed from space (1984-2002)

    NASA Astrophysics Data System (ADS)

    Palandro, D. A.; Hu, C.; Andrefouet, S.; Muller-Karger, F. E.; Hallock, P.

    2007-12-01

    Landsat TM and ETM+ satellite data were used to derive the diffuse attenuation coefficient (Kd, m-1), a measure of water clarity, for 29 sites throughout the Florida Keys Reef Tract. A total of 28 individual Landsat images between 1984 and 2002 were used, with imagery gathered every two years for spring seasons and every six years for fall seasons. Useful information was obtained by Landsat bands 1 (blue) and 2 (green), except when sites were covered by clouds or showed turbid water. Landsat band 3 (red) provided no consistent data due to the high absorption of red light by water. Because image sampling represented only one or two samples per year on specific days, and because water turbidity may change over short time scales, it was not possible to assess temporal trends at the sites with the Landsat data. Kd values in band 1 were higher in the spring (mean spring = 0.034 m-1, mean fall = 0.031 m-1) and band 2 were higher in the fall (mean spring = 0.056 m-1, mean fall = 0.058 m-1), but the differences were not statistically significant. Spatial variability was high between sites and between regions (Upper, Middle and Lower Keys), with band 1 ranges of 0.019 m-1 - 0.060 m-1 and band 2 ranges of 0.036 m-1 - 0.076 m-1. The highest Kd values were found in the Upper Keys, followed by the Middle Keys and Lower Keys, respectively. This result must be taken in context however, two Middle Keys sites were found to be inconsistent due to high turbidity, obscuring the benthos and altering our assumption of a visible seafloor, which the algorithm is dependent upon. If all Middle Keys data were valid it is likely that this region would have the highest Kd values for both bands. The Landsat-derived Kd values, and inherent variability, may be influenced by the dominant water mass associated with each Florida Keys region, as well as localized oceanic variables. The methodology used here may be applied to other reef areas and used with satellites that offer higher temporal

  14. Layered analytical radiative transfer model for simulating water color of coastal waters and algorithm development

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Huddleston, Lisa H.

    2000-12-01

    A remote sensing reflectance model, which describes the transfer of irradiant light within a homogeneous water column has previously been used to simulate the nadir viewing reflectance just above or below the water surface by Bostater, et al. Wavelength dependent features in the water surface reflectance depend upon the nature of the down welling irradiance, bottom reflectance and the water absorption and backscatter coefficients. The latter are very important coefficients, and depend upon the constituents in water and both vary as a function of the water depth and wavelength in actual water bodies. This paper describes a preliminary approach for the analytical solution of the radiative transfer equations in a two-stream representation of the irradiance field with variable coefficients due to the depth dependent water concentrations of substances such as chlorophyl pigments, dissolved organic matter and suspended particulate matter. The analytical model formulation makes use of analytically based solutions to the 2-flow equations. However, in this paper we describe the use of the unique Cauchy boundary conditions previously used, along with a matrix solution to allow for the prediction of the synthetic water surface reflectance signatures within a nonhomogeneous medium. Observed reflectance signatures as well as model derived 'synthetic signatures' are processed using efficient algorithms which demonstrate the error induced using the layered matrix approach is much less than 1 percent when compared to the analytical homogeneous water column solution. The influence of vertical gradients of water constituents may be extremely important in remote sensing of coastal water constituents as well as in remote sensing of submerged targets and different bottom types such as corals, sea grasses and sand.

  15. Acidification of subsurface coastal waters enhanced by eutrophication

    EPA Science Inventory

    Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...

  16. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  17. Polymorphic microsatellite DNA markers for the Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Pause, K.C.; Nourisson, C.; Clark, A.; Kellogg, M.E.; Bonde, R.K.; McGuire, P.M.

    2007-01-01

    Florida manatees (Trichechus manatus latirostris) are marine mammals that inhabit the coastal waters and rivers of the southeastern USA, primarily Florida. Previous studies have shown that Florida manatees have low mitochondrial DNA variability, suggesting that nuclear DNA loci are necessary for discriminatory analyses. Here we report 10 polymorphic microsatellite loci with an average of 4.2 alleles per locus, and average heterozygosity of 50.1%. These loci have been developed for use in population studies, parentage assignment, and individual identification. ?? 2007 Blackwell Publishing Ltd.

  18. Evaluating Radiometric Sensitivity of LandSat 8 Over Coastal-Inland Waters

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Wei, Jian-Wei; Shaaf, Crystal B.; Schott, John R.

    2014-01-01

    The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends its potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at top-of-atmosphere (TOA) and whether the changes are resolvable at TOA (focal plane) relative to OLI's overall noise.

  19. Identification and spatial patterns of coastal water pollution sources based on GIS and chemometric approach.

    PubMed

    Zhou, Feng; Guo, Huai-Cheng; Liu, Yong; Hao, Ze-Jia

    2007-01-01

    Comprehensive and joint applications of GIS and chemometric approach were applied in identification and spatial patterns of coastal water pollution sources with a large data set (5 years (2000-2004), 17 parameters) obtained through coastal water monitoring of Southern Water Control Zone in Hong Kong. According to cluster analysis the pollution degree was significantly different between September-next May (the 1st period) and June-August (the 2nd period). Based on these results, four potential pollution sources, such as organic/eutrophication pollution, natural pollution, mineral/anthropic pollution and fecal pollution were identified by factor analysis/principal component analysis. Then the factor scores of each monitoring site were analyzed using inverse distance weighting method, and the results indicated degree of the influence by various potential pollution sources differed among the monitoring sites. This study indicated that hybrid approach was useful and effective for identification of coastal water pollution source and spatial patterns. PMID:17966867

  20. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  1. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction. PMID:15869183

  2. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  3. The impact of mariculture on nutrient dynamics and identification of the nitrate sources in coastal waters.

    PubMed

    Kang, Pingping; Xu, Shiguo

    2016-01-01

    Reclamation along coastal zones is a method that has been used to relieve the problems of strained resources and land. Aquaculture, as one of the major man-made activities in reclamation areas, has an environmental impact on coastal waters. The effluents from aquaculture ponds are known to enrich the levels of nutrients such as nitrogen and phosphate. The goals of the present study are to evaluate the environmental impact of mariculture on coastal waters in the east coast of Laizhou Bay, China, and to identify the nitrate sources. Monitoring the concentrations of dissolved nitrogen and phosphate was used to assess their impact on the water quality of coastal waters. A dual isotope (δ(15)N-NO3(-) and δ(18)O-NO3(-)) approach was used to identify the nitrate sources. Higher dissolved nitrogen concentrations (NH4(+) and NO3(-)) than PO4(3-) concentrations associated with enriched δ(15)N-NO3(-) values were observed in the drainage channels, sea cucumber ponds, and groundwater, which indicated that aquaculture activity has more influence on nitrogen nutrients than on phosphate nutrients. In this coastal area with seawater intrusion, nitrogen released from sea cucumber ponds accumulated in nearshore water and migrated in the offshore direction in groundwater currents. This behavior results in nitrogen enrichment in groundwater within the hinterland. Isotopic data indicate that mixing of multiple nitrate sources exists in groundwater, and nitrogen from mariculture is the main source. PMID:26358214

  4. Organic micropollutants in coastal waters from NW Mediterranean Sea: sources distribution and potential risk.

    PubMed

    Sánchez-Avila, Juan; Tauler, Romà; Lacorte, Silvia

    2012-10-01

    This study provides a first estimation on the sources, distribution and risk of organic micropollutants (OMPs) in coastal waters from NW Mediterranean Sea. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorinated pesticides, polybrominated diphenyl ethers, phthalates and alkylphenols were analyzed by solid phase extraction and gas chromatography coupled to tandem mass spectrometry (SPE-GC-EI-MS/MS). River waters and wastewater treatment plant effluents discharging to the sea were identified as the main sources of OMPs to coastal waters, with an estimated input amount of around of 25,800 g d(-1). The concentration of ΣOMPs in coastal areas ranged from 17.4 to 8442 ng L(-1), and was the highest in port waters, followed by coastal and river mouth seawaters. A summarized overview of the patterns and sources of OMP contamination on the investigated coastal sea waters of NW Mediterranean Sea, as well as of their geographical distribution was obtained by Principal Component Analysis of the complete data set after its adequate pretreatment. Alkylphenols, bisphenol A and phthalates were the main contributors to ΣOMPs and produced an estimated significant pollution risk for fish, algae and the sensitive mysid shrimp organisms in seawater samples. The combination of GC-MS/MS, chemometrics and risk analysis is proven to be useful for a better control and management of OMP discharges. PMID:22706016

  5. Remote sensing for water quality and biological measurements in coastal waters

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Harriss, R. C.

    1980-01-01

    Recent remote sensing experiments in the United States' coastal waters indicate that certain biological and water quality parameters have distinctive spectral characteristics. Data outputs from remote sensors, to date, include: (1) high resolution measurements to determine concentrations and distributions of total suspended particulates, temperature, salinity, chlorophyll a, and phytoplankton color group associations from airborne and/or satellite platforms, and (2) low resolution measurements of total suspended solids, temperature, ocean color, and possibly chlorophyll from satellite platforms. A summary of platforms, sensors and parameters measured is given. Remote sensing, especially when combined with conventional oceanographic research methods, can be useful in such high priority research areas as estuarine and continental shelf sediment transport dynamics, transport and fate of marine pollutants, marine phytoplankton dynamics, and ocean fronts.

  6. Antecedent Water Content Effects on Runoff and Sediment Yields From Two Coastal Plain Utisols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly-weathered, low-carbon, intensively cropped, drought-prone Coastal Plain soils of Georgia are susceptible to runoff and soil loss, especially at certain times of the year when soil water contents are elevated. Our objective was to quantify the effects of antecedent water content (AWC) on r...

  7. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...