Science.gov

Sample records for flow battery applications

  1. Membranes for Redox Flow Battery Applications

    PubMed Central

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  2. Membranes for redox flow battery applications.

    PubMed

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  3. Flow Battery Solution for Smart Grid Applications

    SciTech Connect

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  4. Synthesis of electroactive ionic liquids for flow battery applications

    SciTech Connect

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  5. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  6. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  7. Development and validation of chemistry agnostic flow battery cost performance model and application to nonaqueous electrolyte systems: Chemistry agnostic flow battery cost performance model

    SciTech Connect

    Crawford, Alasdair; Thomsen, Edwin; Reed, David; Stephenson, David; Sprenkle, Vincent; Liu, Jun; Viswanathan, Vilayanur

    2016-01-01

    A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system is estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh-1 for the storage system is identified.

  8. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  9. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  10. Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications

    SciTech Connect

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2013-04-22

    Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or power rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].

  11. Poly(phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Enlei; Wang, Guosheng; Yu, Ping; Zhao, Qiuxia; Yao, Fangbo

    2015-05-01

    To develop high performance and cost-effective membranes with low permeability of vanadium ions for vanadium redox flow battery (VRFB) application, poly(phenyl sulfone) anion exchange membranes with pyridinium groups (PyPPSU) are prepared and first investigated for VRFB application. PyPPSU membranes show much lower vanadium ions permeability (0.07 × 10-7-0.15 × 10-7 cm2 min-1) than that of Nafion 117 membrane (31.3 × 10-7 cm2 min-1). As a result, the self-discharge duration of the VRFB cell with PyPPSU membrane (418 h) is about four times longer than that of VRFB cell with Nafion 117 membrane (110 h). Furthermore, the VRFB cell with PyPPSU membrane exhibits higher battery efficiency (coulombic efficiency of 97.8% and energy efficiency of 80.2%) compare with that of VRFB cell with Nafion 117 membrane (coulombic efficiency of 96.1% and energy efficiency of 77.2%) at a high current density of 100 mA cm-2. In addition, PyPPSU membrane exhibits stable performance in 100-cycle test. The results indicate that PyPPSU membrane is high performance and low-cost alternative membrane for VRFB application.

  12. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  13. Research on the characteristics of the vanadium redox-flow battery in power systems applications

    NASA Astrophysics Data System (ADS)

    Jizhong, Chen; Ziqiang, Xu; Bei, Li

    2013-11-01

    Vanadium redox flow batteries (VRFBs) have power rating and energy durations that are independent of one another, which make them attractive for power systems applications. This paper focuses on the energy and power response capability of the VRFBs, which has been experimentally researched based on 5 kW/10 kWh and 0.5 MW/1 MWh systems. With three experimental operating modes, three threshold values and one baseline have been obtained based on the experimental results. The maximum state of charge (“SOC”), charged by 1.4 times rated power at 1 time ratio (“TR”), is 47% SOC. The minimum TR, charged by times rated power at SOC = 100%, is 1.5. The maximum charge/discharge power rating is 1.35 times rated power. The reserve SOC curves are a baseline on which the VRFB can respond to equally charge/discharge energy demand.

  14. A polyoxometalate flow battery

    SciTech Connect

    Pratt, Harry D.; Hudak, Nicholas S.; Fang, Xikui; Anderson, Travis M.

    2013-08-01

    A redox flow battery utilizing two, three-electron polyoxometalate redox couples (SiVV3WVI9O407–/SiVIV3WVI9O4010- and SiVIV3WVI9O4010-/SiVIV3WV3WVI6O4013-) was investigated for use in stationary storage in either aqueous or non-aqueous conditions. The aqueous battery had coulombic efficiencies greater than 95% with relatively low capacity fading over 100 cycles. Infrared studies showed there was no decomposition of the compound under these conditions. The non-aqueous analog had a higher operating voltage but at the expense of coulombic efficiency. The spontaneous formation of these clusters by self-assembly facilitates recovery of the battery after being subjected to reversed polarity. Polyoxometalates offer a new approach to stationary storage materials because they are capable of undergoing multi-electron reactions and are stable over a wide range of pH values and temperatures.

  15. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  16. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  17. Redox Flow Batteries, a Review

    SciTech Connect

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  18. Batteries for Vehicular Applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Venkat

    2008-09-01

    This paper will describe battery technology as it relates to use in vehicular applications, including hybrid-electric vehicles (HEV), electric vehicles (EV), and plug-in-hybrid-electric vehicles (PHEV). The present status of rechargeable batteries, the requirements for each application, and the scientific stumbling blocks that stop batteries from being commercialized for these applications will be discussed. Focus will be on the class of batteries referred to as lithium batteries and the various chemistries that are the most promising for these applications. While Li-ion is expected in HEVs in the very near future, use in PHEVs are expected to be more gradual and dependent on solving the life, safety, and cost challenges. Finally, batteries for EVs remain problematic because of the range and charging-time issues.

  19. Flow Battery System Design for Manufacturability.

    SciTech Connect

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  20. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Haryadi, Gunawan, Y. B.; Mursid, S. P.; Harjogi, D.

    2016-04-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  1. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries.

    PubMed

    Sevov, Christo S; Brooner, Rachel E M; Chénard, Etienne; Assary, Rajeev S; Moore, Jeffrey S; Rodríguez-López, Joaquín; Sanford, Melanie S

    2015-11-18

    The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e(-)) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e(-)), and undergoes two reversible 1e(-) reductions in the presence of LiBF4 to form reduced products that are stable over days in solution. PMID:26514666

  2. Batteries for terrestrial applications

    SciTech Connect

    Kulin, T.M.

    1998-07-01

    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  3. Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoli; Ding, Cong; Zhang, Hongzhang; Li, Xianfeng; Cheng, Yuanhui; Zhang, Huamin

    2015-01-01

    A solvent responsive sol-gel method is adopted to fabricate poly (ether sulfone) (PES)/silica composite porous membranes for vanadium flow battery (VFB) application. The pore size and pore size distribution of the composite membrane can be easily adjusted by controlling the quantity of silica gels inside the pores of pristine membranes. Fourier transform infrared spectroscopy (FT-IR) and energy dispersive spectrometer (EDS) are carried out to confirm the structure of resulted membranes. VFBs assembled with the silica modified membranes display much higher coulomb efficiency (97%) and energy efficiency (83%) than that of pristine porous membrane (CE 86%, EE 76%). Furthermore,the modified PES membranes demonstrate high oxidation stability through the long-term battery operation. The PES/silica composite porous membranes show great prospects in VFB applications.

  4. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications.

    PubMed

    Tucker, Michael C; Phillips, Adam; Weber, Adam Z

    2015-12-01

    An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe2 (SO4 )3 active material and 1.2 m NaCl supporting electrolyte. With these materials, an average power density around 20 mW cm(-2) and a maximum energy density of 11.5 Wh L(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1) , or only US$0.034 per mobile phone charge. PMID:26586284

  5. Dispersion properties in porous media: application to Redox Flow Battery electrodes

    NASA Astrophysics Data System (ADS)

    Picano, Francesco; Maggiolo, Dario; Marion, Andrea; Guarnieri, Massimo

    2015-11-01

    Redox Flow Batteries (RFBs) represent a promising technology as a way to store energy. However, in order to improve RFBs performance, some conceptual and technological issues are still open. In particular, a properly designed geometry of flow channels and porous medium is still under investigation in order to uniformly distribute the reacting species all along the electrode. The ideal configuration aims to minimize the drag maximizing the mixing so to increase the overall performance and efficiency. In the present work a Lattice Boltzmann 3D model (LBM) has been used to better understand the dependence of mass and momentum transports on the porosity and carbon fiber preferential orientation. The LBM has been coupled with a Lagrangian particle tracking algorithm in order to investigate the dispersion mechanisms induced by the porous medium on the species flowing in a typical RFB. Results show that the drag is considerably reduced when the medium fibers are preferentially oriented along the streamwise direction. Surprisingly, this configuration shows also the highest transversal dispersion rate characterized by a super-diffusive behavior. Actually, the dispersion features are found to strongly depend on the porous media microstructure showing either anomalous or regular diffusion.

  6. Redox flow batteries: a review

    SciTech Connect

    Weber, Adam Z.; Mench, Matthew M; Meyers, Jeremy; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-01-01

    Redox flow batteries (RFBs) are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of RFBs with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  7. A dication cross-linked composite anion-exchange membrane for all-vanadium flow battery applications.

    PubMed

    Zhang, Fengxiang; Zhang, Huamin; Qu, Chao

    2013-12-01

    We report the fabrication and properties of a high-performance, inexpensive, composite, anion-exchange membrane (AEM) for an all-vanadium flow battery (VFB) application. The AEM was fabricated by dication cross-linking without the involvement of trimethylamine, and shows well-balanced anion conductivity and robustness due to imidazolium and imidazolium-ammonium functionalities, as well as a concomitantly achieved semi-interpenetrating network structure. The VFB single cell yielded a Coulombic efficiency of 99 % and an energy efficiency of 84 % at 80 mA cm(-2) , and operated for over 900 charge/discharge cycles. This work demonstrates the combined use of several favorable AEM design rationales, such as incorporating abundant and efficient anion-exchange groups, constructing a swelling- and oxidation-resistant structure, and facile fabrication; it provides an effective way of developing high-performance, low-cost AEMs for VFB applications. PMID:24124071

  8. A new electrocatalyst and its application method for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Jing, Minghua; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-08-01

    The edge plane in carbon structure has good electrocatalytic activity toward vanadium redox reaction. To apply it in vanadium redox flow battery (VRFB) practically, the graphite nanopowders (GNPs) containing amounts of edge planes are used as electrocatalyst and embedded in the electrospun carbon nanofibers (ECNFs) by different mass ratios to make composite electrodes. The morphology and electrochemical activity of the GNPs and the composite electrodes containing them are characterized. Compared with the pristine ECNFs, the composite electrodes show much higher electrochemical activity. With the increase of GNPs content in composite electrodes, the electrochemical reversibility of the vanadium redox couples also increases. It proves the addition of GNPs can surely improve the electrochemical activity of ECNFs. Among the composite electrodes, the ECNFs containing 30 nm GNP by mass ratio of 1:50 show the best electrochemical activity, largest active surface area and excellent stability. Due to the high performance of GNP/ECNFs composite electrode and its relatively low cost preparation process, the GNPs are expected to be used as electrocatalyst in VRFB on a large scale to improve the cell performance.

  9. Membranes and separators for flowing electrolyte batteries-a review

    SciTech Connect

    Arnold, C.; Assink, R.A.

    1983-01-01

    Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

  10. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  11. Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery

    NASA Astrophysics Data System (ADS)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Anderson, Marc; Kontturi, Kyösti

    2015-03-01

    In recent studies, the employment of the aqueous solution system comprised of Cu(II)-Cu(I)-Cl system was addressed for massive energy storage in Redox Flow Batteries (RFBs) [5,6], providing important practical advantages compared to the widespread all-vanadium or Zn/Br systems [5]. The substitution of vanadium electrolytes by copper-chloride electrolytes allows the simplification of the process and notably reduces the cost, allowing for a better commercialization of RFBs. Here, a complete physico-chemical characterization of positive copper electrolytes and their electrochemical performance using different supporting electrolytes, HCl and CaCl2, is presented. Once the physical properties and the electrochemical performance of each one of the supporting electrolytes were determined, the final composition of supporting electrolyte for this Cu(II)/Cu(I) redox couple could be optimized by mixing different sources of chloride, regarding its practical application in the all-copper RFB.

  12. Flowing electrolyte battery testing and evaluation

    SciTech Connect

    Butler, P.; Miller, D.; Verardo, A.

    1982-08-01

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  13. Flowing-electrolyte-battery testing and evaluation

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Verardo, A.E.

    1982-01-01

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  14. Flowing electrolyte battery testing and evaluation

    NASA Astrophysics Data System (ADS)

    Butler, P. C.; Miller, D. W.; Verardo, A. E.

    A laboratory to evaluate the performance and cycle life of flowing electrolyte battery systems has been established at Sandia National Laboratories. Four unique flow batteries are being tested in the laboratory using a four-variable two-level factorial experimental plan. Two Exxon zinc bromine batteries and one Gould zinc bromine battery are under test. One NASA Redox battery is on test. This paper describes results obtained to date from the test program. Cycle history, efficiency values, and general performance observations for these batteries are reported. The factorial test program and available statistical results are also discussed.

  15. Battery testing for photovoltaic applications

    SciTech Connect

    Hund, T.

    1996-11-01

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  16. Review of flow battery testing at Sandia

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  17. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  18. Membrane Development for Vanadium Redox Flow Batteries

    SciTech Connect

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become a main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range, and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion{reg_sign} as the preferred membrane material is responsible for {approx}11% of the overall cost of a 1 MW/8 MWh system. Therefore in recent years two main membrane-related research threads have emerged: (a) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and (b) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic science issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  19. Membrane development for vanadium redox flow batteries.

    PubMed

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome. PMID:22102992

  20. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  1. Stresses due to Squeeze Flow between Particles Surrounded by an Electrolyte Solution with Application to Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Zhang, Cong

    2013-11-01

    Large stresses are induced during lithium-ion battery charging and discharging, termed intercalation and deintercalation stresses. Current models of the stresses in lithium-ion batteries in the literature seldom consider the influence of the interaction between the particles within the electrodes on the stress distribution. The particles within lithium-ion battery electrodes can undergo relative motion with relative velocities of different magnitudes and directions. One important mode of motion manifests itself as two particles approaching each other. The interaction is mediated by the electrolyte between the particles. The relative motion of the particles induces significant pressures and the primary objective of this work is to propose a source of mechanical stresses as a consequence of the dynamic squeezing motion as opposed to a static environment considered in the battery literature. Other applications in the biomedical field are also discussed. Supported by DOE Graduate Automotive Technology Education (GATE), OSU Center for Automotive Research and OSU NSEC Center for the Affordable Nanoengineering of Polymeric Biomedical Devices.

  2. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  3. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  4. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  5. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  6. Redox Species of Redox Flow Batteries: A Review.

    PubMed

    Pan, Feng; Wang, Qing

    2015-01-01

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested. PMID:26593894

  7. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    PubMed

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. PMID:21922094

  8. Rebalancing electrolytes in redox flow battery systems

    SciTech Connect

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  9. Studies on Molecular and Ion Transport in Silicalite Membranes and Applications as Ion Separator for Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    Yang, Ruidong

    Microporous zeolite membranes have been widely studied for molecular separations based on size exclusion or preferential adsorption-diffusion mechanisms. The MFI-type zeolite membranes were also demonstrated for brine water desalination by molecular sieving effect. In this research, the pure silica MFI-type zeolite (i.e. silicalite) membrane has been for the first time demonstrated for selective permeation of hydrated proton (i.e. H3O+) in acidic electrolyte solutions. The silicalite membrane allows for permeation of H 3O+ ions, but is inaccessible to the large hydrated multivalent vanadium ions due to steric effect. The silicalite membrane has been further demonstrated as an effective ion separator in the all-vanadium redox flow battery (RFB).The silicalite is nonionic and its proton conductivity relies on the electric field-driven H3O+ transport through the sub nanometer-sized pores under the RFB operation conditions. The silicalite membrane displayed a significantly reduced self-discharge rate because of its high proton-to-vanadium ion transport selectivity. However, the nonionic nature of the silicalite membrane and very small diffusion channel size render low proton conductivity and is therefore inefficient as ion exchange membranes (IEMs) for practical applications. The proton transport efficiency may be improved by reducing the membrane thickness. However, the zeolite thin films are extremely fragile and must be supported on mechanically strong and rigid porous substrates. In this work, silicalite-Nafion composite membranes were synthesized to achieve a colloidal silicalite skin on the Nafion thin film base. The "colloidal zeolite-ionic polymer" layered composite membrane combines the advantages of high proton-selectivity of the zeolite layer and the mechanical flexibility and low proton transport resistance of the ionic polymer membrane. The composite membrane exhibited higher proton/vanadium ion separation selectivity and lower electrical resistance than

  10. NASA/Marshall's lithium battery applications

    NASA Technical Reports Server (NTRS)

    Paschal, L. E.

    1980-01-01

    A general lithium battery is described and a summary of lithium battery applications is presented. Four aspects of a particular lithium battery, the inducement environmental contamination monitoring battery, are discussed-design and construction details, thermal vacuum tests, projection tests, and acceptance tests.

  11. Solid Suspension Flow Batteries Using Earth Abundant Materials.

    PubMed

    Mubeen, Syed; Jun, Young-Si; Lee, Joun; McFarland, Eric W

    2016-01-27

    The technical features of solid-electrode batteries (e.g., high energy density, relatively low capital cost ($/kWh)) and flow batteries (e.g., long cycle life, design flexibility) are highly complementary. It is therefore extremely desirable to integrate their advantages into a single storage device for large-scale energy storage applications where lifetime cost ($/kW-h/cycle) is an extremely important parameter. Here, we demonstrate a non-Li-based-flow battery concept that replaces the aqueous solution of redox-active molecules found in typical redox flow batteries with suspensions of hydrophilic carbon particles ("solid suspension electrodes") coated with earth-abundant redox-active metals. The solid suspension electrodes charge by depositing earth-abundant redox-active metals onto the carbon particle suspension, which are then stripped during discharge operation. The electrical contact to the solid suspension electrodes is fed through fixed redox-inert hydrophobic carbon current collectors through "contact charge transfer" mechanism. The hydrophobicity of the current collectors prevents direct plating of redox-active metals onto their surfaces. The above concept was successfully used to demonstrate several non-Li-based battery chemistries including zinc-copper, zinc-manganese oxide, zinc-bromine, and zinc-sulfur, providing a pathway for potential applications in medium and large-scale electrical energy storage. PMID:26727225

  12. Microporous Separators for Fe/V Redox Flow Batteries

    SciTech Connect

    Wei, Xiaoliang; Li, Liyu; Luo, Qingtao; Nie, Zimin; Wang, Wei; Li, Bin; Xia, Guanguang; Miller, Eric; Chambers, Jeff; Yang, Zhenguo

    2012-06-28

    The Fe/V redox flow battery has demonstrated promising performance that is advantageous over other redox flow battery systems. The less oxidative nature of the Fe(III) species enables use of hydrocarbon - based ion exchange membranes or separators. Daramic(reg. sign) microporous polyethylene separators were tested on Fe/V flow cells using the sulphuric/chloric mixed acid - supporting electrolytes. Among them, Daramic(reg. sign) C exhibited good flow cell cycling performance with satisfactory repeatability over a broad temperature range of 5 - 50 degrees C. Energy efficiency (EE) of C remains above 67% at current densities of 50 - 80 cm{sup -2} in the temperature range from room temperature to 50 degrees C. The capacity decay problem could be circumvented through hydraulic pressure balancing by applying different pump rates to the positive and negative electrolytes. Stable capacity and energy were obtained over 40 cycles at room temperature and 40 degrees C. These results manifest that the extremely low-cost separators ($10/cm2) are applicable in the Fe/V flow battery system at an acceptable sacrifice of energy efficiency. This stands for a remarkable breakthrough in significant reduction of the capital cost of the Fe/V flow battery system, and is promising to promote its market penetration in grid stabilization and renewable integration.

  13. Status of flow-battery research in the United States

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Chamberlin, J. L.; Saxton, H. J.; Symons, P. C.

    Flow batteries are defined as electrochemical energy storage devices in which at least one of the active materials is stored external to the power converting cell stack, and in which this soluble active material is circulated via the electrolyte, through the cell-stack during system charge or discharge. Research is reported on the following systems: zinc/chlorine batteries, zinc/bromine batteries, iron/chromium redox batteries, iron/ferric-ferrous chloride batteries, and zinc/ferro-ferricyanide batteries.

  14. Improved dual flow aluminum hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart L.; Matthews, Donna

    1993-11-01

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  15. Energy storage: Redox flow batteries go organic

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sprenkle, Vince

    2016-03-01

    The use of renewable resources as providers to the electrical grid is hampered by the intermittent and irregular nature in which they generate energy. Electrical energy storage technology could provide a solution and now, by using an iterative design process, a promising anolyte for use in redox flow batteries has been developed.

  16. Dramatic performance gains of a novel circular vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Liu, Tao; Lai, Qinzhi; Ning, Guiling; Zhang, Huamin

    2015-03-01

    Vanadium flow battery (VFB) holds great promise for use in large scale energy storage applications. However, one major issue that limits the battery performance is the energy storage capacity loss due to insufficient use of electrolyte. The battery structure design is flexible and acceptable to solve the issue. Based on the mass transport limitation of the conventional rectangular vanadium flow battery (RFB), a novel circular vanadium flow battery (CFB) was firstly proposed in the research. Without increasing pump consumption, the new structure of CFB is effective to achieve mass transport enhancement and concentration polarization reduction. The charge-discharge test confirmed the performance advantage of CFB, presenting a significant increment of 10.52% at 40 mA cm-2 and 30.46% at 160 mA cm-2 in the utilization of electrolyte and improved energy storage capacity by 12.56% at 40 mA cm-2 and a 2.55 times of that for RFB at 160 mA cm-2. The performance advantage of CFB becomes exceptionally evident at high current densities.

  17. NASA. Johnson Space Center primary battery applications

    NASA Technical Reports Server (NTRS)

    Bragg, Bob J.

    1991-01-01

    The role of the Power Branch/EP5 of JSC in primary battery applications is to support those JSC organizations having direct application responsibility with trade studies, battery selection recommendations, and with development, qualification, and provisioning of primary batteries. Battery subsystem management is provided. Payload hazard report preparation is supported, as is the review and comment of such reports for the JSC Payload Safety Panel, who approves the flight safety for all Orbiter payloads. JSC battery users are provided with safety analysis and test support to achieve safety approval. Finally, it is the responsibility of the Power Branch to define and maintain battery safety requirement documentation for JSC.

  18. Flow simulation and analysis of high-power flow batteries

    NASA Astrophysics Data System (ADS)

    Knudsen, E.; Albertus, P.; Cho, K. T.; Weber, A. Z.; Kojic, A.

    2015-12-01

    The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm2 to 400 cm2, are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation.

  19. Cost and performance model for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vilayanur; Crawford, Alasdair; Stephenson, David; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg; Thomsen, Ed; Graff, Gordon; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent

    2014-02-01

    A cost model is developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling is done to estimate stack performance at various power densities as a function of state of charge and operating conditions. This is supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio and flow frame channel dimensions are adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates are obtained from various vendors to calculate cost estimates for present, near-term and optimistic scenarios. The most cost-effective chemistries with optimum operating conditions for power or energy intensive applications are determined, providing a roadmap for battery management systems development for redox flow batteries. The main drivers for cost reduction for various chemistries are identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guide suitability of various chemistries for different applications.

  20. Estimating the system price of redox flow batteries for grid storage

    NASA Astrophysics Data System (ADS)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  1. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    PubMed

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed. PMID:26265165

  2. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  3. Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Liu, Le; Yu, Lihong; Wang, Lei; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-12-01

    Sulfonated poly(ether ether ketone) (SPEEK) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) composite membranes are prepared and investigated in detail for vanadium redox flow battery (VRFB) application. With the high hydrophobicity and stability of P(VDF-co-HFP), the properties of composite membranes such as mechanical property and vanadium ion permeability are effectively improved, showing good trends with the increasing of P(VDF-co-HFP) mass ratio. The VRFB single cell assembled with the composite membrane of 15 wt.% P(VDF-co-HFP) (SPEEK-15% membrane) exhibits higher coulombic efficiency (CE, 95.4%) and energy efficiency (EE, 83.8%) than that assembled with Nafion 117 membrane (CE 91.1% and EE 78.4%) at the current density of 80 mA cm-2. Furthermore, the SPEEK-15% membrane maintains a stable performance during 100 cycles at the current density of 80 mA cm-2. Therefore the SPEEK/P(VDF-co-HFP) composite membrane could be used as low-cost and high-performance membrane for VRFB application.

  4. Fe-V redox flow batteries

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  5. Membranes and separators for flowing-electrolyte batteries: A review

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.; Assink, R. A.

    1983-04-01

    Membranes and separators for flowing electrolyte batteries are reviewed. Simple descriptive models are used to illustrate their functions and to distinguish between the operation of separators and membranes. Several studies which investigated the relationships between membrane structure and properties are reviewed. The many methods of separator and membrane preparation are compared. Finally, the specific separator and membrane requirements of three flowing electrolyte battery systems currently under development are described. Emphasis is placed on the mechanism of membrane fouling in iron/chromium redox battery, oxidative degradation of the membrane in the zinc/ferricyanide battery and separator impurities in the zinc/bromine battery.

  6. A review of flow battery testing at Sandia

    SciTech Connect

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-08-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

  7. Limits to battery lifetime in photovoltaic applications

    SciTech Connect

    Spiers, D.J.; Rasinkoski, A.A.

    1996-10-01

    Battery lifetime in a photovoltaic (PV) system is important in determining life-cycle costs and servicing requirements. We present a simple model for estimating PV battery lifetime which are application- and battery-specific, using data normally available (or easily estimated) at the time of system design. In a correctly designed and operated PV system, one of two properties will limit the ultimate lifetime of the battery: the cycle life or the battery`s resistance to internal corrosion. The cycle life is more or less independent of ambient temperature, but the resistance to internal corrosion falls rapidly at higher ambient temperatures. Whether the cycle life or the temperature-dependent corrosion is the limiting factor on battery life depends on the particular details of the photovoltaic system, especially the type of battery used, the daily depth of discharge and the average ambient temperature experienced. Illustrations are given of the particular circumstances for a variety of PV systems with open (vented) lead-acid batteries, ranging from rural lighting systems and vaccine refrigerators to large telecommunications systems. Where possible, the predicted lifetime is compared to actual field experience. In PV systems using tubular plate vented batteries, it is nearly always the temperature-dependent corrosion process that limits the battery lifetime, and not the cycle life. 6 refs., 3 figs., 2 tabs.

  8. Sodium-sulfur batteries for naval applications

    SciTech Connect

    Posthumus, K.J.C.M.; Schillemans, R.A.A.; Kluiters, E.C.

    1996-11-01

    Since 1981 the Electrochemistry Group of TNO carries out a research program for the Royal Netherlands Navy (RNLN) with respect to batteries and fuel cells. Part of this Advanced Batteries program was the evaluation of possible alternatives for the nowadays applied batteries in conventional diesel electric submarines and ships. From this evaluation the high temperature sodium-sulfur battery proved to be the most promising candidate. To investigate the feasibility of the sodium-sulfur battery for naval application, calculations have been made on the expected performance within the two envisaged applications. To validated the calculation experimental testing was carried out on the submarine application. During operational missions the application hardly requires any supply of heating energy. Within the submarine application there is no need for installing a cooling system for the battery. Shock and vibration tests on a 10 kWh module did not lead to any measurable decrease in performance. Calculations show that the operational characteristics of a submarine equipped with sodium sulfur batteries outperform a submarine equipped with the traditional lead acid batteries. The short lifetime is the most important limitation in all applications.

  9. Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Maurya, Sandip; Shin, Sung-Hee; Sung, Ki-Won; Moon, Seung-Hyeon

    2014-06-01

    A simple, single step and environmentally friendly process is developed for the synthesis of anion exchange membrane (AEM) by simultaneous polymerization and quaternization, unlike the conventional membrane synthesis which consists of separate polymerization and quaternization step. The membrane synthesis is carried out by dissolving polyvinyl chloride (PVC) in cyclohexanone along with 4-vinyl pyridine (4VP) and 1,4-dibromobutane (DBB) in the presence of thermal initiator benzoyl peroxide, followed by film casting to get thin and flexible AEMs. The membrane properties such as ion exchange capacity, ionic conductivity and swelling behaviour are tuned by varying the degree of crosslinking. These AEMs exhibit low vanadium permeability, while retaining good dimensional and chemical stability in an electrolyte solution, making them appropriate candidates for non-aqueous vanadium acetylacetonate redox flow battery (VRFB) applications. The optimized membrane displays ion exchange capacity and ionic conductivity of 2.0 mequiv g-1 and 0.105 mS cm-1, respectively, whereas the efficiency of 91.7%, 95.7% and 87.7% for coulombic, voltage and energy parameter in non-aqueous VRFB, respectively. This study reveals that the non-aqueous VRFB performance is greatly influenced by membrane properties; therefore the optimal control over the membrane properties is advantageous for the improved performance.

  10. Workshop on electrodes for flowing solution batteries

    NASA Astrophysics Data System (ADS)

    Nanis, L.

    1981-02-01

    The electrochemical technology of aqueous secondary cells with flowing electrolyte solutions was addressed. Emphasis was placed on the significant parameters believed to govern the performance of the two basic types of electrodes now in use: a porous flow through electrode (PFTE), and an impervious flow by electrode. Progress, problems, and prospects were informally discussed. Key topics included: (current distribution in FTPE; conversion efficiency, segmented FTPE studies; general discussion on FTPE parameters; surface activation; application of FTPE to waste recovery; Exxon zinc bromine flow by system, FTPE in NASA redox energy storage; and application of FTPE in Lockheed zinc ferricyanide redox system). In generally comparing flow through to flow by electrodes, there were some surprising differences arising from experimental results that did not fit conventional thinking.

  11. Overview of photovoltaic and battery applications

    NASA Astrophysics Data System (ADS)

    Murrell, J. D.; Hellman, Karl H.

    1989-10-01

    The use of solar cells and batteries for power generation and vehicle propulsion is examined. Issues such as energy uses and fuel sources, solar electric power, energy storage for solar photovoltaic systems, batteries for electric cars and applications for other mobile sources are also discussed.

  12. Hybrid anodes for redox flow batteries

    SciTech Connect

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  13. Economics of vanadium redox flow battery membranes

    NASA Astrophysics Data System (ADS)

    Minke, Christine; Turek, Thomas

    2015-07-01

    The membrane is a key component of the vanadium redox flow battery (VRFB) in terms of electrochemical performance as well as costs. The standard material Nafion® is cost intensive and therefore several alternative materials are in the focus of research. In this paper a substantial analytical approach is presented in order to quantify bottom price limits for different types of membranes. An in-depth analysis of material and production cost allows statements concerning cost potentials of different ion exchange membranes (IEM) and nano filtration membranes (NFM). The final result reveals that expected costs of IEM and NFM at high production volumes differ by one order of magnitude. Moreover, an analysis of the current market situation is made to provide a framework for economic considerations at present.

  14. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  15. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  16. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  17. Battery related cobalt and REE flows in WEEE treatment.

    PubMed

    Sommer, P; Rotter, V S; Ueberschaar, M

    2015-11-01

    In batteries associated with waste electrical and electronic equipment (WEEE), battery systems can be found with a higher content of valuable and critical raw materials like cobalt and rare earth elements (REE) relative to the general mix of portable batteries. Based on a material flow model, this study estimates the flows of REE and cobalt associated to WEEE and the fate of these metals in the end-of-life systems. In 2011, approximately 40 Mg REE and 325 Mg cobalt were disposed of with WEEE-batteries. The end-of-life recycling rate for cobalt was 14%, for REE 0%. The volume of waste batteries can be expected to grow, but variation in the battery composition makes it difficult to forecast the future secondary raw material potential. Nevertheless, product specific treatment strategies ought to be implemented throughout the stages of the value chain. PMID:26054962

  18. Application of nonwovens in batteries

    SciTech Connect

    Hoffmann, H.G.

    1995-07-01

    Nonwovens are textile products that are manufactured directly from fibers. According to ISO 9092: 1988 nonwovens are defined as a manufactured sheet, web or batt of directionally or randomly oriented fibers, bonded by friction, and/or cohesion, and/or adhesion excluding paper and products which are woven, tufted, stitchbonded incorporating binding yarns or filaments, or felted by wetmilling whether or not additionally needled. The fibers may be of natural or man-made origin. They may be staple or continuous filaments or be formed in situ. The production of nonwovens can be described as taking place in three stages, although modern technology allows an overlapping of the stages. The three stages are: web formation, web bonding, and finishing treatments. The opportunity to combine different raw materials and different techniques accounts for the diversity of the industry and its products. This diversity is enhanced by the ability to engineer nonwovens to have specific properties and to perform specific tasks. This paper describes the production and applications of nonwovens in primary and secondary electric batteries.

  19. Development of advanced battery systems for vehicle applications

    SciTech Connect

    Zagrodnik, J.P.; Eskra, M.D.; Andrew, M.G.; Gentry, W.O.

    1989-01-01

    The Advanced Battery Business Unit (ABBU) of Johnson Controls, Inc. is developing several promising advanced battery technologies including flow-through lead-acid, zinc/bromine, and nickel hydrogen. The flow-through lead-acid technology, which is being developed under Department of Energy (DOE) sponsorship, is progressing towards the fabrication of a 39 kWh battery system. Recent efforts have focused on achieving the aggressive specific energy goal of 56 Wh/kg in 12 volt module form. Recent DOE sponsored work in the zinc/bromine program has focused on the development of a proof-of concept 50 kWh electric vehicle system for a light van application. Efforts in the nickel hydrogen program have focused on reducing system cost in order to make the life-time premium market and EV market possible targets. The status and future direction of each of these programs are summarized.

  20. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  1. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE PAGESBeta

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  2. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    SciTech Connect

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.

  3. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    NASA Astrophysics Data System (ADS)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  4. Sodium sulfur batteries for space applications

    NASA Technical Reports Server (NTRS)

    Degruson, James A.

    1992-01-01

    In 1986, Eagle-Picher Industries was selected by the Air Force to develop sodium sulfur cells for satellite applications. Specifically, the development program was geared toward low earth orbit goals requiring high charge and/or discharge rates. A number of improvements have been made on the cell level and a transition to a complete space battery was initiated at Eagle-Picher. The results of six months of testing a 250 watt/hour sodium sulfur space battery look very promising. With over 1000 LEO cycles conducted on this first battery, the next generation battery is being designed. This next design will focus on achieving greater energy densities associated with the sodium sulfur chemistry.

  5. A New Redox Flow Battery Using Fe/V Redox Couples in Chloride Supporting Electrolyte

    SciTech Connect

    Wang, Wei; Kim, Soowhan; Chen, Baowei; Nie, Zimin; Zhang, Jianlu; Xia, Guanguang; Li, Liyu; Yang, Zhenguo

    2011-08-22

    A new redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloride supporting electrolyte was proposed and investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling with energy efficiency around 80% at room temperature. Compared with Fe/Cr redox flow battery operating at an elevated temperature of 65 C, the necessity of external heat management is eliminated. Similar performance was also achieved using low-cost hydrocarbon-based ion exchange membranes, which allow for further cost reduction. The improved room temperature electrochemical performance makes the Fe/V redox flow battery a promising option as stationary energy storage device to enable renewable integration and stabilization of electrical grid.

  6. Workshop on electrodes for flowing solution batteries. Summary report

    SciTech Connect

    Nanis, L.

    1981-02-01

    The electrochemical technology of aqueous secondary cells with flowing electrolyte solutions was the subject of a workshop sponsored by EPRI with the cooperation of DOE. The workshop was held in Tampa, Florida, 5-7 November 1979, and was attended by a select group drawn from advanced battery developers, government agencies, universities, and research organizations. The workshop general objectives were to look at the significant parameters believed to govern the performance of the two basic types of electrodes now in use; namely, a porous flow-through electrode (PFTE), and an impervious flow-by electrode. Progress, problems, and prospects were informally discussed. Brief critical reviews were given by session chairmen as a means of introducing each of the key topics (Current Distribution in FTPE, Conversion Efficiency, Segmented FTPE Studies, General Discussion on FTPF Parameters, Surface Activation, Application of FTPE to Waste Recovery, Exxon Zinc-Bromine Flow-By System, FTPE In NASA Redox Energy Storage, and Application of FTPE In Lockheed Zinc/Ferricyanide Redox System). The interaction of this diverse group of engineers and scientists was said by all to be of great benefit in widening understanding of the problems and possible future approaches to new work. The main needs for future work that were identified in the final discussion session among the participants were: (1) engineering analysis, (2) porous structures, (3) materials characteristics, and (4) chemical characteristics. In generally comparing flow-through to flow-by electrodes, there were some surprising differences arising from experimental results that did not fit conventional thinking.

  7. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    PubMed

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. PMID:25899910

  8. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  9. Graphene-based battery electrodes having continuous flow paths

    DOEpatents

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  10. Optimized anion exchange membranes for vanadium redox flow batteries.

    PubMed

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance. PMID:23799776

  11. Polysulfide flow batteries enabled by percolating nanoscale conductor networks.

    PubMed

    Fan, Frank Y; Woodford, William H; Li, Zheng; Baram, Nir; Smith, Kyle C; Helal, Ahmed; McKinley, Gareth H; Carter, W Craig; Chiang, Yet-Ming

    2014-01-01

    A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time. PMID:24597525

  12. Space batteries for mobile battlefield power applications

    NASA Technical Reports Server (NTRS)

    O'Donnell, Patricia M.

    1991-01-01

    A review of space power systems was undertaken to identify advanced space batteries for mobile applications. State-of-the-art systems are described. The technology issues that need to be addressed in order to bring these systems along and meet the needs of the user are discussed. Future research directions are examined.

  13. Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries.

    PubMed

    Shin, Jeong Ho; Park, Sun Hwa; Hyun, Seung Min; Kim, Jeong Won; Park, Hyun Min; Song, Jae Yong

    2014-09-14

    The catalyzed solution-liquid-solid (SLS) growth has been well developed to synthesize semiconductor nanowires with controlled diameters. The SLS growth occurs in the longitudinal direction of nanowires, due to the directional anisotropy driven by the metal catalysts where chemical precursors are introduced. In the present study, we report a selective, template-free, and environmentally-friendly electrochemical flow-based solution-solid (electrochemical flow-SS) growth of the Cu2O nanorod array. The anisotropy for directional growth without any catalysts is generated by the electrical field in a flowing electrolyte of ultra-dilute CuSO4. The filamentary anisotropy originates from electric field enhancement on pyramidal nanocrystals in the electrolyte of low ionic conductivity (13 μS cm(-1)). The Cu2O and Cu nanorods are able to be selectively synthesized by controlling the electrolyte pH and oxygen dissolution into the electrolyte. The synthesized Cu2O nanorod array shows excellent electrochemical properties as an anode material for lithium-ion batteries; the specific capacities increase from 323 to 1206 mA h g(-1) during 500 cycles. The capacity enhancement is due to the phase transformation from Cu2O to CuO, nano-restructuring of nanorods into fragmented nanoparticles, and the progressive generation of an electroactive polymeric gel-like layer on the surface of the nanoparticles. The electrochemical flow-SS growth of Cu2O nanorods is expected to contribute to further development of other functional nanorods. PMID:25055242

  14. Polymeric metallic electrodes for rechargeable battery applications

    NASA Technical Reports Server (NTRS)

    Somoano, R.

    1982-01-01

    A review is presented on the status of plastic metal electrodes, emphasizing the use of polyacetylene as a prototype polymeric material. The electrochemical characteristics of polyacetylene are examined; and the potential use of this material, as well as other types of plastic metal electrodes, in batteries is evaluated. Several problem areas which must be solved before polyacetylene can be widely used in battery applications are discussed, including the problem of electrolyte stability, the problem that the depth of discharge and the energy density is limited by the metal-semiconductor transition, and also the poor electrochemical performance of impure material.

  15. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  16. Parameters of flow in cyclonic elements of separator battery

    NASA Astrophysics Data System (ADS)

    Vasilevskiy, Mihail; Zyatikov, Pavel; Roslyak, Alecsander; Shishmina, Ludmila

    2014-08-01

    Peculiarities of separation processes in cyclone battery separators have been considered on liquid and solid disperse phases. The difference in efficiency between individual and battery liquid separators is slight .Concentration of disperse liquid phase in refined gases is 0.1-0.3 kg/kg. In operating on dry gases with abundance of dust the separation condition changes due to peculiarities of disperse phase behavior from solid particles .Flow parameter assessments in cyclones by different correlation of flow areas at the input and output have been conducted. Differences of flow parameters in conical and cylindrical cyclones have been explored. The analysis and causes of unsatisfied work of industrial battery separator with cyclone elements have been carried out.

  17. Honeycomb Betavoltaic Battery for Space Applications

    NASA Astrophysics Data System (ADS)

    Lee, Jin R.; Ulmen, Ben; Miley, George H.

    2008-01-01

    Radioisotopic batteries offer advantages relative to conventional chemical batteries for applications requiring a long lifetime with minimum maintenance. Thus, thermoelectric type cells fueled with Pu have been used extensively on NASA space missions. The design for a small beta battery using nickel-63 (Ni-63) and a vacuum direct collection method is described here. A honeycomb nickel wire structure is employed to achieve bi-directional direct collection by seeding Ni-63 onto honeycomb shaped wires that will provide structural support as well. The battery design is intended to power low power electronics and distribute power needs in space probes as well as space colonies. Ni-63 is chosen as the source emitter because it has a long half-life and ease of manufacturing. The use of vacuum is especially well mated to space use; hence, vacuum insulation is employed to gain a higher efficiency than prior beta batteries with a dielectric insulator. A unique voltage down-converter is incorporated to efficiently reduce the inherent output voltage from 17.4 kV to ~17.4 V. This converter operates like a ``reverse'' Marx circuit where capacitor charging occurs in series but the discharge is in parallel. The reference battery module described here is about 100 cm×100 cm×218 cm and has a power of ~10 W with a conversion efficiency of ~15.8%. These modules can be stacked for higher powers and are very attractive for various applications in space colonization due to their long life (half-life for Ni-63~100 yrs) and low maintenance.

  18. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

    SciTech Connect

    Lawder, M. T.; Suthar, B.; Northrop, P. W. C.; De, S.; Hoff, C. M.; Leitermann, O.; Crow, M. L.; Santhanagopalan, S.; Subramanian, V. R.

    2014-05-07

    The current electric grid is an inefficient system that wastes significant amounts of the electricity it produces because there is a disconnect between the amount of energy consumers require and the amount of energy produced from generation sources. Power plants typically produce more power than necessary to ensure adequate power quality. By taking advantage of energy storage within the grid, many of these inefficiencies can be removed. Advanced modeling is required when using battery energy storage systems (BESS) for grid storage in order to accurately monitor and control the storage system. Battery management systems (BMS) control how the storage system will be used and a BMS that utilizes advanced physics-based models will offer for much more robust operation of the storage system. The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries. In addition, system architecture and how it can be useful in monitoring and control is discussed. A pathway for advancing BMS to better utilize BESS for grid-scale applications is outlined.

  19. Systems and methods for rebalancing redox flow battery electrolytes

    DOEpatents

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  20. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  1. Pulsating electrolyte flow in a full vanadium redox battery

    NASA Astrophysics Data System (ADS)

    Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.

    2015-10-01

    Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.

  2. A zeolite ion exchange membrane for redox flow batteries.

    PubMed

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  3. Status of flow-battery research in the United States

    SciTech Connect

    Clark, R.P.; Chamberlin, J.L.; Saxton, H.J.; Symons, P.C.

    1982-01-01

    Flow batteries are defined as electrochemical energy storage devices in which at least one of the active materials is stored external to the power converting cell-stack, and in which this soluble active material is circulated via the electrolyte, through the cell-stack during system charge or discharge. Although intensive development of some of these systems has been underway for some time, they were only classified as a distinct category in the United States recently. Of the projects on flow batteries which are still being conducted, the work on the zinc/chlorine system (EDA) has been in progress since 1968; programs on zinc/bromine (Exxon, Gould), on iron/chromium Redox (NASA-Lewis Research Center), and on the iron/ferric-ferrous chloride system (NRG/GEL) have all been underway about seven years; research on the zinc/ferro-ferricyanide battery (Lockheed) has been conducted since 1978. The present paper, which reviews the 1982 status of these battery programs, appears timely since, except for the Lockheed system, the developments have all reached the stage where multi-kilowatt-hour batteries are under test.

  4. Preliminary study of high energy density Zn/Ni flow batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Wang, Yan

    2015-10-01

    The escalation of power system promotes the development of energy storage technologies (ESTs). Among all of ESTs, battery technologies develop quickly and diversely because of its huge application market. Aqueous redox flow batteries (RFBs) are very attractive to customers in the energy grid system, and their noticeable technological innovations in past decades are driving them to gradually replace the conventional ESTs under certain circumstance. Here, the first fully-flow-able zinc-nickel flow battery (ZNFB) is preliminary reported in this paper, and its superior performance is supposed to be suitable for both large-scale storage need and carry-on powertrain in cars. Through using semi-solid fuel cell (SSFC) technology, we incorporates the beneficial features of Zn/Ni chemistry (essentially sustainable, eco-friendly and deposit-abundant) into RFB structure to make a "hybrid" flow battery system, which can take the advantage of both. The relationship between carbon loading and suspension conductivity is determined. Electrochemical properties of ZNFB as static test, cycling test, and fully flowing test are studied to demonstrate our design.

  5. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  6. Advanced technologies in VRLA batteries for automotive applications

    NASA Astrophysics Data System (ADS)

    Ohmae, Takao; Sawai, Ken; Shiomi, Masaaki; Osumi, Shigeharu

    This paper discusses battery temperature limits as a challenge to be answered when using valve-regulated lead-acid (VRLA) batteries in motor vehicles, and then describes the results obtained in road tests on VRLA batteries used in an idling-stop (stop and go) vehicle. In general, using lead-acid batteries at high-temperature increases grid corrosion and water loss, and accelerates deterioration. VRLA batteries are more susceptible to the effects of temperature than flooded batteries, but that is largely due to their structure. Water loss is fatal to VRLA batteries because water replenishment is impossible. At high temperature not only does the electrochemical decomposition of water increase considerably, but a substantial amount of water also evaporates due to the increased vapor pressure. This requires control to keep batteries from exceeding their maximum temperature. The low-temperature limit of lead-acid batteries is at least -50 to -60 °C, and that temperature is higher at a low SOC. This is dependent on change in the solidification point of the sulfuric acid electrolyte. From an environmental perspective there are expectations that idling-stop systems will find wide use as simple systems to improve fuel economy. We studied the performance of a conventional flooded battery, a conventional VRLA battery, and an improved VRLA battery in road tests with an idling-stop vehicle, and found that the improved VRLA battery is suited to idling-stop applications because it had a smaller capacity loss than the conventional flooded battery.

  7. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  8. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  9. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. Fifty-five battery experts from government, industry and universities participated in the survey by providing their opinions on the use of several battery types for six space missions, and their predictions of likely technological advances that would impact the development of these batteries. The results of the survey predict that only four battery types are likely to exceed a specific energy of 150 Wh/kg and meet the safety and reliability requirements for space applications within the next 15 years.

  10. High energy sodium based room temperature flow batteries

    NASA Astrophysics Data System (ADS)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  11. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect

    2010-09-01

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  12. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  13. Activation parameters of flow through battery separators

    NASA Technical Reports Server (NTRS)

    Blokhra, R. L.

    1983-01-01

    Studies of the hydrodynamic flow of water and 45 percent potassium hydroxide (KOH) solution through a microporous and an ion exchange separator are described. The permeability values are interpreted in terms of a pseudoactivation process. The enthalpy of activation deltaH* and the entropy of activation deltaS* were estimated from Eyring's rate equation.

  14. A metal-free organic-inorganic aqueous flow battery

    SciTech Connect

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  15. A metal-free organic-inorganic aqueous flow battery.

    PubMed

    Huskinson, Brian; Marshak, Michael P; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R; Galvin, Cooper J; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2014-01-01

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals

  16. A metal-free organic-inorganic aqueous flow battery

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian; Marshak, Michael P.; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R.; Galvin, Cooper J.; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G.; Aziz, Michael J.

    2014-01-01

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br- redox couple, yields a peak galvanic power density exceeding 0.6Wcm-2 at 1.3Acm-2. Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and

  17. Sealed-cell nickel-cadmium battery applications manual

    NASA Technical Reports Server (NTRS)

    Scott, W. R.; Rusta, D. W.

    1979-01-01

    The design, procurement, testing, and application of aerospace quality, hermetically sealed nickel-cadmium cells and batteries are presented. Cell technology, cell and battery development, and spacecraft applications are emphasized. Long term performance is discussed in terms of the effect of initial design, process, and application variables. Design guidelines and practices are given.

  18. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-09-01

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  19. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-07-07

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  20. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  1. Redox flow batteries based on supporting solutions containing chloride

    DOEpatents

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  2. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  3. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  4. Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, orman H.

    1999-01-01

    A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.

  5. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    NASA Astrophysics Data System (ADS)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  6. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  7. Studies on pressure losses and flow rate optimization in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2014-02-01

    Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.

  8. CFD study on electrolyte distribution in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Bortolin, S.; Toninelli, P.; Maggiolo, D.; Guarnieri, M.; Del, D., Col

    2015-11-01

    The most important component in a redox flow battery (RFB) cell is the MEA (membrane electrode assembly), a sandwich consisting of two catalyzed electrodes with an interposed polymeric membrane. In order to allow electrolyte flow toward the electroactive sites, the electrodes have a porous structure that can be obtained with carbon base materials such as carbon felts. The RFB cell is closed by two plates containing the distribution flow channels. Considering that a uniform electrolyte distribution in the reaction region is a prerequisite for high-efficiency operation, the flow pattern is an important parameter to be investigated for the optimization of the cell. In the present work, the effect of different channels patterns on the electrolyte distribution and on the pressure drop is numerically investigated. Three-dimensional simulations have been carried out with ANSYS Fluent code and four different layouts have been considered. Calculations have been performed both in the distribution channels and in the felt porous region.

  9. Advanced batteries for electric vehicle applications

    SciTech Connect

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  10. Ovonic nickel metal hydride batteries for space applications

    NASA Technical Reports Server (NTRS)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-01-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  11. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    PubMed

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  12. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    PubMed Central

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  13. A high-performance flow-field structured iron-chromium redox flow battery

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; An, L.; Wei, L.; Zhao, T. S.

    2016-08-01

    Unlike conventional iron-chromium redox flow batteries (ICRFBs) with a flow-through cell structure, in this work a high-performance ICRFB featuring a flow-field cell structure is developed. It is found that the present flow-field structured ICRFB reaches an energy efficiency of 76.3% with a current density of 120 mA cm-2 at 25 °C. The energy efficiency can be as high as 79.6% with an elevated current density of 200 mA cm-2 at 65 °C, a record performance of the ICRFB in the existing literature. In addition, it is demonstrated that the energy efficiency of the battery is stable during the cycle test, and that the capacity decay rate of the battery is 0.6% per cycle. More excitingly, the high performance of the flow-field structured battery significantly lowers the capital cost at 137.6 kWh-1, which is 28.2% lower than that of the conventional ICRFB for 8-h energy storage.

  14. Technology and application options for future battery power regulation

    SciTech Connect

    Hurwitch, J.W.; Carpenter, C.A. )

    1991-03-01

    Traditionally, utilities have been interested in battery storage as an option to supply peak power through load leveling. Recently, other benefits of battery storage have been identified which potentially have equal or greater value to electric utilities. These benefits are power regulation functions including area regulation, area protection, spinning reserve, power factor correction, thermal unit minimum loading, and the ability to absorb qualifying facilities. Lead-acid batteries similar to those manufactured for automotive and industrial uses are currently being marketed for utility applications. Compared to the traditional fooded-cell battery that regulates routine watering and maintenance, valve-regulated lead-acid (VRLA) batteries can meet many of the requirements or power regulation at significantly lower operating and maintenance costs. This paper presents an overview of future battery storage applications and technologies. Trends in the utility industry and the future role of battery storage will be addressed with an emphasis on power regulation options. Discussions on battery storage for specific power regulation applications are presented as well as the status of advanced battery development in Europe, Japan, and the United States.

  15. On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li-S Redox Flow Batteries

    SciTech Connect

    Pan, Huilin; Wei, Xiaoliang; Henderson, Wesley A.; Shao, Yuyan; Chen, Junzheng; Bhattacharya, Priyanka; Xiao, Jie; Liu, Jun

    2015-04-27

    Lithium sulfur (Li-S) redox flow battery (RFB) is a promising candidate for high energy large-scale energy storage application due to good solubility of long-chain polysulfide species and low cost of sulfur. In this report, recent progress and new concepts for Li-S redox flow batteries are discussed with an emphasis on the fundamental understanding and control of lithium polysulfide chemistry to enable the development of liquid phase Li-S redox flow prototype cells. These differ significantly from conventional static Li-S batteries targeting for vehicle electrification. A high solubility of the different lithium polysulfides generated at different depths of discharge and states of charge is required for a flow battery in order to take full advantage of the multiple electron transitions between elemental sulfur and Li2S. A new DMSO-based electrolyte is proposed for Li-S redox flow batteries, which not only enables the high solubility of lithium polysulfide species, especially for the short-chain species, but also results in excellent cycling with a high Coulombic efficiency. The challenges and opportunities for the Li-S redox flow concept have also been discussed in depth.

  16. Development status of a sealed bipolar lead/acid battery for high-power battery applications

    NASA Astrophysics Data System (ADS)

    Arias, J. L.; Rowlette, J. J.; Drake, E. D.

    A sealed bipolar lead/acid (SBLA) battery is being developed by Arias Research Associates (ARA) which will offer a number of important advantages in applications requiring high power densities. These applications include electric vehicles (EVs) and hybrid electric vehicles, uninterruptable power supplies (UPS), electrically-heated catalysts (EHCs) for automobiles, utility-power peak-shaving, and others. The advantages of the SBLA over other types of batteries will by significantly higher power density, together with good energy density, high cycle life, high voltage density, low production cost and zero maintenance. In addition, the lead/acid battery represents a technology which is familiar and accepted by Society, is recyclable within the existing infrastructure, and does not raise the safety concerns of many other new batteries (e.g., fire, explosion and toxic gases). This paper briefly reviews the basic design concepts and issues of the SBLA battery technology, various quasi-bipolar approaches and the results of ARA's development work during the past four years. Performance data are given based on both in-house and independent testing of ARA laboratory test batteries. In addition, performance projections and other characteristics are given for three ARA SBLA battery designs, which are compared with other batteries in three example applications: UPS, EHCs, and EVs. The most notable advantages of the SBLA battery are substantial reductions in product size and weight for the UPS, smaller packaging and longer life for the EHC, and higher vehicle performance and lower cost for the EV, compared to both existing and advanced EV batteries.

  17. Multicomponent transport in membranes for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  18. Electroactive-Zone Extension in Flow-Battery Stacks

    SciTech Connect

    Smith, KC; Brunini, VE; Dong, YJ; Chiang, YM; Carter, WC

    2014-11-20

    Flowable suspensions that conduct both electrons and ions can enable the use of energy-dense electroactive species in flow batteries [M. Duduta et al., Adv. Energy Mater., 1, 511 (2011); Z. Li et al., Phys. Chem. Chem. Phys., 15, 15,833 (2013); F. Fan et al., Nano Lett., 14, 2210 (2014)]. In comparison with conventional flow batteries where electrochemical reactions are confined to a fixed current-collector region, electronically conductive flow electrodes permit electrochemical reactions to extend outside of the physical confines of the stack. We have measured and modeled how mixed-conduction enables an electroactive zone (EAZ, in which electrochemical reactions occur) that is of greater spatial extent than current collectors, the extension being termed side zone, SZ. Electrochemical reactions in SZs can reduce coulombic and energetic efficiency. Here we show that for realistic suspension properties and operating conditions, the added inefficiency is small in practice, and can be further mitigated by using appropriate operating conditions and/or materials choices. For the specific example of a non-aqueous Li4Ti5O12 suspension, we show that EAZ extension contributes less than 1% additional efficiency loss at C/10 rates for current collectors greater than 20 mm long. (C) 2014 Elsevier Ltd. All rights reserved.

  19. Monitoring electrolyte concentrations in redox flow battery systems

    DOEpatents

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  20. Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions.

    PubMed

    He, Chiyang; Lu, Joann J; Jia, Zhijian; Wang, Wei; Wang, Xiayan; Dasgupta, Purnendu K; Liu, Shaorong

    2011-04-01

    A micropump provides flow and pressure for a lab-on-chip device, just as a battery supplies current and voltage for an electronic system. Numerous micropumps have been developed, but none is as versatile as a battery. One cannot easily insert a micropump into a nonterminal position of a fluidic line without affecting the rest of the fluidic system, and one cannot simply connect several micropumps in series to enhance the pressure output, etc. In this work we develop a flow battery (or pressure power supply) to address this issue. A flow battery consists of a +EOP (in which the liquid flows in the same direction as the field gradient) and a -EOP (in which the liquid flows opposite to the electric field gradient), and the outlet of the +EOP is directly connected to the inlet of the -EOP. An external high voltage is applied to this outlet-inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the +EOP's inlet and the -EOP's outlet (the flow battery's inlet and outlet) are grounded. This flow battery can be deployed anywhere in a fluidic network without electrically affecting the rest of the system. Several flow batteries can be connected in series to enhance the pressure output to drive HPLC separations. In a fluidic system powered by flow batteries, a hydraulic equivalent of Ohm's law can be applied to analyze system pressures and flow rates. PMID:21375230

  1. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    PubMed

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  2. High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

    PubMed Central

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-01-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  3. Modeling of Lithium-Based Batteries in Microgravity Applications

    NASA Astrophysics Data System (ADS)

    Kizito, J.

    Long duration space travel requires a comprehensive understanding of how systems interact with their environment. Specifically, in space and microgravity conditions there is a need to balance the thermal and electrical conductivity of battery materials to deter thermal fluctuations. Thermal fluctuations will directly affect performance, life, safety, and reliability of battery systems. Heat generation during battery charging and discharging can result in undesirable spatial and temporal temperature variations, especially in space battery systems where natural buoyancy-driven convective cooling is absent at the battery's surface. Thus, solid based polymer batteries operated in space are especially susceptible to thermal management problems (if special considerations are not made) because the electrolyte has a low thermal conductivity. Electro-chemical, structure mechanics, fluid flow and heat generation are highly coupled in polymer battery systems. Therefore, we have developed a numerical model to predict battery performance simultaneously accounting for the electrochemical and thermal processes. The present paper presents the effects of heat generation on the performance of solid polymer electrolyte in various levels of gravitational fields. It also compares the effectiveness of the cooling methods at the periphery surfaces of batteries when the electrolyte is made out of gel, solid, and liquid materials.

  4. A Lemon Cell Battery for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  5. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  6. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    NASA Astrophysics Data System (ADS)

    Crawford, Alasdair; Viswanathan, Vilayanur; Stephenson, David; Wang, Wei; Thomsen, Edwin; Reed, David; Li, Bin; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent

    2015-10-01

    The total energy storage system cost is determined by means of a robust performance-based cost model for multiple flow battery chemistries. Systems aspects such as shunt current losses, pumping losses and various flow patterns through electrodes are accounted for. The system cost minimizing objective function determines stack design by optimizing the state of charge operating range, along with current density and current-normalized flow. The model cost estimates are validated using 2-kW stack performance data for the same size electrodes and operating conditions. Using our validated tool, it has been demonstrated that an optimized all-vanadium system has an estimated system cost of < 350 kWh-1 for 4-h application. With an anticipated decrease in component costs facilitated by economies of scale from larger production volumes, coupled with performance improvements enabled by technology development, the system cost is expected to decrease to 160 kWh-1 for a 4-h application, and to 100 kWh-1 for a 10-h application. This tool has been shared with the redox flow battery community to enable cost estimation using their stack data and guide future direction.

  7. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  8. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.

    PubMed

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. PMID:25891480

  9. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2014-12-01

    Flow batteries show promise for very large-scale stationary energy storage such as needed for the grid and renewable energy implementation. In recent years, researchers and developers of redox flow batteries (RFBs) have found that electrode and flow field designs of PEM fuel cell (PEMFC) technology can increase the power density and consequently push down the cost of flow battery stacks. In this paper we present a macroscopic model of a typical PEMFC-like RFB electrode-flow field design. The model is a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer). The effects of the inlet volumetric flow rate, permeability of the porous layer, thickness of the porous layer and thickness of the flow channel on the flow penetration into the porous layer are investigated. The maximum current density corresponding to stoichiometry is estimated to be 377 mA cm-2 and 724 mA cm-2, which compares favorably with experiments of ∼400 mA cm-2 and ∼750 mA cm-2, for a single layer and three layers of the carbon fiber paper, respectively.

  10. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.

    PubMed

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l(-1) with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l(-1)) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l(-1)). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries. PMID:25565112

  11. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    NASA Astrophysics Data System (ADS)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  12. Bipolar rechargeable lithium battery for high power applications

    NASA Technical Reports Server (NTRS)

    Hossain, Sohrab; Kozlowski, G.; Goebel, F.

    1993-01-01

    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

  13. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    SciTech Connect

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid active materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.

  14. Competitive systems - Ambient temperature rechargeable batteries

    NASA Astrophysics Data System (ADS)

    dell, R. M.

    Recent in designs of aqueous electrolyte secondary batteries are presented. Operation principles, performance characteristics, and applications of various types of lead/acid batteries, alkaline electrolyte batteries, flow batteries, and battery/fuel cell hybrids (such as metal/air and hydrogen/metal oxide systems) are discussed. Consideration is given to the relative importance of such battery parameters as deep discharge capability, freedom from maintenance, shelf life, and cost, depending upon the specific application.

  15. Application potential of rechargeable lithium batteries

    SciTech Connect

    Hunger, H.F.; Bramhall, P.J.

    1983-10-01

    Rechargeable lithium cells with Cr /SUB 0.5/ V/sub 0/ /sub 5/S/sub 2/ and MoO/sub 3/ cathodes were investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). Current densities and capacities as a function of temperature, cathode utilization efficiencies versus cycle life, and shelf lives were determined. The state of charge could be related to open circuit voltages after partial discharge. The potential of the system for communication applications is discussed. Recent advances in rechargeable lithium batteries were mainly due to the discovery of stable, cyclic ether electrolyte solvents (1) and to the use of rechargeable cathode materials (2). The practical usefulness of rechargeable lithium cells with Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ and MoO/sub 3/ cathodes was investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was mainly 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). The two cathode materials were chosen because Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ resembles TiS/sub 2/ in capacity and cycling behavior and MoO/sub 3/ is a low cost cathode material of interest.

  16. Lithium batteries: Application of neutron radiography

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    Several kinds of primary and secondary commercial lithium batteries, such as CR1/3 · 1H (Fujitsu), CR1220 and BR435 (Panasonic), ML1220 (Sanyo Excel) were investigated using neutron radiography; the variation of the lithium distribution inside these batteries upon discharging (and charging) were clarified by analyzing their visualized images. It was demonstrated that neutron radiography is a potential and useful method, especially in evaluating the reversibility of rechargeable batteries, which have been used under different discharging/charging conditions.

  17. Flexible fiber batteries for applications in smart textiles

    NASA Astrophysics Data System (ADS)

    Qu, Hang; Semenikhin, Oleg; Skorobogatiy, Maksim

    2015-02-01

    In this paper, we demonstrate flexible fiber-based Al-NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ˜10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design.

  18. Anti-Idling Battery for Truck Applications

    SciTech Connect

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  19. Organic non-aqueous cation-based redox flow batteries

    DOEpatents

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  20. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage

    SciTech Connect

    Cho, KT; Ridgway, P; Weber, AZ; Haussener, S; Battaglia, V; Srinivasan, V

    2012-01-01

    The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.018211jes] All rights reserved.

  1. A miniature shock-activated thermal battery for munitions applications

    SciTech Connect

    Guidotti, R.A.; Kirby, D.L.; Reinhardt, F.W.

    1998-04-01

    The feasibility of a small, fast-rise thermal battery for non-spinning munitions applications was examined by studying the response of conventional thermal cells to impact (mechanical) energy to simulate a setback environment. This is an extension of earlier work that demonstrated that shock activation could be used to produce power from a conventional thermal-battery cell. The results of tests with both single and multiple cells are presented, along with data for a 5-cell miniature (5-mm diameter) thermal battery. The issues needing to be resolved before such a device can become a commercial reality are also discussed.

  2. Reserve lithium-thionyl chloride battery for missile applications

    NASA Astrophysics Data System (ADS)

    Planchat, J. P.; Descroix, J. P.; Sarre, G.

    A comparative performance study has been conducted for silver-zinc, thionyl chloride, and thermal batteries designed for such missile applications as ICBM guidance system power supplies. Attention is given to each of the three candidates' conformity to requirements concerning mechanical configuration, electrochemical design, electrolyte reservoir, external case, and gas generator. The silver-zinc and Li-SOCl2 candidates employ similar cell configurations and yield comparable performance. The thermal battery is found to be incapable of meeting battery case temperature-related requirements.

  3. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  4. Polymer nanocomposites for lithium battery applications

    DOEpatents

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  5. APPLICATIONS OF A NEUROBEHAVIORAL SCREENING BATTERY

    EPA Science Inventory

    With the growing awareness of the neurological effects of many environmental chemicals there is considerable emphasis being placed on the detection of neurotoxic potential at the screening, or first-tier, level of testing. e have developed a neurobehavioral screening battery cons...

  6. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    DOEpatents

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  7. Measurement of local current density of all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Yen; Leu, Chih-Hsing; Wu, Chun-Hsing; Chen, Yong-Song

    2014-12-01

    This article presents a preliminary study of the measurement of local current density in all-vanadium redox flow batteries. Two batteries are designed and manufactured in this study, and the experimental results are compared. In the first cell, the current collector is divided into 25 segments, and the flow field plate is not segmented, whereas in the other cell, the flow field plate is segmented. The effects of the electrolyte flow rate on the battery efficiencies and the local current density variation are investigated. The experimental results show that the current density near the outlet significantly decreases when the discharge capacity approaches zero. In addition, the battery has a larger discharge depth at a higher electrolyte flow rate.

  8. Bipolar Nickel-hydrogen Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Koehler, C. W.; Vanommering, G.; Puester, N. H.; Puglisi, V. J.

    1984-01-01

    A bipolar nickel-hydrogen battery which effectively addresses all key requirements for a spacecraft power system, including long-term reliability and low mass, is discussed. The design of this battery is discussed in the context of system requirements and nickel-hydrogen battery technology in general. To achieve the ultimate goal of an aerospace application of a bipolar Ni-H2 battery several objectives must be met in the design and development of the system. These objectives include: maximization of reliability and life; high specific energy and energy density; reasonable cost of manufacture, test, and integration; and ease in scaling for growth in power requirements. These basic objectives translate into a number of specific design requirements, which are discussed.

  9. A New Fe/V Redox Flow Battery Using Sulfuric/Chloric Mixed Acid Supporting Electrolyte

    SciTech Connect

    Wang, Wei; Nie, Zimin; Chen, Baowei; Chen, Feng; Luo, Qingtao; Wei, Xiaoliang; Xia, Guanguang; Skyllas-Kazacos, Maria; Li, Liyu; Yang, Zhenguo

    2012-04-01

    A redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling over 100 cycles with energy efficiency > 80% and no capacity fading at room temperature. A 25% improvement in the discharge energy density of the Fe/V cell was achieved compared with the previous reported Fe/V cell using pure chloride acid supporting electrolyte. Stable performance was also achieved in the temperature range between 0 C and 50 C as well as using microporous separator as the membrane. The improved electrochemical performance at room temperature makes the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electrical grid.

  10. Effect of flow field on the performance of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jayanti, S.

    2016-03-01

    A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.

  11. A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.

    2015-01-01

    This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.

  12. High-power lead-acid batteries for different applications

    NASA Astrophysics Data System (ADS)

    Wagner, Rainer

    High-power lead-acid batteries have been used for a rather long time in various applications, especially for uninterruptible power supplies (UPSs) and starting of automobiles. Future automotive service requires, in addition to cold-cranking performance, the combination of high-power capability, a very good charge-acceptance, and an excellent cycle-life. Such applications include stop-start, regenerative braking, and soft, mild and full hybrid vehicles. For UPS, there has been a clear tendency to shorter discharge times and higher discharge rates. During the past decades, the specific power of lead-acid batteries has been raised steadily and there is still, room for further improvement. This paper gives an overview of the progress made in the development of high-power lead-acid batteries and focuses on stationary and automotive applications.

  13. A high-energy-density redox flow battery based on zinc/polyhalide chemistry.

    PubMed

    Zhang, Liqun; Lai, Qinzhi; Zhang, Jianlu; Zhang, Huamin

    2012-05-01

    Zn and the Art of Battery Development: A zinc/polyhalide redox flow battery employs Br(-) /ClBr(2-) and Zn/Zn(2+) redox couples in its positive and negative half-cells, respectively. The performance of the battery is evaluated by charge-discharge cycling tests and reveals a high energy efficiency of 81%, based on a Coulombic efficiency of 96% and voltage efficiency of 84%. The new battery technology can provide high performance and energy density at an acceptable cost. PMID:22262638

  14. Development of ultra high power, valve-regulated lead-acid batteries for industrial applications

    NASA Astrophysics Data System (ADS)

    Soria, M. Luisa; Valenciano, Jesús; Ojeda, Araceli

    There is a recent market trend towards industrial battery powered products that demand occasionally very high discharge rates. This fact is today solved by oversizing the battery or by using more expensive high power nickel-cadmium batteries. Within an EC funded project, ultra high power lead-acid batteries for UPS applications are being developed. The batteries are characterised by a thin electrode design linked to the use of novel separator materials to increase the battery life under floating and deep cycling conditions. Battery performance under different working conditions is presented, in comparison to standard products, and the battery improvements and failure mechanisms are also discussed.

  15. Battery

    NASA Astrophysics Data System (ADS)

    1980-11-01

    Contents: Outlook for lead, zinc and cadmium in India; Future for lead production and recycling - a British view; AKERLOW lead recovery plant; Expanded lead battery grids; Resume of first solder seminar in India; Automatic paste soldering adds sparks to zinc-carbon batteries; 122-ton lead battery used for testing BEST facility; Press release on Pb 80; Research and development; Second International Symposium on Industrial and Oriented Basic Electrochemistry; Industry news; Book review and new publications; Battery abstracts.

  16. Comparative life cycle assessment of battery storage systems for stationary applications.

    PubMed

    Hiremath, Mitavachan; Derendorf, Karen; Vogt, Thomas

    2015-04-21

    This paper presents a comparative life cycle assessment of cumulative energy demand (CED) and global warming potential (GWP) of four stationary battery technologies: lithium-ion, lead-acid, sodium-sulfur, and vanadium-redox-flow. The analyses were carried out for a complete utilization of their cycle life and for six different stationary applications. Due to its lower CED and GWP impacts, a qualitative analysis of lithium-ion was carried out to assess the impacts of its process chains on 17 midpoint impact categories using ReCiPe-2008 methodology. It was found that in general the use stage of batteries dominates their life cycle impacts significantly. It is therefore misleading to compare the environmental performance of batteries only on a mass or capacity basis at the manufacturing outlet ("cradle-to-gate analyses") while neglecting their use stage impacts, especially when they have different characteristic parameters. Furthermore, the relative ranking of batteries does not show a significant dependency on the investigated stationary application scenarios in most cases. Based on the results obtained, the authors go on to recommend the deployment of batteries with higher round-trip efficiency, such as lithium-ion, for stationary grid operation in the first instance. PMID:25798660

  17. Component-cost and performance based comparison of flow and static batteries

    NASA Astrophysics Data System (ADS)

    Hopkins, Brandon J.; Smith, Kyle C.; Slocum, Alexander H.; Chiang, Yet-Ming

    2015-10-01

    Flow batteries are a promising grid-storage technology that is scalable, inherently flexible in power/energy ratio, and potentially low cost in comparison to conventional or "static" battery architectures. Recent advances in flow chemistries are enabling significantly higher energy density flow electrodes. When the same battery chemistry can arguably be used in either a flow or static electrode design, the relative merits of either design choice become of interest. Here, we analyze the costs of the electrochemically active stack for both architectures under the constraint of constant energy efficiency and charge and discharge rates, using as case studies the aqueous vanadium-redox chemistry, widely used in conventional flow batteries, and aqueous lithium-iron-phosphate (LFP)/lithium-titanium-phosphate (LTP) suspensions, an example of a higher energy density suspension-based electrode. It is found that although flow batteries always have a cost advantage (kWh-1) at the stack level modeled, the advantage is a strong function of flow electrode energy density. For the LFP/LTP case, the cost advantages decreases from ∼50% to ∼10% over experimentally reasonable ranges of suspension loading. Such results are important input for design choices when both battery architectures are viable options.

  18. Dithiophenedione-containing polymers for battery application.

    PubMed

    Häupler, Bernhard; Hagemann, Tino; Friebe, Christian; Wild, Andreas; Schubert, Ulrich S

    2015-02-18

    Redox-active polymers have received recently significant interest as active materials in secondary organic batteries. We designed a redox-active monomer, namely 2-vinyl-4,8-dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-dione that exhibits two one-electron redox reactions and has a low molar mass, resulting in a high theoretical capacity of 217 mAh/g. The free radical polymerization of the monomer was optimized by variation of solvent and initiator. The electrochemical behavior of the obtained polymer was investigated using cyclic voltammetry. The utilization of lithium salts in the supporting electrolyte leads to a merging of the redox waves accompanied by a shift to higher redox potentials. Prototype batteries manufactured with 10 wt % polymer as active material exhibit full material activity at the first charge/discharge cycle. During the first 100 cycles, the capacity drops to 50%. Higher contents of polymer (up to 40 wt %) leads to a lower material activity. Furthermore, the battery system reveals a fast charge/discharge ability, allowing a maximum speed up to 10C (6 min) with only a negligible loss of capacity. PMID:25611256

  19. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Zhao, Jiyun; Skyllas-Kazacos, Maria; Xiong, Binyu

    2014-08-01

    The present study focuses on dynamic thermal-hydraulic modeling for the all-vanadium flow battery and investigations on the impact of stack flow patterns on battery performance. The inhomogeneity of flow rate distribution and reversible entropic heat are included in the thermal-hydraulic model. The electrolyte temperature in tanks is modeled with the finite element modeling (FEM) technique considering the possible non-uniform distribution of electrolyte temperature. Results show that the established model predicts electrolyte temperature accurately under various ambient temperatures and current densities. Significant temperature gradients exist in the battery system at extremely low flow rates, while the electrolyte temperature tends to be the same in different components under relatively high flow rates. Three stack flow patterns including flow without distribution channels and two cases of flow with distribution channels are compared to investigate their effects on battery performance. It is found that the flow rates are not uniformly distributed in cells especially when the stack is not well designed, while adding distribution channels alleviates the inhomogeneous phenomenon. By comparing the three flow patterns, it is found that the serpentine-parallel pattern is preferable and effectively controls the uniformity of flow rates, pressure drop and electrolyte temperature all at expected levels.

  20. Status of Li-polymer batteries for vehicle applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Venkat

    Polymer-based batteries have the potential to revolutionize energy storage because of their ability to allow lithium metal anodes to be used, thereby promising higher energy densities. In addition, there have been vast strides in tuning polymers specific to battery applications, including the use of mixed conductors that provide both electronic and ionic conduction, and multifunctional polymers that serve as, for example, conductors and binders. There has been renewed interest in this topic recently, in the context of solid-state batteries. However, it is still not clear if the properties of presently available solid electrolytes are sufficient to meet the targets for electric vehicle applications. In this talk, we will present a material-to-cell level analysis of solid electrolytes to access the status of presently available materials. Continuum scale models will be used with experiments to understand the underlying processes in the battery and to project energy and power capabilities of solid-state cells based on their material properties. The models use appropriate material properties, where available, and are compared to experimental data to ensure validity. The validated model is then used to estimate the cell-level energy and power capability following the testing protocols specific to electric vehicle application. This analysis helps to identify existing challenges and provides guidelines for research at both material and cell levels for this promising class of next-generation batteries.

  1. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  2. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  3. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries

    NASA Astrophysics Data System (ADS)

    Shinkle, Aaron A.; Pomaville, Timothy J.; Sleightholme, Alice E. S.; Thompson, Levi T.; Monroe, Charles W.

    2014-02-01

    Properties of supporting electrolytes and solvents were examined for use with vanadium acetylacetonate - a member of the class of metal(β-diketonate) active species - in non-aqueous redox flow batteries. Twenty supporting-electrolyte/solvent combinations were screened for ionic conductivity and supporting-electrolyte solubility. Hexane, tetrahydrofuran, and dimethylcarbonate solvents did not meet minimal conductivity and solubility criteria for any of the electrolytes used, which included tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and (1-butyl, 3-methyl)imidazolium bis(trifluoromethanesulfonyl)imide. Ionic conductivities and solubilities for solutions of these electrolytes passed screening criteria in acetonitrile and dimethylformamide solvents, in which maximum supporting-electrolyte and active-species solubilities were determined. Active-species electrochemistry was found to be reversible in several solvent/support systems; for some systems the voltammetric signatures of unwanted side reactions were suppressed. Correlations between supporting-solution properties and performance metrics suggest that an optimal solvent for a vanadium acetylacetonate RFB should have a low solvent molar volume for active-species solubility, and a high Hansen polarity for conductivity.

  4. Impact on global metal flows arising from the use of portable rechargeable batteries.

    PubMed

    Rydh, Carl Johan; Svärd, Bo

    2003-01-20

    The use of portable rechargeable battery cells and their effects on global metal flows were assessed or the following three cases: (1) the base case, which reflects the situation in 1999 of the global production of batteries; (2) the global production of portable nickel-cadmium batteries in 1999, assumed to be replaced by other battery types; and (3) assessment of the projected battery market in 2009. The study included the following battery technologies: nickel-cadmium (NiCd); nickel-metal hydride (NiMH) (AB(5), AB(2)); and lithium-based batteries (Li-ion: Co, Ni, Mn; Li-polymer: V). Based on the lithospheric extraction indicator (LEI), which is the ratio of anthropogenic to natural metal flows, and the significance of battery production related to global metal mining, the potential environmental impact of metals used in different battery types was evaluated. The LEIs and average metal demand for the battery market in 1999, expressed as a percentage of global mining output in 1999, were estimated to be as follows: Ni 5.6 (2.0%); Cd 4.4 (37%); Li 0.65 (3.8%); V 0.33 (6.5%); Co 0.18 (15%); Nd 0.18 (8.4%); La 0.10 (9.5%); Ce 0.083 (4.4%); and Pr 0.073 (9.4%). The use of Ni and Cd is of the greatest environmental interest, due to their high LEIs. In the case of complete replacement of portable NiCd batteries by NiMH or Li-based batteries, the LEI for Ni (5.6) would change by -0.1-0.5% and the LEI for Cd would decrease from 4.4 to 3.0 (-31%). Meanwhile, the mobilization of metals considered less hazardous than Cd (LEI 0 < 5) would increase less than 7%. Based on this assessment, the replacement of NiCd batteries would result in decreased environmental impact. To decrease the impact on global metal flows arising from the use of portable batteries the following points should be considered: (1) development of battery technologies should aim at high energy density and long service life; (2) metals with high natural occurrence should be used; and (3) metals from disused

  5. Guidelines on Lithium-ion Battery Use in Space Applications

    NASA Technical Reports Server (NTRS)

    Mckissock, Barbara; Loyselle, Patricia; Vogel, Elisa

    2009-01-01

    This guideline discusses a standard approach for defining, determining, and addressing safety, handling, and qualification standards for lithium-ion (Li-Ion) batteries to help the implementation of the technology in aerospace applications. Information from a variety of other sources relating to Li-ion batteries and their aerospace uses has been collected and included in this document. The sources used are listed in the reference section at the end of this document. The Li-Ion chemistry is highly energetic due to its inherent high specific energy and its flammable electrolyte. Due to the extreme importance of appropriate design, test, and hazard control of Li-ion batteries, it is recommended that all Government and industry users and vendors of this technology for space applications, especially involving humans, use this document for appropriate guidance prior to implementing the technology.

  6. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    PubMed Central

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R.

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  7. Solid-state graft copolymer electrolytes for lithium battery applications.

    PubMed

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-01-01

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (< 80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed. PMID:23963203

  8. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    PubMed

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-01

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications. PMID:24279888

  9. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  10. Optimizing small wind turbine performance in battery charging applications

    NASA Astrophysics Data System (ADS)

    Drouilhet, Stephen; Muljadi, Eduard; Holz, Richard; Gevorgian, Vahan

    1995-05-01

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  11. Evaluation of nickel-hydrogen battery for space application

    NASA Technical Reports Server (NTRS)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  12. Assessment of battery technologies for EV (Electric Vehicle) applications

    NASA Astrophysics Data System (ADS)

    Ratner, Elliot Z.; Henriksen, Gary L.; Warde, Charles J.

    To guide future R and D program planning, the U.S. Department of Energy (DOE) commissioned an assessment of all viable battery techniques for EV applications. Sixty-seven technology developers in the United States, Canada, Europe, Asia, and Africa were solicited to design a power pack for an Improved Dual-Shaft Electric Propulsions (IDSEP) van. A team of 10 consultants and 8 representatives from DOE's National Laboratories evaluated 43 developer responses and consultant-prepared conceptual designs. Using six criteria---five technical/economic criteria and a maturity/technical barriers criterion---the assessment identified 12 most promising battery technologies.

  13. Primary lithium battery technology and its application to NASA missions

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1979-01-01

    A description is given of the components, overall cell reactions, and performance characteristics of promising new ambient temperature lithium primary systems based on the Li-V205, Li-SO2, and Li-SOC12 couples. Development status of these systems is described in regard to availability and uncertainties in the areas of safety and selected performance characteristics. Studies show that use of lithium batteries would enhance a variety of missions and applications by decreasing power sytems weight and thereby increasing payload weight. In addition, the lithium batteries could enhance cost effectiveness of the missions.

  14. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Kulaga, J.E.; Hogrefe, R.L.; Tummilo, A.F.; Webster, C.E.

    1989-01-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery RandD programs, a comparison of battery technologies, and a source of basic data for modeling and continuing RandD. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air). 4 figs., 1 tab.

  15. Laboratory evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Kulaga, J.E.; Hogrefe, R.L.; Tummillo, A.F.; Webster, C.E.

    1989-01-01

    During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. the results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).

  16. Toroidal cell and battery. [Patent application

    SciTech Connect

    Nagle, W.J.

    1981-04-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell. Official Gazette of the U.S. Patent and Trademark Office

  17. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xiong, Binyu; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria; Lim, Tuti Mariana; Zhang, Yu

    2013-11-01

    Vanadium redox flow batteries (VRBs) are very competitive for large-capacity energy storage in power grids and in smart buildings due to low maintenance costs, high design flexibility, and long cycle life. Thermal hydraulic modeling of VRB energy storage systems is an important issue and temperature has remarkable impacts on the battery efficiency, the lifetime of material and the stability of the electrolytes. In this paper, a lumped model including auxiliary pump effect is developed to investigate the VRB temperature responses under different operating and surrounding environmental conditions. The impact of electrolyte flow rate and temperature on the battery electrical characteristics and efficiencies are also investigated. A one kilowatt VRB system is selected to conduct numerical simulations. The thermal hydraulic model is benchmarked with experimental data and good agreement is found. Simulation results show that pump power is sensitive to hydraulic design and flow rates. The temperature in the stack and tanks rises up about 10 °C under normal operating conditions for the stack design and electrolyte volume selected. An optimal flow rate of around 90 cm3 s-1 is obtained for the proposed battery configuration to maximize battery efficiency. The models developed in this paper can also be used for the development of a battery control strategy to achieve satisfactory thermal hydraulic performance and maximize energy efficiency.

  18. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    SciTech Connect

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

  19. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    NASA Astrophysics Data System (ADS)

    Hudak, Nicholas S.

    2014-12-01

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron-vanadium, and iron-chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. Proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

  20. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    DOE PAGESBeta

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantitiesmore » measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.« less

  1. Integral Battery Power Limiting Circuit for Intrinsically Safe Applications

    NASA Technical Reports Server (NTRS)

    Burns, Bradley M.; Blalock, Norman N.

    2010-01-01

    A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the

  2. Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Pavelka, Michal; Wandschneider, Frank; Mazur, Petr

    2015-10-01

    Open circuit voltage of vanadium redox flow batteries is carefully calculated using equilibrium thermodynamics. This analysis reveals some terms in the Nernst relation which are usually omitted in literature. Due to the careful thermodynamic treatment, all uncertainties about the form of Nernst relation are removed except for uncertainties in activity coefficients of particular species. Moreover, it is shown (based again on equilibrium thermodynamics) that batteries with anion-exchange membranes follow different Nernst relation than batteries with cation-exchange membranes. The difference is calculated, and it is verified experimentally that the formula for anion-exchange membranes describes experiments with anion-exchange membranes better than the corresponding formula for cation-exchange membranes. In summary, careful thermodynamic calculation of open circuit voltage of vanadium redox flow batteries is presented, and the difference between voltage for anion-exchange and cation-exchange membranes is revealed.

  3. Reserve lithium batteries for missiles and other high rate applications

    NASA Astrophysics Data System (ADS)

    Giattino, L. R.; Irwin, L. J.

    The development, characteristics, and performance of lithium thionyl chloride batteries for applications as reserve cells for military missile applications are described. The batteries were constructed of various cell elements and electrolytes, tested under no load, varying loads, and different temperatures, and it was found that lower drain rates and higher temperatures provide better voltage regulation and higher voltage levels. Cell rise time was less than 1 sec, and could be reduced by changing temperatures from 70 to 110 C; operation at -40 C was successful at 10 mA/cm sq drain rate and 2.86 V. The cells are also able to operate on load for powering equipment with well regulated voltage rather than for short time period weapons applications, such as missile launching.

  4. The sealed lead-acid battery: performance and present aircraft applications

    NASA Astrophysics Data System (ADS)

    Timmons, John; Kurian, Raju; Goodman, Alan; Johnson, William R.

    The United States Navy has flown valve-regulated lead-acid batteries (VRLA) for approximately 22 years. The first VRLA aircraft batteries were of a cylindrical cell design and these evolved to a prismatic design to save weight, volume, and to increase rate capability. This paper discusses the evolution of the VRLA aircraft battery designs, present VRLA battery performance, and battery size availability along with their aircraft applications (both military and commercial). The paper provides some of the reliability data from present applications. Finally, the paper discusses what future evolution of the VRLA technology is required to improve performance and to remain the technology of choice over other sealed aircraft battery designs.

  5. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery

    SciTech Connect

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric D.; Lawrence, Chad W.; Vijayakumar, M.; Henderson, Wesley A.; Liu, Tianbiao L.; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimization sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.

  6. A cerium-lead redox flow battery system employing supporting electrolyte of methanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Na, Zhaolin; Xu, Shengnan; Yin, Dongming; Wang, Limin

    2015-11-01

    A novel cerium-lead redox flow battery (RFB) employing Ce(IV)/Ce(III) and Pb(II)/Pb redox couples in the supporting electrolyte of methanesulfonic acid (MSA) is developed and preliminarily investigated. The RFB requires no additional catalyst and uses kinetically favorable reactions between low-cost reactants, and provides a desirable discharge voltage of approximately 1.7 V, with high average coulombic efficiency (CE) of 92% and energy efficiency (EE) of 86% over 800 cycles at 298 K. Stable cycling with an acceptable performance is achieved for a board operating temperature range of 253 K-313 K. The excellent performance obtained from the preliminary study suggests that the cerium-lead RFB promises to be applicable to large-scale energy storage for electricity grids.

  7. Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance.

    PubMed

    Jiang, Bo; Yu, Lihong; Wu, Lantao; Mu, Di; Liu, Le; Xi, Jingyu; Qiu, Xinping

    2016-05-18

    Nafion membranes are now the most widely used membranes for long-life vanadium flow batteries (VFBs) because of their extremely high chemical stability. Today, the type of Nafion membrane that should be selected and how to pretreat these Nafion membranes have become critical issues, which directly affects the performance and cost of VFBs. In this work, we chose the Nafion 115 membrane to investigate the effect of the pretreatment process (as received, wet, boiled, and boiled and dried) on the performance of VFBs. The relationship between the nanostructure and transport properties of Nafion 115 membranes is elucidated by wide-angle X-ray diffraction and small-angle X-ray scattering techniques. The self-discharge process, battery efficiencies, electrolyte utilization, and long-term cycling stability of VFBs with differently pretreated Nafion membranes are presented comprehensively. An online monitoring system is used to monitor the electrolyte volume that varies during the long-term charge-discharge test of VFBs. The capacity fading mechanism and electrolyte imbalance of VFBs with these Nafion 115 membranes are also discussed in detail. The optimal pretreatment processes for the benchmark membrane and practical application are synthetically selected. PMID:27123693

  8. Recycling application of Li-MnO₂ batteries as rechargeable lithium-air batteries.

    PubMed

    Hu, Yuxiang; Zhang, Tianran; Cheng, Fangyi; Zhao, Qing; Han, Xiaopeng; Chen, Jun

    2015-03-27

    The ever-increasing consumption of a huge quantity of lithium batteries, for example, Li-MnO2 cells, raises critical concern about their recycling. We demonstrate herein that decayed Li-MnO2 cells can be further utilized as rechargeable lithium-air cells with admitted oxygen. We further investigated the effects of lithiated manganese dioxide on the electrocatalytic properties of oxygen-reduction and oxygen-evolution reactions (ORR/OER). The catalytic activity was found to be correlated with the composition of Li(x)MnO2 electrodes (0batteries can be prolonged by their application as rechargeable lithium-air batteries. PMID:25678148

  9. Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Tang, Ao; McCann, John; Bao, Jie; Skyllas-Kazacos, Maria

    2013-11-01

    In vanadium redox flow batteries (VFB), the power of the battery is determined by the number of cells in the stack. Serial and parallel layouts are commonly adopted interactively to suit the designed power demand. The bipolar stack design inevitably introduces shunt currents bypassing into the common manifolds in the stack and thereby resulting in a parasitic loss of power and energy. During standby, shunt current and its associated internal discharge reactions can generate heat and increase stack temperature, potentially leading to thermal precipitation in the positive half-cell. This study aims to investigate the effect of shunt current on stack efficiency and temperature variation during standby periods for a 40-cell stack. Dynamic models based on mass balance, energy balance and electrical circuit are developed for simulations and the results provide an insight into stack performance that will aid in optimising stack design and suitable cooling strategies for the VFB.

  10. Investigations on the self-discharge process in vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Shi, Dingqin; Zhong, Hexiang; Li, Xianfeng; Zhang, Huamin

    2015-10-01

    The self-discharge process of vanadium flow battery (VFB) assembled with Nafion 115 is investigated in very detail for the first time. The self-discharge phenomenon of VFB is closely related to the diffusion coefficients of the vanadium ions, which are found to be in the order of V2+ > VO2+ > VO2+ > V3+. Five regions on the change of open circuit voltage (OCV) are clearly found during the self-discharge process. The regions include three platforms and two obvious decreasing regions. VO2+ disappears in the second region, while the V2+ disappears in the fourth one. In the first three regions, the self-discharge reactions at the positive and negative side are different, owing to the crossover of vanadium ions. In the last two regions, the changes of vanadium ions are derived from the diffusion of V3+ and VO2+ at positive and negative electrolyte. The self-discharge process at different flow rates or different state of charge (SOC) is also investigated, indicating that the self-discharge time shortens with increasing of flow rate between 40 and 80 mL/min or decreasing of the initial SOC. This paper will provide very valuable information for the relaxation or elimination of self-discharge phenomenon of VFB, which is one of the most troublesome issues in VFB application.

  11. Gelled-electrolyte lead/acid batteries for stationary and traction applications

    NASA Astrophysics Data System (ADS)

    May, G. J.; Lenain, P.

    The development of new ranges of valve-regulated lead/acid (VRLA) batteries for stationary and traction applications is described. These batteries are gas recombining and use gelled electrolyte, tubular positive plates cast in lead-calcium-tin alloys and a specially-designed pressure relief valve. For stationary service, comparisons are made with VRLA batteries using absorptive glass mat separators. For traction applications, the relative merits of gel technology against alternative approaches to the achievement of lower maintenance for traction batteries are discussed. Operational experience with these batteries is outlined and guidelines indicated for correct application.

  12. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxiang; Koenig, Gary M.

    2016-08-01

    A new type of non-aqueous redox couple without carbon additives for flow batteries is proposed and the target anolyte chemistry is demonstrated. The so-called "Solid Dispersion Redox Couple" incorporates solid electroactive materials dispersed in organic lithium-ion battery electrolyte as its flowing suspension. In this work, a unique and systematic characterization approach has been used to study the flow battery redox couple in half cell demonstrations relative to a lithium electrode. An electrolyte laden with Li4Ti5O12 (LTO) has been characterized in multiple specially designed lithium half cell configurations. The flow battery redox couple described in this report has relatively low viscosity, especially in comparison to other flow batteries with solid active materials. The lack of carbon additive allows characterization of the electrochemical properties of the electroactive material in flow without the complication of conductive additives and unambiguous observation of the electrorheological coupling in these dispersed particle systems.

  13. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples

    SciTech Connect

    Yang, B; Hoober-Burkhardt, L; Wang, F; Prakash, GKS; Narayanan, SR

    2014-05-21

    We introduce a novel Organic Redox Flow Battery (ORBAT), for Meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonic acid on the negative side, and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

  14. Verified reduction of dimensionality for an all-vanadium redox flow battery model

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Ling, C. Y.; Birgersson, E.; Vynnycky, M.; Han, M.

    2015-04-01

    The computational cost for all-vanadium redox flow batteries (VRFB) models that seek to capture the transport phenomena usually increases with the number of spatial dimensions considered. In this context, we carry out scale analysis to derive a reduced zero-dimensional model. Two nondimensional numbers and their limits to support the model reduction are identified. We verify the reduced model by comparing its charge-discharge curve predictions with that of a full two-dimensional model. The proposed analysis leading to reduction in dimensionality is generic and can be employed for other types of redox flow batteries.

  15. Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

    SciTech Connect

    2010-09-01

    BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

  16. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  17. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  18. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  19. New generation MOSFET design for battery powered portable applications

    NASA Astrophysics Data System (ADS)

    Deb Roy, Sukhendu; Sodhi, Ritu; Sapp, Steven

    2012-10-01

    This article reviews some of challenges that the Power MOSFET designers need to address to meet the ever growing market demand for reducing power consumption in battery-powered portable applications. The critical power MOSFET design parameters such as threshold voltage (Vth), drain-source breakdown voltage (BVdss), on-resistance (Rdson), package footprint, gate-drive voltage, and Figure of Merit (FOM) have been discussed. It has been highlighted that the scaling features and ultra-low on-resistance of the Trench Power MOSFETs can be advantageously utilized for powerloss management. The MOSFET design requirements in battery protection circuits and load switches have been presented. It has been emphasized that the Power MOSFET designers need to trade-off between on-resistance and maximum current capability in smaller footprint packages. The merits of Wafer Level Chip Scale Package (WLCSP) in achieving minimum foot print, ultra-low on-resistance, and improved thermal characteristics have been discussed.

  20. Application features and considerations in advanced lead-acid and nickel/iron EV batteries

    SciTech Connect

    Miller, J.F.; Rajan, J.B.; Lee, T.S.; Christianson, C.C.; Hornstra, F.; Yao, N.P.

    1983-01-01

    In the development of advanced lead-acid and nickel/iron EV batteries, major efforts have focussed on improving specific energy, specific power, cycle life, and cost. Nonetheless, other battery characteristics related to application needs are also important features which must be considered during the battery development process. This paper describes various application features and improvements incorporated in these advanced lead-acid and nickel/iron EV batteries. Their volumetric energy density and packaging flexibility are presented: their charged-stand capabilities and energy efficiencies are reported; and development work on the safe control of battery off-gases and the implementation of single-point watering systems is discussed.

  1. Outlook for new energies. Secondary batteries

    NASA Astrophysics Data System (ADS)

    1989-03-01

    New energies are defined as all kinds of energies which can be expected to be put to practical use as the result of future technological development. Among new energies, secondary batteries are very much desired to be developed for use with electric vehicles, electric load leveling, output stabilization of solar power and wind power generation, etc. Secondary batteries are outlined, and the development situation and problems of various new batteries expected to be used in the field of energy are introduced. Standard specifications, performance, and applications of secondary batteries are briefly introduced. The research and development activities in Japan, U.S.A. and Europe are reported. Descriptions are made on the redox flow battery, nickel-iron battery, zinc-bromine battery, zinc-chrome battery, metal-air battery, and other new type batteries. Lastly, the future outlook in the field of secondary batteries is reported.

  2. High Temperature Battery for Drilling Applications

    SciTech Connect

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  3. Limiting the public cost of stationary battery deployment by combining applications

    NASA Astrophysics Data System (ADS)

    Stephan, A.; Battke, B.; Beuse, M. D.; Clausdeinken, J. H.; Schmidt, T. S.

    2016-07-01

    Batteries could be central to low-carbon energy systems with high shares of intermittent renewable energy sources. However, the investment attractiveness of batteries is still perceived as low, eliciting calls for policy to support deployment. Here we show how the cost of battery deployment can potentially be minimized by introducing an aspect that has been largely overlooked in policy debates and underlying analyses: the fact that a single battery can serve multiple applications. Batteries thereby can not only tap into different value streams, but also combine different risk exposures. To address this gap, we develop a techno-economic model and apply it to the case of lithium-ion batteries serving multiple stationary applications in Germany. Our results show that batteries could be attractive for investors even now if non-market barriers impeding the combination of applications were removed. The current policy debate should therefore be refocused so as to encompass the removal of such barriers.

  4. Application of the GSFUDS to advanced batteries and vehicles

    SciTech Connect

    Burke, A.F.; Cole, G.H.

    1990-01-01

    The GSFUDS approach to determining appropriate battery test power profiles is applied to various combinations of advanced batteries and electric vehicles. Computer simulations are used to show that the SFUDS velocity driving profile developed for the IDSEP electric vehicle also yielded energy consumption (Wh/km) and peak power values for other vehicles of greatly different characteristics that are in good agreement with the corresponding values for the same vehicles on the FUDS driving cycle. The computer results also showed that the GSFUDS power steps expressed as multiples of the average power, Pav are applicable to electric vehicles in general for the SFUDS driving profile if the peak power step is altered to reflect the changes in the vehicle design. A general procedure is given for presenting battery test data in terms of the constant power and GSFUDS Ragone curves from which the vehicle range can be determined for the FUDS and other driving cycles for different vehicle designs. 5 refs., 6 figs., 6 tabs.

  5. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  6. A Step-by-Step Design Methodology for a Base Case Vanadium Redox-Flow Battery

    ERIC Educational Resources Information Center

    Moore, Mark; Counce, Robert M.; Watson, Jack S.; Zawodzinski, Thomas A.; Kamath, Haresh

    2012-01-01

    The purpose of this work is to develop an evolutionary procedure to be used by Chemical Engineering students for the base-case design of a Vanadium Redox-Flow Battery. The design methodology is based on the work of Douglas (1985) and provides a profitability analysis at each decision level so that more profitable alternatives and directions can be…

  7. In situ potential distribution measurement in an all-vanadium flow battery.

    PubMed

    Liu, Qinghua; Turhan, Ahmet; Zawodzinski, Thomas A; Mench, Matthew M

    2013-07-18

    An experimental method for measurement of local redox potential within multilayer electrodes was developed and applied to all-vanadium redox flow batteries (VRFBs). Through-plane measurement at the positive side reveals several important phenomena including potential distribution, concentration distribution of active species and the predominant reaction location within the porous carbon electrodes. PMID:23736771

  8. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries.

    PubMed

    Kim, Ki Jae; Park, Min-Sik; Kim, Jae-Hun; Hwang, Uk; Lee, Nam Jin; Jeong, Goojin; Kim, Young-Jun

    2012-06-01

    A new approach for enhancing the electrochemical performance of carbon felt electrodes by employing non-precious metal oxides is designed. The outstanding electro-catalytic activity and mechanical stability of Mn(3)O(4) are advantageous in facilitating the redox reaction of vanadium ions, leading to efficient operation of a vanadium redox flow battery. PMID:22540132

  9. Applications of porous electrodes to metal-ion removal and the design of battery systems

    SciTech Connect

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  10. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...) Batteries not covered under 40 CFR part 273. The requirements of this part do not apply to persons managing the following batteries: (1) Spent lead-acid batteries that are managed under 40 CFR part 266,...

  11. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...) Batteries not covered under 40 CFR part 273. The requirements of this part do not apply to persons managing the following batteries: (1) Spent lead-acid batteries that are managed under 40 CFR part 266,...

  12. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...) Batteries not covered under 40 CFR part 273. The requirements of this part do not apply to persons managing the following batteries: (1) Spent lead-acid batteries that are managed under 40 CFR part 266,...

  13. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...) Batteries not covered under 40 CFR part 273. The requirements of this part do not apply to persons managing the following batteries: (1) Spent lead-acid batteries that are managed under 40 CFR part 266,...

  14. 40 CFR 273.2 - Applicability-batteries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...) Batteries not covered under 40 CFR part 273. The requirements of this part do not apply to persons managing the following batteries: (1) Spent lead-acid batteries that are managed under 40 CFR part 266,...

  15. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions

    NASA Astrophysics Data System (ADS)

    Ulaganathan, Mani; Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Ling, Wong Chui; Lim, Tuti Mariana; Srinivasan, Madapusi P.; Yan, Qingyu; Madhavi, Srinivasan

    2015-01-01

    We first report the multi-couple reaction in all vanadium redox flow batteries (VRFB) while using bio-mass (coconut shell) derived mesoporous carbon as electrode. The presence of V3+/V4+ redox couple certainly supplies the additional electrons for the electrochemical reaction and subsequently provides improved electrochemical performance of VRFB system. The efficient electro-catalytic activity of such coconut shell derived high surface area mesoporous carbon is believed for the improved cell performance. Extensive power and electrochemical studies are performed for VRFB application point of view and described in detail.

  16. The Influence of Electrode and Channel Configurations on Flow Battery Performance

    SciTech Connect

    Darling, RM; Perry, ML

    2014-05-21

    Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society. All rights reserved.

  17. DNA based electrolyte/separator for lithium battery application

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Ouchen, Fahima; Smarra, Devin A.; Subramanyam, Guru; Grote, James G.

    2015-09-01

    In this study, we demonstrated the use of DNA-CTMA (DC) in combination with PolyVinylidene Fluoride (PVDF) as a host matrix or separator for Lithium based electrolyte to form solid polymer/gel like electrolyte for potential application in Li-ion batteries. The addition of DC provided a better thermal stability of the composite electrolyte as shown by the thermos-gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel electrolyte had no effect on the overall ionic conductivity of the composite. The obtained films are flexible with high mechanical stretch-ability as compared to the gel type electrolytes only.

  18. The development of advanced lead-acid batteries for utility applications

    SciTech Connect

    Szymborski, J.; Jungst, R.G.

    1993-10-01

    Technical advances in lead-acid battery design have created new opportunities for battery systems in telecommunications, computer backup power and vehicle propulsion power. Now the lead-acid battery has the opportunity to become a major element in the mix of technologies used by electric utilities for several power quality and energy and resource management functions within the network. Since their introduction into industrial applications, Valve Regulated Lead-Acid (VRLA) batteries have received widespread acceptance and use in critical telecommunications and computer installations, and have developed over 10 years of reliable operational history. As further enhancements in performance, reliability and manufacturing processes are made, these VRLA batteries are expanding the role of battery-based energy storage systems within utility companies portfolios. This paper discusses the rationale and process of designing, optimizing and testing VRLA batteries for specific utility application requirements.

  19. Limiting factors to advancing thermal-battery technology for naval applications

    SciTech Connect

    Davis, P.B.; Winchester, C.S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and Power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  20. Safety Evaluation of Two Commercial Lithium-ion Batteries for Space Applications

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Collins, Jacob; Cook, Joseph S.

    2004-01-01

    Lithium-ion batteries have been used for applications on the Shuttle and Station for the past six years. A majority of the li-ion batteries flown are Commercial-off-the-shelf (COTS) varieties. The COTS batteries and cells were tested under nominal and abusive conditions for performance and safety characterization. Within the past six months two batteries have been certified for flight and use on the Space Station. The first one is a Hand Spring PDA battery that had a single prismatic li-ion cell and the second is an Iridium satellite phone that had a two-cell pack with prismatic li-ion cells.

  1. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    PubMed

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-01

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems. PMID:26102317

  2. Proceedings of the tenth annual battery conference on applications and advances

    SciTech Connect

    1995-07-01

    This is a collection of papers presented at the 1995 Annual Battery Conference on Application and Advances. The goal of the conference is to fill the need for improved communication between the developers and users of battery systems and the designers of interfacing electronic power conversion and control components and systems. The Conference attempts to attain that goal through deliberations on issues involving the interactions between those battery and electronic systems in commercial, industrial, space and military applications.

  3. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    SciTech Connect

    Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.; Wang, Wei; Thomsen, Edwin C.; Reed, David M.; Li, Bin; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2015-10-20

    A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been shared with the redox flow battery community to both validate their stack data and guide future direction.

  4. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  5. Influence of architecture and material properties on vanadium redox flow battery performance

    NASA Astrophysics Data System (ADS)

    Houser, Jacob; Clement, Jason; Pezeshki, Alan; Mench, Matthew M.

    2016-01-01

    This publication reports a design optimization study of all-vanadium redox flow batteries (VRBs), including performance testing, distributed current measurements, and flow visualization. Additionally, a computational flow simulation is used to support the conclusions made from the experimental results. This study demonstrates that optimal flow field design is not simply related to the best architecture, but is instead a more complex interplay between architecture, electrode properties, electrolyte properties, and operating conditions which combine to affect electrode convective transport. For example, an interdigitated design outperforms a serpentine design at low flow rates and with a thin electrode, accessing up to an additional 30% of discharge capacity; but a serpentine design can match the available discharge capacity of the interdigitated design by increasing the flow rate or the electrode thickness due to differing responses between the two flow fields. The results of this study should be useful to design engineers seeking to optimize VRB systems through enhanced performance and reduced pressure drop.

  6. Electromechanical battery design suitable for back-up power applications

    DOEpatents

    Post, Richard F.

    2002-01-01

    The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

  7. "Unexpected" behaviour of the internal resistance of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Rudolph, S.; Schröder, U.; Bayanov, I. M.; Hage-Packhäuser, S.

    2016-02-01

    This article presents the results of experimental and theoretical studies of energy losses owing to the internal resistance of vanadium redox flow batteries (VRFBs). A dependence of the internal cell resistance (ICR) on the electric current was measured and calculated. During the cyclic operation of a test battery, the internal resistance was halved by increasing the electric current from 3 A to 9 A. This is due to a strongly non-linear dependence of an over-potential of the electrochemical reactions on the current density. However, the energy efficiency does not increase due to a squared dependence of the energy losses on the increasing electric current. The energy efficiency of the test battery versus the electric current was measured and simulated. The deviation between the simulation results and experimental data is less than ±3.5%.

  8. Large lead/acid batteries for frequency regulation, load levelling and solar power applications

    NASA Astrophysics Data System (ADS)

    Wagner, R.

    Lead/acid batteries are suitable for a multitude of utility applications. This paper presents some examples where large lead/acid batteries have been used for frequency regulation, load levelling and solar power applications. The operational experiences are given together with a discussion about the design and technical specialities of these batteries. In 1986, a 17 MW/14 MWh battery was installed at BEWAG in Berlin which, at that time, was the largest lead/acid battery in the world. Designed to strengthen Berlin's 'island' system, it was used since the beginning of 1987 for frequency regulation and spinning reserve. In December 1993, when Berlin was connected to the electricity grid, frequency regulation was no longer required but the battery was still used for spinning reserve. For many years, the industrial battery plant of Hagen in Soest has used a large lead/acid battery for load levelling. The experience gained during more than ten years shows that load levelling and peak shaving can be a marked benefit for customers and utilities with regard to reducing their peak demand. In the summer of 1992, a 216 V and 2200 Ah lead/acid battery with positive tubular plates and gelled electrolyte was installed at a solar power plant in Flanitzhutte, a small village in the south of Germany which is not connected to the electricity grid. A report is given of the first years of use and includes a discussion about the best charge strategy for such gel batteries when used for solar power applications.

  9. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  10. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    PubMed Central

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  11. Bipolar lead-acid batteries for electrical actuation applications

    NASA Astrophysics Data System (ADS)

    Pierce, Douglas C.; Gentry, William O.; Hall, David

    1994-02-01

    This document presents in viewgraph format information on bipolar battery development at Johnson Controls, Incorporated. The organization structure, goals, progress to date, future plans, and battery parameters and electrical properties are given.

  12. Bipolar lead-acid batteries for electrical actuation applications

    NASA Technical Reports Server (NTRS)

    Pierce, Douglas C.; Gentry, William O.; Hall, David

    1994-01-01

    This document presents in viewgraph format information on bipolar battery development at Johnson Controls, Incorporated. The organization structure, goals, progress to date, future plans, and battery parameters and electrical properties are given.

  13. An analytical study of a lead-acid flow battery as an energy storage system

    NASA Astrophysics Data System (ADS)

    Bates, Alex; Mukerjee, Santanu; Lee, Sang C.; Lee, Dong-Ha; Park, Sam

    2014-03-01

    The most important issue with our current clean energy technology is the dependence on environmental conditions to produce power. To solve this problem a wide range of energy storage devices are being explored for grid-scale energy storage including soluble lead-acid flow batteries. Flow batteries offer a unique solution to grid-scale energy storage because of their electrolyte tanks which allow easy scaling of storage capacity. This study seeks to further understand the mechanisms of a soluble lead acid flow battery using simulations. The effects of varies changes to operating conditions and the system configuration can be explored through simulations. The simulations preformed are 2D and include the positive electrode, negative electrode, and the flow space between them. Simulations presented in this study show Pb(II) surface concentration, external electric potential, and PbO/PbO2 surface concentration on the positive electrode. Simulations have shown increasing cell temperature can increase external electric potential by as much as 0.2 V during charge. Simulations have also shown electrolyte velocity is an important aspect when investigating lead deposition onto the electrodes. Experimental work was performed to validate simulation results of current density and voltage. Good correlation was found between experimental work and simulation results.

  14. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-05-01

    To improve the electrochemical activity of polyacrylonitrile (PAN)-based electrospun carbon nanofibers (ECNFs) toward vanadium redox couples, the multi-wall carbon nanotubes (CNTs) and Bi-based compound as electrocatalyst have been embedded in the ECNFs to make composite electrode, respectively. The morphology and electrochemical properties of pristine ECNFs, CNTs/ECNFs and Bi/ECNFs have been characterized. Among the three kinds of electrodes, the CNTs/ECNFs show best electrochemical activity toward VO2+/VO2+ redox couple, while the Bi/ECNFs present the best electrochemical activity toward V2+/V3+ redox couple. Furthermore, the high overpotential of hydrogen evolution on Bi/ECNFs makes the side-reaction suppressed. Because of the large property difference between the two composite electrodes, the CNTs/ECNFs and Bi/ECNFs are designed to act as positive and negative electrode for vanadium redox flow battery (VRFB), respectively. It not only does improve the kinetics of two electrode reactions at the same time, but also reduce the kinetics difference between them. Due to the application of asymmetric electrodes, performance of the cell is improved greatly.

  15. SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Fu, Zhimin; Liu, Jinying; Liu, Qifeng

    2016-01-01

    A membrane consisting of a blend of sulfonated poly(ether ether ketone) (SPEEK), poly(vinylidene fluoride) (PVDF), and poly(ether sulfone) (PES) has been fabricated and used as an ion exchange membrane for application in vanadium redox flow batteries (VRBs). The vanadium ion permeability of the SPEEK/PVDF/PES membrane was one order of magnitude lower than that of Nafion 117 membrane. The low-cost composite membrane exhibited better performance than Nafion 117 membrane at the same operating condition. A VRB single cell with SPEEK/PVDF/PES membrane showed significantly lower capacity loss, higher coulombic efficiency (>95%), and higher energy efficiency (>82%) compared with Nafion 117 membrane. In the self-discharge test, the duration of the cell with the SPEEK/PVDF/PES membrane was nearly two times longer than that with Nafion 117 membrane. Considering these good properties and its low cost, SPEEK/PVDF/PES membrane is expected to have excellent commercial prospects as an ion exchange membrane for VRB systems.

  16. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  17. Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries

    SciTech Connect

    Chen, Dongyang; Kim, Soowhan; Sprenkle, Vincent L.; Hickner, Michael A.

    2013-06-01

    Composite membranes based on sulfonated fluorinated poly(arylene ether) (SFPAE) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) were prepared with various contents of P(VDF-co-HFP) for vanadium redox flow battery (VRFB) applications. The compatibility and interaction of SFPAE and P(VDF-co-HFP) were characterized by atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The water uptake, mechanical properties, thermal property, proton conductivity, VO2+ permeability and cell performance of the composite membranes were investigated in detail and compared to the pristine SFPAE membrane. It was found that SFPAE had good compatibility with P(VDF-co-HFP) and the incorporation of P(VDF-co-HFP) increased the mechanical properties, thermal property, and proton selectivity of the materials effectively. An SFPAE composite membrane with 10 wt.% P(VDF-co-HFP) exhibited a 44% increase in VRFB cell lifetime as compared to a cell with a pure SFPAE membrane. Therefore, the P(VDF-co-HFP) blending approach is a facile method for producing low-cost, high-performance VRFB membranes.

  18. Assessment of rechargeable batteries for high power applications.

    SciTech Connect

    Delnick, Frank M.; Ripple, Robert Eugene; Butler, Paul Charles; Peterkin, Frank

    2004-05-01

    This paper describes an assessment of a variety of battery technologies for high pulse power applications. Sandia National Laboratories (SNL) is performing the assessment activities in collaboration with NSWC-Dahlgren. After an initial study of specifications and manufacturers' data, the assessment team identified the following electrochemistries as promising for detailed evaluation: lead-acid (Pb-acid), nickel/metal hydride (Ni/MH), nickel/cadmium (Ni/Cd), and a recently released high power lithium-ion (Li-ion) technology. In the first three technology cases, test cells were obtained from at least two and in some instances several companies that specialize in the respective electrochemistry. In the case of the Li-ion technology, cells from a single company and are being tested. All cells were characterized in Sandia's battery test labs. After several characterization tests, the Pb-acid technology was identified as a backup technology for the demanding power levels of these tests. The other technologies showed varying degrees of promise. Following additional cell testing, the assessment team determined that the Ni/MH technology was suitable for scale-up and acquired 50-V Ni/MH modules from two suppliers for testing. Additional tests are underway to better characterize the Ni/Cd and the Li-ion technologies as well. This paper will present the testing methodology and results from these assessment activities.

  19. State of charge monitoring methods for vanadium redox flow battery control

    NASA Astrophysics Data System (ADS)

    Skyllas-Kazacos, Maria; Kazacos, Michael

    2011-10-01

    During operation of redox flow batteries, differential transfer of ions and electrolyte across the membrane and gassing side reactions during charging, can lead to an imbalance between the two half-cells that results in loss of capacity. This capacity loss can be corrected by either simple remixing of the two solutions, or by chemical or electrochemical rebalancing. In order to develop automated electrolyte management systems therefore, the state-of-charge of each half-cell electrolyte needs to be known. In this study, two state-of-charge monitoring methods are investigated for use in the vanadium redox flow battery. The first method utilizes conductivity measurements to independently measure the state-of-charge of each half-cell electrolyte. The second method is based on spectrophotometric principles and uses the different colours of the charged and discharged anolyte and catholyte to monitor system balance and state-of charge of each half-cell of the VRB during operation.

  20. Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review

    SciTech Connect

    Shao, Yuyan; Cheng, Yingwen; Duan, Wentao; Wang, Wei; Lin, Yuehe; Wang, Yong; Liu, Jun

    2015-12-04

    PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flow batteries. A perspective on future research and the synergy between the two technologies are also discussed.

  1. Description and performance of a novel aqueous all-copper redox flow battery

    NASA Astrophysics Data System (ADS)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Kontturi, Kyösti

    2014-12-01

    In this paper we present a novel aqueous redox flow battery chemistry based on copper chloro complexes. The energy density (20 Wh L-1) achieved is comparable to traditional vanadium redox flow batteries. This is due to the high solubility of copper (3 M), which offsets the relatively low cell potential (0.6 V). The electrolyte is cheap, simple to prepare and easy to recycle since no additives or catalysts are used. The stack used is based on plain graphite electrode materials and a low-cost microporous separator. The system can be operated at 60 °C eliminating the need for a heat exchanger and delivers an energy efficiency of 93, 86 and 74% at 5, 10 and 20 mA cm-2 respectively.

  2. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  3. In-situ Investigation of Vanadium Ion Transport in Redox Flow Battery

    SciTech Connect

    Luo, Qingtao; Li, Liyu; Nie, Zimin; Wang, Wei; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Yang, Zhenguo

    2012-06-27

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplified mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.

  4. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries

    SciTech Connect

    Zhang, Jianlu; Li, Liyu; Nie, Zimin; Chen, Baowei; Vijayakumar, M.; Kim, Soowhan; Wang, Wei; Schwenzer, Birgit; Liu, Jun; Yang, Zhenguo

    2011-10-01

    The stability of the electrolytes for all-vanadium redox flow battery was investigated with ex-situ heating/cooling treatment and in-situ flow-battery testing methods. The effects of inorganic and organic additives have been studied. The additives containing the ions of potassium, phosphate, and polyphosphate are not suitable stabilizing agents because of their reactions with V(V) ions, forming precipitates of KVSO6 or VOPO4. Of the chemicals studied, polyacrylic acid and its mixture with CH3SO3H are the most promising stabilizing candidates which can stabilize all the four vanadium ions (V2+, V3+, VO2+, and VO2+) in electrolyte solutions up to 1.8 M. However, further effort is needed to obtain a stable electrolyte solution with >1.8 M V5+ at temperatures higher than 40 °C.

  5. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery.

    PubMed

    Yuan, Zhizhang; Li, Xianfeng; Zhao, Yuyue; Zhang, Huamin

    2015-09-01

    The stability of hydrocarbon ion exchange membranes is one of the critical issues for a flow battery. However, the degradation mechanism of ion exchange membranes has been rarely investigated especially for anion exchange membranes. Here, the degradation mechanism of polysulfone based anion exchange membranes, carrying pyridine ion exchange groups, under vanadium flow battery (VFB) medium was investigated in detail. We find that sp(2) hybrid orbital interactions between pyridinic-nitrogen in 4,4'-bipyridine and benzylic carbon disrupt the charge state balance of pristine chloromethylated polysulfone. This difference in electronegativity inversely induces an electrophilic carbon center in the benzene ring, which can be attacked by the lone pair electron on the vanadium(V) oxygen species, further leading to the degradation of polymer backbone, while leaving the 4,4'-bipyridine ion exchange groups stable. This work represents a step toward design and construction of alternative type of chemically stable hydrocarbon ion exchange membranes for VFB. PMID:26284752

  6. All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Zhang; Liao, Wei-Yang; Hsieh, Wen-Yen; Hsu, Cheng-Che; Chen, Yong-Song

    2015-01-01

    Graphite felts modified with atmospheric pressure plasma jets (APPJs) are applied as electrodes in an all-vanadium redox flow battery (VRFB). APPJ flow penetrates deeply into the graphite felt, improving significantly the wettability of the graphite felt inside out and, thereby, enhancing graphite fiber-electrolyte contact during battery operation. The energy efficiency of a VRFB was improved from 62% (untreated) to 76% (APPJ-treated with the scan mode) at a current density of 80 mA cm-2, an improvement of 22%. The efficiency improvement is attributed to the oxygen-containing groups and nitrogen doping introduced by N2 APPJs on the fiber surfaces of graphite felt, both of which enhance electrochemical reactivity.

  7. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE PAGESBeta

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; Laramie, Sydney; Dmello, Rylan D.; Huang, Jinhua; Zhang, Lu; Hu, Dehong; Vijayakumar, M.; Wang, Wei; et al

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  8. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery

    NASA Astrophysics Data System (ADS)

    Reed, David; Thomsen, Edwin; Li, Bin; Wang, Wei; Nie, Zimin; Koeppel, Brian; Sprenkle, Vincent

    2016-02-01

    Three flow designs were operated in a 3-cell 1 kW class all vanadium mixed acid redox flow battery. The influence of electrode surface area and flow rate on the coulombic, voltage, and energy efficiency and the pressure drop in the flow circuit will be discussed and correlated to the flow design. Material cost associated with each flow design will also be discussed.

  9. The SOFAL aluminum-air battery for man-portable applications, topic area: Batteries for terrestrial applications

    SciTech Connect

    Karpinski, A.P.; Billingsley, J.; Alminauskas, V.; Stannard, J.; Halliop, W.V.

    1998-07-01

    In a cooperative effort, Alupower Inc., and Commonwealth Technology, Inc., recently completed the development of a Man-portable Aluminum-air hybrid battery for the Special Operations Forces (SOF) under a Phase 2 SBIR program. The Phase 1 SBIR program resulted in the design of a 12 and 24 vdc hybrid system consisting of an Aluminum-air semi-fuel cell and rechargeable secondary battery, interfaced with an electronics control module. This power source, named ``Special Operations Forces Aluminum-air'' or SOFAL , provides a cost effective approach for portable SOF electronic equipment. The Phase 2 development culminated in the delivery of five prototype units to the U.S. Army Special Operations Command (USASOC) for field evaluation. Due to the short window of opportunity available for the field trial, only one unit was activated. The evaluation was conducted at Camp McKall, N. Carolina. The evaluation plan was to operate SINCGARS (AN/PRC-119A) radio and a Digital Message Data Group (DMDG KY-879/P) off the SOFAL for one week. Another set of the same equipment would be powered by the standard issue BA-5590/U LiSO{sub 2} primary batteries as a control group. The exercise simulated a command post handling message traffic, both voice and data, 24 hours a day. At the conclusion of the field trials, the USASOC and Special Forces personnel were pleased with the concept. Based on actual mission scenarios, the present unit was acceptable ``as is'' for command post situations. They have a desire for a second smaller unit for field applications. Being a prototype, there were a few glitches but overall the evaluation was very positive, laying the ground work for Phase 3.

  10. Manufacture and application of valve-regulated lead/acid batteries in China

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    This paper introduces the manufacture and application of valve-regulated lead/acid batteries in China. The contents cover the following topics: (i) background development; (ii) materials; (iii) manufacturing technology and equipment; (iv) application and market prospects.

  11. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  12. Physical Property Requirements of Ion-exchange Polymer Membranes for Acid-base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Thayer, Peter; Jorne', Jacob; Anthamatten, Mitchell

    2013-03-01

    Flow batteries offer feasible solutions to grid-scale storage of intermittent power. We are developing a new type of flow battery that reversibly controls an acid-base neutralization reaction. The battery consists of two highly reversible hydrogen gas electrodes that are exposed to low and high pH process streams. A brine solution runs between the acid and base streams and is separated by cationic and anionic exchange membranes. For both charge and discharge phases, hydrogen gas is produced at one electrode and consumed at the other. During charging, an external potential is applied across the two electrodes to electrochemically produce acid and base from the fed brine solution. Discharge involves electrochemical neutralization of acid and base streams, resulting in current flow through an external load. Several charge and discharge cycles were performed to demonstrate proof of concept. Experiments were conducted to determine the physical property requirements of the ionic exchange polymer layers. Properties including ion conductivity, permselectivity, and membrane stability will be discussed.

  13. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    PubMed

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. PMID:26990485

  14. New gel electrolytes for batteries and supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Chojnacka, J.; Acosta, J. L.; Morales, E.

    The thermal behaviour, ionic conductivity and electrochemical stability of two new gel electrolytes synthesised by gelling (433 K, 5 min) polyacrylonitryle (PAN) and poly(vinylidene fluoride) and hexafluoropropylene (PVDF-HHP) (KF2801) polymer matrixes in a solution of LiCF 3SO 3 in ethylene carbonate-γ-butyrolactone (EC-γBL) solvent mixture are reported. The high ionic conductivity obtained, together with the good electrochemical stability (the current onset is detected around 4.7 V versus Li/Li + for the PAN-based gel, and 4.5 V versus Li/Li + for the PVDF-HFP gel, make this membranes of definite interest for practical applications in lithium batteries and supercapacitors technology.

  15. Evaluation of low melting halide systems for battery applications

    NASA Astrophysics Data System (ADS)

    Mamantov, G.; Perrovic, C.

    1981-03-01

    This three year program involves evaluation of selected low temperature molten salt solvent systems containing inorganic and/or organic chlorides and bromides for battery applications. The research involves determination of the liquidus temperatures, the specific electrical conductivity, and the electrochemical span of selected halide systems. Characterization of the solvent species by Raman spectroscopy, vapor pressure measurements, and the electrochemical study of a few cathode and anode systems will be undertaken for the most promising solvent systems. The research during the second year of this project involved the determination of liquidus temperatures and/or specific electrical conductivities for a number of binary and ternary molten salt systems containing AlCl3, AlBr3, SbCl3, FeCl3, and GaCl3.

  16. Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries.

    PubMed

    Li, Changyi; Ward, Ashleigh L; Doris, Sean E; Pascal, Tod A; Prendergast, David; Helms, Brett A

    2015-09-01

    Redox flow batteries (RFBs) present unique opportunities for multi-hour electrochemical energy storage (EES) at low cost. Too often, the barrier for implementing them in large-scale EES is the unfettered migration of redox active species across the membrane, which shortens battery life and reduces Coulombic efficiency. To advance RFBs for reliable EES, a new paradigm for controlling membrane transport selectivity is needed. We show here that size- and ion-selective transport can be achieved using membranes fabricated from polymers of intrinsic microporosity (PIMs). As a proof-of-concept demonstration, a first-generation PIM membrane dramatically reduced polysulfide crossover (and shuttling at the anode) in lithium-sulfur batteries, even when sulfur cathodes were prepared as flowable energy-dense fluids. The design of our membrane platform was informed by molecular dynamics simulations of the solvated structures of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) vs lithiated polysulfides (Li2Sx, where x = 8, 6, and 4) in glyme-based electrolytes of different oligomer length. These simulations suggested polymer films with pore dimensions less than 1.2-1.7 nm might incur the desired ion-selectivity. Indeed, the polysulfide blocking ability of the PIM-1 membrane (∼0.8 nm pores) was improved 500-fold over mesoporous Celgard separators (∼17 nm pores). As a result, significantly improved battery performance was demonstrated, even in the absence of LiNO3 anode-protecting additives. PMID:26237233

  17. Flow of Cadmium from Rechargeable Batteries in the United States, 1996-2007

    USGS Publications Warehouse

    Wilburn, David R.

    2007-01-01

    Cadmium metal has been found to be toxic to humans and the environment under certain conditions; therefore, a thorough understanding of the use and disposal of the metal is warranted. Most of the cadmium used in the United States comes from imported products. In 2007, more than 83 percent of the cadmium used in the United States was contained in batteries, mostly in rechargeable nickel-cadmium batteries used in popular consumer products such as cordless phones and power tools. The flow of cadmium contained in rechageable nickel-cadmium batteries used in the United States was tracked for the years 1996 to 2007. The amount of cadmium metal contained in imported products in 2007 was estimated to be about 1,900 metric tons, or about 160 percent higher than the reported cadmium production in the United States from all primary and secondary sources. Although more than 40,000 metric tons of cadmium was estimated to be contained in nickel-cadmium rechargeable batteries that became obsolete during the 12-year study period, not all of this material was sent to municipal solid waste landfills. About 27 percent of the material available for recovery in the United States was recycled domestically in 2007; the balance was discarded in municipal solid waste landfills, exported for recycling, retained in temporary storage, or thrown away.

  18. Lithium-ion batteries for hearing aid applications: I. Design and performance

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Owens, B. B.; Coustier, F.

    Rechargeable batteries have been designed for powering hearing aid devices (HAD). The cells, based on the lithium-ion chemistry, were designed in a size that is compatible with the existing HAD. The 10 mA h batteries were tested to characterize the design and the electrochemical performance from the point of view of a typical HAD application. Results are presented for constant-current tests, first-cycle conditions, charge voltage cut-off, rate performance, and cycle life. The pulse capabilities and the preliminary safety tests of the batteries will be presented in a following report. The results of the lithium-ion HAD cells developed in this project are compared with other battery chemistries: lithium-alloy and nickel-metal hydride secondary batteries and Zn-air primary batteries.

  19. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  20. 76 FR 18194 - Notice of Patent Application Deadline for Advanced Battery Technology Related Patents for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... following listing of intellectual property in the Federal Register on January 19, 2011 (76 FR 3118). A... Department of the Army Notice of Patent Application Deadline for Advanced Battery Technology Related Patents for Exclusive, Partially Exclusive, or Non- Exclusive Licenses; Battery Day Patent Licensing...

  1. Advanced batteries for electric vehicle applications: Nontechnical summary

    NASA Astrophysics Data System (ADS)

    Henriksen, G. L.

    This paper provides an overview of the performance characteristics of the most prominent batteries under development for electric vehicles (EV's) and compares these characteristics to the USABC Mid-Term and Long-Term criteria, as well as to typical vehicle-related battery requirements. Most of the battery performance information was obtained from independent tests, conducted using simulated driving power profiles, for DOE and EPRI at Argonne National Laboratory. The EV batteries are categorized as near-term, mid-term, and long-term technologies based on their relative development status, as well as our estimate of their potential availability as commercial EV batteries. Also, the performance capabilities generally increase in going from the near-term to the mid-term and on to the long-term technologies. To date, the USABC has chosen to fund a few selected mid-term and long-term battery technologies.

  2. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  3. High efficiency UHF oscillator for portable battery-powered applications

    NASA Astrophysics Data System (ADS)

    Wessendorf, K. O.

    There is a growing demand for high-frequency circuit designs which are capable of being used in portable battery-powered applications. This type of environment typically requires circuits designed for small size and minimum dc current draw. A transponder design at Sandia National Laboratories required a 430 MHz oscillator (crystal controlled) which could run off a 3 V lithium battery and have an output power of approximately 0 dbm and draw the least possible dc current (less than 4 mA was desired). Physically the oscillator height has to be less than 0.1 sq in. and occupy less than 1 sq in. surface area. Another requirement, for the first engineering prototype, was that the oscillator be made out of inexpensive, standard parts. The design was integrated onto a circuit board with the associated transponder circuitry. This paper describes a technique to make a high-efficiency 430 MHz oscillator which demonstrates efficiencies in the 10 to 12 percent range for an output of approximately 0 dbm. Data will show the frequency spectrum of the oscillator waveform and the performance of the oscillator over temperature and power supply voltage. To meet the requirements and make the design as simple as possible a 107.5 MHz (R(sub m) less than 70 ohms) Statek AT-Strip resonator was chosen. This resonator was chosen because of its small size, surface mountability, and good electrical performance. This resonator was used at series resonance in an oscillator multiplier circuit which would provide a (4X) multiplication in an efficient manner. The oscillator (first stage) is a Butler Oscillator-Multiplier (2X) which is direct coupled to a buffer transistor (second stage) and harmonic generating (2X) transistor which share bias current. The final design delivers 1 dbm at 3 V with 3.33 mA current draw. All harmonics and subharmonics are greater than 20 db down from the desired frequency.

  4. Porous poly(benzimidazole) membrane for all vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Luo, Tao; David, Oana; Gendel, Youri; Wessling, Matthias

    2016-04-01

    Porous poly(benzimidazole) (PBI) membranes of low vanadium ions permeability are described for an all vanadium redox flow battery (VRFB). The PBI membrane was prepared by a water vapour induced phase inversion process of a PBI polymer solution. The membrane has a symmetrical cross-sectional morphology. A low water permeability of 16.5 L (m2 h bar)-1 indicates the high hydraulic resistance stemming from a closed cell morphology with nanoporous characteristics. The PBI membrane doped with 2.5 M H2SO4 shows a proton conductivity of 16.6 mS cm-1 and VO2+ permeability as low as 4.5 × 10-8 cm2 min-1. The stability test of dense PBI membrane in VO2+ solution indicates good chemical stability. An all vanadium redox flow battery (VRFB) operated with the porous PBI membrane shows 98% coulombic efficiency and more than 10% higher energy efficiency compared to VRFB operated with Nafion 112 at applied current densities of 20-40 mA cm-2. High in situ stability of the porous PBI membrane was confirmed by about 50 cycles of continuous charge and discharge operation of the battery.

  5. Evaluation of electrode materials for all-copper hybrid flow batteries

    NASA Astrophysics Data System (ADS)

    Leung, Puiki; Palma, Jesus; Garcia-Quismondo, Enrique; Sanz, Laura; Mohamed, M. R.; Anderson, Marc

    2016-04-01

    This work evaluates a number of two- and three-dimensional electrodes for the reactions of an all-copper hybrid flow battery. Half- and full-cell experiments are conducted by minimizing the crossover effect of the copper(II) species. The battery incorporates a Nafion® cation exchange membrane and the negative electrolyte is maintained at the monovalent (colourless) state by the incorporating copper turnings in the electrolyte reservoir. Under such conditions, the half-cell coulombic efficiencies of the negative electrode reactions are all higher than 90% regardless of electrode materials and the state-of-charge (SOC). With charge-discharge cycling the half-cell from a 0% SOC, the coulombic efficiencies of the positive electrode reactions are lower than 76% with the planar carbon electrode, which further decrease in shorter charge-discharge cycles. Polarization and half-cell charge-discharge experiments suggest that the high-surface-area electrodes effectively reduce the overpotentials and improve the coulombic efficiencies of both electrode reactions. When copper fibres and carbon felt are used as the negative and positive electrodes, the average coulombic and voltage efficiencies of an all-copper flow battery are as high as c.a. 99% and c.a. 60% at 50 mA cm-2 for 35 cycles.

  6. Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Cao, Jingyu; Yuan, Zhizhang; Li, Xianfeng; Xu, Wanxing; Zhang, Huamin

    2015-12-01

    Hydrophilic poly(vinylidene fluoride) (PVDF) porous membranes are facilely fabricated via grafting polymerization and cross-linking reaction for vanadium flow battery (VFB) application. A solvent swelling pre-treatment is specifically carried out to introduce hydrophilic groups in the pores and on the surface, where they can form well connected ion transport networks. The modification is performed through chemical cross-linking and grafting of PVP by using potassium persulfate (K2S2O8) as a radical initiator. The effect of reaction condition on membrane morphology, hydrophilicity is characterized in detail. Meanwhile, the performance of modified membranes is detected in VFB single cell at a current density of 80 mA cm-2. It is found that more PVP is immobilized on membrane surface and in the pores with prolonging reaction time. Consequently, the membrane wetability and effective pore size change dramatically, resulting better hydrophilicity and higher ion selectivity. As a result, the VFBs assembled with these modified membranes show higher CE and overall better EE than unmodified ones. The optimized membrane shows CE of 94.4% and EE of 83.3%, which is comparable to commercial Nafion 115. Furthermore, the prepared hydrophilic PVDF membranes demonstrate excellent chemical stability through the long-term battery operation, showing great prospects in VFB applications.

  7. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect

    Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  8. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    NASA Astrophysics Data System (ADS)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  9. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system

    NASA Astrophysics Data System (ADS)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico

    2014-05-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.

  10. Useful applications and limits of battery powered implants in functional electrical stimulations.

    PubMed

    Lanmüller, H; Bijak, M; Mayr, W; Rafolt, D; Sauermann, S; Thoma, H

    1997-03-01

    Battery powered stimulation implants have been well-known for a long time as heart pacemakers. In the last few years, fully implantable stimulators have been used in the field of functional electrical stimulation (FES) for applications like dynamic cardiomyoplasty and electro-stimulated graciloplasty for fecal incontinence. The error rate of battery powered implants is significantly smaller than that for conventional stimulator systems, and the quality of life for the patients is increased because the need for an external power and control unit is eliminated. The use of battery powered implants is limited by the complexity of the stimulation control strategies and the battery capacity. Therefore, applications like the stimulation of lower extremities for walking, cochlea stimulation, or direct muscle stimulation cannot be supported. The improvement of implantable batteries, microcontrollers, and ultralow power products is ongoing. In the future, battery powered implants will also meet the requirements of complex applications. Systems for restoration of hand and breathing functions after spinal cord injury can be the next field of use for battery powered implants. For these purposes, we developed a battery powered multichannel implant with a sufficient life span for phrenic pacing. The problems during development and the limits of this system are described in this paper. PMID:9148707

  11. Overview of the Design, Development, and Application of Nickel-hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    2003-01-01

    This document provides an overview of the design, development, and application of nickel-hydrogen (Ni-H2) battery technology for aerospace applications. It complements and updates the information presented in NASA RP-1314, NASA Handbook for Nickel- Hydrogen Batteries, published in 1993. Since that time, nickel-hydrogen batteries have become widely accepted for aerospace energy storage requirements and much more has been learned. The intent of this document is to capture some of that additional knowledge. This document addresses various aspects of nickel-hydrogen technology including the electrochemical reactions, cell component design, and selection considerations; overall cell and battery design considerations; charge control considerations; and manufacturing issues that have surfaced over the years that nickel-hydrogen battery technology has been the major energy storage technology for geosynchronous and low-Earth-orbiting satellites.

  12. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  13. Aerospace applications of sodium batteries using novel cathode materials

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Di Stefano, S.; Bankston, C. P.

    1989-01-01

    Preliminary fundamental investigations aimed at evaluating sodium metal chloride systems for future aerospace applications are described. Since the sodium metal chloride systems are relatively new, the approach has been to characterize their fundamental properties in order to understand their limitations. To this end, a series of fundamental electrochemical investigations have been carried out, the results of which are reported here. The metal chloride cathodes show high exchange current densities which corroborate their good reversibility in a battery application. The reduction mechanisms appear to be complex and involve multielectron transfer steps and intermediates. Such intermediates in the reaction mechanism have already been identified in the case of FeCl2. Similar mechanisms may be operative in the case of NiCl2. CuCl2, however, exhibits a second relaxation loop in the impedance plot at low frequencies and also a sloping discharge curve, unlike FeCl2 and NiCl2, which may indicate the existence of monovalent copper in the reduction mechanism.

  14. A Lemon Cell Battery for High-Power Applications

    ERIC Educational Resources Information Center

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-01-01

    The use of lemon cell battery to run an electric DC motor is demonstrated for chemistry students. This demonstration aids the students in understanding principles behind the design and construction of the lemon cell battery and principles governing the electric DC motor and other basic principles.

  15. Assessment of Potential for Batteries in Space Applications

    NASA Technical Reports Server (NTRS)

    Ford, F. E.

    1983-01-01

    Different battery technologies for energy storage in space missions were examined. One of the best ways of the possibilities of high energy density batteries were determined by looking at more conventional batteries (i.e., lead-acid, nickel-cadmium, nickel-hydrogen, etc.). The theoretical specific energy density for state of the art batteries and the usable energy density for a reasonable life expectancy are outlined. The most mature of these couples is lead acid, which achieves nearly 20% of its theoretical capacity. The nickel-cadmium couple, has matured to where the active capacity is 17% of its theoretical capacity. The achievements are used to measure the practicality of more advanced batteries and to estimate what is needed for future high power space systems.

  16. Valve-regulated lead-acid batteries for stop-and-go applications

    NASA Astrophysics Data System (ADS)

    May, G. J.

    Increasing levels of demand for electrical power for vehicles have prompted a considerable level of research into higher voltage systems. This has resulted in the definition of preliminary standards for 36/42 V systems. The implementation costs for these systems are high and this has led to improvements in 12/14 V power architectures. In particular, alternator power outputs at 14 V have increased and the need for lower emission levels and fuel economy is stimulating a demand for stop-and-go systems. In this type of application, the engine is stopped each time the vehicle comes to a halt, and is restarted when the accelerator is pressed again. The duty cycle that this applies to the battery is quite onerous with many shallow discharge cycles. Flooded lead-acid batteries are unable to meet the requirements and valve-regulated lead-acid (VRLA) batteries are essential to meet the demands applied. The background to stop-and-go battery applications is considered and test results on practical batteries are presented to show that under a simulated duty cycle, good performance can be achieved. There is also a need for a higher level of battery management for stop-and-go systems. A practical approach to battery condition monitoring to assess the state-of-charge and state-of-health of the battery is described.

  17. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  18. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.

    PubMed

    Kim, Taeyoung; Rahimi, Mohammad; Logan, Bruce E; Gorski, Christopher A

    2016-09-01

    Salinity-gradient energy (SGE) technologies produce carbon-neutral and renewable electricity from salinity differences between seawater and freshwater. Capacitive mixing (CapMix) is a promising class of SGE technologies that captures energy using capacitive or battery electrodes, but CapMix devices have produced relatively low power densities and often require expensive materials. Here, we combined existing CapMix approaches to develop a concentration flow cell that can overcome these limitations. In this system, two identical battery (i.e., faradaic) electrodes composed of copper hexacyanoferrate (CuHCF) were simultaneously exposed to either high (0.513 M) or low (0.017 M) concentration NaCl solutions in channels separated by a filtration membrane. The average power density produced was 411 ± 14 mW m(-2) (normalized to membrane area), which was twice as high as previously reported values for CapMix devices. Power production was continuous (i.e., it did not require a charging period and did not vary during each step of a cycle) and was stable for 20 cycles of switching the solutions in each channel. The concentration flow cell only used inexpensive materials and did not require ion-selective membranes or precious metals. The results demonstrate that the concentration flow cell is a promising approach for efficiently harvesting energy from salinity differences. PMID:27518198

  19. A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan

    2015-09-01

    Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.

  20. Shunt currents in vanadium flow batteries: Measurement, modelling and implications for efficiency

    NASA Astrophysics Data System (ADS)

    Fink, H.; Remy, M.

    2015-06-01

    Shunt currents are an important factor which must be considered when designing a stack for flow batteries. They lead to a reduction of the coulombic efficiency and can cause furthermore a critical warming of the electrolyte. Shunt currents inevitably appear at bypass connections of the hydraulic system between the single cells of a stack. In this work the shunt currents of a five-celled mini stack of a vanadium flow battery with external hydraulic system and their effects are investigated directly. The external hydraulic system allows the implementation of current sensors for direct measurement of the shunt currents; moreover, the single bypass channels can be interrupted by clamping the tube couplings and with it the shunt currents between the cells when the pumps are off. Thus the shares of losses by cross contamination and by shunt currents are quantified separately by charge conservation measurements. The experimentally gained data are compared to a shunt current model based on a equivalent circuit diagram and the linear equation system derived from it. Experiments and model data are in good agreement. The effects of shunt currents for different flow frame geometries and number of cells in a stack are simulated and presented in this work.

  1. On using splitter plates and flow guide-vanes for battery module cooling

    NASA Astrophysics Data System (ADS)

    Ismailov, Kairat; Adair, Desmond; Massalin, Yerzhan; Bakenov, Zhumabay

    2016-03-01

    Thermal management of lithium-ion battery modules needs to be an integral part of the design process to guarantee that temperatures remain within a narrow optimal range. Also it is important to minimize uneven distribution of temperature throughout a battery module so as to enhance the battery life cycle, and, charge and discharge performances. This paper explores by simulation, the benefits of attaching thin surfaces extended into the near-wake of cylindrical lithium-ion cells, here termed integral wake splitters, and, of placing flow guide-vane in the vicinity of the near wake, regarding thermal management. When using the integral splitters it is found that the local Nusselt numbers in the very near wake of a single cylindrical cell are depressed and the temperature distribution within the cell was found to be reasonably constant. Similar results were found when the cells are in formation. Use of guide-vanes also show promise in maintaining constant temperature distributions throughout the module.

  2. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte Solution in Vanadium Redox Flow Batteries

    SciTech Connect

    Vijayakumar, M.; Li, Liyu; Graff, Gordon L.; Liu, Jun; Zhang, Huamin; Yang, Zhenguo; Hu, Jian Z.

    2011-04-01

    The V5+ electrolyte solution from vanadium redox flow batteries was studied by variable temperature 17O and 51V Nuclear Magnetic Resonance (NMR) spectroscopy and DFT based computational modeling. It was found that the V5+ species exist as hydrated penta co-ordinated vanadate ion, i.e. [VO2(H2O)3]1+. This hydrated structure is not stable at elevated temperature and change into neutral H3VO4 molecule via a deprotonation process. H3VO4 species is also knowingly unstable, leading to the observed V2O5 precipitation in V5+ electrolyte solutions.

  3. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    SciTech Connect

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  4. Modelling and simulation of thermal behaviour of vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yan, Yitao; Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-08-01

    This paper extends previous thermal models of the vanadium redox flow battery to predict temperature profiles within multi-cell stacks. This involves modelling the thermal characteristics of the stack as a whole to modelling each individual cell. The study investigates the thermal behaviour for two different scenarios: during standby periods when the pumps are turned off, and in a residential power arbitrage scenario for two types of membranes. It was found that the temperature gradient across the cells is most significant during the standby case, with the simulation results showing completely different thermal behaviours between the two systems.

  5. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE PAGESBeta

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  6. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Liao, J. B.; Lu, M. Z.; Chu, Y. Q.; Wang, J. L.

    2015-05-01

    An amphoteric ion-exchange membrane (AIEM) from fluoro-methyl sulfonated poly(arylene ether ketone) bearing content-controlled benzimidazole moiety, was firstly fabricated for vanadium redox flow battery (VRB). The AIEM and its covalently cross-linked membrane (AIEM-c) behave the highly suppressed vanadium-ion crossover and their tested VO2+ permeability are about 638 and 1117 times lower than that of Nafion117, respectively. This is further typically verified by the lower VO2+ concentration inside AIEM that is less than half of that inside Nafion117 detected by energy dispersive X-ray spectrometry, in addition of the nearly 3 times longer battery self-discharge time. The ultra-low vanadium ion diffusion could be ascribed to the narrower ion transporting channel originated from the acid-base interactions and the rebelling effect between the positively-charged benzimidazole structure and VO2+ ions. It is found that, VRB assembled with AIEM exhibits the equal or higher Coulombic efficiency (99.0% vs. 96.4%), voltage efficiency (90.7% vs. 90.7%) and energy efficiency (89.8% vs. 87.4%) than that with Nafion117 and keeps continuous 220 charge-discharge cycles for over 25 days, confirming that the AIEM of this type is a potentially suitable separator for VRB application.

  7. Computationally Guided Design of Polymer Electrolytes for Battery Applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Gang; Webb, Michael; Savoie, Brett; Miller, Thomas

    We develop an efficient computational framework for guiding the design of polymer electrolytes for Li battery applications. Short-times molecular dynamics (MD) simulations are employed to identify key structural and dynamic features in the solvation and motion of Li ions, such as the structure of the solvation shells, the spatial distribution of solvation sites, and the polymer segmental mobility. Comparative studies on six polyester-based polymers and polyethylene oxide (PEO) yield good agreement with experimental data on the ion conductivities, and reveal significant differences in the ion diffusion mechanism between PEO and the polyesters. The molecular insights from the MD simulations are used to build a chemically specific coarse-grained model in the spirit of the dynamic bond percolation model of Druger, Ratner and Nitzan. We apply this coarse-grained model to characterize Li ion diffusion in several existing and yet-to-be synthesized polyethers that differ by oxygen content and backbone stiffness. Good agreement is obtained between the predictions of the coarse-grained model and long-timescale atomistic MD simulations, thus providing validation of the model. Our study predicts higher Li ion diffusivity in poly(trimethylene oxide-alt-ethylene oxide) than in PEO. These results demonstrate the potential of this computational framework for rapid screening of new polymer electrolytes based on ion diffusivity.

  8. Flow injection spectrophotometric determination of nitrate in electrolyte of lead-acid batteries.

    PubMed

    Rocha, F R; Nóbrega, J A

    1997-12-19

    Electrolytes of lead-acid batteries can contain several impurities that reduce battery performance and lifetime. Nitrate ions are among these species because they can be reduced to ammonium in the lead electrode. In this work, an analytical method was developed to determine this anion in electrolytes of batteries used in telephone systems, in which nitrate concentration must be lower than 10 mg l(-1). The procedure consists in the reduction to nitrite in a copperized cadmium column followed by Griess's modified reaction. Due to the high sensitivity of this methodology, a large dispersion flow diagram (dispersion coefficient = 27.8) was projected. Thus, it was possible to eliminate the Schlieren effect and to obtain a NH (3)NH (+)(4) buffer in the sample zone in a suitable pH for reduction reaction (pH congruent with 8). Negative interference due to iron(III) was overcome by addition of excess iron (200 mg l(-1)). A relocatable filter was used to remove iron(III) hydroxide precipitate. This avoided adsorption on the surface of the filings and increase of back pressure. The analytical frequency is 80 measurements/h and the detection limit was estimated as 0.3 mg l(-1) in a 99.7% confidence level. A 2.2% relative standard deviation was obtained in a repeatability study (n = 10) by using a 25 mg l(-1) nitrate solution in a 3.6 mol l(-1) sulfuric acid medium. Recoveries from 95.5 to 104% were obtained by spiking 5.00 or 10.0 mg l(-1) of nitrate in samples of battery electrolyte. PMID:18967001

  9. Emerging battery research in Indonesia: The role of nuclear applications

    NASA Astrophysics Data System (ADS)

    Kartini, E.

    2015-12-01

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  10. Powering up the future: radical polymers for battery applications.

    PubMed

    Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2012-12-18

    Our society's dependency on portable electric energy, i.e., rechargeable batteries, which permit power consumption at any place and in any time, will eventually culminate in resource wars on limited commodities like lithium, cobalt, and rare earth metals. The substitution of conventional metals as means of electric charge storage by organic and polymeric materials, which may ultimately be derived from renewable resources, appears to be the only feasible way out. In this context, the novel class of organic radical batteries (ORBs) excelling in rate capability (i.e., charging speed) and cycling stability (>1000 cycles) sets new standards in battery research. This review examines stable nitroxide radical bearing polymers, their processing to battery systems, and their promising performance. PMID:23238940

  11. Emerging battery research in Indonesia: The role of nuclear applications

    SciTech Connect

    Kartini, E.

    2015-12-31

    Development of lithium ion batteries will play an important role in achieving innovative sustainable energy. To reduce the production cost of such batteries, the Indonesian government has instituted a strategy to use local resources. Therefore, this technology is now part of the National Industrial Strategic Plan. One of the most important scientific challenges is to improve performance of lithium batteries. Neutron scattering is a very important technique to investigate crystal structure of electrode materials. The unique properties of neutrons, which allow detection of light elements such as lithium ions, are indispensable. The utilization of neutron scattering facilities at the Indonesian National Nuclear Energy Agency will provide significant contributions to the development of improved lithium ion battery technologies.

  12. Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries

    SciTech Connect

    Lawton, Jamie; Jones, Amanda; Zawodzinski, Thomas A

    2013-01-01

    The VO2+ crossover, or permeability, through Nafion in a vanadium redox flow battery (VRFB) was monitored as a function of sulfuric acid concentration and VO2+ concentration. A vanadium rich solution was flowed on one side of the membrane through a flow field while symmetrically on the other side a blank or vanadium deficit solution was flowed. The blank solution was flowed through an electron paramagnetic resonance (EPR) cavity and the VO2+ concentration was determined from the intensity of the EPR signal. Concentration values were fit using a solution of Fick s law that allows for the effect of concentration change on the vanadium rich side. The fits resulted in permeability values of VO2+ ions across the membrane. Viscosity measurements of many VO2+ and H2SO4 solutions were made at 30 60 C. These viscosity values were then used to determine the effect of the viscosity of the flowing solution on the permeability of the ion. 2013 The Electrochemical Society. [DOI: 10.1149/2.004306jes] All rights reserved.

  13. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  14. The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries

    SciTech Connect

    Weber, N.; Galindo, V.; Stefani, F.; Weier, T.; Priede, J.

    2015-01-15

    The Tayler instability (TI) is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently discussed as a possible limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability and, second, on the occurrence of electro-vortex flows and their relevance for liquid metal batteries. Electro-vortex flows might pose a larger risk to the integrity of the battery than the TI.

  15. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H; Wang, Chong M; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22

    We demonstrate a novel electrode material-nitrogen-doped mesoporous carbon (NMC)-for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]2+/[VO2]+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]2+/[VO2]+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple [VO]2+/[VO2]+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  16. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    SciTech Connect

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

  17. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    DOE PAGESBeta

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less

  18. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery

    NASA Astrophysics Data System (ADS)

    Singh, Nirala; McFarland, Eric W.

    2015-08-01

    The technoeconomics of the hydrogen-bromine flow battery are investigated. Using existing performance data the operating conditions were optimized to minimize the levelized cost of electricity using individual component costs for the flow battery stack and other system units. Several different configurations were evaluated including use of a bromine complexing agent to reduce membrane requirements. Sensitivity analysis of cost is used to identify the system elements most strongly influencing the economics. The stack lifetime and round-trip efficiency of the cell are identified as major factors on the levelized cost of electricity, along with capital components related to hydrogen storage, the bipolar plate, and the membrane. Assuming that an electrocatalyst and membrane with a lifetime of 2000 cycles can be identified, the lowest cost market entry system capital is 220 kWh-1 for a 4 h discharge system and for a charging energy cost of 0.04 kWh-1 the levelized cost of the electricity delivered is 0.40 kWh-1. With systems manufactured at large scales these costs are expected to be lower.

  19. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  20. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGESBeta

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  1. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    SciTech Connect

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.

  2. Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxin; Xu, Hongfeng; Xu, Pengcheng; Shen, Yang; Lu, Lu; Shi, Jicheng; Fu, Jie; Zhao, Hong

    2014-10-01

    An environmental, economic, and highly effective method based on microwave treatment was firstly used to improve the electrochemical activity of graphite felt as the positive electrode in all vanadium redox flow battery (VRFB). The graphite felt was treated by microwave and characterized by Fourier transform infrared and scanning electron microscopy. The electrochemical performance of the prepared electrode was evaluated with cyclic voltammetry and electrochemical impedance spectroscopy. Results show that graphite felt treated by microwave for 15 min at 400 °C exhibits excellent electro-catalytic activity and reactive velocity to vanadium redox couples. The coulombic, voltage, and energy efficiency of the VRFB with as-prepared electrodes at 50 mA cm-2 are 96.9%, 75.5%, and 73.2%, respectively; these values are much higher than those of cell-assembled conventionally and thermally treated graphite felt electrodes. The microwave-treated graphite felt will carry more hydrophilic groups, such as -OH, on its defects, and rough degree of the surface which should be advantageous in facilitating the redox reaction of vanadium ions, leading to the efficient operation of a vanadium redox flow battery. Moreover, microwave treatment can be easily scaled up to treat graphite felt for VRFB in large quantities.

  3. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  4. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE PAGESBeta

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  5. Analysis of DMFC/battery hybrid power system for portable applications

    NASA Astrophysics Data System (ADS)

    Lee, Bong-Do; Jung, Doo-Hwan; Ko, Young-Ho

    This study was carried out to develop a direct methanol fuel cell (DMFC)/battery hybrid power system used in portable applications. For a portable power system, the DMFC was applied for the main power source at average load and the battery was applied for auxiliary power at overload. Load share characteristics of hybrid power source were analyzed by computational simulation. The connection apparatus between the DMFC and the battery was set and investigated in the real system. Voltages and currents of the load, the battery and the DMFC were measured according to fuel, air and load changes. The relationship between load share characteristic and battery capacity was surveyed. The relationship was also studied in abnormal operation. A DMFC stack was manufactured for this experiment. For the study of the connection characteristics to the fuel cell Pb-acid, Ni-Cd and Ni-MH batteries were tested. The results of this study can be applied to design the interface module of the fuel cell/battery hybrid system and to determine the design requirement in the fuel cell stack for portable applications.

  6. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    SciTech Connect

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.

  7. A high-performance dual-scale porous electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.

    2016-09-01

    In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.

  8. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    SciTech Connect

    Gu, W.B.; Jungst, Rudolph G.; Nagasubramanian, Ganesan; Wang, C.Y.; Weidner, John.

    1999-06-11

    A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. The model accounts for not only transport of species and charge, but also the electrode porosity variations and the electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures are compared to the experimental data with excellent agreement. Moreover, the simulation results. in conjunction with computer visualization and animation techniques, confirm that cell utilization in the temperature and current range of interest is limited by pore plugging or clogging of the front side of the cathode as a result of LiCl precipitation. The detailed two-dimensional flow simulation also shows that the electrolyte is replenished from the cell header predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.

  9. Nonaqueous magnesium electrochemistry and its application in secondary batteries.

    PubMed

    Aurbach, Doron; Weissman, Idit; Gofer, Yosef; Levi, Elena

    2003-01-01

    A revolution in modern electronics has led to the miniaturization and evolution of many portable devices, such as cellular telephones and laptop computers, since the 1980s. This has led to an increasing demand for new and compatible energy storage technologies. Furthermore, a growing awareness of pollution issues has provided a strong impetus for the science and technology community to develop alternatives with ever-higher energy densities, with the ultimate goal of being able to propel electric vehicles. Magnesium's thermodynamic properties make this metal a natural candidate for utilization as an anode in high-energy-density, rechargeable battery systems. We report herein on the results of extensive studies on magnesium anodes and magnesium insertion electrodes in nonaqueous electrolyte solutions. Novel, rechargeable nonaqueous magnesium battery systems were developed based on the research. This work had two major challenges: one was to develop electrolyte solutions with especially high anodic stability in which magnesium anodes can function at a high level of cycling efficiency; the other was to develop a cathode that can reversibly intercalate Mg ions in these electrolyte systems. The new magnesium batteries consist of Mg metal anodes, an electrolyte with a general structure of Mg(AlX(3-n)R(n)R')(2) (R',R = alkyl groups, X = halide) in ethereal solutions (e.g., tetrahydrofuran, polyethers of the "glyme" family), and Chevrel phases of MgMo(3)S(4) stoichiometry as highly reversible cathodes. With their practical energy density expected to be >60 Wh/Kg, the battery systems can be cycled thousands of times with almost no capacity fading. The batteries are an environmentally friendly alternative to lead-acid and nickel-cadmium batteries and are composed of abundant, inexpensive, and nonpoisonous materials. The batteries are expected to provide superior results in large devices that require high-energy density, high cycle life, a high degree of safety, and low

  10. Investigation of Local Environments in Nafion-SiO2 Composite Membranes used in Vanadium Redox Flow Batteries

    SciTech Connect

    Vijayakumar, M.; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, Suntharampillai; Liu, Jun; Graff, Gordon L.; Hu, Jian Z.

    2012-04-01

    The proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, the polymer composite membranes such as SiO2 incorporated Nafion membranes are recently reported as highly promising for the redox flow batteries. However, there is conflicting reports regarding the performance of this Nafion-SiO2 composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transformed Infra Red (FTIR) spectroscopy, and ultraviolet visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interaction via hydrogen bonds to the sulfonic groups of Nafion and diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO2 composite membrane materials in vanadium redox flow batteries.

  11. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    PubMed

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. PMID:22192576

  12. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect

    2010-09-15

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they’re forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  13. Symposium on Batteries and Fuel Cells for Stationary and Electric Vehicle Applications, Honolulu, HI, May 16-21, 1993, Proceedings

    NASA Astrophysics Data System (ADS)

    Landgrebe, Albert R.; Takehara, Zen-Ichiro

    The present conference discusses the development status of vehicular batteries in Japan, the effects of the solvent for electropolymerization of aniline on the charge/discharge characteristics of polyaniline, the charge/discharge mechanism of the amorphous FeOOH, including aniline as a cathode for a rechargeable Li battery, the effect of mesocarbon microbead structure on the electrochemistry of Li secondary batteries' negative electrode, and novel aluminum batteries. Also discussed are a room-temperature molten salt electrolyte for the Na/iron chloride battery, portable cells for redox batteries, the development status of lead-acid batteries for electric vehicles, mechanically refuelable zinc/air vehicular cells, polymer electrolyte fuel cells for transportation applications, proton exchange membrane fuel cells using gas-fed methanol, and a phosphotic acid fuel cell/battery.

  14. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  15. Resource constraints on the battery energy storage potential for grid and transportation applications

    NASA Astrophysics Data System (ADS)

    Wadia, Cyrus; Albertus, Paul; Srinivasan, Venkat

    Batteries have great promise for facilitating the grid integration of renewable energy and powering electric vehicles. One critical concern for the scale-up of battery production is the availability of the elements used in battery couples. We provide the first systematic comparison of supply limits and extraction costs of the elements in battery couples against short- and long-term scaling goals. Several couples can scale well beyond short- and long-term grid-storage goals, including: Na/S, Zn/Cl 2, and FeCl 2/CrCl 3. Li-based couples currently have the performance characteristics most suitable for electric vehicles, yet scaling beyond 10 MM vehicles per year will demand significant increases in Li production. We also provide a framework to evaluate new couples, such as those based on Mg, which may be an alternative to Li-based couples. While the extraction costs of the elements used in current battery couples are, in many cases, below 10 kWh -1, the cost of finished battery cells is in the range of 150-1000 kWh -1, well above cost targets of 100 kWh -1 for both grid and transportation applications. Currently high costs remain a critical barrier to the widespread scale-up of battery energy storage.

  16. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  17. Online Continuous Flow Differential Electrochemical Mass Spectrometry with a Realistic Battery Setup for High-Precision, Long-Term Cycling Tests.

    PubMed

    Berkes, Balázs B; Jozwiuk, Anna; Vračar, Miloš; Sommer, Heino; Brezesinski, Torsten; Janek, Jürgen

    2015-06-16

    We describe the benefits of an online continuous flow differential electrochemical mass spectrometry (DEMS) method that allows for realistic battery cycling conditions. We provide a detailed description on the buildup and the role of the different components in the system. Special emphasis is given on the cell design. The retention time and response characteristics of the system are tested with the electrolysis of Li2O2. Finally, we show a practical application in which a Li-ion battery is examined. The value of long-term DEMS measurements for the proper evaluation of electrolyte decomposition is demonstrated by an experiment where a Li(1+x)Ni(0.5)Mn(0.3)Co(0.2)O2 (NMC 532)/graphite cell is cycled over 20 charge/discharge cycles. PMID:25965095

  18. Formulation of flowable anolyte for redox flow batteries: Rheo-electrical study

    NASA Astrophysics Data System (ADS)

    Youssry, Mohamed; Madec, Lénaïc; Soudan, Patrick; Cerbelaud, Manuella; Guyomard, Dominique; Lestriez, Bernard

    2015-01-01

    In an attempt to optimize a suspension electrode for redox flow batteries, this work demonstrates the effect of solid content and additive material on the electrical and rheological behavior of an anolyte made up of lithium titanium oxide (Li4Ti5O12 (LTO), as active material), carbon black (Ketjen black (KB), as a conductive material) suspended in organic medium (1 M lithium bis(trifluoromethane)sulfonimide; LiTFSI in propylene carbonate). The rheo-electrical properties of the anolyte are very sensitive to the Li4Ti5O12 content. The 20 wt% LTO is the maximum loading the percolated KB network can sustain without significant loss of the electronic conductivity and flowability of the electrode. Interestingly, this critical concentration increases to 25 wt% by addition of trace amount of conductive carbon nanofibers (CNFs) which electronically wire the conductive pathways and even reduce viscosity of the suspension electrode. Under shear flow, the suspension electrodes show three-regime flow curves with intermediate shear-thickening regions in accordance with minima in the conductivity. These minima are sharper at higher KB content, but nearly disappear in suspension electrodes with CNFs additive implying its role in wiring the ruptured conductive pathways under flow.

  19. Bipolar silver zinc technology for primary battery applications

    NASA Astrophysics Data System (ADS)

    Skelton, James; Karpinski, Alexander P.; Hoagland, Douglas

    The results of four ampere hour primary cells developed and tested in groups of 20 cell monoblocks and 100 cell batteries are presented. Discharges up to 200 amperes produced very stable voltages and full capacity yield typical of a monopolar design. Discharges at nominal current densities of 0.16 amperes/sq cm yielded excellent load voltages with flat discharge curves.

  20. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.

    PubMed

    Zhou, Haipeng; Shen, Yi; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2016-06-22

    To improve the electrochemical performance of graphite felt (GF) electrodes in vanadium flow batteries (VFBs), we synthesize a series of ZrO2-modified GF (ZrO2/GF) electrodes with varying ZrO2 contents via a facile immersion-precipitation approach. It is found that the uniform immobilization of ZrO2 nanoparticles on the GF not only significantly promotes the accessibility of vanadium electrolyte, but also provides more active sites for the redox reactions, thereby resulting in better electrochemical activity and reversibility toward the VO(2+)/VO2(+) and V(2+)/V(3+) redox reactions as compared with those of GF. In particular, The ZrO2/GF composite with 0.3 wt % ZrO2 displays the best electrochemical performance with voltage and energy efficiencies of 71.9% and 67.4%, respectively, which are much higher than those of 57.3% and 53.8% as obtained from the GF electrode at 200 mA cm(-2). The cycle life tests demonstrate that the ZrO2/GF electrodes exhibit outstanding stability. The ZrO2/GF-based VFB battery shows negligible activity decay after 200 cycles. PMID:27229444

  1. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGESBeta

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  2. Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Chang, Tien-Chan; Zhang, Jun-Pu; Fuh, Yiin-Kuen

    2014-01-01

    Experiments including electrical, mechanical and morphological aspects under compression in the range of 0-40% have been carried out on four potential materials for liquid diffusion layer (LDL) of vanadium redox flow battery (VRB) (including three widely used carbon felt and one recently utilized metal foam) in order to better understand the influence of the fundamental properties on the battery performance. We experimentally demonstrate that the electrical contact resistance is predominately determined by the clamping force. It is observed that increasing the stress applied on the carbon felt, which is of high interest for the durability of the membrane electrode assembly (MEA), has moreover a positive effect on their performance due to the reduced contact resistance. However, a simultaneously reduced porosity is also recorded and possibly detrimental to the mass transport of vanadium electrolyte. Moreover, the intrusion of carbon felts under compression is also characterized. Experimental results show that with the clamping force increases, both the porosity of the carbon felts underneath the rib and channel volume decrease, and this can be mainly attributed to the deformation of the carbon felts and resultant changed of the void volume as well as intrusion.

  3. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents

    NASA Astrophysics Data System (ADS)

    Agar, Ertan; Benjamin, A.; Dennison, C. R.; Chen, D.; Hickner, M. A.; Kumbur, E. C.

    2014-01-01

    In this study, the operation of a vanadium redox flow battery (VRFB) under asymmetric current conditions (i.e., different current densities during charge and discharge) was investigated as a technique to reduce its capacity loss. Two different membrane types (a convection-dominated membrane and a diffusion-dominated membrane) were analyzed. In these analyses, the charging current density was varied while the discharging current was held constant. For both membranes, it was found that increasing the charging current decreases the net convective crossover of vanadium ions, which reduces the capacity loss of the battery. When the tested membranes were compared, the improvement in capacity retention was found to be larger for the diffusion-dominated membrane (12.4%) as compared to the convection-dominated membrane (7.1%). The higher capacity retention in the diffusion-dominated membrane was attributed to the reduction in the cycling time (and hence, suppressed contribution of diffusion) due to the increased charging current. While asymmetric current operation helps reduce capacity loss, it comes at the expense of a reduction in the voltage efficiencies. Increasing the charging current was found to increase the ohmic losses, which lead to a decrease of 6% and 4.3% in the voltage efficiencies of the convection-dominated and diffusion-dominated membranes, respectively.

  4. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    SciTech Connect

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrode surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.

  5. Maintenance-free 100 ampere-hour, lead acid battery for deep discharge, photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Farris, C.

    1982-06-01

    A new 6-volt 100 AH totally mantenance-free lead-acid battery was developed for deep discharge photovoltaic applications. During this 14-month contract, notable accomplishments are described. Improvement was made in cycle life of 100 AH batteries with horizntal plae orientation. This improvement corroborates prior art work on the horizontal configuraton as applies to cycle life. Eagle-Picher had instituted this work earlier on the 15 AH size CAREFREE battery. The reason for the enhanced performance horizontally is more consistent quantity of electrolyte available along the plate surface. This eliminate preferential electrochemical reaction at any part of the plate surface. Also the horizontal orientation eliminates stratification of electrolyte specific gravity which can occur on vertical oriented batteries. A substantial improvement in cycle life using the partial-state-of-charge cycling routine as conceived by Sandia was demonstrated.

  6. Lead-acid batteries in micro-hybrid applications. Part II. Test proposal

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Albers, J.; Weirather-Koestner, D.; Kabza, H.

    In the first part of this work [1] selected key parameters for applying lead-acid (LA) batteries in micro-hybrid power systems (MHPS) were investigated. Main results are integrated in an accelerated, comprehensive test proposal presented here. The test proposal aims at a realistic representation of the pSoC operation regime, which is described in Refs. [1,6]. The test is designed to be sensitive with respect to dynamic charge acceptance (DCA) at partially discharged state (critical for regenerative braking) and the internal resistance at high-rate discharge (critical for idling stop applications). First results are presented for up-to-date valve-regulated LA batteries with absorbent glass mat (AGM) separators. The batteries are close to the limits of the first proposal of pass/fail-criteria. Also flooded batteries were tested; the first out of ten units failed already.

  7. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    SciTech Connect

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1991-01-01

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R D. 1 ref., 4 figs., 2 tabs.

  8. Performance and life evaluation of advanced battery technologies for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric vehicle (EV) operating conditions at the Argonne Analysis and Diagnostic Laboratory (ADL). The ADL provides a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1990 on nine single cells and fifteen 3- to 360-cell modules that encompass six technologies: (Na/S, Zn/Br, Ni/Fe, Ni/Cd, Ni-metal hydride, and lead-acid). These evaluations were performed for the Department of Energy and Electric Power Research Institute. The results provide battery users, developers, and program managers an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modelling and continuing R and D.

  9. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  10. Ultra-high molecular weight polyethylene (UHMW-PE) and its application in microporous separators for lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Wang, L. C.; Harvey, M. K.; Ng, J. C.; Scheunemann, U.

    The polyethylene (PE) used in separators for automotive lead/acid batteries is actually UHMW-PE (ultra high molecular weight polyethylene). Microporous PE separators were commercialized in the early 1970s. Since then, they have gained in popularity in the lead/acid battery industry, particularly in SLI (starting, lighting and ignition) automotive applications. This paper provides an introductory overview of the UHMW-PE polymer and its contributions to the PE battery separator manufacturing process, battery assembly and battery performance, in comparison with other conventional separators such as polyvinyl chloride (PVC) and glass fibre.

  11. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  12. Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries

    SciTech Connect

    Desai, D; Wei, X; Steingart, DA; Banerjee, S

    2014-06-15

    Preferred orientation of zinc deposits during charging is shown to significantly improve performance and cycle life in flow-assisted alkaline zinc batteries, which has not been demonstrated earlier. The preferred orientation of zinc deposits was investigated using X-ray diffraction (XRD). Compact zinc is found to have (11 (2) over bar2) preferred orientation on brass, which contributes to similar to 60% of the texture. The effect of charging current and zincate concentration on morphology was investigated in a rotating hull cell and correlated with anodic efficiency. Compact zinc deposits are found to have a fine-grained, bright finish and the highest anodic efficiency. Electrochemical impedance spectroscopy (EIS) proves that compact zinc corresponds to the minimum in the half-cell resistance. Morphological control using compact zinc could be accomplished using innovations such as pulse charging or enhanced mass-transfer to improve anode performance without affecting the cathode. (C) 2014 Elsevier B.V. All rights reserved.

  13. Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries

    NASA Astrophysics Data System (ADS)

    Desai, Divyaraj; Wei, Xia; Steingart, Daniel A.; Banerjee, Sanjoy

    2014-06-01

    Preferred orientation of zinc deposits during charging is shown to significantly improve performance and cycle life in flow-assisted alkaline zinc batteries, which has not been demonstrated earlier. The preferred orientation of zinc deposits was investigated using X-ray diffraction (XRD). Compact zinc is found to have (11 2 bar 2) preferred orientation on brass, which contributes to ∼60% of the texture. The effect of charging current and zincate concentration on morphology was investigated in a rotating hull cell and correlated with anodic efficiency. Compact zinc deposits are found to have a fine-grained, bright finish and the highest anodic efficiency. Electrochemical impedance spectroscopy (EIS) proves that compact zinc corresponds to the minimum in the half-cell resistance. Morphological control using compact zinc could be accomplished using innovations such as pulse charging or enhanced mass-transfer to improve anode performance without affecting the cathode.

  14. The lightest organic radical cation for charge storage in redox flow batteries.

    PubMed

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-01-01

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways. PMID:27558638

  15. The lightest organic radical cation for charge storage in redox flow batteries

    PubMed Central

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile R.; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Lu

    2016-01-01

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways. PMID:27558638

  16. Spectroscopic Investigations of the Fouling Process on Nafion Membranes in Vanadium Redox Flow Batteries

    SciTech Connect

    Vijayakumar, M.; Sivakumar, Bhuvaneswari M.; Nachimuthu, Ponnusamy; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Liu, Jun; Graff, Gordon L.; Thevuthasan, Suntharampillai; Hu, Jian Z.

    2011-01-01

    The Nafion-117 membrane used in vanadium redox flow battery (VRFB) is analyzed by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface due to their low diffusivity. On the other hand, the 17O NMR spectrum explores the diffused vanadium cation from the bulk part of Nafion and shows the chemical bonding of cation and the host membrane. The 19F NMR shows the basic Nafion structure is not altered due to the presence of diffused vanadium cation. Based on these spectroscopic studies, the chemical environment of diffused vanadium cation in the Nafion membrane is discussed. This study also shed light into the possible cause for the high diffusivity of certain vanadium cations inside the Nafion membranes.

  17. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries.

    PubMed

    Luo, Qingtao; Li, Liyu; Wang, Wei; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Yang, Zhenguo; Sprenkle, Vincent

    2013-02-01

    The relationship between electrochemical performance of vanadium redox flow batteries (VRBs) and electrolyte composition is investigated, and the reasons for capacity decay over charge-discharge cycling are analyzed and discussed herein. The results show that the reasons for capacity fading over real charge-discharge cycling include not only the imbalanced vanadium active species, but also the asymmetrical valence of vanadium ions in positive and negative electrolytes. The asymmetrical valence of vanadium ions leads to a state-of-charge (SOC)-range decrease in positive electrolytes and a SOC-range increase in negative electrolytes. As a result, the higher SOC range in negative half-cells further aggravates capacity fading by creating a higher overpotential and possible hydrogen evolution. Based on this finding, we developed two methods for restoring lost capacity, thereby enabling long-term operation of VRBs to be achieved without the substantial loss of energy resulting from periodic total remixing of electrolytes. PMID:23208862

  18. A multi-stack simulation of shunt currents in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Wandschneider, F. T.; Röhm, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.

    2014-09-01

    A model for the shunt currents in an all-vanadium redox flow battery consisting of 3 stacks which are electrically connected in series. It is based on an equivalent circuit which treats the shunt current pathways as Ohmic resistors. The conductivity of the vanadium electrolyte has been measured for different state-of-charges in order to implement a dependency of the resistances on the state-of-charge of the system. Published results are used to validate the simulation data of a single stack. Three setups of pipe networks are evaluated using the model. The pipe connections between the stacks give rise to external shunt currents, which also increase the amount of shunt currents within the stacks. These connections also lead to a nonuniform distribution of the shunt currents. The effects of the shunt currents on the Coulombic efficiency and the energy efficiency of the system are studied by the means of the model.

  19. Analysis and measurement of the electrolyte imbalance in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-05-01

    Electrolyte imbalance in vanadium redox flow batteries is an important problem for its long-term operation as it leads to loss of energy. To address this problem, a modified open circuit voltage (OCV) cell is developed by adding a middle half cell between the negative and positive half cells of a conventional OCV cell and used to predict the oxidation state of vanadium in the electrolyte solution from the measured voltage in each side of the electrolyte (positive and negative). The correlation between the oxidation state of vanadium and cell voltage is explained by a basic electrochemical principle and the Nernst equation. The experimental results show that at different oxidation states of vanadium, the predicted OCV agrees reasonably with the experimental data. In addition, the effect of the state of charge (SOC) and electrolyte imbalance on the energy capacity of a cell is discussed.

  20. Highly accurate apparatus for electrochemical characterization of the felt electrodes used in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Park, Jong Ho; Park, Jung Jin; Park, O. Ok; Jin, Chang-Soo; Yang, Jung Hoon

    2016-04-01

    Because of the rise in renewable energy use, the redox flow battery (RFB) has attracted extensive attention as an energy storage system. Thus, many studies have focused on improving the performance of the felt electrodes used in RFBs. However, existing analysis cells are unsuitable for characterizing felt electrodes because of their complex 3-dimensional structure. Analysis is also greatly affected by the measurement conditions, viz. compression ratio, contact area, and contact strength between the felt and current collector. To address the growing need for practical analytical apparatus, we report a new analysis cell for accurate electrochemical characterization of felt electrodes under various conditions, and compare it with previous ones. In this cell, the measurement conditions can be exhaustively controlled with a compression supporter. The cell showed excellent reproducibility in cyclic voltammetry analysis and the results agreed well with actual RFB charge-discharge performance.

  1. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation

    NASA Astrophysics Data System (ADS)

    Pezeshki, Alan M.; Clement, Jason T.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-10-01

    The roundtrip electrochemical energy efficiency is improved from 63% to 76% at a current density of 200 mA cm-2 in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper electrodes in the high-performance no-gap design. Heat treatment of the carbon paper electrodes in a 42% oxygen/58% nitrogen atmosphere increases the electrochemically wetted surface area from 0.24 to 51.22 m2 g-1, resulting in a 100-140 mV decrease in activation overpotential at operationally relevant current densities. An enriched oxygen environment decreases the amount of treatment time required to achieve high surface area. The increased efficiency and greater depth of discharge doubles the total usable energy stored in a fixed amount of electrolyte during operation at 200 mA cm-2.

  2. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Sun, Che-Nan; Delnick, Frank M.; Baggetto, Loïc; Veith, Gabriel M.; Zawodzinski, Thomas A.

    2014-02-01

    This work demonstrates a quantitative method to determine the hydrogen evolution rate occurring at the negative carbon electrode of the all vanadium redox flow battery (VRFB). Two carbon papers examined by buoyancy measurements yield distinct hydrogen formation rates (0.170 and 0.005 μmol min-1 g-1). The carbon papers have been characterized using electron microscopy, nitrogen gas adsorption, capacitance measurement by electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). We find that the specific electrochemical surface area (ECSA) of the carbon material has a strong influence on the hydrogen generation rate. This is discussed in light of the use of high surface area material to obtain high reaction rates in the VRFB.

  3. Investigation of the electrospun carbon web as the catalyst layer for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2014-12-01

    Polyacrylonitrile (PAN) carbon nonwoven web consisting of 100-200 nm ultrafine fibers has been developed by electrospinning and subsequent carbonization process at 1000 °C for different times. The surface morphology, composition, structure, and electrical conductivity of the electrospun carbon webs (ECWs) as well as their electrochemical properties toward vanadium redox couples have been characterized. With the increasing of carbonization time, the electrochemical reversibility of the vanadium redox couples on the ECW is enhanced greatly. As the carbonization time increases up to 120 min, the hydrogen evolution is facilitated while the reversibility is promoted a little bit further. The excellent performance of ECW may be attributed to the conversion of fibers carbon structure and improvement of electrical conductivity. Due to the good electrochemical activity and freestanding 3-dimensional structure, the ECW carbonized for 90 min is used as catalyst layer in vanadium redox flow battery (VRFB) and enhances the cell performance.

  4. CanTrilBat_ThermalBattery

    SciTech Connect

    Moffat, Harry K.; John Hewson, Victor Brunini

    2013-09-24

    CanTrilBat applications solves transient problems involving batteries. It is a 1-D application that represents 3-D physical systems that can be reduced using the porous flow approximation for the anode, cathode, and separator. CanTrilBat_ThermalBattery adds constitutive models on top of the CanTrilBat framework. CanTrilBat_ThermalBattery contains constitutive models for the electrode behavior when more than one electrode heterogeneous surface is reacting. This is a novel capability within the battery community. These models are named as the “Electrode_MultiPlateau” model.

  5. CanTrilBat_ThermalBattery

    Energy Science and Technology Software Center (ESTSC)

    2013-09-24

    CanTrilBat applications solves transient problems involving batteries. It is a 1-D application that represents 3-D physical systems that can be reduced using the porous flow approximation for the anode, cathode, and separator. CanTrilBat_ThermalBattery adds constitutive models on top of the CanTrilBat framework. CanTrilBat_ThermalBattery contains constitutive models for the electrode behavior when more than one electrode heterogeneous surface is reacting. This is a novel capability within the battery community. These models are named as the “Electrode_MultiPlateau”more » model.« less

  6. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  7. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  8. Chemical and Mechanical Degradation of Sulfonated Poly(sulfone) Membranes in Vanadium Redox Flow Batteries

    SciTech Connect

    Kim, Soowhan; Tighe, Timothy B.; Schwenzer, Birgit; Yan, Jingling; Zhang, Jianlu; Liu, Jun; Yang, Zhenguo; Hickner, Michael A.

    2011-10-01

    A sulfonated poly(sulfone) (S-Radel{reg_sign}) membrane with high proton conductivity and low vanadium ion diffusion showed high initial performance in a vanadium redox flow battery (VRFB) but suffered damage during charge/discharge cycling. The S-Radel membrane had different degradation behaviors in flow cell cycling and ex-situ vanadium ion immersion tests. The S-Radel membrane immersed in V5+ solution cracked into small pieces, but in the VRFB cell, the membrane underwent internal delamination preferentially on the side of the membrane that faced the positive electrode. A vanadium-rich interface was observed near the membrane surface that experienced delamination and Raman spectroscopic analysis of the surfaces of the membrane indicated a slightly depressed 1026 cm-1 band corresponding to the sulfonate SO2 stretch for the degraded surface. Even though the S-Radel membrane underwent severe mechanical damage during the flow cell cycling, significant chemical degradation was not obvious from the spectroscopic analyses. For the VRFB containing an S-Radel membrane, an increase in membrane resistance caused an abnormal voltage depression during the discharge cycle. The reversible increase in membrane resistance and severe mechanical degradation of the membrane during cycling may be attributed repeated formation and dissolution of particles inside the membrane. The mechanical stresses imposed by the particles coupled with a small amount of chemical degradation of the polymer by V5+, are likely degradation mechanisms of the S-Radel membrane in VRFBs under high state-of-charge conditions.

  9. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  10. Toroidal cell and battery. [storage battery for high amp-hour load applications

    NASA Technical Reports Server (NTRS)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  11. CFD applications in pump flows

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Liang; Kwak, Dochan

    1992-01-01

    The objective of the proposed paper is to develop a computational procedure that solves incompressible Navier-Stokes equations for pump flows. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. As a benchmark problem, the flow through the Rocketdyne inducer is numerically simulated. A coarse grid solution is obtained with a single zone by using an algebraic turbulence model. In multi-zone fine grid computation, a one-equation Baldwin-Barth turbulence model is utilized. Numerical results are compared with experimental measurements and a good agreement is found between the two. The resulting computer code is then applied to the flow analysis inside a two-stage fuel pump impeller operating at 80 percent, 100 percent, and 120 percent of design flow.

  12. High-energy non-rechargeable batteries and their applications

    NASA Astrophysics Data System (ADS)

    Higgins, Robert; Kruger, Ken

    1990-04-01

    Many of the more recently developed high energy battery systems employ Li anodes, which are capable of energy densities of 700 W h/kg and shelf power-losses of less than 3 percent/yr. It has been noted, however, that some Li-based systems exhibit 'voltage sag' during storage and pose some safety problems in cases of inadvertent abuse. The two highest energy-output yielding of the current Li systems, namely Li/CF(x) spiral cells and Li/thionyl chloride liquid cathode cells, are presented and compared with a Zn/AgO electrochemical (aqueous) battery system which, although of older design, is still capable of substantial energy densities.

  13. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng

    2015-12-01

    Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.

  14. Lithium and lithium ion batteries for applications in microelectronic devices: A review

    NASA Astrophysics Data System (ADS)

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel; Ferrara, Seth; Deng, Zhiqun Daniel; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  15. Lithium and lithium ion batteries towards micro-applications: a review

    SciTech Connect

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel S.; Ferrara, Seth A.; Deng, Zhiqun; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  16. Solid-state, rechargeable Li/LiFePO 4 polymer battery for electric vehicle application

    NASA Astrophysics Data System (ADS)

    Damen, L.; Hassoun, J.; Mastragostino, M.; Scrosati, B.

    A solid-state polymer lithium metal battery having a LiFePO 4/C composite cathode and a poly(ethylene oxide) PEO-based solid polymer electrolyte was assembled and characterized in terms of specific energy and power according to the protocol for electric vehicle (EV) application set by the USABC-DOE. The results of these tests show that this polymer battery surpasses the goals stated by USABC-DOE and, hence, may be suitable for application in the evolving EV market.

  17. Overview of nickel metal hydride battery technology for aerospace applications. Technical report

    SciTech Connect

    Wasz, M.L.

    1996-08-22

    For thirty years, the scientific community has investigated using intermetallic metal hydrides as hydrogen reservoirs and electrodes for secondary batteries. They are now replacing nickel-cadmium batteries in small electronics and may become attractive for aerospace applications. Metal hydride batteries do not require high-pressure containers, and prismatic cell designs are possible. With alloying, a wide range of operational temperatures can be achieved; however, large batteries require thermal control to dissipate and supply heat during high-rate charging and discharging. Recent investigations have concentrated on optimizing electrode capacity and cycle life by manipulating alloy compositions, microstructures, particle sizes, crystallinity, and surface chemistry. Despite intensive efforts, the discharge capacity of the metal hydrides has not improved beyond 250-400 mAh/g, and inherent deterioration processes apparently related to the formation of the hydride phase make metal hydrides unreliable choices for satellite applications demanding more than 500-2000 cycles. Additionally, the long-term effects of exposure of these materials to the potassium-hydroxide electrolyte during low-cycle, long-life missions is not known. This review surveys the status of research and commercial development of metal-hydride cells and evaluates the potential advantages and applications of metal-hydride batteries for aerospace use.

  18. Maintenance-free, 100 ampere-hour, lead acid battery for deep discharge, photovoltaic applications

    SciTech Connect

    Farris, C.

    1982-06-01

    A new 6-volt 100 AH totally maintenance-free lead-acid battery was developed for deep discharge photovoltaic applications. During this 14-month contract, notable accomplishments are described. Improvement was made in cycle life of 100 AH batteries with horizontal plate orientation. This improvement corroborates prior art work on the horizontal configuration as applies to cycle life. Eagle-Picher had instituted this work earlier on the 15 AH size CAREFREE battery. The reason for the enhanced performance horizontally is more consistent quantity of electrolyte available along the plate surface. This eliminates preferential electrochemical reaction at any part of the plate surface. Also the horizontal orientation eliminates stratification of electrolyte specific gravity which can occur on vertical oriented batteries. A substantial improvement in cycle life using the partial-state-of-charge cycling routine as conceived by Sandia was demonstrated. Totally sealed operation was accomplished with oxygen gas recombination of starved electrolyte 100 AH batteries at charge rates of C/100 to C/20. The final design was a sealed, starved electrolyte 100 AH battery to provide oxygen gas recombination with the negative plate.

  19. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    SciTech Connect

    Hammond, R.L.; Turpin, J.F.; Corey, G.P.

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  20. Lithium-ion batteries for hearing aid applications. II. Pulse discharge and safety tests

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Coustier, F.; Owens, B. B.

    Rechargeable lithium-ion batteries were designed to meet the power requirements of hearing aid devices (HADs). The batteries were designed in a 312-button cell size, compatible with existing hearing aids. The batteries were tested to evaluate the design and the electrochemical performance, as they relate to a typical hearing aid application. The present report covers the pulse capabilities, cycle life and preliminary safety tests. The results are compared with other battery chemistries: secondary lithium-alloy and nickel-metal hydride batteries and primary Zn-air batteries. The cell AC impedance was stable over the frequency range between 1 and 50 kHz, ranging between 5 Ω at the higher frequency and 12 Ω at the lower extreme. Pulse tests were consistent with these values, as the cells were capable of providing a series of 100 mA pulses of 10-s duration. The safety tests suggest that the design is intrinsically safe with respect to the most common types of abuse conditions.

  1. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Raël, Stephane; Davat, Bernard

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle.

  2. Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte

    NASA Astrophysics Data System (ADS)

    Jing, Minghua; Wei, Zengfu; Su, Wei; He, Hongxiang; Fan, Xinzhuang; Qin, Ye; Liu, Jianguo; Yan, Chuanwei

    2016-08-01

    In order to improve the utilization rate of the electrolyte and further reduce the energy storage cost, the physicochemical properties, electrochemical characteristics and charge/discharging behaviors of VFB with different concentration of VOSO4 and H2SO4 were investigated systematically. The physicochemical characterizations show that the viscosity increases with the increasing concentration of VOSO4 and H2SO4, and the conductivity increases with the increasing concentration of H2SO4 while decreases with the increasing concentration of VOSO4. Both CV and EIS results demonstrate that the electrolyte with 1.6 mol L-1 VOSO4 and 2.8 mol L-1 H2SO4 presents the best electrochemical performance because of the coupling effect of the viscosity, conductivity and electrochemical activity. Different with the half-cell electrochemical tests, the battery performance of VFB is not only dependent on the electrochemical activity of electrode/electrolyte interface, but also closely related to the conductivity of electrolyte and diffusion rates of the active particles between anolyte and catholyte. Taking the battery efficiencies and capacity into consideration, VFB with 1.6 mol L-1 VOSO4 and 2.8 mol L-1 H2SO4 exhibits the optimal electrochemical performance. The accomplishment of this work not only gives data support to the fundamental research of VFB, but also provides theoretical direction to the engineering application of VFB.

  3. The development of aluminum-air batteries for application in electric vehicles

    SciTech Connect

    Rudd, E.J. . Research and Development Center); Lott, S. )

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100--150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch'' or solids-free'' battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  4. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model

    NASA Astrophysics Data System (ADS)

    Xiong, Binyu; Zhao, Jiyun; Wei, Zhongbao; Skyllas-Kazacos, Maria

    2014-09-01

    State of charge (SOC) estimation is a key issue for battery management since an accurate estimation method can ensure safe operation and prevent the over-charge/discharge of a battery. Traditionally, open circuit voltage (OCV) method is utilized to estimate the stack SOC and one open flow cell is needed in each battery stack [1,2]. In this paper, an alternative method, extended Kalman filter (EKF) method, is proposed for SOC estimation for VRBs. By measuring the stack terminal voltages and applied currents, SOC can be predicted with a state estimator instead of an additional open circuit flow cell. To implement EKF estimator, an electrical model is required for battery analysis. A thermal-dependent electrical circuit model is proposed to describe the charge/discharge characteristics of the VRB. Two scenarios are tested for the robustness of the EKF. For the lab testing scenarios, the filtered stack voltage tracks the experimental data despite the model errors. For the online operation, the simulated temperature rise is observed and the maximum SOC error is within 5.5%. It is concluded that EKF method is capable of accurately predicting SOC using stack terminal voltages and applied currents in the absence of an open flow cell for OCV measurement.

  5. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  6. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction

    NASA Astrophysics Data System (ADS)

    Wandschneider, F. T.; Finke, D.; Grosjean, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.

    2014-12-01

    Membranes are an important part of vanadium redox flow battery cells. Most cell designs use Nafion®-type membranes which are cation exchange membranes. Anion exchange membranes are reported to improve cell performance. A model for a vanadium redox flow battery with an anion exchange membrane is developed. The model is then used to calculate terminal voltages for open circuit and charge-discharge conditions. The results are compared to measured data from a laboratory test cell with 40 cm2 active membrane area. For higher charge and discharge currents, an empirical correction for the terminal voltage is proposed. The model geometry comprises the porous electrodes and the connected pipes, allowing a study of the flow in the entrance region for different state-of-charges.

  7. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    NASA Astrophysics Data System (ADS)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  8. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  9. Life evaluation of valve-regulated lead-acid batteries for load-leveling applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Miller, J. F.; Webster, C. E.; Hogrefe, R. L.

    Argonne National Laboratory (ANL) has initiated a test program to evaluate the suitability of valve-regulated lead-acid (VRLA) batteries for use in deep-discharge cycling applications. The program includes the examination of VRLA batteries of the gelled-electrolyte design and the absorbed-electrolyte type. This work is sponsored by the Electric Power Research Institute (EPRI) and the International Lead Zinc Research Organization (ILZRO). While VRLA batteries have found use in standby and uninterruptable power source applications, insufficient data are available to determine their performance and life in repetitive cycling applications. The objectives of the ANL test plan are: (1) to use accelerated testing techniques to obtain evidence within a 6 month test period that indicate an expected life in a utility operating environment; (2) to determine VRLA battery life within a 2 to 3 year time period under conditions (temperature and depth-of-discharge) that closely simulate those encountered in load-leveling operations; and (3) to assess the applicability and usefulness of accelerated testing procedures for deep-discharge cycling applications.

  10. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    SciTech Connect

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  11. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE PAGESBeta

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  12. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  13. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    PubMed Central

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  14. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    NASA Astrophysics Data System (ADS)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  15. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging.

    PubMed

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885

  16. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging

    PubMed Central

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885

  17. Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li-S Battery Application.

    PubMed

    Wang, Qian; Yan, Na; Wang, Meiri; Qu, Chao; Yang, Xiaofei; Zhang, Hongzhang; Li, Xianfeng; Zhang, Huamin

    2015-11-18

    The C/S cathode with only 0.5 wt % binder, composed with Nafion and PVP, was assembled layer-by-layer for lithium-sulfur battery (Li-S) application. It achieved excellent binding strength and battery performance compared to the cathode with 10 wt % PVDF, which is promising to further increase the practical energy density of Li-S batteries. PMID:26541216

  18. BESCORP SOIL WASHING SYSTEM FOR LEAD BATTERY SITE TREATMENT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and Its applicability in remediating lead-contaminated soil at lead battery sites. It presents performance and economic data, developed from the U.S. Environmental Protection A...

  19. BESCORP SOIL WASHING SYSTEM FOR LEAD BATTERY SITE TREATMENT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    The Brice Environmental Services Corporation (BESCORP Soil Washing System (BSWS) and its applicability in remediating lead-contaminated soil at lead battery sites was evaluated. he report presents performance and economic data, developed from the U.S. Environmental Protection Age...

  20. Nanostructured mesoporous materials for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Balaya, P.; Saravanan, K.; Hariharan, S.; Ramar, V.; Lee, H. S.; Kuezma, M.; Devaraj, S.; Nagaraju, D. H.; Ananthanarayanan, K.; Mason, C. W.

    2011-06-01

    The Energy crisis happens to be one of the greatest challenges we are facing today. In this view, much effort has been made in developing new, cost effective, environmentally friendly energy conversion and storage devices. The performance of such devices is fundamentally related to material properties. Hence, innovative materials engineering is important in solving the energy crisis problem. One such innovation in materials engineering is porous materials for energy storage. Porous electrode materials for lithium-ion batteries (LIBs) offer a high degree of electrolyte-electrode wettability, thus enhancing the electrochemical activity within the material. Among the porous materials, mesoporous materials draw special attention, owing to shorter diffusion lengths for Li+ and electronic movement. Nanostructured mesoporous materials also offer better packing density compared to their nanostructured counterparts such as nanopowders, nanowires, nanotubes etc., thus opening a window for developing electrode materials with high volumetric energy densities. This would directly translate into a scenario of building batteries which are much lighter than today's commercial LIBs. In this article, the authors present a simple, soft template approach for preparing both cathode and anode materials with high packing density for LIBs. The impact of porosity on the electrochemical storage performance is highlighted.

  1. Kernel based model parametrization and adaptation with applications to battery management systems

    NASA Astrophysics Data System (ADS)

    Weng, Caihao

    With the wide spread use of energy storage systems, battery state of health (SOH) monitoring has become one of the most crucial challenges in power and energy research, as SOH significantly affects the performance and life cycle of batteries as well as the systems they are interacting with. Identifying the SOH and adapting of the battery energy/power management system accordingly are thus two important challenges for applications such as electric vehicles, smart buildings and hybrid power systems. This dissertation focuses on the identification of lithium ion battery capacity fading, and proposes an on-board implementable model parametrization and adaptation framework for SOH monitoring. Both parametric and non-parametric approaches that are based on kernel functions are explored for the modeling of battery charging data and aging signature extraction. A unified parametric open circuit voltage model is first developed to improve the accuracy of battery state estimation. Several analytical and numerical methods are then investigated for the non-parametric modeling of battery data, among which the support vector regression (SVR) algorithm is shown to be the most robust and consistent approach with respect to data sizes and ranges. For data collected on LiFePO 4 cells, it is shown that the model developed with the SVR approach is able to predict the battery capacity fading with less than 2% error. Moreover, motivated by the initial success of applying kernel based modeling methods for battery SOH monitoring, this dissertation further exploits the parametric SVR representation for real-time battery characterization supported by test data. Through the study of the invariant properties of the support vectors, a kernel based model parametrization and adaptation framework is developed. The high dimensional optimization problem in the learning algorithm could be reformulated as a parameter estimation problem, that can be solved by standard estimation algorithms such as the

  2. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.

    PubMed

    Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L

    2016-01-20

    In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles. PMID:26720551

  3. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin

    2014-12-01

    The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.

  4. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  5. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-07-01

    Hybrid membranes of sulfonated poly(ether ether ketone) (SPEEK) and mesoporous silica SBA-15 are prepared with various mass ratios for vanadium redox flow battery (VRB) application and investigated in detail. The hybrid membranes are dense and homogeneous with no visible hole as the SEM and EDX images shown. With the increasing of SBA-15 mass ratio, the physicochemical property, VO2+ permeability, mechanical property and thermal stability of hybrid membranes exhibit good trends, which can be attributed to the interaction between SPEEK and SBA-15. The hybrid membrane with 20 wt.% SBA-15 (termed as S/SBA-15 20) shows the VRB single cell performance of CE 96.3% and EE 88.1% at 60 mA cm-2 due to its good balance of proton conductivity and VO2+ permeability, while Nafion 117 membrane shows the cell performance of CE 92.2% and EE 81.0%. Besides, the S/SBA-15 20 membrane shows stable cell performance of highly stable efficiency and slower discharge capacity decline during 120 cycles at 60 mA cm-2. Therefore, the SPEEK/SBA-15 hybrid membranes with optimized mass ratio and excellent VRB performance can be achieved, exhibiting good potential usage in VRB systems.

  6. 42 V Power Net with supercapacitor and battery for automotive applications

    NASA Astrophysics Data System (ADS)

    Marie-Francoise, J. N.; Gualous, H.; Outbib, R.; Berthon, A.

    This paper presents simulation and experimental realization of 42 V Power Net for automotive auxiliary on-board applications. For energy storage, a pack of supercapacitors is used in parallel with a battery. For simulation, the mathematical models of battery, DC/DC converters and supercapacitors are developed using MATLAB/SIMULINK ®. An experimental power test bench has been designed. The 42 V Power Net voltage and the load current of supercapacitors are controlled by a microcontroller. Simulation results and experimental ones are presented, compared and analysed.

  7. Surface treated natural graphite as anode material for high-power Li-ion battery applications.

    SciTech Connect

    Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

    2006-01-01

    High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

  8. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II). Part VI. Studies of the lead dioxide positive electrode

    NASA Astrophysics Data System (ADS)

    Pletcher, Derek; Zhou, Hantao; Kear, Gareth; Low, C. T. John; Walsh, Frank C.; Wills, Richard G. A.

    The structure of thick lead dioxide deposits (approximately 1 mm) formed in conditions likely to be met at the positive electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. Compact and well adherent layers are possible with current densities >100 mA cm -2 in electrolytes containing 0.1-1.5 M lead(II) and methanesulfonic acid concentrations in the range 0-2.4 M; the solutions also contained 5 mM hexadecyltrimethylammonium cation, C 16H 33(CH 3) 3N +. From the viewpoint of the layer properties, the limitation is stress within the deposit leading to cracking and lifting away from the substrate; the stress appears highest at high acid concentration and high current density. There are, however, other factors limiting the maximum current density for lead dioxide deposition, namely oxygen evolution and the overpotential associated with the deposition of lead dioxide. A strategy for operating the soluble lead-acid flow battery is proposed.

  9. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  10. Reducing the cost of maintaining valve-regulated lead/acid batteries in telecommunications applications

    NASA Astrophysics Data System (ADS)

    Kniveton, M. W.

    British Telecommunications has utilized valve-regulated lead/acid (VRLA) technology for 10 years and has considerable experience of varying product performance. A discussion is given of battery applications in telecommunications and includes experiences of typical failure modes such as group-bar corrosion and premature capacity loss, together with the detrimental effects of high temperature on service life. Specific maintenance requirements are also reviewed with particular attention to costs and reliability. Data are presented on the effectiveness of new methods of testing large numbers of VRLA batteries and, in particular, the reliability of conductance testing. An explanation is given of the role of conductance measurements, discharge testing and manufacturers' laboratory analysis in contributing to an effective maintenance programme. Specific requirements for the management of a battery-replacement programme are also included. Finally, BT user experience is described and solutions are provided to reduce the cost of VRLA maintenance while improving reliability.

  11. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    PubMed Central

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product (ρη) of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for ρη measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency. PMID:23112618

  12. Maintenance-free, deep-discharge, lead-acid battery for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Szymborski, J.

    1982-04-01

    Progress in the development, design, fabrication, and testing of totally maintenance-free sealed lead-acid batteries suitable for the deep-discharge regimes of solar photovoltaic applications is reported. The 6-volt, 100-ampere-hour battery was designed to meet these additional key design goals: 6-h nominal discharge rates; 80% depth-of-discharge daily duty cycle; 2000 cycles to an 80% depth-of-discharge; recharge in less than 8 h; 80% roundtrip energy efficiency; and self-discharge rate of less than 1% per week. Totally maintenance-free sealed operation was achieved by designing the cells so that only oxygen is generated on charge. The cells in this battery are fabricated with positive grids cast from a low antimony alloy in order to achieve both maintenance-free operation and good deep cycle performance. Various cycle life tests and tests to determine the tolerance of the battery to operation and storage at various states-of-charge and over a wide range of temperatures were performed. The charging parameters to adequately recharge the battery while minimizing overcharge and gassing were extensively studied.

  13. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  14. Driving rural energy access: a second-life application for electric-vehicle batteries

    NASA Astrophysics Data System (ADS)

    Ambrose, Hanjiro; Gershenson, Dimitry; Gershenson, Alexander; Kammen, Daniel

    2014-09-01

    Building rural energy infrastructure in developing countries remains a significant financial, policy and technological challenge. The growth of the electric vehicle (EV) industry will rapidly expand the resource of partially degraded, ‘retired’, but still usable batteries in 2016 and beyond. These batteries can become the storage hubs for community-scale grids in the developing world. We model the resource and performance potential and the technological and economic aspects of the utilization of retired EV batteries in rural and decentralized mini- and micro-grids. We develop and explore four economic scenarios across three battery chemistries to examine the impacts on transport and recycling logistics. We find that EVs sold through 2020 will produce 120-549 GWh in retired storage potential by 2028. Outlining two use scenarios for decentralized systems, we discuss the possible impacts on global electrification rates. We find that used EV batteries can provide a cost-effective and lower environmental impact alternative to existing lead-acid storage systems in these applications.

  15. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    PubMed

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency. PMID:23112618

  16. Advanced flow MRI: emerging techniques and applications.

    PubMed

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  17. Optimum battery design for applications in photovoltaic systems — theoretical considerations

    NASA Astrophysics Data System (ADS)

    Sauer, Dirk Uwe; Garche, Jürgen

    In comparison to standard applications, lifetimes of lead-acid batteries in photovoltaic (PV) systems are shorter than one might expect. This investigation aims to identify reasons for the accelerated ageing. A detailed mathematical model of current, potential and acid distribution within the electrodes during normal operation is developed and used. Results show that the rather small currents in PV applications (on an average between I50 and I100) and the limited charging time cause problems, which are of minor relevance for standard applications. Small currents in conjunction with acid stratification cause a significant undercharging of the lower part of the electrodes, which again causes accelerated sulphation. Further, the number of sulphate crystals decreases with decreasing discharge current used for a full charge of the battery. This reduces the overall surface of the sulphate crystals and results in higher polarisation during the charging. The time taken for a battery cell to be completely charged is dominated by the positive electrode because it shows a high polarisation well before the electrode is completely charged. Simulations show that the charging time could be reduced if positive electrodes with less inner surface were to be used in batteries for PV systems. It is worth mentioning that the requirements for power are rather small in PV systems. This paper focuses on the qualitative results of the simulations and their interpretation. No models are explained in detail.

  18. Low-maintenance, valve-regulated, lead/acid batteries in utility applications

    NASA Astrophysics Data System (ADS)

    Cook, G. M.; Spindler, W. C.

    Electric power utility companies have various needs for lead/acid batteries, and also are beginning to promote customer-side-of-the meter applications for mutual benefits. Increasing use of lead/acid batteries in the future will depend heavily on improving performance and reliability of sealed, recombination designs, and on their versatility for many applications. Classifying various utility uses could be by cycling requirements, depth-of-discharge, power or energy (ratio of watts to hours), or by site (utility or customer). Deep-cycling examples are energy storage, peak-shaving and electric vehicles. Shallow-cycling examples are frequency regulation and reactive power control. Infrequent discharge examples are stationary service and spinning reserve. (Float service for telecommunications and uninterruptible power sources (UPS) applications are not addressed.) Some present and planned installations of valve-regulated lead/acid batteries are surveyed. Performance characteristics will be discussed, including recent results of testing both gel and absorptive glass mat (AGM) types of deep-cycling batteries. Recommendations for future research and development of valve-regulated cell technology are outlined, based on a recent conference organized by the United States Department of Energy (USDOE) and the Electric Power Research Institute (EPRI).

  19. Modeling interfaces between solids: Application to Li battery materials

    NASA Astrophysics Data System (ADS)

    Lepley, N. D.; Holzwarth, N. A. W.

    2015-12-01

    We present a general scheme to model an energy for analyzing interfaces between crystalline solids, quantitatively including the effects of varying configurations and lattice strain. This scheme is successfully applied to the modeling of likely interface geometries of several solid state battery materials including Li metal, Li3PO4 , Li3PS4 , Li2O , and Li2S . Our formalism, together with a partial density of states analysis, allows us to characterize the thickness, stability, and transport properties of these interfaces. We find that all of the interfaces in this study are stable with the exception of Li3PS4/Li . For this chemically unstable interface, the partial density of states helps to identify mechanisms associated with the interface reactions. Our energetic measure of interfaces and our analysis of the band alignment between interface materials indicate multiple factors, which may be predictors of interface stability, an important property of solid electrolyte systems.

  20. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    PubMed

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. PMID:27151516

  1. Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System.

    PubMed

    Winsberg, Jan; Janoschka, Tobias; Morgenstern, Sabine; Hagemann, Tino; Muench, Simon; Hauffman, Guillaume; Gohy, Jean-François; Hager, Martin D; Schubert, Ulrich S

    2016-03-16

    The combination of a polymer-based 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) catholyte and a zinc anode, together with a cost-efficient size-exclusion membrane, builds a new type of semi-organic, "green," hybrid-flow battery, which features a high potential range of up to 2 V, high efficiencies, and a long life time. PMID:26810789

  2. Study on Durability and Stability of an Aqueous Electrolyte Solution for Zinc Bromide Hybrid Flow Batteries

    NASA Astrophysics Data System (ADS)

    Kim, Donghyeon; Jeon, Joonhyeon

    2015-01-01

    Zinc-bromine flow battery using aqueous electrolyte has advantages of cost effective and high energy density, but there still remains a problem improving stability and durability of electrolyte materials during long-time cell operation. This paper focuses on providing a homogeneous aqueous solution for durability and stability of zinc bromide electrolyte. For performance experiments of conventional and proposed electrolyte solutions, detailed cyclic voltammetry (CV) measurements (at a scan rate of 20 mV s-1 in the range of -1.5 V~1.5 V) are carried out for 40 cycles and five kinds of electrolytes containing which has one of additives, such as (conventionally) zinc chloride, potassium chloride, (newly) lithium perchlorate, sodium perchlorate and zeolite-Y are compared with the 2.0 M ZnBr2 electrolyte, respectively. Experimental results show that using the proposed three additives provides higher anodic and cathodic peak current density of electrolytes than using other two conventional additives, and can lead to improved chemical reversibility of zinc bromide electrolyte. Especially, the solution of which the zeolite-Y added, shows enhanced electrochemical stability of zinc bromide electrolyte. Consequently, proposed electrolytes have a significant advantage in comparison with conventional electrolytes on higher stability and durability.

  3. Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect

    Cho, KT; Tucker, MC; Ding, M; Ridgway, P; Battaglia, VS; Srinivasan, V; Weber, AZ

    2014-06-03

    This paper explores the critical factors dominating the cycle performance of the hydrogen/bromine redox flow battery (RFB). Carbon electrode oxidation to CO2 was seen as the dominant side reaction, which can be prevented by operating the cell below 1.4 V. Crossover of bromide species from the positive to the negative electrode, especially during charge, dominates the coulombic efficiency, and can result in dissolution of the Pt catalyst if an adequate hydrogen supply is not maintained. This paper also describes the tradeoffs in voltaic, energy, and coulombic efficiencies during cycling, including the determination of the peak energy efficiency with respect to the HBr concentration and current density. Long-term cycling demonstrates negligible cell-component degradation over 600 cycles (approximate to 3 months), with capacity loss caused by the bromine from the system, which can be mitigated by proper system design. The data and methodologies provided in this paper can be used to understand better the operation of this and other RFBs.

  4. Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s

    SciTech Connect

    Fujimoto, Cy H.; Kim, Soowhan; Stains, Ronald; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2012-07-01

    Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88 - 90%) to Nafion 117 (88%) at 50mA/cm2. Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testing was discontinued only due to time constraints. Accelerated vanadium lifetime studies were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 hours, the 1.6 meq/g sample dissolved after 860 hours, while the 1.4 meq/g sample broke apart after 1527 hours.

  5. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    PubMed

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. PMID:27184225

  6. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV). PMID:24884171

  7. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  8. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    NASA Astrophysics Data System (ADS)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  9. Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Jeong, Sanghyun; An, Sunhyung; Jeong, Jooyoung; Lee, Jinwoo; Kwon, Yongchai

    2015-03-01

    Languid reaction rate of VO2+/VO2+ redox couple is a problem to solve for improving performance of vanadium redox flow battery (VRFB). To facilitate the slow reaction materials including large pore sized mesocellular carbon foam (MSU-F-C and Pt/MSU-F-C) are used as new catalyst. Their catalytic activity and reaction reversibility are estimated and compared with other catalysts, while cycle tests of charge-discharge and polarization curve tests are implemented to evaluate energy efficiency (EE) and maximum power density (MPD). Their crystal structure, specific surface area and catalyst morphology are measured by XRD, BET and TEM. The new catalysts indicate high peak current ratio, small peak potential difference and high electron transfer rate constant, proving that their catalytic activity and reaction reversibility are superior. Regarding the charge-discharge and polarization curve tests, the VRFB single cells including new catalysts show high EE as well as low overpotential and internal resistance and high MPD. Such excellent results are due to mostly unique characteristics of MSU-F-C having large interconnected mesopores, high surface area and large contents of hydroxyl groups that serve as active sites for VO2+/VO2+ redox reaction and platinums (Pts) supporting the MSU-F-C. Indeed, employment of the catalysts including MSU-F-C leads to enhancement in performance of VRFB by facilitating the slow VO2+/VO2+ redox reaction.

  10. A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lei, Y.; Zhang, B. W.; Bai, B. F.; Zhao, T. S.

    2015-12-01

    In a typical all-vanadium redox flow battery (VRFB), the ion exchange membrane is directly exposed in the bulk electrolyte. Consequently, the Donnan effect occurs at the membrane/electrolyte (M/E) interfaces, which is critical for modeling of ion transport through the membrane and the prediction of cell performance. However, unrealistic assumptions in previous VRFB models, such as electroneutrality and discontinuities of ionic potential and ion concentrations at the M/E interfaces, lead to simulated results inconsistent with the theoretical analysis of ion adsorption in the membrane. To address this issue, this work proposes a continuous-Donnan effect-model using the Poisson equation coupled with the Nernst-Planck equation to describe variable distributions at the M/E interfaces. A one-dimensional transient VRFB model incorporating the Donnan effect is developed. It is demonstrated that the present model enables (i) a more realistic simulation of continuous distributions of ion concentrations and ionic potential throughout the membrane and (ii) a more comprehensive estimation for the effect of the fixed charge concentration on species crossover across the membrane and cell performance.

  11. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    NASA Astrophysics Data System (ADS)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.

  12. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

    SciTech Connect

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

    2013-09-02

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

  13. PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxin; Xu, Hongfeng; Lu, Lu; Zhao, Hong; Fu, Jie; Shen, Yang; Xu, Pengcheng; Dong, Yiming

    2014-03-01

    A novel approach for enhancing the electrochemical performance of graphite felt electrodes by employing non-precious metal oxides is designed for an all-vanadium redox flow battery (VRFB). Lead dioxide (PbO2) is prepared through pulse electrodeposition method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical performance of the prepared electrode is evaluated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results show that PbO2 exhibits excellent electro-catalytic activity and reactive velocity to vanadium redox couples. The coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) of the vanadium redox flow battery with as-prepared electrodes at 70 mA cm-2 are 99.5%, 82.4%, and 82.0%, respectively; these values are much higher than those of a cell assembled with bare graphite felt electrodes. The outstanding electro-catalytic activity and mechanical stability of PbO2 are advantageous in facilitating the redox reaction of vanadium ions, leading to the efficient operation of a vanadium redox flow battery.

  14. Prismatic sealed nickel-cadmium batteries utilizing fiber structured electrodes. II - Applications as a maintenance free aircraft battery

    NASA Astrophysics Data System (ADS)

    Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich

    Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.

  15. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    NASA Technical Reports Server (NTRS)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  16. Long life, low cost, rechargeable AgZn battery for non-military applications

    NASA Astrophysics Data System (ADS)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  17. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Schweiss, Rüdiger

    2015-03-01

    Polyacrylonitrile (PAN)-based carbon felts with different fibre properties were studied in terms of their suitability as porous flow-through electrode materials in all vanadium redox flow batteries. The crystallinity and their bulk hetero element content (in particular nitrogen) of the carbon fibres was shown to produce a significant effect on the electrocatalytical properties of the electrodes towards vanadium species. Similar effects were seen on the capacity losses associated with concomitant hydrogen evolution. Adjustments of fibre properties offer the potential of manufacturing improved electrode materials, potentially without additional steps such as surface activation or decoration with catalytically active species.

  18. A non-aqueous redox flow battery based on tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II)

    NASA Astrophysics Data System (ADS)

    Xing, Xueqi; Zhao, Yicheng; Li, Yongdan

    2015-10-01

    A novel non-aqueous redox flow battery employing tris(1,10-phenanthroline) complexes of iron(II) and cobalt(II) as active species is proposed and investigated for energy storage application. The [Fe(phen)3]2+/3+ and [Co(phen)3]+/2+ (phen = 1,10-phenanthroline) redox couples are used as the positive and negative active materials, respectively, in an electrolyte consisting of TEAPF6 and acetonitrile. Electrochemical measurements display that the two redox couples possess a superior and stable potential difference (E°) with a value of 2.1 V vs. Ag/Ag+. The charge-discharge characteristics of the cell show that the charging and discharging current densities have important influences on the battery performance. Stable cycling performance is obtained with low charge-discharge current densities with an electrolyte flow rate of 25 mL min-1. The coulomb, voltage and energy efficiencies achieve up to 80%, 40% and 39%, respectively.

  19. Sodium ion insertion in hollow carbon nanowires for battery applications.

    PubMed

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V; Yang, Zhengguo; Liu, Jun

    2012-07-11

    Hollow carbon nanowires (HCNWs) were prepared through pyrolyzation of a hollow polyaniline nanowire precursor. The HCNWs used as anode material for Na-ion batteries deliver a high reversible capacity of 251 mAh g(-1) and 82.2% capacity retention over 400 charge-discharge cycles between 1.2 and 0.01 V (vs Na(+)/Na) at a constant current of 50 mA g(-1) (0.2 C). Excellent cycling stability is also observed at an even higher charge-discharge rate. A high reversible capacity of 149 mAh g(-1) also can be obtained at a current rate of 500 mA g(-1) (2C). The good Na-ion insertion property is attributed to the short diffusion distance in the HCNWs and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculations to enable Na-ion insertion in carbon materials. PMID:22686335

  20. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications

    SciTech Connect

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L.; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V.; Yang, Zhenguo; Liu, Jun

    2012-07-11

    Hollow Carbon Nanowires (HCNWs) were prepared through pyrolyzation of hollow polyaniline nanowires precursor. The HCNWs used as anode material for Na-ion batteries delivers a high reversible capacity of 251 mAh g{sup -1} and 82.2% capacity retention over 400 charge/discharge cycles between 1.2 and 0.01 V (vs. Na{sup +}/Na) at a constant current of 50 mA g{sup -1} (0.2 C). Excellent cycling stability is also observed at even higher charge-discharge rate. A high reversible capacity of 149 mAh g{sup -1} also can be obtained at a current rate of 500 mA g{sup -1} (2C). The good Na ion insertion property is attributed to the short diffusion distance in the HCNWs, and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculation to enable Na ion insertion in carbon materials.

  1. TEM in situ lithiation of tin nanoneedles for battery applications

    SciTech Connect

    Janish, Matthew T.; Mackay, David T.; Liu, Yang; Jungjohann, Katherine L.; Carter, C. Barry; Norton, M. Grant

    2015-08-12

    Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature with no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.

  2. TEM in situ lithiation of tin nanoneedles for battery applications

    DOE PAGESBeta

    Janish, Matthew T.; Mackay, David T.; Liu, Yang; Jungjohann, Katherine L.; Carter, C. Barry; Norton, M. Grant

    2015-08-12

    Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature withmore » no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.« less

  3. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  4. 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries

    NASA Astrophysics Data System (ADS)

    Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.

    2016-09-01

    Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.

  5. Solitons of geometric flows and their applications

    NASA Astrophysics Data System (ADS)

    Helmensdorfer, Sebastian

    In this thesis we construct solitons of geometric flows with applications in three different settings. The first setting is related to nonuniqueness for geometric heat flows. We show that certain double cones in Euclidean space have several self-expanding evolutions under mean curvature flow. The construction of the associated self-expanding solitons leads to an application in fluid dynamics. We present a new model for the behaviour of oppositely charged droplets of fluid, based on the mean curvature flow of double cones. If two oppositely charged droplets of fluid are close to each other, they start attracting each other and touch eventually. Surprisingly, experiments have shown, that if the strength of the charges is high enough, then the droplets are repelled from each other, after making short contact. The constructed self-expanders can be used to correctly predict the experimental results, using our theoretical model. Secondly we employ space-time solitons of the mean curvature flow to give a geometric proof of Hamilton's Harnack estimate for the mean curvature flow. This proof is based on the observation that the associated Harnack quantity is the second fundamental form of a space-time self-expander. Moreover the self-expander is asymptotic to a cone over the convex initial hypersurface. Hence the self-expander can be seen as the mean curvature evolution of a convex cone, which we exploit to show that preservation of convexity directly implies the Harnack estimate. In the last chapter we study solutions of the mean curvature flow in a Ricci flow backgound. We show that the space-time track of such a solution can be seen as a soliton. Moreover the second fundamental form of this soliton matches the evolution of a functional, which is the analogue of G. Perelman's F-functional for the Ricci flow on a manifold with boundary and which also has relations to quantum gravity. Furthermore our construction provides a link between the Harnack estimate for the mean

  6. Microfibrous nickel substrates and electrodes for battery system applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua H.; Durben, Peter J.; Tatarchuk, Bruce J.

    The use of microfibrous nickel substrates is advantageous for increasing the surface area available for the deposition of active material and reducing the substrate weight and consequently, yields a higher specific capacity for nickel hydroxide electrodes. Porous, microfiber-based nickel substrates were produced by sintering a composite preform. The preforms, consisting of nickel fibers with diameters as small as 2 μm and cellulose fibers, were formed using a papermaking process. The fabricated nickel electrodes that included a supporting nickel mesh in the substrate tested in a 26% KOH half-cell delivered a specific capacity of more than 250 mAh/g of the electrode weight (i.e. fibrous substrate, nickel mesh, and active material) at a 1.0 C discharge rate. An Auburn electrode without a nickel mesh tested in the same half-cell attained a higher specific capacity of 268 mAh/g at a 1.37 C discharge rate. The substrates used in these electrodes had porosities of 95-97%, and greatly improved the specific capacity of the nickel electrode. With the use of the microfibrous electrode, improved specific energies of nickel-based cell and battery designs are possible. When assembled in a nickel-hydrogen (Ni-H 2) boilerplate cell, the specific capacity of nearly 230 mAh/g was observed for the nickel electrode at a 0.5 C rate during the 127th cycle test. The results of high specific capacity and quick rise in utilization of microfibrous nickel hydroxide electrodes make these electrodes good candidates for significantly improving the energy density and performance of nickel-hydrogen cells.

  7. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  8. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    NASA Astrophysics Data System (ADS)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  9. Amino-silica modified Nafion membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hong; Yang, Ming-Chien; Wei, Hwa-Jou

    2015-05-01

    A hybrid membrane of Nafion/amino-silica (amino-SiO2) for vanadium redox flow battery (VRB) systems is prepared via the sol-gel method to improve the selectivity of the Nafion membrane, to reduce the crossover of vanadium ions, and to decrease water transfer across the membranes. The sulfonated pores of the pristine Nafion membrane are filled with amino-SiO2 nanoparticles localized by electrostatic interaction. The permeability of vanadium ions through the Nafion/amino-SiO2 hybrid membrane is determined by electrometric titration. The results indicate the crossover of vanadium ions through the hybrid membrane is 26.8% of the pristine Nafion membrane. The presence of amino-SiO2 in the hybrid membrane is verified by X-ray photoelectron spectroscopy (XPS). Nafion/amino-SiO2 hybrid membrane exhibits through plane conductivity about the same as the pristine Nafion membrane. The ion exchange capacity (IEC) of the hybrid membrane is 9.4% higher than that of the pristine Nafion membrane. In addition, Nafion/amino-SiO2 hybrid membrane exhibits a higher coulombic efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) over a range of current densities from 20 to 80 mA cm-2. The performance of VRB with Nafion/amino-SiO2 hybrid membrane varies little around a charge-discharge current density of 80 mA cm-2 for 150 cycles. Thus, the Nafion/amino-SiO2 hybrid membrane can suppress the vanadium ions crossover in VRB.

  10. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Agar, Ertan

    Vanadium redox flow batteries (VRFBs) are an emerging energy storage technology that offers unique advantages for grid-scale energy storage due to their flexible design and decoupled power/energy feature. Despite their popularity, a series of technical challenges hinder their widespread implementation. Among these, capacity loss (i.e., loss of energy storage capability) due to the undesired species crossover across the membrane has been identified as the key issue limiting the longevity of these systems. This issue is primarily governed by the properties of the membrane and can be mitigated by using proper membrane architectures with desired features. Presently, identifying proper membrane architectures for VRFB systems is hampered by the lack of a fundamental understanding of the nature of species transport mechanisms and how they are related to the membrane properties and key operating conditions. This Ph.D. study seeks to address this critical challenge by exploring the fundamental mechanisms responsible for species transport within the membrane. The overall objective of this dissertation study is to establish a fundamental understanding of the multi-ionic transport in VRFB membranes by investigating the ionic transport mechanisms responsible for crossover, and utilize this understanding to reveal the role of membrane properties and operating conditions on the capacity loss. To achieve these goals, a combined experimental and computational study was designed. An experimentally validated, 2-D, transient VRFB model that can track the vanadium crossover and capture the related capacity loss was developed. In addition to the model, several electrochemical techniques were used to characterize different types of membrane and study the effects of various operating conditions on the species crossover. Using these computational and experimental tools, an in-depth understanding of the species transport mechanisms within the membrane and how they are related to membrane

  11. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries.

    PubMed

    Chen, Dongyang; Hickner, Michael A

    2013-07-21

    Insight into the degradation mechanisms of aromatic proton conducting membrane separators for vanadium redox flow batteries (VRFBs) is urgently needed for the development of long lifetime VRFBs. Other than in-cell observations of performance degradation, there is little fundamental evidence on the specific degradation pathways of aromatic ion exchange membranes for VRFBs. Herein we investigated a sulfonated Radel® membrane (S-Radel) as the degradation target to study the degradation mechanism of aromatic polymers by V(V) (or generally V(5+)) oxidation. It was found that the ductile S-Radel membrane, which has a similar aromatic backbone structure to the most-studied polyaromatic VRFB membranes that have shown high performance, became brittle and discolored after 3 days of immersion in 1.7 M V(V) + 3.3 M H2SO4 solution at 40 °C. The membrane's intrinsic viscosity was reduced to about half of its original value after this exposure to V(V) while the ion exchange capacity did not change. In addition to chain scission, it was found that -OH groups were introduced to the backbone of S-Radel as the major degradation product. Quinone groups were also observed at 1677 cm(-1) in FTIR measurements. While the V(V) species in VRFBs is usually denoted as VO2(+), V(V)=O in VOCl3 was found to not have degradation activity for S-Radel. Therefore, we hypothesized that there were other reactive forms of V(V) species that first attacked the S-Radel by incorporating hydroxyl groups into the polymer's aromatic backbone, followed by the oxidation of these hydroxyl groups to quinone functionalities through a redox mechanism. PMID:23732218

  12. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE PAGESBeta

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.« less

  13. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    SciTech Connect

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not play a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.

  14. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver-silver sulfate

    NASA Astrophysics Data System (ADS)

    Ventosa, Edgar; Skoumal, Marcel; Vázquez, Francisco Javier; Flox, Cristina; Morante, Joan Ramon

    2014-12-01

    In-depth evaluation of the electrochemical performance of all-vanadium redox flow batteries (VRFBs) under operando conditions requires the insertion of a reliable reference electrode in the battery cell. In this work, an easy-to-make reference electrode based on silver-silver sulfate is proposed and described for VRFBs. The relevance and feasibility of the information obtained by inserting the reference electrode is illustrated with the study of ammoxidized graphite felts. In this case, we show that the kinetic of the electrochemical reaction VO2+/VO2+ is slower than that of V2+/V3+ at the electrode. While the slow kinetics at the positive electrode limits the voltage efficiency, the operating potential of the negative electrode, which is outside the stability widow of water, reduces the coulombic efficiency due to the hydrogen evolution.

  15. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.

    PubMed

    Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam

    2012-08-16

    Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT. PMID:26295765

  16. Flight research on natural laminar flow applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1992-01-01

    Natural laminar flow (NLF) is clearly one of the most potentially attractive drag reduction technologies by virtue of its relative simplicity. NLF is achieved passively, that is, by design of surface shapes to produce favorable pressure gradients. However, it is not without its challenges and limitations. This chapter describes the significant challenges to achieving and maintaining NLF and documents certain of the limitations for practical applications. A brief review of the history and of more recent NLF flight experiments is given, followed by a summary of lessons learned which are pertinent to future applications. The chapter also summarizes important progress in test techniques, particularly in flow visualization and hot-film techniques for boundary-layer measurements in flight.

  17. Solid-loaded flows: applications in technology

    SciTech Connect

    Molerus, O.

    1983-01-01

    The evaluation of experiments and the representation of the resulting data by nondimensional groups defined ad hoc largely governs the treatment of problems arising with solid-loaded flows in practice. Without doubt, this is a result of the very complex nature of solid-loaded flows and, consequently, empiricism tends to prevail, more or less. To overcome this situation, two sets of nondimensional groups, which take into consideration the translatory, as well as the rotary, motion of particles suspended in a fluid, are derived from the equations of motion of a solid body. The intuitive meaning of these nondimensional groups arises from their derivation. With respect to applications in engineering, the influence of the rotary motion of a particle on the motion of its center of gravity can thus be taken into account. As such, a common basis for the representation of the different phenomena observed with solid-loaded flows is established. The application of the above concepts to fluidization and hydraulic and pneumatic conveying proves their usefulness. New insights into well-known facts as well as new results demonstrate that taking the real nature of solid particles (i.e., those of finite dimensions) into consideration will provide a common and profound basis for the representation of different phenomena observed with solid-loaded flows in practice.

  18. Sodium-Beta Batteries for Grid-Scale Storage: Planar Sodium-Beta Batteries for Renewable Integration and Grid Applications

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: EaglePicher is developing a sodium-beta alumina (Na-Beta) battery for grid-scale energy storage. High-temperature Na-Beta batteries are a promising grid-scale energy storage technology, but existing approaches are expensive and unreliable. EaglePicher has modified the shape of the traditional, tubular-shaped Na-Beta battery. It is using an inexpensive stacked design to improve performance at lower temperatures, leading to a less expensive overall storage technology. The new design greatly simplifies the manufacturing process for beta alumina membranes (a key enabling technology), providing a subsequent pathway to the production of scalable, modular batteries at half the cost of the existing tubular designs.

  19. User's guide to DIANE Version 2. 1: A microcomputer software package for modeling battery performance in electric vehicle applications

    SciTech Connect

    Marr, W.W.; Walsh, W.J. . Energy Systems Div.); Symons, P.C. )

    1990-06-01

    DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh'' batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user-input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers. 7 refs.

  20. User's guide to DIANE version 2.1: A microcomputer software package for modeling battery performance in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Marr, W. W.; Walsh, W. J.; Symons, P. C.

    1990-06-01

    DIANE is an interactive microcomputer software package for the analysis of battery performance in electric vehicle (EV) applications. The principal objective of this software package is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity time or power time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn current, taking into account the effect of battery depth-of-discharge (DOD). Because of the lack of test data and other constraints, the current version of DIANE deals only with vehicles using fresh batteries with or without regenerative braking. Deterioration of battery capability due to aging can presently be simulated with user input parameters accounting for an increase of effective internal resistance and/or a decrease of cell no-load voltage. DIANE 2.1 is written in FORTRAN language for use on IBM-compatible microcomputers.

  1. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  2. MEMS Based Flow Sensors and Their Application on Flow Imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen; Chen, Nannan; Engel, Jonathan; Tucker, Craig; Pandya, Saunvit; Liu, Chang

    2006-11-01

    We report characterization and application of recently developed, MEMS based, out-of-plane hot-wire anemometer (HWA) sensor and bio-inspired artificial hair cell (AHC) sensor. Sensitivities of 0.2mm/s for HWA and 0.1mm/s for AHC have been achieved in water flows, comparing with 1mm/s of a conventional HWA. In contrast to its high sensitivity, the AHC sensor can survive 55 bending of its hair, making it very robust. After calibration, both HWA and AHC sensors were employed for dipole field and wake measurements. The dipole field was generated by a vibrating sphere in a large water tank; the measurement results match very well with the analytical model. The wake was created by a circular cylinder in a water channel; the RMS velocity distributions replicate the main features of a typical wake accurately. The two types of sensors were also applied in array format to mimic a fish lateral line for imaging hydrodynamic events. Multi-modal sensors capable of simultaneous measurement of flow velocity, shear stress, pressure and temperature are under development.

  3. Flexible and transparent gastric battery: energy harvesting from gastric acid for endoscopy application.

    PubMed

    Mostafalu, Pooria; Sonkusale, Sameer

    2014-04-15

    In this paper, we present the potential to harvest energy directly from the digestive system for powering a future wireless endoscopy capsule. A microfabricated electrochemical cell on flexible parylene film is proposed as a gastric battery. This electrochemical cell uses gastric juice as a source of unlimited electrolyte. Planar fabricated zinc [Zn] and palladium [Pd] electrodes serve as anode and cathode respectively. Due to planar geometry, no separator is needed. Moreover the annular structure of the electrodes provides lower distance between cathode and anode reducing the internal resistance. Both electrodes are biocompatible and parylene provides flexibility to the system. For a surface area of 15 mm(2), 1.25 mW is generated which is sufficient for most implantable endoscopy applications. Open circuit output voltage of this battery is 0.75 V. Since this gastric battery does not require any external electrolyte, it has low intrinsic weight, and since it is flexible and is made of biocompatible materials, it offers a promising solution for power in implantable applications. PMID:24287419

  4. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  5. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications

    NASA Astrophysics Data System (ADS)

    Biserni, Erika; Scarpellini, Alice; Li Bassi, Andrea; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-01

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ∼1000 μAh cm‑2 at a current density of 54 μA cm‑2, while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm‑2 is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  6. MEMS applications in turbulence and flow control

    NASA Astrophysics Data System (ADS)

    Löfdahl, Lennart; Gad-el-Hak, Mohamed

    1999-02-01

    Manufacturing processes that can create extremely small machines have been developed in recent years. Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than 1 mm but more than 1 μm, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-processing techniques. Electrostatic, magnetic, pneumatic and thermal actuators, motors, valves, gears and tweezers of less than 100 μm size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity and sound, as actuators for linear and angular motions, and as simple components for complex systems such as micro-heat-engines and micro-heat-pumps. In this paper, we focus on the use of microelectromechanical systems for the diagnosis and control of turbulent shear flows. We survey the status and outlook of microsensors and microactuators as used for those particular applications, and compare the minute devices to their larger cousins. Microsensors can resolve all relevant scales even in high-Reynolds-number turbulent flows. Arrays of microsensors and microactuators make it feasible, for the first time, to achieve effective reactive control targeted toward specific small-scale coherent structures in turbulent wall-bounded flows.

  7. Long life, low cost, rechargeable AgZn battery for non-military applications

    SciTech Connect

    Brown, C.C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven {open_quote}{open_quote}enabling technology{close_quote}{close_quote} for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost. {copyright} {ital 1996 American Institute of Physics.}

  8. High power and high energy lithium-ion batteries for under-water applications

    NASA Astrophysics Data System (ADS)

    Gitzendanner, R.; Puglia, F.; Martin, C.; Carmen, D.; Jones, E.; Eaves, S.

    Lithium-ion batteries have demonstrated excellent energy density, reliability, and life in commercial applications. Several new Navy and undersea applications are emerging that need the high energy density and high power capabilities that the lithium-ion technology offers. Such applications have historically utilized silver-zinc technology for their power source. However, life cycle costs, maintenance and logistics issues, and wet-life limitations are true detriments in these applications. Lithium-ion technology has demonstrated the energy and power density of silver-zinc, but with much improved cycle life, shelf life, and low maintenance properties. For these reasons, and others, many under water applications are looking to lithium-ion to provide the performance of the silver-zinc system, but at a greatly reduced life-cycle cost.

  9. Inverting Quasi-Resonant Switched-Capacitor Bidirectional Converter and Its Application to Battery Equalization

    NASA Astrophysics Data System (ADS)

    Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin

    The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).

  10. Multiparameter Flow Cytometry For Clinical Applications

    NASA Astrophysics Data System (ADS)

    Stewart, Carleton C.

    1989-06-01

    Flow Cytometry facilities are well established and provide immunophenotyping and DNA content measurement services. The application of immunophenotyping has been primarily in monitoring therapy and in providing further information to aid in the definitive diagnosis of immunological and neoplastic disease such as: immunodeficiency disease, auto immune disease, organ transplantation, and leukemia and lymphoma. DNA content measurements have been particularly important in determining the fraction of cycling cells and presence of aneuploid cells in neoplasia. This information has been useful in the management of patients with solid tumors.

  11. Vanadium-based nanostructure materials for secondary lithium battery applications

    NASA Astrophysics Data System (ADS)

    Tan, Hui Teng; Rui, Xianhong; Sun, Wenping; Yan, Qingyu; Lim, Tuti Mariana

    2015-08-01

    Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to ``create'' newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical performances by providing shorter mass transport distances, higher electrode/electrolyte contact interfaces, and better accommodation of strain upon lithium uptake/release. The significance of nanoscopic architectures has been exemplified in the literature, showing that the idea of developing vanadium-based nanostructures is an exciting prospect to be explored. In this review, we will be casting light on the recent advances in the synthesis of nanostructured vanadium-based cathodes. Furthermore, efficient strategies such as hybridization with foreign matrices and elemental doping are introduced as a possible way to boost their electrochemical performances (e.g., rate capability, cycling stability) to a higher level. Finally, some suggestions relating to the perspectives for the future developments of vanadium-based cathodes are made to provide insight into their commercialization.

  12. Definition and application of neuropsychological test battery to evaluate postoperative cognitive dysfunction

    PubMed Central

    Valentin, Lívia Stocco Sanches; Pietrobon, Ricardo; de Aguiar, Wagner; Rios, Ruth Pinto Camarão; Stahlberg, Mariane Galzerano; de Menezes, Iolanda Valois Galvão; Osternack-Pinto, Kátia; Carmona, Maria José Carvalho

    2015-01-01

    Objective To investigate the adequacy of the neuropsychological test battery proposed by the International Study of Postoperative Cognitive Dysfunction to evaluate this disorder in Brazilian elderly patients undergoing surgery under general anesthesia. Methods A neuropsychological assessment was made in patients undergoing non-cardiac surgery under general anesthesia, aged over 65 years, literate, with no history of psychiatric or neurological problems and score on the Mini Mental State Examination at or above the cutoff point for the Brazilian population (>18 or >23) according to the schooling level of the subject. Eighty patients were evaluated by a trained team of neuropsychologists up to 24 hours before elective surgery. Results Among the patients evaluated, one was excluded due to score below the cutoff point in the Mini Mental State Examination and two did not complete the test battery, thus remaining 77 patients in the study. The mean age was 69±7.5 years, and 62.34% of the subjects had ±4 years of study. The subjects had significantly lower averages than expected (p<0.001) for normative tables on neuropsychological tests. Conclusion The study demonstrated the applicability of the instruments in the Brazilian elderly and low schooling level population, but suggested the need to determine cutoff points appropriate for these individuals, ensuring the correct interpretation of results. This battery is relevant to postoperative follow-up evaluations, favoring the diagnosis of postoperative cognitive dysfunction in patients undergoing different types of surgery and anesthetic techniques. PMID:25993064

  13. Comparative study for "36 V" vehicle applications: advantages of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lailler, Patrick; Sarrau, Jean-François; Sarrazin, Christian

    From thermal engine equipped vehicles to completely electric ones, evolution of light weight vehicles in the future will take several steps in so far as there is no adequate battery or fuel cell presently available to power these vehicles for "on the road" driving. On the other hand, for city driving, vehicles can be improved a lot in terms of fuel efficiency as well as air pollution, if partly or totally electric propulsion can be developed, manufactured and marketed for appropriate applications. The 36-42 V battery is part of this orientation towards improving the efficiency of thermal vehicles in city driving, while keeping adequate autonomy on the roads. Actually, in city traffic, thermal engines are idle most of the time and stop periods represent a large part of the time spent "driving", using up fuel and polluting air for no use at all. The idea of stopping the engine during these periods, if appropriately managed, might potentially lead to a large improvement in fuel economy as well as air pollution reduction. The association of a higher voltage battery to an alternator-starter device in thermal vehicles, seems to be an interesting way towards that end. In this paper, we are presenting our results of a study we have just completed in relationship with RENAULT & VALEO, supported by the French Ministry of Industry, concerning a comparative evaluation of different automobile energy storage systems, and the definition of specifications as the final step of this study. The main conclusion is that lead-acid will still remain dominant in this role, since its operational cost versus efficiency is by far the lowest of every battery presently considered, more particularly in the less expensive car segments.

  14. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    SciTech Connect

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  15. Development and testing of an economic grid-scale flow-assisted zinc/nickel-hydroxide alkaline battery

    NASA Astrophysics Data System (ADS)

    Turney, Damon E.; Shmukler, Michael; Galloway, Kevin; Klein, Martin; Ito, Yasumasa; Sholklapper, Tal; Gallaway, Joshua W.; Nyce, Michael; Banerjee, Sanjoy

    2014-10-01

    An economic design for an alkaline zinc-anode flow-assisted battery without membrane separators was tested at grid-scale of 25 kWh with a string of thirty 833 Wh cells in series, and also at bench scale with individual 28 Wh cells. The bench-scale tests allowed optimization of parameters such as electrolyte flow, choice of hardware material, electrolyte composition, and charge/discharge protocol. The best-performing bench scale cell cycled for over 3300 cycles with energy efficiency above 80%, and was selected as the design basis for scale-up to the 25 kWh battery string. Testing of the grid-scale string demonstrated 1000+ cycles with round trip energy efficiency above 80%. Two challenges observed at the bench scale were overcome for successful scale-up, namely a) passivation of the anode surface, which occurred when the anode experienced voltages 100 mV above zinc's rest voltage, and b) zinc particulates that jammed the gap between the electrodes and caused cathode degradation and passivation of the anode surface. Best practices to overcome these challenges and achieve long cycle life are presented.

  16. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    SciTech Connect

    Pratt, Harry D; Pratt, William R; Fang, Xikui; Hudak, Nicholas S; Anderson, Travis M

    2014-08-01

    A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34)2(OH)311-, cycled between (SiFe3W9(OH)3O34)2(OH)311-/(SiFe3W9(OH)3O34)2(OH)314-and (SiFe3W9(OH)3O34)2(OH)317-/(SiFe3W9(OH)3O34)2(OH)314- for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O194-, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194-had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W4O194-was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.

  17. Ionene membrane battery separator

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  18. Lithium-Ion Batteries Being Evaluated for Low-Earth-Orbit Applications

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.

    2005-01-01

    The performance characteristics and long-term cycle life of aerospace lithium-ion (Li-ion) batteries in low-Earth-orbit applications are being investigated. A statistically designed test using Li-ion cells from various manufacturers began in September 2004 to study the effects of temperature, end-of-charge voltage, and depth-of-discharge operating conditions on the cycle life and performance of these cells. Performance degradation with cycling is being evaluated, and performance characteristics and failure modes are being modeled statistically. As technology improvements are incorporated into aerospace Li-ion cells, these new designs can be added to the test to evaluate the effect of the design changes on performance and life. Cells from Lithion and Saft have achieved over 2000 cycles under 10 different test condition combinations and are being evaluated. Cells from Mine Safety Appliances (MSA) and modules made up of commercial-off-the-shelf 18650 Li-ion cells connected in series/parallel combinations are scheduled to be added in the summer of 2005. The test conditions include temperatures of 10, 20, and 30 C, end-of-charge voltages of 3.85, 3.95, and 4.05 V, and depth-of-discharges from 20 to 40 percent. The low-Earth-orbit regime consists of a 55 min charge, at a constant-current rate that is 110 percent of the current required to fully recharge the cells in 55 min until the charge voltage limit is reached, and then at a constant voltage for the remaining charge time. Cells are discharged for 35 min at the current required for their particular depth-of-discharge condition. Cells are being evaluated in four-cell series strings with charge voltage limits being applied to individual cells by the use of charge-control units designed and produced at the NASA Glenn Research Center. These charge-control units clamp the individual cell voltages as each cell reaches its end-of-charge voltage limit, and they bypass the excess current from that cell, while allowing the full

  19. Rating batteries for initial capacity, charging parameters and cycle life in the photovoltaic application

    SciTech Connect

    Harrington, S.R.; Hund, T.D.

    1995-11-01

    Stand-alone photovoltaic (PV) systems typically depend on battery storage to supply power to the load when there is cloudy weather or no sun. Reliable operation of the load is often dependent on battery performance. This paper presents test procedures for lead-acid batteries which identify initial battery preparation, battery capacity after preparation, charge regulation set-points, and cycle life based on the operational characteristics of PV systems.

  20. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  1. Reliability of valve-regulated lead-acid batteries for stationary applications.

    SciTech Connect

    De Anda, Mindi Farber; Butler, Paul Charles; Miller, Jennifer L; Moseley, Patrick T.

    2004-03-01

    A survey has been carried out to quantify the performance and life of over 700,000 valve-regulated lead-acid (VRLA) cells, which have been or are being used in stationary applications across the United States. The findings derived from this study have not identified any fundamental flaws of VRLA battery technology. There is evidence that some cell designs are more successful in float duty than others. A significant number of the VRLA cells covered by the survey were found to have provided satisfactory performance.

  2. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE PAGESBeta

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  3. Effect of a surface active agent on performance of zinc/bromine redox flow batteries: Improvement in current efficiency and system stability

    NASA Astrophysics Data System (ADS)

    Yang, Jung Hoon; Yang, Hyeon Sun; Ra, Ho Won; Shim, Joonmok; Jeon, Jae-Deok

    2015-02-01

    A sustained decrease in current efficiency (CE) is a commonly observed phenomenon in a zinc/bromine redox flow battery. To circumvent this problem, that is, to improve the CE and system stability of the redox flow battery, a surface active agent (SAA), polyoxyethylene (20) sorbitan monolaurate, is introduced as an additive. To investigate the effect of this SAA on the cell performance, polarization testing is performed and the electrode surface is observed after 32 cycles of charge-discharge testing. Adding the SAA facilitates catholyte mixing, leading to an effective reduction of bromine during discharging.

  4. Nickel cadmium battery evaluation, modeling, and application in an electric vehicle

    NASA Astrophysics Data System (ADS)

    Lynch, William Alfred

    A battery testing facility was set up in the battery evaluation laboratory. This system includes a set of current regulators which were fabricated in the UMASS. Lowell labs and a PC based data acquisition system. Batteries were charged or discharged at any rate within system ratings, and data including battery voltage, current, temperature and impedance were stored by a PC. STM5.140 type nickel-cadmium electric vehicle batteries were subjected to various test procedures using the battery testing facility. The results from these tests were used to determine battery characteristics. An electrical component battery model was also developed using the test data. The validity of the battery model was verified through experimental testing, and it was found to be accurate. Additionally, improved battery charging algorithms were developed which resulted in significant improvements in battery efficiency. Electric car operation with STM5.140 type of batteries was evaluated. Realistic road test data were analyzed experimentally and using the battery model. No battery abuse was found under EV driving conditions. The performance of the STM5.140 battery under abuse conditions was evaluated and it was found that it performs reasonably well under all abuse conditions tested. The model and test methodologies may be incorporated into complete electric vehicle models in order to assist in the design and operation of current and future electric vehicles.

  5. Constant and pulse power capabilities of lead-acid batteries made with thin metal film (TMF®) for different applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R. C.

    Conventional power sources are able to deliver high energy, but high-power demands can be met only with advanced electrochemical or heavy battery devices. BOLDER Technologies has developed a high-power cell (86 g, 1.0 A h, 2 V) based on patented Thin Metal Film (TMF®) Technology which is capable of delivering very high constant or pulse power for several applications. Six cells in a 0.5-1 kg pack are capable of delivering 1 to 1000 A with a stiff voltage plateau of 12 V for periods ranging from 1 h to a few milliseconds, respectively, and constant power not provided by any other battery chemistry. The BOLDER TMF® cells are made of thin lead foil and PbO active material, which gives enormous cost advantages compared with existing lead-acid batteries or with competing battery systems. This paper presents the high constant-power and pulse-power delivery characteristics of batteries made with TMF technology. The new concept of developing hybrid power sources with proton exchange membrane fuel cells (PEMFCs) or other battery types for electronic communication and turbine-starting applications is also discussed.

  6. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  7. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    PubMed

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-01

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. PMID:27295523

  8. Handbook of batteries and fuel cells

    NASA Astrophysics Data System (ADS)

    Linden, D.

    Detailed information is given on the properties, performance characteristics, and applications of all major battery and fuel cell power sources currently being manufactured. The basic concepts, comparative features, and selection criteria that apply to all battery systems are first discussed. Comprehensive coverage is then given to primary batteries, secondary batteries, advanced secondary batteries, reserve and special batteries, and fuel cells.

  9. Applications of Imaging Flow Cytometry for Microalgae.

    PubMed

    Hildebrand, Mark; Davis, Aubrey; Abbriano, Raffaela; Pugsley, Haley R; Traller, Jesse C; Smith, Sarah R; Shrestha, Roshan P; Cook, Orna; Sánchez-Alvarez, Eva L; Manandhar-Shrestha, Kalpana; Alderete, Benjamin

    2016-01-01

    The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis(®) ImageStream(®)X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression. PMID:27460237

  10. Applications of Flow Cytometry to Clinical Microbiology†

    PubMed Central

    Álvarez-Barrientos, Alberto; Arroyo, Javier; Cantón, Rafael; Nombela, César; Sánchez-Pérez, Miguel

    2000-01-01

    Classical microbiology techniques are relatively slow in comparison to other analytical techniques, in many cases due to the need to culture the microorganisms. Furthermore, classical approaches are difficult with unculturable microorganisms. More recently, the emergence of molecular biology techniques, particularly those on antibodies and nucleic acid probes combined with amplification techniques, has provided speediness and specificity to microbiological diagnosis. Flow cytometry (FCM) allows single- or multiple-microbe detection in clinical samples in an easy, reliable, and fast way. Microbes can be identified on the basis of their peculiar cytometric parameters or by means of certain fluorochromes that can be used either independently or bound to specific antibodies or oligonucleotides. FCM has permitted the development of quantitative procedures to assess antimicrobial susceptibility and drug cytotoxicity in a rapid, accurate, and highly reproducible way. Furthermore, this technique allows the monitoring of in vitro antimicrobial activity and of antimicrobial treatments ex vivo. The most outstanding contribution of FCM is the possibility of detecting the presence of heterogeneous populations with different responses to antimicrobial treatments. Despite these advantages, the application of FCM in clinical microbiology is not yet widespread, probably due to the lack of access to flow cytometers or the lack of knowledge about the potential of this technique. One of the goals of this review is to attempt to mitigate this latter circumstance. We are convinced that in the near future, the availability of commercial kits should increase the use of this technique in the clinical microbiology laboratory. PMID:10755996

  11. Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior.

    PubMed

    Youssry, Mohamed; Madec, Lénaïc; Soudan, Patrick; Cerbelaud, Manuella; Guyomard, Dominique; Lestriez, Bernard

    2013-09-14

    We report on the rheological and electrical properties of non-aqueous carbon black (CB) suspensions at equilibrium and under steady shear flow. The smaller the primary particle size of carbon black is, the higher the magnitude of rheological parameters and the conductivity are. The electrical percolation threshold ranges seem to coincide with the strong gel rather than the weak gel rheological threshold ones. The simultaneous measurements of electrical properties under shear flow reveal the well-known breaking-and-reforming mechanism that characterises such complex fluids. The small shear rate breaks up the network into smaller agglomerates, which in turn transform into anisometric eroded ones at very high shear rates, recovering the network conductivity. The type of carbon black, its concentration range and the flow rate range are now precisely identified for optimizing the performance of a redox flow battery. A preliminary electrochemical study for a composite anolyte (CB/Li4Ti5O12) at different charge-discharge rates and thicknesses is shown. PMID:23892887

  12. Biomineralized multifunctional magnetite/carbon microspheres for applications in Li-ion batteries and water treatment.

    PubMed

    Shim, Hyun-Woo; Park, Sangbaek; Song, Hee Jo; Kim, Jae-Chan; Jang, Eunjin; Hong, Kug Sun; Kim, T Doohun; Kim, Dong-Wan

    2015-03-16

    Advanced functional materials incorporating well-defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano-/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li-ion battery anode materials and in water treatment applications. Self-assembled Fe3O4 microspheres with flower-like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post-annealing at 400 °C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3 O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li-ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals. PMID:25676609

  13. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  14. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    PubMed Central

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-01-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376

  15. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  16. Functional materials for rechargeable batteries.

    PubMed

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. PMID:21394791

  17. Laminar flow control for transport aircraft applications

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1986-01-01

    The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.

  18. The impact of pH on side reactions for aqueous redox flow batteries based on nitroxyl radical compounds

    NASA Astrophysics Data System (ADS)

    Orita, A.; Verde, M. G.; Sakai, M.; Meng, Y. S.

    2016-07-01

    Electrochemical and UV-VIS measurements demonstrate that the pH value of a 4-hydroxy-2,2,6,6-tetramethyl-1-pipperidinyloxyl (TEMPOL) electrolyte significantly impacts its redox reversibility. The diffusion coefficient and kinetic rate constant of TEMPOL in neutral aqueous solution are determined and shown to be comparable to those of vanadium ions used for industrially utilized redox flow batteries (RFBs). RFBs that incorporate a TEMPOL catholyte and Zn-based anolyte have an average voltage of 1.46 V and an energy efficiency of 80.4% during the initial cycle, when subject to a constant current of 10 mA cm-2. We demonstrate several factors that significantly influence the concentration and capacity retention of TEMPOL upon cycling; namely, pH and atmospheric gases dissolved in electrolyte. We expand upon the known reactions of TEMPOL in aqueous electrolyte and propose several concepts to improve its electrochemical performance in a RFB. Controlling these factors will be the key to enable the successful implementation of this relatively inexpensive and environmentally friendly battery.

  19. Introduction to battery design

    SciTech Connect

    Nees, J.M.

    1983-05-01

    It is the purpose of this presentation on battery design to provide data and procedures that will enable the lead acid battery engineer to design replacement batteries for automotive application. Although the data and procedures cited in this presentation refer primarily to automotive batteries, they can be applied in principal to the design of other types of lead acid batteries. As the materials and processes will differ between battery manufacturers, the design criteria for each manufacturer will be subject to these differences and the data presented should be used accordingly.

  20. Lithium/iron sulfide batteries for electric-vehicle propulsion and other applications. Progress report, October 1979-March 1980

    SciTech Connect

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Miller, W. E.; Vissers, D. R.; Shimotake, H.

    1980-08-01

    The research and development activities of the program at Argonne National Laboratory (ANL) on lithium/iron sulfide batteries during the period October 1979-March 1980 is described. Although the major emphasis is currently on batteries for electric-vehicle propulsion, stationary energy-storage applications are also under investigation. The individual battery cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with two or more positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KCl electrolyte. The ANL program consists of cell chemistry studies, materials engineering, and component and auxiliary systems development. Important elements of this program are studies of the effects of design modifications on cell performance and post-test examinations of cells. During the reporting period, cell and battery development work has been aimed primarily at the first phase of the Mark II electric-vehicle battery program, which consists of an effort to develop high-reliability cells having boron nitride felt separators. Later in the Mark II program, the cells will be tested in 10-cell modules. Work on stationary energy-storage batteries during this period has consisted mainly of conceptual design studies. 23 figures, 9 tables.