Science.gov

Sample records for flow activation energy

  1. Characterization of activation energy for flow in metallic glasses

    SciTech Connect

    Wang, J. Q.; Wang, W. H.; Liu, Y. H.; Bai, H. Y.

    2011-01-15

    The molar volume (V{sub m}) scaled flow activation energy ({Delta}E), namely as the activation energy density {rho}{sub E}={Delta}E/V{sub m}, is proposed to describe the flow of metallic glasses. Based on the energy landscape, both the shear and bulk moduli are critical parameters accounting for the {rho}{sub E} of both homogeneous and inhomogeneous flows in metallic glasses. The expression of {rho}{sub E} is determined experimentally to be a simple expression of {rho}{sub E}=(10/11)G+(1/11)K. The energy density perspective depicts a realistic picture for the flow in metallic glasses and is suggestive for understanding the glass transition and deformation in metallic glasses.

  2. Energy flow in passive and active 3D cochlear model

    SciTech Connect

    Wang, Yanli; Steele, Charles; Puria, Sunil

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  3. Energy flow in passive and active 3D cochlear model

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Puria, Sunil; Steele, Charles

    2015-12-01

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  4. Determination of the Arrhenius Activation Energy Using a Temperature-Programmed Flow Reactor.

    ERIC Educational Resources Information Center

    Chan, Kit-ha C.; Tse, R. S.

    1984-01-01

    Describes a novel method for the determination of the Arrhenius activation energy, without prejudging the validity of the Arrhenius equation or the concept of activation energy. The method involves use of a temperature-programed flow reactor connected to a concentration detector. (JN)

  5. Neuroimaging and Neuroenergetics: Brain Activations as Information-Driven Reorganization of Energy Flows

    ERIC Educational Resources Information Center

    Strelnikov, Kuzma

    2010-01-01

    There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…

  6. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  7. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  8. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  9. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  10. The role of high energy photons and particles in accretion flows in active nuclei

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.

    1988-01-01

    The creation of high energy pairs and photons in the conversion of gravitational to thermal energy is a process common to most accretion models for active galactic nuclei. These are two observational methods designed to explore this process: direct observations of the hot photons, through hard X-ray and gamma-ray data, and indirect observations of the energetic pairs, through their polarized, nonthermal low frequency radiation. However, interpretation of these observations in terms of the conditions in the inner accretion flow requires understanding of the various processes which modify the pair and photon distributions within the hot, dense core. These processes include opacity effects within the pair/photon plasma, Compton losses on external photons, further acceleration of the pairs and further radiation by the pairs, and the dynamic interaction of the pair/photon plasma with the surrounding gas. Current observational and theoretical work is reviewed and new directions are considered in a search for constraints on or tests of accretion models of active nuclei.

  11. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    SciTech Connect

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  12. The Flow of Energy

    NASA Astrophysics Data System (ADS)

    Znidarsic, F.; Robertson, G. A.

    In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).

  13. Thermally Activated Energy and Flux-flow Hall Effect of Fe1+y(Te1+xSx)z

    SciTech Connect

    Petrovic, C.; Lei, H.; Hu, R.; Choi, E.S.

    2010-10-19

    Thermally activated flux flow (TAFF) and flux-flow Hall effect (FFHE) of Fe(Te,S) single crystal in the mixed state are studied in magnetic fields up to 35 T. Thermally activated energy (TAE) is analyzed using conventional Arrhenius relation and modified TAFF theory which is closer to experimental results. The results indicate that there is a crossover from single-vortex pinning region to collective creep pinning region with increasing magnetic field. The temperature dependence of TAE is different for H {parallel} ab and H {parallel} c. On the other hand, the analysis of FFHE in the mixed state indicates that there is no Hall sign reversal. We also observe scaling behavior |{rho}{sub xy}(H)|=A{rho}{sub xx}(H){sup {beta}}.

  14. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    PubMed

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs. PMID:27267589

  15. Fluid flow nozzle energy harvesters

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  16. US energy flow, 1981

    NASA Astrophysics Data System (ADS)

    Briggs, C. K.; Borg, I. Y.

    1982-10-01

    Flow diagrams to describe the US energy situation are given. In 1981 the energy consumption was 73 quads (or 73 times 10 to the 15th power Btu). Use was down from 75 quads in 1980. Oil continues to dominate the picture as it comprises 45% of the total energy used. Net oil use (exclusive of oil purchased for the Strategic Petroleum Reserve and Exports) fell 8%; oil imports declined 14%. In contrast to oil, use of natural gas and coal remained at 1980 levels. Decreased use of residual oils, principally for electric power generating, account for much of the drop in oil use. Increased use of coal and nuclear energy for power generation almost compensated for the decrease in use of oil in that end use. Transmitted power remained at 1980 levels. The remainder of the drop in energy usage is attributed to price driven conservation, increased efficiencies in end use and the recession that prevailed during most of the year. The share of the energy drop attributable to the recession is estimated by various analysts to be on the order of 40 to 50%.

  17. The change of activation energy in microchannel laminar flow as demonstrated by kinetic analysis of the DNA duplex-coil equilibrium.

    PubMed

    Yamashita, Kenichi; Miyazaki, Masaya; Yamaguchi, Yoshiko; Nakamura, Hiroyuki; Maeda, Hideaki

    2008-07-01

    This paper presents the capability of changing the activation energy of chemical reactions using microchannel laminar flow. Kinetic parameters of the duplex-coil equilibrium of DNA oligomers were studied by measuring the hysteresis between denaturation-renaturation curves using an in-house temperature-controllable microchannel-type flow cell. For this study, DNA oligomers were used because they allow physicochemical analysis and theoretical discussion. Kinetic parameters of the duplex-coil equilibrium of DNA oligomers were obtained by measuring the denaturation-renaturation hysteresis curves. Both cooling and heating curves were shifted to the high-temperature side at higher flow rates. The renaturation reaction was influenced by a slower flow rate. The effect of the slower flow rate was more pronounced for renaturation than denaturation reactions. The magnitude of the activation energies of association decreased as the flow rate increased, but that of the activation energies of the dissociation increased as the flow rate increased. Overall, these results suggest that chemical reactions' change of activation energy depends on the flow rate and the DNA molecular size. PMID:18584094

  18. Extracting energy from natural flow

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.; Wilhold, G. A.

    1980-01-01

    Three concepts for extracting energy from wind, waterflow, and tides utilize flow instability to generate usable energy. Proposed converters respond to vortex excitation motion, galloping or plunging motion, and flutter. Fluid-flow instability is more efficient in developing lift than is direct flow.

  19. 2007 Estimated International Energy Flows

    SciTech Connect

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  20. A Critical Review of Thermodiffusion Models: Role and Significance of the Heat of Transport and the Activation Energy of Viscous Flow

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2009-06-01

    In this paper thermodiffusion models developed to estimate the thermal diffusion factor in nonideal liquid mixtures are reviewed; the merits and shortcomings of each model are discussed in detail. Most of these models are multicomponent in principle; however our focus here is on binary mixtures. Two rather different groups of models are identified: models needing a matching parameter to be obtained usually from the outside of thermodynamics, and the self-contained or independent models. Derivation of the matching parameter models using linear non-equilibrium thermodynamics and the details of how to find the matching parameters are investigated. The physical meaning of parameters such as the net heat of transport and the activation energy of viscous flow is elucidated, as the literature is overwhelmed with confusing and misleading information. The so-called dynamic and static models and their relations to the matching and non-matching parameter models are also discussed. We conclude that modeling the net heat of transport by the activation energy of self-diffusion may provide better results than approximating it by the activation energy of viscous flow. Nonetheless, the matching parameter models, which use the activation energy of viscous flow, are more dynamic and predict the thermal diffusion factor better than the non-matching parameter or static models, such as those of Kempers and Haase.

  1. Carbon Energy Flows Belowground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants use photosynthesis to convert carbon dioxide in the atmosphere and energy from sunlight into energy-containing, carbon-based foodstuffs (i.e. carbohydrates such as sugars and starches) that provide the building blocks for all life on Earth. Without photosynthesis, sunlight would not be a goo...

  2. US energy flow, 1990

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1991-06-01

    Energy consumption in the US changed only slightly in 1990. Transportation used was close to 1988 and 1989 levels. Improvements in automobile efficiency were compensated by an increase in the number of miles driven. A larger energy use in the industrial sector was offset by decreases in the residential/commercial sector. Energy use in the latter sector was influenced by a relatively mild, nation-wide summer and winter. All end-use sectors were affected by the high fuel prices related to the Kuwait-Iraq war in the last half of the year and by an attendant economic downturn. Electrical use rose slightly and thus deviated from the 3-4% annual increases recorded in the previous decade. Nuclear energy's contribution to electrical generation increased to almost 21%, and capacity factors reached 66%, an all time high in the US. Renewable sources of energy apart from hydroelectric power showed negligible growth. Domestic natural gas and coal production rose, and oil production continued its steady decline. As oil constitutes 41% of US energy consumption, failing domestic production has been augmented by imports. Collectively energy imports constituted two-thirds of the US trade deficit in 1990. The ratio between energy consumption and GNP declined slightly in 1990 as it has for almost every year since 1972. The Services'' component of the GNP increased in 1990 and the Goods'' and Structures'' components declined in keeping with an even longer trend. 29 refs., 7 figs., 4 tabs.

  3. Vibrational energy flow in substituted benzenes

    NASA Astrophysics Data System (ADS)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  4. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  5. Local flow control for active building facades

    NASA Astrophysics Data System (ADS)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  6. Vibrating surface actuators for active flow control

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Clingman, Dan J.

    2002-07-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.

  7. Activation energy measurements of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature sweeps of cheeses using small amplitude oscillatory shear tests produced values for activation energy of flow (Ea) between 30 and 44 deg C. Soft goat cheese and Queso Fresco, which are high-moisture cheeses and do not flow when heated, exhibited Ea values between 30 and 60 kJ/mol. The ...

  8. Activation Energy

    NASA Technical Reports Server (NTRS)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  9. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  10. Energy and material flows of megacities

    PubMed Central

    Kennedy, Christopher A.; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J.; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran

    2015-01-01

    Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world’s 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001–2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth. PMID:25918371

  11. Energy and material flows of megacities.

    PubMed

    Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran

    2015-05-12

    Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth. PMID:25918371

  12. Dissipative control of energy flow in interconnected systems

    NASA Technical Reports Server (NTRS)

    Kishimoto, Y.; Bernstein, D. S.; Hall, S. R.

    1993-01-01

    Dissipative energy flow controllers are designed for interconnected modal subsystems. Active feedback controllers for vibration suppression are then viewed as either an additional subsystem or a dissipative coupling. These controllers, which are designed by the LQG positive real control approach, maximize energy flow from a specified modal subsystem.

  13. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  14. California energy flow in 1992

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1994-04-01

    For the past 16 years energy flow diagrams for the State of California have been prepared from available data by members of the Lawrence Livermore National Laboratory. They have proven to be useful tools in graphically expressing energy supply and use in the State as well as illustrating the difference between particular years and between the State and the US as a whole. As far as is possible, similar data sources have been used to prepare the diagrams from year to year and identical assumptions{sup la-le} concerning conversion efficiencies have been made in order to minimize inconsistencies in the data and analyses. Sources of data used in this report are given in Appendix B and C; unavoidably the sources used over the 1976--1993 period have varied as some data bases are no longer available. In addition, we continue to see differences in specific data reported by different agencies for a given year. In particular, reported data on supply and usage in industrial/commercial/residential end-use categories have shown variability amongst the data gathering agencies, which bars detailed comparisons from year to year. Nonetheless, taken overall, valid generalizations can be made concerning gross trends and changes.

  15. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    SciTech Connect

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  16. Release of halide ions from the buried active site of the haloalkane dehalogenase LinB revealed by stopped-flow fluorescence analysis and free energy calculations.

    PubMed

    Hladilkova, Jana; Prokop, Zbynek; Chaloupkova, Radka; Damborsky, Jiri; Jungwirth, Pavel

    2013-11-21

    Release of halide ions is an essential step of the catalytic cycle of haloalkane dehalogenases. Here we describe experimentally and computationally the process of release of a halide anion from the buried active site of the haloalkane dehalogenase LinB. Using stopped-flow fluorescence analysis and umbrella sampling free energy calculations, we show that the anion binding is ion-specific and follows the ordering I(-) > Br(-) > Cl(-). We also address the issue of the protonation state of the catalytic His272 residue and its effect on the process of halide release. While deprotonation of His272 increases binding of anions in the access tunnel, we show that the anionic ordering does not change with the switch of the protonation state. We also demonstrate that a sodium cation could relatively easily enter the active site, provided the His272 residue is singly protonated, and replace thus the missing proton. In contrast, Na(+) is strongly repelled from the active site containing the doubly protonated His272 residue. Our study contributes toward understanding of the reaction mechanism of haloalkane dehalogenase enzyme family. Determination of the protonation state of the catalytic histidine throughout the catalytic cycle remains a challenge for future studies. PMID:24151979

  17. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  18. Active combustion flow modulation valve

    DOEpatents

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  19. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  20. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  1. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  2. Thermal energy scavenger (flow control)

    SciTech Connect

    Hochstein, P.A.; Milton, H.W.; Pringle, W.L.

    1981-12-22

    A thermal energy scavenger assembly is described including a plurality of temperature-sensitive wires made of material which exhibits shape memory due to a thermoelastic, martensitic phase transformation. The wires are placed in tension between fixed and movable plates which are, in turn, supported by a pair of wheels which are rotatably supported by a housing for rotation about a central axis. A pair of upper and lower cams are fixed to the housing and cam followers react with the respective cams. Each cam transmits forces through a pair of hydraulic pistons. One of the pistons is connected to a movable plate to which one end of the wires are connected whereby a stress is applied to the wires to strain the wires during a first phase and whereby the cam responds to the unstraining of the wires during a second phase. A housing defines fluid compartments through which hot and cold fluid passes and flows radially through the wires whereby the wires become unstrained and shorten in length when subjected to the hot fluid for causing a reaction between the cam followers and the cams to effect rotation of the wheels about the central axis of the assembly, which rotation of the wheels is extracted through beveled gearing. The wires are grouped into a plurality of independent modules with each module having a movable plate, a fixed plate and the associated hydraulic pistons and cam follower. The hydraulic pistons and cam follower of a module are disposed at ends of the wires opposite from the ends of the wires at which the same components of the next adjacent modules are disposed so that the cam followers of alternate modules react with one of the cams and the remaining cam followers of the remaining modules react with the other cam. There is also including stress limiting means in the form of coil springs associated with alternate ends of the wires for limiting the stress or strain in the wires.

  3. Distribution of Thermally Activated Plastic Events in a Flowing Glass

    NASA Astrophysics Data System (ADS)

    Rodney, David; Schuh, Christopher

    2009-06-01

    The potential energy landscape of a flowing metallic glass is revealed using the activation-relaxation technique. For a two-dimensional Lennard-Jones system initially deformed into a steady-state condition through quasistatic shear, the distribution of activation energies is shown to contain a large fraction of low-energy barriers, consistent with a highly nonequilibrium flow state. The distribution of plastic strains has a fundamentally different shape than that obtained during quasistatic simulations, exhibiting a peak at finite strain and, after elastic unloading, a nonzero mean plastic strain that evidences a polarization of the flow state. No significant correlation is found between the activation energy of a plastic event and its associated plastic strain.

  4. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  5. Flow energy harvesting -- another application of the biomimetic flapping foils

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli

    2009-11-01

    Imitating fish fins and insect wings, flapping foils are usually used for biomimetic propulsion. Theoretical studies and experiments have demonstrated that through specific combinations of heaving and pitching motions, these foils can also extract energy from incoming wind or current. Compared with conventional flow energy harvesting devices based upon rotating turbines, this novel design promises mitigated impact upon the environment. To achieve the required motions, existing studies focus on hydrodynamic mode coupling, in which a periodic pitching motion is activated and a heaving motion is then generated by the oscillating lifting force. Energy extraction is achieved through a damper in the heaving direction (representing the generator). This design involves a complicated control and activation system. In addition, there is always the possibility that the energy required to activate the system exceeds the energy recovered by the generator. We have discovered that a much simpler device without activation, a 2DOF foil mounted on a rotational spring and a damper undergoing flow-induced motions can achieve stable flow energy harvesting. Using Navier-Stokes simulations we predicted different behaviors of the system during flow-induced vibrations and identified the specific requirements to achieve controllable periodic motions essential for stable energy harvesting. The energy harvesting capacity and efficiency were also determined.

  6. Energy assessment: physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical activity is an important component of total energy expenditure, contributing to energy intake needs; it also provides certain health benefits. This review chapter provides state-of-the-art information to researchers and clinicians who are interested in developing research studies or interv...

  7. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  8. Energy flows, metabolism and translation

    PubMed Central

    Pascal, Robert; Boiteau, Laurent

    2011-01-01

    Thermodynamics provides an essential approach to understanding how living organisms survive in an organized state despite the second law. Exchanges with the environment constantly produce large amounts of entropy compensating for their own organized state. In addition to this constraint on self-organization, the free energy delivered to the system, in terms of potential, is essential to understand how a complex chemistry based on carbon has emerged. Accordingly, the amount of free energy brought about through discrete events must reach the strength needed to induce chemical changes in which covalent bonds are reorganized. The consequence of this constraint was scrutinized in relation to both the development of a carbon metabolism and that of translation. Amino acyl adenylates involved as aminoacylation intermediates of the latter process reach one of the higher free energy levels found in biochemistry, which may be informative on the range in which energy was exchanged in essential early biochemical processes. The consistency of this range with the amount of energy needed to weaken covalent bonds involving carbon may not be accidental but the consequence of the abovementioned thermodynamic constraints. This could be useful in building scenarios for the emergence and early development of translation. PMID:21930587

  9. Energy storage: Redox flow batteries go organic

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sprenkle, Vince

    2016-03-01

    The use of renewable resources as providers to the electrical grid is hampered by the intermittent and irregular nature in which they generate energy. Electrical energy storage technology could provide a solution and now, by using an iterative design process, a promising anolyte for use in redox flow batteries has been developed.

  10. Intrinsic free energy in active nematics

    NASA Astrophysics Data System (ADS)

    Thampi, Sumesh P.; Doostmohammadi, Amin; Golestanian, Ramin; Yeomans, Julia M.

    2015-10-01

    Basing our arguments on the theory of active liquid crystals, we demonstrate, both analytically and numerically, that the activity can induce an effective free energy which enhances ordering in extensile systems of active rods and in contractile suspensions of active discs. We argue that this occurs because any ordering fluctuation is enhanced by the flow field it produces. A phase diagram in the temperature-activity plane compares ordering due to a thermodynamic free energy to that resulting from the activity. We also demonstrate that activity can drive variations in concentration, but for a different physical reason that relies on the separation of hydrodynamic and diffusive time scales.

  11. Field Flows of Dark Energy

    SciTech Connect

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  12. Science Activities in Energy: Chemical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 15 activities relating to chemical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's…

  13. Science Activities in Energy: Electrical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  14. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  15. California energy flow in 1991

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1993-04-01

    Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

  16. California energy flow in 1993

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1995-04-01

    Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.

  17. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  18. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  19. Activation parameters of flow through battery separators

    NASA Technical Reports Server (NTRS)

    Blokhra, R. L.

    1983-01-01

    Studies of the hydrodynamic flow of water and 45 percent potassium hydroxide (KOH) solution through a microporous and an ion exchange separator are described. The permeability values are interpreted in terms of a pseudoactivation process. The enthalpy of activation deltaH* and the entropy of activation deltaS* were estimated from Eyring's rate equation.

  20. California energy flow in 1994

    SciTech Connect

    Borg, I.Y.; Mui, N.

    1996-09-01

    California energy consumption increased in 1994 in keeping with a recovery from the previous mild recession years. Although unemployment remained above the national average, other indicators pointed to improved economic health. Increased energy use was registered principally in the residential/commercial and transportation end-use sectors. A cooler-than-usual winter and spring was reflected in increased consumption of natural gas, the principal space-heating fuel in the state. Because of low water levels behind state dams, utilities turned to natural gas for electrical generation and to increased imports from out-of- state sources to meet demand. Other factors, such as smaller output from geothermal, biomass, and cogenerators, contributed to the need for the large increase in electrical supply from these two sources. Nonetheless, petroleum dominated the supply side of the energy equation of the state in which transportation requirements comprise more than one-third of total energy demand. About half of the oil consumed derived from California production. Onshore production has been in slow decline; however, in 1994 the decrease was compensated for by increases from federal offshore fields. Until 1994 production had been limited by regulatory restrictions relating to the movement of the crude oil to onshore refineries. State natural gas production remained at 1993 levels. The increased demand was met by larger imports from Canada through the recent expansion of Pacific Transmission Company`s 804 mile pipeline. Deregulation of the state`s utilities moved ahead in 1994 when the California Public Utilities Commission issued its proposal on how to restructure the industry. Public hearings were conducted in which the chief issues were recovery of the utilities` capital investments, conflicts with the Public Utilities Policies Act, management of power transactions between new suppliers and former utility customers, and preservation of energy conservation programs

  1. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Branover, Herman; Unger, Yeshajahu

    The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)

  2. California energy flow in 1993

    NASA Astrophysics Data System (ADS)

    Borg, I. Y.; Briggs, C. K.

    1995-04-01

    Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992-1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy's contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state's largest field, principally owned and managed by a public utility. Increases in windpower constituted 1-1/2% of the total electric supply, up slightly from 1992. Several solar photovoltaic demonstration plants were in operation, but their contribution remained small.

  3. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  4. Snowmass 2001: Jet energy flow project

    SciTech Connect

    C. F. Berger et al.

    2002-12-05

    Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms.

  5. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  6. Changing Conceptions of Activation Energy.

    ERIC Educational Resources Information Center

    Pacey, Philip D.

    1981-01-01

    Provides background material which relates to the concept of activation energy, fundamental in the study of chemical kinetics. Compares the related concepts of the Arrhenius activation energy, the activation energy at absolute zero, the enthalpy of activation, and the threshold energy. (CS)

  7. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  8. The Redox Flow System for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  9. Piezoelectric energy harvesting in internal fluid flow.

    PubMed

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  10. Piezoelectric Energy Harvesting in Internal Fluid Flow

    PubMed Central

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  11. Energy Flow in a Woodland Ecosystem.

    ERIC Educational Resources Information Center

    Aston, T. J.

    1978-01-01

    The study of energy flow in a woodland ecosystem was attempted during a seven-day field course, using simple equipment. It is possible to quantify or estimate many of the components, and the methods used are described. Suggestions are made for maximizing education return from the available time and labor. (Author/BB)

  12. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  13. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  14. Energy Adventure Center. Activity Book.

    ERIC Educational Resources Information Center

    Carlton, Linda L.

    Energy activities are provided in this student activity book. They include: (1) an energy walk; (2) forms of energy in the home; (3) energy conversion; (4) constructing a solar hot dog cooker (with instructions for drawing a parabola); (5) interviewing senior citizens to learn about energy use in the past; (6) packaging materials; (7) insulation;…

  15. Activities Handbook for Energy Education.

    ERIC Educational Resources Information Center

    DeVito, Alfred; Krockover, Gerald H.

    The purpose of this handbook is to present information about energy and to translate this information into learning activities for children. Chapter 1, "Energy: A Delicate Dilemma," presents activities intended to provide an introduction to energy and energy usage. Chapter 2, "What are the Sources of Energy?" provides background information and…

  16. Science Activities in Energy: Conservation.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 14 activities relating to energy conservation. Activities are simple, concrete experiments for fourth, fifth and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a simple card which is introduced by a question. A teacher's…

  17. Localized flow control with energy deposition

    NASA Astrophysics Data System (ADS)

    Adelgren, Russell Gene

    A series of experiments with energy deposition via laser-induced optical breakdown of air, i.e., a laser spark, have been performed. These experiments have demonstrated the possibility of using a laser spark for supersonic flow control. In the first of these experiments, Rayleigh scattering flow visualization was taken for energy deposition into quiescent air. A time sequence of images showed the post breakdown fluid motion created by the laser spark for different laser energy levels. Blast wave radius and wave speed measurements were made and correlated to five different laser energy deposition levels. Laser energy was deposited upstream of a sphere in Mach 3.45 flow. The energy was deposited one sphere diameter and 0.6 diameters upstream of the front of the sphere. The frontal surface pressure on the sphere was recorded as the laser spark perturbed region interacted with the flow about the sphere. Tests for three different energy levels and two different incident laser beam diameters were completed. It has been demonstrated that the peak surface pressure associated with the Edney IV interaction can be momentarily reduced by 30% by the interaction with the thermal spot created by the laser spark. The effects of laser energy deposition on another shock interaction phenomena were studied. Laser energy deposition was used to modify the shock structure formed by symmetric wedges at Mach 3.45 within the dual solution domain. It was demonstrated experimentally that the Mach reflection could be reduced by 80% momentarily. The numerical simulations show a transition from the stable Mach reflection to a stable regular reflection. Two energy deposition methods (electric arcing and laser energy deposition) were used to force and control compressible mixing layers of axisymmetric jets. The energy deposition forcing methods have been experimentally investigated with the schlieren technique, particle image velocimetry, Mie scattering, and static pressure probe diagnostic

  18. Energy dissipation in sheared granular flows

    SciTech Connect

    Karion, A.; Hunt, M.L.

    1999-11-01

    Granular material flows describe flows of solid particles in which the interstitial fluid plays a negligible role in the flow mechanics. Examples include the transport of coal, food products, detergents, pharmaceutical tablets, and toner particles in high-speed printers. Using a two-dimensional discrete element computer simulation of a bounded, gravity-free Couette flow of particles, the heat dissipation rate per unit area is calculated as a function of position in the flow as well as overall solid fraction. The computation results compare favorably with the kinetic theory analysis for rough disks. The heat dissipation rate is also measured for binary mixtures of particles for different small to large solid fraction ratios, and for diameter ratios of ten, five, and two. The dissipation rates increase significantly with overall solid fraction as well as local strain rates and granular temperatures. The thermal energy equation is solved for a Couette flow with one adiabatic wall and one at constant temperature. Solutions use the simulation measurements of the heat dissipation rate, solid fraction, and granular temperature to show that the thermodynamic temperature increases with solid fraction and decreases with particle conductivity. In mixtures, both the dissipation rate and the thermodynamic temperature increase with size ratio and with decreasing ratio of small to large particles.

  19. Science Activities in Energy: Wind Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  20. Calculated viscosity-distance dependence for some actively flowing lavas

    NASA Technical Reports Server (NTRS)

    Pieri, David

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect.

  1. Whistler Wave Energy Flow in the Plasmasphere

    NASA Astrophysics Data System (ADS)

    Kletzing, Craig; Santolik, Ondrej; Kurth, William; Hospodarsky, George; Christopher, Ivar; Bounds, Scott

    2016-07-01

    The measured wave properties of plasmaspheric hiss are important to constrain models of the generation of hiss as well as its propagation and amplification. For example, the generation mechanism for plasmaspheric hiss has been suggested to come from one of three possible mechanisms: 1) local generation and amplification, 2) whistlers from lightning, and 3) chorus emissions which have refracted into the plasmasphere. The latter two mechanisms are external sources which produce an incoherent hiss signature as the original waves mix in a stochastic manner, propagating in both directions along the background magnetic field. In contrast, local generation of plasmaspheric hiss within the plasmasphere should produce a signature of waves propagating away from the source region. For all three mechanisms scattering of energetic particles into the loss cone transfers some energy from the particles to the waves. By examining the statistical characteristics of the Poynting flux of plasmaspheric hiss, we can determine the properties of wave energy flow in the plasmasphere. We report on the statistics of observations from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument on the Van Allen Probes for periods when the spacecraft is inside the plasmasphere. We find that the Poynting flux associated with plasmaspheric hiss has distinct and unexpected radial structure which shows that there can be significant energy flow towards the magnetic equator. We show the properties of this electromagnetic energy flow as a function of position and frequency.

  2. Terrestrial Photogrammetry of Active Lava Flows

    NASA Astrophysics Data System (ADS)

    James, M.; Robson, S.

    2006-12-01

    In order to improve our understanding of how lavas flow, cool and stop, accurate and frequent DEMs and associated temperature measurements of active flows are required. We describe the use of terrestrial photogrammetric techniques which allow detailed measurements to be carried out rapidly, frequently and over relevant spatial scales. Furthermore, the equipment required is sufficiently small and light to be easily deployed in remote areas. Images of lava flows from Etna (Sicily) and Hawai'i have been acquired, representing cases involving different length scales, observation distances and advance rates. On Etna, flow-front regions and distal channels of aa flows were studied over distances of up to 400 m. Advance rates were relatively slow (< 4 m hr-1) over flow-fronts ~7 m in height and up to ~30 m in width. The slow rate of change allowed topographic surfaces to be constructed from images collected from multiple locations using a single camera. Sequential surfaces were uses to monitor variations in the volumetric flux at the flow fronts. On Hawai'i, smaller spatial scales were required (distances <30 m) to cover the advance and subsequent inflation of pahoehoe toes. In contrast to the Etna case, the higher rate of lava advance precluded the use of one roving camera to provide topographic data. Hence, DEMs were generated from image pairs acquired using two synchronised and tripod-mounted cameras. Image pairs were collected every minute and the resulting topography can be used to rectify simultaneously collected thermal data. The different problems associated with data collection and processing in these two cases are discussed. This includes image matching issues and factors resulting from the differences between the rubbly aa and the relatively smooth pahoehoe surfaces.

  3. Graphene plasmonic lens for manipulating energy flow

    NASA Astrophysics Data System (ADS)

    Wang, Guoxi; Liu, Xueming; Lu, Hua; Zeng, Chao

    2014-02-01

    Manipulating the energy flow of light is at the heart of modern information and communication technologies. Because photons are uncharged, it is still difficult to effectively control them by electrical means. Here, we propose a graphene plasmonic (GP) lens to efficiently manipulate energy flow by elaborately designing the thickness of the dielectric spacer beneath the graphene sheet. Different from traditional metal-based lenses, the proposed graphene plasmonic lens possesses the advantages of tunability and excellent confinement of surface plasmons. It is found that the proposed lens can be utilized to focus and collimate the GP waves propagating along the graphene sheet. Particularly, the lens is dispersionless over a wide frequency range and the performance of lens can be flexibly tuned by adjusting the bias voltage. As an application of such a lens, the image transfer of two point sources with a separation of λ0/30 is demonstrated.

  4. Graphene plasmonic lens for manipulating energy flow

    PubMed Central

    Wang, Guoxi; Liu, Xueming; Lu, Hua; Zeng, Chao

    2014-01-01

    Manipulating the energy flow of light is at the heart of modern information and communication technologies. Because photons are uncharged, it is still difficult to effectively control them by electrical means. Here, we propose a graphene plasmonic (GP) lens to efficiently manipulate energy flow by elaborately designing the thickness of the dielectric spacer beneath the graphene sheet. Different from traditional metal-based lenses, the proposed graphene plasmonic lens possesses the advantages of tunability and excellent confinement of surface plasmons. It is found that the proposed lens can be utilized to focus and collimate the GP waves propagating along the graphene sheet. Particularly, the lens is dispersionless over a wide frequency range and the performance of lens can be flexibly tuned by adjusting the bias voltage. As an application of such a lens, the image transfer of two point sources with a separation of λ0/30 is demonstrated. PMID:24517981

  5. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage. PMID:25010206

  6. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Lee, Hyeong Jae; Kim, Namhyo; Sun, Kai; Corbett, Gary; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffery L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro

    2014-01-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  7. Flow energy piezoelectric bimorph nozzle harvester

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  8. Energy flow and energy dissipation in a free surface.

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cressman, John

    2005-11-01

    Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.

  9. U.S. Energy Flow - 1999

    SciTech Connect

    Kaiper, G V

    2001-03-01

    Lawrence Livermore National Laboratory (LLNL) has prepared similar flow charts of U.S. energy consumption since 1972. The chart follows the flow of individual fuels and compares these on the basis of a common energy unit of quadrillion British thermal units (Btu). A quadrillion, or ''quad,'' is 10{sup 15}. One Btu is the quantity of heat needed to raise the temperature of 1 pound of water by 1 F at or near 39.2 F. The width of each colored line across this chart is in proportion to the amount of quads conveyed. (Exception: lines showing extremely small amounts have been made wide enough to be clearly visible.) In most cases, the numbers used in this chart have been rounded to the nearest tenth of a quad, although the original data was published in hundredths or thousandths of a quad. As a consequence of independent rounding, some of the summary numbers may not appear to be a precise total of their various components. The first chart in this document uses quadrillion Btu's to conform with data from the U.S. Department of Energy's Energy Information Administration (EIA). However, the second chart is expressed in exajoules. A joule is the metric unit for heat. One Btu equals 1,055.06 joules; and one quadrillion Btu's equals 1.055 exajoules (an exajoule is 10{sup 18} joules).

  10. Soap film flow visualization investigations of oscillating wing energy harvesters

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2015-03-01

    With increasing population and proliferation of wireless electronics, significant research attention has turned to harvesting energy from ambient sources such as wind and water flows at scales ranging from micro-watt to mega-watt levels. One technique that has recently attracted attention is the application of bio-inspired flapping wings for energy harvesting. This type of system uses a heaving and pitching airfoil to extract flow energy and generate electricity. Such a device can be realized using passive devices excited by aeroelastic flutter phenomena, kinematic mechanisms driven by mechanical linkages, or semi-active devices that are actively controlled in one degree of freedom and passively driven in another. For these types of systems, numerical simulations have showed strong dependence on efficiency and vortex interaction. In this paper we propose a new apparatus for reproducing arbitrary pitch-heave waveforms to perform flow visualization experiments in a soap film tunnel. The vertically falling, gravity driven soap film tunnel is used to replicate flows with a chord Reynolds number on the order of 4x104. The soap film tunnel is used to investigate leading edge vortex (LEV) and trailing edge vortex (TEV) interactions for sinusoidal and non-sinusoidal waveforms. From a qualitative analysis of the fluid structure interaction, we have been able to demonstrate that the LEVs for non-sinusoidal motion convect faster over the airfoil compared with sinusoidal motion. Signifying that optimal flapping frequency is dependent on the motion profile.

  11. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  12. Optimal energy growth in swept Hiemenz flow

    NASA Astrophysics Data System (ADS)

    Guegan, Alan; Huerre, Patrick; Schmid, Peter

    2006-11-01

    It has been shown in Gu'egan, Schmid & Huerre 2006 that the kinetic energy of optimal G"ortler-H"ammerlin (GH) perturbations in swept Hiemenz flow can be transiently amplified by two orders of magnitude at Reynolds numbers ranging from 400 to 1000 and spanwise wavenumbers from 0.1 to 0.5. In this configuration an array of counter-rotating chordwise vortices is compressed by the spanwise shear, as in the well-known Orr mechanism. We show that stronger transient growth can be achieved when the GH assumption is relaxed. In this case the optimal initial perturbation consists in vorticity sheets stacked in the chordwise direction, at a small angle from the symmetry plane of the base flow. Although the spatial structure of the GH perturbations is lost, wall-normal-spanwise plane cuts show that the amplification mechanism is mostly unchanged. The GH assumption thus provides a reasonably good estimate for transient energy amplification levels in swept Hiemenz flow. Extension of this analysis to the spatial growth problem is under way and preliminary results will be shown.

  13. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  14. Colony Rheology: Active Arthropods Generate Flows

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Mann, Michael; Charbonneau, Patrick

    2015-03-01

    Hydrodynamic-like flows are observed in biological systems as varied as bacteria, insects, birds, fish, and mammals. Both the phenomenology (e.g. front instabilities, milling motions) and the interaction types (hydrodynamic, direct contact, psychological, excluded-volume) strongly vary between systems, but a question common to all of them is to understand the role of particle-scale fluctuations in controlling large-scale rheological behaviors. We will address these questions through experiments on a new system, Tyrolichus casei (cheese mites), which live in dense, self-mixing colonies composed of a mixture of living mites and inert flour/detritus. In experiments performed in a Hele-Shaw geometry, we observe that the rheology of a colony is strongly dependent on the relative concentration of active and inactive particles. In addition to spreading flows, we also observe that the system can generate convective circulation and auto-compaction.

  15. Energy flow for electric power system deregulation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  16. Orographic Flow over an Active Volcano

    NASA Astrophysics Data System (ADS)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  17. [Energy flow in arctic aquatic ecosystems

    SciTech Connect

    Schell, D.M.

    1985-12-31

    This study is aimed at determining the major pathways of energy flow in freshwater ecosystems of the Alaskan arctic coastal plain. Selected sites for study of the processes supplying energy to streams and lakes to verify the generality of past findings will be surveyed for collection of organisms including the Colville River drainage and the lake region around Teshekpuk Lake. Specific objectives are to collect food web apex organisms (fish and birds) from a variety of sites in the coastal plain to verify descriptive models of ecosystem structure and food web pathways and to compare the utilization rates by insect larvae of fresh litter and in situ primary production relative to more refractory peaty materials through seasonal sampling for isotopic analysis.

  18. [Energy flow in arctic aquatic ecosystems

    SciTech Connect

    Schell, D.M.

    1985-01-01

    This study is aimed at determining the major pathways of energy flow in freshwater ecosystems of the Alaskan arctic coastal plain. Selected sites for study of the processes supplying energy to streams and lakes to verify the generality of past findings will be surveyed for collection of organisms including the Colville River drainage and the lake region around Teshekpuk Lake. Specific objectives are to collect food web apex organisms (fish and birds) from a variety of sites in the coastal plain to verify descriptive models of ecosystem structure and food web pathways and to compare the utilization rates by insect larvae of fresh litter and in situ primary production relative to more refractory peaty materials through seasonal sampling for isotopic analysis.

  19. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  20. Dark Energy Domination In The Virgocentric Flow

    NASA Astrophysics Data System (ADS)

    Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.

    2011-04-01

    Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555

  1. Material Flows in an Active Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Baskaran, Aparna; Hagan, Michael; Dogic, Zvonimir

    Active matter systems are composed of energy consuming constituent components which drive far-from-equilibrium dynamics. As such, active materials exhibit energetic states which would be unfavorable in passive, equilibrium materials. We study one such material; an active nematic liquid crystal which exists in a dynamical steady state where +/-1/2 defects are continuously generated and annihilated at a constant rate. The active nematic is composed of micron-sized microtubule filaments which are highly concentrated into a quasi-2D film that resides on an oil-water interface. Kinesin motor proteins drive inter-filament sliding which results in net extensile motion of the microtubule film. Notably, we find a mesophase in which motile +1/2 defects, acquire system-spanning orientational order. Currently, we are tracking material flows generated by the active stresses in the system to measure length scales at which energy is dissipated, and to measure the relation between internally generated flows and bend in the nematic field.

  2. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  3. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  4. High energy density Z-pinch plasmas using flow stabilization

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Bowers, C. A.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Knecht, S. D.; Lambert, K. K.; Lowrie, W.; Ross, M. P.; Weed, J. R.

    2014-12-01

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes - Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling

  5. U.S. energy flow, 1992

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1993-10-01

    This report discusses energy consumption in the United States which rose slightly in 1992, reflecting partial recovery from the economic recession that prevailed during the previous year. Increases were registered in all major end use sectors with the largest occurring in the industrial sector. Energy consumed for transportation, which reflects improved passenger fleet efficiencies and a growing population as well as economic activity, returned to 1989--1990 levels. The United States depended on petroleum for 41 % of its energy supply. Imports of crude oil and petroleum products increased to compensate for decline in domestic production. Imports rose to 44% of supply. Because domestic production of natural gas was close to 1991`s, increased demand was accommodated by larger (16%) imports from Canada. Coal production was virtually unchanged from 1991 and thus well below 1990 production. Nonetheless coal supplied about one quarter of US energy needs, primarily for electrical generation. For the third year electricity transmitted by utilities departed from historic growth trends; it remained at 1991 levels. The Energy Policy Act of 1992 was signed into law in October. Among its many provisions, this act encourages independent power producers to compete with the utilities in wholesale production of electricity, streamlines the licensing of nuclear power plants, promotes the development of renewable energy sources through tax incentives, imposes efficiency standards on many manufacturing items, requires federal and private fleets to buy vehicles that run on alternative fuels, and requires the Secretary of Energy to develop a plan to decrease oil consumption, increase the use of renewable energy, improve conversion efficiencies, and limit the emission of greenhouse gases.

  6. Deuterons and flow: At intermediate AGS energies

    SciTech Connect

    Kahana, D.E.; Pang, Y. |; Kahana, S.H.

    1996-06-01

    A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density ({rho}{sub 0}) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 {rho}{sub 0} is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered.

  7. High energy sodium based room temperature flow batteries

    NASA Astrophysics Data System (ADS)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  8. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    SciTech Connect

    Leitner, David M.; Pandey, Hari Datt

    2015-10-14

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes.

  9. The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.

    Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To

  10. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1988-12-31

    Natural isotope abundances to trace major pathways of energy flow to consumers in Imnavait Creek and the tundra ecosystem of the R4D watershed with comparative work in the coastal tundra. Our overall goals are to a determine if carbon is accumulating in upland and coastal tundra; determine the role of eroded peat carbon in the aquatic ecosystem; and to determine the distribution of carbon and nitrogen isotopes in the tundra-pond ecosystem to establish the feasibility of using natural differences as tracers. Past work on fishes, birds, and the prey species of insects and aquatic crustaceans has shown that peat carbon is very important in the energy supply supporting the food webs over the course of the year. Obligate freshwater fishes from the coastal lakes and Colville River have been shown to contain up to 60 percent peat carbon at the end of the winter season. In contrast, migratory shorebirds and passerines contained much smaller radiocarbon abundances in summer, indicating a major shift to recent in situ primary production in pond and stream ecosystems in summer months. For the past two years, we have narrowed our focus to the processes supplying carbon to the beaded stream system at MS-117 and have concentrated on determining the transfer and accumulation rates of carbon in the watershed.

  11. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    PubMed

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  12. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    PubMed Central

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  13. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    ERIC Educational Resources Information Center

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  14. U.S. Energy Flow -- 1995

    SciTech Connect

    Miller, H; Mui, N; Pasternak, A

    1997-12-01

    Energy consumption in 1995 increased slightly for the fifth year in a row (from 89 to 91 quadrillion [1015Btu). U.S. economic activity slowed from the fast-paced recovery of 1994, even with the continued low unemployment rates and low inflation rates. The annual increase in U.S. real GDP dropped to 4.6% from 1994's increase of 5.8%. Energy consumption in all major end-use sectors surpassed the record-breaking highs achieved in 1994, with the largest gains (2.5%) occurring in the residential/commercial sector. Crude oil imports decreased for the first time this decade. There was also a decline in domestic oil production. Venezuela replaced Saudi Arabia as the principal supplier of imported oil. Imports of natural gas, mainly from Canada, continued to increase. The demand for natural gas reached a level not seen since the peak levels of the early 1970s and the demand was met by a slight increase in both natural gas production and imports. Electric utilities had the largest percentage increase of n.atural gas consumption, a climb of 7% above 1994 levels. Although coal production decreased, coal exports continued to make a comeback after 3 years of decline. Coal once again become the primary U.S. energy export. Title IV of the Clean Air Act Amendments of 1990 (CAAA90) consists of two phases. Phase I (in effect as of January 1, 1995) set emission restrictions on 110 mostly coal-burning plants in the eastern and midwestem United States. Phase II, planned to begin in the year 2000, places additional emission restrictions on about 1,000 electric plants. As of January 1, 1995, the reformulated gasoline program, also part of the CAAA90, was finally initiated. As a result, this cleaner-burning fuel was made available in areas of the United States that failed to meet the Environmental Protection Agency's (EPA's) ozone standards. In 1995, reformulated gasoline represented around 28% of total gasoline sales in the United States. The last commercial nuclear power plant

  15. Numerical Investigation of Plasma Active Flow Control

    NASA Astrophysics Data System (ADS)

    Sun, Baigang; Li, Feng; Zhang, Shanshan; Wang, Jingyu; Zhang, Lijuan; Zhao, Erlei

    2010-12-01

    Based on the theory of EHD (electronhydrodynamic), a simplified volume force model is applied to simulation to analyze the traits of plasma flow control in flow field, in which the cold plasma is generated by a DBD (dielectric-barrier-discharge) actuator. With the para-electric action of volume force in electric field, acceleration characteristics of the plasma flow are investigated for different excitation intensities of RF (radio frequency) power for the actuator. Furthermore, the plasma acceleration leads to an asymmetric distribution of flow field, and hence induces the deflection of jet plume, then results in a significant deflection angle of 6.26° thrust-vectoring effect. It appears that the plasma flow control technology is a new tentative method for the thrust-vectoring control of a space vehicle.

  16. Energy conservation with automatic flow control valves

    SciTech Connect

    Phillips, D.

    1984-12-01

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  17. On the connection of permafrost and debris flow activity in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  18. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  19. An Active, Collaborative Approach to Learning Skills in Flow Cytometry

    ERIC Educational Resources Information Center

    Fuller, Kathryn; Linden, Matthew D.; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N.; Röhrig, Kimberley J.

    2016-01-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow…

  20. Dark energy domination in the local flow of giant galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.

    2015-05-01

    A dozen of the most luminous galaxies, at distances of up to 10 Mpc from the Local Group, move away from the group, forming the local expansion flow of giants. We use recent Hubble Space Telescope data on local giants and their numerous fainter companions to study the dynamical structure and evolutionary trends of the flow. An N-body computer model, which reproduces the observed kinematics of the flow, is constructed under the assumption that the flow is embedded in the universal dark energy background. In the model, the motions of the flow members are controlled by their mutual attraction force and the repulsion force produced by the dark energy. It is found that the dark energy repulsion dominates the force field of the flow. Because of this, the flow expands with acceleration. The dark energy domination is enhanced by the environment effect of the low mean matter density on the spatial scale of 50 Mpc in the local Universe. The dark energy domination increases with time and introduces to the flow an asymptotically linear velocity-distance relation with the universal time-rate that depends on the dark energy density only.

  1. Numerical Laser Energy Deposition on Supersonic Cavity Flow and Sensor Placement Strategies to Control the Flow

    PubMed Central

    Aradag, Selin

    2013-01-01

    In this study, the impact of laser energy deposition on pressure oscillations and relative sound pressure levels (SPL) in an open supersonic cavity flow is investigated. Laser energy with a magnitude of 100 mJ is deposited on the flow just above the cavity leading edge and up to 7 dB of reduction is obtained in the SPL values along the cavity back wall. Additionally, proper orthogonal decomposition (POD) method is applied to the x-velocity data obtained as a result of computational fluid dynamics simulations of the flow with laser energy deposition. Laser is numerically modeled using a spherically symmetric temperature distribution. By using the POD results, the effects of laser energy on the flow mechanism are presented. A one-dimensional POD methodology is applied to the surface pressure data to obtain critical locations for the placement of sensors for real time flow control applications. PMID:24363612

  2. Numerical laser energy deposition on supersonic cavity flow and sensor placement strategies to control the flow.

    PubMed

    Yilmaz, Ibrahim; Aradag, Selin

    2013-01-01

    In this study, the impact of laser energy deposition on pressure oscillations and relative sound pressure levels (SPL) in an open supersonic cavity flow is investigated. Laser energy with a magnitude of 100 mJ is deposited on the flow just above the cavity leading edge and up to 7 dB of reduction is obtained in the SPL values along the cavity back wall. Additionally, proper orthogonal decomposition (POD) method is applied to the x-velocity data obtained as a result of computational fluid dynamics simulations of the flow with laser energy deposition. Laser is numerically modeled using a spherically symmetric temperature distribution. By using the POD results, the effects of laser energy on the flow mechanism are presented. A one-dimensional POD methodology is applied to the surface pressure data to obtain critical locations for the placement of sensors for real time flow control applications. PMID:24363612

  3. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  4. Hybrid energy storage systems utilizing redox active organic compounds

    DOEpatents

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  5. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  6. Anisotropic energy flow and allosteric ligand binding in albumin

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265

  7. The Lorenz energy cycle in simulated rotating annulus flows

    NASA Astrophysics Data System (ADS)

    Young, R. M. B.

    2014-05-01

    Lorenz energy cycles are presented for a series of simulated differentially heated rotating annulus flows, in the axisymmetric, steady, amplitude vacillating, and structurally vacillating flow regimes. The simulation allows contributions to the energy diagnostics to be identified in parts of the fluid that cannot be measured in experiments. These energy diagnostics are compared with laboratory experiments studying amplitude vacillation, and agree well with experimental time series of kinetic and potential energy, as well as conversions between them. Two of the three major energy transfer paradigms of the Lorenz energy cycle are identified—a Hadley-cell overturning circulation, and baroclinic instability. The third, barotropic instability, was never dominant, but increased in strength as rotation rate increased. For structurally vacillating flow, which matches the Earth's thermal Rossby number well, the ratio between energy conversions associated with baroclinic and barotropic instabilities was similar to the measured ratio in the Earth's mid-latitudes.

  8. Anisotropic energy flow and allosteric ligand binding in albumin

    NASA Astrophysics Data System (ADS)

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2014-01-01

    Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.

  9. Active Flow Control on a Low Reynolds Number Wing

    NASA Astrophysics Data System (ADS)

    Munson, Matthew; Gharib, Morteza

    2010-11-01

    Control of vortex formation has been shown to be a critical mechanism in some forms of animal flight. Flapping motions create advantageous flow structures which play a role in enhancing lift and increasing maneuverability. Active flow control may be capable of providing similar influence over vortex formation processes in fixed wing flight at small Reynolds numbers. Steady and pulsed mass injection strategies through simple slot actuators are used to explore the open-loop response of the flow around a simple low-aspect ratio wing. Flow dynamics and vortex formation will be quantitatively visualized with DPIV and flow forces will be simultaneously measured with a six-component balance.

  10. Energy measurement using flow computers and chromatography

    SciTech Connect

    Beeson, J.

    1995-12-01

    Arkla Pipeline Group (APG), along with most transmission companies, went to electronic flow measurement (EFM) to: (1) Increase resolution and accuracy; (2) Real time correction of flow variables; (3) Increase speed in data retrieval; (4) Reduce capital expenditures; and (5) Reduce operation and maintenance expenditures Prior to EFM, mechanical seven day charts were used which yielded 800 pressure and differential pressure readings. EFM yields 1.2-million readings, a 1500 time improvement in resolution and additional flow representation. The total system accuracy of the EFM system is 0.25 % compared with 2 % for the chart system which gives APG improved accuracy. A typical APG electronic measurement system includes a microprocessor-based flow computer, a telemetry communications package, and a gas chromatograph. Live relative density (specific gravity), BTU, CO{sub 2}, and N{sub 2} are updated from the chromatograph to the flow computer every six minutes which provides accurate MMBTU computations. Because the gas contract length has changed from years to monthly and from a majority of direct sales to transports both Arkla and its customers wanted access to actual volumes on a much more timely basis than is allowed with charts. The new electronic system allows volumes and other system data to be retrieved continuously, if EFM is on Supervisory Control and Data Acquisition (SCADA) or daily if on dial up telephone. Previously because of chart integration, information was not available for four to six weeks. EFM costs much less than the combined costs of telemetry transmitters, pressure and differential pressure chart recorders, and temperature chart recorder which it replaces. APG will install this equipment on smaller volume stations at a customers expense. APG requires backup measurement on metering facilities this size. It could be another APG flow computer or chart recorder, or the other companies flow computer or chart recorder.

  11. Activation Energies of Plasmonic Catalysts.

    PubMed

    Kim, Youngsoo; Dumett Torres, Daniel; Jain, Prashant K

    2016-05-11

    The activation energy of a catalytic reaction serves not only as a metric of the efficacy of a catalyst but also as a potential indicator of mechanistic differences between the catalytic and noncatalytic reaction. However, activation energies are quite underutilized in the field of photocatalysis. We characterize in detail the effect of visible light excitation on the activation enthalpy of an electron transfer reaction photocatalyzed by plasmonic Au nanoparticles. We find that in the presence of visible light photoexcitation, the activation enthalpy of the Au nanoparticle-catalyzed electron transfer reaction is significantly reduced. The reduction in the activation enthalpy depends on the excitation wavelength, the incident laser power, and the strength of a hole scavenger. On the basis of these results, we argue that the activation enthalpy reduction is directly related to the photoelectrochemical potential built-up on the Au nanoparticle under steady-state light excitation, analogous to electrochemical activation. Under optimum light excitation conditions, a potential as high as 240 mV is measured. The findings constitute more precise insights into the mechanistic role and energetic contribution of plasmonic excitation to chemical reactions catalyzed by transition metal nanoparticles. PMID:27064549

  12. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  13. Neutron activation system using water flow for ITER

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Ebisawa, K.; Kasai, S.; Walker, C.

    2003-03-01

    A neutron activation system with flowing water using the 16O(n,p)16N reaction has been designed for the International Thermonuclear Experimental Reaction (ITER) neutron yield monitor with temporal resolution, based on the experimental results carried out at the fusion neutronics source (FNS) facility of the Japan Atomic Energy Research Institute. On ITER, irradiation ends will be installed in the filler shielding module between the blanket modules at the equatorial ports. The gamma-ray counting stations will be installed on the upstairs of the pit outside the biological shield. BGO (Bi4Ge3O12) scintillation detectors will be employed to measure 6.13 MeV gamma rays emitted from 16N. The distance between the irradiation end and the counting station is ˜20 m. The performance of the neutron activation system has been evaluated by using the neutron Monte Carlo code MCNP-4b with the JENDL 3.2 library. The reaction rate of 16O(n,p)16N was calculated not only at the irradiation end but also along the transfer line, which showed that the temporal resolution would be less than the ITER requirement of 100 ms including turbulent diffusion effects for the flow velocity of 10 m/s. With a flow velocity of 10 m/s, this system can measure the fusion power from 50 kW to 1 GW of the ITER operation by using two gamma-ray detectors; one detector faces the water pipe directly, and another has a collimator for higher-neutron yield. Also the calculation shows that the reaction rate is relatively insensitive to the change of the plasma position.

  14. Apparent Viscosity of Active Nematics in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  15. Activation of cyclic electron flow by hydrogen peroxide in vivo

    PubMed Central

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; Froehlich, John E.; Maurino, Veronica G.; Kramer, David M.

    2015-01-01

    Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H2O2. We thus tested the hypothesis that CEF can be activated by H2O2 in vivo. CEF was strongly increased by H2O2 both by infiltration or in situ production by chloroplast-localized glycolate oxidase, implying that H2O2 can activate CEF either directly by redox modulation of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H2O2, suggesting activation of previously expressed CEF-related machinery. H2O2-dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H2O2. We propose that H2O2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants. PMID:25870290

  16. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  17. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  18. Directing energy flow through quantum dots: towards nanoscale sensing.

    PubMed

    Willard, Dale M; Mutschler, Tina; Yu, Ming; Jung, Jaemyeong; Van Orden, Alan

    2006-02-01

    Nanoscale sensors can be created when an expected energetic pathway is created and then that pathway is either initiated or disrupted by a specific binding event. Constructing the sensor on the nanoscale could lead to greater sensitivity and lower limits of detection. To this end, quantum dots (QDs) can be considered prime candidates for the active components. Relative to organic chromophores, QDs have tunable spectral properties, show less susceptibility to photobleaching, have similar brightness, and have been shown to display electro-optical properties. In this review, we discuss recent articles that incorporate QDs into directed energy flow systems, some with the goal of building new and more powerful sensors and others that could lead to more powerful sensors. PMID:16440194

  19. Measurement of energy distribution in flowing hydrogen microwave plasmas

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Morin, T.; Finzel, M.; Hawley, M. C.

    1985-01-01

    An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into kinetic energy of a flowing gas is investigated. A calorimetry system enclosing a microwave plasma system has been developed to accurately measure the energy inputs and outputs of the microwave plasma system. The rate of energy transferred to the gas can be determined to within + or - 1.8 W from an energy balance around the microwave plasma system. The percentage of the power absorbed by the microwave plasma system transferred to the hydrogen gas as it flows through the system is found to increase with the increasing flow rate, to decrease with the increasing pressure, and to be independent of the absorbed power. An upper bound for the hydrogen gas temperature is estimated from the energy content, heat capacity, and flow rate of the gas stream. A lower bound for an overall heat-transfer coefficient is then calculated, characterizing the energy loss from the hydrogen gas stream to the air cooling of the plasma discharge tube wall. The heat-transfer coefficient is found to increase with the increasing flow rate and pressure and to be independent of the absorbed power. This result indicates that a convective-type mechanism is responsible for the energy transfer.

  20. WAPA Daily Energy Accounting Activities

    Energy Science and Technology Software Center (ESTSC)

    1990-10-01

    ISA (Interchange, Scheduling, & Accounting) is the interchange scheduling system used by the DOE Western Area Power Administration to perform energy accounting functions associated with the daily activities of the Watertown Operations Office (WOO). The system's primary role is to provide accounting functions for scheduled energy which is exchanged with other power companies and power operating organizations. The system has a secondary role of providing a historical record of all scheduled interchange transactions. The followingmore » major functions are performed by ISA: scheduled energy accounting for received and delivered energy; generation scheduling accounting for both fossil and hydro-electric power plants; metered energy accounting for received and delivered totals; energy accounting for Direct Current (D.C.) Ties; regulation accounting; automatic generation control set calculations; accounting summaries for Basin, Heartland Consumers Power District, and the Missouri Basin Municipal Power Agency; calculation of estimated generation for the Laramie River Station plant; daily and monthly reports; and dual control areas.« less

  1. Energy flow: image correspondence approximation for motion analysis

    NASA Astrophysics Data System (ADS)

    Wang, Liangliang; Li, Ruifeng; Fang, Yajun

    2016-04-01

    We propose a correspondence approximation approach between temporally adjacent frames for motion analysis. First, energy map is established to represent image spatial features on multiple scales using Gaussian convolution. On this basis, energy flow at each layer is estimated using Gauss-Seidel iteration according to the energy invariance constraint. More specifically, at the core of energy invariance constraint is "energy conservation law" assuming that the spatial energy distribution of an image does not change significantly with time. Finally, energy flow field at different layers is reconstructed by considering different smoothness degrees. Due to the multiresolution origin and energy-based implementation, our algorithm is able to quickly address correspondence searching issues in spite of background noise or illumination variation. We apply our correspondence approximation method to motion analysis, and experimental results demonstrate its applicability.

  2. A new energy transfer model for turbulent free shear flow

    NASA Technical Reports Server (NTRS)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  3. Transonic flow control by means of local energy deposition

    NASA Astrophysics Data System (ADS)

    Aul'Chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.

    2011-11-01

    Experimental data for the feasibility of transonic flow control by means of energy deposition are generalized. Energy supplied to the immediate vicinity of a body in stream before a compression shock is found to result in the nonlinear interaction of introduced disturbances with the shock and the surface in zones extended along the surface. A new, explosive gasdynamic mechanism behind the shift of the compression shock is discovered. It is shown that the nonlinear character of the interaction may considerably decrease the wave resistance of, e.g., transonic airfoils. It is found that energy supply from without stabilizes a transonic flow about an airfoil—the effect similar to the Khristianovich stabilization effect. The dependence of the energy deposition optimal frequency on the energy source parameters and Mach number of the incoming flow at which the resistance drops to the greatest extent is obtained. The influence of the real thermodynamic properties and viscosity of air is studied.

  4. Energy spectrum of stably-stratified and convective turbulent flows

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra; Kumar, Abhishek

    2015-11-01

    In the inertial range of fluid turbulence, the energy flux is constant, while the energy spectrum scales as k - 5 / 3 (k=wavenumber). The buoyancy however could change the phenomenology dramatically. Bolgiano and Obukhov (1959) had conjectured that stably stratified flows (as in atmosphere) exhibits a decrease in the energy flux as k - 4 / 5 due to the conversion of kinetic energy to the potential energy, consequently, the energy spectrum scales as k - 11 / 5. We show using detailed numerical analysis that the stably stratified flows indeed exhibit k - 11 / 5 energy spectrum for Froude numbers Fr near unity. The flow becomes anisotropic for small Froude numbers. For weaker buoyancy (large Fr), the kinetic energy follows Kolmogorov's spectrum with a constant energy flux. However, in convective turbulence, the energy flux is a nondecreasing function of wavenumber since the buoyancy feeds positively into the kinetic energy. Hence, the kinetic energy spectrum is Kolmogorov-like (k - 5 / 3) or shallower. We also demonstrate the above scaling using a shell model of buoyancy-driven turbulence.

  5. Physics of active flow control around a pillar at the micro scale

    NASA Astrophysics Data System (ADS)

    Jung, Junkyu

    2011-12-01

    The use of microchannels for heat transfer enhancement has been studied for the last few decades. To take full advantage of a microchannel, various approaches such as two-phase flow, enhanced heat transfer surface, and flow boiling across pin fins entrenched inside a microchannel have been studied. Among them, micro pin fins heat exchangers, similar to their conventional counterparts have been seriously considered due to their superior heat removal performance throughout the extended surface area. In addition, an early transition to turbulent flow via micro pin fins is believed to improve heat transfer at the micro scale. Therefore, the aim of this study is to extend fundamental knowledge of flow around a micro pin fin with and without active flow. The flow field around a micro pillar was measured using micro particle image velocimetry (muPIV), and the turbulent kinetic energy (TKE ) of the flow was measured to quantify flow mixing around the micro pillar. It was found that an early transition to an unsteady flow was not achieved through the micro pillar due to the inherently small height-to-diameter ratio of the pillar, and the corresponding TKE around the micro pillar was not significant in a quasi-steady flow regime. Active flow control via a steady jet was employed through the slit on the micro pillar surface, where the circumferential location of the slit was varied. The velocity field as well as the TKE of the controlled flow was measured to determine the effect of active flow control at the micro scale. Parametric studies were performed and comparison of the various momentum coefficient, flow regime, and the azimuthal location of the control jet were conducted. Suction was introduced as alternative control scheme, and compared to a steady jet. It was found that mixing was significantly enhanced through the steady jet whereas suction was not successful with same momentum coefficients.

  6. Flow of active suspensions and biased swimming

    NASA Astrophysics Data System (ADS)

    Rafai, Salima; Peyla, Philippe; Garcia, Xabel; Kitenbergs, Guntars; Garcia, Michaël; LIPhy Team

    2012-11-01

    It is a challenge to understand the hydrodynamics associated with individual or collective motion of microswimmers through their fluid-mediated interactions in order for instance to manipulate the cells efficiently for some applications purposes. The motion of these micro-organisms can be often affected by the presence of gradients leading to a biased random walk (chemotaxis in the presence of chemicals, gyrotaxis in a gravity field, phototaxis under light exposure). In this study, we present our experimental results concerning the coupling of a Poiseuille flow with the biased random walk of Chlamydomonas Reinhardtii, a green unicellular micro-alga. This is done by illuminating the microswimmer suspension while flowing in a microchannel device. We show that one can obtain a spontaneous and reversible migration and separation of the microalgae suspension from the rest of the suspending medium under illumination and then dynamically control the concentration of the suspension with light. We present a simple model that accounts for the observed phenomenon. We thank the ANR MOSICOB and MICMACSWIM.

  7. Minimal energy damping in an axisymmetric flow

    NASA Astrophysics Data System (ADS)

    Sachs, Alexander

    2008-05-01

    The method of Lagrange's undetermined multipliers is used to find the velocity field which minimizes the energy damping for a viscous incompressible fluid described by the Navier- Stoke equation. The vorticity of this velocity field obeys a Helmholtz equation with an undetermined parameter. This Helmholtz equation is used to determine the axisymmetric velocity field in a cylinder. This velocity field is slightly different from the Poiseuille velocity field. The rate of energy damping per unit energy is calculated as a function of the parameter. It is a minimum when the parameter is equal to the root of a Bessel function.

  8. Numerical modeling of energy related flows. Final report

    SciTech Connect

    Berger, B.S.

    1984-12-05

    After a brief review of the theoretical and computational results obtained for various kinds of fluid flows, several papers are appended covering: viscous, incompressible, time-dependent fluid flow around a circular cylinder; asymptotic approximation and perturbation stream functions for viscous flow calculations; velocity and vorticity correlations; a finite difference approximation for the mean vorticity and covariance equation of the MVC closure; the motion of a circular cylinder for a viscous, incompressible crossflow; the symmetry of the Eulerian correlation function; the vibration of a circular cylinder in a crossflow; energy and vorticity dynamics in decaying isotropic turbulence; wall turbulence at the k-epsilon closure; a method for computing three-dimensional turbulent flows; and balance of turbulent energy in the linear wall region of channel flow. (LEW)

  9. Application of active contours for photochromic tracer flow extraction.

    PubMed

    Androutsos, D; Trahanias, P E; Venetsanopoulos, A N

    1997-06-01

    This paper addresses the implementation of image processing and computer vision techniques to automate tracer flow extraction in images obtained by the photochromic dye technique. This task is important in modeled arterial blood flow studies. Currently, it is performed via manual application of B-spline curve fitting. However, this is a tedious and error-prone procedure and its results are nonreproducible. In the proposed approach, active contours, snakes, are employed in a new curve-fitting method for tracer flow extraction in photochromic images. An algorithm implementing snakes is introduced to automate extraction. Utilizing correlation matching, the algorithm quickly locates and localizes all flow traces in the images. The feasibility of the method for tracer flow extraction is demonstrated. Moreover, results regarding the automation algorithm are presented showing its accuracy and effectiveness. The proposed approach for tracer flow extraction has potential for real-system application. PMID:9184890

  10. Compressor Performance Enhanced by Active Flow Control Over Stator Vanes

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2003-01-01

    The application of active flow control technology to enhance turbomachinery system performance is being investigated at the NASA Glenn Research Center through experimental studies. Active flow control involves the use of sensors and actuators embedded within engine components to dynamically alter the internal flow path during off nominal operation in order to optimize engine performance and maintain stable operation. Modern compressors are already highly optimized components that must be designed to accommodate a broad range of operating conditions in a safe and efficient manner. Since overall engine performance is driven by compressor performance, advances in compressor technology that reduce weight and parts count, reduce fuel consumption, and lower maintenance costs will have a significant impact on the cost of aircraft ownership. Active flow control holds the promise of delivering such technology advances.

  11. Passive and Active Flow Control by Swimming Fishes and Mammals

    NASA Astrophysics Data System (ADS)

    Fish, F. E.; Lauder, G. V.

    2006-01-01

    What mechanisms of flow control do animals use to enhance hydrodynamic performance? Animals are capable of manipulating flow around the body and appendages both passively and actively. Passive mechanisms rely on structural and morphological components of the body (i.e., humpback whale tubercles, riblets). Active flow control mechanisms use appendage or body musculature to directly generate wake flow structures or stiffen fins against external hydrodynamic loads. Fish can actively control fin curvature, displacement, and area. The vortex wake shed by the tail differs between eel-like fishes and fishes with a discrete narrowing of the body in front of the tail, and three-dimensional effects may play a major role in determining wake structure in most fishes.

  12. High energy density redox flow device

    SciTech Connect

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  13. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  14. U.S. energy flow - 1993

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1994-10-01

    With continued improvement in the economic health of the nation, energy consumption in 1993 increased by almost 2.5%. Use of energy in all major end-use sectors increased, with the largest gains registered in the residential/commercial sector. In this sector, substantial increase in the use of natural gas reflected a harsh 1993-1994 winter as well as broader availability of the fuel for space heating. Crude oil imports rose 8% but stood below the all-time high set in 1977. About half of the increase reflected declining domestic oil production. Imports of natural gas, principally from Canada, increased as they have every year since 1986. They comprise 11% of supply and supplement domestic production, which has similarly risen over the same time span. Increased demand for natural gas is evident in most sectors but especially in the industrial sector, where a growing number of cogenerators of electricity burn natural gas. Although coal consumption in the United States rose 3% in 1993, domestic coal production declined by a greater margin due to a coal strike. Because of increased international competition, exports fell 27%. Electricity transmitted by the utilities again increased, following a decade-long trend interrupted only in 1992 by the national economic recession. The provisions of the Energy Policy Act of 1992 dealing with transport of nonutility-generated electricity by the public utilities began to be implemented in 1993. The provisions of the Energy Policy Act as well as those of the Public Utility Regulatory Policies Act of 1978 are setting the stage for increased competition for customers and for what promises to be a restructuring of the historically monopolistic industry. Nuclear power from the United States`s 109 operable reactors constituted 21% of utility-generated electricity. With the continued retirement of outmoded and flawed reactors, nuclear capacity factors attained 71 in 1993, up from 56% a decade earlier.

  15. Energy Activities for the Primary Classroom. Revised.

    ERIC Educational Resources Information Center

    Tierney, Blue, Comp.

    An energy education program at the primary level should help students to understand the nature and importance of energy, consider different energy sources, learn about energy conservation, prepare for energy related careers, and become energy conscious in other career fields. The activities charts, readings, and experiments provided in this…

  16. Transport of energy by disturbances in arbitrary steady flows

    NASA Technical Reports Server (NTRS)

    Myers, M. K.

    1991-01-01

    An exact equation governing the transport of energy associated with disturbances in an arbitrary steady flow is derived. The result is a generalization of the familiar concept of acoustic energy and is suggested by a perturbation expansion of the general energy equation of fluid mechanics. A disturbance energy density and flux are defined and identified as exact fluid dynamic quantities whose leading-order regular perturbation representations reduce in various special cases to previously known results. The exact equation on disturbance energy is applied to a simple example of nonlinear wave propagation as an illustration of its general utility in situations where a linear description of the disturbance is inadequate.

  17. An artificial energy method for calculating flows with shocks

    NASA Technical Reports Server (NTRS)

    Rose, M. E.

    1980-01-01

    The artificial-viscosity method, first proposed by von Neumann and Richtmyer, introduces an artificial viscous pressure term in regions of compression such that an increase in entropy occurs in shock transition zones. The paper describes how dissipative flows can be induced by reducing the total energy available for adiabatic processes in shock zones. A class of inviscid fluid flows, called semiflows, is described in which the flows exhibit thermodynamic differences. Induced dissipative flows modify the pressure in regions of compression in a manner analogous to the artificial-viscosity method and for a gas, the effect is equivalent to suitably modifying the gas constant in the equation of state. By employing MacCormack's method and the usual non-adiabatic equations, numerical solutions of a Riemann problem are compared with the modified artificial energy method, showing that the dissipation effect predicted by the analytical formulation is reflected in the numerical method as well.

  18. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  19. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  20. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1983-12-31

    This component of the terrestrial-aquatic interaction group seeks to use the natural stable carbon isotope ratios and radiocarbon abundances to trace the movement of photosynthate from the terrestrial environment to the stream system at MS-117. In addition to estimating the total flux, we will also attempt to describe the relative fractions derived from modern primary production and that derived from delayed inputs of eroded peat. We will also seek to determine the coupling efficiency of these energy sources to the invertebrate faunal populations in the tundra soils and streams.

  1. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1983-01-01

    This component of the terrestrial-aquatic interaction group seeks to use the natural stable carbon isotope ratios and radiocarbon abundances to trace the movement of photosynthate from the terrestrial environment to the stream system at MS-117. In addition to estimating the total flux, we will also attempt to describe the relative fractions derived from modern primary production and that derived from delayed inputs of eroded peat. We will also seek to determine the coupling efficiency of these energy sources to the invertebrate faunal populations in the tundra soils and streams.

  2. Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin

    NASA Astrophysics Data System (ADS)

    Dyer, Brian

    2014-03-01

    Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.

  3. Device for deriving energy from a flow of fluid

    SciTech Connect

    van Holten, T.

    1982-12-07

    Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

  4. Study of energy flows in Pantanal - Brazil

    NASA Astrophysics Data System (ADS)

    Santanna, F. B.; Arruda, P. H. Z. D.; Pinto-Jr, O. B.

    2014-12-01

    The main goal of this work was to estimate fluxes using the eddy covariance method in a wetland area, basically with herb-shrub physiognomy, sparse woody vegetation and approximately 4m height. The geographical position of the Pantanal, altitude, latitude, longitude, climate and weather conditions are determined by the dynamics of the atmosphere that affects the whole South America and consequently influence the ecological framework of ecosystems. The results shown by the components considered in the energy balance were more significant during the day, which the atmospheric boundary layer extends from the ground to about 50 or 100 meters height, showing greater instability and turbulence (u* > 0.2 m / s), and this turbulence is what justifies the use of the eddy covariance method to estimate the sensible and latent heat flux. The Pantanal presents seasonal difference between the densities estimates of sensible (H) and latent (LE) heat flux. During the rainy season the sensible heat flux (H) was 30% and the latent heat flux (LE) 58%. During the dry season the sensible heat flux (H) was 46% and the latent heat flux (LE) 40% of the energy budget.

  5. Epistemic uncertainty propagation in energy flows between structural vibrating systems

    NASA Astrophysics Data System (ADS)

    Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong

    2016-03-01

    A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.

  6. An active, collaborative approach to learning skills in flow cytometry.

    PubMed

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J

    2016-06-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. PMID:27068992

  7. Non-invasive energy meter for fixed and variable flow systems

    DOEpatents

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  8. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  9. Optimal active power dispatch by network flow approach

    SciTech Connect

    Carvalho, M.F. ); Soares, S.; Ohishi, T. )

    1988-11-01

    In this paper the optimal active power dispatch problem is formulated as a nonlinear capacitated network flow problem with additional linear constraints. Transmission flow limits and both Kirchhoff's laws are taken into account. The problem is solved by a Generalized Upper Bounding technique that takes advantage of the network flow structure of the problem. The new approach has potential applications on power systems problems such as economic dispatch, load supplying capability, minimum load shedding, and generation-transmission reliability. The paper also reviews the use of transportation models for power system analysis. A detailed illustrative example is presented.

  10. Fluid flow systems analysis to save energy

    SciTech Connect

    Parekh, P.S.

    1999-07-01

    Industrial processes use rotating equipment (e.g.; pump, fan, blower, centrifugal compressor, positive displacement compressor) and pipe (or duct) to move fluid from point A to B, with many processes using electric motors as the prime mover. Most of the systems in the industry are over-designed to meet a peak load demand which might occur over a small fraction of the time or to satisfy a higher pressure demanded by a much smaller user in the same process. The system over-design will result in a selection of larger but inefficient rotating equipment and electric motor system. A careful life cycle cost and economic evaluation must be undertaken to ensure that the process audit, reengineering and equipment selections are not impacting the industrial process goals, but result in a least optimal cost over the life of the project. The paper will define, discuss, and present various process systems in chemical, hydrocarbon and pulp and paper industries. It will discuss the interactive impact of the changes in the mechanical system configuration and the changes in the process variables to better redesign the system and reduce the cost of operation. it will also present a check list of energy conservation measures (ECM) or opportunities. Such ECMs will be related to hydraulics, system components, process modifications, and system efficiency. Two or three case studies will be presented focusing on various conservation measures that improve electrical operating efficiency of a distillation column system. An incremental cost and payback analysis will be presented to assist the investment in process optimization and energy savings' measures.

  11. Flow of energy in the outer retina in darkness and in light.

    PubMed

    Linton, Jonathan D; Holzhausen, Lars C; Babai, Norbert; Song, Hongman; Miyagishima, Kiyoharu J; Stearns, George W; Lindsay, Ken; Wei, Junhua; Chertov, Andrei O; Peters, Theo A; Caffe, Romeo; Pluk, Helma; Seeliger, Mathias W; Tanimoto, Naoyuki; Fong, Kimberly; Bolton, Laura; Kuok, Denise L T; Sweet, Ian R; Bartoletti, Theodore M; Radu, Roxana A; Travis, Gabriel H; Zagotta, Willam N; Townes-Anderson, Ellen; Parker, Ed; Van der Zee, Catharina E E M; Sampath, Alapakkam P; Sokolov, Maxim; Thoreson, Wallace B; Hurley, James B

    2010-05-11

    Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons. PMID:20445106

  12. Flow of energy in the outer retina in darkness and in light

    PubMed Central

    Linton, Jonathan D.; Holzhausen, Lars C.; Babai, Norbert; Song, Hongman; Miyagishima, Kiyoharu J.; Stearns, George W.; Lindsay, Ken; Wei, Junhua; Chertov, Andrei O.; Peters, Theo A.; Caffe, Romeo; Pluk, Helma; Seeliger, Mathias W.; Tanimoto, Naoyuki; Fong, Kimberly; Bolton, Laura; Kuok, Denise L. T.; Sweet, Ian R.; Bartoletti, Theodore M.; Radu, Roxana A.; Travis, Gabriel H.; Zagotta, Willam N.; Townes-Anderson, Ellen; Parker, Ed; Van der Zee, Catharina E. E. M.; Sampath, Alapakkam P.; Sokolov, Maxim; Thoreson, Wallace B.; Hurley, James B.

    2010-01-01

    Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor’s synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons. PMID:20445106

  13. Vibrational Energy Transfer of Diatomic Gases in Hypersonic Expanding Flows.

    NASA Astrophysics Data System (ADS)

    Ruffin, Stephen Merrick

    In high temperature flows related to vehicles at hypersonic speeds significant excitation of the vibrational energy modes of the gas can occur. Accurate predictions of the vibrational state of the gas and the rates of vibrational energy transfer are essential to achieve optimum engine performance, for design of heat shields, and for studies of ground based hypersonic test facilities. The Landau -Teller relaxation model is widely used because it has been shown to give accurate predictions in vibrationally heating flows such as behind forebody shocks. However, a number of experiments in nozzles have indicated that it fails to accurately predict the rate of energy transfer in expanding, or cooling, flow regions and fails to predict the distribution of energy in the vibrational quantum levels. The present study examines the range of applicability of the Landau -Teller model in expanding flows and develops techniques which provide accurate predictions in expanding flows. In the present study, detailed calculations of the vibrational relaxation process of N_2 and CO in cooling flows are conducted. A coupled set of vibrational transition rate equations and quasi one-dimensional fluid dynamic equations is solved. Rapid anharmonic Vibration-Translation transition rates and Vibration -Vibration exchange collisions are found to be responsible for vibrational relaxation acceleration in situations of high vibrational temperature and low translational temperature. The predictions of the detailed master equation solver are in excellent agreement with experimental results. The exact degree of acceleration is cataloged in this study for N_2 and is found to be a function of both the translational temperature (T) and the ratio of vibrational to translational temperatures (T_{vib}/T). Non-Boltzmann population distributions are observed for values of T _{vib}/T as low as 2.0. The local energy transfer rate is shown to be an order of magnitude or more faster than the Landau-Teller model

  14. Determining characteristics of melting cheese by activation energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activation energy of flow (Ea) between 30 and 44 deg C was measured from temperature sweeps of various cheeses to determine its usefulness in predicting rheological behavior upon heating. Seven cheese varieties were heated in a rheometer from 22 to 70 deg C, and Ea was calculated from the resulting ...

  15. Activation energy measurements in rheological analysis of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activation energy of flow (Ea) was calculated from temperature sweeps of cheeses with contrasting characteristics to determine its usefulness in predicting rheological behavior upon heating. Cheddar, Colby, whole milk Mozzarella, low moisture part skim Mozzarella, Parmesan, soft goat, and Queso Fre...

  16. Energy Storage. Teachers Guide. Science Activities in Energy.

    ERIC Educational Resources Information Center

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  17. Customized turbulent flow fields generated by means of an active grid

    NASA Astrophysics Data System (ADS)

    Hoelling, Michael; Reinke, Nico; Peinke, Joachim

    2014-11-01

    Wind tunnel experiments, which should clarify the interaction of wind energy converters and the ambient turbulent field, should be performed under realistic flow conditions. For the generation of realistic turbulent flow conditions we use an active grid. This grid allows for the generation of flows with high turbulence intensity and even to repeat those turbulent fields to a certain degree. Moreover, flow features are to a certain extent tuneable, e.g. velocity increments distributions or energy density spectrum, realized by individually controllable horizontal and vertical rotating axes, which are equipped with flaps. The rotation patterns of the axes over time are defined in an excitation protocol. The challenge is designing an excitation protocol, which generates a flow flied for a specific application. A general approach is still missing. Our approach allows estimating the flow features to given excitation protocols. The approach is based on the assumption that the flow field behind an active grid consists basically of different turbulent pulses, which belong to the excitation setting. Our approach gives a sequence of those pulses, which we call synthetic velocity time series, which is made on a computer.

  18. Distributed energy storage: Time-dependent tree flow design

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Ziaei, S.; Lorente, S.

    2016-05-01

    This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.

  19. U.S. energy flow -- 1994

    SciTech Connect

    Borg, I.Y.; Briggs, C.K.

    1995-12-01

    Energy consumption in 1994 increased for the fourth year in a row, reaching an all-time high. It was associated with a robust economy, low inflation, and low unemployment rates. Of the populous states, California lagged substantially behind the national recovery. Consumption in all major end-use sectors reached historic highs. Transmission of electrical power by the utilities increased almost 3%. However, this understates the increase of the total amount of electricity used in the nation because the amount of electricity used ``in-house`` by a growing number of self-generators is unrecorded. Imports of both fossil fuels and electricity increased. About half of the total oil consumed was imported, with Saudi Arabia being the principal supplier. Domestic oil production continued to decline; however, the sharp decline in Alaskan production was slowed. The increase in the demand for natural gas was met by both a modest increase in domestic production and imports from Canada, which comprised 10% of supply. The residential/commercial sector is the largest single consumer of natural gas; however, use by electric generators has increased annually for the past decade. The regulated utilities increased their consumption 11% in 1994. The year was noteworthy for the US nuclear power industry. Work was halted on the last nuclear power plant under construction in the country. Because of the retirement of aged and poorly performing nuclear plants and because of improved efficiencies, the capacity factor for the remaining 109 operable plants reached a record 74%.

  20. Interferometric technique for determining the energy deposition in gas-flow nuclear-pumped lasers

    SciTech Connect

    Pikulev, A A

    2001-06-30

    An interference technique is developed for determining the energy deposition in gas-flow lasers pumped by uranium fission fragments. It is shown that four types of interference patterns may be formed. Algorithms are presented for determining the type of interference and for enumerating the maxima in interference pattern. (lasers, active media)

  1. Underwater observations of active lava flows from Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Tribble, G.W.

    1991-01-01

    Underwater observation of active submarine lava flows from Kilauea volcano, Hawaii, in March-June 1989 revealed both pillow lava and highly channelized lava streams flowing down a steep and unconsolidated lava delta. The channelized streams were 0.7-1.5 m across and moved at rates of 1-3 m/s. The estimated flux of a stream was 0.7 m3/s. Jets of hydrothermal water and gas bubbles were associated with the volcanic activity. The rapidly moving channelized lava streams represent a previously undescribed aspect of submarine volcanism. -Author

  2. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.

    PubMed

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l(-1) with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l(-1)) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l(-1)). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries. PMID:25565112

  3. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    NASA Astrophysics Data System (ADS)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  4. Energy flow along the medium-induced parton cascade

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    2016-05-01

    We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.

  5. Influence of NO-containing gas flow on various parameters of energy metabolism in erythrocytes.

    PubMed

    Martusevich, A K; Solov'yova, A G; Peretyagin, S P; Karelin, V I; Selemir, V D

    2014-11-01

    We studied the influence of NO-containing gas phase on some parameters of energy metabolism in human erythrocytes. Whole blood samples were aerated with gas flows from the Plazon instrument (NO concentrations 800 and 80 ppm) and from the experimental generator (75 ppm). Activity of lactate dehydrogenase in direct and reverse reactions, lactate level, and a number of derived coefficients were estimated. Treatment of blood with 800 ppm NO inhibited erythrocyte energy metabolism, and its 10-fold dilution attenuated the effect. The use of ROS-free gas flow containing 75 ppm of NO promoted optimization of the process under investigation. PMID:25403392

  6. Dark energy and the quietness of the local Hubble flow

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Perivolaropoulos, L.

    2002-06-01

    The linearity and quietness of the local (<10 Mpc) Hubble flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM (cold dark matter) cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0) of dark energy obeying the time independent equation of state pX=wρX. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms~=40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and ΩX. Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow.

  7. Rossby wave energy dispersion from tropical cyclone in zonal basic flows

    NASA Astrophysics Data System (ADS)

    Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu

    2016-04-01

    This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.

  8. Neutron Radiography of Fluid Flow for Geothermal Energy Research

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the "particles" and imaging with 10 ms exposures.

  9. Neutron radigoraphy of fluid flow for geothermal energy research

    SciTech Connect

    Bingham, Philip R.; Polsky, Yarom; Anovitz, L.; Carmichael, Justin R.; Bilheux, Hassina Z; Jacobson, David; Hussey, Dan

    2015-01-01

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the “particles” and imaging with 10 ms exposures.

  10. Active flow control on a 1:4 car model

    NASA Astrophysics Data System (ADS)

    Heinemann, Till; Springer, Matthias; Lienhart, Hermann; Kniesburges, Stefan; Othmer, Carsten; Becker, Stefan

    2014-05-01

    Lift and drag of a passenger car are strongly influenced by the flow field around its rear end. The bluff body geometry produces a detached, transient flow which induces fluctuating forces on the body, affecting the rear axle, which may distress dynamic stability and comfort significantly. The investigations presented here deal with a 1:4 scale model of a simplified test car geometry that produces fluctuating lift and drag due to its strongly rounded rear geometry. To examine the influence of active flow control on this behavior, steady air jets were realized to exhaust from thin slots across the rear in three different configurations. Investigations were performed at and included the capturing of effective integral lift and drag, velocity measurements in the surrounding flow field with Laser Doppler Anemometry, surface pressure measurements and surface oil flow visualization on the rear. The flow field was found to be dominated by two longitudinal vortices, developing from the detachment of the flow at the upper C-pillar positions, and a recirculating, transverse vortex above the rear window. With an air jet emerging from a slot across the surface right below the rear window section, tangentially directed upstream toward the roof section, total lift could be reduced by more than 7 %, with rear axle lift reduction of about 5 % and negligible drag affection (1 %).

  11. Fully localised nonlinear energy growth optimals in pipe flow

    NASA Astrophysics Data System (ADS)

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-01

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, "Optimal energy density growth in Hagen-Poiseuille flow," J. Fluid Mech. 277, 192-225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., "Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos," J. Fluid Mech. 702, 415-443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for "real" (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  12. Fully localised nonlinear energy growth optimals in pipe flow

    SciTech Connect

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-15

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  13. Electromagnetic effects on the energy flows saturating microturbulence

    NASA Astrophysics Data System (ADS)

    Whelan, Garth; Pueschel, Moritz; Terry, Paul

    2015-11-01

    In kinetic plasma turbulence mode coupling in perpendicular wavenumber excites large-scale stable modes, allowing both the perpendicular cascade and stable-mode damping to saturate the instability. Using GENE, we evaluate the dominant triad energy transfer function via zonal flows, distinguishing between energy transfer to stable modes and transfer to higher wavenumber. We find that in cyclone base case ITG turbulence, the zonal flows are excited primarily by modes with poloidal wavenumber equal to or below the wavenumber responsible for the peak in transport, while modes with larger poloidal wavenumber produce a smaller nonlinear energy transfer out of zonal flows. We investigate the dissipation that balances the net excitation by varying collisionality and the rate of geodesic acoustic mode damping. Increasing the temperature gradient sharpens the nonlinear zonal flow drive peak around the peak in transport. As plasma beta is increased, proportionally more energy is transferred to stable modes within the wavenumber region of instability, providing an effect responsible for the increased nonlinear stabilization of ITG turbulence with plasma beta. We also investigate Kelvin-Helmholtz like saturation mechanisms of ETG turbulence.

  14. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  15. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  16. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  17. Energy flow and functional compensation in Great Basin small mammals under natural and anthropogenic environmental change

    PubMed Central

    Terry, Rebecca C.; Rowe, Rebecca J.

    2015-01-01

    Research on the ecological impacts of environmental change has primarily focused at the species level, leaving the responses of ecosystem-level properties like energy flow poorly understood. This is especially so over millennial timescales inaccessible to direct observation. Here we examine how energy flow within a Great Basin small mammal community responded to climate-driven environmental change during the past 12,800 y, and use this baseline to evaluate responses observed during the past century. Our analyses reveal marked stability in energy flow during rapid climatic warming at the terminal Pleistocene despite dramatic turnover in the distribution of mammalian body sizes and habitat-associated functional groups. Functional group turnover was strongly correlated with climate-driven changes in regional vegetation, with climate and vegetation change preceding energetic shifts in the small mammal community. In contrast, the past century has witnessed a substantial reduction in energy flow caused by an increase in energetic dominance of small-bodied species with an affinity for closed grass habitats. This suggests that modern changes in land cover caused by anthropogenic activities—particularly the spread of nonnative annual grasslands—has led to a breakdown in the compensatory dynamics of energy flow. Human activities are thus modifying the small mammal community in ways that differ from climate-driven expectations, resulting in an energetically novel ecosystem. Our study illustrates the need to integrate across ecological and temporal scales to provide robust insights for long-term conservation and management. PMID:26170294

  18. Energy Activities for Junior High Science.

    ERIC Educational Resources Information Center

    Beaver, David; And Others

    This document is a collection of six energy education activities for junior high school science. Its purpose is to help promote knowledge about energy, provide laboratory experiences, provoke inquiry, and relate energy to society through the science curriculum. The six activities are designed to take one to three class periods. Two of the…

  19. Nematomorph parasites drive energy flow through a riparian ecosystem

    USGS Publications Warehouse

    Sato, Takuya; Wtanabe, Katsutoshi; Kanaiwa, Minoru; Niizuma, Yasuaki; Harada, Yasushi; Lafferty, Kevin D.

    2011-01-01

    Parasites are ubiquitous in natural systems and ecosystem-level effects should be proportional to the amount of biomass or energy flow altered by the parasites. Here we quantified the extent to which a manipulative parasite altered the flow of energy through a forest-stream ecosystem. In a Japanese headwater stream, camel crickets and grasshoppers (Orthoptera) were 20 times more likely to enter a stream if infected by a nematomorph parasite (Gordionus spp.), corroborating evidence that nematomorphs manipulate their hosts to seek water where the parasites emerge as free-living adults. Endangered Japanese trout (Salvelinus leucomaenis japonicus) readily ate these infected orthopterans, which due to their abundance, accounted for 60% of the annual energy intake of the trout population. Trout grew fastest in the fall, when nematomorphs were driving energy-rich orthopterans into the stream. When infected orthopterans were available, trout did not eat benthic invertebrates in proportion to their abundance, leading to the potential for cascading, indirect effects through the forest-stream ecosystem. These results provide the first quantitative evidence that a manipulative parasite can dramatically alter the flow of energy through and across ecosystems.

  20. Structural modelling of a compliant flexure flow energy harvester

    NASA Astrophysics Data System (ADS)

    Chatterjee, Punnag; Bryant, Matthew

    2015-09-01

    This paper presents the concept of a flow-induced vibration energy harvester based on a one-piece compliant flexure structure. This energy harvester utilizes the aeroelastic flutter phenomenon to convert flow energy to structural vibrational energy and to electrical power output through piezoelectric transducers. This flexure creates a discontinuity in the structural stiffness and geometry that can be used to tailor the mode shapes and natural frequencies of the device to the desired operating flow regime while eliminating the need for discrete hinges that are subject to fouling and friction. An approximate representation of the flexure rigidity is developed from the flexure link geometry, and a model of the complete discontinuous structure and integrated flexure is formulated based on the transfer matrix method. The natural frequencies and mode shapes predicted by the model are validated using finite element simulations and are shown to be in close agreement. A proof-of-concept energy harvester incorporating the proposed flexure design has been fabricated and investigated in wind tunnel testing. The aeroelastic modal convergence, critical flutter wind speed, power output and limit cycle behavior of this device is experimentally determined and discussed.

  1. Energy harvesting through flow-induced oscillations of a foil

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2009-12-01

    By using a Navier-Stokes model, we examine a novel flow energy harvesting device consisting of a flapping foil mounted on a damper (representing the power generator) and a rotational spring. Self-induced and self-sustained flapping motions, including a heaving motion h(t ) and a pitching motion α(t ), are excited by an incoming flow and power extraction is achieved from the heaving response. Depending upon the configuration of the system and the mechanical parameters (e.g., the location of the pitching axis and the stiffness of the rotational spring), four different responses are recorded: (i) the foil remains stable in its initial position (α =0 and h =0); (ii) periodic pitching (around α =0) and heaving motions are excited; (iii) the foil undergoes irregular motions characterized by switching between oscillations around two pitching angles; and (iv) the foil rotates to a position with an angle to the incoming flow and oscillates around it. The existence of response (ii) suggests the feasibility of controllable and stable flow energy extraction by this device. Through numerical simulations with a Navier-Stokes model we have determined combinations of geometric and mechanical parameters to achieve this response. The corresponding energy harvesting capacity and efficiency are predicted.

  2. Energy Conservation Activity Packet, Grade 5.

    ERIC Educational Resources Information Center

    Bakke, Ruth

    This activity packet for grade 5 is one of a series developed in response to concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and…

  3. Active mantle flow and crustal dynamics in southern California

    NASA Astrophysics Data System (ADS)

    Fay, N.; Bennett, R.; Spinler, J.

    2007-12-01

    We present numerical modeling analysis of active upper mantle flow and its role in driving crustal deformation in southern California. The forces driving lithospheric deformation at tectonic plate boundaries can be thought of as the sum from two sources: (1) forces transmitted from the far-field by rigid tectonic plates, and (2) forces created locally at the plate boundary by heterogeneous density distribution. Here we quantify the latter by estimating the stresses acting on the base of the crust caused by density-driven flow of the upper mantle. Anomalous density structure is derived from shear wave velocity models (Yang & Forsyth, 2006) and is used to drive instantaneous incompressible viscous upper mantle flow relative to a fixed crust; this allows isolation of stresses acting on the crust. Comparison of results with the finite element codes Abaqus (commercial) and GALE (community- developed) is good. We find that horizontal tractions range from 0 to ~3 MPa and vertical tractions range between approximately -15 to 15 MPa (negative indicating downward, positive upward); Absolute magnitudes depend on the assumed velocity-density scaling relationship but the overall patterns of flow are more robust. Anomalous density beneath the Transverse Ranges, in particular beneath the San Bernardino Mountains and offshore beneath the Channel Islands, drives convergent horizontal tractions and negative vertical tractions on the base of the crust there. Anomalous buoyancy beneath the southern Walker Lane Belt and anomalous density beneath the southern Great Valley create a small convective cell (the Sierra Nevada "drip"), which promotes extension on the eastern edge of the Sierra Nevada block and subsidence of the Great Valley. Favorable comparison with contemporary crustal thickness, heat flow, and surface strain rate indicates that upper mantle flow plays a very important role in active crustal deformation in southern California and much of the non-ideal behavior of this

  4. Bidirectional control system for energy flow in solar powered flywheel

    NASA Technical Reports Server (NTRS)

    Nola, Frank J. (Inventor)

    1987-01-01

    An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.

  5. Low-Speed Active Flow Control Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.

    2005-01-01

    The future of aviation propulsion systems is increasingly focused on the application of control technologies to significantly enhance the performance of a new generation of air vehicles. Active flow control refers to a set of technologies that manipulate the flow of air and combustion gases deep within the confines of an engine to dynamically alter its performance during flight. By employing active flow control, designers can create engines that are significantly lighter, are more fuel efficient, and produce lower emissions. In addition, the operating range of an engine can be extended, yielding safer transportation systems. The realization of these future propulsion systems requires the collaborative development of many base technologies to achieve intelligent, embedded control at the engine locations where it will be most effective. NASA Glenn Research Center s Controls and Dynamics Technology Branch has developed a state-of-the-art low-speed Active Flow Control Laboratory in which emerging technologies can be integrated and explored in a flexible, low-cost environment. The facility allows the most promising developments to be prescreened and optimized before being tested on higher fidelity platforms, thereby reducing the cost of experimentation and improving research effectiveness.

  6. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    SciTech Connect

    Shiu, Henry; van Dam, Cornelis P.

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  7. Is the modal approach appropriate for analysis of energy flow?

    NASA Astrophysics Data System (ADS)

    Pavic, Goran

    2002-11-01

    Modal superposition is a most commonly used approach in a numerical analysis of vibration. However, the computation requirements of a typical analysis of energy flow limit the attractiveness of the modal approach because, as a rule, a very large number of modes have to be taken into account in order to produce realistic results. The reason for this particularity is that the energy analysis involves not only vibration displacements but also higher derivatives of these which are contributed by higher modes, the higher the derivative order. More careful analysis of structure-borne vibration shows that the modal truncation is not the only inconvenience where the modal approach is used. An equally important factor limiting its use is the representation of vibration dissipation by modal damping. The paper shows comparisons of computed energy flow in plates using modal and wave approaches. The differences between the two are noticeable, in particular where the vectorial functions of energy flow field, divergence and curl, are concerned. The wave approach to vibration analysis is shown to be more physically consistent than the modal approach.

  8. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1992-01-01

    The work done during the progress report period from May-October 1992 is summarized. The effect of wall thermal boundary conditions on flows over a step or rib when repeated rib roughness is used for heating augmentation is examined. In numerical investigations of various such laminar and turbulent flows, the local heat transfer coefficients on a forward-facing step or on a rib were found to be very sensitive to the wall thermal boundary condition. For the computation of constant property laminar flow, the wall thermal boundary conditions were either a uniform heat flux or a uniform temperature. Results (Nusselt number and isotherms) of the studies are included. The second part of the work consisted of using PHOENICS to solve the conjugate heat transfer problem of flow over a rib in channel. Finally, the algebraic stress model in the TEAM (Turbulent Elliptic Algorithm-Manchester) code was tested for jet impingement flow, but there needs to be an addition of the energy equation to the code.

  9. Hypersonic Flow Control Using Upstream Focused Energy Deposition

    NASA Technical Reports Server (NTRS)

    Riggins David W.; Nelson, H. F.

    1999-01-01

    A numerical study of centerline and off-centerline power deposition at a point upstream of a two-dimensional blunt body at Mach 6.5 at 30 km altitude are presented. The full Navier-Stokes equations are used. Wave drag, lift, and pitching moment are presented as a function of amount of power absorbed in the flow and absorption point location. It is shown that wave drag is considerably reduced. Modifications to the pressure distribution in the flow field due to the injected energy create lift and a pitching moment when the injection is off-centerline. This flow control concept may lead to effective ways to improve the performance and to stabilize and control hypersonic vehicles.

  10. Cellular Links between Neuronal Activity and Energy Homeostasis

    PubMed Central

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply. PMID:22470340

  11. Observations of shear flows in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, Eric C.

    The research discussed in this thesis represents work toward the demonstration of experimental designs for creating a Kelvin-Helmholtz (KH) unstable shear layer in a high-energy-density (HED) plasma. Such plasmas are formed by irradiating materials with several kilo-Joules of laser light over a few nanoseconds, and are defined as having an internal pressure greater than one-million atmospheres. Similar plasmas exist in laboratory fusion experiments and in the astrophysical environment. The KH instability is a fundamental fluid instability that arises when strong velocity gradients exist at the interface between two fluids. The KH instability is important because it drives the mixing of fluids and initiates the transition to turbulence in the flow. Until now, the evolution of the KH instability has remained relatively unexplored in the HED regime This thesis presents the observations and analysis of two novel experiments carried out using two separate laser facilities. The first experiment used 1.4 kJ from the Nike laser to generate a supersonic flow of Al plasma over a low-density, rippled foam surface. The Al flow interacted with the foam and created distinct features that resulted from compressible effects. In this experiment there is little evidence of the KH instability. Nevertheless, this experimental design has perhaps pioneered a new method for generating a supersonic shear flow that has the potential to produce the KH instability if more laser energy is applied. The second experiment was performed on the Omega laser. In this case 4.3 kJ of laser energy drove a blast wave along a rippled foam/plastic interface. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vorticies characteristic of the KH instability. The Omega experiment was the first HED experiment to capture the evolution of the KH instability.

  12. Heat transfer and flow in solar energy and bioenergy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  13. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  14. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  15. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  16. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  17. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  18. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  19. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE PAGESBeta

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  20. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    SciTech Connect

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.

  1. Flow detection of propagating waves with temporospatial correlation of activity

    PubMed Central

    Takagaki, Kentaroh; Zhang, Chuan; Wu, Jian-Young; Ohl, Frank W.

    2011-01-01

    Voltage-sensitive dye imaging (VSDI) allows population patterns of cortical activity to be recorded with high temporal resolution, and recent findings ascribe potential significance to their spatial propagation patterns—both for normal cortical processing and in pathologies such as epilepsy. However, analysis of these spatiotemporal patterns has been mostly qualitative to date. In this report, we describe an algorithm to quantify fast local flow patterns of cortical population activation, as measured with VSDI. The algorithm uses correlation of temporal features across space, and therefore differs from conventional optical flow algorithms which use correlation of spatial features over time. This alternative approach allows us to take advantage of the characteristics of fast optical imaging data, which have very high temporal resolution but less spatial resolution. We verify the method both on artificial and biological data, and demonstrate its use. PMID:21664934

  2. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  3. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  4. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect

    Parker, G.B.

    1991-01-01

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  5. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  6. Energy and materials flows in the production of primary aluminum

    SciTech Connect

    Shen, S.Y.

    1981-10-01

    The primary aluminum industry is one of the top five industrial energy users in the United States consuming about one quad annually. In 1980, for each ton of aluminum produced, an average smelting operation used about 157 million Btu of direct energy and another 70 million Btu were embodied in purchased materials. Producers employing the best practices used approximately 15% less energy per ton, or 132 million Btu of direct energy and 52 million Btu of embodied energy. These energy and materials flows are described in detail, using availability and input/output analyses and industry estimates. Energy consumption could be reduced further by developing (1) economical processes for using domestic nonbauxitic raw materials, a step that also would lessen the industry's present 94% dependence on foreign raw materials; (2) bulk alumina feeding equipment for handling more than one grade of alumina, thereby increasing the flexibility of smelting operations; (3) a reduction cell meter and temperature sensor for automatic control of alumina feeding and cell temperature; (4) a method for quickly and frequently measuring the NaF/AlF/sub 3/ ratio in a reduction cell for tighter control of electrolyte composition; and (5) a method for recovering waste heat.

  7. Importance of Atomic Contacts in Vibrational Energy Flow in Proteins.

    PubMed

    Kondoh, Masato; Mizuno, Misao; Mizutani, Yasuhisa

    2016-06-01

    Vibrational energy flow in proteins was studied by monitoring the time-resolved anti-Stokes ultraviolet resonance Raman scattering of three myoglobin mutants in which a Trp residue substitutes a different amino acid residue near heme. The anti-Stokes Raman intensities of the Trp residue in the three mutants increased with similar rates after depositing excess vibrational energy at heme, despite the difference in distance between heme and each substituted Trp residue along the main chain of the protein. This indicates that vibrational energy is not transferred through the main chain of the protein but rather through atomic contacts between heme and the Trp residue. Distinct differences were observed in the amplitude of the band intensity change between the Trp residues at different positions, and the amplitude of the band intensity change exhibits a correlation with the extent of exposure of the Trp residue to solvent water. This correlation indicates that atomic contacts between an amino acid residue and solvent water play an important role in vibrational energy flow in a protein. PMID:27164418

  8. Model estimation of energy flow in Oregon coastal seabird populations

    USGS Publications Warehouse

    Wiens, J.A.; Scott, J.M.

    1976-01-01

    A computer simulation model was used to explore the patterns and magnitudes of population density changes and population energy demands in Oregon populations of Sooty Shear-waters, Leach?s Storm-Petrels, Brandt?s Cormorants, and Common Murres. The species differ in seasonal distribution and abundance, with shearwaters attaining high densities during their migratory movements through Oregon waters, and murres exhibiting the greatest seasonal stability in population numbers. On a unit area basis, annual energy flow is greatest through murre and cormorant populations. However, because shearwaters occupy a larger area during their transit, they dominate the total energy flow through the four-species seabird ?community.?.....Consumption of various prey types is estimated by coupling model output of energy demands with information on dietary habits. This analysis suggests that murres annually consume nearly twice as many herring as any other prey and consume approximately equal quantities of anchovy, smelt, cod, and rockfish. Cormorants consume a relatively small quantity of bottom-dwelling fish, while stormpetrels take roughly equal quantities of euphausiids and hydrozoans. Anchovies account for 43% of the 62,506 metric tons of prey the four species are estimated to consume annually; 86% of this anchovy consumption is by shearwaters. The consumption of pelagic fishes by these four populations within the neritic zone may represent as much as 22% of the annual production of these fish.

  9. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  10. An active feedback flow control theory of the vortex breakdown process

    NASA Astrophysics Data System (ADS)

    Granata, Joshua

    An active feedback flow control theory of the vortex breakdown process in incompressible, axisymmetric swirling flows in a finite-length, straight, circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet and outlet conditions. A long-wave asymptotic analysis, which involves a re-scaling of the axial distance and time at near critical swirl ratios, results in a nonlinear model problem for the dynamics and control of both inviscid and high-Reynolds number, Re, flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. Computed examples of the flow dynamics based on the full Euler and Navier-Stokes formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level which depends on Re. Numerical stability and mesh convergence studies performed on the inviscid and high-Re flow simulations ensure the accuracy of the computations and the agreement with the theoretical approaches. In addition, an energy analysis of the nonlinear model problem sheds insight into the mechanisms of the flow dynamics which lead to vortex breakdown and suggests a feedback control law which relates the flow injection and the evolving maximum radial velocity at the inlet. Moreover, applying the proposed feedback control law during flow evolution, shows for the first time the successful and robust elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl up to 53 percent above the first critical level for the inviscid flow case and for a range of swirl up to 15 percent above the first critical level for viscous flows. The control law can be improved for a lower momentary maximum flux injection through the use of discrete injection regions along the pipe. The feedback control cuts the natural feed-forward mechanism of the breakdown

  11. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  12. Energy-decomposition analysis for viscous free-surface flows.

    PubMed

    Colagrossi, Andrea; Bouscasse, Benjamin; Marrone, Salvatore

    2015-11-01

    This work is dedicated to the energy decomposition analysis of a viscous free-surface flow. In the presence of a free surface, the viscous dissipation for a Newtonian liquid can be decomposed into two terms: an enstrophy component and a free-surface deformation component. The latter requires the evaluation of volume and surface integrals in the meshless framework. The analysis is based on the weakly compressible smoothed particle hydrodynamics formalism. The behavior of the energy terms is studied in standing wave problems by changing the viscosity and the wave amplitude. Finally, an analysis of a complex shallow water breaking wave case is provided. It is shown that in presence of intense breaking phenomena the two energy components are always comparable, whereas generally the free surface component is dominant on the viscous dissipation of gravity waves. PMID:26651775

  13. Energy and Energy Conservation Activities for High School Students.

    ERIC Educational Resources Information Center

    Bottinelli, Charles A., Ed.; Dow, John O., Ed.

    This manual contains fifteen energy activities suitable for high school physical and environmental science and mathematics classrooms. The activities are independent, each having its own objectives, introduction, and background information. A special section of each activity is written for the instructor and contains limits, sample data, and…

  14. Overview of Active Flow Control at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pack, L. G.; Joslin, R. D.

    1998-01-01

    The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

  15. Constructive interference in arrays of energy harvesters in fluid flows

    NASA Astrophysics Data System (ADS)

    Azadeh Ranjbar, Vahid; Goushcha, Oleg; Elvin, Niell; Andreopoulos, Yiannis

    2014-11-01

    In the present work we demonstrate some unique opportunities which exist to increase the power harvested with fluidic piezoelectric generators by almost two orders of magnitude higher than existing methods by exploiting dynamic non-linearities and deploying multi-element arrays in carefully selected positions in a fluid flow field. These ac-coupled generators convert fluid kinetic energy, which otherwise would be wasted, into electrical energy. The available power in a flowing fluid is proportional to the cube of its velocity and if it is properly harvested can be used for continuously powering very small electronic devices or can be rectified and stored for intermittent use. Additional experimental work has shown that non-linear arrays of such energy harvesters can produce high output voltages in a very broadband range of frequencies. In our work, we investigate the effect of geometric parameters such as spatial arrangement and the mutual interference between the elements of a non-linear array on their overall performance and efficiency characteristics. Analytical tools based on the non-linear van der Pol oscillator have been also developed and verified with experimental data. Work supported by National Science Foundation under Grant No. CBET #1033117.

  16. An Energy Principle for Ideal MHD Equilibria with Flows

    SciTech Connect

    Yao Zhou and Hong Qin

    2013-03-11

    In the standard ideal MHD energy principle for equilibria with no flows, the stability criterion, which is the defi niteness of the perturbed potential energy, is usually constructed from the linearized equation of motion. Equivalently while more straightforwardly, it can also be obtained from the second variation of the Hamiltonian calculated with proper constraints. For equilibria with flows, a stability criterion was proposed from the linearized equation of motion, but not explained as an energy principle1. In this paper, the second variation of the Hamiltonian is found to provide a stability criterion equivalent to, while more straightforward than, what was constructed from the linearized equation of motion. To calculate the variations of the Hamiltonian, a complete set of constraints on the dynamics of the perturbations is derived from the Euler-Poincare structure of the ideal MHD. In addition, a previous calculation of the second variation of the Hamiltonian was claimed to give a different stability criterion2, and in this paper we argue such a claim is incorrect.

  17. Controlling Defects and Flow in Active Nematic Suspensions

    NASA Astrophysics Data System (ADS)

    Shankar, Suraj; Guillamat Bassedas, Pau; Ignés-Mullol, Jordi; Sagués, Francesc; Marchetti, M. Cristina

    Experiments on active nematics composed of cytoskeletal biopolymers activated by molecular motors have shown that in these systems topological defects drive self-sustained flows and the transition to spatio-temporal chaos. In active nematics, defects become dynamical entities and behave like self-propelled particles. In a freely suspended nematic layer the defect speed is controlled by the activity and the viscosity of the active fluid that is so far unknown. Experiments, however, are carried out on very thin nematic layers at an oil-water interface. Our collaborators in Barcelona have shown that increasing the viscosity of the oil can substantially slow down the defects and increase their number. Considering a model of an active nematic at an oil-water interface, we have calculated the defect speed as a function of oil viscosity and find that theory and experiments agree well when the oil viscosity is changed over four orders of magnitude. Importantly, by combining theory and experiments these results provide a parameter-free estimate for the interfacial viscosity of the active nematic layer, which has never been measured before. This research was supported by the Grants NSF-DMR-1305184 and MINECO FIS 2013-41144P.

  18. Flow based vs. demand based energy-water modelling

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Koukouvinos, Antonios; Makropoulos, Christos

    2015-04-01

    The water flow in hydro-power generation systems is often used downstream to cover other type of demands like irrigation and water supply. However, the typical case is that the energy demand (operation of hydro-power plant) and the water demand do not coincide. Furthermore, the water inflow into a reservoir is a stochastic process. Things become more complicated if renewable resources (wind-turbines or photovoltaic panels) are included into the system. For this reason, the assessment and optimization of the operation of hydro-power systems are challenging tasks that require computer modelling. This modelling should not only simulate the water budget of the reservoirs and the energy production/consumption (pumped-storage), but should also take into account the constraints imposed by the natural or artificial water network using a flow routing algorithm. HYDRONOMEAS, for example, uses an elegant mathematical approach (digraph) to calculate the flow in a water network based on: the demands (input timeseries), the water availability (simulated) and the capacity of the transmission components (properties of channels, rivers, pipes, etc.). The input timeseries of demand should be estimated by another model and linked to the corresponding network nodes. A model that could be used to estimate these timeseries is UWOT. UWOT is a bottom up urban water cycle model that simulates the generation, aggregation and routing of water demand signals. In this study, we explore the potentials of UWOT in simulating the operation of complex hydrosystems that include energy generation. The evident advantage of this approach is the use of a single model instead of one for estimation of demands and another for the system simulation. An application of UWOT in a large scale system is attempted in mainland Greece in an area extending over 130×170 km². The challenges, the peculiarities and the advantages of this approach are examined and critically discussed.

  19. Variational energy principle for compressible, baroclinic flow. 2: Free-energy form of Hamilton's principle

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1977-01-01

    The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.

  20. Symmetry energy from elliptic flow in 197Au + 197Au

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Wu, P. Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Trautmann, W.

    2011-03-01

    The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. The results obtained from the existing FOPI/LAND data for 197Au + 197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to (ρ /ρ0) γ with γ = 0.9 ± 0.4.

  1. Snapshot of Active Flow Control Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

    2002-01-01

    NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

  2. Endocannabinoids Control Platelet Activation and Limit Aggregate Formation under Flow

    PubMed Central

    De Angelis, Valentina; Koekman, Arnold C.; Weeterings, Cees; Roest, Mark; de Groot, Philip G.; Herczenik, Eszter; Maas, Coen

    2014-01-01

    Background The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Objectives Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. Methods and Results We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Conclusions Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function

  3. The total flow concept for geothermal energy conversion

    NASA Technical Reports Server (NTRS)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  4. Energy Separation in the Vortical Wake Flows of Turbine Vanes

    NASA Astrophysics Data System (ADS)

    Gostelow, J. P.; Hogg, S. I.; Carscallen, W. E.

    1997-11-01

    A new wide-bandwidth stagnation temperature probe is used to provide time-resolved measurements of the energy separation phenomenon in a vortical wake flow. Measurements are made behind the blunt trailing edge of a turbine nozzle vane mounted in a transonic planar cascade. The energy separation effects are found to be particularily strong at high Mach numbers. Phase averaging is applied to map the Eulerian contours of stagnation temperature and pressure and of entropy increase. The measurements explain anomalies observed in previous time-averaged measurements. At an acquisition frequency of 250 kHz the resolution is still inadequate to resolve fine scale wake turbulence but is adequate to validate computational work which, in turn, helps in the interpretation of the measurements.

  5. Structure of urban movements: polycentric activity and entangled hierarchical flows.

    PubMed

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthélemy, Marc

    2011-01-01

    The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time 'Oyster' card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system. PMID:21249210

  6. Active flow control for a NACA-0012 profile

    NASA Astrophysics Data System (ADS)

    Oualli, H.; Mekadem, M.; Boukrif, M.; Saad, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2015-11-01

    Active flow control is applied on a NACA-0012 profile. The experiments are carried out in a wind tunnel, and flow visualizations are conducted using high-resolution visible-light and infrared cameras. Numerical LES finite-volume code is used to complement the physical experiments. The symmetric wing is clipped into two parts, and those parts extend and retract along the chord according to the same sinusoidal law we optimized last year for a circular/elliptical cylinder (B. Am. Phys. Soc., vol. 59, no. 20, p. 319, 2014). The Reynolds number varies in the range of 500-100,000, which is typical of UAVs and micro-UAVs. The nascent cavity resulting from the oscillatory motion of the profile segments is kept open allowing the passage of fluid between the intrados and extrados. The pulsatile motion is characterized by an amplitude and frequency, and the airfoil's angle of attack is changed in the range of 0-30 deg. For certain amplitude and frequency, the drag coefficient is increased over the uncontrolled case by a factor of 300. But when the cavity is covered to prevent the flow from passing through the cavity, the drag coefficient becomes negative, and significant thrust is produced. The results are promising to achieve rapid deceleration and acceleration of UAVs.

  7. Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows

    PubMed Central

    Roth, Camille; Kang, Soong Moon; Batty, Michael; Barthélemy, Marc

    2011-01-01

    The spatial arrangement of urban hubs and centers and how individuals interact with these centers is a crucial problem with many applications ranging from urban planning to epidemiology. We utilize here in an unprecedented manner the large scale, real-time ‘Oyster’ card database of individual person movements in the London subway to reveal the structure and organization of the city. We show that patterns of intraurban movement are strongly heterogeneous in terms of volume, but not in terms of distance travelled, and that there is a polycentric structure composed of large flows organized around a limited number of activity centers. For smaller flows, the pattern of connections becomes richer and more complex and is not strictly hierarchical since it mixes different levels consisting of different orders of magnitude. This new understanding can shed light on the impact of new urban projects on the evolution of the polycentric configuration of a city and the dense structure of its centers and it provides an initial approach to modeling flows in an urban system. PMID:21249210

  8. Visibility of Active Lava Flows from Venus Orbit

    NASA Astrophysics Data System (ADS)

    Mueller, N.

    2015-10-01

    I present a model of the signatures of active lava flows observable through spectral windows from orbit and data processing methods for isolating these signatures in near-infrared images.The model estimates the thermal emission of lava flows based on models for the analysis of remote observation of eruptions on Earth and Io, however adjusted to the different thermal environment of the Venus surface. This thermal emission radiation is only partially transmitted through the diffusely scattering cloud layer and moreover diluted over a diameter of 100 km, an area much larger than the size of most flows. Data processing methods to enhance the chance to detect these signatures include corrections for variable cloud opacity using other spectral bands, subtraction of background thermal emission, and spatial filtering. This model and the implementation of the data processing methods for VIRTIS IR data, arguably the most sensitive and extensive applicable dataset, indicate that only very large and intense eruptions could have been detected with existing data.

  9. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  10. Vibration signal classification by wavelet packet energy flow manifold learning

    NASA Astrophysics Data System (ADS)

    He, Qingbo

    2013-04-01

    This paper proposes a new study to explore the wavelet packet energy (WPE) flow characteristics of vibration signals by using the manifold learning technique. This study intends to discover the nonlinear manifold information from the WPE flow map of vibration signals to characterize and discriminate different classes. A new feature, called WPE manifold feature, is achieved by three main steps: first, the wavelet packet transform (WPT) is conducted to decompose multi-class signals into a library of time-frequency subspaces; second, the WPE is calculated in each subspace to produce a feature vector for each signal; and finally, low-dimensional manifold features carrying class information are extracted from the WPE library for either training or testing samples by using the manifold learning algorithm. The new feature reveals the nonlinear WPE flow structure among various redundant time-frequency subspaces. It combines the benefits of time-frequency characteristics and nonlinear information, and hence exhibits valuable properties for vibration signal classification. The effectiveness and the merits of the proposed method are confirmed by case studies on vibration analysis-based machine fault classification.

  11. Recent trends in energy flows through the Arctic climate system

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  12. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  13. Stabilization of active matter by flow-vortex lattices and defect ordering

    NASA Astrophysics Data System (ADS)

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-02-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials.

  14. Stabilization of active matter by flow-vortex lattices and defect ordering.

    PubMed

    Doostmohammadi, Amin; Adamer, Michael F; Thampi, Sumesh P; Yeomans, Julia M

    2016-01-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet-dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846

  15. Stabilization of active matter by flow-vortex lattices and defect ordering

    PubMed Central

    Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.

    2016-01-01

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846

  16. Observations of photospheric magnetic fields and shear flows in flaring active regions

    NASA Technical Reports Server (NTRS)

    Tarbell, T.; Ferguson, S.; Frank, Z.; Title, A.; Topka, K.

    1988-01-01

    Horizontal flows in the photosphere and subsurface convection zone move the footpoints of coronal magnetic field lines. Magnetic energy to power flares can be stored in the corona if the flows drive the fields far from the potential configuration. Videodisk movies were shown with 0.5 to 1 arcsecond resolution of the following simultaneous observations: green continuum, longitudinal magnetogram, Fe I 5576 A line center (mid-photosphere), H alpha wings, and H alpha line center. The movies show a 90 x 90 arcsecond field of view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Magnetic bipoles are emerging over a large area, and the polarities are systematically flowing apart. The horizontal flows were mapped in detail from the continuum movies, and these may be used to predict the future evolution of the region. The horizontal flows are not discernable in H alpha. The H alpha movies strongly suggest reconnection processes in the fibrils joining opposite polarities. When viewed in combination with the magnetic movies, the cause for this evolution is apparent: opposite polarity fields collide and partially cancel, and the fibrils reconnect above the surface. This type of reconnection, driven by subphotospheric flows, complicates the chromospheric and coronal fields, causing visible braiding and twisting of the fibrils. Some of the transient emission events in the fibrils and adjacent plage may also be related.

  17. Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides

    USGS Publications Warehouse

    Cardenas, W.; Dankert, J.R.; Jenkins, J.A.

    2004-01-01

    Lipopolysaccharides (LPS) from Gram-negative bacteria are strong stimulators of white river crayfish, Procambarus zonangulus, haemocytes in vitro. Following haemocyte treatment with LPS and with LPS from rough mutant R5 (LPS Rc) from Salmonella minnesota, flow cytometric analysis revealed a conspicuous and reproducible decrease in cell size as compared to control haemocytes. These LPS molecules also caused a reduction in haemocyte viability as assessed by flow cytometry with the fluorescent dyes calcein-AM and ethidium homodimer. The onset of cell size reduction was gradual and occurred prior to cell death. Haemocytes treated with LPS from S. minnesota without the Lipid A moiety (detoxified LPS) decreased in size without a reduction of viability. The action of LPS on crayfish haemocytes appeared to be related to the activation of the prophenoloxidase system because phenoloxidase (PO)-specific activity in the supernatants from control and detoxified LPS-treated cells was significantly lower than that from LPS and LPS-Rc treated cells (P < 0.05). Furthermore, addition of trypsin inhibitor to the LPS treatments caused noticeable delays in cell size and viability changes. These patterns of cellular activation by LPS formulations indicated that crayfish haemocytes react differently to the polysaccharide and lipid A moieties of LPS, where lipid A is cytotoxic and the polysaccharide portion is stimulatory. These effects concur with the general pattern of mammalian cell activation by LPS, thereby indicting commone innate immune recognition mechanisms to bacterial antigens between cells from mammals and invertebrates. These definitive molecular approaches used to verify and identify mechanisms of invertbrate haemocyte responses to LPS could be applied with other glycoconjugates, soluble mediators, or xenobiotic compounds.

  18. Engaging in activities involving information technology: dimensions, modes, and flow.

    PubMed

    Montgomery, Henry; Sharafi, Parvaneh; Hedman, Leif R

    2004-01-01

    An engagement mode involves a subject (e.g., a user of information technology, or IT) who is engaged in an activity with an object in a certain manner (the mode). The purpose of this study is to develop a general model of engagement modes that may be used for understanding how IT-related activities are shaped by properties of the user and the IT object. A questionnaire involving items on IT engagement and the experience of flow was administered to 300 participants. The results supported an engagement mode (EM) model involving 5 different engagement modes (enjoying/acceptance, ambition/curiosity, avoidance/hesitation, frustration/ anxiety, and efficiency/productivity) characterized on 3 dimensions (evaluation of object, locus of control between subject and object, and intrinsic or extrinsic focus of motivation). The flow experience follows from a balance between enjoying/ acceptance and efficiency/productivity propelled by ambition/curiosity. The EM model could provide a platform for considering how IT users, IT applications, and IT environments should work together to yield both enjoyment and efficiency. Actual or potential applications of this research include designing IT training programs on different levels of specificity. PMID:15359681

  19. Pigouvian taxation of energy for flow and stock externalities and strategic, noncompetitive energy pricing

    SciTech Connect

    Wirl, F. )

    1994-01-01

    The literature on energy and carbon taxes is by and large concerned about the derivation of (globally) efficient strategies. In contrast, this paper considers the dynamic interactions between cartelized energy suppliers and a consumers' government that collectively taxes energy carriers for Pigouvian motives. Two different kinds of external costs are associated with energy consumption: flow (e.g., acid rain) and stock externalities (e.g., global warming). The dynamic interactions between a consumers' government and a producers' cartel are modeled as a differential game with a subgame perfect Nash equilibrium in linear and nonlinear Markov strategies. The major implications are that the nonlinear solutions are Pareto-inferior to the linear strategies and energy suppliers may preempt energy taxation and thereby may raise the price at front; however, this effect diminishes over time because the producers' price declines, while taxes increase. 22 refs., 5 figs., 1 tab.

  20. Beam energy dependence of the viscous damping of anisotropic flow

    NASA Astrophysics Data System (ADS)

    Lacey, Roy

    2013-10-01

    The flow harmonics v2 , 3 for charged hadrons, are studied for a broad range of centrality selections and beam collision energies in Au+Au (√{sNN} = 7 . 7 - 200 GeV) and Pb+Pb (√{sNN} = 2 . 76 TeV) collisions. They validate the characteristic signature expected for the system size dependence of viscous damping at each collision energy studied. The extracted viscous coefficients, that encode the magnitude of the ratio of shear viscosity to entropy density η / s , are observed to decrease to an apparent minimum as the collision energy is increased from √{sNN} = 7 . 7 to approximately 62.4 GeV; thereafter, they show a slow increase with √{sNN} up to 2.76 TeV. This pattern of viscous damping provides the first experimental constraint for η / s in the temperature-baryon chemical potential (T ,μB) plane, and could be an initial indication for decay trajectories which lie close to the critical end point in the phase diagram for nuclear matter. This research is supported by the US DOE under contract DE-FG02-87ER40331.A008.

  1. Dynamics of interaction of directed energy flows with matter

    NASA Astrophysics Data System (ADS)

    Skvortsov, Vladimir A.; Fortov, Vladimir E.

    1992-04-01

    Directed energy flows (DEF), including a High Power ion beams (PIB), are used in different areas of science, engineering and technology. For example, very worth-while is the use of PIB for: the realization of inertial controlled fusion, pumping up gas lasers, the investigations in the area of nuclear physics and energy high density physics, the formation of powerful pulse sources of X-ray and neutron radiation, ion alloying of metals and making surfaces, which improve physical and chemical properties of metals (enlargement of their hardness, corrosion, stability, etc.). The simulation of interaction processes of X-ray radiation with the matter now becomes more actual because of the progress in physics of short length wave laser. High cost and difficulties of the experiments and also the difficulties to get fast changing physical parameters in the area of the DEF--interaction with the target make it necessary to carry out a preliminary computer simulations for the evaluation of the expected physical parameters and the very expediency of such physical experiment. The examples and results of such mathematical simulation on dynamics of intensive pulse actions on metal targets by DEF (high-power ion beams, sharped - charged jets, hypervelocity projectiles, X-ray radiation), are represented in this paper with brief description of used computer models, worked out by High Energy Density Research Center, Russia).

  2. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    SciTech Connect

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  3. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGESBeta

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  4. Two-phase flow in a chemically active porous medium

    SciTech Connect

    Darmon, Alexandre Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas

    2014-12-28

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy’s law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.

  5. Overview of active flow control at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Pack, LaTunia G.; Joslin, Ronald D.

    1998-06-01

    The paper summarizes active flow control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state- of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R and D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry.

  6. Strongly Accelerated Margination of Active Particles in Blood Flow.

    PubMed

    Gekle, Stephan

    2016-01-19

    Synthetic nanoparticles and other stiff objects injected into a blood vessel filled with red blood cells are known to marginate toward the vessel walls. By means of hydrodynamic lattice-Boltzmann simulations, we show that active particles can strongly accelerate their margination by moving against the flow direction: particles located initially in the channel center migrate much faster to their final position near the wall than in the nonactive case. We explain our findings by an enhanced rate of collisions between the stiff particles and the deformable red blood cells. Our results imply that a significantly faster margination can be achieved either technically by the application of an external magnetic field (if the particles are magnetic) or biologically by self-propulsion (if the particles are, e.g., swimming bacteria). PMID:26789773

  7. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  8. Conservation Activities Related to Energy: Energy Activities for Urban Elementary Students, K-6.

    ERIC Educational Resources Information Center

    Schmidt, Joan S.; And Others

    Presented are simple activities, experiments, and demonstrations relating to energy conservation in the home. Activities are divided into four areas: (1) kitchen, (2) house, (3) transportation, and (4) heating and cooling. The material has been designed to require a minimum of preparation. Activity and game masters are provided. Activities may be…

  9. Differential Activation and Inhibition of RhoA by Fluid Flow Induced Shear Stress in Chondrocytes

    PubMed Central

    Wan, Qiaoqiao; Kim, Seung joon; Yokota, Hiroki; Na, Sungsoo

    2013-01-01

    Physical force environment is a major factor that influences cellular homeostasis and remodeling. It is not well understood, however, as a potential role of force intensities in the induction of cellular mechanotransduction. Using a fluorescence resonance energy transfer (FRET)-based approach, we asked whether activities of GTPase RhoA in chondrocytes are dependent on intensities of flow induced shear stress. We hypothesized that RhoA activities can be either elevated or reduced by selecting different levels of shear stress intensities. The result indicate that C28/I2 chondrocytes have increased RhoA activities in response to high shear stress (10 or 20 dyn/cm2), whereas a decrease in activity was seen with an intermediate shear stress of 5 dyn/cm2. No changes were seen under low shear stress (2 dyn/cm2). The observed 2-level switch of RhoA activities is closely linked to the shear stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. In chondrocytes, expression of various metalloproteinases is, in part, regulated by shear and normal stresses through a network of GTPases. Collectively, the data suggest that intensities of shear stress are critical in differential activation and inhibition of RhoA activities in chondrocytes. PMID:23408748

  10. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct

    NASA Technical Reports Server (NTRS)

    Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)

    2002-01-01

    There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.

  11. Polytropic dark matter flows illuminate dark energy and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Spyrou, N. K.

    2015-04-01

    Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the

  12. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.

  13. Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI

    PubMed Central

    Fredriksson, Alexandru; Eriksson, Jonatan; Dyverfeldt, Petter; Ebbers, Tino; Bolger, Ann F.; Engvall, Jan; Carlhäll, Carl-Johan

    2016-01-01

    Aims 4D flow magnetic resonance imaging (MRI) allows quantitative assessment of left ventricular (LV) function according to characteristics of the dynamic flow in the chamber. Marked abnormalities in flow components’ volume and kinetic energy (KE) have previously been demonstrated in moderately dilated and depressed LV’s compared to healthy subjects. We hypothesized that these 4D flow-based measures would detect even subtle LV dysfunction and remodeling. Methods and Results We acquired 4D flow and morphological MRI data from 26 patients with chronic ischemic heart disease with New York Heart Association (NYHA) class I and II and with no to mild LV systolic dysfunction and remodeling, and from 10 healthy controls. A previously validated method was used to separate the LV end-diastolic volume (LVEDV) into functional components: direct flow, which passes directly to ejection, and non-ejecting flow, which remains in the LV for at least 1 cycle. The direct flow and non-ejecting flow proportions of end-diastolic volume and KE were assessed. The proportions of direct flow volume and KE fell with increasing LVEDV-index (LVEDVI) and LVESV-index (LVESVI) (direct flow volume r = -0.64 and r = -0.74, both P<0.001; direct flow KE r = -0.48, P = 0.013, and r = -0.56, P = 0.003). The proportions of non-ejecting flow volume and KE rose with increasing LVEDVI and LVESVI (non-ejecting flow volume: r = 0.67 and r = 0.76, both P<0.001; non-ejecting flow KE: r = 0.53, P = 0.005 and r = 0.52, P = 0.006). The proportion of direct flow volume correlated moderately to LVEF (r = 0.68, P < 0.001) and was higher in a sub-group of patients with LVEDVI >74 ml/m2 compared to patients with LVEDVI <74 ml/m2 and controls (both P<0.05). Conclusion Direct flow volume and KE proportions diminish with increased LV volumes, while non-ejecting flow proportions increase. A decrease in direct flow volume and KE at end-diastole proposes that alterations in these novel 4D flow-specific markers may detect

  14. Blood flow changes in arteriovenous malformation during behavioral activation.

    PubMed

    Deutsch, G

    1983-01-01

    Striking task-dependent fluctuations were observed in the cerebral blood flow pattern of a patient with a left posterior hemispheric arteriovenous malformation (AVM). Two-dimensional measures of regional cerebral flow in the resting state, using the xenon 133 inhalation technique, revealed a region of high flow coincident with the AVM seen on the patient's arteriograms. In subsequent studies, the AVM stood out as a region of high blood flow during a relaxed state, while it approached normal levels of flow when there was attentional demand. These observations suggest that focal regulatory mechanisms exist at the AVM or else that very substantial redistributions of blood flow are taking place which the flow rate in the AVM reflects only passively. Patients considered for embolic treatment of an AVM would benefit from an assessment of behavioral influences on flow in the AVM. PMID:6830163

  15. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect

    Raustad, Richard A.

    2013-01-01

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

  16. Numerical Modeling of Flow through Phloem Considering Active Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta

    2013-11-01

    Transport through phloem is of significant interest in engineering applications including self-powered microfluidic pumps. We present a phloem model, combining protein level mechanics with cellular level fluid transport. Fluid flow and sucrose transport through a petiole sieve tube are simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Governing equations are solved using the finite volume method with dynamically calculated boundary conditions. Sieve tube cell structure consisting of sieve plates is included in a two dimensional model by computational cell blocking. Sucrose transport is incorporated as a boundary condition through a six-state model, bringing in active loading mechanisms with consideration of physical plant properties. The effects of reaction rates and leaf sucrose concentration are investigated to understand the transport mechanism in petiole sieve tubes. Numerical results show that increasing forward reactions of the proton sucrose transporter significantly promotes the pumping ability. A lower leaf sieve sucrose concentration results in a lower wall inflow velocity, but yields a higher inflow of water due to the active loading mechanism. The overall effect is higher outflow velocity for lower leaf sieve sucrose concentration because the increase in inflow velocity outweighs wall velocity. This new phloem model provides new insights on mechanisms potentially useful for fluidic pumping in self-powered microfluidic pumps. This work is supported in part by the National Science Fundation grant CBET-1250107.

  17. Ciliary motility activity measurement using a dense optical flow algorithm.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Cortijo, Julio; Riera, Jaime; Hueso, José L; Moratal, David

    2013-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. In this study, an automatic method has been established to determine the ciliary motility activity from cell cultures by means of optical flow computation, and has been applied to 136 control cultures and to 144 RSV-infected cultures. The control group presented an average of cell surface with cilia motility per field of 41 ± 15 % (mean ± standard deviation), while the infected group presented a 11 ± 5 %, t-Student p<0.001. The cutoff value to classify a infected specimen was <17.89 % (sensitivity 0.94, specificity 0.93). This methodology has proved to be a robust technique to evaluate cilia motility in cell cultures. PMID:24110720

  18. Efficient Ionization Investigation for Flow Control and Energy Extraction

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Kamhawi, Hani; Blankson, Isaiah M.

    2009-01-01

    Nonequilibrium ionization of air by nonthermal means is explored for hypersonic vehicle applications. The method selected for evaluation generates a weakly ionized plasma using pulsed nanosecond, high-voltage discharges sustained by a lower dc voltage. These discharges promise to provide a means of energizing and sustaining electrons in the air while maintaining a nearly constant ion/neutral molecule temperature. This paper explores the use of short approx.5 nsec, high-voltage approx.12 to 22 kV, repetitive (40 to 100 kHz) discharges in generating a weakly ionized gas sustained by a 1 kV dc voltage in dry air at pressures from 10 to 80 torr. Demonstrated lifetimes of the sustainer discharge current approx.10 to 25 msec are over three orders of magnitude longer than the 5 nsec pulse that generates the electrons. This life is adequate for many high speed flows, enabling the possibility of exploiting weakly ionized plasma phenomena in flow-fields such as those in hypersonic inlets, combustors, and nozzles. Results to date are obtained in a volume of plasma between electrodes in a bell jar. The buildup and decay of the visible emission from the pulser excited air is photographed on an ICCD camera with nanosecond resolution and the time constants for visible emission decay are observed to be between 10 to 15 nsec decreasing as pressure increases. The application of the sustainer voltage does not change the visible emission decay time constant. Energy consumption as indicated by power output from the power supplies is 194 to 669 W depending on pulse repetition rate.

  19. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  20. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  1. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  2. Energy Activities for Junior High Social Studies.

    ERIC Educational Resources Information Center

    Minnesota State Energy Agency, St. Paul.

    The document contains seven learning activities for junior high students on the energy situation. Objectives are to help students gain understanding and knowledge about the relationships between humans and their social and physical environments; solve problems and clarify issues; examine personal beliefs and values; and recognize the relationships…

  3. Hardee County Energy Activities - Middle School Level.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.

    Described are over 70 activities designed to help students develop writing skills by examining energy issues. Intended for middle school students, the lessons were developed by Hardee County, Florida teachers. Learning strategies employed include class discussions, analogies, word puzzles, letter writing, sentence completions, vocabulary building…

  4. Activation energy of water structural transitions

    NASA Astrophysics Data System (ADS)

    Kholmanskiy, Alexander

    2015-06-01

    In this work, the nature of molecular motions that dominate in the thermodynamics of anomalies of liquid water properties in the range of 0-100 °C has been studied. Temperature dependencies of water properties have been approximated by exponential functions and the activation energies for water structure transitions have been evaluated. The activation energy values were compared with the energy spectra of characteristic vibrations and with those of cooperative molecular motion in the lattice-type structure of hydrogen bonds. It has been found that it is the reaction of hydrogen bond breaking that mainly limits the abnormal dynamics of water viscosity, self-diffusion, dielectric relaxation time and electric conductivity. It has been assumed that the thermodynamics of cooperative motion and resonance phenomena in water clusters form a basis for the differentiation mechanism of extrema points in temperature dependencies of water density, isobaric heat capacity, sound velocity, surface tension coefficient and compressibility.

  5. Drag reduction of motor vehicles by active flow control using the Coanda effect

    NASA Astrophysics Data System (ADS)

    Geropp, D.; Odenthal, H.-J.

    A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients cL and cD of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values.

  6. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  8. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  9. Measurements of energy distribution and wall temperature in flowing hydrogen microwave plasma systems

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Finzel, M.; Hawley, M. C.

    1985-01-01

    An electrothermal propulsion concept utilizing a microwave plasma system as the mechanism to convert electromagnetic energy into translational energy of the flowing gas is being investigated. A calorimetric experimental system has been designed and built enclosing the microwave plasma system to accurately determine the net energy transferred to the flowing gas. For a flow rate of 8900 micromoles/sec, a pressure of 7.4 torr, and an absorbed power level of 80 W, an energy transfer efficiency of 50 percent has been measured. A heat transfer model that characterizes the energy transfer processes in the plasma is developed. A wall temperature for the plasma system is calculated.

  10. Energy and momentum flow in electromagnetic fields and plasma. [solar wind-magnetospheric interaction

    NASA Technical Reports Server (NTRS)

    Parish, J. L.; Raitt, W. J.

    1983-01-01

    The energy momentum tensor for a perfect fluid in a magnetic field is used to predict the momentum density, energy density, momentum flow, and energy flow of the fluid and the electromagnetic field. It is shown that taking the momentum flow from the energy momentum tensor, rather than starting with differential magnetohydrodynamic equations, can produce more accurate results on the basis of magnetic field data. It is suggested that the use of the energy momentum tensor has the potential for application to analysis of data from the more dynamic regions of the solar system, such as the plasma boundaries of Venus, the Jovian ionosphere, and the terrestrial magnetopause.

  11. Design Flexibility of Redox Flow Systems. [for energy storage applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1982-01-01

    The characteristics inherent in Redox flow systems permit considerable latitude in designing systems for specific storage applications. The first of these characteristics is the absence of plating/deplating reactions with their attendant morphology changes at the electrodes. This permits a given Redox system to operate over a wide range of depths of discharge and charge/discharge rates. The second characteristic is the separation of power generating components (stacks) from the energy storage components (tanks). This results in cost effective system design, ease of system growth via modularization, and freedom from sizing restraints so that the whole spectrum of applications, from utilities down to single residence can be considered. The final characteristic is the commonality of the reactant fluids which assures that all cells at all times are receiving reactants at the same state of charge. Since no cell can be out of balance with respect to any other cell, it is possible for some cells to be charged while others are discharging, in effect creating a DC to DC transformer. It is also possible for various groups of cells to be connected to separate loads, thus supplying a range of output voltages. Also, trim cells can be used to maintain constant bus voltage as the load is changed or as the depth of discharge increases. The commonality of reactant fluids also permits any corrective measures such as rebalancing to occur at the system level instead of at the single cell level.

  12. Energy flow and the “grassification” of desert shrublands

    USGS Publications Warehouse

    Betancourt, Julio L.

    2015-01-01

    In our directionally and continuously changing world, history still matters, and it does so in increasingly novel and important ways. Human adaptation to global change will rely heavily on robust baselines of historic environmental variability and detailed understanding of how both past and modern ecosystems have responded to both individual and multiple stressors. The question of global change has motivated an upsurge in paleoecological studies that span the late Quaternary and the modern era, and has inspired a growing consideration of time as a fundamental axis in ecology (1). A major challenge in developing pertinent ecological baselines remains how to fuse, into continuous time series, observations and experiments from living systems with paleoecological reconstructions from the same sites (2, 3). Tracing and disentangling complex responses to environmental stress from paleological to present-day communities is especially daunting; for example, how climate change; accelerated land use; and biological invasions are influencing the flows of water, nutrients, and energy. The paper by Terry and Rowe in PNAS (4) is a shining example of how modern ecology and paleoecology can be spliced together to decipher how ecological processes unfold over time scales inaccessible to direct observation or experimentation, and how they can be disrupted by human impacts.

  13. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  14. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  15. Effect of local energy supply to a hypersonic flow on the drag of bodies with different nose bluntness

    SciTech Connect

    Borzov, V.Yu.; Rybka, I.V.; Yur`ev, A.S.

    1995-06-01

    Parameters of the axisymmetric flow around bodies with different bluntness are compared in the case of constant energy supply to the main hypersonic flow. Flow structures, drag coefficients, and expenditure of energy on overcoming drag are analyzed with the effect of thermal energy on the flow taken into account for different bodies with equal volume.

  16. Midtail plasma flows and the relationship to near-Earth substorm activity: A case study

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Goodrich, C. C.; Reeves, G. D.; Belian, R. D.; Taktakishvili, A.

    1994-01-01

    Recent simulations of magnetotail reconnection have pointed to a link between plasma flows, dipolarization, and the substorm current wedge. In particular, Hesse and Birn (1991) have proposed that earthward jetting of plasma from the reconnection region transports flux into the near-Earth region. At the inner edge of the plasma sheet this flux piles up, producing a dipolarization of the magnetic field. The vorticity produced by the east-west deflection of the flow at the inner edge of the plasma sheet gives rise to field-aligned currents that have region 1 polarity. Thus in this scenario the earthward flow from the reconnection region produces the dipolarization ad the current wedge in a self-consistent fashion. In this study we examine observations made on April 8, 1985 by the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Ion Release Module (IRM), the geosynchronous satellites 1979-053, 1983-019, and 1984-037, and Syowa station, as well as AE. This event is unique because IRM was located near the neutral sheet in the midnight sector for am extended period of time. Ground data show that there was ongoing activity in the IRM local time sector for several hours, beginning at 1800 UT and reaching a crescendo at 2300 UT. This activity was also accompanied by energetic particle variations, including injections, at geosynchronous orbit in the nighttime sector. Significantly, there were no fast flows at the neutral sheet until the great intensification of activity at 2300 UT. At that time, IRM recorded fast eartheard flow simultaneous with a dipolatization of the magetic field. We conclude that while the aforementioned scenario for the creation of the current wedge encounters serious problems explaining the earlier activity, the observations at 2300 UT are consistent with the scenario of Hesse and Birn (1191). On that basis it is argued that the physics of substorms is not exclusively rooted in the development of a global tearing mode. Processes at the inner edge

  17. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation

    NASA Astrophysics Data System (ADS)

    Pezeshki, Alan M.; Clement, Jason T.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-10-01

    The roundtrip electrochemical energy efficiency is improved from 63% to 76% at a current density of 200 mA cm-2 in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper electrodes in the high-performance no-gap design. Heat treatment of the carbon paper electrodes in a 42% oxygen/58% nitrogen atmosphere increases the electrochemically wetted surface area from 0.24 to 51.22 m2 g-1, resulting in a 100-140 mV decrease in activation overpotential at operationally relevant current densities. An enriched oxygen environment decreases the amount of treatment time required to achieve high surface area. The increased efficiency and greater depth of discharge doubles the total usable energy stored in a fixed amount of electrolyte during operation at 200 mA cm-2.

  18. Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter

    NASA Astrophysics Data System (ADS)

    Ghose, Somdeb; Adhikari, R.

    2014-03-01

    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.

  19. Irreducible representations of oscillatory and swirling flows in active soft matter.

    PubMed

    Ghose, Somdeb; Adhikari, R

    2014-03-21

    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter. PMID:24702422

  20. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  1. Numerical model for the flow within the tower of a tornado-type wind energy system

    SciTech Connect

    Ayad, S.S.

    1981-11-01

    A two-equation turbulence model is used to predict numerically the flow within the tower of a tornado-type wind energy system. Calculations are carried out for a tower in a uniform flow. Both cases of closed-bottom tower and simulated turbine flow with a variety of turbine-to-tower diameter ratios and turbine flow rates are considered. Calculated values of pressure for closed-bottom tower are compared with experimental values. 11 refs.

  2. Dimensions of Flow in Academic and Social Activities among Summer Music Camp participants

    ERIC Educational Resources Information Center

    Diaz, Frank M.; Silveira, Jason M.

    2013-01-01

    The purpose of this study was to investigate the occurrence of flow experiences among high school music students attending a two-week summer instrumental music camp. Specifically, the study sought to determine if: (1) students do indeed experience flow in summer camp settings; (2) what activities are conducive to flow; (3) what is the relationship…

  3. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  4. Get Current: Switch on Clean Energy Activity Book

    SciTech Connect

    2014-06-01

    Switching on clean energy technologies means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a variety of puzzles in an energy theme.

  5. Blood flow in guinea fowl Numida meleagris as an indicator of energy expenditure by individual muscles during walking and running

    PubMed Central

    Ellerby, David J; Henry, Havalee T; Carr, Jennifer A; Buchanan, Cindy I; Marsh, Richard L

    2005-01-01

    Running and walking are mechanically complex activities. Leg muscles must exert forces to support weight and provide stability, do work to accelerate the limbs and body centre of mass, and absorb work to act as brakes. Current understanding of energy use during legged locomotion has been limited by the lack of measurements of energy use by individual muscles. Our study is based on the correlation between blood flow and aerobic energy expenditure in active skeletal muscle during locomotion. This correlation is strongly supported by the available evidence concerning control of blood flow to active muscle, and the relationship between blood flow and the rate of muscle oxygen consumption. We used injectable microspheres to measure the blood flow to the hind-limb muscles, and other body tissues, in guinea fowl (Numida meleagris) at rest, and across a range of walking and running speeds. Combined with data concerning the various mechanical functions of the leg muscles, this approach has enabled the first direct estimates of the energetic costs of some of these functions. Cardiac output increased from 350 ml min−1 at rest, to 1700 ml min−1 at a running speed (∼ 2.6 m s−1) eliciting a of 90% of . The increase in cardiac output was achieved via approximately equal factorial increases in heart rate and stroke volume. Approximately 90% of the increased cardiac output was directed to the active muscles of the hind limbs, without redistribution of blood flow from the viscera. Values of mass-specific blood flow to the ventricles, ∼ 15 ml min−1 g−1, and one of the hind-limb muscles, ∼ 9 ml min−1 g−1, were the highest yet recorded for blood flow to active muscle. The patterns of increasing blood flow with increasing speed varied greatly among different muscles. The increases in flow correlated with the likely fibre type distribution of the muscles. Muscles expected to have many high-oxidative fibres preferentially increased flow at low exercise intensities. We

  6. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  7. Influence of source composition and particle energy on the determination of gross alpha activity.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A B Ruano; Pérez, J de la Torre; Sánchez, A Martín

    2013-12-01

    The influence of different source compositions and α-particle energies on the detection efficiency of a gas-flow proportional counter was examined using experimental measurements and Monte Carlo simulations. Efficiency variation with alpha-particle energy was very marked, being less significant with the substrate composition. These results show that the determination of gross alpha activity in an unknown sample must be carried out very carefully in order to give a correct estimation of its activity. PMID:24184741

  8. Laser Activated Flow Regulator for Glaucoma Drainage Devices

    PubMed Central

    Olson, Jeffrey L.; Velez-Montoya, Raul; Bhandari, Ramanath

    2014-01-01

    Purpose To assess the capabilities of a new glaucoma drainage device regulator in controlling fluid flow as well as to demonstrate that this effect may be titratable by noninvasive means. Methods A rigid eye model with two main ports was used. On the first port, we placed a saline solution column. On the second, we placed a glaucoma shunt. We then measured the flow and flow rate through the system. After placing the regulator device on the tip of the tube, we measured again with the intact membrane and with the membrane open 50% and 100%. For the ex vivo testing we used a similar setting, using a cadaveric porcine eye, we measured again the flow and flow rate. However, this time we opened the membrane gradually using laser shots. A one-way analysis of variance and a Fisher's Least Significant Difference test were used for statistical significance. We also calculated the correlation between the numbers of laser shots applied and the main outcomes. Results The flow through the system with the glaucoma drainage device regulator (membrane intact and 50% open) was statistically lower than with the membrane open 100% and without device (P < 0.05). The flow was successfully controlled by the number of laser shots applied, and showed a positive correlation (+ 0.9). The flow rate was almost doubled every 10 shots and statistically lower than without device at all time (P < 0.05). Conclusions The glaucoma drainage device regulator can be controlled noninvasively with laser, and allows titratable control of aqueous flow. Translational Relevance Initial results and evidence from this experiment will justify the initiation of in vivo animal trials with the glaucoma drainage device regulator; which brings us closer to possible human trials and the chance to significantly improve the existing technology to treat glaucoma surgically. PMID:25374772

  9. Active Closed-Loop Stator Vane Flow Control Demonstrated in a Low-Speed Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Strazisar, Anthony J.

    2004-01-01

    Closed-loop flow control was successfully demonstrated on the surface of stator vanes in NASA Glenn Research Center's Low-Speed Axial Compressor (LSAC) facility. This facility provides a flow field that accurately duplicates the aerodynamics of modern highly loaded compressors. Closed-loop active flow control uses sensors and actuators embedded within engine components to dynamically alter the internal flow path during off-nominal operation in order to optimize engine performance and maintain stable operation.

  10. High energy activation data library (HEAD-2009)

    SciTech Connect

    Mashnik, Stepan G; Korovin, Yury A; Natalenko, Anatoly A; Konobeyev, Alexander Yu; Stankovskiy, A Yu

    2010-01-01

    A proton activation data library for 682 nuclides from 1 H to 210Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed. A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the final HEAD-2009 library.

  11. High energy activation data library (HEAD-2009)

    NASA Astrophysics Data System (ADS)

    Korovin, Yu. A.; Natalenko, A. A.; Stankovskiy, A. Yu.; Mashnik, S. G.; Konobeyev, A. Yu.

    2010-12-01

    A proton activation data library for 682 nuclides from 1H to 210Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed. A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the final HEAD-2009 library.

  12. Energy and Man's Environment: Activity Guide. An Interdisciplinary Teacher's Guide to Energy and Environmental Activities.

    ERIC Educational Resources Information Center

    Jones, John, Ed.

    This publication provides the goals, concepts, objectives, and rationale for the six activity guides in this series of energy education materials. The organization of this series, as presented in this publication, centers around six goals which correspond to the activity guides. Under each goal are several concepts, which in turn, have several…

  13. Dynamic simulation of energy consumption in mixed traffic flow considering highway toll station

    NASA Astrophysics Data System (ADS)

    Qian, Yong-Sheng; Zhang, Xiao-Long; Zeng, Jun-Wei; Shao, Xiao-Ming; Wang, Neng

    2015-01-01

    An improved model of energy consumption including toll station is presented in this paper. Using the model, we study the influences of mixed ratio, the idling energy consumption of vehicle, vehicle peak velocity, dwell time and random deceleration probability on energy consumption of Electronic Toll Collection or Manual Toll Collection mixed traffic flow on single lane under periodic condition. Simulating results indicate that the above five parameters are all increasing functions of total energy consumption, in which the idling energy consumption represents the major amounts with the increase of mixed ratio and occupancy rate. Thus, the existence of toll station has significant effect on the energy consumption of mixed traffic flow.

  14. Energy and Man's Environment Activity Guide: An Interdisciplinary Teacher's Guide to Energy and Environmental Activities, Section Four - Impacts of Energy.

    ERIC Educational Resources Information Center

    Jones, John, Ed.

    This publication presents the activities pertaining to the fourth goal of this activity guide series. The activities in this publication focus on the socioeconomic effects of energy uses and crises and the understandings needed to assess those effects. These materials are appropriate for middle school and junior high school students. These…

  15. Energy and Man's Environment Activity Guide: An Interdisciplinary Teacher's Guide to Energy and Environmental Activities, Section One - Sources of Energy.

    ERIC Educational Resources Information Center

    Jones, John, Ed.

    This publication presents the activities pertaining to the first goal of this activity guide series. The activities in this publication focus primarily on the availability of resources, forms of energy, natural laws, and socioeconomic considerations. These materials are appropriate for middle school and junior high school students. These…

  16. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  17. Energy Adventure Center. Activity Book. Revised [and Expanded] Edition.

    ERIC Educational Resources Information Center

    Wichita Unified School District 259, KS.

    A variety of energy activities are provided, including instructions for and questions related to energy films. The activities are organized into five sections. Section 1 (work) includes an activity focusing on movement and change. Section 2 (forms of energy) includes activities related to mechanical (movement), radiant (light), chemical (burning),…

  18. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  19. ERP Energy and Cognitive Activity Correlates

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael Jay; Vendemia, Jennifer M. C.

    2014-03-01

    We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.

  20. Turbine Tip Clearance Active Flow Control using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Vanness, Daniel

    2005-11-01

    A low-speed linear cascade was used to examine the tip gap leakage flow and leakage vortex that exists within the low pressure turbine stage of a gas-turbine engine. The cascade array is composed of nine Pratt & Whitney ``PakB" blades, with the center blade having a variable tip gap up to five percent chord. Reynolds numbers based on axial chord varied from 10^4 to 10^5. Static pressure taps located at the midspan and near the tip of the blade were used to characterize the blade pressure distribution. A five-hole probe was also traversed in the downstream blade wake to ascertain velocity vectors and total pressure loss. Flow control in the form of a single-dielectric-barrier plasma actuator mounted on the blade tip was used to alter the leakage vortex by acting on the blade tip separation bubble, the blade tip shear layer instability, or the gap flow jet instability through the production of high frequency unsteady disturbances. The flow was documented through measurements with and without flow control for varying tip gaps and Reynolds numbers. The effect of the actuation on the tip leakage vortex and efficiency are investigated.

  1. Flow instability of a centrifugal pump determined using the energy gradient method

    NASA Astrophysics Data System (ADS)

    Li, Yi; Dong, Wenlong; He, Zhaohui; Huang, Yuanmin; Jiang, Xiaojun

    2015-02-01

    The stability of the centrifugal pump has not been well revealed because of the complexity of internal flow. To analyze the flow characteristics of a centrifugal pump operating at low capacity, methods of numerical simulation and experimental research were adopted in this paper. Characteristics of the inner flow were obtained. Standard k-ɛ turbulence models were used to calculate the inner flow of the pump under off-design conditions. The distribution of the energy gradient function K was obtained by three-dimensional numerical simulation at different flow rates. The relative velocity component was acquired from the absolute velocity obtained in particle image velocimetry. By comparing with experimental results, it was found that flow instability occurs at the position of maximum K. The flow stability reduces with an increasing flow rate. The research results provide a theoretical basis for the optimization design of a centrifugal pump.

  2. Energy and power limits for microbial activity

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J.

    2014-12-01

    The goal of this presentation is to describe a quantitative framework for determining how energy limits microbial activity, biomass and, ultimately, biogeochemical processes. Although this model can be applied to any environment, its utility is demonstrated in marine sediments, which are an attractive test habitat because they encompass a broad spectrum of energy levels, varying amounts of biomass and are ubiquitous. The potential number of active microbial cells in Arkonas Basin (Baltic Sea) sediments are estimated as a function of depth by quantifying the amount of energy that is available to them and the rate at which it is supplied: power. The amount of power supplied per cubic centimeter of sediment is determined by calculating the Gibbs energy of fermentation and sulfate reduction in combination with the rate of particulate organic carbon, POC, degradation. The Reactive Continuum Model (Boudreau and Ruddick, 1991), RCM, is used to determine the rate at which POC is made available for microbial consumption. The RCM represents POC as containing a range of different types of organic compounds whose ability to be consumed by microorganisms varies as a function of the age of the sediment and on the distribution of compound types that were initially deposited. The sediment age model and RCM parameters determined by (Mogollon et al., 2012) are used. The power available for fermentation and sulfate reduction coupled to H2 and acetate oxidation varies from 10-8 W cm-3 at the sediment water interface to between 10-11 - 10-12 W cm-3 at 3.5 meters below the seafloor, mbsf. Using values of maintenance powers for each of these catabolic activities taken from the literature, the total number of active cells in these sediments similarly decreases from just less than 108 cell cm-3 at the SWI to 4.6 x 104 cells cm-3 at 3.5 mbsf. The number of moles of POC decreases from 2.6 x 10-5 to 9.5 x 10-6, also becoming more recalcitrant with depth. Boudreau, B. P. and Ruddick, B. R

  3. Enzyme and root activities in surface-flow constructed wetlands.

    PubMed

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm). PMID:19497608

  4. On the active control of wall-bounded turbulent flows

    NASA Technical Reports Server (NTRS)

    Moin, P.; Kim, J.; Choi, H.

    1989-01-01

    The direct numerical simulation technique is used to explore concepts for manipulation of turbulent boundary layers. Significant drag reduction was achieved when at each instant the normal component of velocity at the wall was prescribed to be 180 deg out of phase with the normal velocity slightly above the wall. The drag reduction is accompanied with significant reduction in the intensity of the wall-layer structures and reductions in the magnitude of Reynolds stresses throughout the flow. Suitability of wall pressure and shear stress fluctuations for detection of flow structures above the wall are examined.

  5. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  6. Network-based representation of energy transfer in unsteady separated flow

    NASA Astrophysics Data System (ADS)

    Nair, Aditya; Taira, Kunihiko

    2015-11-01

    We construct a network-based representation of energy pathways in unsteady separated flows using a POD-Galerkin projection model. In this formulation, we regard the POD modes as the network nodes and the energy transfer between the modes as the network edges. Based on the energy transfer analysis performed by Noack et al. (2008), edge weights are characterized on the interaction graph. As an example, we examine the energy transfer within the two-dimensional incompressible flow over a circular cylinder. In particular, we analyze the energy pathways involved in flow transition from the unstable symmetric steady state to periodic shedding cycle. The growth of perturbation energy over the network is examined to highlight key features of flow physics and to determine how the energy transfer can be influenced. Furthermore, we implement closed-loop flow control on the POD-Galerkin model to alter the energy interaction path and modify the global behavior of the wake dynamics. The insights gained will be used to perform further network analysis on fluid flows with added complexity. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).

  7. Oklahoma Energy Awareness Education, Energy Education Activities, Grades 4-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication contains energy education activities for grades 4 through 12 and is part of a set of three publications. These activities are organized under five energy concepts: (1) energy is so basic that nothing moves without it; (2) conservation of energy; (3) there are other energy alternatives; (4) society depends on energy; and (5) the…

  8. Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Offenhaeuser, F.

    1987-01-01

    The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.

  9. Energy flow in high speed perforation and cutting

    SciTech Connect

    van Thiel, M.

    1980-10-07

    It is demonstrated that effects of long rod penetrators on targets can be modeled by introducing a high pressure (energy) column on the penetration path in place of the projectile. This energy can be obtained from the kinetic energy of the penetrator; the equations of state of the materials used and a Bernoulli penetration condition. The model is supported by detailed hydro calculations.

  10. Initial fluctuation effect on harmonic flows in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Han, L. X.; Ma, G. L.; Ma, Y. G.; Cai, X. Z.; Chen, J. H.; Zhang, S.; Zhong, C.

    2011-12-01

    Within the framework of a multiphase transport model, harmonic flows vn (n=2,3, and 4) are investigated for Au-Au collisions at sNN=200 GeV and Pb-Pb collisions at sNN=2.76 TeV. The event-by-event geometry fluctuations significantly contribute to harmonic flows. Triangular flow (v3) originates from initial triangularity (ɛ3) and is developed by partonic interactions. The conversion efficiency (vn/ɛn) decreases with the harmonic order and increases with the partonic interaction cross section. A mass ordering in the low-pT region and a constituent quark number scaling in the middle-pT region seem to work roughly for nth harmonic flows at both energies. All features of harmonic flows show similar qualitative behaviors at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies, which implies that the formed partonic matters are similar at the two energies.

  11. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  12. Fragmentation mechanisms of confined co-flowing capillary threads revealed by active flow focusing

    NASA Astrophysics Data System (ADS)

    Robert de Saint Vincent, Matthieu; Delville, Jean-Pierre

    2016-08-01

    The control over stationary liquid thread fragmentation in confined co-flows is a key issue for the processing and transport of fluids in (micro-)ducts. Confinement indeed strongly enhances the stability of capillary threads, and also induces steric and hydrodynamic feedback effects on diphasic flows. We investigate the thread-to-droplet transition within the confined environment of a microchannel by using optocapillarity, i.e., interface stresses driven by light, as a wall-free constriction to locally flow focus stable threads in a tunable way, pinch them, and force their fragmentation. Above some flow-dependent onset in optical forcing, we observe a dynamic transition alternating between continuous (thread) and fragmented (droplets) states and show a surprisingly gradual thread-to-droplet transition when increasing the amplitude of the thread constriction. This transition is interpreted as an evolution from a convective to an absolute instability. Depending on the forcing amplitude, we then identify and characterize several stable fragmented regimes of single and multiple droplet periodicity (up to period-8). These droplet regimes build a robust flow-independent bifurcation diagram that eventually closes up, due to the flow confinement, to a monodisperse droplet size, independent of the forcing and close to the most unstable mode expected from the Rayleigh-Plateau instability. This fixed monodispersity can be circumvented by temporally modulating the optocapillary coupling, as we show that fragmentation can then occur either by triggering again the Rayleigh-Plateau instability when the largest excitable wavelength is larger than that of the most unstable mode, or as a pure consequence of a sufficiently strong optocapillary pinching. When properly adjusted, this modulation allows us to avoid the transient reforming and multidisperse regimes, and thereby to reversibly produce stable monodisperse droplet trains of controlled size. By actuating local flow focusing in

  13. Brain activity during the flow experience: a functional near-infrared spectroscopy study.

    PubMed

    Yoshida, Kazuki; Sawamura, Daisuke; Inagaki, Yuji; Ogawa, Keita; Ikoma, Katsunori; Sakai, Shinya

    2014-06-24

    Flow is the holistic experience felt when an individual acts with total involvement. Although flow is likely associated with many functions of the prefrontal cortex (PFC), such as attention, emotion, and reward processing, no study has directly investigated the activity of the PFC during flow. The objective of this study was to examine activity in the PFC during the flow state using functional near-infrared spectroscopy (fNIRS). Twenty right-handed university students performed a video game task under conditions designed to induce psychological states of flow and boredom. During each task and when completing the flow state scale for occupational tasks, change in oxygenated hemoglobin (oxy-Hb) concentration in frontal brain regions was measured using fNIRS. During the flow condition, oxy-Hb concentration was significantly increased in the right and left ventrolateral prefrontal cortex. Oxy-Hb concentration tended to decrease in the boredom condition. There was a significant increase in oxy-Hb concentration in the right and left dorsolateral prefrontal cortex, right and left frontal pole areas, and left ventrolateral PFC when participants were completing the flow state scale after performing the task in the flow condition. In conclusion, flow is associated with activity of the PFC, and may therefore be associated with functions such as cognition, emotion, maintenance of internal goals, and reward processing. PMID:24836375

  14. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  15. Food Utilization (Energy-Flow) Investigations with Pieris Brassicae (Large White) Caterpillars.

    ERIC Educational Resources Information Center

    Jones, Derek H. T.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for experiments in which caterpillars are used to investigate energy-flow relationships. Areas in which the experiments could be used include ecology, applied biology, and animal feeding. (DH)

  16. Flow depth and energy coefficient relatiohnships for stepped spillways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-year, large-scale physical model study of stepped chutes was conducted over a broad range of design parameters (i.e. step heights, slopes, and unit discharges). Air entrainment developed naturally as the flow descended the chute. Air entrainment began to develop downstream of the surface i...

  17. Development Activities on an Advanced Propellant Flow Control Unit

    NASA Astrophysics Data System (ADS)

    Noci, G.; Siciliano, P.; Fallerini, L.; Kutufa, N.; Rivetti, A.; Galassi, C.; Bruschi, P.; Piotto, M.

    2004-10-01

    A new generation of propellant control equipment for electric propulsion systems is needed in order to improve performance and operating ranges, symplify h/w configuration, reduce mass and dimensions, eliminate mass flow ripple, reduce time response. In this frame, the development of key components, their assembly and experimental investigation/ validation is on-going at Alenia Spazio-Laben/Business Unit Proel Tecnologie ( Proel in the following ) in the frame of an ESA GSTP program. The new components shall support different EP technologies, future EP multi-tasking capability and wide operating ranges. This paper reports about the development effort, its achievements and perspectives. 1. ABBREVIATIONS AND ACRONYMS BOL Beginning of Life CMBR Ceramic multilayer bender ring CTA Constant Temperature Anemometry. DUT Device under test EOL End of Life EP Electric Propulsion GEO Geosyncrhonous Earth Orbit GFCU Gas Flow Control Unit GIT Gridded ion thruster HET Hall Effect Thrusters LEO Low Earth Orbit LPC Low pressure capillary MEOP Maximum Expected Operating Pressure MFS Mass Flow rate Sensor NSSK North-South Station Keeping Pred Reduced pressure Ptank Tank pressure RMT Radiofrequency Magnetic Thruster RMTA Radiofrequency Magnetic Thruster Assembly ROOV Regulation and On-Off Valve SoW Statement of Work SPT Stationary Plasma Thruster.

  18. Evidence of recent flow activity in Acidalia Planitia, Mars.

    NASA Astrophysics Data System (ADS)

    Costard, Francois; Sejourne, Antoine; Rygaloff, Antoine

    2015-04-01

    Acidalia Planitia (centered at 45°N and 10°E) show numerous examples of thumbprint terrains. These landforms include curvilinear rides with pits, hills with concentric lobes and individual mounds with pits. We did a GIS mapping using HIRISE images and topographic profiles from MOLA data in order to better constrain the origin of these landforms. The limit of the thumbprint terrains exhibits peripheral ridges with some pressure ridges in contact with topographic obstacles (mesas …) which are diagnostic of viscous flows from north to the south. We also report individual hills with concentric lobes outside the limit of the thumbprint terrains. Different terrestrial analogues and sequence of events explaining these events and landforms will be discussed. Preliminary results suggest that these thumbprint terrains may be analogous to mudflow or viscous flow features in association with a glacial or periglacial environment. But, the exact origin of these different episodes remains unknown. Further analysis will include a more detail mapping of the source of the flows that produced these thumbprint terrains. Other relevant questions that remain open include the paleoclimatic environment involve for such a process and the possible influence of volcanism in that area.

  19. Experimental investigations of the swirling flow in the conical diffuser using flow-feedback control technique with additional energy source

    NASA Astrophysics Data System (ADS)

    Tǎnasǎ, C.; Bosioc, A. I.; Susan-Resiga, R. F.; Muntean, S.

    2012-11-01

    The previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water injection along to the axis mitigates the pressure fluctuations associated to the precessing vortex rope [1]. However, for swirling flows similar to Francis turbines operated at partial discharge, the water jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, it was introduced a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser [2]. This is called flow-feedback control technique (FFCT) and it was investigated experimentally in order to assess its capability [3]. The FFCT approach not requires additional energy to supply the jet. Consequently, the turbine efficiency is not diminished due to the volumetric losses injected even if around 10% of the main flow is used. However, the equivalent amplitude of the pressure pulsations associated to the vortex rope decreases with 30% if 10% jet discharge is applied [3]. Using 12% water jet discharge from upstream then the equivalent amplitude of the pressure pulsations is mitigated with 70% according to Bosioc et al. [4]. In our case, an extra 2% jet discharge is required in order to obtain similar results with FFCT. This extra discharge is provided using an additional energy source. Therefore, the paper presents experimental investigation performed with FFCT with additional energy source. The experimental results obtained with this technique are compared against FFCT and the swirling flow with vortex rope, respectively.

  20. Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow.

    PubMed

    Malik, M; Dey, J; Alam, Meheboob

    2008-03-01

    Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M , the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, alpha ) of each mean flow belongs to different modes for a range of supersonic M . An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for "mode I" instability, whereas it occurs in the bulk of the flow domain for "mode II." For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, G(max), and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For alpha=0 , the linear stability operator can be partitioned into L ~ L+Re(2) L(p), and the Re-dependent operator L(p) is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re) ~ Re(2). In contrast, the dominance of L(p) is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow

  1. An analysis of the acoustic energy in a flow duct with a vortex sheet

    NASA Astrophysics Data System (ADS)

    Boij, Susann

    2009-03-01

    Modelling the acoustic scattering and absorption at an area expansion in a flow duct requires the incorporation of the flow-acoustic interaction. One way to quantify the interaction is to study the energy in the incident and the scattered field respectively. If the interaction is strong, energy may be transferred between the acoustic and the main flow field. In particular, shear layers, that may be the result of the flow separation, are unstable to low frequency perturbations such as acoustic waves. The vortex sheet model is an analytical linear acoustic model, developed to study scattering of acoustic waves in duct with sharp edges including the interaction with primarily the separated flows that arise at sharp edges and corners. In the model the flow field at an area expansion in a duct is described as a jet issuing into the larger part of the duct. In this paper, the flow-acoustic interaction is described in terms of energy flow. The linear convective wave equation is solved for a two-dimensional, rectangular flow duct geometry. The resulting modes are classified as "hydrodynamic" and "acoustic" when separating the acoustic energy from the part of the energy arising from the steady flow field. In the downstream duct, the set of modes for this complex flow field are not orthogonal. For small Strouhal numbers, the plane wave and the two hydrodynamic waves are all plane, although propagating with different wave speeds. As the Strouhal numbers increases, the hydrodynamic modes changes to get a shape where the amplitude is concentrated near the vortex sheet. In an intermediate Strouhal number region, the mode shape of the first higher order mode is very similar to the damped hydrodynamic mode. A physical interpretation of this is that we have a strong coupling between the flow field and the acoustic field when the modes are non-orthogonal. Energy concepts for this duct configuration and mean flow profile are introduced. The energy is formulated such that the vortex

  2. Numerical investigations of turbulent flow past a rectangular cylinder with active flow control

    NASA Astrophysics Data System (ADS)

    Luong, Sanh B.

    The objective of the present research was to investigate the effects of rotating circular cylinders to control high intensity wind load. This research used computational fluid dynamics (CFD) to simulate high Reynolds number gust-like wind load condition for a transient duration of 12 seconds across a three-dimensional rectangular cylinder with dimension of 240x15x7 meters and aspect ratio (Breadth/Height) of 2.3. An array of 20 circular cylinders was positioned along the leading edges of the rectangular bridge cylinder. The research analyzed turbulent flow characteristics across the top and bottom deck surfaces and the development of wake region during two cases: 1) stationary cylinders and 2) rotated cylinders at 400 RPM or velocity ratio of lambda = 1.33. The Strouhal number flow characteristics of 0.08 and 0.17 for aspect ratio of 2 to 3 analyzed in this study were found to be in agreements with published literature.

  3. Effect of flow oscillations on axial energy transport in a porous material

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1987-01-01

    The effects of flow oscillations on axial energy diffusion in a porous medium, in which the flow is continuously disrupted by the irregularities of the porous structure, are analyzed. The formulation employs an internal heat transfer coefficient that couples the fluid and solid temperatures. The final relationship shows that the axial energy transport per unit cross-sectional area and time is directly proportional to the axial temperature gradient and the square of the maximum fluid displacement.

  4. Role of the active viscosity and self-propelling speed in channel flows of active polar liquid crystals.

    PubMed

    Yang, Xiaogang; Wang, Qi

    2016-01-28

    We study channel flows of active polar liquid crystals (APLCs) focusing on the role played by the active viscosity (β) and the self-propelling speed (ω) on the formation and long time evolution of spontaneous flows using a continuum model. First, we study the onset of spontaneous flows by carrying out a linear stability analysis on two special steady states subject to various physical boundary conditions. We identify a single parameter b1, proportional to a linear combination of the active viscosity and the self-propelling speed, and inversely proportional to a Frank elastic constant, the solvent viscosity, and the liquid crystal relaxation time. We show that the active viscosity and the self-propelling speed influence the onset of spontaneous flows through b1 in that for any fixed value of the bulk activity parameter ζ, large enough |b1| can suppress the spontaneous flow. We then follow spontaneous flows in long time to further investigate the role of β and ω on spatial-temporal structures in the nonlinear regime numerically. The numerical study demonstrates a strong correlation between the most unstable eigenfunction obtained from the linear analysis and the terminal steady state or the persistent, traveling wave structure, revealing the genesis of flow and orientational structures in the active matter system. In the nonlinear regime, a nonzero b1 facilitates the formation of traveling waves in the case of boundary anchoring (the Dirichlet boundary condition) so long as the linear stability analysis predicts an onset of spontaneous flows; in the case of the free boundary condition (the Neumann boundary condition), a stable, spatially homogeneous tilted state always emerges in the presence of two active effects. Finally, we note that various fully out-of-plane spatio-temporal structures can emerge in long time dynamics depending on the boundary condition as well as the initial state of the polarity vector field. PMID:26583506

  5. Meridional flow velocities on solar-like stars with known activity cycles

    NASA Astrophysics Data System (ADS)

    Baklanova, Dilyara; Plachinda, Sergei

    2015-02-01

    The direct measurements of the meridional flow velocities on stars are impossible today. To evaluate the meridional flow velocities on solar-like stars with stable activity periods, we supposed that during the stellar Hale cycle the matter on surfaces of stars passes the meridional way equivalent to 2 πR★ . We present here the dependence of the mean meridional flow velocity on Rossby number, which is an effective parameter of the stellar magnetic dynamo.

  6. Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow.

    PubMed

    Seshasayanan, Kannabiran; Alexakis, Alexandros

    2016-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched. PMID:26871152

  7. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  8. Numerical studies of the application of active flow control to subsonic and transonic airfoil flows using a synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Vadillo, Jose L.

    2005-07-01

    Active control of flow over airfoils is currently an area of heightened interest in the aerospace community because of its potential in reducing drag, eliminating separation at high angles of attack, and modulating the aerodynamic forces and moments. We study these possibilities by performing several numerical simulations. Numerical simulations are performed by employing an Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations solver in conjunction with a two-equation Shear-Stress-Transport (SST) turbulence model. In particular, the computations are performed for the following three classes of flows: (1) Subsonic flow past a 24% thick Clark-Y airfoil with a triangular bump on the upper surface with and without a synthetic jet actuator. The goal is to perform numerical simulations of this experimentally observed fluidic modification of airfoil pressure distributions leading to reduced pressure drag. The computations are compared with experiments performed at Georgia Tech. (2) Transonic flow past a NACA64A010 airfoil with a synthetic jet actuator. The goal is to control the shock/boundary layer interaction on the airfoil using a synthetic jet actuator to reduce drag as well to achieve desired modulation of aerodynamic forces and moments. (3) Subsonic flow past a commercial supercritical airfoil leveraging the presence of a Gurney flap with a synthetic jet actuator. The goal is again to improve the aerodynamic performance (increase or maintain lift and reduce drag) by using a synthetic jet actuator integrated in a bump on the pressure surface of the airfoil near the trailing edge. The computations are compared with the experiments performed at Georgia Tech. The computations as well as the experiments show the feasibility of active flow control in reducing the drag of airfoils and in achieving the desired modulation of aerodynamic forces and moments.

  9. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize and unstable wave.

  10. Fine powder flow under humid environmental conditions from the perspective of surface energy.

    PubMed

    Karde, Vikram; Ghoroi, Chinmay

    2015-05-15

    The influence of humidity on surface energetics and flow behavior of fine pharmaceutical powders was investigated. Amorphous and crystalline fine powders with hydrophilic (Corn starch and Avicel PH105) and hydrophobic (ibuprofen) nature were considered for this study. The surface energy was determined using surface energy analyzer and flow behavior was measured in terms of unconfined yield stress (UYS) using a shear tester. The study showed that unlike hydrophobic ibuprofen powder, surface energy and flow of hydrophilic excipient powders were affected by relative humidity (RH). The Lifshitz-van der Waals dispersive (γ(LW)) component of surface energy barely changed with varying RH for all pharmaceutical powders. For hydrophilic excipients, the specific component of surface energy (γ(SP)) was found to increase with increasing RH. Furthermore, for these excipients, flow deterioration at elevated RH was observed due to increased capillary bridge formation. Detailed analysis showed that γ(SP) component of surface energy can be an effective indicator for flow behavior of fine powders under varying humid conditions. The present study also brought out the existence of different regimes of probable interparticle forces which dictate the bulk flow behavior of fine hydrophilic powder under humid conditions. PMID:25772418

  11. Activated transport in the νT=1 exciton condensate at balanced and imbalanced densities measured in drag and counter-flow configuration

    NASA Astrophysics Data System (ADS)

    Wiersma, R. D.; Lok, J. G. S.; Kraus, S.; Dietsche, W.; von Klitzing, K.; Schuh, D.; Bichler, M.; Tranitz, H.-P.; Wegscheider, W.

    2006-08-01

    We observe the total filling factor νT=1 exciton condensate in independently contacted bilayer two-dimensional electron systems in samples with minute tunnel coupling. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/ℓB<1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy.

  12. Energy and materials flows in the iron and steel industry

    SciTech Connect

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  13. Distributed activation energy model parameters of some Turkish coals

    SciTech Connect

    Gunes, M.; Gunes, S.K.

    2008-07-01

    A multi-reaction model based on distributed activation energy has been applied to some Turkish coals. The kinetic parameters of distributed activation energy model were calculated via computer program developed for this purpose. It was observed that the values of mean of activation energy distribution vary between 218 and 248 kJ/mol, and the values of standard deviation of activation energy distribution vary between 32 and 70 kJ/mol. The correlations between kinetic parameters of the distributed activation energy model and certain properties of coal have been investigated.

  14. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  15. Energy and matter flows in a plasma focus discharge

    NASA Astrophysics Data System (ADS)

    Vikhrev, V. V.; Suslin, S. V.

    2016-01-01

    The Plasma Focus is a type of z-pinch that is widely used for both basic research and applied tasks, e.g., as materials modification or research on intense plasma flows. Although the basic mechanisms of z-pinch compression are well-known, many of the processes that occur in the plasma focus have received less attention. This article is devoted to the study of plasma jets and some of its consequences in plasma focus discharges.

  16. Dielectric barrier plasma dynamics for active control of separated flows

    SciTech Connect

    Roy, Subrata; Singh, K.P.; Gaitonde, Datta V.

    2006-03-20

    The dynamics of separation mitigation with asymmetric dielectric barrier discharges is explored by considering the gas flow past a flat plate at an angle of attack. A self-consistent model utilizing motion of electrons, ions, and neutrals is employed to couple the electric force field to the momentum of the fluid. The charge separation and concomitant electric field yield a time-averaged body force which is oriented predominantly downstream, with a smaller transverse component towards the wall. This induces a wall-jet-like feature that effectively eliminates the separation bubble. The impact of several geometric and electrical operating parameters is elucidated.

  17. Co-laminar flow cells for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Goulet, Marc-Antoni; Kjeang, Erik

    2014-08-01

    In this review, we present the major developments in the evolution of 'membraneless' microfluidic electrochemical cells which utilize co-laminar flow to minimize reactant mixing while producing electrical power in a compact form. Categorization of devices according to reactant phases is suggested, with further differentiation being subject to fabrication method and function, namely multi-layer sandwich structures for medium-power cell stacks and single-layer monolithic cells for low-power on-chip applications. Power density metrics reveal that recent co-laminar flow cells compare favourably with conventional membrane-based electrochemical cells and that further optimization of device architecture could be expedited through standardized testing. Current research trends indicate that co-laminar flow cell technology for power generation is growing rapidly and finding additional use as an analytical and education tool. Practical directions and recommendations for further research are provided, with the intention to guide scientific advances and technology development toward ultimate pairing with commercial applications.

  18. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. PMID:23859813

  19. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics

    SciTech Connect

    Kolb, Peter F.; Heinz, Ulrich; Huovinen, Pasi; Eskola, Kari J.; Tuominen, Kimmo

    2001-03-21

    The centrality dependence of the charged multiplicity, transverse energy, and elliptic flow coefficient is studied in a hydrodynamic model, using a variety of different initializations which model the initial energy or entropy production process as a hard or soft process, respectively. While the charged multiplicity depends strongly on the chosen initialization, the p{sub T}-integrated elliptic flow for charged particles as a function of charged particle multiplicity and the p{sub T}-differential elliptic flow for charged particles in minimum bias events turn out to be almost independent of the initialization.

  20. Variational energy principle for compressible, baroclinic flow. 1: First and second variations of total kinetic action

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1977-01-01

    The case of a cold gas in the absence of external force fields is considered. Since the only energy involved is kinetic energy, the total kinetic action (i.e., the space-time integral of the kinetic energy density) should serve as the total free-energy functional in this case, and as such should be a local minimum for all possible fluctuations about stable flow. This conjecture is tested by calculating explicit, manifestly covariant expressions for the first and second variations of the total kinetic action in the context of Lagrangian kinematics. The general question of the correlation between physical stability and the convexity of any action integral that can be interpreted as the total free-energy functional of the flow is discussed and illustrated for the cases of rectillinear and rotating shearing flows.

  1. Investigations on sound energy decays and flows in a monumental mosque.

    PubMed

    Sü Gül, Zühre; Xiang, Ning; Çalışkan, Mehmet

    2016-07-01

    This work investigates the sound energy decays and flows in the Süleymaniye Mosque in İstanbul. This is a single-space superstructure having multiple domes. The study searches for the non-exponential sound energy decay characteristics. The effect of different material surfaces and volumetric contributions are investigated using acoustic simulations and in situ acoustical measurements. Sound energy decay rates are estimated by Bayesian decay analysis. The measured data reveal double- or triple-slope energy decay profiles within the superstructure. To shed light on the mechanism of energy exchanges resulting in multi-slope decay, spatial sound energy distributions and energy flow vectors are studied by diffusion equation model (DEM) simulations. The resulting sound energy flow vector maps highlight the contribution of a sound-reflective central dome contrasted with an absorptive carpeted floor in providing delayed energy feedback. In contrast, no multi-slope energy decay pattern is observed in DEM simulations with a bare marble floor, which generates a much more diffuse sound field than in the real situation with a carpeted floor. The results demonstrate that energy fragmentation, in support of the non-exponential energy decay profile, is due to both the sound absorption characteristics of materials and to their distributions, as well as to relations between the subvolumes of the mosque's interior. PMID:27475158

  2. Monocular distance estimation from optic flow during active landing maneuvers.

    PubMed

    van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H

    2014-06-01

    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility. PMID:24855045

  3. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  4. Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence

    SciTech Connect

    Li, B.; Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G.; Ernst, D. R.

    2015-11-15

    Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.

  5. Flow probe of symmetry energy in relativistic heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Cozma, M. D.; Le Fèvre, A.; Leifels, Y.; Lemmon, R.; Li, Q.; Łukasik, J.; Trautmann, W.

    2014-02-01

    Flow observables in heavy-ion reactions at incident energies up to about 1GeV per nucleon have been shown to be very useful for investigating the reaction dynamics and for determining the parameters of reaction models based on transport theory. In particular, the elliptic flow in collisions of neutron-rich heavy-ion systems emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities. The comparison of ratios or differences of neutron and proton flows or neutron and hydrogen flows with predictions of transport models favors an approximately linear density dependence, consistent with ab initio nuclear-matter theories. Extensive parameter searches have shown that the model dependence is comparable to the uncertainties of existing experimental data. Comprehensive new flow data of high accuracy, partly also through providing stronger constraints on model parameters, can thus be expected to improve our knowledge of the equation of state of asymmetric nuclear matter.

  6. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  7. Experimental and computational studies of active flow control on a model truck-trailer

    NASA Astrophysics Data System (ADS)

    El-Alti, Mohammad; Chernoray, Valery; Jahanmiri, Mohsen; Davidson, Lars

    2012-04-01

    Active flow control is probably the most challenging research area in vehicle aerodynamics. Being able to manipulate a flow field in order to achieve desired results beneficial to engineering is the only way to meet today's demands for competitive and efficient solutions in the automotive industry. The current work studies the flow control on a semi detailed model truck by using detached-eddy simulations and wind tunnel experiments aiming at reducing the aerodynamic drag. This study combines both passive and active flow control applied on the rear end of the trailer. An indigenous fluidic actuator (loudspeaker in cavity with slots) is used as a synthetic jet in the experiment. Both experiments and computations demonstrate that the active flow control works successfully and results in flow reattachment to the flaps. The numerical simulations show that the drag coefficient, CD decreased by 3.9% when AFC was activated compared to the baseline case without flaps. The corresponding decrease when AFC was deactivated (with flaps) was only 0.7%. The experimental results show a decrease of CD by 3.1% for the case with activated AFC compared to the baseline case. When AFC was deactivated the corresponding decrease in CD was 1.8%. A detailed flow analysis made in computations and experiments is used to explain these results.

  8. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  9. An MHD generator energy flow time rate extremal controlling system

    SciTech Connect

    Vasiliev, V.V.

    1993-12-31

    The progress in the development and studying of new methods of producing electric energy, based on direct conversion of heat energy, raises the problem of more effective use of their power characteristics. Disclosure is made of a self-optimizing control system for an object with a unimodal quality function. The system comprises an object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, an adder and further includes a search signal generator. The fashion and the system are presented in the USSR No. 684510, in the USA No. 4179730, in France No. 2386854, In Germany No. 2814963, in Japan No. 1369882. The progress in the development and studying of new method of producing electric energy, based on direct conversion of heat in MHD generator into electric energy, raises the problem of more effective use of their power characteristics.

  10. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    SciTech Connect

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

  11. A Green's Function Approach to PIV Pressure Estimates with an Application to Micro Energy Harvesters in Turbulent and Vortical Flows

    NASA Astrophysics Data System (ADS)

    Goushcha, Oleg

    layer flow, PPE solution was used to estimate pressure fluctuations that are present in the turbulent boundary layer. A simple cantilever harvester is then placed inside the boundary layer. The beam is placed inside the boundary layer at various distances from the wall (y/delta~0-1.5) and at various orientations with respect to the free stream flow angle of attack beta=0o°- -- 180°) for free stream flows 2--11 m/s. Power maps are presented showing the power harvested for various heights and orientations of the harvester. In a self-excited harvester experiment, a harvester with a cylindrical tip mass attached is placed in a uniform cross flow. The PPE solution is used to estimate the strength of pressure inside vortices that are shed off the cylinder forcing it into oscillation. In another experiment to characterize the performance of harvesters inside turbulent flows several simple-cantilever harvesters were placed downstream of passive, semi-passive or an active grid. Passive grid consists of square rods spanning the width and the height of the wind tunnel, semi passive grid is similar to passive but has threaded balls attached to the grid in order to increase turbulence intensity. Active grid has flaps attached to the rods that actively control the closing and opening of sections of the flow thus dramatically increasing turbulence intensity. It is shown that as long as the motion of the harvester actuator does not affect the flow field locally, the power produced to the harvester is proportional to the turbulent kinetic energy of the flow locally.

  12. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  13. A dual active-restrictive approach to incorporating environmental flow targets into existing reservoir operation rules

    NASA Astrophysics Data System (ADS)

    Shiau, Jenq-Tzong; Wu, Fu-Chun

    2010-08-01

    Environmental flow schemes may be implemented through active or restrictive strategies. The former may be applied via reservoir releases, and the latter can be executed by reducing water demands. We present a dual active-restrictive approach to devising the optimal reservoir operation rules that aim to secure off-stream water supplies while maximizing environmental benefits. For the active part, a multicomponent environmental flow target (including the minimum and monthly flows) is incorporated in the operation rules. For the restrictive counterpart, we use a novel demands partitioning and prioritizing (DPP) approach to reallocating the demands of various sectors. The DPP approach partitions the existing off-stream demand and newly incorporated environmental demand and reassembles the two as the first- and second-priority demands. Water is reallocated to each demand according to the ratios derived from the prioritized demands. The proposed approach is coupled with a multicriteria optimization framework to seek the optimal operation rules for the existing Feitsui Reservoir system (Taiwan) under various scenarios. The best overall performance is achieved by an optimal dual strategy whose operational parameters are all determined by optimization. The optimal environmental flow target may well be a top-priority constant base flow rather than the variable quantities. The active strategy would outperform the restrictive one. For the former, a top-priority base flow target is essential; for the latter, the off-stream demand can become vanishingly small in compensation for the eliminated base flow target, thus promoting the monthly flow target as nearly the top-priority demand. For either the active or restrictive strategy, a prioritized environmental flow demand would provide a path toward the optimal overall performance. A significantly improved overall performance over the existing operation rules is unlikely if the active and restrictive parameters are both favorable

  14. Generalization and extension of the law of acoustic energy conservation in a nonuniform flow

    NASA Technical Reports Server (NTRS)

    Myers, M. K.

    1986-01-01

    An exact conservation equation is derived which generalizes the familiar acoustic energy equations. The new relation is valid for arbitrary disturbances to a viscous, compressible flow. It is suggested by a development of the acoustic energy equation by means of a regular perturbation expansion of the general energy equation of fluid mechanics. A perturbation energy density and flux are defined and identified as the exact physical quantities whose leading order perturbation representations are the usual acoustic energy density and flux. The conservation equation governing the perturbation energy quantities is shown to yield previously known results for several special cases.

  15. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  16. Aircraft energy efficiency laminar flow control wing design study

    NASA Technical Reports Server (NTRS)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  17. High-energy ions produced by two approaching flow fronts in the magnetotail

    NASA Astrophysics Data System (ADS)

    Uchino, H.; Ieda, A.; Machida, S.; Imada, S.

    2015-12-01

    During a substorm event in 2009, THEMIS probes observed high-energy (≲ 1MeV) ions and characteristic time evolution of the differential flux. The high-energy ions seem to be produced in the magnetotail, but existing acceleration theories cannot explain the production of such high-energy ions due to the limitation of dawn-dusk (DD) flow scale. We propose that if two approaching flow fronts exist simultaneously in the magnetotail, the production of high-energy ions can be achieved. Namely, some ideal ions are repeatedly reflected by the two fronts and accelerated to high energies, exceeding the energy-limit given by the product of the duskward electric field and DD scale length of the flows. In addition, this acceleration model similar to "first-order Fermi acceleration" can produce the observed differential flux change. We have analytically calculated the energy-gain of each ion between two approaching flow fronts, and roughly estimated the efficiency of the acceleration and the spectrum change. In order to include the DD flow scale, we have further performed a spatially 1-D (2-D in velocity) test particle simulation where a couple of flow fronts approach each other. Using the simulation, we have confirmed the production of high-energy ions as well as the change of the energy spectrum of ions associated with the acceleration. The simulation result shows that high-energy ions can be produced with shorter DD scale length compared to that of the simple acceleration for trapped particles in the flow front. If we assume that the DD scale length of the flow is 10Re, the simulated ion maximum energy near 1MeV and differential flux change are similar to those of the observation. This scale length is less than half of the length needed for the product with the duskward electric field to produce 1MeV ions. This estimated 10Re flow scale in that event does not contradict previous studies.

  18. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  19. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  20. Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.

    2004-01-01

    This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.

  1. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  2. California energy flow in 1983. [1976 through 1983

    SciTech Connect

    Briggs, C.K.; Borg, I.Y.

    1984-10-12

    In 1983 California industry experienced substantial recovery from the previous 18 months' recession. Nonetheless energy use remained at 1982 levels. Oil from all sources was virtually eliminated as a fuel for electrical production. Natural gas was the single most important fuel for in-state electrical generation; coal had no place in California's fuel-mix in contrast to that of the rest of the U.S. Geothermal energy continued to grow during 1983 and at the end of 1983 capacity reached 1.3 GWe. Nuclear energy accounted for 5% of net electricity generated in the state; at year end two nuclear plants (San Onofre 2 and 3) came on line. Transportation demand rose slightly after a steady decline since the late 70's. Two neat methanol fleets are on trial in the state - one operated by the State of California and the other by the Bank of America, and their records were excellent. Transportation is the largest energy end-use in the state, almost twice that associated with the combined residential/commercial end-use sector and more than one-and-one-half times that of the industrial end-use sector. In this respect California's use patterns are at odds with those of the country as a whole where these three broad end-use sectors account for more or less similar amounts of energy.

  3. Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Mehedi; Hossain, Md. Yeam; Mazumder, Rakib; Rahman, Roussel; Rahman, Md. Ashiqur

    2016-07-01

    This work is aimed at developing a way to harvest energy from a fluid stream with the application of piezoelectric transducers in a small channel. In this COMSOL Multiphysics based simulation study, it is attempted to harvest energy from the abundant renewable source of energy available in the form of kinetic energy of naturally occurring flow of fluids. The strategy involves harnessing energy from a fluid-actuator through generation of couples, eddies and vortices, resulting from the stagnation and separation of flow around a semi-circular bluff-body attached to a cantilever beam containing a piezoceramic layer. Fluctuation of fluidic pressure impulse on the beam due to vortex shedding and varying lift forces causes the flexible cantilever beam to oscillate in the direction normal to the fluid flow in a periodic manner. The periodic application and release of a mechanical strain upon the beam effected a generation of electric potential within the piezoelectric layer, thus enabling extraction of electrical energy from the kinetic energy of the fluid. The piezoelectric material properties and transducer design are kept unchanged throughout the study, whereas the configuration is tested with different fluids and varying flow characteristics. The size and geometry of the obstructing entity are systematically varied to closely inspect the output from different iterations and for finding the optimum design parameters. The intermittent changes in the generated forces and subsequent variation in the strain on the beam are also monitored to find definitive relationship with the electrical energy output.

  4. Relationships among the energy, emergy, and money flows of the United States from 1900 to 2011.

    EPA Science Inventory

    Energy Systems Language models of the resource base for the U.S. economy and of economic exchange were used, respectively, (1) to show how energy consumption and emergy use contribute to real and nominal gross domestic product (GDP) and (2) to propose a model of coupled flows tha...

  5. Relationships Among the Energy, Emergy, and Money Flows of the United States From 1900 to 2011

    EPA Science Inventory

    In this paper, we examine the relationships among the energy, emergy, and money flows of the United States from 1900 to 2011. To establish a theoretical basis for understanding these relationships, Energy Systems Language models of the resource base for the World System and of e...

  6. Effects of high-energy particles on accretion flows onto a super massive black hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo

    We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.

  7. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  8. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  9. School District Energy Conservation Activities. R-96-J-2.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    To help New York's State Department of Education assess public school districts' energy conservation activities, the results of an audit of school districts' energy conservation activities are presented. The audit shows that most school districts have made some efforts toward energy conservation and that the Department does provide some assistance…

  10. Sample Energy Conservation Education Activities for Elementary School Students.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.; LaHart, David E., Ed.

    The booklet contains learning activities for introducing energy and conservation concepts into the existing elementary school curriculum. The activities were developed by Palm Beach County teachers during a one-week workshop. A framework of ideas is divided into three functional categories: universe of energy, living systems and energy, and social…

  11. World Energy Projection System Plus (WEPS ): Global Activity Module

    EIA Publications

    2013-01-01

    World Energy Projection System Plus Model Documentation: Global Activity Module Documents the objectives, analytical approach, and development of the World Energy Projection Plus (WEPS ) Global Activity Module (GAM) used to develop the International Energy Outlook for 2013 (IEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code.

  12. Characterizing soil preferential flow using iodine--starch staining experiments and the active region model

    SciTech Connect

    Sheng, Feng; Wang, Kang; Zhang, Renduo; Liu, Hui-Hai

    2009-03-01

    Thirteen iodine-starch staining experiments with different boundary conditions and measurement scales were conducted at two sites to study preferential flow processes in natural unsaturated soils. Digital imaging analyses were implemented to obtain the corresponding preferential flow patterns. The test results are used to evaluate a recently proposed active region model in terms of its usefulness and robustness for characterizing unsaturated flow processes at field scale. Test results provide useful insights into flow patterns in unsaturated soils. They show that flow pattern depends on the top boundary condition. As the total infiltrating-water depth increased form 20 mm to 80 mm for the 100 x 100 cm{sup 2} plots, the corresponding flow pattern changed from few preferential flow paths associated with a relatively small degree of stained coverage and a small infiltration depth, to a pattern characterized by a higher stained coverage and a larger infiltration depth, and to (finally) a relatively homogeneous flow pattern with few unstained area and a much larger infiltration depth. Test results also show that the preferential flow pattern became generally more heterogeneous and complex for a larger measurement scale (or size of infiltration plot). These observations support the general idea behind the active region model that preferential flow pattern in unsaturated soils are dynamic and depend on water flow conditions. Further analyses of the test results indicate that the active-region model is able to capture the major features of the observed flow pattern at the scale of interest, and the determined parameter values do not significantly depend on the test conditions (initial water content and total amount of infiltrating water) for a given test site. This supports the validity of the active region model that considers that parameter to be a property of the corresponding unsaturated soil. Results also show that some intrinsic relation seems to exist between active

  13. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations

    SciTech Connect

    Leitner, David M. E-mail: stock@physik.uni-freiburg.de; Buchenberg, Sebastian; Brettel, Paul; Stock, Gerhard E-mail: stock@physik.uni-freiburg.de

    2015-02-21

    We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.

  14. Grain size reduction in granular flows of spheres - The effects of critical impact energy

    NASA Technical Reports Server (NTRS)

    Richman, M. W.; Oyediran, A. A.

    1992-01-01

    Methods employed to derive recent kinetic theories for rapid noncomminuting granular flows are extended to homogeneous flows in which a fraction of the repeated collisions produce tiny fractures on the particles' peripheries and gradually reduce their effective diameters. The theory consists of balance equations for mass, momentum, and energy, as well as constitutive relations for the presence tensor and collisional rates of mass and energy lost. The work of Richman and Chou (1989) is improved by incorporating into the constitutive theory the critical impact energy below which no mass loss occurs in a binary collision. The theory is applied to granular shear flows and, for fixed shear rates, predicts the time variations of the solid fraction granular temperature, and induced stresses, as well as their extreme sensitivities to small changes in the critical impact energy.

  15. Energy flow in a hadronic cascade: Application to hadroncalorimetry

    SciTech Connect

    Groom, Donald E.

    2006-05-17

    The hadronic cascade description developed in an earlierpaper is extended to the response of an idealized fine-sampling hadroncalorimeter. Calorimeter response is largely determined by the transferof energy E_e from the hadronic to the electromagnetic sector via \\pi0production. Fluctuations in this quantity produce the "constant term" inhadron calorimeter resolution. The increase of its fractional mean, f_\\rmem^0= \\vevE_e/E, with increasing incident energy E causes the energydependence of the \\pi/e ratio in a noncompensating calorimeter. The meanhadronic energy fraction, f_h0 = 1-f_\\rm em0, was shown to scaleverynearly as a power law in E: f_h0 = (E/E_0)m-1, where E_0\\approx1~;GeV forpions, and m\\approx0.83. It follows that \\pi/e=1-(1-h/e)(E/E_0)m-1, whereelectromagnetic and hadronic energy deposits are detected withefficiencies e and h, respectively. Fluctuations in these quantities,along with sampling fluctuations, are in corporated to give an overallunderstanding of resolution, which is different from the usual treatmentsin interesting ways. The conceptual framework is also extended to theresponse to jets and the difference between pi and presponse.

  16. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Koseff, Jeffrey R.; Monismith, Stephen G.; Atkinson, Marlin J.

    2007-05-01

    Communities of benthic organisms can form very rough surfaces (canopies) on the seafloor. Previous studies have shown that an oscillatory flow induced by monochromatic surface waves will drive more flow inside a canopy than a comparable unidirectional current. This paper builds on these previous studies by investigating how wave energy is attenuated within canopies under spectral wave conditions, or random wave fields defined by many frequencies. A theoretical model is first developed to predict how flow attenuation within a canopy varies among the different wave components and predicts that shorter-period components will generally be more effective at driving flow within a canopy than longer-period components. To investigate the model performance, a field experiment was conducted on a shallow reef flat in which flow was measured both inside and above a model canopy array. Results confirm that longer-period components in the spectrum are significantly more attenuated than shorter-period components, in good agreement with the model prediction. This paper concludes by showing that the rate at which wave energy is dissipated by a canopy is closely linked to the flow structure within the canopy. Under spectral wave conditions, wave energy within a model canopy array is dissipated at a greater rate among the shorter-period wave components. These observations are consistent with previous observations of how wave energy is dissipated by the bottom roughness of a coral reef.

  17. ENERGY LOSS AT THREE-WAY CIRCULAR MANHOLE UNDER SURCHARGE FLOW

    NASA Astrophysics Data System (ADS)

    Arao, Shinji; Moriyama, Katsumi; Asada, Jyunsaku; Hirose, Nozomu; Kusuda, Tetsuya

    The energy loss at manholes in a storm sewer network is often compared with the friction loss in pipes under a surcharge flow. It is important to estimate the energy loss at manholes exactly in the design of a storm sewer network and in a flood-analysis. Some researchers have already investigated the energy loss at three-way manholes. However, the relationship between the energy loss and the water depth in manholes has not been enough studied yet. In this study, the effect of the water depth and the ratio of the flow rates in the lateral and in the downstream pipes on the energy loss at a three-way circular manhole was investigated. This study also proposed a modified formula for energy loss coefficients described in Urban Drainage Design Manual, USA (2001) for the three-way manhole.

  18. Solar Energy Education. Renewable energy activities for chemistry and physics

    SciTech Connect

    Not Available

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  19. Energy Conservation Activity Packet, Grade 5. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 5 is one of a series developed in response to energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and objectives, and…

  20. Energy Conservation Activity Packet, Grade 4. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 4 is one in a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade four. The packet is divided into two parts and provides the teacher with background information, concepts and…

  1. Energy Conservation Activity Packet, Grade 6. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 6 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade six. The packet is divided into two parts and provides the teacher with background information, concepts and…

  2. Energy Conservation Activities for the Classroom K-12.

    ERIC Educational Resources Information Center

    Kentucky Dept. of Energy, Frankfort.

    After a brief introduction entitled "Where Does the Energy We Use Come From," this unit presents 86 activities. Each activity gives the title, concept, objectives, subject area, level, time involved, materials needed, procedures, and related career activities. Topics cover everything from housing insulation to alternate sources of energy to energy…

  3. Vortex-enhanced mixing through active and passive flow control methods

    NASA Astrophysics Data System (ADS)

    Depuru Mohan, N. K.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.; Panchapakesan, N. R.

    2015-03-01

    This study aims to understand the underlying physics of vortex-enhanced mixing through active and passive flow control methods. To find a best flow control method that enhances turbulent mixing through the generation of streamwise vortices, an experimental investigation was carried out to compare active and passive flow control methods of an incompressible axisymmetric jet. For active flow control, the lip of the circular jet was equipped with a single small flap deflected away from the jet stream at an angle of 30° to the jet axis. The flap incorporated a flow control slot through which steady and oscillatory suction were implemented. The active flow control methods require power input to the suction devices. For passive flow control, the lip of the circular jet was equipped with a single small delta tab deflected into the jet stream at an angle of 30° to the jet axis. The chord lengths of the flap and delta tab were one-sixth of the jet diameter. The momentum of jet increased in the case of active flow control by entraining the ambient fluid, whereas momentum decreased in the case of passive flow control. The effect of steady suction saturated for volumetric suction coefficient values greater than 0.82 %. The strength of streamwise vortices generated by the flap were greater than those generated by the delta tab. Steady suction produced positive pressures just downstream of the flow control slot in the central portion of the flap and negative pressures at the flap edges. Oscillatory suction was highly dependent on dimensionless frequency ( F +) based on the distance from the flow control slot to the flap trailing edge; the pressures on the central portion of the flap increased for F + ≤ 0.11 and then decreased for greater F +; finally attained negative pressures at F + = 0.44. The increase in jet momentum and turbulence intensity, combined with the induced streamwise vorticity, makes steady suction a potential concept for increasing propulsion efficiency

  4. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  5. Global vs local energy dissipation: The energy cycle of the turbulent von Kármán flow

    NASA Astrophysics Data System (ADS)

    Kuzzay, Denis; Faranda, Davide; Dubrulle, Bérengère

    2015-07-01

    In this paper, we investigate the relations between global and local energy transfers in a turbulent von Kármán flow. The goal is to understand how and where energy is dissipated in such a flow and to reconstruct the energy cycle in an experimental device where local as well as global quantities can be measured. In order to do so, we use particle image velocimetry (PIV) measurements and we model the Reynolds stress tensor to take subgrid scales into account. This procedure involves a free parameter that is calibrated using angular momentum balance. We then estimate the local and global mean injected and dissipated powers for several types of impellers, for various Reynolds numbers, and for various flow topologies. These PIV estimates are then compared with direct injected power estimates provided by torque measurements at the impellers. The agreement between PIV estimates and direct measurements depends on the flow topology. In symmetric situations, we are able to capture up to 90% of the actual global energy dissipation rate. However, our results become increasingly inaccurate as the shear layer responsible for most of the dissipation approaches one of the impellers and cannot be resolved by our PIV setup. Finally, we show that a very good agreement between PIV estimates and direct measurements is obtained using a new method based on the work of Duchon and Robert ["Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations," Nonlinearity 13, 249-225 (2000)] which generalizes the Kármán-Howarth equation to nonisotropic, nonhomogeneous flows. This method provides parameter-free estimates of the energy dissipation rate as long as the smallest resolved scale lies in the inertial range. These results are used to evidence a well-defined stationary energy cycle within the flow in which most of the energy is injected at the top and bottom impellers and dissipated within the shear layer. The influence of the mean flow geometry

  6. Simple Activity Demonstrates Wind Energy Principles

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  7. Free energy and entropy flows in magnetised plasma turbulence

    NASA Astrophysics Data System (ADS)

    Schekochihin, A.; Cowley, S.; Dorland, W.; Howes, G. G.; Quataert, E.; Tatsuno, T.; Plunk, G.; TenBarge, J.; Mallet, A.; Kanekar, A.

    2011-12-01

    Just as fluid turbulence can be conceptualised as a cascade of kinetic energy from large to small scales, kinetic plasma turbulence is a cascade of free energy in the 6D phase space (position and velocity). I will discuss this as a general principle and then specialise to the case of magnetised plasma turbulence at kinetic (sub-ion-Larmor) scales. At these scales, the free energy flux arriving from the inertial range splits into two channels: the kinetic Alfven wave cascade destined to be dissipated into electron heat and the ion entropy cascade, resulting in ion heating. The phase-space nature of the cascade is particularly manifest in this case as the ion entropy cascade involves simultaneous generation of small spatial scales and small scales in velocity space, the latter via a nonlinear phase-mixing process due to ion gyromotion. I will also discuss how the electron Landau damping and the associated process of parallel phase mixing fit into this cascade picture and whether they represent an effective dissipation mechanism in a strongly turbulent nonlinear system.

  8. Valuing uncertain cash flows from investments that enhance energy efficiency.

    PubMed

    Abadie, Luis M; Chamorro, José M; González-Eguino, Mikel

    2013-02-15

    There is a broad consensus that investments to enhance energy efficiency quickly pay for themselves in lower energy bills and spared emission allowances. However, investments that at first glance seem worthwhile usually are not undertaken. One of the plausible, non-excluding explanations is the numerous uncertainties that these investments face. This paper deals with the optimal time to invest in an energy efficiency enhancement at a facility already in place that consumes huge amounts of a fossil fuel (coal) and operates under carbon constraints. We follow the Real Options approach. Our model comprises three sources of uncertainty following different stochastic processes which allows for application in a broad range of settings. We assess the investment option by means of a three-dimensional binomial lattice. We compute the trigger investment cost, i.e., the threshold level below which immediate investment would be optimal. We analyze the major drivers of this decision thus aiming at the most promising policies in this regard. PMID:23295678

  9. National Alliance of Clean Energy Incubator Activities - Final Technical Report

    SciTech Connect

    Chris Downing, P.E.

    2004-12-14

    Summary of activity related to development of the Alliance of Clean Energy Business Incubators and incubation services provided to the clean energy sector by the Advanced Technology Development Center at the Georgia Institute of Technology.

  10. Solar-energy absorber: Active infrared (IR) trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Efficiency of solar-energy absorbers may be improved to 95% by actively cooling their intermediate glass plates. This approach may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  11. The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy

    NASA Astrophysics Data System (ADS)

    Stupka, Robert

    This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own energy. Single-family detached houses and row townhouses were each modeled using passive solar housing guidelines with the DesignBuilder building energy simulation software. Energy demand is then modeled within neighbourhoods at two densities based on south facing windows fully un-shaded at 9:00 am, and 12:00 pm solar time on Dec. 21. The neighbourhood metabolisms were then calculated based on location and density. The potential energy supply was evaluated from the spatial characteristics of the neighbourhood (for solar) and the metabolism (municipal solid waste and wastewater flows.) The potential energy demand and supply are then compared for the varying building types and densities to determine the sensitivity of the energy supply and demand relationships.

  12. Multichannel readout ASIC design flow for high energy physics and cosmic rays experiments

    NASA Astrophysics Data System (ADS)

    Voronin, A.; Malankin, E.

    2016-02-01

    In the large-scale high energy physics and astrophysics experiments multi-channel readout application specific integrated circuits (ASICs) are widely used. The ASICs for such experiments are complicated systems, which usually include both analog and digital building blocks. The complexity and large number of channels in such ASICs require the proper methodological approach to their design. The paper represents the mixed-signal design flow of the ASICs for high energy physics and cosmic rays experiments. This flow was successfully embedded to the development of the read-out ASIC prototype for the muon chambers of the CBM experiment. The approach was approved in UMC CMOS MMRF 180 nm process. The design flow enable to analyse the mixed-signal system operation on the different levels: functional, behavioural, schematic and post layout including parasitic elements. The proposed design flow allows reducing the simulation period and eliminating the functionality mismatches on the very early stage of the design.

  13. Preferential flow in connected soil structures and the principle of "maximum energy dissipation": A thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2009-04-01

    Helmholtz free energy. Thermodynamic equilibrium is a state of minimum free energy. The latter is determined by potential energy and capillary energy in soil, which in turn strongly depends on soil moisture, pore size distribution and depth to groundwater. The objective of this study is threefold. First, we will introduce the necessary theoretical background. Second we suggest ? based on simulations with a physically based hydrological model ? that water flow in connected preferential pathways assures a faster relaxation towards thermodynamic equilibrium through a faster drainage of ?excess water? and a faster redistribution of ?capillary water? within the soil. The latter process is of prime importance in case of cohesive soils where the pore size distribution is dominated by medium and small pores. Third, an application of a physically based hydrological model to predict water flow and runoff response from a pristine catchment in the Chilenean Andes underpins this hypothesis. Behavioral model structures that allow a good match of the observed hydrographs turned out to be most efficient in dissipating free energy by means of preferential flow. It seems that a population of connected preferential pathways is favourable both for resilience and stability of these soils during extreme events and to retain water resources for the ecosystem at the same time. We suggest that this principle of ?maximum energy dissipation? may on the long term help us to better understand why soil structures remain stable, threshold nature of preferential as well as offer a means to further reduce model structural uncertainty. Bloeschl, G. 2006. Idle thoughts on a unifying theory of catchment Hydrology. Geophysical Research Abstracts, Vol. 8, 10677, 2006 SRef-ID: 1607-7962/gra/EGU06-A-10677 European Geosciences Union 2006 Kleidon, A., and S. Schymanski (2008), Thermodynamics and optimality of the water budget on land: A review, Geophys. Res. Lett., 35, L20404, doi:10.1029/ 2008GL035393.

  14. A Model for Variable Levee Formation Rates in an Active Lava Flow

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Baloga, S. M.; Mouginis-Mark, P.; Crisp, J.

    2004-01-01

    Channelized lava flows on Mars and the Earth often feature levees and collateral margins that change in volume along the path of the flow. Consistent with field observations of terrestrial flows, this suggests that the rate of levee formation varies with distance and other factors. Previous models have assumed a constant rate of levee growth, specified by a single parameter, lambda. The rate of levee formation for lava flows is a good indicator of the mass eruption rate and rheology of the flow. Insight into levee formation will help us better understand whether or not the effusion rate was constant during an eruption, and once local topography is considered, allows us to look at cooling and/or rheology changes downslope. Here we present a more realistic extension of the levee formation model that treats the rate of levee growth as a function of distance along the flow path. We show how this model can be used with a terrestrial flow and a long lava flow on Mars. The key statement of the new formulation is the rate of transfer from the active component to the levees (or other passive components) through an element dx along the path of the flow. This volumetric transfer equation is presented.

  15. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  16. Experimental results using active control of traveling wave power flow

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Hall, Steven R.

    1991-01-01

    Active structural control experiments conducted on a 24-ft pinned-free beam derived feedback compensators on the basis of a traveling-wave approach. A compensator is thus obtained which eliminates resonant behavior by absorbing all impinging power. A causal solution is derived for this noncausal compensator which mimics its behavior in a given frequency range, using the Wiener-Hopf. This optimal Wiener-Hopf compensator's structure-damping performance is found to exceed any obtainable by means of rate feedback. Performance limitations encompassed the discovery of frequencies above which the sensor and actuator were no longer dual and an inadvertent coupling of the control hardware to unmodeled structure torsion modes.

  17. Stress-Activated Electric Currents in the Earth Crust: How they Can and Cannot Flow (Invited)

    NASA Astrophysics Data System (ADS)

    Freund, F. T.; Bleier, T. E.; Bortnik, J.; Dahlgren, R.

    2010-12-01

    Dormant electronic charge carriers exist in rocks. They “wake up” when stresses are applied: electrons e’ and positive holes, h., the latter being defect electrons in the oxygen anion sublattice of minerals [1, 2]. The h. can flow out of the stressed subvolume. They can spread into the unstressed surrounding, turning the rocks into p-type semiconductors. They travel fast and far using energy levels at the upper edge of the valence bands. Contrary to the h., the co-activated electrons e’ cannot flow out and propagate through unstressed rocks: they are stuck in the activation volume. The situation is akin to that in an electrochemical battery except that, in the “rock battery”, the positive charge carriers are not cations but positive holes h.. In the laboratory it is easy to close the battery circuit by offering the electrons a metal contact and connecting the stressed and unstressed rock with a metal wire. This is useful to demonstrate the functioning of the “rock battery”. In the field the h. outflow from a stressed rock volume is restricted as long as there is no return path. This is an important point when we try to understand why pre-earthquake EM emission is widely considered “unreliable” [3, 4]. However, there are at least three conditions, under which circuit closure can be achieved in the field under realistic pre-earthquake situations: (i) via n-type conducting rocks; (ii) via electrolytic conductivity of water; and (iii) via the air when the air above the epicentral region becomes highly ionized. We report on examples where these three conditions might have allowed large currents to flow and strong EM signals to be emitted. [1] Freund, F.T. et al.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 389-396 (2006). [2] Freund, F.T.: Charge generation and propagation in rocks, J. Geodyn. 33, 545-572 (2002). [3] Johnston, M.J.S. and

  18. Quantification of Natural Gradient Flow Using Active Fiber Optic DTS in Sealed Boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, T. I.; Parker, B. L.; Munn, J. D.; Chalari, A.; Mondanos, M.

    2014-12-01

    Temperature has been used for many years to characterize flow in fractured rock systems. Fiber-optic distributed temperature sensing (DTS) was adopted by the oil/gas industry over two decades ago for monitoring processes in deep fractured rock environments. Improvements in DTS system resolutions, methodology advancements, and improved data processing techniques have caused recent popularity for shallow fractured rock hydrogeologic applications. A powerful advance in DTS methodology is the use of response data collected during active cable heating. When applied to borehole applications active heating creates a thermal disequilibrium in the aquifer system that enhances the detection of groundwater flow. Active DTS has been applied to open borehole environments; however, characterization methods based on open borehole measurements are limited in that only the effects of unnatural flow (i.e. vertical cross-connection and redistribution of flow creating local, induced flows) can be observed. To characterize natural gradient flow processes borehole effects need to be minimized.The literature shows borehole sealing using flexible impervious fabric liners creates a static water column in the well that eliminates the negative effects of cross-connection. Measurements in this sealed environment have been shown by others to be representative of natural gradient flow conditions, rather than the conditions created by the borehole short circuiting units or fractures with varying hydraulic head. A new method for flow system characterization using active DTS in sealed boreholes has been developed with excellent prospects for quantitation of natural gradient groundwater fluxes and related hydraulic properties. This project demonstrates the utility of using an analytical solution for calculating apparent thermal conductivities and natural gradient groundwater fluxes at depth-discrete intervals observed continuously along a borehole using active DTS. Groundwater flux data can then be

  19. Isospin effects on the energy of vanishing flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Gautam, Sakshi; Chugh, Rajiv; Sood, Aman D.; Puri, Rajeev K.; Hartnack, Ch; Aichelin, J.

    2010-08-01

    Using the isospin-dependent quantum molecular dynamics model we study the isospin effects on the disappearance of flow for the reactions of 58Ni + 58Ni and 58Fe + 58Fe as a function of the impact parameter. We found good agreement between our calculations and experimentally measured energy of vanishing flow at all colliding geometries. Our calculations reproduce the experimental data within 5% (10%) at central (peripheral) geometries.

  20. Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO.sub.2

    DOEpatents

    Matzger, Adam J.; Liu, Baojian; Wong-Foy, Antek G.

    2016-07-19

    Flowing supercritical CO.sub.2 is used to activate metal organic framework materials (MOF). MOFs are activated directly from N,N-dimethylformamide (DMF) thus avoiding exchange with a volatile solvent. Most MCPs display increased surface areas directly after treatment although those with coordinatively unsaturated metal centers benefit from additional heating.

  1. Rotational-translational energy transfer in rarefied nonequilibrium flows

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1990-01-01

    A new model for simulating the transfer of energy between the translational and rotational modes is derived for a homogeneous gas of diatomic molecules. The model has been developed specifically for use in discrete particle simulation methods where molecular motion and intermolecular collisions are treated at the molecular level. A temperature dependence is introduced which has been predicted by theory and observed in experiment. The new model is applied to the relaxation of rotational temperature, and is found to produce significant differences in comparison with the model normally employed at both high and low temperatures. Calculations have also been performed for a Mach 7 normal shock wave.

  2. Numerical analyses of passive and active flow control over a micro air vehicle with an optimized airfoil

    NASA Astrophysics Data System (ADS)

    Gada, Komal Kantilal

    Numerical investigations of an optimized thin airfoil with a passive and an active flow control device (riblets and rotary cylinder) have been performed. The objectives of the thesis were to investigate the tip vortices reduction using riblets and decrease in flow separation, using a rotary cylinder for improved lift-to-drag ratio. The investigations has application potentials in improving performances of Micro Air Vehicles (MAVs). The airfoil has a chord length of 19.66 cm and a span of 25 cm. with the free stream mean velocity was set at 20 m/s. The Reynolds number was calculated as 3 x 10 4. Investigations with base model of the airfoil have shown flow separation at approximately 85% chord length at an angle of attack of 17 degrees. For investigation using passive flow control device, i.e. riblets, investigations were performed for different radial sizes but at a fixed location. It was found that with 1 mm radial size riblet, the tip vortices were reduced by approximately 95%, as compared to the baseline model. Although negligible lift-to-drag improvement was seen, a faster dissipation rate in turbulent kinetic energy was observed. Furthermore, investigations were carried out using the active flow control device. The rotary cylinder with a 0.51 cm in diameter was placed slightly downstream of the location of flow separation, i.e. at x/c = 0.848. Investigations were performed at different cylinder's rotations, corresponding to different tangential velocities of being higher than, equal to and less than the free stream mean velocity. Results have shown approximately 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Further investigation may include usage of the riblets and the rotary cylinder combined, to increase the stability as well as the lift-to-drag ratio of the MAVs.

  3. PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.

    PubMed

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2015-11-01

    Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes. PMID:26437236

  4. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    PubMed

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  5. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    PubMed Central

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  6. In situ mapping of the energy flow through the entire photosynthetic apparatus.

    PubMed

    Dostál, Jakub; Pšenčík, Jakub; Zigmantas, Donatas

    2016-07-01

    Absorption of sunlight is the first step in photosynthesis, which provides energy for the vast majority of organisms on Earth. The primary processes of photosynthesis have been studied extensively in isolated light-harvesting complexes and reaction centres, however, to understand fully the way in which organisms capture light it is crucial to also reveal the functional relationships between the individual complexes. Here we report the use of two-dimensional electronic spectroscopy to track directly the excitation-energy flow through the entire photosynthetic system of green sulfur bacteria. We unravel the functional organization of individual complexes in the photosynthetic unit and show that, whereas energy is transferred within subunits on a timescale of subpicoseconds to a few picoseconds, across the complexes the energy flows at a timescale of tens of picoseconds. Thus, we demonstrate that the bottleneck of energy transfer is between the constituents. PMID:27325098

  7. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  8. Active control of asymmetric conical flow using spinning and rotatory oscillations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Sharaf El-Din, Hazem H.; Liu, C. H.

    1993-01-01

    The effectiveness of active control on asymmetric flows around circular cones is investigated computationally using cone spinning and rotatory oscillation around its axis. The investigation uses the time-accurate solution of the unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, flux-difference splitting, finite-volume scheme. The present solutions are obtained under the locally-conical-flow assumption in order to understand the flow physics using very fine grids for reasonable flow resolution at low computational cost. For all the computational solutions, a grid of 241 x 81 x 2 points in the wrap-around, normal and axial directions, respectively, is used. The grid is spinning or oscillating rigidly with the cone according to its motion and the kinematical and dynamical boundary conditions are modified accordingly. The computational applications include the effects of uniform spinning rates and periodic rotatory oscillations at different amplitudes and frequencies on the flow asymmetry.

  9. Numerical simulation of material and energy flow in an e-beam melt furnace

    SciTech Connect

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-12-01

    A numerical analysis is made of the material and energy flow in an electron-beam furnace. Energy from an electron beam vaporizes metal confined in a water-cooled crucible. At the beam impact site a. recirculating liquid metal pool is surrounded by a shell of its own solid. A Galerkin finite element method is modified to solve for the flow and temperature fields along with interface locations. The deforming mesh is parameterized using spines that pivot and stretch as the interfaces move. Results are given for an aluminum vaporizer in which parametric variations are made in the e-beam power and liquid viscosity. The calculations reveal the importance of the coupling between the free boundaries and the flow and energy fields.

  10. Interplay of Waves and Eddies and Energy Exchange in Rotating Stratified Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.

    2015-12-01

    We investigate the distribution of energy between wave and vortical modes as a function of scale in high resolution direct numerical simulations of rotating stratified Boussinesq flows with a unit aspect ratio, varying the dimensionless parameters in regimes in which wave turbulence prevails. The shift in scale from a vortex-dominated to a wave-dominated dynamics, characterized each by their Fourier spectra, is quantified by the wavenumber KR at which they cross. We examine the dependency of KR with parameters characteristics of the intrinsic dynamics of the flow such as Reynolds, Froude and Rossby numbers, and their combinations. Features of the energy exchange between potential and kinetic energy related to the interplay of wave modes and vortical modes are also explored and results recast in the context of geophysical flows.

  11. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  12. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  13. Determination of ECoG information flow activity based on Granger causality and Hilbert transformation.

    PubMed

    Demirer, R Murat; Özerdem, Mehmet Siraç; Bayrak, Coskun; Mendi, Engin

    2013-12-01

    Analysis of directional information flow patterns among different regions of the brain is important for investigating the relation between ECoG (electrocorticographic) and mental activity. The objective is to study and evaluate the information flow activity at different frequencies in the primary motor cortex. We employed Granger causality for capturing the future state of the propagation path and direction between recording electrode sites on the cerebral cortex. A grid covered the right motor cortex completely due to its size (approx. 8 cm×8 cm) but grid area extends to the surrounding cortex areas. During the experiment, a subject was asked to imagine performing two activities: movement of the left small finger and/or movement of the tongue. The time series of the electrical brain activity was recorded during these trials using an 8×8 (0.016-300 Hz band with) ECoG platinum electrode grid, which was placed on the contralateral (right) motor cortex. For detection of information flow activity and communication frequencies among the electrodes, we have proposed a method based on following steps: (i) calculation of analytical time series such as amplitude and phase difference acquired from Hilbert transformation, (ii) selection of frequency having highest interdependence for the electrode pairs for the concerned time series over a sliding window in which we assumed time series were stationary, (iii) calculation of Granger causality values for each pair with selected frequency. The information flow (causal influence) activity and communication frequencies between the electrodes in grid were determined and shown successfully. It is supposed that information flow activity and communication frequencies between the electrodes in the grid are approximately the same for the same pattern. The successful employment of Granger causality and Hilbert transformation for the detection of the propagation path and direction of each component of ECoG among different sub

  14. Effect of multi-ions on active flow regulation in plants

    NASA Astrophysics Data System (ADS)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Oh, Hwasuk; Kim, Taejoo; Lee, Sang Joon

    2012-11-01

    Plants have been known to regulate ion-mediated flows actively in xylem vessels. Pits, the porous structures in xylem vessels, are presumed to play a key role in the ion-mediated flow regulation based on dynamic swelling and shrinking of their pectic matrix. However, the autonomous flow regulation in plants has not been elucidated yet and the pectin-swelling hypothesis seems to be simply applied to account for dynamic modulation of xylem conductance. In this study, the effects of multiple ions and their concentration on the water transport in plants were experimentally investigated. In addition, the active regulation mechanism of xylem water flow was also examined with considering the ionic effect.

  15. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  16. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  17. Unsteady Lift Response and Energy Extraction in Gusting Flows

    NASA Astrophysics Data System (ADS)

    Choi, Jeesoon; Colonius, Tim; Williams, David

    2012-11-01

    The unsteady aerodynamic forces associated with streamwise (surging) and transverse (plunging) oscillating motions are studied to understand the dynamic response to gusts and the potential for energy extraction. We focus on 2D thin airfoils at low sub- and super-critical Reynolds number so that the role of wake instability can be isolated. Simulations are performed in a large parameter space of angle of attack, reduced frequency, and oscillation amplitude. At low angle of attack, the magnitude and phase of the fluctuating lift are in reasonable agreement with classical theory at all reduced frequencies. In this case, the quasi-steady force is modified by contributions from shed vorticity at the trailing edge and added-mass at high reduced frequency. At high angle of attack, the fluctuating forces are found to be enhanced or attenuated by a leading-edge vortex, depending on the reduced frequency. Resonance with the wake instability is also investigated.

  18. Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing

    NASA Astrophysics Data System (ADS)

    Nosonovsky, Michael; Bhushan, Bharat

    2008-10-01

    The concept of superhydrophobicity was introduced in the 1990s as a result of the investigation of the microstructure of extremely water-repellent plant leaves. Since that time, artificial superhydrophobic surfaces have been developed and implemented, stimulated by advances in nanotechnology, and giving one of the most successful examples of a bio-inspired technology transferred into engineering applications. Superhydrophobicity is usually defined as the ability of a surface to have (i) a very high water contact angle (CA) and (ii) low CA hysteresis. Here we argue that the ability of a water droplet to bounce off a surface constitutes a third property that is crucial for applications. Furthermore, this property is naturally related to the first two properties, since the energy barriers separating the 'sticky' and 'non-sticky' states needed for bouncing droplets have the same origin as those needed for high CA and for low CA hysteresis.

  19. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  20. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  1. Modeling Hot Gas Flow in the Low-luminosity Active Galactic Nucleus of NGC 3115

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Wong, Ka-Wah; Irwin, Jimmy A.; Reynolds, Christopher S.

    2014-02-01

    Based on the dynamical black hole (BH) mass estimates, NGC 3115 hosts the closest billion solar mass BH. Deep studies of the center revealed a very underluminous active galactic nucleus (AGN) immersed in an old massive nuclear star cluster. Recent 1 Ms Chandra X-ray visionary project observations of the NGC 3115 nucleus resolved hot tenuous gas, which fuels the AGN. In this paper we connect the processes in the nuclear star cluster with the feeding of the supermassive BH. We model the hot gas flow sustained by the injection of matter and energy from the stars and supernova explosions. We incorporate electron heat conduction as the small-scale feedback mechanism, the gravitational pull of the stellar mass, cooling, and Coulomb collisions. Fitting simulated X-ray emission to the spatially and spectrally resolved observed data, we find the best-fitting solutions with χ2/dof = 1.00 for dof = 236 both with and without conduction. The radial modeling favors a low BH mass <1.3 × 109 M ⊙. The best-fitting supernova rate and the best-fitting mass injection rate are consistent with their expected values. The stagnation point is at r st <~ 1'', so that most of the gas, including the gas at a Bondi radius rB = 2''-4'', outflows from the region. We put an upper limit on the accretion rate at 2 × 10-3 M ⊙ yr-1. We find a shallow density profile nvpropr -β with β ≈ 1 over a large dynamic range. This density profile is determined in the feeding region 0.''5-10'' as an interplay of four processes and effects: (1) the radius-dependent mass injection, (2) the effect of the galactic gravitational potential, (3) the accretion flow onset at r <~ 1'', and (4) the outflow at r >~ 1''. The gas temperature is close to the virial temperature Tv at any radius.

  2. Active galactic nuclei at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Dermer, Charles Dennison; Giebels, Berrie

    2016-06-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called "blazars". The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future "Cherenkov Telescope Array", in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter

  3. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  4. Diffuse elevated MIBG activity in the renal parenchyma caused by compromised renal blood flow.

    PubMed

    Liu, Bin; Codreanu, Ion; Yang, Jigang; Servaes, Sabah; Zhuang, Hongming

    2014-11-01

    Increased metaiodobenzylguanidine (MIBG) activity in the kidneys is usually focal and commonly attributed to radioactive urine accumulation in the renal pelvis. Hereby, we present 2 cases of abnormal diffuse MIBG activity in the kidneys caused by compromised renal blood flow. The patterns should be differentiated from physiologic renal MIBG activity, especially when the uptake is relatively symmetric as well as from regional MIBG-avid disease. PMID:24999702

  5. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  6. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGESBeta

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  7. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  8. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    PubMed

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. PMID:25227154

  9. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models. PMID:25353565

  10. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Panesi, M.; Magin, T. E.

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N2-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N2 molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  11. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  12. Nuclear energy information flow from DOE to the public

    SciTech Connect

    Simmons, J.L.; Rankin, W.L.; Nealey, S.M.

    1980-06-01

    The objective of this research was to study the DOE's program for educating the public about nuclear power and nuclear waste management. DOE's organizational structuree and the procedures used within this structure to disseminate information were studied and readability tests on nuclear information distributed by DOE were conducted. Initial information was obtained through interviews with 29 local, state, and federal DOE representatives. This was supplemented with additional information as it was released by the DOE. The primary goals of the DOE's information program are to encourage two-way communication between the DOE and the public and to encourage public participation in policy-making decisions. Most of this communication, however, is presented orally. Relative to other energy technologies and conservation, very few nuclear brochures are currently being distributed by the DOE. This is especially true with regard to information about nuclear waste. A recent public survey found that a majority of the public wants to learn more about nuclear power and that, with regard to the nuclear fuel cycle, the public wants most to learn about nuclear waste management. Thus, the DOE appears to be missing an eager audience.

  13. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  14. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  15. Influence of posterior cricoarytenoid muscle activity on pressure-flow relationship of the larynx.

    PubMed

    Tully, A; Brancatisano, A; Loring, S H; Engel, L A

    1991-05-01

    We examined the effect of posterior cricoarytenoid (PCA) muscle activity on the pressure-flow (PV) relationship of the larynx in five anesthetized tracheostomized dogs. The PCA activity was recorded using bipolar fine-wire electrodes, expressed as a percentage of the quiet breathing level and altered by mechanical ventilation, changes in lung volume, and chest wall compression. Subglottic pressure was recorded while a constant flow of air was passed through the upper airway. In the absence of PCA activity the PV relationship was alinear and could be described by a power function (P = K0Va, where K0 and a are constants). The slope of the log P-log V plots in the absence of PCA and thyroarytenoid activity was 1.83 +/- 0.02 (SD), whereas with increasing PCA activity it was 1.88 +/- 0.11. An effective hydraulic diameter (DH) was calculated for 20% increments of PCA activity, and in two dogs glottic diameter (Dg) was calculated from glottic area measurements obtained by fiber-optic laryngoscopy. Both DH and Dg increased linearly with increasing PCA activity. Denervation of the cricothyroid muscle had no systematic effect on laryngeal resistance. The results indicate that the PV relationship of the larynx may be described by a power function with a single exponent, the magnitude of which is independent of glottic dilator muscle activity and consistent with orifice flow. However, laryngeal diameter increases linearly with PCA activity in the range studied. PMID:1864806

  16. The Cooling Rate of an Active Aa Lava Flow Determined Using an Orbital Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Garbeil, Harold

    2010-05-01

    The surface temperature of an active lava flow is an important physical property to measure. Through its influence on lava crystallinity, cooling exerts a fundamental control on lava rheology. Remotely sensed thermal radiance data acquired by multispectral sensors such as Landsat Thematic Mapper and the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer, are of insufficient spectral and radiometric fidelity to allow for realistic determination of lava surface temperatures from Earth orbit. This paper presents results obtained from the analysis of active lava flows using hyperspectral data acquired by NASA's Earth Observing-1 Hyperion imaging spectrometer. The contiguous nature of the measured radiance spectrum in the 0.4-2.5 micron region means that, although sensor saturation most certainly occurs, unsaturated radiance data are always available from even the hottest, and most radiant, active lava flow surfaces. The increased number of wavebands available allows for the assumption of more complex flow surface temperature distributions in the radiance-to-temperature inversion processes. The technique is illustrated by using a hyperspectral image of the active lava lake at Erta Ale volcano, Ethiopia, a well characterized calibration target. We then go on to demonstrate how this approach can be used to constrain the surface cooling rate of an active lava flow at Mount Etna, Sicily, using three images acquired during a four day period in September 2004. The cooling rate of the active channel as determined from space falls within the limits commonly assumed in numerical lava flow models. The results provide insights into the temperature-radiance mixture modeling problem that will aid in the analysis of data acquired by future hyperspectral remote sensing missions, such as NASA's proposed HyspIRI mission.

  17. Selected Energy Education Activities for Pennsylvania Middle School Grades. Draft.

    ERIC Educational Resources Information Center

    Hack, Nancy; And Others

    These activities are intended to help increase awareness and understanding of the energy situation and to encourage students to become energy conservationists. The document is divided into sections according to discipline area. A final section is devoted to interdisciplinary activities involving several discipline areas integrated with the energy…

  18. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. PMID:25070873

  19. Lightstick Magic: Determination of the Activation Energy with PSL.

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    1996-01-01

    Presents experiments with lightsticks in which the activation energy for the light-producing reaction is determined. Involves monitoring the light intensity of the lightstick as a function of temperature. Gives students the opportunity to explore the concepts of kinetics and activation energies and the world of computer-interfaced experimentation…

  20. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  1. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    NASA Astrophysics Data System (ADS)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (<50-100 eV) component is well separated from the higher energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as

  2. Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments.

    PubMed

    Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao

    2015-01-01

    Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices. PMID:26478230

  3. Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments

    PubMed Central

    Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao

    2015-01-01

    Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices. PMID:26478230

  4. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    NASA Astrophysics Data System (ADS)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  5. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass.

    PubMed

    Lu, Z; Shang, B S; Sun, Y T; Zhu, Z G; Guan, P F; Wang, W H; Bai, H Y

    2016-04-14

    The β-relaxation, which is the source of the dynamics in glass state and has practical significance to relaxation and mechanical properties of glasses, has been an open question for decades. Here, we propose a flow unit perspective to explain the structural origin and evolution of β-relaxation based on experimentally obtained energy distribution of flow units using stress relaxation method under isothermal and linear heating modes. Through the molecular dynamics simulations, we creatively design various artificial metallic glass systems and build a direct relation between β-relaxation behavior and features of flow units. Our results demonstrate that the β-relaxation in metallic glasses originates from flow units and is modulated by the energy distribution of flow units, and the density and distribution of flow units can effectively regulate the β-relaxation behavior. The results provide a better understanding of the structural origin of β-relaxation and also afford a method for designing metallic glasses with obvious β-relaxation and better mechanical properties. PMID:27083732

  6. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glass

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Shang, B. S.; Sun, Y. T.; Zhu, Z. G.; Guan, P. F.; Wang, W. H.; Bai, H. Y.

    2016-04-01

    The β-relaxation, which is the source of the dynamics in glass state and has practical significance to relaxation and mechanical properties of glasses, has been an open question for decades. Here, we propose a flow unit perspective to explain the structural origin and evolution of β-relaxation based on experimentally obtained energy distribution of flow units using stress relaxation method under isothermal and linear heating modes. Through the molecular dynamics simulations, we creatively design various artificial metallic glass systems and build a direct relation between β-relaxation behavior and features of flow units. Our results demonstrate that the β-relaxation in metallic glasses originates from flow units and is modulated by the energy distribution of flow units, and the density and distribution of flow units can effectively regulate the β-relaxation behavior. The results provide a better understanding of the structural origin of β-relaxation and also afford a method for designing metallic glasses with obvious β-relaxation and better mechanical properties.

  7. Active control of panel vibrations induced by boundary-layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1991-01-01

    Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.

  8. Chemical Energy Release in Several Recently Discovered Detonation and Deflagration Flows

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2010-10-01

    Several recent experiments on complex detonation and deflagration flows are analyzed in terms of the chemical energy release required to sustain these flows. The observed double cellular structures in detonating gaseous nitromethane-oxygen and NO2-fuel (H2, CH4, and C2H6) mixtures are explained by the amplification of two distinct pressure wave frequencies by two exothermic reactions, the faster reaction forming vibrationally excited NO* and the slower reaction forming highly vibrationally excited N2**. The establishment of a Chapman-Jouguet (C-J) deflagration behind a weak shock wave, the C-J detonation established after a head-on collision with a shock front, and the C-J detonation conditions established in reactive supersonic flows are quantitatively calculated using the chemical energy release of a H2 + Cl2 mixture. For these three reactive flows, these calculations illustrate that different fractions of the exothermic chemical energy are used to sustain steady-state propagation. C-J detonation calculations on the various initial states using the CHEETAH chemical equilibrium code are shown to be in good agreement with experimental detonation velocity measurements for the head-on collision and supersonic flow detonations.

  9. Okeechobee County Energy Education Activities--Middle School Level.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.

    Over 60 energy education activities related to mathematics, science, social studies, and English comprise this manual for middle school teachers. Included are issues for discussion, puzzles, science investigations, story writing exercises, and energy cost calculation problems. Among the topics covered in these lessons are energy consumption…

  10. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  11. A direct contact condenser model for high energy laser exhaust flows

    NASA Astrophysics Data System (ADS)

    Schreiber, Hardy; Truman, C. Randall; Acebal, Robert

    1988-06-01

    A heat transfer model is developed for estimating the thermal performance of direct contact packed bed condensers operating in the effluent stream of a high energy chemical laser. Using a control volume approach, mass and energy balances are applied to the process fluids in conjunction with an empirical correlation for the condenser's volumetric heat transfer coefficient. The model is demonstrated both independently and as an extension to a steam ejector program analyzing pressure recovery of laser exhaust flows.

  12. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  13. Catchment organisation, free energy dynamics and network control on critical zone water flows

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological

  14. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    PubMed

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-01

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems. PMID:26102317

  15. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  16. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2016-09-01

    Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

  17. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  18. A Helioseismic Survey to Investigate Relationships between Subsurface Flows beneath Large Active Regions and Solar Flares

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Leka, K D.; Barnes, Graham

    2014-06-01

    A survey of the subsurface flow properties of about 120 of the largest active regions, determined from the application of helioseismic holography to Dopplergrams obtained with the HMI instrument onboard the Solar Dynamics Observatory, is being carried out. The overriding goal is to characterize differences in the subsurface flows between active regions associated with eruptive flares and the flows observed in relatively quiescent regions. Applications to flare forecasting comprise only one part of this investigation, since the potential response of the subsurface environment to eruptive events during and after their occurrence is also of scientific interest. Other priorities include understanding the limitations of the helioseismic methods, identifying and correcting systematic effects, and validating the reliability of the measurements using artificial data. While inversions to determine the variation with depth of subsurface flows are planned, preliminary results will be discussed which make use of proxies for near-surface depth-integrated properties, including the horizontal component of the flow divergence and the vertical component of the flow vorticity.This work is supported by the Solar Terrestrial Program of the National Science Foundation, through grant AGS-1127327, and by the National Oceanic and Atmospheric Administration SBIR program.

  19. Active flow control for maximizing performance of spark ignited stratified charge engines. Final report

    SciTech Connect

    Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

    2002-10-15

    Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

  20. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tsai, H. L.

    2001-06-01

    This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.

  1. An analytical study of a lead-acid flow battery as an energy storage system

    NASA Astrophysics Data System (ADS)

    Bates, Alex; Mukerjee, Santanu; Lee, Sang C.; Lee, Dong-Ha; Park, Sam

    2014-03-01

    The most important issue with our current clean energy technology is the dependence on environmental conditions to produce power. To solve this problem a wide range of energy storage devices are being explored for grid-scale energy storage including soluble lead-acid flow batteries. Flow batteries offer a unique solution to grid-scale energy storage because of their electrolyte tanks which allow easy scaling of storage capacity. This study seeks to further understand the mechanisms of a soluble lead acid flow battery using simulations. The effects of varies changes to operating conditions and the system configuration can be explored through simulations. The simulations preformed are 2D and include the positive electrode, negative electrode, and the flow space between them. Simulations presented in this study show Pb(II) surface concentration, external electric potential, and PbO/PbO2 surface concentration on the positive electrode. Simulations have shown increasing cell temperature can increase external electric potential by as much as 0.2 V during charge. Simulations have also shown electrolyte velocity is an important aspect when investigating lead deposition onto the electrodes. Experimental work was performed to validate simulation results of current density and voltage. Good correlation was found between experimental work and simulation results.

  2. Kupffer cell activation after no-flow ischemia versus hemorrhagic shock.

    PubMed

    Jaeschke, Hartmut; Farhood, Anwar

    2002-07-15

    Kupffer cell-derived oxidant stress is critical for reperfusion injury after no-flow ischemia. However, the importance of Kupffer cells as source of reactive oxygen formation is unclear in a hemorrhagic shock model. Therefore, we evaluated Kupffer cell activation after 60 or 120 min of hemorrhage and 90 min of resuscitation (HS/RS) in pentobarbital-anesthetized male Fischer rats. Plasma glutathione disulfide (GSSG) as indicator for a vascular oxidant stress showed no significant changes after HS/RS. Plasma ALT activities were only moderately increased (100-200 U/L). Kupffer cells isolated from postischemic livers did not generate more superoxide than cells from sham controls. In contrast, the 10-fold increase of plasma GSSG and the 9-fold higher spontaneous superoxide formation of Kupffer cells after 60 min of hepatic no-flow ischemia followed by 90 min of reperfusion demonstrated the activation of Kupffer cells in this experimental model. Plasma ALT activities (1930 +/- 240 U/L) indicated severe liver injury. These results demonstrate a fundamental difference in the degree of Kupffer cell activation between the two models of warm hepatic ischemia. Our findings suggest that different therapeutic strategies are necessary to ameliorate the initial injury after low flow ischemia (hemorrhage) compared to cold (transplantation) or warm (Pringle maneuver) no-flow ischemia. PMID:12106817

  3. ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C

    SciTech Connect

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; DePontieu, Bart; Title, Alan; DeForest, Craig; Kuzin, Sergey

    2013-09-20

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of 'counter-steaming' flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s{sup –1}) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  4. Anti-parallel EUV Flows Observed along Active Region Filament Threads with Hi-C

    NASA Astrophysics Data System (ADS)

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; Korreck, Kelly; DePontieu, Bart; DeForest, Craig; Weber, Mark; Title, Alan; Kuzin, Sergey

    2013-09-01

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of "counter-steaming" flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s-1) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  5. Active flow control over a backward-facing step using plasma actuation

    NASA Astrophysics Data System (ADS)

    Ruisi, R.; Zare-Behtash, H.; Kontis, K.; Erfani, R.

    2016-09-01

    Due to the more stringent aviation regulations on fuel consumption and noise reduction, the interest for smaller and mechanically less complex devices for flow separation control has increased. Plasma actuators are currently among the most studied typology of devices for active flow control purposes due to their small size and lightweight. In this study, a single dielectric barrier discharge (SDBD) actuator is used on a backward-facing step to assess its effects on the separated turbulent shear layer and its reattachment location. A range of actuating modulation frequencies, related to the natural frequencies of shear layer instability (flapping) and vortex shedding instability, are examined. The particle image velocimetry technique is used to analyse the flow over the step and the reattachment location. The bulk-flow experiments show negligible effects both on the shear layer and on the reattachment location for every frequency considered, and the actuator is not able to induce a sufficient velocity increase at the step separation point.

  6. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

    PubMed Central

    2015-01-01

    Summary The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178

  7. Active ultrasonic cross-correlation flowmeters for mixed-phase pipe flows

    NASA Astrophysics Data System (ADS)

    Sheen, S. H.; Raptis, A. C.

    Two ultrasonic flowmeters which employ the active cross-correlation technique and use a simple clamp-on transducer arrangement are discussed. The flowmeter for solid/liquid flows was tested over a wide range of coal concentration in water and oil. The measured velocity based on the peak position of the cross-correlation function is consistently higher by about 15% than the average velocity measured by flow diversion. The origin of the difference results mainly from the flow velocity profiles and the transit-time probability distribution. The flowmeter that can measure particle velocity in a solid/gas flow requires acoustic decoupling arrangement between two sensing stations. The measured velocity is mainly associated with the particles near the wall. Performance of both flowmeters is presented.

  8. Active control of instabilities in laminar boundary-layer flow. Part 1: An overview

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Erlebacher, Gordon; Hussaini, M. Yousuff

    1994-01-01

    This paper (the first in a series) focuses on using active-control methods to maintain laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead to turbulent flow. The authors review previous studies that examine wave cancellation (currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes equations to evaluate this method of controlling instabilities. It is definitely shown that instabilities are controlled by the linear summation of waves (i.e., wave cancellation). Although a mathematically complete method for controlling arbitrary instabilities has been developed (but not yet tested), the review, duplication, and physical explanation of previous studies are important steps for providing an independent verification of those studies, for establishing a framework for subsequent work which will involve automated transition control, and for detailing the phenomena by which the automated studies can be used to expand knowledge of flow control.

  9. Continental Lower-crustal Flow: Channel Flow and Laminar Flow

    NASA Astrophysics Data System (ADS)

    LI, Dewei

    Numerous geological, geophysical and geochemical investigations and finite element modeling indicate that crustal flow layers exist in the continental crust. Both channel flow model and laminar flow model have been created to explain the flow laws and flow mechanisms. As revealed by the channel flow model, a low-viscosity channel in middle to lower crust in orogen or plateau with thick crust and high elevation would flow outward from mountain root in response to lateral pressure gradient resulted from topographic loading or to denudation. However, according to the laminar flow model proposed based on investigation of the Qinghai-Tibet plateau, circulative movement of crustal lithologies with different rheological properties between basin and orogen would occur, under the driving forces resulted from dehydration and melting of subduction plate on active continental margin and from thermal energy related to upwelling and diapiring of intercontinental mantle plume or its gravitational interactions. Similarly, when driven by gravity, the softened or melted substances of the lower crust in a basin would flow laterally toward adjacent mountain root, which would result in a thinned basin crust and a thickened orogenic crust. Partially melted magma within the thickened orogenic lower crust would cause vertical movement of metamorphic rocks of lower to middle crust due to density inversion, and the vertical main stress induced by thermal underplating of lower crust would in turn lead to formation of metamorphic core complexes and low-angle detachment fault systems. Lateral spreading of uplifting mountain due to gravitation potential would result in thrust fault systems on the border between mountain and basin. Meanwhile, detritus produced synchronously by intense erosion of uplifting mountain would be transported and deposited along the marginal deep depression in the foreland basin dragged by lower crust flow. Channel flow is similar to laminar flow in a variety of aspects

  10. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors.

    PubMed

    Wang, Heming; Park, Jae-Do; Ren, Zhiyong

    2012-05-01

    Microbial fuel cell (MFC) technology offers a sustainable approach to harvest electricity from biodegradable materials. Energy production from MFCs has been demonstrated using external resistors or charge pumps, but such methods can only dissipate energy through heat or receive electrons passively from the MFC without any controllability. This study developed a new approach and system that can actively extract energy from MFC reactors at any operating point without using any resistors, especially at the peak power point to maximize energy production. Results show that power harvesting from a recirculating-flow MFC can be well maintained by the maximum power point circuit (MPPC) at its peak power point, while a charge pump was not able to change operating point due to current limitation. Within 18-h test, the energy gained from the MPPC was 76.8 J, 76 times higher than the charge pump (1.0 J) that was commonly used in MFC studies. Both conditions resulted in similar organic removal, but the Coulombic efficiency obtained from the MPPC was 21 times higher than that of the charge pump. Different numbers of capacitors could be used in the MPPC for various energy storage requirements and power supply, and the energy conversion efficiency of the MPPC was further characterized to identify key factors for system improvement. This active energy harvesting approach provides a new perspective for energy harvesting that can maximize MFC energy generation and system controllability. PMID:22486712

  11. Experiment of Flow Control Using Laser Energy Deposition Around High Speed Propulsion System

    NASA Astrophysics Data System (ADS)

    Lee, HyoungJin; Jeung, InSeuck; Lee, SangHun; Kim, Seihwan

    2011-11-01

    An experimental investigation was conducted to examine the effect of a pulsed Nd:YAG laser energy deposition on the shock structures in supersonic/hypersonic flow and quiescent air. The effect of the laser energy and pressure in the blast wave generation were also investigated. As a result, the strength of plasma and blast wave becomes stronger as pressure or laser energy increase. And the breakdown threshold of air by laser energy deposition is 0.015 bar at 508 mJ laser energy, the blast wave threshold generation in air by laser energy deposition is 0.100 bar at same laser energy. As qualitative analysis, schlieren images are also obtained. After the series of experiments, the effect of laser energy deposition (LED) on high speed flow around the shock—shock interaction created by a wedge and blunt body. By LED, the structure of shock—shock interaction was collapsed momentary and the pressure of the stagnation point was fluctuated while interference of wave.

  12. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  13. Direct determination of the activation energy for the reaction of nitric oxide with ozone

    SciTech Connect

    Borders, R.A.

    1981-01-01

    The activation energy for the reaction of nitric oxide with ozone has been directly measured as a function of temperature. The instrument constructed for this study consisted of two flow tubes that are connected together at each end, where the reaction zone temperature of each flow tube was controlled independently. The reaction of nitric oxide and ozone was pseudo-first order ((NO)/(O/sub 3/) greater than or equal to 250) and studied by following the reduction of the chemiluminescence of one of the products (NO/sup *//sub 2/(/sup 2/B/sub 1,2/)) of the reaction. The chemiluminescence was measured using a microcomputer-controlled photon counter designed for these studies. The activation energy has been found to vary with temperature. The activation energy varies from 2390 +/- 10 calories at 216 K to 2970 +/- 60 calories at 333 K. The variation over the complete temperature range studied (204-353 K) is large enough (650 calories) that the errors associated with the method cannot account for all of the variation. There are other pathways for this reaction other than ground state reactants going to ground state products, and their contribution to the activation energy (approx.500 calories) has been found to be sufficient to account for the observed variation with temperature when added to the variation predicted by either transition state (180 calories) or collision (150 calories) theory.

  14. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA. PMID:11540993

  15. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow.

    PubMed

    Winkler, Roland G

    2016-04-20

    The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior. Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion. Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different power-law dependence on the shear rate compared to passive dumbbells under flow is found. PMID:26980630

  16. Energy Around Us. A Fall Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…

  17. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  18. Amplitude distribution and energy balance of small disturbances in plate flow

    NASA Technical Reports Server (NTRS)

    Schlichting, H

    1950-01-01

    The distribution of the correlation coefficient and of the amplitude of the disturbance velocities is calculated as a function of the distance from the wall for two neutral disturbances, one at the lower and one at the upper branch of the neutral stability curve. The energy balance of the disturbance motion is also investigated and it is found that as required for neutral stability the energy of the disturbance motion that is dissipated by viscosity is equal to the energy transferred to the disturbance motion from the main flow during one cycle.

  19. Energy Harvesting for Micropower Applications by Flow-Induced Flutter of an Inverted Piezoelectric Flag

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh; Mittal, Rajat

    2015-11-01

    Piezoelectric flexible flags can be used to continuously generate energy for small-scale sensor used in a wide variety of applications ranging from measurement/monitoring of environmental conditions (outdoors or indoors) to in-situ tracking of wild animals. Here, we study the energy harvesting performance as well as the flow-structure interaction of an inverted piezoelectric flag. We use a coupled fluid-structure-electric solver to examine the dynamic response of the inverted flag as well as the associated vortical characteristics with different inertia and bending stiffness. Simulations indicate that large amplitude vibrations can be achieved over a large range of parameters over which lock-on between the flag flutter and the intrinsic wake shedding occurs. The effects of initial inclination of the flag to the prevailing flow as well as Reynolds number of the flow are explored, and the effect of piezoelectric material parameters on the energy harvesting performance of this flutter state is examined in detail. The maximum energy efficiency occurs when there is a match between the intrinsic timescales of flutter and the piezoelectric circuit. The simulations are used to formulate a scaling law that could be used to predict the energy harvesting performance of such devices. The support for this study comes from AFSOR, NSF, EPRI and Johns Hopkins E2SHI Seed Grant.

  20. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    PubMed

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. PMID:26990485