Science.gov

Sample records for flow cell studies

  1. Performance Mapping Studies in Redox Flow Cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Thaller, L. H.

    1981-01-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques were developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  2. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  3. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    PubMed Central

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  4. A file of red blood cells in tube flow: A three-dimensional numerical study

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-09-01

    The rheology of a file of red blood cells (RBCs) in a tube flow is investigated based on a three-dimensional (3D) computational model using the dissipative particle dynamics (DPD) method. The 3D model consists of a discrete RBC model to describe the RBC deformation, a Morse potential model to characterize the cell-cell interaction, and a DPD model to provide all the relevant information on the suspension flow. Three important features of the suspension flow are simulated and analyzed, (i) the effect of the tube hematocrit, (ii) the effect of the cell spacing, and (iii) the effect of the flow velocity. We first study the cell deformation and the rheology of suspension at different tube hematocrit. The results show that the cell deformation decreases with increasing tube hematocrit, and a good agreement between the simulation and available experiments is found for the discharge hematocrit and relative apparent viscosity of RBC suspension. We then analyze the effect of non-uniform cell spacing, where the cell-cell interaction goes into effect, showing that a non-uniform cell spacing has a slight effect on the cell deformation, and almost has no effect on the rheology of suspension. We finally study the effect of the flow velocity and show that a typical plug-flow velocity profile is observed. The results also show that the cell deformation increases with increasing flow velocity, as expected. The discharge hematocrit also increases, but the relative apparent viscosity decreases, with increasing flow velocity.

  5. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.

    PubMed Central

    Munn, L L; Melder, R J; Jain, R K

    1994-01-01

    The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2. Images FIGURE 1 FIGURE 2 PMID:7948702

  6. An experimental study of mushroom shaped stall cells. [on finite wings with separated flow

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1982-01-01

    Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.

  7. A histological and flow cytometric study of dog brain endothelial cell injuries in delayed radiation necrosis

    SciTech Connect

    Yamaguchi, N.; Yamashima, T.; Yamashita, J. )

    1991-04-01

    The pathogenesis of delayed cerebral radiation necrosis was studied histologically and biochemically in 25 dogs with special attention to vascular endothelial cell injuries. The dogs were sacrificed 3 to 30 months after irradiation with a single dose of 15 Gy to the head. Brain specimens were appropriately fixed for light and electron microscopic studies, and capillary endothelial cells were isolated for flow cytometric study. The endothelial cells were stained with acridine orange, then the cell ratios in the reproductive phase (S + G2 + M) were investigated with flow cytometry. Thereafter, Feulgen hydrolysis and computer analysis of the hydrolysis curves were performed to examine the qualitative changes in deoxyribonucleic acid (DNA) of endothelial cells after irradiation. Under light microscopy, spongy degeneration with small cell infiltration was observed, especially in the frontal white matter, at 6 months after irradiation. At 9 months, necrotic foci appeared and developed until 15 months after irradiation. Blood vessels around the necrotic area showed luminal narrowing with endothelial hyperplasia and proliferation. At 30 months, no fresh necrotic lesions were observed. Under electron microscopy, endothelial cells of capillaries and small vessels around the necrotic area showed an increase of pinocytosis, and in the nuclei there was an increase of infoldings and euchromatin. The cell ratios in the reproductive phase were 14.5% to 23.3% (maximum at 9 months) in the irradiated group compared to 6.4% in the control group. The rate constant of apurinic acid production, a parameter correlating with DNA transcriptional activity, was minimum at 3 months and maximum at 9 months after irradiation. The data suggest that impairment of the microcirculation plays an important role in the pathogenesis of delayed radiation necrosis.

  8. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems.

    PubMed

    Chauvet, Adrien; Tibiletti, Tania; Caffarri, Stefano; Chergui, Majed

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ∼0.35 ml/s that are suitable to pump laser repetition rates up to ∼14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ∼250 μl. PMID:25362382

  9. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    SciTech Connect

    Chauvet, Adrien Chergui, Majed; Tibiletti, Tania; Caffarri, Stefano

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  10. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    NASA Astrophysics Data System (ADS)

    Chauvet, Adrien; Tibiletti, Tania; Caffarri, Stefano; Chergui, Majed

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ˜0.35 ml/s that are suitable to pump laser repetition rates up to ˜14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ˜250 μl.

  11. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  12. Depletion kinetics of circulating prostate cancer cells studied by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Guo, Jin; Li, Yan; Chen, Yun; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2010-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  13. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  14. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  15. Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2012-12-01

    Metastasis is a very complicated multi-step process and accounts for the low survival rate of the cancerous patients. To metastasize, the malignant cells must detach from the primary tumor and migrate to secondary sites in the body through either blood or lymph circulation. Macrophages appear to be directly involved in tumor progression and metastasis. However, the role of macrophages in affecting cancer metastasis has not been fully elucidated. Here, we have utilized an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages facilitates the stay of prostate cancer cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cells. Therefore, the phagocytosis may mainly contribute to the depletion kinetic differences. The developed methods here would be useful to study the relationship between macrophages and tumor metastasis in small animal cancer model.

  16. Compared Experimental Studies of Giant Vesicles and Red Blood Cells in Shear Flow

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Faivre, Magalie; Leyrat, Anne; Abkarian, Manouk

    2003-11-01

    The motion and the deformation of soft shells in bounded shear flows is of biological importance since, for example, white or red blood cells (RBC) are submitted to strong shear stresses during circulation. The role of cell deformability and viscoelastic properties has not been yet quantitatively studied experimentally although it is important for understanding mobility, binding and rolling of cells on vascular walls. We quantitatively characterized the behaviour of giant lipid vesicles and RBC in a bounded linear shear flow by optical microscopy. The tank-treading motion (fixed cell orientation), the tumbling motion and the lift force experienced by deformable vesicles and RBC close to a substrate, are described as a function of the contrast of viscosity between the inner and the outer fluids, and as a function of the distance from the wall. Results are compared to models developed for ellipsoids of fixed shape. Finally, we showed that RBC oscillate while tank-treading and by increasing the shear rate, they pass from tank treading to tumbling, which discloses the existence of a characteristic time that is related to the visco-elasticity of their cytoskeleton.

  17. Cell-flow technique.

    PubMed

    Hess, George P; Lewis, Ryan W; Chen, Yongli

    2014-10-01

    Various devices have been used to flow neurotransmitter solutions over cells containing receptors (e.g., ligand-gated ion channels) for whole-cell current recordings. With many of the devices, the orientation between the porthole of the flow device and the cell is not maintained absolutely constant. Orientation is critical for reproducibility in kinetic experiments. To be able to change the composition of the flowing solution during an experiment and still maintain a constant orientation, we use the cell-flow device described here. A peristaltic pump, a stainless steel U-tube, two different sizes of peristaltic tubing, and a solenoid valve are required to create a simple solution exchange system that can rapidly apply and remove solutions over the surface of a cell in tens of milliseconds. This system allows one to test multiple conditions on a cell containing the receptor of interest while constantly "washing" the cell with extracellular buffer solution between experimental applications. The use of the solenoid valve allows for the application of solutions to be precisely timed and controlled by a computer during electrophysiological current recording. PMID:25275111

  18. Flow cytometry and cell sorting.

    PubMed

    Ibrahim, Sherrif F; van den Engh, Ger

    2007-01-01

    Flow cytometry and cell sorting are well-established technologies in clinical diagnostics and biomedical research. Heterogeneous mixtures of cells are placed in suspension and passed single file across one or more laser interrogation points. Light signals emitted from the particles are collected and correlated to entities such as cell morphology, surface and intracellular protein expression, gene expression, and cellular physiology. Based on user-defined parameters, individual cells can then be diverted from the fluid stream and collected into viable, homogeneous fractions at exceptionally high speeds and a purity that approaches 100%. As such, the cell sorter becomes the launching point for numerous downstream studies. Flow cytometry is a cornerstone in clinical diagnostics, and cheaper, more versatile machines are finding their way into widespread and varied uses. In addition, advances in computing and optics have led to a new generation of flow cytometers capable of processing cells at orders of magnitudes faster than their predecessors, and with staggering degrees of complexity, making the cytometer a powerful discovery tool in biotechnology. This chapter will begin with a discussion of basic principles of flow cytometry and cell sorting, including a technical description of factors that contribute to the performance of these instruments. The remaining sections will then be divided into clinical- and research-based applications of flow cytometry and cell sorting, highlighting salient studies that illustrate the versatility of this indispensable technology. PMID:17728993

  19. Role of macrophages in circulating prostate cancer cells studied by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2013-02-01

    Macrophages appear to be directly involved in cancer progression and metastasis. However, the role of macrophages in influencing tumor metastasis has not been fully understood. Here, we have used an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 prostate cancer cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages might facilitate the stay of prostate tumor cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cancer cells. Therefore, the phagocytosis may mainly contribute to the differences in depletion kinetics. The developed methods here would be useful to study the relationship between macrophages and cancer metastasis in small animal tumor model.

  20. Electrocapturing flow cell

    DOEpatents

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  1. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices : cell culture and flow studies with glial cells.

    SciTech Connect

    Peterson, Sophie Louise; Sasaki, Darryl Yoshio; Gourley, Paul Lee; McDonald, Anthony Eugene

    2004-06-01

    Oxygen plasma treatment of poly(dimethylsiloxane) (PDMS) thin films produced a hydrophilic surface that was biocompatible and resistant to biofouling in microfluidic studies. Thin film coatings of PDMS were previously developed to provide protection for semiconductor-based microoptical devices from rapid degradation by biofluids. However, the hydrophobic surface of native PDMS induced rapid clogging of microfluidic channels with glial cells. To evaluate the various issues of surface hydrophobicity and chemistry on material biocompatibility, we tested both native and oxidized PDMS (ox-PDMS) coatings as well as bare silicon and hydrophobic alkane and hydrophilic oligoethylene glycol silane monolayer coated under both cell culture and microfluidic studies. For the culture studies, the observed trend was that the hydrophilic surfaces supported cell adhesion and growth, whereas the hydrophobic ones were inhibitive. However, for the fluidic studies, a glass-silicon microfluidic device coated with the hydrophilic ox-PDMS had an unperturbed flow rate over 14 min of operation, whereas the uncoated device suffered a loss in rate of 12%, and the native PDMS coating showed a loss of nearly 40%. Possible protein modification of the surfaces from the culture medium also were examined with adsorbed films of albumin, collagen, and fibrinogen to evaluate their effect on cell adhesion.

  2. Ellipsoidal cell flow system

    DOEpatents

    Salzman, Gary C.; Mullaney, Paul F.

    1976-01-01

    The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

  3. High-Resolution Electrochemical Scanning Tunneling Microscopy (EC-STM) Flow-Cell Studies.

    PubMed

    Lay, Marcus D; Sorenson, Thomas A; Stickney, John L

    2003-09-25

    Atomic-level studies involving an electrochemical scanning tunneling microscope (EC-STM) flow-cell are presented. Multiple electrochemical atomic layer epitaxy (EC-ALE) cycles of CdTe formation were observed. For a binary compound (i.e., CdTe), an EC-ALE cycle involves exposure of the substrate to a solution of the first precursor (CdSO4), followed by exposure to the second precursor (TeO2), while maintaining potential control. Interleaving blank rinses may also be used, but were omitted in the present studies. To allow the exchange of solutions, the EC-STM cell was modified to allow solution exchange via a single peristaltic pump. A selection valve was used to choose the solution to be introduced into the cell. There is evidence that the growth of the initial layer of CdTe on Au(111), the (√7 × √7)-CdTe monolayer, can be improved in homogeneity and morphology by repeatedly depositing and stripping the Cd atomic layer. Therefore, a new starting cycle, which should improve the quality of deposits formed via EC-ALE, has been developed. PMID:26317446

  4. Application Of Micro-Highspeed Flow Visualization In Study Of Blood Cells Rheology In Vivo

    NASA Astrophysics Data System (ADS)

    Gui-shah, Li; Ni, Liang; Yu-ju, Lin; Jian, Zhang; Qiang, Wang

    1990-01-01

    A new experimental method has been developed in study of rheological behaviour of single red blood cell (RBC) in passing through the capillaries in vivo, using the technique of micro-highspeed cinecamera and micro-highspeed video system. It is one of the most important topics in the study of microcirculatory theories that fur-ther understand the deformability of RBC, flow states, velocities and dynamic mechanimi. A micro-highspeed flow visualization system consisted of essential elements: a biological microscope, a highspeed cinecmera with 35 mm film, a highspeed motion analysis system SP2000 (Kodak U.S.A) and a cold-light source etc. We have investigated the rheological parameters of single RBC in vivo in single capillaries which are about 3.3 to 6.9 um in diameters. The RBCs velocities are 0.1 to 0.25 mm/sec, and maximum shear stress on the outside surface of RBC is 13.8 dyn/cml, and maximum extension of RBC is 10.3 um. In aforementioned experiment, the highspeed flow visualization system frequency at 530 frames/sec and 200 frames/sec were used respectively. In addition, the vasomotion of precapillary sphincters have been measured and a complicated coupling phenomena between the RBC and sphincter have also been recorded and analysed. The experiment were performed with intravital hamsters and frogs. The results obtained by this system shown that the method designed by us are an effective tool in the study of rheological behaviour of single RBC in passing through the blood capillaries in vivoz.

  5. Studying circulation times of liver cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, G.; Li, Y.; Fan, Z.; Guo, J.; Tan, X.; Wei, X.

    2011-02-01

    Hepatocellular carcinoma (HCC) may metastasize to lung kidney and many other organs. The survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines high-metastatic HCCLM3 cells and low-metastatic HepG2 cells which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  6. Growth of Myxococcus xanthus in Continuous-Flow-Cell Bioreactors as a Method for Studying Development

    PubMed Central

    Smaldone, Gregory T.; Jin, Yujie; Whitfield, Damion L.; Mu, Andrew Y.; Wong, Edward C.; Wuertz, Stefan

    2014-01-01

    Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program. PMID:24509931

  7. Numerical study of changing the geometry of the flow field of a PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Sabadbafan, H.

    2016-05-01

    The geometry of channels of a PEM fuel cell is an important parameter that affects the performance of it that the lower voltage loss in polarization curve can indicate the better performance. In this study a complete three-dimensional and single phase model is used to investigate the effect of increasing the number of serpentine channels in the bipolar plates and also increasing the area (depth) of channels of a PEM fuel cell with rectangular, triangular and elliptical cross-section geometry. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region is developed and numerically solved using a finite volume based computational fluid dynamics technique. The results show that there are good agreement with the numerical results and experimental results of the previous work of authors. Also the results show that by increasing the number of channels from one to four and eight, the performance improved about 18 % and by decreasing the area of channels from 2 to 1 mm2 the performance improved about 13 %.

  8. A flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions.

    PubMed

    Webster, Nathan A S; Madsen, Ian C; Loan, Melissa J; Scarlett, Nicola V Y; Wallwork, Kia S

    2009-08-01

    The design, construction, and commissioning of a stainless steel flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions is described. The use of the cell is demonstrated by a study of Al(OH)(3) scale formation on a mild steel substrate from synthetic Bayer liquor at 70 degrees C. The cell design allows for interchangeable parts and substrates and would be suitable for the study of scale formation in other industrial processes. PMID:19725670

  9. Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells

    NASA Astrophysics Data System (ADS)

    Shekhar, R.; Evans, J. W.

    Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.

  10. Application of Population Dynamics to Study Heterotypic Cell Aggregations in the Near-Wall Region of a Shear Flow

    PubMed Central

    Ma, Yanping; Wang, Jiakou; Liang, Shile; Dong, Cheng; Du, Qiang

    2010-01-01

    Our research focused on the polymorphonuclear neutrophils (PMNs) tethering to the vascular endothelial cells (EC) and the subsequent melanoma cell emboli formation in a shear flow, an important process of tumor cell extravasation from the circulation during metastasis. We applied population balance model based on Smoluchowski coagulation equation to study the heterotypic aggregation between PMNs and melanoma cells in the near-wall region of an in vitro parallel-plate flow chamber, which simulates in vivo cell-substrate adhesion from the vasculatures by combining mathematical modeling and numerical simulations with experimental observations. To the best of our knowledge, a multiscale near-wall aggregation model was developed, for the first time, which incorporated the effects of both cell deformation and general ratios of heterotypic cells on the cell aggregation process. Quantitative agreement was found between numerical predictions and in vitro experiments. The effects of factors, including: intrinsic binding molecule properties, near-wall heterotypic cell concentrations, and cell deformations on the coagulation process, are discussed. Several parameter identification approaches are proposed and validated which, in turn, demonstrate the importance of the reaction coefficient and the critical bond number on the aggregation process. PMID:20428326

  11. Application of Population Dynamics to Study Heterotypic Cell Aggregations in the Near-Wall Region of a Shear Flow.

    PubMed

    Ma, Yanping; Wang, Jiakou; Liang, Shile; Dong, Cheng; Du, Qiang

    2010-03-01

    Our research focused on the polymorphonuclear neutrophils (PMNs) tethering to the vascular endothelial cells (EC) and the subsequent melanoma cell emboli formation in a shear flow, an important process of tumor cell extravasation from the circulation during metastasis. We applied population balance model based on Smoluchowski coagulation equation to study the heterotypic aggregation between PMNs and melanoma cells in the near-wall region of an in vitro parallel-plate flow chamber, which simulates in vivo cell-substrate adhesion from the vasculatures by combining mathematical modeling and numerical simulations with experimental observations. To the best of our knowledge, a multiscale near-wall aggregation model was developed, for the first time, which incorporated the effects of both cell deformation and general ratios of heterotypic cells on the cell aggregation process. Quantitative agreement was found between numerical predictions and in vitro experiments. The effects of factors, including: intrinsic binding molecule properties, near-wall heterotypic cell concentrations, and cell deformations on the coagulation process, are discussed. Several parameter identification approaches are proposed and validated which, in turn, demonstrate the importance of the reaction coefficient and the critical bond number on the aggregation process. PMID:20428326

  12. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.

    PubMed

    Avari, Hamed; Savory, Eric; Rogers, Kem A

    2016-03-01

    Numerous in vitro systems have previously been developed and employed for studying the effects of hemodynamics on endothelial cell (EC) dysfunction. In the majority of that work, accurate flow quantification (e.g., uniformity of the flow over the ECs) remains elusive and wall shear stress (WSS) quantifications are determined using theoretical relationships (without considering the flow channel aspect ratio effects). In addition, those relationships are not applicable to flows other than steady laminar cases. The present work discusses the development of a novel hemodynamic flow system for studying the effects of various well-quantified flow regimes over ECs. The current work presents a novel hemodynamic flow system applying the concept of a parallel plate flow chamber (PPFC) with live microscopy access for studying the effects of quantified WSS on ECs. A range of steady laminar, pulsatile (carotid wave form) and low-Reynolds number turbulent WSSs were quantified through velocity field measurements by a laser Doppler velocimetry (LDV) system, to validate the functionality of the current hemodynamic flow system. Uniformity of the flow across the channel width can be analyzed with the current system (e.g., the flow was uniform across about 65-75% of the channel width for the steady cases). The WSS obtained from the experiments had higher values in almost all of the cases when compared to the most commonly-used theoretical solution (9% < error < 16%), whereas another relationship, which considers the channel dimensions, had better agreement with the experimental results (1% < error < 8%). Additionally, the latter relationship predicted the uniform flow region in the PPFC with an average difference of <5% when compared to the experimental results. The experimental data also showed that the WSS at various locations (D, E and F) at the test section differed by less than 4% for the laminar cases representing a fully developed flow. WSS was also determined

  13. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  14. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study

    PubMed Central

    Cheminant, Morgane; Derrieux, Coralie; Touzart, Aurore; Schmit, Stéphanie; Grenier, Adrien; Trinquand, Amélie; Delfau-Larue, Marie-Hélène; Lhermitte, Ludovic; Thieblemont, Catherine; Ribrag, Vincent; Cheze, Stéphane; Sanhes, Laurence; Jardin, Fabrice; Lefrère, François; Delarue, Richard; Hoster, Eva; Dreyling, Martin; Asnafi, Vahid; Hermine, Olivier; Macintyre, Elizabeth

    2016-01-01

    Quantification of minimal residual disease may guide therapeutic strategies in mantle cell lymphoma. While multiparameter flow cytometry is used for diagnosis, the gold standard method for minimal residual disease analysis is real-time quantitative polymerase chain reaction (RQ-PCR). In this European Mantle Cell Lymphoma network (EU-MCL) pilot study, we compared flow cytometry with RQ-PCR for minimal residual disease detection. Of 113 patients with at least one minimal residual disease sample, RQ-PCR was applicable in 97 (86%). A total of 284 minimal residual disease samples from 61 patients were analyzed in parallel by flow cytometry and RQ-PCR. A single, 8-color, 10-antibody flow cytometry tube allowed specific minimal residual disease assessment in all patients, with a robust sensitivity of 0.01%. Using this cut-off level, the true-positive-rate of flow cytometry with respect to RQ-PCR was 80%, whereas the true-negative-rate was 92%. As expected, RQ-PCR frequently detected positivity below this 0.01% threshold, which is insufficiently sensitive for prognostic evaluation and would ideally be replaced with robust quantification down to a 0.001% (10-5) threshold. In 10 relapsing patients, the transition from negative to positive by RQ-PCR (median 22.5 months before relapse) nearly always preceded transition by flow cytometry (4.5 months), but transition to RQ-PCR positivity above 0.01% (5 months) was simultaneous. Pre-emptive rituximab treatment of 2 patients at minimal residual disease relapse allowed re-establishment of molecular and phenotypic complete remission. Flow cytometry minimal residual disease is a complementary approach to RQ-PCR and a promising tool in individual mantle cell lymphoma therapeutic management. PMID:26703963

  15. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study.

    PubMed

    Cheminant, Morgane; Derrieux, Coralie; Touzart, Aurore; Schmit, Stéphanie; Grenier, Adrien; Trinquand, Amélie; Delfau-Larue, Marie-Hélène; Lhermitte, Ludovic; Thieblemont, Catherine; Ribrag, Vincent; Cheze, Stéphane; Sanhes, Laurence; Jardin, Fabrice; Lefrère, François; Delarue, Richard; Hoster, Eva; Dreyling, Martin; Asnafi, Vahid; Hermine, Olivier; Macintyre, Elizabeth

    2016-03-01

    Quantification of minimal residual disease may guide therapeutic strategies in mantle cell lymphoma. While multiparameter flow cytometry is used for diagnosis, the gold standard method for minimal residual disease analysis is real-time quantitative polymerase chain reaction (RQ-PCR). In this European Mantle Cell Lymphoma network (EU-MCL) pilot study, we compared flow cytometry with RQ-PCR for minimal residual disease detection. Of 113 patients with at least one minimal residual disease sample, RQ-PCR was applicable in 97 (86%). A total of 284 minimal residual disease samples from 61 patients were analyzed in parallel by flow cytometry and RQ-PCR. A single, 8-color, 10-antibody flow cytometry tube allowed specific minimal residual disease assessment in all patients, with a robust sensitivity of 0.01%. Using this cut-off level, the true-positive-rate of flow cytometry with respect to RQ-PCR was 80%, whereas the true-negative-rate was 92%. As expected, RQ-PCR frequently detected positivity below this 0.01% threshold, which is insufficiently sensitive for prognostic evaluation and would ideally be replaced with robust quantification down to a 0.001% (10-5) threshold. In 10 relapsing patients, the transition from negative to positive by RQ-PCR (median 22.5 months before relapse) nearly always preceded transition by flow cytometry (4.5 months), but transition to RQ-PCR positivity above 0.01% (5 months) was simultaneous. Pre-emptive rituximab treatment of 2 patients at minimal residual disease relapse allowed re-establishment of molecular and phenotypic complete remission. Flow cytometry minimal residual disease is a complementary approach to RQ-PCR and a promising tool in individual mantle cell lymphoma therapeutic management. (clinicaltrials identifiers: 00209209 and 00209222). PMID:26703963

  16. Basic studies of baroclinic flows

    NASA Technical Reports Server (NTRS)

    Miller, Tim L.; Chou, S.-H.; Leslie, Fred W.; Lu, H.-I.; Butler, K. A.

    1991-01-01

    Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM.

  17. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies.

    PubMed

    Schneider, Matthias F; Guttenberg, Zeno; Schneider, Stefan W; Sritharan, Kumudesh; Myles, Vanessa M; Pamukci, Umut; Wixforth, Achim

    2008-03-14

    A novel method for pumping very small volumes of liquid by using surface acoustic waves is employed to create a microfluidic flow chamber on a chip. It holds a volume of only a few mul and its planar design provides complete architectural freedom. This allows for the reconstruction of even complex flow scenarios (e.g. curvatures, bifurcations and stenosis). Addition of polymer walls to the planar fluidic track enables cell culturing on the chip surface and the investigation of cell-cell adhesion dynamics under flow. We demonstrate the flexibility of the system for application in many areas of microfluidic investigations including blood clotting phenomena under various flow conditions and the investigation of different stages of cell adhesion. PMID:18306189

  18. Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations

    PubMed Central

    Shen, Feng; Li, XiuJun; Li, Paul C. H.

    2014-01-01

    Various single-cell retention structures (SCRSs) were reported for analysis of single cells within microfluidic devices. Undesirable flow behaviors within micro-environments not only influence single-cell manipulation and retention significantly but also lead to cell damage, biochemical heterogeneity among different individual cells (e.g., different cell signaling pathways induced by shear stress). However, the fundamentals in flow behaviors for single-cell manipulation and shear stress reduction, especially comparison of these behaviors in different microstructures, were not fully investigated in previous reports. Herein, flow distribution and induced shear stress in two different single-cell retention structures (SCRS I and SCRS II) were investigated in detail to study their effects on single-cell trapping using computational fluid dynamics (CFD) methods. The results were successfully verified by experimental results. Comparison between these two SCRS shows that the wasp-waisted configuration of SCRS II has a better performance in trapping and manipulating long cylinder-shaped cardiac myocytes and provides a safer “harbor” for fragile cells to prevent cell damage due to the shear stress induced from strong flows. The simulation results have not only explained flow phenomena observed in experiments but also predict new flow phenomena, providing guidelines for new chip design and optimization, and a better understanding of the cell micro-environment and fundamentals of microfluidic flows in single-cell manipulation and analysis. PMID:24753729

  19. Preferential flow in heterogeneous forest-reclaimed lignitic mine soil I. Cell-lysimeter and multiple-tracer study

    NASA Astrophysics Data System (ADS)

    Hangen, E.; Gerke, H. H.; Schaaf, W.; Hüttl, R. F.

    2003-04-01

    Flow and transport processes in forest-reclaimed lignitic mine soils are required to quantify water and element budgets, which are important for long-term predictions of restored ecosystem stability and development of mining area water quality. Soil water pressure head and solute concentration measurements using tensiometers and suction cups showed strong spatial heterogeneity possibly indicating preferential flow effects. Properties and spatial structures of the mostly sandy mine soils and transport processes, however, have not sufficiently been known for detailed assessments. The objective of this study was to quantitatively analyse flow paths and measure amount and spatial distribtion of leaching. Water and element fluxes were studied at a reclaimed mine spoil site, which was afforested in 1982 with Pinus nigra. At a 3.3 m2 plot, the total percolating water was collected in 110 cm soil depth by 45 squared suction cells of 27 cm edge length each. A multi-tracer solution containing deuterium, bromide, and terbuthylazine was applied evenly at the plot surface and imposed to natural infiltration. Leaching was measured for a period of about 2 years. One third of the cells never delivered any drainage water while few cells had large drainage rates which in one case even exceeded local infiltration rates. About 71 % of the drainage was through 9 % of the area. The spatial distribution of the leached bromide tracer did not always correspond with that of drainage. Relative concentrations of bromide and deuterium were similar. Terbuthylazine was observed only sporadically during the first drainage period and at relatively small concentrations just above the analytical detection limit. Leaching patterns of the sorptive herbicide indicate only relatively small nonequilibrium-type preferential flow. Sediment structures, water repellent regions, and tree root distributions seem to be important for funneling and flow path formation.

  20. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study.

    PubMed

    Bora, Debajeet K; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Du, Chun; Wang, Dunwei; Guo, J-H

    2014-04-01

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra. PMID:24784592

  1. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bora, Debajeet K.; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Du, Chun; Wang, Dunwei; Guo, J.-H.

    2014-04-01

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra.

  2. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

    SciTech Connect

    Bora, Debajeet K. E-mail: jguo@lbl.gov; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Guo, J.-H. E-mail: jguo@lbl.gov; Du, Chun; Wang, Dunwei

    2014-04-15

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra.

  3. Hierarchical Bayesian mixture modelling for antigen-specific T-cell subtyping in combinatorially encoded flow cytometry studies

    PubMed Central

    Lin, Lin; Chan, Cliburn; Hadrup, Sine R.; Froesig, Thomas M.; Wang, Quanli; West, Mike

    2014-01-01

    Novel uses of automated flow cytometry technology for measuring levels of protein markers on thousands to millions of cells are promoting increasing need for relevant, customized Bayesian mixture modelling approaches in many areas of biomedical research and application. In studies of immune profiling in many biological areas, traditional flow cytometry measures relative levels of abundance of marker proteins using fluorescently labeled tags that identify specific markers by a single-color. One specific and important recent development in this area is the use of combinatorial marker assays in which each marker is targeted with a probe that is labeled with two or more fluorescent tags. The use of several colors enables the identification of, in principle, combinatorially increasingly numbers of subtypes of cells, each identified by a subset of colors. This represents a major advance in the ability to characterize variation in immune responses involving larger numbers of functionally differentiated cell subtypes. We describe novel classes of Markov chain Monte Carlo methods for model fitting that exploit distributed GPU (graphics processing unit) implementation. We discuss issues of cellular subtype identification in this novel, general model framework, and provide a detailed example using simulated data. We then describe application to a data set from an experimental study of antigen-specific T-cell subtyping using combinatorially encoded assays in human blood samples. Summary comments discuss broader questions in applications in immunology, and aspects of statistical computation. PMID:23629459

  4. Fundamental studies of materials, designs, and models development for polymer electrolyte membrane fuel cell flow field distributors

    NASA Astrophysics Data System (ADS)

    Nikam, Vaibhav Vilas

    Fuel cells are becoming a popular source of energy due to their promising performance and availability. However, the high cost of fuel cell stack forbids its deployment to end user. Moreover, bipolar plate is one of the critical components in current polymer electrolyte membrane fuel cell (PEMFC) system, causing severe increase in manufacturing cost. The objective of this research work is to develop new materials, design and manufacturing process for bipolar plates. The materials proposed for use were tested for corrosion resistance in simulated fuel cell conditions. After corrosion studies copper alloy (C17200) and Low Temperature Carburized (LTC) SS 316 were selected as an alternative material for bipolar plate. It was observed that though the copper alloy offered good resistance in corrosive atmosphere, the major advantage of using the alloys was good conductivity even after formation of corrosion layer compared to SS 316. However, LTC SS 316 achieved the best corrosion resistance (ever reported in current open literature at relatively low cost) with decreased contact resistance, as compared to SS 316. Due to the expensive and tedious machining for bipolar plate manufacturing, the conventional machining process was not used. Bipolar plates were manufactured from thin corrugated sheets formed of the alloy. This research also proposed a novel single channel convoluted flow field design which was developed by increasing the tortuosity of conventional serpentine design. The CFD model for novel single channel convoluted design showed uniform distribution of velocity over the entire three dimensional domain. The novel design was further studied using pressure drop and permeability models. These modeling calculations showed substantial benefit in using corrugated sheet design and novel single channel convoluted flow field design. All the concepts of materials (except for LTC SS 316), manufacturing and design are validated using various tests like long term stability

  5. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  6. Bypass Flow Study

    SciTech Connect

    Richard Schultz

    2011-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  7. Geophysical Fluid Flow Cell Simulation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  8. Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced hall cells: Part I. Flow in cells with a flat anode

    NASA Astrophysics Data System (ADS)

    Shekhar, R.; Evans, J. W.

    1994-06-01

    The need for energy reduction in the electrolytic production of aluminum led to the concept of advanced Hall cells that can be operated at lower interelectrode gaps compared to existing cells. However, gas bubbles generated by the anodic reaction increase the resistivity of electrolyte and cancel out part of the reduction in interelectrode resistance expected from bringing the electrodes closer together. Therefore, the primary objective of this work was to determine a cell design in which flow can be managed to promote the removal of anode gas bubbles from the interelectrode gap. In particular, this article focuses on advanced Hall cells equipped with “flat” anodes, similar to those used in existing cells. The principal experimental tool has been a “water” model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or near-horizontal configurations. Gas was generated by forcing compressed air through porous graphite, and the fine bubbles characteristic of inert anodes used in advanced Hall cells were produced by adding butanol to water. Velocities were measured using a laser-Doppler velocimeter (LDV). This study indicates that the existing cell configuration might not be the optimum configuration for advanced Hall cells. The results also show that operation of an advanced Hall cell with a fully submerged anode should give rise to higher electrolyte velocities and thus rapid removal of bubbles. The bubble effect should be further lowered in a near-horizontal configuration; however, the flow pattern could have an adverse effect on current efficiency and alumina distribution in the cell. It has also been shown that the bubble size, and, therefore, the physical properties of the electrolyte, can have a significant effect on the electrolyte flow pattern in the interelectrode gap.

  9. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells.

    PubMed

    Song, Jisun L; Au, Kelly H; Huynh, Kimberly T; Packman, Aaron I

    2014-03-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions. PMID:24038055

  10. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells

    PubMed Central

    Song, Jisun L.; Au, Kelly H.; Huynh, Kimberly T.

    2013-01-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions. PMID:24038055

  11. METAL-INDUCED ALTERATION OF THE CELL MEMBRANE/CYTOPLASM COMPLEX STUDIED BY FLOW CYTOMETRY AND DETERGENT LYSIS

    EPA Science Inventory

    Flow cytometric analysis of the cell cycle is most effectively accomplished with membrane-/cytoplasm-free ("clean") nuclei. Non-ionic detergents (e.g. NP40 or Triton X-100) commonly are employed to solubilize cells membranes/cytoplasm to produce "clean" nuclei. reatment of murine...

  12. Micromodel foam flow study

    SciTech Connect

    Chambers, K.T.; Radke, C.J.

    1990-10-01

    Foams are often utilized as part of enhanced oil recovery techniques. This report presents the results of a micromodel foam flow study. Micromodels are valuable tools in uncovering capillary phenomena responsible for lamellae generation and coalescence during foam flow in porous media. Among the mechanisms observed are snap-off, weeping-flow breakup, and lamella division and leave behind. Coalescence mechanisms include dynamic capillary-pressure-induced lamella drainage and gas diffusion. These phenomena are sensitive to the mode of injection, the local capillary environment, and the geometry of the pore structure. An important consideration in presenting a tractable model of foam flow behavior is the ability to identify the pore-level mechanisms having the greatest impact on foam texture. The predominant mechanisms will vary depending upon the application for foam as an enhanced oil recovery (EOR) fluid. Both simultaneous gas and surfactant injection and surfactant alternating with gas injection (SAG) have been used to create foam for mobility control in EOR projects. The model developed is based on simultaneous gas and surfactant injection during steady-state conditions into a Berea sandstone core. The lamellae generation and coalescence mechanisms included in this model are snap-off, lamella division, and dynamic capillary-pressure-induced lamella drainage. This simplified steady-state model serves as a foundation for developing more complete rate expressions and for extending the population balance to handle transient foam flow behavior. 70 refs., 30 figs.

  13. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  14. Numerical study of a novel micro-diaphragm flow channel with piezoelectric device for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, H. K.; Huang, S. H.; Chen, B. R.; Cheng, L. W.

    Previous studies have shown that the amplitude of the vibration of a piezoelectric (PZT) device produces an oscillating flow that changes the chamber volume along with a curvature variation of the diaphragm. In this study, an actuating micro-diaphragm with piezoelectric effects is utilized as an air-flow channel in proton exchange membrane fuel cell (PEMFC) systems, called PZT-PEMFC. This newly designed gas pump, with a piezoelectric actuation structure, can feed air into the system of an air-breathing PEMFC. When the actuator moves outward to increase the cathode channel volume, the air is sucked into the chamber; moving inward decreases the channel's volume and thereby compresses air into the catalyst layer and enhancing the chemical reaction. The air-standard PZT-PEMFC cycle is proposed to describe an air-breathing PZT-PEMFC. A novel design for PZT-PEMFCs has been proposed and a three-dimensional, transitional model has been successfully built to account for its major phenomena and performance. Moreover, at high frequencies, PZT actuation leads to a more stable current output, more drained water, higher sucked air, higher hydrogen consumption, and also overcomes concentration losses.

  15. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. PMID:26071649

  16. The Rb7 Matrix Attachment Region Increases the Likelihood and Magnitude of Transgene Expression in Tobacco Cells: A Flow Cytometric Study

    PubMed Central

    Halweg, Christopher; Thompson, William F.; Spiker, Steven

    2005-01-01

    Many studies in both plant and animal systems have shown that matrix attachment regions (MARs) can increase expression of transgenes in whole organisms or cells in culture. Because histochemical assays often indicate variegated transgene expression, a question arises: Do MARs increase transgene expression by increasing the percentage of cells expressing the transgene (likelihood), by increasing the level of expression in expressing cells (magnitude), or both? To address this question, we used flow cytometry to measure green fluorescent protein (GFP) expression in individual tobacco (Nicotiana tabacum) cells from lines transformed by Agrobacterium tumefaciens. We conclude that MAR-mediated overall increases in transgene expression involve both likelihood and magnitude. On average, cell lines transformed with the Rb7 MAR-containing vector expressed GFP at levels 2.0- to 3.7-fold higher than controls. MAR lines had fewer nonexpressing cells than control lines (10% versus 45%), and the magnitude of GFP expression in expressing cells was greater in MAR lines by 1.9- to 2.9-fold. We also show that flow cytometry measurements on cells from isogenic lines are consistent with those from populations of independently transformed cell lines. By obviating the need to establish isogenic lines, this use of flow cytometry could greatly simplify the evaluation of MARs or other sequence elements that affect transgene expression. PMID:15659622

  17. Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations

    SciTech Connect

    Hasegawa, Hiroki Ishiguro, Seiji

    2015-10-15

    The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.

  18. Cell-surface changes in cadmium-resistant Euglena: Studies using lectin-binding techniques and flow cytometry

    SciTech Connect

    Bonaly, J.; Brochiero, E.

    1994-01-01

    Most in vitro studies on contaminants focus on the short-term effects of pollutants on cells, without regard to long-term effects and the ability of cells or microorganisms to develop a specific resistance to a pollutant. Cadmium is ubiquitous environmental contaminant. This heavy metal enters the aquatic environment mainly through vapor emissions and fallout during smelting operations. Diverse mechanisms of algal resistance to toxic metals are known. Among these, the most general mechanism is the development of metal-binding proteins. In cadmium-resistant unicellular Euglena gracilis Z algae cells, the metal did not appear to be sequestered on soluble metal-binding ligands. Previous experiments have shown that resistance development is related to a diminution of cadmium penetration into cells, implicating cell surface or membrane alteration. This research investigates the mechanisms of development of cadmium resistance in Euglena cells at the cell-surface level. Sugar chains of glycoproteins and glycolipids are a predominant feature of the surface of cells. Moreover, the cell-response to environmental changes is often orchestrated through surface macromolecules such as glycoproteins. In this study, we applied this lectin method to investigate surface carbohydrate expression during and after resistance development. Our interest was twofold: (1) to learn more about the carbohydrate composition of the cell-surface of Euglena; and (2) to determine whether transition from wild cells to Cd-resistant cells changes the expression of cell-surface carbohydrates. 13 refs., 2 figs., 1 tab.

  19. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    NASA Astrophysics Data System (ADS)

    Doss, C. E.; Cassak, P. A.; Swisdak, M.

    2016-08-01

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.

  20. Mirrored serpentine flow channels for fuel cell

    DOEpatents

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  1. Quantitative analysis of cultured thymic reticulo-epithelial cells labelled by different antibodies: a flow cytometric study.

    PubMed Central

    Fabien, N; Auger, C; Bonnard, M; Andreoni, C; Rigal, D; Monier, J C

    1989-01-01

    Quantitative measurements of cultured human and murine thymic, and human thymoma reticuloepithelial cells (REC), immunolabeled by different antibodies (Ab) (TE3, TE4, anti-HTLV p19(p19), lu5, K11 and Aks) and by thymic hormones (thymulin and thymosin alpha 1 (Ta1)) within these cells, were performed using a flow cytometric technique. The anti-keratin polyclonal Ab labeled nearly the whole human or murine population. The p19 monoclonal Ab (MoAb), specific for the subcortical/medullary thymic regions, labelled 37-77% of the human REC. The TE3 MoAb, specific for the cortical region, labelled 54-83% of the REC. These percentages suggest that the cultured thymic REC (TREC) had markers of both regions together and therefore that these markers are not absolutely specific to determine their subcortical/medullary or cortical thymic origin. For the three populations there were more cells containing Ta1 than thymulin. The overlap of the percentage of labelled cells suggests that the same cell could synthesize the two hormones and that these hormones could be localized within the TE3 positive cells. PMID:2649289

  2. High-speed flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood: preliminary in-vitro studies

    NASA Astrophysics Data System (ADS)

    Cooper, Christy L.; Leary, James F.

    2014-03-01

    Leukemic cancer stem cells are both stem-like and leukemic-like. This complicates their detection as rare circulating tumor cells in peripheral blood of leukemia patients. The leukemic stem cells are also highly resistant to standard chemotherapeutic regimens so new therapeutic strategies need to be designed to kill the leukemic stem cells without killing normal stem cells. In these initial studies we have designed an antibody-targeted and fluorescent (Cy5.5) nanoparticle for targeting these leukemic stem cells and then introducing new strategies for killing them. Multicolor flow cytometric analyses were performed on a BD FACS Aria III. Human leukemic stem cell-like cell line RS4;11 (with putative immunophenotype CD123+/CD24+/CD38-/CD10-/Flt-3-) was used as a model human leukemic stem cell systems and were spiked into normal human peripheral blood cells containing normal blood stem-progenitor cells (immunophenotype CD123-/CD34+/CD38-) and Cy5.5-labeled nanoparticles with targeting molecule anti-CD123 antibody. An irrelevant antibody (CD71) which should not bind to any live leukemic stem cell or normal stem cell (binds erythrocytes) was used as a way of distinguishing between true-positive live and false-positive damaged/dead cells, the latter occurring at much higher frequencies than the very rare (e.g. 0.001 to 0.0001 percent frequency true leukemic stem cells). These studies are designed to measure the targeting sensitivity and specificity of the fluorescent nanoparticles to the putative rare leukemic stem cells with the eventual design to use the nanoparticles to direct killing therapeutic doses to the leukemic stem cells but not to the normal stem-progenitor cells.

  3. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  4. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    NASA Astrophysics Data System (ADS)

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.

  5. Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies

    PubMed Central

    Mirabelli, Peppino; Di Noto, Rosa; Lo Pardo, Catia; Morabito, Paolo; Abate, Giovanna; Gorrese, Marisa; Raia, Maddalena; Pascariello, Caterina; Scalia, Giulia; Gemei, Marica; Mariotti, Elisabetta; Del Vecchio, Luigi

    2008-01-01

    Background Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood, as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow, detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al, 2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens, with particular attention to the expression of ALDH on erythroid precursors. To this aim, we used three kinds of approach: i) multidimensional analytical flow cytometry, detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells, followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients. Results In normal bone marrow, we identified three populations of cells, namely ALDH+CD34+, ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52, 0.53 and 0.57, respectively). As compared to ALDH-CD34+ cells, ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells, with brighter expression of CD117 and CD133, accompanied by lower display of CD38 and CD45RA. Of interest, ALDH+CD34- population disclosed a straightforward erythroid commitment, on the basis of three orders of evidences. First of all, ALDH+CD34- cells showed a CD71bright, CD105+, CD45- phenotype. Secondly, induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally, ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA). Conclusion Our study, comparing surface antigen expression of ALDH+/CD34+, ALDH

  6. Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay.

    PubMed Central

    Cozens-Roberts, C; Quinn, J A; Lauffenburger, D A

    1990-01-01

    Quantitative information regarding the kinetics of receptor-mediated cell adhesion to a ligand-coated surface are crucial for understanding the role of certain key parameters in many physiological and biotechnology-related processes. Here, we use the probabilistic attachment and detachment models developed in the preceding paper to interpret transient data from well-defined experiments. These data are obtained with a simple model cell system that consists of receptor-coated latex beads (prototype cells) and a Radial-Flow Detachment Assay (RFDA) using a ligand-coated glass disc. The receptors and ligands used in this work are complementary antibodies. The beads enable us to examine transient behavior with particles that possess fairly uniform properties that can be varied systematically, and the RFDA is designed for direct observation of adhesion to the ligand-coated glass surface over a range of shear stresses. Our experiments focus on the effects of surface shear stress, receptor density, and ligand density. These data provide a crucial test of the probabilistic framework. We show that these data can be explained with the probabilistic analyses, whereas they cannot be readily interpreted on the basis of a deterministic analysis. In addition, we examine transient data on cell adhesion reported from other assays, demonstrating the consistency of these data with the predictions of the probabilistic models. Images FIGURE 2 PMID:2174272

  7. Recovery, Visualization, and Analysis of Actin and Tubulin Polymer Flow in Live Cells: A Fluorescent Speckle Microscopy Study

    PubMed Central

    Vallotton, P.; Ponti, A.; Waterman-Storer, C. M.; Salmon, E. D.; Danuser, G.

    2003-01-01

    Fluorescent speckle microscopy (FSM) is becoming the technique of choice for analyzing in vivo the dynamics of polymer assemblies, such as the cytoskeleton. The massive amount of data produced by this method calls for computational approaches to recover the quantities of interest; namely, the polymerization and depolymerization activities and the motions undergone by the cytoskeleton over time. Attempts toward this goal have been hampered by the limited signal-to-noise ratio of typical FSM data, by the constant appearance and disappearance of speckles due to polymer turnover, and by the presence of flow singularities characteristic of many cytoskeletal polymer assemblies. To deal with these problems, we present a particle-based method for tracking fluorescent speckles in time-lapse FSM image series, based on ideas from operational research and graph theory. Our software delivers the displacements of thousands of speckles between consecutive frames, taking into account that speckles may appear and disappear. In this article we exploit this information to recover the speckle flow field. First, the software is tested on synthetic data to validate our methods. We then apply it to mapping filamentous actin retrograde flow at the front edge of migrating newt lung epithelial cells. Our results confirm findings from previously published kymograph analyses and manual tracking of such FSM data and illustrate the power of automated tracking for generating complete and quantitative flow measurements. Third, we analyze microtubule poleward flux in mitotic metaphase spindles assembled in Xenopus egg extracts, bringing new insight into the dynamics of microtubule assemblies in this system. PMID:12885672

  8. TV News Flow Studies Revisited.

    ERIC Educational Resources Information Center

    Hjarvard, Stig

    1995-01-01

    Compares different theoretical approaches to the study of international news. Finds many comparative studies of the foreign news output of national broadcasters and few studies analyzing the actual flow of television news between actors at the wholesale level and the flow between wholesale and retail level. Suggests a better framework for the…

  9. Ultrasonic Enrichment of Flowing Blood Cells in Capillars: Influence of the Flow Rate

    NASA Astrophysics Data System (ADS)

    Carreras, Pilar; Gonzalez, Itziar; Ahumada, Oscar

    Red blood cells subjected to standing waves collect at the pressure nodes during their flow motion. Blood is a non-newtonian fluid whose density and other properties are defined by its flow velocity. Their drift motion is governed by the radiation force together with hydrodynamic conditions. This work presents a study of the blood cell enrichment performed in a rectangular capillar at f=1 MHz as a function of their flow motion. The cells collect along the central axis of the capillary in very few seconds, with a clearance in other lateral areas. Optimal flow rates below 100uL/min were found in the experiments.

  10. Assaying Cell Cycle Status Using Flow Cytometry.

    PubMed

    Kim, Kang Ho; Sederstrom, Joel M

    2015-01-01

    In this unit, two protocols are described for analyzing cell cycle status using flow cytometry. The first is based on the simultaneous analysis of proliferation-specific marker (Ki-67) and cellular DNA content, which discriminate resting/quiescent cell populations (G0 cell) and quantify cell cycle distribution (G1, S, or G2/M), respectively. The second is based on differential staining of DNA and RNA through co-staining of Hoechst 33342 and Pyronin Y, which is also useful to identify G0 cells from G1 cells. Along with these methods for analyzing cell cycle status, two additional methods for cell proliferation assays with recent updates of newly developed fluorophores, which allow multiplex analysis of cell cycle status, cell proliferation, and a gene of interest using flow cytometry, are outlined. PMID:26131851

  11. Flow and Diffusion in Channel-Guided Cell Migration

    PubMed Central

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O.

    2014-01-01

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport

  12. Overhead Projection Cell for Streamline Flow

    ERIC Educational Resources Information Center

    Waage, Harold M.

    1969-01-01

    Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)

  13. Bistability of Cell Adhesion in Shear Flow

    PubMed Central

    Efremov, Artem; Cao, Jianshu

    2011-01-01

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area—bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms. PMID:21889439

  14. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  15. Flow Cytometry Analysis of Thymic Epithelial Cells and Their Subpopulations.

    PubMed

    Ohigashi, Izumi; Takahama, Yousuke

    2016-01-01

    The parenchyma of the thymus is compartmentalized into the cortex and the medulla, which are constructed by cortical thymic epithelial cells (cortical TECs, cTECs) and medullary thymic epithelial cells (mTECs), respectively. cTECs and mTECs essentially and differentially regulate the development and repertoire selection of T cells. Consequently, the biology of T cell development and selection includes the study of TECs in addition to the study of developing T cells and other hematopoietic cells including dendritic cells. In this chapter, we describe the methods for flow cytometric analysis and sorting of TECs and their subpopulations, including cTECs and mTECs. PMID:26294398

  16. Gas-Particle Interactions in a Microgravity Flow Cell

    NASA Technical Reports Server (NTRS)

    Louge, Michel; Jenkins, James

    1999-01-01

    We are developing a microgravity flow cell in which to study the interaction of a flowing gas with relatively massive particles that collide with each other and with the moving boundaries of the cell. The absence of gravity makes possible the independent control of the relative motion of the boundaries and the flow of the gas. The cell will permit gas-particle interactions to be studied over the entire range of flow conditions over which the mixture is not turbulent. Within this range, we shall characterize the viscous dissipation of the energy of the particle fluctuations, measure the influence of particle-phase viscosity on the pressure drop along the cell, and observe the development of localized inhomogeneities that are likely to be associated with the onset of clusters. These measurements and observations should contribute to an understanding of the essential physics of pneumatic transport.

  17. Ciliary Neurotrophic Factor Induces Genes Associated with Inflammation and Gliosis in the Retina: A Gene Profiling Study of Flow-Sorted, Müller Cells

    PubMed Central

    Dudley, V. Joseph; Brooks, Matthew; Swaroop, Anand; Sarthy, Vijay P.

    2011-01-01

    Background Ciliary neurotrophic factor (CNTF), a member of the interleukin-6 cytokine family, has been implicated in the development, differentiation and survival of retinal neurons. The mechanisms of CNTF action as well as its cellular targets in the retina are poorly understood. It has been postulated that some of the biological effects of CNTF are mediated through its action via retinal glial cells; however, molecular changes in retinal glia induced by CNTF have not been elucidated. We have, therefore, examined gene expression dynamics of purified Müller (glial) cells exposed to CNTF in vivo. Methodology/Principal Findings Müller cells were flow-sorted from mgfap-egfp transgenic mice one or three days after intravitreal injection of CNTF. Microarray analysis using RNA from purified Müller cells showed differential expression of almost 1,000 transcripts with two- to seventeen-fold change in response to CNTF. A comparison of transcriptional profiles from Müller cells at one or three days after CNTF treatment showed an increase in the number of transcribed genes as well as a change in the expression pattern. Ingenuity Pathway Analysis showed that the differentially regulated genes belong to distinct functional types such as cytokines, growth factors, G-protein coupled receptors, transporters and ion channels. Interestingly, many genes induced by CNTF were also highly expressed in reactive Müller cells from mice with inherited or experimentally induced retinal degeneration. Further analysis of gene profiles revealed 20–30% overlap in the transcription pattern among Müller cells, astrocytes and the RPE. Conclusions/Significance Our studies provide novel molecular insights into biological functions of Müller glial cells in mediating cytokine response. We suggest that CNTF remodels the gene expression profile of Müller cells leading to induction of networks associated with transcription, cell cycle regulation and inflammatory response. CNTF also appears to

  18. Flow cytometric immunofluorescence of rat anterior pituitary cells

    NASA Technical Reports Server (NTRS)

    Hatfield, J. Michael; Hymer, W. C.

    1985-01-01

    A flow cytometric immunofluorescence technique was developed for the quantification of growth hormone, prolactin, and luteinizing hormone producing cells. The procedure is based on indirect-immunofluorescence of intracellular hormone using an EPICS V cell sorter and can objectively count 50,000 cells in about 3 minutes. It can be used to study the dynamics of pituitary cell populations under various physiological and pharmacological conditions.

  19. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  20. Clumping and Viability of Bone Marrow Derived Mesenchymal Stromal Cells under Different Preparation Procedures: A Flow Cytometry-Based In Vitro Study

    PubMed Central

    Cui, Li-li; Kinnunen, Tuure; Boltze, Johannes; Nystedt, Johanna

    2016-01-01

    Complications of microocclusions have been reported after intra-arterial delivery of mesenchymal stromal cells. Hence, quantification and efficient limitation of cell clumps in suspension before transplantation is important to reduce the risk. We used a flow cytometry-based pulse-width assay to assess the effects of different cell suspension concentrations (0.2–2.0 × 106/mL), storage solutions (complete growth medium, Dulbecco's phosphate-buffered saline, and normal saline), storage time in suspension (0–9 h), and freeze-thawing procedure on the clumping of rat bone marrow derived mesenchymal stromal cells (BMMSCs) and also evaluated cell viability at the same time. Surprisingly, increasing the cell concentration did not result in more cell clumps in vitro. Freshly harvested (fresh) cells in normal saline had significantly fewer cell clumps and also displayed high viability (>90%). A time-dependent reduction in viability was observed for cells in all three storage solutions, without any significant change in the clumping tendency except for cells in medium. Fresh cells were more viable than their frozen-thawed counterparts, and fresh cells in normal saline had fewer cell clumps. In conclusion, cell clumping and viability could be affected by different cell preparation procedures, and quantification of cell clumping can be conducted using the flow cytometry-based pulse-width assay before intra-arterial cell delivery. PMID:27022399

  1. Theoretical and Experimental Flow Cell Studies of a Hydrogen-Bromine Fuel Cell, Part 1. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Savinell, R. F.; Fritts, S. D.

    1986-01-01

    There is increasing interest in hydrogen-bromine fuel cells as both primary and regenerative energy storage systems. One promising design for a hydrogen-bromine fuel cell is a negative half cell having only a gas phase, which is separated by a cationic exchange membrane from a positive half cell having an aqueous electrolyte. The hydrogen gas and the aqueous bromide solution are stored external to the cell. In order to calculate the energy storage capacity and to predict and assess the performance of a single cell, the open circuit potential (OCV) must be estimated for different states of change, under various conditions. Theoretical expressions were derived to estimate the OCV of a hydrogen-bromine fuel cell. In these expressions temperature, hydrogen pressure, and bromine and hydrobromic acid concentrations were taken into consideration. Also included are the effects of the Nafion membrance separator and the various bromide complex species. Activity coefficients were taken into account in one of the expressions. The sensitivity of these parameters on the calculated OCV was studied.

  2. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  3. DNS studies of bubbly flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar; Esmaeeli, Asghar; Biswas, Souvik

    2004-11-01

    Recent stuies of bubbly flows, using direct numerical simulations, are discussed. The goal of this study is to examine the collective behavior of many bubbles as the rise Reynolds number is increased and and a single bubble rises unsteadily, as well as to examine the motion of bubbles in channels. A front-tracking/finite volume method is used to fully resolve all flow scales, including the bubbles and the flow around them. Two cases are simulated, for one the bubbles remain nearly spherical and for the other case the bubbles are deformable and wobble. The wobbly bubbles remains relatively uniformly distributed and are not susceptible to the streaming instability found by Bunner and Tryggvason (2003) for deformable bubbles at lower rise Reynolds numbers. The more spherical bubbles, on the other hand, form transients ``rafts'' somewhat similar to those seen in potential flow simulation of many bubbles. For channel flow we compare results from direct numerical simulations of bubbly flow with prediction of the steady-state two-fluid model of Antal, Lahey, and Flaherty (1991). The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The results generally agree reasonably well, even though the simulated void fraction is considerably higher than the one assumed in the derivation of the model. Research supported by DOE.

  4. Bleed Hole Flow Phenomena Studied

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boundary-layer bleed is an invaluable tool for controlling the airflow in supersonic aircraft engine inlets. Incoming air is decelerated to subsonic speeds prior to entering the compressor via a series of oblique shocks. The low momentum flow in the boundary layer interacts with these shocks, growing in thickness and, under some conditions, leading to flow separation. To remedy this, bleed holes are strategically located to remove mass from the boundary layer, reducing its thickness and helping to maintain uniform flow to the compressor. The bleed requirements for any inlet design are unique and must be validated by extensive wind tunnel testing to optimize performance and efficiency. To accelerate this process and reduce cost, researchers at the NASA Lewis Research Center initiated an experimental program to study the flow phenomena associated with bleed holes. Knowledge of these flow properties will be incorporated into computational fluid dynamics (CFD) models that will aid engine inlet designers in optimizing bleed configurations before any hardware is fabricated. This ongoing investigation is currently examining two hole geometries, 90 and 20 (both with 5-mm diameters), and various flow features.

  5. Geophysical Fluid Flow Cell (GFFC) Simulation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)

  6. Flow of Red Blood Cells in Stenosed Microvessels.

    PubMed

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  7. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  8. Flow of Red Blood Cells in Stenosed Microvessels

    PubMed Central

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-01-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis. PMID:27319318

  9. Immobilized cell cross-flow reactor. [Saccharomyces cerevisiae

    SciTech Connect

    Chotani, G.K.; Constantinides, A.

    1984-01-01

    A cross-current flow reactor was operated using sodium alginate gel entrapped yeast cells (Saccharomyces cerevisiae) under growth conditions. Micron-sized silica, incorporated into the biocatalyst particles (1 mm mean diameter) improved mechanical strength and internal surface adhesion. The process showed decreased productivity and stability at 35/sup 0/C compared to the normal study done at 30/sup 0/C. The increased number of cross flows diminish the product inhibition effect. The residence time distribution shows that the cross-flow bioreactor system can be approximated to either a train of backmixed fermentors in series or a plug flow fermentor with moderate axial dispersion.

  10. a Laboratory Investigation of Two-Celled Vortex Flows

    NASA Astrophysics Data System (ADS)

    Pauley, Randal Lee

    An experimental study of the steady-state kinematics, dynamics, and morphology of two-celled vortex flows has been conducted in the Ward-type tornado vortex chamber (TVC) at Purdue University, with emphasis on exploring the vertical momentum balance in the vortex core and better defining the flow near the external boundaries of the TVC. The TVC was modified for these experiments to more closely compare with numerical models and to allow the implementation of new measurement techniques. Observations of the visualized flow in two-celled vortices and time -averaged static pressure measurements on the axis and at the boundaries of the TVC are reported. Laboratory observations and measurements are compared with results of a numerical model of the TVC flow authored by Rotunno (1984). Laboratory and numerical results are analyzed in terms of the vertical momentum equation. Results show that in the Purdue TVC the flow downstream of the vortex breakdown is everywhere two-celled, with the strongest axial downflow occurring at middle levels. The pressure on the axis in the two-celled vortices increases with height immediately downstream of the breakdown, with the axial pressure gradient tending toward zero farther downstream. The flow-straightening baffle at the downstream terminus of the vortex in the TVC does not critically affect the flow provided the vortex breakdown is well upstream. Analysis of the laboratory findings within the context of the vertical momentum equation shows that the vertical shear stress can play an important role in the axial momentum balance of two-celled vortices by opposing the filling of the vortex core from aloft and so helping to maintain low pressure and high velocities near the surface. The numerical model of Rotunno (1984) is successful in qualitatively replicating several of the flow characteristics in the TVC, including two-celled flow, multiple subsidiary vortices, strongest downflow at middle levels, axial pressure increasing with height

  11. Perturbation of red blood cell flow in small tubes by white blood cells.

    PubMed

    Thompson, T N; La Celle, P L; Cokelet, G R

    1989-02-01

    The flow of blood in the microcirculation is facilitated by the dynamic reduction in viscosity (Fahraeus-Lindquist effect) resulting from the axial flow of deforming erythrocytes (RBCs) and from the decrease in the ratio of cell to vessel diameter. RBC velocity exceeds that of average fluid velocity; however the slower moving white blood cells (WBC) perturb flow velocity and the ratio of cell to vessel diameter by obstructing red cell flow through formation of "trains" of red cells collecting behind the white cell. This effect of white cells was studied quantitatively in a model in vitro tubes less than 10 microns in diameter with the demonstration that flow resistance increases linearly with white cell numbers up to 1,000 WBC/mm3 at tube hematocrit of 17.7%. The increase in resistance exceeds the flow resistance of WBC and appears to relate directly to train formation. A mechanical model of train formation developed to predict WBC influence in flow resistance over the range of WBC studied reasonably fits observed WBC effects. PMID:2928089

  12. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  13. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  14. Swan falls instream flow study

    SciTech Connect

    Anglin, D.R.; Cummings, T.R.; Ecklund, A.E.

    1992-10-01

    The purpose of the Swan Falls Instream Flow Study was to define the relationship between streamflows and instream habitat for resident fish species and to assess the relative impact of several different hydrographs on resident fish habitat. Specific objectives included the following: (1) Conduct a literature search to compile life history, distribution, and habitat requirements for species of interest. Physical and hydrologic characteristics of the Snake River were also compiled. (2) Determine physical habitat versus discharge relationships and conduct habitat time series analysis for each species/lifestage using the Instream Flow Incremental Methodology (IFIM) developed by the U.S. Fish and Wildlife Service. (3) Examine the impacts on resident fish habitat of proposed hydrographs, including Swan Falls Agreement flows, relative to current conditions. (4) Characterize water quality conditions, including water temperature and dissolved oxygen, in the vicinity of the study area and determine the implications of those conditions for the resident species of interest. (5) Determine streamflows necessary to protect and maintain resident fish habitat in the study area.

  15. Artificial Hair Cells for Sensing Flows

    NASA Technical Reports Server (NTRS)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  16. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  17. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  18. Cell stretching in extensional flows for assaying cell mechanics

    NASA Astrophysics Data System (ADS)

    Gossett, Daniel; Tse, Henry; Adeyiga, Oladunni; Yang, Otto; Rao, Jianyu; di Carlo, Dino

    2013-03-01

    There is growing evidence that cell deformability is a useful indicator of cell state and may be a label-free biomarker of metastatic potential, degree of differentiation, and leukocyte activation. In order for deformability measurements to be clinically valuable given the heterogeneity of biological samples, there exists a need for a high-throughput assay of this biophysical property. We developed a robust method for obtaining high-throughput (>1,000 cells/sec) single-cell mechanical measurements which employs coupled hydrodynamic lift forces and curvature-induced secondary flows to uniformly position cells in flow, extensional flow stretching, high-speed imaging, and automated image analysis to extract diameter and deformability parameters. Using this method we have assayed numerous in vitro models of cellular transformations and clinical fluids where malignant cells manifest. We found transformations associated with increased motility or invasiveness increased deformability and the presence of large and deformable cells within clinical pleural fluids correlated well with cytological diagnoses of malignancy. This agrees with the hypothesis that cancerous cells are deformable by necessity-to be able to transverse tight endothelial gaps and invade tissues.

  19. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE PAGESBeta

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.« less

  20. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    SciTech Connect

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not play a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.

  1. Studies of planetary scale waves and instabilities in support of the geophysical fluid flow cell experiment on USML-2

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1995-01-01

    High resolution numerical simulations of thermal convection in a rapidly rotating channel with gravity perpendicular to the rotation vector are described. The convecting columns are subject to a beta-effect resulting from cross-channel topographic vortex stretching. The symmetries of the problem allow many invariant wavenumber sets, and this property is associated with the existence of stable multiple-equilibria at modest supercriticality. The transition to chaotic behavior involves the production of intermittent unstable orbits off a two-torus in energy space. At very high Rayleigh number (of order 10(exp 6) to 10(exp 7)) the motion can be turbulent, depending on the size of beta. However, the turbulence is usually characterized by an almost-periodic formation of patches of small scale convection that cause regular pulsations in the accompanying strong zonal jets. The processes maintaining these flows may be related to those responsible for the zonal currents on Jupiter and for cyclic variability on the Sun.

  2. Deterministic sequential isolation of floating cancer cells under continuous flow.

    PubMed

    Tran, Quang D; Kong, Tian Fook; Hu, Dinglong; Marcos; Lam, Raymond H W

    2016-08-01

    Isolation of rare cells, such as circulating tumor cells, has been challenging because of their low abundance and limited timeframes of expressions of relevant cell characteristics. In this work, we devise a novel hydrodynamic mechanism to sequentially trap and isolate floating cells in biosamples. We develop a microfluidic device for the sequential isolation of floating cancer cells through a series of microsieves to obtain up to 100% trapping yield and >95% sequential isolation efficiency. We optimize the trappers' dimensions and locations through both computational and experimental analyses using microbeads and cells. Furthermore, we investigated the functional range of flow rates for effective sequential cell isolation by taking the cell deformability into account. We verify the cell isolation ability using the human breast cancer cell line MDA-MB-231 with perfect agreement with the microbead results. The viability of the isolated cells can be maintained for direct identification of any cell characteristics within the device. We further demonstrate that this device can be applied to isolate the largest particles from a sample containing multiple sizes of particles, revealing its possible applicability in isolation of circulating tumor cells in cancer patients' blood. Our study provides a promising sequential cell isolation strategy with high potential for rapid detection and analysis of general floating cells, including circulating tumor cells and other rare cell types. PMID:27387093

  3. Determination of natural killer cell function by flow cytometry.

    PubMed Central

    Kane, K L; Ashton, F A; Schmitz, J L; Folds, J D

    1996-01-01

    Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity. PMID:8705672

  4. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study.

    PubMed

    Mandruzzato, Susanna; Brandau, Sven; Britten, Cedrik M; Bronte, Vincenzo; Damuzzo, Vera; Gouttefangeas, Cécile; Maurer, Dominik; Ottensmeier, Christian; van der Burg, Sjoerd H; Welters, Marij J P; Walter, Steffen

    2016-02-01

    There is an increasing interest for monitoring circulating myeloid-derived suppressor cells (MDSCs) in cancer patients, but there are also divergences in their phenotypic definition. To overcome this obstacle, the Cancer Immunoguiding Program under the umbrella of the Association of Cancer Immunotherapy is coordinating a proficiency panel program that aims at harmonizing MDSC phenotyping. After a consultation period, a two-stage approach was designed to harmonize MDSC phenotype. In the first step, an international consortium of 23 laboratories immunophenotyped 10 putative MDSC subsets on pretested, peripheral blood mononuclear cells of healthy donors to assess the level of concordance and define robust marker combinations for the identification of circulating MDSCs. At this stage, no mandatory requirements to standardize reagents or protocols were introduced. Data analysis revealed a small intra-laboratory, but very high inter-laboratory variance for all MDSC subsets, especially for the granulocytic subsets. In particular, the use of a dead-cell marker altered significantly the reported percentage of granulocytic MDSCs, confirming that these cells are especially sensitive to cryopreservation and/or thawing. Importantly, the gating strategy was heterogeneous and associated with high inter-center variance. Overall, our results document the high variability in MDSC phenotyping in the multicenter setting if no harmonization/standardization measures are applied. Although the observed variability depended on a number of identified parameters, the main parameter associated with variation was the gating strategy. Based on these findings, we propose further efforts to harmonize marker combinations and gating parameters to identify strategies for a robust enumeration of MDSC subsets. PMID:26728481

  5. Geophysical Fluid Flow Cell (GFFC) Cross Section

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This drawing shows a cross-section view of the test cell at the heart of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. The middle and lower drawings depict the volume of the silicone oil layer that served as the atmosphere as the steel ball rotated and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)

  6. Deterministic Aperiodic Sickle Cell Blood Flows

    NASA Astrophysics Data System (ADS)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  7. Simulation of cell-cell interactions in shear flow

    NASA Astrophysics Data System (ADS)

    Eggleton, Charles; Jadhav, Sameer; Konstantopoulos, Konstantinos

    2004-11-01

    Receptor-mediated cell aggregation in the fluid mechanical environment of the circulation is critical to several processes including thrombosis, inflammation and cancer metastasis. Previous models of cell aggregation under fluid shear assumed cells to be hard spheres. However, cell deformation may affect the aggregation process. To investigate the role of cell deformability on the collision frequency, intercellular contact area and contact duration, we developed a three-dimensional computational model based on the immersed boundary method to simulate collisions between deformable capsules in a linear shear field. Our simulations show that in contrast to hard spheres, the intercellular contact area and contact duration for collisions between deformable capsules decrease with increasing shear rate. Moreover, the contact area between deformable capsules is roughly annular in shape compared to circular contact area between hard spheres. Preliminary results show that cell deformation can drastically influence the extent of cell aggregation under hydrodynamic flow conditions.

  8. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  9. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  10. Statistical Mixture Modeling for Cell Subtype Identification in Flow Cytometry

    PubMed Central

    Chan, Cliburn; Feng, Feng; Ottinger, Janet; Foster, David; West, Mike; Kepler, Thomas B

    2010-01-01

    Background Statistical mixture modeling provides an opportunity for automated identification and resolution of cell subtypes in flow cytometric data. The configuration of cells as represented by multiple markers simultaneously can be modeled arbitrarily well as a mixture of Gaussian distributions in the dimension of the number of markers. Cellular subtypes may be related to one or multiple components of such mixtures, and fitted mixture models can be evaluated in the full set of markers as an alternative, or adjunct, to traditional subjective gating methods that rely on choosing one or two dimensions. Methods Four color flow data from human blood cells labeled with FITC-conjugated anti-CD3, PE-conjugated anti-CD8, PE-Cy5-conjugated anti-CD4 and APC-conjugated anti-CD19 Abs was acquired on a FACSCalibur. Cells from four murine cell lines, JAWS II, RAW 264.7, CTLL-2 and A20, were also stained with FITC-conjugated anti-CD11c, PE-conjugated anti-CD11b, PE-Cy5-conjugated anti-CD8a and PE-Cy7-conjugated-CD45R/B220 Abs respectively, and single color flow data were collected on an LSRII. The data was fitted with a mixture of multivariate Gaussians using standard Bayesian statistical approaches and Markov chain Monte Carlo computations. Results Statistical mixture models were able to identify and purify major cell subsets in human peripheral blood, using an automated process that can be generalized to an arbitrary number of markers. Validation against both traditional expert gating and synthetic mixtures of murine cell lines with known mixing proportions was also performed. Conclusions This paper describes studies of statistical mixture modeling of flow cytometric data, and demonstrates their utility in examples with four-color flow data from human peripheral blood samples and synthetic mixtures of murine cell lines. PMID:18496851

  11. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  12. Estimating the efficiency of cell capture and arrest in flow chambers: study of neutrophil binding via E-selectin and ICAM-1.

    PubMed Central

    Zhang, Yi; Neelamegham, Sriram

    2002-01-01

    A mathematical model was developed to quantify the efficiency of cell-substrate attachment in the parallel-plate flow chamber. The model decouples the physical features of the system that affect cell-substrate collision rates from the biological features that influence cellular adhesivity. Thus, experimental data on cell rolling and adhesion density are converted into "frequency" parameters that quantify the "efficiency" with which cells in the flow chamber progress from the free stream to rolling, and transition from rolling to firm arrest. The model was partially validated by comparing simulation results with experiments where neutrophils rolled and adhered onto substrates composed of cotransfected cells bearing E-selectin and intercellular adhesion molecule-1 (ICAM-1). Results suggest that: 1) Neutrophils contact the E-selectin substrate on average for 4-8.5s before tethering. This contact duration is insensitive to applied shear stress. 2) At 2 dyn/cm(2), approximately 28% of the collisions between the cells and substrate result in primary capture. Also, approximately 5-7% of collisions between neutrophils in the free stream and previously recruited neutrophils bound on the substrate result in secondary capture. These percentages were higher at lower shears. 3) An adherent cell may influence the flow streams in its vicinity up to a distance of 2.5 cell diameters away. 4) Our estimates of selectin on-rate in cellular systems compare favorably with data from reconstituted systems with immobilized soluble E-selectin. In magnitude, the observed on-rates occur in the order, L-selectin > P-selectin > E-selectin. PMID:12324413

  13. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells

    SciTech Connect

    Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George E.

    2011-05-27

    In this work we compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any size vessel but this approach is computationally expensive above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for vessels with sizes comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for

  14. The Geophysical Fluid Flow Cell Experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  15. Channel Flow Cell Studies of the Inhibiting Action of Gypsum on the Dissolution Kinetics of Calcite: A Laboratory Approach with Implications for Field Monitoring.

    PubMed

    Wilkins, Shelley J.; Compton, Richard G.; Taylor, Mark A.; Viles, Heather A.

    2001-04-15

    The rate of dissolution of surface-treated calcite crystals in aqueous acidic solution has been studied using an adaptation of the channel flow cell method with microdisc electrode detection. Surface treatments of calcite with sulfuric acid lead to the nucleation of gypsum overgrowths, which reduce the rate of dissolution of calcite. Rate constants for untreated calcite and calcite pretreated with sulfuric acid conditions of 0.01 M for 1 h, 0.05 M for 5 h, and 0.1 M for 21 h are found to be 0.035, 0.018, 0.006, and 0.004 cm s(-1), respectively. Deterioration of calcite materials caused by acid deposition was investigated by field exposure of untreated and sulfate pretreated calcite rocks under urban conditions for 12 months. The rate constant for both pretreated and untreated calcite exposed to weathering is 0.003 cm s(-1). This suggests that calcite self-passivates the surface from further reaction when exposed to acid deposition. However, surface studies indicate that the surface undergoes erosion and dissolution before passivation. Pretreatment of the surface with sulfate protects the surface from acid deposition so it remains less reactive toward acid compared with untreated calcite. Copyright 2001 Academic Press. PMID:11401383

  16. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  17. Fluid and Cell Transport Through a Microfabricated Flow Chamber.

    NASA Astrophysics Data System (ADS)

    Brody, James Patrick

    We use silicon processing techniques to construct microfabricated fluid flow chambers. Custom designed silicon wafers with feature sizes of 1-10 μm and etch depths from 0.5-5 μm are anodically bonded to Pyrex glass to create a hermetically sealed chamber. A pressure gradient is placed across the chamber to induce bulk fluid flow. Properties of fluid flow and red blood cells are recorded using video microscopy. The human red blood cell is ideal for studying cellular membranes. It is an 8 μm diameter biconcave disc containing a membrane and associated cytoskeleton which surrounds a thick solution of hemoglobin. The material properties of individual red blood cells have been extensively studied in the past using micropipettes. However, we can get statistics on hundreds of red blood cells by fabricating an array of narrow channels 4 mu m x 4 μm in cross-section (the diameter of the smallest capillaries in the human body) and 13 μm long. These narrow channels are followed by an open space. This geometry forces red cells to repeatedly fold and unfold. Using these arrays, we show that the shear modulus of the membrane does not have a unique value, but has a distribution that ranges from 3-12 times 10 ^{-6} N/m. The surprisingly wide distribution is not due to cell size or cell age. It does seem to be correlated with intracellular Ca^ {2+}<=vels, leading us to believe that cell rigidity is controlled by some active process. We also report observations on red blood cells changing their rigidity by factors of fifty over tens of seconds. These microfabricated flow chambers are ideal for studying fluid flow through porous media. We construct custom designed two-dimensional environments with micron size features. These environments can be described by simple analytical theories which also attempt to describe flow through rock. For example, we image viscous imbibition of water into a percolation grid with 5 mu m edges in real time, and measure the permeability as a function

  18. Schlieren System For Flow Studies In Round Glass Pipes

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Rhodes, David B.; Jones, Stephen B.

    1990-01-01

    In schlieren system for studying flow of gas in transparent pipe of circular cross section, cylindrical lenses placed on opposite sides of pipe compensate for refraction caused by wall of pipe. Enables direct visualization of such phenomena as laminar or turbulent flow, shock waves, vortexes, and flow separations in systems having inherently cylindrical geometry; potentially unreliable extrapolations from results in flat-sided test cells no longer necessary.

  19. Flow Cytometric Analysis of Immune Cells Within Murine Aorta.

    PubMed

    Gjurich, Breanne N; Taghavie-Moghadam, Parésa L; Galkina, Elena V

    2015-01-01

    The immune system plays a critical role in the modulation of atherogenesis at all stages of the disease. However, there are many technical difficulties when studying the immune system within murine aortas. Common techniques such as PCR and immunohistochemistry have answered many questions about the presence of immune cells and mediators of inflammation within the aorta yet many questions remain unanswered due to the limitations of these techniques. On the other hand, cumulatively the flow cytometry approach has propelled the immunology field forward but it has been challenging to apply this technique to aortic tissues. Here, we describe the methodology to isolate and characterize the immune cells within the murine aorta and provide examples of functional assays for aortic leukocytes using flow cytometry. The method involves the harvesting and enzymatic digestion of the aorta, extracellular and intracellular protein staining, and a subsequent flow cytometric analysis. PMID:26445788

  20. Multiscale modeling of mechanosensing channels on vesicles and cell membranes in 3D constricted flows and shear flows

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard

    2015-11-01

    We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.

  1. Co-flow planar SOFC fuel cell stack

    DOEpatents

    Chung, Brandon W.; Pham, Ai Quoc; Glass, Robert S.

    2004-11-30

    A co-flow planar solid oxide fuel cell stack with an integral, internal manifold and a casing/holder to separately seal the cell. This construction improves sealing and gas flow, and provides for easy manifolding of cell stacks. In addition, the stack construction has the potential for an improved durability and operation with an additional increase in cell efficiency. The co-flow arrangement can be effectively utilized in other electrochemical systems requiring gas-proof separation of gases.

  2. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-01

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm -1. These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07 ± 0.025 and 1.184 ± 0.013, respectively, were more notable (mean ± S.D., n = 5, P < 0.05) compared with that of the cells for the controls. UV-vis absorption spectra analysis shows X-ray irradiation disturbed the metabolism of phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793 ± 1.133)% ( P < 0.01, n = 5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887 ± 0.211)% ( P < 0.05, n = 5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  3. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  4. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  5. A flow cytometric approach for studying alterations in the cytoplasmic concentration of calcium ions in immune cells following stimulation with thymic peptides.

    PubMed

    Papaioannou, Nikos E; Voutsas, Ioannis F; Samara, Pinelopi; Tsitsilonis, Ourania E

    2016-04-01

    [Ca(2+)]i alterations are vital in signaling pathways of cell activation. We tried to detect such changes, in intracellular signaling pathways downstream TLR4 in immune cells, following stimulation with prothymosin alpha (proTα) and its decapeptide proTα(100-109). Human leukocytes were activated with LPS, proTα or proTα(100-109), directly or after 24h stimulation, while neutrophils were directly challenged. Cells were loaded with Fluo-4 and cytoplasmic Ca(2+) alterations were recorded by flow cytometry. Direct challenge with 20 μg/mL LPS induced a measurable [Ca(2+)]i increase in macrophages and neutrophils. Monocytes and macrophages incubated for 24h with LPS, proTα or proTα(100-109) and challenged with LPS, displayed a robust response. Lymphocytes and iDCs exhibited no alterations. Conclusively, we assessed a flow cytometry-based method for monitoring Ca(2+) ion influx changes in immune cells. Their stimulation with proTα or proTα(100-109) generates an activating background, similar to LPS, allowing for the detection of [Ca(2+)]i alterations induced upon subsequent challenge. PMID:26790897

  6. Online Learner's "Flow" Experience: An Empirical Study

    ERIC Educational Resources Information Center

    Shin, Namin

    2006-01-01

    This study is concerned with online learners' "low" experiences. On the basis of Csikszentmihalyi's theory of flow, flow was conceptualised as a complex, multimentional, reflective construct composing of "enjoyment", "telepresence", "focused attention", "engagement" and "time distortion" on the part of learners. A flow model was put forward with…

  7. Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.

    SciTech Connect

    Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

    2008-06-25

    Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell

  8. Alternative experiments using the geophysical fluid flow cell

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1984-01-01

    This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.

  9. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  10. Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system

    PubMed Central

    Medina, José Raúl; Salazar, Dulce Karina; Hurtado, Marcela; Cortés, Alma Rosa; Domínguez-Ramírez, Adriana Miriam

    2013-01-01

    Dissolution profiles of four carbamazepine immediate-release generic products (200 mg tablets) and the reference product Tegretol® were evaluated using the USP paddles method and an alternative method with the flow-through cell system, USP Apparatus 4. Under official conditions all products met the Q specification, dissolution profiles of generic products were similar to the dissolution profile of the reference product (f2 > 50) and model-independent parameters showed non significant differences to the reference product except mean dissolution time for product A (p < 0.05). On the other hand, when the flow-through cell system was used, none of the products met the pharmacopeial specification at 15 min and product A did not reach dissolution criteria at 60 min, dissolution profiles of all generic products were not similar to the reference product profile (f2 < 50) and all model-independent parameters showed significant differences compared to the reference product (p < 0.05). Weibull’s model was more useful for adjusting the dissolution data of all products in both USP apparatuses and Td values showed significant differences compared to the reference product (p < 0.05) when USP Apparatus 4 was used. These results indicate that the proposed method, using the flow-through cell system, is more discriminative in evaluating both, rate and extent of carbamazepine dissolution process from immediate-release generic products. PMID:24648826

  11. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  12. Flow-cell fibre-optic enzyme sensor for phenols

    SciTech Connect

    Papkovsky, D.B.; Ghindilis, A.L.; Kurochkin, I.N. )

    1993-07-01

    A solid-state fibre-optic luminescent oxygen sensor was used for flow-through measurements. It acts as a transducer in a new flow-cell enzyme sensor arrangement. This arrangement comprises a flow path, sample injector, microcolumn with the immobilized enzyme, oxygen membrane and fibre-optic connector joined together to form an integral unit. Laccase enzyme was used as a recognition system which provided specific oxidation of the substrates with the dissolved oxygen being monitored. The assay procedure was optimized and performance of the new system studied. The sensor was applied to the determination polyphenol content in tea, brandy, etc. (quality control test). The sensitivity to some important phenolic compounds was tested with the view of industrial wastewater control applications. 5 refs., 6 figs., 1 tab.

  13. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  14. Defining human dendritic cell progenitors by multiparametric flow cytometry.

    PubMed

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-09-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3-7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  15. Counter-Flow Cooling Tower Test Cell

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Nožička, Jiří

    2014-03-01

    The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.

  16. Redox flow cell development and demonstration project, calendar year 1977

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research and development on the redox flow cell conducted from January 1, 1977, to December 31, 1977, are described in this report. The major focus of the effort during 1977 was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable ion exchange membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.

  17. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    NASA Astrophysics Data System (ADS)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  18. FlowSim/FlowRisk: A code system for studying risk associated with material process flows

    SciTech Connect

    Kaufman, A.M.

    1993-10-01

    The need to study and assess life-cycle risks of Pu release by nuclear warheads during peace time lead to the development of a code suite which could model day to day operations involving nuclear weapons and calculate the associated risk involved in these proceedings. The life-cycle study called LIONSHARE is described in Reference 1. The code that models the flow is called FlowSim. The code that evaluates the associated risk is called FlowRisk. We shall concentrate here on the methodology used by FlowSim in modeling material flows. FlowRisk, mainly a postprocessor of FlowSim runs, will be dealt with in less detail.

  19. Shear flow-induced formation of tubular cell protrusions in multiple myeloma cells

    PubMed Central

    Porat, Ziv; Yaron, Itamar; Katz, Ben-Zion; Kam, Zvi; Geiger, Benjamin

    2011-01-01

    Exposure of live cells to shear flow induces major changes in cell shape, adhesion to the extracellular matrix, and migration. In the present study, we show that exposure of cultured multiple myeloma (MM) cells to shear flow of 4–36 dynes/cm2 triggers the extension of long tubular protrusions (denoted FLow-Induced Protrusions, or FLIPs) in the direction of the flow. These FLIPs were found to be rich in actin, contain few or no microtubules and, apart from endoplasmic reticulum (ER)-like membranal structures, are devoid of organelles. Studying the dynamics of this process revealed that FLIPs elongate at their tips in a shear force-dependent manner, and retract at their bases. Examination of this force dependence revealed considerable heterogeneity in the mechanosensitivity of individual cells, most likely reflecting the diversity of the malignant B-cell population. The mechanisms underlying FLIP formation following mechanical perturbation, and their relevance to the cellular trafficking of MM cells, are discussed. PMID:21344380

  20. Aqueous semi-solid flow cell: demonstration and analysis

    SciTech Connect

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  1. Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl) -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro study

    PubMed Central

    Magadi, Visveswaraiah Paranjyothi; Ravi, Venkatadasappa; Arpitha, Anantharaju; Litha; Kumaraswamy, Kikkerilakshminarayana; Manjunath, Krishnappa

    2015-01-01

    Introduction: Malignancies constitute a wide variety of disorders having high mortality and morbidity rates. Current protocols for management include surgical intervention, chemotherapy, and radiation which possess numerous adverse effects. Many phytochemicals are available with anticancer properties similar to anticancer drugs. Major benefit of these compounds is apparent lack of toxicity to normal tissues. Graviola (botanical name: Annona Muricata) contain bioactive compound “annonaceous acetogenins” known for anticancer activity on cancer cell lines. Aims: To determine cytotoxicity of Graviola and percentage cell inhibition at G2M phase of cell cycle. Settings and Design: The cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma (SCC-25) cell lines at various concentrations evaluated using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Methods: Graviola Leaves, American Type Culture Collection SCC-25 cell lines were procured from Skanda Laboratories, Bengaluru. The cytotoxicity of aqueous extract of Graviola on SCC-25 cells at various concentrations evaluated using MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Statistical Analysis: Statistical analysis was done using one-way ANOVA. Results: MTT assay showed statistically significant (P < 0.001) dose-dependent inhibition of SCC-25 cell lines by Graviola with IC50 value of 12.42 μg/ml. Flow cytometry revealed that Graviola at 25 and 50 g/ml arrested 53.39% and 52.09% cells in G2M phase of cell cycle respectively, which was statistically significant. Conclusion: Graviola showed significant cytotoxic activity and percentage of cell inhibition at G2M phase cell cycle against SCC-25 cell lines. PMID:26681860

  2. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  3. Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Ding, Guang-Hong

    2011-08-01

    In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow.

  4. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians

    PubMed Central

    Peiris, Tanuja Harshani; García‐Ojeda, Marcos E.

    2016-01-01

    Abstract Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  5. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    PubMed

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis. PMID:27460238

  6. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians.

    PubMed

    Peiris, Tanuja Harshani; García-Ojeda, Marcos E; Oviedo, Néstor J

    2016-04-01

    Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  7. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  8. A novel in vitro flow system for changing flow direction on endothelial cells

    PubMed Central

    Wang, Chong; Lu, Hao; Schwartz, Martin Alexander

    2012-01-01

    Atherosclerotic plaques localize to regions of flow disturbance, i.e. bifurcations, branch points and regions of high curvature. Shear stress in these regions can be multi-directional due to complex flow patterns such as time-varying vortices. However, commonly used in vitro flow models are incapable of changing flow orientation to any direction other than the reverse. We have developed a novel in vitro flow system to enable changes in flow direction to any angle. When cells were pre-aligned in laminar shear, then rotated 90°, cells re-aligned over 24 hours. Re-alignment involved actin remodeling by gradual rotation of actin stress fibers. This device will enable analysis of how endothelial cells sense changes in flow direction as occur in vivo. PMID:22386042

  9. Surface deformation and shear flow in ligand mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*<0.5) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favored in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical value). Continuation of the limit points (i.e., the turning points where the slope of the function g* changes sign within a select range of critical shear SS is supported by the Adelaide University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  10. A Computational Model of Deformable Cell Rolling in Shear Flow

    NASA Astrophysics Data System (ADS)

    Eggleton, Charles; Jadhav, Sameer

    2005-03-01

    Selectin-mediated rolling of polymorphonuclear leukocytes (PMNs) on activated endothelium is critical to their recruitment to sites of inflammation. The cell rolling velocity is influenced by bond interactions on the molecular scale that oppose hydrodynamic forces at the mesoscale. Recent studies have shown that PMN rolling velocity on selectin-coated surfaces in shear flow is significantly slower compared to that of microspheres bearing a similar density of selectin ligands. To investigate whether cell deformability is responsible for these differences, we developed a 3-D computational model which simulates rolling of a deformable cell on a selectin-coated surface under shear flow with a stochastic description of receptor-ligand bond interaction. We observed that rolling velocity increases with increasing membrane stiffness and this effect is larger at high shear rates. The average bond lifetime, number of receptor-ligand bonds and the cell-substrate contact area decreased with increasing membrane stiffness. This study shows that cellular properties along with the kinetics of selectin-ligand interactions affect leukocyte rolling on selectin-coated surfaces.

  11. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    NASA Astrophysics Data System (ADS)

    Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.

  12. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation.

    PubMed

    Han, Yuanyuan; Lo, Yu-Hwa

    2015-01-01

    Flow cytometers measure fluorescence and light scattering and analyze multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using PMT detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second. PMID:26281956

  13. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation

    PubMed Central

    Han, Yuanyuan; Lo, Yu-Hwa

    2015-01-01

    Flow cytometers measure fluorescence and light scattering and analyze multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using PMT detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second. PMID:26281956

  14. Determinants of resting cerebral blood flow in sickle cell disease.

    PubMed

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P < 0.0001). Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  15. Activation of β–catenin Signaling in MLO-Y4 Osteocytic Cells versus 2T3 Osteoblastic Cells by Fluid Flow Shear Stress and PGE2: Implications for the Study of Mechanosensation in Bone

    PubMed Central

    Kamel, Mohamed A.; Picconi, Jason L.; Lara-Castillo, Nuria; Johnson, Mark L.

    2010-01-01

    The osteocyte is hypothesized to be the mechanosensory cell in bone. However, osteoblastic cell models have been most commonly used to investigate mechanisms of mechanosensation in bone. Therefore, we sought to determine if differences might exist between osteocytic and osteoblastic cell models relative to the activation of β-catenin signaling in MLO-Y4 osteocytic, 2T3 osteoblastic and primary neonatal calvarial cells (NCCs) in response to pulsatile fluid flow shear stress (PFFSS). β–catenin nuclear translocation was observed in MLO-Y4 cells at 2 and 16 dynes/cm2 PFFSS, but only at 16 dynes/cm2 in the 2T3 or NCC cultures. MLO-Y4 cells released high amounts of PGE2 into the media at all levels of PFFSS (2–24 dynes/cm2) and we observed a biphasic pattern of relative to the level of PFFSS. In contrast PGE2 release by 2T3 cells was only detected during 16 and 24 dynes/cm2 PFFSS starting at >1 hour and never reached the levels produced by MLO-Y4 cells. Exogenously added PGE2 was able to induce β–catenin nuclear translocation in all cells suggesting that the differences between the cell lines observed for β–catenin nuclear translocation was associated with the differences in PGE2 production. To investigate a possible mechanism for the differences in PGE2 release by MLO-Y4 and 2T3 cells we examined the regulation of Ptgs2 (Cox-2) gene expression by PFFSS. 2T3 cell Ptgs2 mRNA levels at both 0 and 24 hours after 2 hours of PFFSS showed biphasic increases with peaks at 4 and 24 dynes/cm2 and 24 hour levels were higher than 0 hour levels. MLO-Y4 cell Ptgs2 expression was similarly biphasic; however at 24 hours post flow Ptgs2 mRNA levels were lower. Our data suggest significant differences in the sensitivity and kinetics of the response mechanisms of 2T3 and neonatal calvarial osteoblastic versus MLO-Y4 osteocytic cells to PFFSS. Furthermore our data support a role for PGE2 in mediating the activation of β–catenin signaling in response to fluid flow shear

  16. Label-free high-throughput cell screening in flow

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire; Niazi, Kayvan R.; Rabizadeh, Shahrooz; Jalali, Bahram

    2013-01-01

    Flow cytometry is a powerful tool for cell counting and biomarker detection in biotechnology and medicine especially with regards to blood analysis. Standard flow cytometers perform cell type classification both by estimating size and granularity of cells using forward- and side-scattered light signals and through the collection of emission spectra of fluorescently-labeled cells. However, cell surface labeling as a means of marking cells is often undesirable as many reagents negatively impact cellular viability or provide activating/inhibitory signals, which can alter the behavior of the desired cellular subtypes for downstream applications or analysis. To eliminate the need for labeling, we introduce a label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously either as a stand-alone instrument or as an add-on to conventional flow cytometers. Cell protein concentration adds a parameter to cell classification, which improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. This system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second. PMID:24049682

  17. Intracellular Flow Cytometric Measurement of Extracellular Matrix Components in Porcine Intervertebral Disc Cells

    PubMed Central

    Flagler, Daniel J.; Huang, Chun-Yuh; Yuan, Tai-Yi; Lu, Zhongmin; Cheung, Herman S.; Gu, Wei Yong

    2009-01-01

    The objective of this study was to develop and demonstrate the utility of a novel method of evaluating intracellular levels of extracellular matrix (ECM) components in intervertebral disc (IVD) cells using flow cytometry. By using this method, this study discriminated between cell populations in porcine IVD and examined the response of IVD cells to monolayer cultures, a traditional method of cell expansion, by measuring phenotypic attributes of ECM component production. It was found that monolayer cultures affected collagen production of IVD cells while there were differences in collagen type II production between the cells isolated from the annulus fibrosus (AF) and nucleus pulposus (NP) regions of IVD. Size distributions of fresh and cultured cells were also presented while the relationships between cell size and intracellular collagen level revealed heterogeneous cell populations in AF and NP regions. Furthermore, this study showed that the intracellular collagen signals of IVD cells were significantly enhanced by the treatments of Brefeldin-A and ascorbic acid. This suggests that Brefeldin-A and ascorbic acid could be used to increase the sensitivity of flow cytometric analysis on intracellular collagen levels by maximizing collagen accumulation inside cells. Since a unique feature of the flow cytometric screening tool is the ability to discriminate between various cell populations in a single sample, the flow cytometric method developed in this study may have the potential to identify specific collagen-producing cell populations from tissues or cell cultures. PMID:20161070

  18. Two-Phase Flow within Geological Flow Analogies--A Computational Study

    SciTech Connect

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Ferer, M.V.; Richards, M.; Bromhal, G.S.

    2006-10-01

    Displacement of a viscous fluid in heterogeneous geological media by a less viscous one does not evacuate 100% of the defending fluid due to capillary and viscous fingering. This is of importance in geological flows that are encountered in secondary oil recovery and carbon dioxide sequestration in saturated brine fields. Hele-Shaw and pore/throat cells are commonly used to study this in the labratory. Numerical simulations of this flow phenomenon with pore-throat models have been prevalent for over two decades. This current work solves the full Navier-Stokes equations of conservation within random pore-throat geometries with varying properties to study the resulting flow properties. Verification of the solution method is performed by comparison of the model predictions with the available experimental data in the literature. Experimental flows in a pore-throat cell with a known geometrical structure are shown to be in good agreement with the model. Dynamic comparisons to a computational pore-throat model have been shown to be in good agreement as well. There are also additional two-phase immiscible flow patterns that can be identified from the current solutions for which the corresponding laboratory counter part or the pore-throat model predictions are not available. The identification of these flow patterns may allow more accurate modeling of fluid displacement on the reservoir scale.

  19. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.

    PubMed

    Teodósio, J S; Simões, M; Melo, L F; Mergulhão, F J

    2011-01-01

    Biofilm formation is a major factor in the growth and spread of both desirable and undesirable bacteria as well as in fouling and corrosion. In order to simulate biofilm formation in industrial settings a flow cell system coupled to a recirculating tank was used to study the effect of a high (550 mg glucose l⁻¹) and a low (150 mg glucose l⁻¹) nutrient concentration on the relative growth of planktonic and attached biofilm cells of Escherichia coli JM109(DE3). Biofilms were obtained under turbulent flow (a Reynolds number of 6000) and the hydrodynamic conditions of the flow cell were simulated by using computational fluid dynamics. Under these conditions, the flow cell was subjected to wall shear stresses of 0.6 Pa and an average flow velocity of 0.4 m s⁻¹ was reached. The system was validated by studying flow development on the flow cell and the applicability of chemostat model assumptions. Full development of the flow was assessed by analysis of velocity profiles and by monitoring the maximum and average wall shear stresses. The validity of the chemostat model assumptions was performed through residence time analysis and identification of biofilm forming areas. These latter results were obtained through wall shear stress analysis of the system and also by assessment of the free energy of interaction between E. coli and the surfaces. The results show that when the system was fed with a high nutrient concentration, planktonic cell growth was favored. Additionally, the results confirm that biofilms adapt their architecture in order to cope with the hydrodynamic conditions and nutrient availability. These results suggest that until a certain thickness was reached nutrient availability dictated biofilm architecture but when that critical thickness was exceeded mechanical resistance to shear stress (ie biofilm cohesion) became more important. PMID:21082456

  20. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  1. Response of microfluidic fuel cells to secondary flows

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Kähler, Christian J.

    2013-11-01

    Microfluidic or membraneless fuel cells (MFCs) are a recent class of miniaturized fuel cells (Ferrigno et al. 2002, Choban et al. 2004) composed by a microchannel in which a parallel laminar stream of two fluids, a fuel and an oxidant, is established. The fuel and oxidant remain in contact but do not mix due to the absence of turbulence. The simple architecture and the fact that no expensive proton exchange membranes are needed make this configuration technologically very attractive, however the efficiency especially in terms of fuel utilization is still too low to be competitive for practical applications. One limitation is given by the formation of depletion boundary layers at the electrodes that worsen the red-ox reactions. A way to reduce this problem is to use transversal secondary flows to stir the fluid streams and replenish the depletion layers. In this study, we intend to characterize the performance of MFC with curved channels in which the transversal secondary flows are present in the form of two counter-rotating vortices known as Dean vortices. The characterization will be completed by simultaneous measurements of the current intensity and of the flow velocity performed with 3D Astigmatic Particle Tracking Velocimetry.

  2. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  3. Single chamber fuel cells: Flow geometry, rate and composition considerations

    SciTech Connect

    Stefan, Ionel C.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2003-11-17

    Four different single chamber fuel cell designs were compared using propane-air gas mixtures. Gas flow around the electrodes has a significant influence on the open circuit voltage and the power density of the cell. The strong influence of flow geometry is likely due to its effect on gas composition, particularly on the oxygen chemical potential at the two electrodes as a result of gas mixing. The chamber design which exposes the cathode first to the inlet gas was found to yield the best performance at lower flow rates, while the open tube design with the electrodes equally exposed to the inlet gas worked best at higher flow rates.

  4. flowCL: ontology-based cell population labelling in flow cytometry

    PubMed Central

    Courtot, Mélanie; Meskas, Justin; Diehl, Alexander D.; Droumeva, Radina; Gottardo, Raphael; Jalali, Adrin; Taghiyar, Mohammad Jafar; Maecker, Holden T.; McCoy, J. Philip; Ruttenberg, Alan; Scheuermann, Richard H.; Brinkman, Ryan R.

    2015-01-01

    Motivation: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources. Results: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case. Conclusion: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types. Availability and implementation: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html). Contact: rbrinkman@bccrc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25481008

  5. Lymphatic vessel development: fluid flow and valve-forming cells.

    PubMed

    Kume, Tsutomu

    2015-08-01

    Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders. PMID:26214518

  6. Numerical study of flow turning phenomenon

    NASA Astrophysics Data System (ADS)

    Baum, J. D.; Levine, J. N.

    1986-01-01

    A research project is currently being conducted that is to provide an understanding of the physical mechanisms by which energy is exchanged between the mean and acoustic flowfields in resonant combustion chambers, giving particular attention to solid rocket motors. The present paper is concerned with progress which has been made toward the understanding of the 'flow turning' phenomenon. This term is used to describe the loss of acoustic energy by the acoustic field in the combustor resulting from the inflow of combustion products through the lateral boundary of a combustion chamber containing longitudinal acoustic waves. Attention is given to the modeling of flow turning, acoustic refraction, the numerical solution, numerical results, acoustic wave propagation with no mean flow, and a flow turning study. The discussed research verifies the existence of the flow turning loss phenomenon.

  7. Detection of circulating immune complexes by Raji cell assay: comparison of flow cytometric and radiometric methods

    SciTech Connect

    Kingsmore, S.F.; Crockard, A.D.; Fay, A.C.; McNeill, T.A.; Roberts, S.D.; Thompson, J.M.

    1988-01-01

    Several flow cytometric methods for the measurement of circulating immune complexes (CIC) have recently become available. We report a Raji cell flow cytometric assay (FCMA) that uses aggregated human globulin (AHG) as primary calibrator. Technical advantages of the Raji cell flow cytometric assay are discussed, and its clinical usefulness is evaluated in a method comparison study with the widely used Raji cell immunoradiometric assay. FCMA is more precise and has greater analytic sensitivity for AHG. Diagnostic sensitivity by the flow cytometric method is superior in systemic lupus erythematosus (SLE), rheumatoid arthritis, and vasculitis patients: however, diagnostic specificity is similar for both assays, but the reference interval of FCMA is narrower. Significant correlations were found between CIC levels obtained with both methods in SLE, rheumatoid arthritis, and vasculitis patients and in longitudinal studies of two patients with cerebral SLE. The Raji cell FCMA is recommended for measurement of CIC levels to clinical laboratories with access to a flow cytometer.

  8. Laser rastering flow cytometry: fast cell counting and identification

    NASA Astrophysics Data System (ADS)

    Vacca, G.; Junnarkar, M. R.; Goldblatt, N. R.; Yee, M. W.; Van Slyke, B. M.; Briese, T. C.

    2009-02-01

    We describe the concept of laser rastering flow cytometry, where a rapidly scanning laser beam allows counting and classification of cells at much higher rates than currently possible. Modifications to existing flow cytometers to implement the concept include an acousto-optic deflector, fast analog-to-digital conversion, and a two-step digital-signal-processing scheme that handles the high data rates and provides key assay information. Results are shown that prove the concept, demonstrating the ability to resolve closely spaced cells and to measure cells at rates more than an order of magnitude faster than on conventional flow-cytometer-based hematology analyzers.

  9. Cerebral blood flow in sickle cell cerebrovascular disease

    SciTech Connect

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  10. Sequential flow membraneless microfluidic fuel cell with porous electrodes

    NASA Astrophysics Data System (ADS)

    Salloum, Kamil S.; Hayes, Joel R.; Friesen, Cody A.; Posner, Jonathan D.

    A novel convective flow membraneless microfluidic fuel cell with porous disk electrodes is described. In this fuel cell design, the fuel flows radially outward through a thin disk shaped anode and across a gap to a ring shaped cathode. An oxidant is introduced into the gap between anode and cathode and advects radially outward to the cathode. This fuel cell differs from previous membraneless designs in that the fuel and the oxidant flow in series, rather than in parallel, enabling independent control over the fuel and oxidant flow rate and the electrode areas. The cell uses formic acid as a fuel and potassium permanganate as the oxidant, both contained in a sulfuric acid electrolyte. The flow velocity field is examined using microscale particle image velocimetry and shown to be nearly axisymmetric and steady. The results show that increasing the electrolyte concentration reduces the cell Ohmic resistance, resulting in larger maximum currents and peak power densities. Increasing the flow rate delays the onset of mass transport and reduces Ohmic losses resulting in larger maximum currents and peak power densities. An average open circuit potential of 1.2 V is obtained with maximum current and power densities of 5.35 mA cm -2 and 2.8 mW cm -2, respectively (cell electrode area of 4.3 cm 2). At a flow rate of 100 μL min -1 a fuel utilization of 58% is obtained.

  11. A bio-inspired aquatic flow sensor using an artificial cell membrane

    NASA Astrophysics Data System (ADS)

    Pinto, Preston A.; Garrison, Kevin; Leo, Donald J.; Sarles, Stephen A.

    2012-04-01

    Receptors known as hair cells give many animals this ability to sense a wide range of stimuli, such as sound, orientation, vibration, and flow. Previous researchers have mimicked natural hair cells by building electromechanical sensor systems that produce an electric response due to the bending of artificial hairs. Inspired by the roles of sensory hairs in fish, this work builds on previous research by investigating the flow dependent electrical response of a 'skin'-encapsulated artificial hair cell in an aqueous flow. This study presents the design, fabrication, and characterization of a flow sensor that will help close the loop between the sensing mechanisms and control strategies that aquatic organisms employ for functions such as locomotion regulation, prey capture, and particulate capture. The system is fabricated with a durable, artificial bilayer that forms at the interface between lipid-encased aqueous volumes contained in a flexible encapsulated polyurethane substrate. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. Specifically, through temporal responses of the measured current and power spectral density (PSD) analysis, our results show that the amplitude and frequency of the current response are related to the flow over the hair. This preliminary study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology.

  12. Gossypol effects on endothelial cells and tumor blood flow

    SciTech Connect

    Benz, C.C.; Iyer, S.B.; Asgari, H.S.; Matlin, S.A.; Aronson, F.R. ); Barchowsky, A. )

    1991-01-01

    Isomers (-,+) of the antitumor agent gossypol (G) were studied for their ability to reduce tumor ATP and blood flow in rats bearing subcutaneously implanted pancreatic tumors. A 50% reduction in tumor ATP/Pi within 1h of a single injection of -G was associated with a 60% decline in tumor blood flow. To determine if these changes in tumor physiology could be due to a direct drug effect on tumor endothelium, G isomers were compared for their ability to alter protein ({sup 125}1-BSA) permeability and metabolic ({sup 32}P) labelling of cultured endothelial cells. Treatments for 1h produced no endothelial cell leakage, but 24h exposures to either -G or +G produced complete permeability of the monolayers to {sup 125}1-BSA. In contrast, 0.5-1.0h exposures to -G or +G produced 2 to 3-fold increases in phosphorylated 27kDa heat-shock protein, hsp-27. Hsp-27 phosphoprotein isoforms were differentially labelled following -G and +G exposures with the phosphorylation profile of -G appearing most similar to that of oxyradical producing agents known to induce hsp-27 and injure endothelial cells. The authors postulate that the tumor ischemic effects of -G are mediated by endothelial response to oxyradical production in a mechanism similar to that of tissue ischemia-reperfusion injury.

  13. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  14. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-03-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  15. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  16. Computational analysis of turbine engine test cell flow phenomena

    NASA Astrophysics Data System (ADS)

    Prufert, Matthew Brian

    1998-11-01

    Turbine engine altitude test cells must incorporate an exhaust system collector to remove hot exhaust gases from the vicinity of the jet engine and to provide additional pumping to simulate the reduced pressure which would be encountered in flight. For economic reasons, it is desirable to utilize the same test configuration to simulate as much of the engine operating envelope as possible. To extend the test envelope, a cut-and-try approach is usually taken using available test data, one-dimensional analyses, and past experience. In this study, a computational approach was used to model some of the recognized operational problems which are commonly encountered. Specifically, computational models were used to evaluate the performance of an altitude test cell at low altitude conditions. Particular emphasis was placed on potential test section over-heating and the reduction of diffuser pumping to achieve near sea-level test conditions. A computational model which utilizes the NPARC Navier-Stokes code was applied to several test configurations operating at steady-state and to a single diffuser configuration in the presence of unsteady pressure fluctuations. During 1997/1998, the author developed two-dimensional and three-dimensional NPARC Navier-Stokes flow models and procedures for use in predicting test cell and engine surface cooling effectiveness for a military engine installation in an altitude test chamber. The predicted model flowfields for both steady-state and time variant flows were used to qualitatively verify limited infrared imaging camera data and quantitatively compare numerical results with test cell and diffuser pressure and temperature data. Prediction of surface convention heat transfer rates are currently beyond the capabilities of the NPARC CFD code. To quantify localized wall heat transfer rates, the BLAYER boundary layer code also was utilized. The BLAYER code is capable of quantifying boundary layer convection heat transfer rates based on near

  17. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Yi; Hsiung, Suz-Kai; Hung, Yung-Ching; Chang, Chen-Min; Liao, Teh-Lu; Lee, Gwo-Bin

    2006-07-01

    Flow cytometry is a popular technique for counting and sorting individual cells. This study presents and demonstrates a new cell counting/sorting system integrated with several essential components including a micromachined flow cytometer chip device, an optical detection system and a data analysis and control system to achieve the functions of cell sample injection, optical signal detection and cell collection. By using MEMS technology, we have integrated several microfluidic components such as micro pneumatic pumps/valves onto a polymer-based chip device. Three pneumatic micropumps are used to provide the hydrodynamic driving force for both sample and sheath flows such that hydrodynamic flow focusing can be achieved, and a micro flow switch device comprising three pneumatic microvalves located downstream of the micro sample flow channel is used for cell collection. Cell samples of human lung cancer cells labelled with commercially available fluorescent dyes have been detected and collected successfully utilizing the developed device. The real-time image of dye-labelled cell samples being excited and detected can be monitored and observed through the LCD panel by a custom designed CCD/APD holder and moving stage. Finally, micro flow switch devices were used to successfully sort the cells into the desired outlet channel, and the counting results of the specific cell samples were monitored through the counting panel. The current study focuses on the setup of the overall system. The proposed flow cytometer system has several advantages such as portability, low cost and easy operation process. The size of the system is 37 cm × 16 cm × 18 cm and the weight is 3.5 kg. The error rate of counting and sorting was 1.5% and 2%, respectively. The sorting frequency of the microvalve device is calculated to be 120 cells min-1. The developed microfluidic chip device could be a promising tool for cell-based application fields such as profiling, counting and sorting.

  18. High-throughput magnetic flow sorting of human cells selected on the basis of magnetophoretic mobility

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.; Sanders, Lehanna; Kennedy, David; Guernsey, Byron; Todd, Paul; Leary, James F.

    2010-02-01

    We have shown the potential of a new method for optimizing the separation of human stem cell subsets from peripheral blood based on a novel cell labeling technique that leverages the capabilities of a new commercially available high speed magnetic cell sorting system (IKOTECH LLC, New Albany, IN). This new system sorts cells in a continuously flowing manner using a Quadrupole Magnetic cell Sorter (QMS). The sorting mechanism is based upon the magnetophoretic mobility of the cells, a property related to the relative binding distributions of magnetic particles per cell, as determined by the utilization of a Magnetic Cell Tracking Velocimeter (MCTV). KG-1 cells were competitively labeled with anti-CD34 magnetic beads and anti-CD34 FITC to obtain an optimal level of magnetophoretic mobility as visualized by the MCTV for high throughput sort recovery in the QMS. In QMS sorting, the concept of split-flow thin channel (SPLITT) separation technology is applied by having a sample stream enter a vertical annular flow channel near the channel's interior wall followed by another sheath flow entering near the exterior wall. The two flows are initially separated by a flow splitter. They pass through the bore of a Halbach permanent quadrupole magnet assembly, which draws magnetized cells outward and deflects them into a positive outflow, while negative cells continue straight out via the inner flow lamina. QMS sorts cells based upon their magnetophoretic mobility, or the velocity of a cell per unit ponderomotive force, the counterpart of fluorescence intensity in flow cytometry. The magnetophoretic mobility distribution of a cell population, measured by automated MCTV, is used as input data for the algorithmic control of sample, sheath, and outlet flow velocities of the QMS. In this study, the relative binding distributions of magnetic particles per cell were determined by MCTV using novel sorting and sizing algorithms. The resulting mobility histograms were used to set the QMS

  19. Electrochemical cell for rebalancing REDOX flow system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1979-01-01

    An electrically rechargeable REDOX cell or battery system including one of more rebalancing cells is described. Each rebalancing cell is divided into two chambers by an ion permeable membrane. The first chamber is fed with gaseous hydrogen and a cathode fluid which is circulated through the cathode chamber of the REDOX cell is also passed through the second chamber of the rebalancing cell. Electrochemical reactions take place on the surface of insert electrodes in the first and second chambers to rebalance the electrochemical capacity of the anode and cathode fluids of the REDOX system.

  20. Methods for improved resolution of flow electrophoresis cells

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Fogal, G. L.

    1974-01-01

    First method involves remote adjusting of zeta potential. Second approach sandwiches two conducting metal plates between opposite cell walls and thin insulating layer. Third method forces buffer to flow in direction opposite particle streams.

  1. Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers

    PubMed Central

    Aguado, Brian A.; Mulyasasmita, Widya; Su, James; Lampe, Kyle J.

    2012-01-01

    Cell transplantation is a promising therapy for a myriad of debilitating diseases; however, current delivery protocols using direct injection result in poor cell viability. We demonstrate that during the actual cell injection process, mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we hypothesize that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. We use a controlled in vitro model of cell injection to demonstrate success of this acute protection strategy for a wide range of cell types including human umbilical vein endothelial cells (HUVEC), human adipose stem cells, rat mesenchymal stem cells, and mouse neural progenitor cells. Specifically, alginate hydrogels with plateau storage moduli (G′) ranging from 0.33 to 58.1 Pa were studied. A compliant crosslinked alginate hydrogel (G′=29.6 Pa) yielded the highest HUVEC viability, 88.9%±5.0%, while Newtonian solutions (i.e., buffer only) resulted in 58.7%±8.1% viability. Either increasing or decreasing the hydrogel storage modulus reduced this protective effect. Further, cells within noncrosslinked alginate solutions had viabilities lower than media alone, demonstrating that the protective effects are specifically a result of mechanical gelation and not the biochemistry of alginate. Experimental and theoretical data suggest that extensional flow at the entrance of the syringe needle is the main cause of acute cell death. These results provide mechanistic insight into the role of mechanical forces during cell delivery and support the use of protective hydrogels in future clinical stem cell injection studies. PMID:22011213

  2. Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension.

    PubMed

    Lu, Xinran; Wood, David K; Higgins, John M

    2016-06-21

    The majority of morbidity and mortality in sickle cell disease is caused by vaso-occlusion: circulatory obstruction leading to tissue ischemia and infarction. The consequences of vaso-occlusion are seen clinically throughout the vascular tree, from the relatively high-oxygen and high-velocity cerebral arteries to the relatively low-oxygen and low-velocity postcapillary venules. Prevailing models of vaso-occlusion propose mechanisms that are relevant only to regions of low oxygen and low velocity, leaving a wide gap in our understanding of the most important pathologic process in sickle cell disease. Progress toward understanding vaso-occlusion is further challenged by the complexity of the multiple processes thought to be involved, including, but not limited to 1) deoxygenation-dependent hemoglobin polymerization leading to impaired rheology, 2) endothelial and leukocyte activation, and 3) altered cellular adhesion. Here, we chose to focus exclusively on deoxygenation-dependent rheologic processes in an effort to quantify their contribution independent of the other processes that are likely involved in vivo. We take advantage of an experimental system that, to our knowledge, uniquely enables the study of pressure-driven blood flow in physiologic-sized tubes at physiologic hematocrit under controlled oxygenation conditions, while excluding the effects of endothelium, leukocyte activation, adhesion, inflammation, and coagulation. We find that deoxygenation-dependent rheologic processes are sufficient to increase apparent viscosity significantly, slowing blood flow velocity at arterial oxygen tension even without additional contributions from inflammation, adhesion, and endothelial and leukocyte activation. We quantify the changes in apparent viscosity and define a set of functional regimes of sickle cell blood flow personalized for each patient that may be important in further dissecting mechanisms of in vivo vaso-occlusion as well as in assessing risk of patient

  3. Low cost, radial flow, solid oxide fuel cell

    SciTech Connect

    Petrik, M.A.

    1993-11-01

    The Interscience Radial Flow (IRF) SOFC is designed to minimize problems in high-temperature operation, and for low-cost fabrication. The cell has planar, non-sintered construction, uses particulate materials to form porous electrodes, and has internal radial flow. This phase was to demonstrate feasibility of multi-cell stack operation. Performance milestone was 15% DC HHV efficiency with hydrogen at > 50 mW/cm{sup 2} over 100 h.

  4. Computational cell analysis for label-free detection of cell properties in a microfluidic laminar flow.

    PubMed

    Zhang, Alex Ce; Gu, Yi; Han, Yuanyuan; Mei, Zhe; Chiu, Yu-Jui; Geng, Lina; Cho, Sung Hwan; Lo, Yu-Hwa

    2016-06-20

    Although a flow cytometer, being one of the most popular research and clinical tools for biomedicine, can analyze cells based on the cell size, internal structures such as granularity, and molecular markers, it provides little information about the physical properties of cells such as cell stiffness and physical interactions between the cell membrane and fluid. In this paper, we propose a computational cell analysis technique using cells' different equilibrium positions in a laminar flow. This method utilizes a spatial coding technique to acquire the spatial position of the cell in a microfluidic channel and then uses mathematical algorithms to calculate the ratio of cell mixtures. Most uniquely, the invented computational cell analysis technique can unequivocally detect the subpopulation of each cell type without labeling even when the cell type shows a substantial overlap in the distribution plot with other cell types, a scenario limiting the use of conventional flow cytometers and machine learning techniques. To prove this concept, we have applied the computation method to distinguish live and fixed cancer cells without labeling, count neutrophils from human blood, and distinguish drug treated cells from untreated cells. Our work paves the way for using computation algorithms and fluidic dynamic properties for cell classification, a label-free method that can potentially classify over 200 types of human cells. Being a highly cost-effective cell analysis method complementary to flow cytometers, our method can offer orthogonal tests in companion with flow cytometers to provide crucial information for biomedical samples. PMID:27163941

  5. Comparative Study of Airfoil Flow Separation Criteria

    NASA Astrophysics Data System (ADS)

    Laws, Nick; Kahouli, Waad; Epps, Brenden

    2015-11-01

    Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.

  6. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  7. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  8. Micromachined pipettes integrated in a flow channel for single DNA molecule study by optical trapping

    NASA Astrophysics Data System (ADS)

    Rusu, Cristina R.; van't Oever, Ronny; de Boer, Meint J.; Jansen, Henri V.; Berenschot, Erwin; Elwenspoek, Miko C.; Bennink, Martin L.; Kanger, Johannes S.; de Grooth, Bart G.; Greve, Jan; Brugger, Juergen P.; van den Berg, Albert

    2000-03-01

    We have developed a micromachined flow cell consisting of a flow channel integrated with micropipettes. The flow cell is used in combination with an optical trap set-up (optical tweezers) to study mechanical and structural properties of (lambda) -DNA molecules. The flow cell was realized using silicon micromachining including the so-called buried channel technology to fabricate the micropipettes, the wet etching of glass to create the flow channel, and the powder blasting of glass to create the fluid connections. The volume of the flow cell is 2 (mu) l. The pipettes have a length of 130 micrometer, a width of 5 - 10 micrometer, a round opening of 1 micron and can be processed with different shapes. Using this flow cell we stretched single molecules ((lambda) -DNA) showing typical force-extension curves also found with conventional techniques.

  9. Upward swimming of a sperm cell in shear flow.

    PubMed

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation. PMID:27078385

  10. Upward swimming of a sperm cell in shear flow

    NASA Astrophysics Data System (ADS)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  11. Functional Analysis of Human NK cells by Flow Cytometry

    PubMed Central

    Bryceson, Yenan T.; Fauriat, Cyril; Nunes, João M.; Wood, Stephanie M.; Björkström, Niklas K.; Long, Eric O.; Ljunggren, Hans-Gustaf

    2016-01-01

    Natural killer (NK) cells are a subset of lymphocytes that contribute to innate immunity through cytokine secretion and target cell lysis. NK cell function is regulated by a multiplicity of activating and inhibitory receptors. The advance in instrumentation for multi-color flow cytometry and the generation of specific mAbs for different epitopes related to phenotypic and functional parameters have facilitated our understanding of NK cell responses. Here, we provide protocols for flow cytometric evaluation of degranulation and cytokine production by human NK cells from peripheral blood at the single cell level. In addition to offering insight into the regulation of human NK cell responses, these techniques are applicable to the assessment of various clinical conditions, including the diagnosis of immunodeficiency syndromes. PMID:20033652

  12. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  13. Pumpless steady-flow microfluidic chip for cell culture.

    PubMed

    Marimuthu, Mohana; Kim, Sanghyo

    2013-06-15

    The current research engineered a pumpless energy-efficient microfluidic perfusion cell culture chip that works by modifying the basic gravity-driven siphon flow using an intravenous (IV) infusion set as a conventional, inexpensive, and sterile tool. The IV set was modified to control the constant hydrostatic head difference, thereby maintaining the steady flow rate medium perfusion. The micro-bioreactor chip demonstrated flexibility in controlling a wide range of flow rates from 0.1 to 10ml/min, among which 1- and 5-ml/min flow rates were examined as suitable shear flows for long-term dermal fibroblast cell culture, paving the way for artificial skin development. PMID:23453976

  14. Rapid Cell Population Identification in Flow Cytometry Data*

    PubMed Central

    Aghaeepour, Nima; Nikolic, Radina; Hoos, Holger H.; Brinkman, Ryan R.

    2011-01-01

    We have developed flowMeans, a time-efficient and accurate method for automated identification of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by modelling a single population with multiple clusters. flowMeans uses a change point detection algorithm to determine the number of sub-populations, enabling the method to be used in high throughput FCM data analysis pipelines. Our approach compares favourably to manual analysis by human experts and current state-of-the-art automated gating algorithms. flowMeans is freely available as an open source R package through Bioconductor. PMID:21182178

  15. Two-phase Flow Characteristics in a Gas-Flow Channel of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cho, Sung Chan

    Fuel cells, converting chemical energy of fuels directly into electricity, have become an integral part of alternative energy and energy efficiency. They provide a power source of high energy-conversion efficiency and zero emission, meeting the critical demands of a rapidly growing society. The proton exchange membrane (PEM) fuel cells, also called polymer electrolyte fuel cells (PEFCs), are the major type of fuel cells for transportation, portable and small-scale stationary applications. They provide high-power capability, work quietly at low temperatures, produce only water byproduct and no emission, and can be compactly assembled, making them one of the leading candidates for the next generation of power sources. Water management is one of the key issues in PEM fuel cells: appropriate humidification is critical for the ionic conductivity of membrane while excessive water causes flooding and consequently reduces cell performance. For efficient liquid water removal from gas flow channels of PEM fuel cells, in-depth understanding on droplet dynamics and two-phase flow characteristics is required. In this dissertation, theoretical analysis, numerical simulation, and experimental testing with visualization are carried out to understand the two-phase flow characteristics in PEM fuel cell channels. Two aspects of two-phase phenomena will be targeted: one is the droplet dynamics at the GDL surface; the other is the two-phase flow phenomena in gas flow channels. In the former, forces over a droplet, droplet deformation, and detachment are studied. Analytical solutions of droplet deformation and droplet detachment velocity are obtained. Both experiments and numerical simulation are conducted to validate analytical results. The effects of contact angle, channel geometry, superficial air velocity, properties of gas phase fluids are examined and criteria for the detachment velocity are derived to relate the Reynolds number to the Weber number. In the latter, two-phase flow

  16. Lower Three Runs Instream Flow Study

    SciTech Connect

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    An Instream Flow Study was conducted to identify the minimum discharge from PAR Pond that will support a balanced biological fish community in Lower Three Runs. Hydraulic and habitat models of the Physical Habitat simulation System (PHABSIM), the major component of the US Fish and Wildlife Service`s Instream Flow Incremental Methodology (IFIM) were applied. Following calibration of the Water Surface Profile (WSP)Model for three study reaches, hydraulic data was input to the AVDEPTH habitat model to develop relationships between discharge and reaches, hydraulic data was input to the AVDEPTH habitat model to development relationship between discharge and available habitat.

  17. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  18. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  19. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  20. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  1. GLOBAL HELIOSEISMIC EVIDENCE FOR A DEEPLY PENETRATING SOLAR MERIDIONAL FLOW CONSISTING OF MULTIPLE FLOW CELLS

    SciTech Connect

    Schad, A.; Roth, M.; Timmer, J.

    2013-12-01

    We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004-2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solar surface, our results are in good agreement with flow measurements from local helioseismology.

  2. Pockels-effect cell for gas-flow simulation

    NASA Technical Reports Server (NTRS)

    Weimer, D.

    1982-01-01

    A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m.

  3. Ground based studies of thermocapillary flows in levitated drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1994-01-01

    Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.

  4. Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels.

    PubMed

    McHedlishvili, G; Maeda, N

    2001-02-01

    The review article deals with phenomena of the blood flow structure (structuring) in narrow microvessels-capillaries and the adjacent arterioles and venules. It is particularly focused on the flow behavior of red blood cells (RBCs), namely, on their specific arrangements of mutual interaction while forming definite patterns of self-organized microvascular flow. The principal features of the blood flow structure in microvessels, including capillaries, include axial RBC flow and parietal plasma layer, velocity profile in larger microvessels, plug (or bolus) flow in narrow capillaries, and deformation and specific behavior of the RBCs in the flow. The actual blood flow structuring in microvessels seems to be a most significant factor in the development of pathological conditions, including arterial hypertension, brain and cardiac infarctions, inflammation, and many others. The blood flow structuring might become a basic concept in determining the blood rheological properties and disorders in the narrow microvessels. No solid theoretical (biorheological) basis of the blood flow structuring in microvessel has been found, but in the future it might become a foundation for a better understanding of the mechanisms of these properties under normal and pathological conditions in the narrowest microvessels 5 to 25 microm large. It is also a topic for further biorheological research directed to find the background of actual physiopathological phenomena in the microcirculation. PMID:11281993

  5. Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients.

    PubMed

    Archambault, Joanne M; Elfervig-Wall, Michelle K; Tsuzaki, Mari; Herzog, Walter; Banes, Albert J

    2002-03-01

    Forces applied to tendon during movement cause cellular deformation, as well as fluid movement. The goal of this study was to test the hypothesis that rabbit tendon fibroblasts detect and respond to fluid-induced shear stress. Cells were isolated from the paratenon of the rabbit Achilles tendon and then subjected to fluid flow at 1 dyn/cm(2) for 6h in a specially designed multi-slide flow device. The application of fluid flow led to an increased expression of the collagenase-1 (MMP-1), stromelysin-1 (MMP-3), cyclooxygenase II (COX-2) and interleukin-1beta (IL-1beta) genes. The release of proMMP-3 into the medium exhibited a dose-response with the level of fluid shear stress. However, not all cells aligned in the direction of flow. In other experiments, the same cells were incubated with the calcium-reactive dye FURA-2 AM, then subjected to laminar fluid flow in a parallel plate flow chamber. The cells did not significantly increase intracellular calcium concentration when exposed to fluid shear stress levels of up to 25 dyn/cm(2). These results show that gene expression in rabbit tendon cells is sensitive to fluid flow, but that signal transduction is not dependent on intracellular calcium transients. The upregulation of the MMP-1, MMP-3 and COX-2 genes shows that fluid flow could be an important mechanical stimulus for tendon remodelling or injury. PMID:11858805

  6. Vortex dynamics studies in supersonic flow

    NASA Astrophysics Data System (ADS)

    Vergine, Fabrizio

    This dissertation covers the study of selected vortex interaction scenarios both in cold and high enthalpy reacting flows. Specifically, the experimental results and the analysis of the flowfields resulting from two selected supersonic vortex interaction modes in a Mach 2.5 cold flow are presented. Additionally, the experiment design, based on vortex dynamics concepts, and the reacting plume survey of two pylon injectors in a Mach 2.4 high enthalpy flow are shown. All the cold flow experiments were conducted in the supersonic wind tunnel of the Aerodynamics Research Center at the University of Texas at Arlington. A strut injector equipped with specified ramp configurations was designed and used to produce the flowfields of interest. The reacting flow experiments were conducted in the the Expansion Tube Facility located in the High Temperature Gasdynamics Laboratory of Stanford University. A detailed description of the supersonic wind tunnel, the instrumentation, the strut injector and the supersonic wake flow downstream is shown as part of the characterization of the facility. As Stereoscopic Particle Image Velocimetry was the principal flow measurement technique used in this work to probe the streamwise vortices shed from ramps mounted on the strut, this dissertation provides a deep overview of the challenges and the application of the aforementioned technique to the survey of vortical flows. Moreover, the dissertation provides the comprehensive analysis of the mean and fluctuating velocity flowfields associated with two distinct vortex dynamics scenarios, as chosen by means of the outcomes of the simulations of a reduced order model developed in the research group. Specifically, the same streamwise vortices (strength, size and Reynolds number) were used experimentally to investigate both a case in which the resulting dynamics evolve in a vortex merging scenario and a case where the merging process is voluntarily avoided in order to focus the analysis on the

  7. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  8. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  9. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  10. Measuring Actin Flow in 3D Cell Protrusions

    PubMed Central

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of

  11. Development of a flow visualization apparatus. [to study convection flow patterns

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.

    1975-01-01

    The use of an optical flow visualization device for studying convection flow patterns was investigated. The investigation considered use of a shadowgraph, schlieren and other means for visualizing the flow. A laboratory model was set up to provide data on the proper optics and photography procedures to best visualize the flow. A preliminary design of a flow visualization system is provided as a result of the study. Recommendations are given for a flight test program utilizing the flow visualization apparatus.

  12. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  13. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM(®) was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  14. Epidermal cell DNA content and intermediate filaments keratin 10 and vimentin after treatment of psoriasis with calcipotriol cream once daily, twice daily and in combination with clobetasone 17-butyrate cream or betamethasone 17-valerate cream: a comparative flow cytometric study.

    PubMed

    Glade, C P; Van Erp, P E; Van De Kerkhof, P C

    1996-09-01

    Calcipotriol and corticosteroids, two therapy modalities frequently prescribed in the treatment of psoriasis, are often used in combination. The aim of the present study was to determine whether the cell biological response pattern of concurrent use of calcipotriol and corticosteroids is different from calcipotriol monotherapy. Forty patients with chronic plaque psoriasis were divided at random in four parallel groups and treated for 8 weeks with: (1) calcipotriol cream (50 micrograms/g once daily); (2) calcipotriol cream twice daily; (3) calcipotriol and clobetasone 17-butyrate (0.5 mg/g) creams; and (4) calcipotriol and betamethasone 17-valerate (1 mg/g) creams. Before and after treatment keratotome biopsies were taken and single cell suspensions prepared for flow cytometric analysis. Flow cytometric multiparameter quantification of markers for proliferation (TO-PRO-3), differentiation (antikeratin 10) and inflammation (antivimentin) was used to evaluate all four therapy modalities. A statistically significant decrease of the percentage of basal cells in S- and G2M-phase (proliferation) was obtained with all therapy modalities, except for calcipotriol monotherapy applied once daily. A significant reduction of the number of vimentin-positive cells (non-keratinocytes) was observed following combined treatment with calcipotriol and clobetasone butyrate. In contrast, monotherapy with calcipotriol had virtually no effect on the number of vimentin-positive cells. It can be concluded that: (i) calcipotriol monotherapy, applied once daily was less antiproliferative compared with twice daily applications of calcipotriol or the combined treatment with corticosteroids and that (ii) the combination of calcipotriol and corticosteroids proved to have a marked effect on the percentage of non-keratinocytes, in contrast to the modest effect of calcipotriol. PMID:8949429

  15. Real-time imaging of endothelial cell-cell junctions during neutrophil transmigration under physiological flow.

    PubMed

    Kroon, Jeffrey; Daniel, Anna E; Hoogenboezem, Mark; van Buul, Jaap D

    2014-01-01

    During inflammation, leukocytes leave the circulation and cross the endothelium to fight invading pathogens in underlying tissues. This process is known as leukocyte transendothelial migration. Two routes for leukocytes to cross the endothelial monolayer have been described: the paracellular route, i.e., through the cell-cell junctions and the transcellular route, i.e., through the endothelial cell body. However, it has been technically difficult to discriminate between the para- and transcellular route. We developed a simple in vitro assay to study the distribution of endogenous VE-cadherin and PECAM-1 during neutrophil transendothelial migration under physiological flow conditions. Prior to neutrophil perfusion, endothelial cells were briefly treated with fluorescently-labeled antibodies against VE-cadherin and PECAM-1. These antibodies did not interfere with the function of both proteins, as was determined by electrical cell-substrate impedance sensing and FRAP measurements. Using this assay, we were able to follow the distribution of endogenous VE-cadherin and PECAM-1 during transendothelial migration under flow conditions and discriminate between the para- and transcellular migration routes of the leukocytes across the endothelium. PMID:25146919

  16. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  17. Cellometer image cytometry as a complementary tool to flow cytometry for verifying gated cell populations.

    PubMed

    Kuksin, Dmitry; Kuksin, Christina Arieta; Qiu, Jean; Chan, Leo Li-Ying

    2016-06-15

    Traditionally, many cell-based assays that analyze cell populations and functionalities have been performed using flow cytometry. However, flow cytometers remain relatively expensive and require highly trained operators for routine maintenance and data analysis. Recently, an image cytometry system has been developed by Nexcelom Bioscience (Lawrence, MA, USA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Image cytometry is analogous to flow cytometry in that gating operations can be performed on the cell population based on size and fluorescent intensity. In addition, the image cytometer is capable of capturing bright-field and fluorescent images, allowing for the measurement of cellular size and fluorescence intensity data. In this study, we labeled a population of cells with an enzymatic vitality stain (calcein-AM) and a cell viability dye (propidium iodide) and compared the data generated by flow and image cytometry. We report that measuring vitality and viability using the image cytometer is as effective as flow cytometric assays and allows for visual confirmation of the sample to exclude cellular debris. Image cytometry offers a direct method for performing fluorescent cell-based assays but also may be used as a complementary tool to flow cytometers for aiding the analysis of more complex samples. PMID:27033005

  18. Diffusional solute flux during osmotic water flow across the human red cell membrane.

    PubMed

    Brahm, J; Galey, W R

    1987-05-01

    The effect of solvent drag on the unidirectional efflux of labeled water, urea, and chloride from human red cells was studied by means of the continuous flow tube method under conditions of osmotic equilibrium and net volume flow. Solvent (water) flow out of cells was created by mixing cells equilibrated in 100 mM salt solution with a 200-mM or 250-mM salt solution, while flow of water into cells was obtained by equilibrating the cells in the higher concentration and mixing them with the 100-mM solution. Control experiments constitute measurements of efflux of [14C]ethanol in normal cells and 3H2O in cells treated with p-chloromercuribenzosulfonate under the conditions described above. In both instances, the solute is known to penetrate the membrane through nonporous pathways. As anticipated, the tracer flux of neither urea nor chloride showed any dependence on net solvent flow, regardless of the direction. If one assumes the recently reported reflection coefficient for urea of 0.7, the urea tracer flux should change by at least 24% under volume flow conditions. Since such changes would be easily detected with our method, we conclude that the pathways for water, for urea, and for chloride are functionally separated. PMID:3037007

  19. MEMS-based flow cytometry: microfluidics-based cell identification system by fluorescent imaging.

    PubMed

    Wu, W K; Liang, C K; Huang, J Z

    2004-01-01

    This study utilizes MEMS technology to realize a novel low-cost microfluidics-based biochip system for flow-type cell handling. Powered by vacuum pump, the microfluidic driving system enables cells to move in order one by one in the biochip by an effect of sheath flow prefocus. Then, cells are guided to a fluorescent inspection region where two detection tasks such as cell image identification and cell counting are conducted. Currently, the glass-based biochip has been manufactured and all the related devices have been well set up in our laboratory. With this proposed prototype system, typical results about cell separation of yeast cell and PC-3 cell are available and their separated images are also presented, respectively. PMID:17270801

  20. New optical configuration for flow cytometric sorting of aspherical cells

    NASA Astrophysics Data System (ADS)

    Sharpe, John C.; Schaare, Peter N.; Kuennemeyer, Rainer

    1997-05-01

    The orthogonal axes of illumination, flow, and detection in conventional sorting flow cytometers can limit accuracy or throughput when making fluorescence measurements on a spherical cells. A new radially symmetric optical configuration has been designed to overcome these problems. Both illumination and fluorescence collection are performed by a single optical element which encircles the sample stream flow axis. Unlike existing epi-illumination flow cytometer designs, these optics are compatible with electrostatic sorting. The resolution of this system is currently being evaluated for DNA chromosome content measurement with an ultimate goal of separation of X- and Y- chromosome-bearing mammalian spermatozoa. We describe the new optical configuration and present preliminary results of instrument performance. Comparison with a conventional orthogonal optical geometry is made using fluorescent microspheres, chicken red blood cells and chinchilla sperm.

  1. Experimental studies of rotating exchange flow

    NASA Astrophysics Data System (ADS)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also ] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu<1 are only limited by the Rossby radius. We also show

  2. Advances in Complex Multiparameter Flow Cytometry Technology: Applications in Stem Cell Research

    PubMed Central

    Preffer, Frederic; Dombkowski, David

    2009-01-01

    Flow cytometry and cell sorting are critical tools in stem cell research. Recent advances in flow cytometric hardware, reagents and software have synergized to permit the stem cell biologist to more fully identify and isolate rare cells based on their immunofluorescent and light scatter characteristics. Some of these improvements include physically smaller air-cooled lasers, new designs in optics, new fluorescent conjugate-excitation pairs, and improved software to visualize data, all which combine to open up new horizons in the study of stem cells, by enhancing the resolution and specificity of inquiry. In this review, these recent improvements in technology will be outlined and important cell surface and functional antigenic markers useful for the study of stem cells described. PMID:19492350

  3. Gravitational field-flow fractionation of human hemopoietic stem cells.

    PubMed

    Roda, Barbara; Reschiglian, Pierluigi; Alviano, Francesco; Lanzoni, Giacomo; Bagnara, Gian Paolo; Ricci, Francesca; Buzzi, Marina; Tazzari, Pier Luigi; Pagliaro, Pasqualepaolo; Michelini, Elisa; Roda, Aldo

    2009-12-25

    New cell sorting methodologies, which are simple, fast, non-invasive, and able to isolate homogeneous cell populations, are needed for applications ranging from gene expression analysis to cell-based therapy. In particular, in the forefront of stem cell isolation, progenitor cells have to be separated under mild experimental conditions from complex heterogeneous mixtures prepared from human tissues. Most of the methodologies now employed make use of immunological markers. However, it is widely acknowledged that specific markers for pluripotent stem cells are not as yet available, and cell labelling may interfere with the differentiation process. This work presents for the first time gravitational field-flow fractionation (GrFFF), as a tool for tag-less, direct selection of human hematopoietic stem and progenitor cells from cell samples obtained by peripheral blood aphaeresis. These cells are responsible to repopulate the hemopoietic system and they are used in transplantation therapies. Blood aphaeresis sample were injected into a GrFFF system and collected fractions were characterized by flow cytometry for CD34 and CD45 expression, and then tested for viability and multi-differentiation potential. The developed GrFFF method allowed obtaining high enrichment levels of viable, multi-potent hematopoietic stem cells in specific fraction and it showed to fulfil major requirements of analytical performance, such as selectivity and reproducibility of the fractionation process and high sample recovery. PMID:19647835

  4. Red blood cell clustering in Poiseuille microcapillary flow

    NASA Astrophysics Data System (ADS)

    Tomaiuolo, Giovanna; Lanotte, Luca; Ghigliotti, Giovanni; Misbah, Chaouqi; Guido, Stefano

    2012-05-01

    Red blood cells (RBC) flowing in microcapillaries tend to associate into clusters, i.e., small trains of cells separated from each other by a distance comparable to cell size. This process is usually attributed to slower RBCs acting to create a sequence of trailing cells. Here, based on the first systematic investigation of collective RBC flow behavior in microcapillaries in vitro by high-speed video microscopy and numerical simulations, we show that RBC size polydispersity within the physiological range does not affect cluster stability. Lower applied pressure drops and longer residence times favor larger RBC clusters. A limiting cluster length, depending on the number of cells in a cluster, is found by increasing the applied pressure drop. The insight on the mechanism of RBC clustering provided by this work can be applied to further our understanding of RBC aggregability, which is a key parameter implicated in clotting and thrombus formation.

  5. Comparative study of pressure-flow parameters.

    PubMed

    Eri, Lars M; Wessel, Nicolai; Tysland, Ole; Berge, Viktor

    2002-01-01

    Methods for quantification of bladder outlet obstruction (BOO) are still controversial. Parameters such as detrusor opening pressure (p(det.open)), maximum detrusor pressure (p(det.max)), minimum voiding pressure (p(det.min.void)), and detrusor pressure at maximum flow rate (P(det.Qmax)) separate obstructed from nonobstructed patients to some extent, but two nomograms, the Abrams-Griffiths nomogram and the linearized passive urethral resistance relation (LinPURR), are more accepted for this purpose, along with the urethral resistance algorithm. In this retrospective, methodologic study, we evaluated the properties of these parameters with regard to test-retest reproducibility and ability to detect a moderate (pharmacologic) and a pronounced (surgical) relief of bladder outlet obstruction. We studied the pressure-flow charts of 42 patients who underwent 24 weeks of androgen suppressive therapy, 42 corresponding patients who received placebo, and 30 patients who had prostate surgery. The patients performed repeat void pressure-flow examinations before and after treatment or placebo. The various parameters were compared. Among the bladder pressure parameters, P(det.Qmax) seemed to have some advantages, supporting the belief that it is the most relevant detrusor pressure parameter to include in nomograms to quantify BOO. In assessment of a large decrease in urethral resistance, such as after TURp, resistance parameters that are based on maximum flow rate as well as detrusor pressure are preferable. PMID:11948710

  6. Circulation times of cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  7. Flow Interactions with Cells and Tissues: Cardiovascular Flows and Fluid–Structure Interactions

    PubMed Central

    Friedman, Morton H.; Krams, Rob; Chandran, Krishnan B.

    2010-01-01

    Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid–structure interaction analysis to arterial flows and the dynamics of heart valves. PMID:20336826

  8. Visual study of the effect of grazing flow on the oscillatory flow in a resonator orifice

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1975-01-01

    Grazing flow and oscillatory flow in an orifice were studied in a plexiglass flow channel with a single side branch Helmholtz resonator using water as the fluid medium. An oscillatory flow was applied to the resonatory cavity, and color dyes were injected in both the orifice and the grazing flow field to record the motion of the fluid. The flow regimes associated with linear and nonlinear (high sound pressure level) impedances with and without grazing flows were recorded by a high-speed motion-picture camera. Appreciable differences in the oscillatory flow field were seen in the various flow regimes. With high grazing flows, the outflow and inflow from the resonator cavity are found to be asymmetric. The visual study confirms that jet energy loss during flow into a resonator cavity is much larger than the loss for ejection from the cavity into the grazing flow. For inflow into the resonator cavity, the effective orifice area was significantly reduced.

  9. Cortical Flow-Driven Shapes of Nonadherent Cells.

    PubMed

    Callan-Jones, A C; Ruprecht, V; Wieser, S; Heisenberg, C P; Voituriez, R

    2016-01-15

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment. PMID:26824569

  10. Detection of early changes in lung cell cytology by flow-systems analysis techniques. [Rats

    SciTech Connect

    Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.

    1980-03-01

    Ongoing experiments designed to develop automated flow-analysis methods for assaying damage to pulmonary lavage cells in experimental animals exposed by inhalation to environmental pollutants are summarized. Pulmonary macrophages were characterized on their ability to phagocytize polystyrene latex fluorescent spheres. Lung cells consisting primarily of macrophages and leukocytes were analyzed for fluorescence (phagocytosis of spheres) and size using flow cytometric methods. Studies also concentrated on combining phagocytosis with other cellular parameters (DNA content, cell viability, and B-glucuronidase activity). As baseline studies are completed in normal animals, experimental animals will be exposed to gaseous and particulate environmental pollutants. (ERB

  11. Performance study of a data flow architecture

    NASA Technical Reports Server (NTRS)

    Adams, George

    1985-01-01

    Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.

  12. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  13. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  14. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  15. Rapid automation of a cell-based assay using a modular approach: case study of a flow-based Varicella Zoster Virus infectivity assay.

    PubMed

    Joelsson, Daniel; Gates, Irina V; Pacchione, Diana; Wang, Christopher J; Bennett, Philip S; Zhang, Yuhua; McMackin, Jennifer; Frey, Tina; Brodbeck, Kristin C; Baxter, Heather; Barmat, Scott L; Benetti, Luca; Bodmer, Jean-Luc

    2010-06-01

    Vaccine manufacturing requires constant analytical monitoring to ensure reliable quality and a consistent safety profile of the final product. Concentration and bioactivity of active components of the vaccine are key attributes routinely evaluated throughout the manufacturing cycle and for product release and dosage. In the case of live attenuated virus vaccines, bioactivity is traditionally measured in vitro by infection of susceptible cells with the vaccine followed by quantification of virus replication, cytopathology or expression of viral markers. These assays are typically multi-day procedures that require trained technicians and constant attention. Considering the need for high volumes of testing, automation and streamlining of these assays is highly desirable. In this study, the automation and streamlining of a complex infectivity assay for Varicella Zoster Virus (VZV) containing test articles is presented. The automation procedure was completed using existing liquid handling infrastructure in a modular fashion, limiting custom-designed elements to a minimum to facilitate transposition. In addition, cellular senescence data provided an optimal population doubling range for long term, reliable assay operation at high throughput. The results presented in this study demonstrate a successful automation paradigm resulting in an eightfold increase in throughput while maintaining assay performance characteristics comparable to the original assay. PMID:20117140

  16. Separating Beads and Cells in Multi-channel Microfluidic Devices Using Dielectrophoresis and Laminar Flow

    PubMed Central

    Millet, Larry J.; Park, Kidong; Watkins, Nicholas N.; Hsia, K. Jimmy; Bashir, Rashid

    2011-01-01

    Microfluidic devices have advanced cell studies by providing a dynamic fluidic environment on the scale of the cell for studying, manipulating, sorting and counting cells. However, manipulating the cell within the fluidic domain remains a challenge and requires complicated fabrication protocols for forming valves and electrodes, or demands specialty equipment like optical tweezers. Here, we demonstrate that conventional printed circuit boards (PCB) can be used for the non-contact manipulation of cells by employing dielectrophoresis (DEP) for bead and cell manipulation in laminar flow fields for bioactuation, and for cell and bead separation in multichannel microfluidic devices. First, we present the protocol for assembling the DEP electrodes and microfluidic devices, and preparing the cells for DEP. Then, we characterize the DEP operation with polystyrene beads. Lastly, we show representative results of bead and cell separation in a multichannel microfluidic device. In summary, DEP is an effective method for manipulating particles (beads or cells) within microfluidic devices. PMID:21339720

  17. Axial compressor middle stage secondary flow study

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Dring, R. P.; Joslyn, H. D.

    1983-01-01

    This report describes an experimental investigation of the secondary flow within and aft of an axial compressor model with thick endwall boundary layers. The objective of the study was to obtain detailed aerodynamic and trace gas concentration traverse data aft of a well documented isolated rotor for the ultimate purpose of improving the design phases of compressor development based on an improved physical understanding of secondary flow. It was determined from the flow visualization, aerodynamic, and trace gas concentration results that the relative unloading of the midspan region of the airfoil inhibitied a fullspan separation at high loading preventing the massive radial displacement of the hub corner stall to the tip. Radial distribution of high and low total pressure fluid influenced the magnitude of the spanwise distribution of loss, such that, there was a general decreases in loss near the hub to the extent that for the least loaded case a negative loss (increase in total pressure) was observed. The ability to determine the spanwise distribution of blockage was demonstrated. Large blockage was present in the endwall regions due to the corner stall and tip leakage with little blockage in the core flow region. Hub blockage was found to increase rapidly with loading.

  18. Actin flows in cell migration: from locomotion and polarity to trajectories.

    PubMed

    Callan-Jones, Andrew C; Voituriez, Raphaël

    2016-02-01

    Eukaryotic cell movement is characterized by very diverse migration modes. Recent studies show that cells can adapt to environmental cues, such as adhesion and geometric confinement, thereby readily switching their mode of migration. Among this diversity of motile behavior, actin flows have emerged as a highly conserved feature of both mesenchymal and amoeboid migration, and have also been identified as key regulators of cell polarity. This suggests that the various observed migration modes are continuous variations of elementary locomotion mechanisms, based on a very robust physical property of the actin/myosin system - its ability to sustain flows at the cell scale. This central role of actin/myosin flows is shown to affect the large scale properties of cell trajectories. PMID:26827283

  19. Reduction of Europium in a Redox Flow Cell

    NASA Astrophysics Data System (ADS)

    Lu, Daluh; Horng, Jiin-Shiung; Tung, Chia-Pao

    1988-05-01

    An electrolytic cell similar to the iron I chromium redox flow cell was used to investigate the reduction of europium. The cell contains two compartments partitioned by an anion exchange membrane, which is permeable to chloride ions. The anolyte is ferrous chloride which is oxidized to ferric form at the anode. Rare-earth chloride prepared from Taiwan black monazite is fed as the catholyte. The reduction of europium was tested in two connected cells at 20 and 45°C. All of Eu3+ can be reduced at 45°C, and 72% of the europium can be recovered in sulfate form. In oxide form, purity is about 84%.

  20. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  1. Experimental Study of Flow in a Bifurcation

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2003-11-01

    An instability known as the Dean vortex occurs in curved pipes with a longitudinal pressure gradient. A similar effect is manifest in the flow in a converging or diverging bifurcation, such as those found in the human respiratory airways. The goal of this study is to characterize secondary flows in a bifurcation. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) experiments were performed in a clear, plastic model. Results show the strength and migration of secondary vortices. Primary velocity features are also presented along with dispersion patterns from dye visualization. Unsteadiness, associated with a hairpin vortex, was also found at higher Re. This work can be used to assess the dispersion of particles in the lung. Medical delivery systems and pollution effect studies would profit from such an understanding.

  2. Transient studies of capillary-induced flow

    NASA Technical Reports Server (NTRS)

    Reagan, M. K.; Bowman, W. J.

    1993-01-01

    This paper presents the numerical and experimental results of a study performed on the transient rise of fluid in a capillary tube. The capillary tube problem provides an excellent mechanism from which to launch an investigation into the transient flow of a fluid in a porous wick structure where capillary forces must balance both adverse gravitational effects and frictional losses. For the study, a capillary tube, initially charged with a small volume of water, was lowered into a pool of water. The behavior of the column of fluid during the transient that followed as more water entered the tube from the pool was both numerically and experimentally studied.

  3. Study of argon–oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon–oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon–oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  4. Performance on ETL 1 kW redox flow cell

    NASA Astrophysics Data System (ADS)

    Nozaki, K.; Kaneko, H.; Negishi, A.; Ozawa, T.

    A 1 kW - 3 kWh redox flow cell, in which 96 bipolar cells with the apparent electrode area of 432 sq cm are involved, has been developed and tested in Electrotechnical Laboratory. The rated output current and voltage are 26 A and 43 V. To elucidate fundamental aspects of the anolyte, polarography and spectroscopy were applied as well as observations with a miniaturized redox flow cell, and influence of the complex species in the anolyte on the cell performance has been recognized. During the charge and discharge cycles the anolyte was continuously monitored by the spectroscopy or controlled potential coulometry, while a voltammetric detector was applied for monitoring the catholyte. Further screening of carbon fiber electrode materials has been continued after the previous presentation, and among more than 70 varieties were found a few kinds of carbon fiber, with which the target performance can be achieved.

  5. Integration of flow studies for robust selection of mechanoresponsive genes.

    PubMed

    Maimari, Nataly; Pedrigi, Ryan M; Russo, Alessandra; Broda, Krysia; Krams, Rob

    2016-03-01

    Blood flow is an essential contributor to plaque growth, composition and initiation. It is sensed by endothelial cells, which react to blood flow by expressing > 1000 genes. The sheer number of genes implies that one needs genomic techniques to unravel their response in disease. Individual genomic studies have been performed but lack sufficient power to identify subtle changes in gene expression. In this study, we investigated whether a systematic meta-analysis of available microarray studies can improve their consistency. We identified 17 studies using microarrays, of which six were performed in vivo and 11 in vitro. The in vivo studies were disregarded due to the lack of the shear profile. Of the in vitro studies, a cross-platform integration of human studies (HUVECs in flow cells) showed high concordance (> 90 %). The human data set identified > 1600 genes to be shear responsive, more than any other study and in this gene set all known mechanosensitive genes and pathways were present. A detailed network analysis indicated a power distribution (e. g. the presence of hubs), without a hierarchical organisation. The average cluster coefficient was high and further analysis indicated an aggregation of 3 and 4 element motifs, indicating a high prevalence of feedback and feed forward loops, similar to prokaryotic cells. In conclusion, this initial study presented a novel method to integrate human-based mechanosensitive studies to increase its power. The robust network was large, contained all known mechanosensitive pathways and its structure revealed hubs, and a large aggregate of feedback and feed forward loops. PMID:26842798

  6. Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Lowe, Mary L.

    1996-11-01

    In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633

  7. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  8. DNS of turbulent flow in a porous unit cell

    NASA Astrophysics Data System (ADS)

    Apte, Sourabh; Finn, Justin; Wood, Brian; Liburdy, James

    2012-11-01

    Turbulent flows through packed beds and porous media are encountered in a number of natural and engineered systems, however our general understanding of moderate and high Reynolds number flows is limited to mostly empirical and macroscale relationships. In this work the porescale flow physics, which are important to properties such as bulk mixing performance and permeability, are investigated using Direct Numeric Simulation of flow through a periodic face centered cubic (FCC) unit cell. This low porosity arrangement of spheres is characterized by rapid flow expansions and contractions, and thus features an early onset to turbulence [Hill & Koch, JFM 2002]. The simulations are performed using a fictitious domain approach [Apte et al., J. Comp. Physics 2009], which uses non-body conformal Cartesian grids, with resolution up to D / Δ = 250 (3543 cells total). Simulations are performed at three pore Reynolds numbers, Rep = 300 , 550 and 950, spanning a broad physical regime. The results are used to investigate the structure of turbulence in the Eulerian and Lagrangian frames, the distribution and budget of turbulent kinetic energy, and the characteristics of the energy spectrum in complex packed beds and porous media. Funding: NSF project #0933857, Inertial Effects in Flow Through Porous Media.

  9. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  10. Co-laminar flow cells for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Goulet, Marc-Antoni; Kjeang, Erik

    2014-08-01

    In this review, we present the major developments in the evolution of 'membraneless' microfluidic electrochemical cells which utilize co-laminar flow to minimize reactant mixing while producing electrical power in a compact form. Categorization of devices according to reactant phases is suggested, with further differentiation being subject to fabrication method and function, namely multi-layer sandwich structures for medium-power cell stacks and single-layer monolithic cells for low-power on-chip applications. Power density metrics reveal that recent co-laminar flow cells compare favourably with conventional membrane-based electrochemical cells and that further optimization of device architecture could be expedited through standardized testing. Current research trends indicate that co-laminar flow cell technology for power generation is growing rapidly and finding additional use as an analytical and education tool. Practical directions and recommendations for further research are provided, with the intention to guide scientific advances and technology development toward ultimate pairing with commercial applications.