Science.gov

Sample records for flow cytofluorometric analysis

  1. Flow cytofluorometric monitoring of leukocyte apoptosis in experimental cholera

    NASA Astrophysics Data System (ADS)

    Lotsmanova, Ekaterina Y.; Kravtsov, Alexander L.; Livanova, Ludmila F.; Kobkova, Irina M.; Kuznetsov, Oleg S.; Shchukovskaya, Tatyana N.; Smirnova, Nina I.; Kutyrev, Vladimir V.

    2003-10-01

    Flow cytofluorometric DNA analysis was applied to determine of the relative contents of proliferative (more then 2C DNA per cell) and apoptotic (less then 2C DNA per cell) leukocytes in blood of adult rabbits, challenged with 10,000 times the 50 % effective dose of Vibrio cholerae virulent strain by the RITARD technique. It has been shown that irreversible increase the percentage of cells carrying DNA in the degradation stage brings to disbalance between the genetically controlled cell proliferation and apoptosis that leads to animal death from the cholera infection. Such fatal changes were not observed in challenging of immunized animals that were not died. Thus received data show that the flow cytofluorometric measurements may be used for detection of transgressions in homeostasis during acute infection diseases, for outlet prognosis of the cholera infection.

  2. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  3. Cytofluorometric identification of plasmin-sensitive factor XIIIa binding to platelets.

    PubMed

    Kreager, J A; Devine, D V; Greenberg, C S

    1988-08-30

    We have investigated the binding of blood coagulation factor XIIIa to thrombin-stimulated platelets using cytofluorometric analysis. Washed thrombin-stimulated platelets bound exogenously added factor XIIIa in a calcium-dependent reaction. The expression of endogenous platelet factor XIII was also detected on the surface of thrombin-stimulated platelets. When fluorescence analysis was performed based on particle size, factor XIIIa bound to the surface of greater than 95% of particles which contained more than one platelet, but only 50% of single platelets. The binding of factor XIIIa to thrombin-stimulated platelets was inhibited by plasmin. Plasmin also inhibited thrombin-dependent expression of the factor XIIIa binding site on platelets. Experiments in which thrombin-stimulated platelets were incubated with factor XIIIa in the presence of 125I-dimethylcasein or 3H-putrescine demonstrated that platelets bear both glutamyl and lysyl substrates for factor XIIIa. Thrombin increased the expression of factor XIIIa substrates by platelets. Plasmin inhibited both the expression of factor XIIIa substrates and degraded them. The binding of factor XIIIa to thrombin-stimulated platelets and the availability of factor XIIIa substrates on the platelet surface could provide a mechanism by which factor XIIIa stabilizes the hemostatic plug by promoting crosslinking reactions between platelet membrane proteins and adhesive glycoproteins. In contrast, plasmin inhibition of factor XIIIa binding and crosslinking could disrupt hemostasis. PMID:2903577

  4. Effects of irradiation, glucocorticoid and FK506 on cell-surface antigen expression by rat thymocytes: a three-colour flow cytofluorometric analysis.

    PubMed Central

    Tsuchida, M; Konishi, M; Takai, K; Naito, K; Fujikura, Y; Fukumoto, T

    1994-01-01

    The expression of T-cell antigen receptor (TCR) alpha beta was investigated in rat CD4- CD8- thymocytes during thymic reconstitution after the exposure of animals to irradiation or glucocorticoid. The effect of the immunosuppressant FK506 on the expression of TCR alpha beta in rat CD4- CD8- thymocytes was also examined. The percentage of CD4- CD8- thymocytes constituted 2.6% of total thymocytes and that of CD4- CD8- TCR alpha beta high cells constituted 12.6% of CD4- CD8- thymocytes in normal adult Lewis rats. The percentage of CD4- CD8- TCR alpha beta high cells increased during thymic reconstitution after irradiation, and maximally constituted 28.6% of CD4- CD8- thymocytes on day 7. Similar results were obtained during thymic reconstitution after glucocorticoid treatment. In contrast, continuous treatment with FK506 for 7 days markedly decreased not only the percentages of CD4+ CD8- TCR alpha beta high and CD4- CD8+ TCR alpha beta high thymocytes, but also that of CD4- CD8- TCR alpha beta high thymocytes. These results indicate that rat CD4- CD8- thymocytes contain a subpopulation of mature (TCR alpha beta high) cells. The possible implications of the existence of this subpopulation with regard to thymocyte differentiation and maturation are discussed. PMID:7530693

  5. HPFTP flow diverter analysis

    NASA Technical Reports Server (NTRS)

    Spadley, L. W.

    1985-01-01

    A computational fluid flow analysis on the flow diverter system under consideration for the Space Shuttle main engine high pressure fuel turbopump (SSME HPFTP) is proposed. A three dimensional viscous flow environment is computed to optimize the geometric configuration and location of the flow diverter system. The analysis consists of a fully turbulent cold flow calculation by Navier-Stokes equations and a Baldwin-Lomax turbulence model. The equations are numerically by a finite difference/element procedure. The results will provide the steady and unsteady pressure field and thermal environment required to assess the usefulness of the flow diverter system in deflecting the cold flow away from the hot turbine components. A geometry optimization study determines the best diverter shape and location to avoid larger thermal gradients on the rotor/stator components.

  6. Laminar Flow Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  7. Flow Analysis: A Novel Approach For Classification.

    PubMed

    Vakh, Christina; Falkova, Marina; Timofeeva, Irina; Moskvin, Alexey; Moskvin, Leonid; Bulatov, Andrey

    2016-09-01

    We suggest a novel approach for classification of flow analysis methods according to the conditions under which the mass transfer processes and chemical reactions take place in the flow mode: dispersion-convection flow methods and forced-convection flow methods. The first group includes continuous flow analysis, flow injection analysis, all injection analysis, sequential injection analysis, sequential injection chromatography, cross injection analysis, multi-commutated flow analysis, multi-syringe flow injection analysis, multi-pumping flow systems, loop flow analysis, and simultaneous injection effective mixing flow analysis. The second group includes segmented flow analysis, zone fluidics, flow batch analysis, sequential injection analysis with a mixing chamber, stepwise injection analysis, and multi-commutated stepwise injection analysis. The offered classification allows systematizing a large number of flow analysis methods. Recent developments and applications of dispersion-convection flow methods and forced-convection flow methods are presented. PMID:26364745

  8. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  9. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  10. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  11. NASA flow fields analysis

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1996-01-01

    The objectives of the present research are to improve design capabilities for low thrust rocket engines through understanding the detailed mixing and combustion processes in a representative combustor. Of particular interest is a small gaseous hydrogen-oxygen thruster which is considered as a coordinated part of an on-going experimental program at NASA LERC. Detailed computational modeling involves the solution of both the two- and three-dimensional Navier Stokes equations, coupled with chemical reactions and the species diffusion equations. Computations of interest include both steady state and time-accurate flowfields and are obtained by means of LU approximate factorization in time and flux split upwinding differencing in space. The emphasis in the research is focused on using numerical analysis to understand detailed combustor flowfields, including the shear layer dynamics created between fuel film cooling and the core gas in the vicinity on the nearby combustor wall; the integrity and effectiveness of the coolant film; and three-dimensional fuel and oxidizer jet injection/mixing/combustion characteristics in the primary combustor along with their joint impacts on global engine performance.

  12. Buck Creek River Flow Analysis

    NASA Astrophysics Data System (ADS)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  13. Flow Analysis Tool White Paper

    NASA Technical Reports Server (NTRS)

    Boscia, Nichole K.

    2012-01-01

    Faster networks are continually being built to accommodate larger data transfers. While it is intuitive to think that implementing faster networks will result in higher throughput rates, this is often not the case. There are many elements involved in data transfer, many of which are beyond the scope of the network itself. Although networks may get bigger and support faster technologies, the presence of other legacy components, such as older application software or kernel parameters, can often cause bottlenecks. Engineers must be able to identify when data flows are reaching a bottleneck that is not imposed by the network and then troubleshoot it using the tools available to them. The current best practice is to collect as much information as possible on the network traffic flows so that analysis is quick and easy. Unfortunately, no single method of collecting this information can sufficiently capture the whole endto- end picture. This becomes even more of a hurdle when large, multi-user systems are involved. In order to capture all the necessary information, multiple data sources are required. This paper presents a method for developing a flow analysis tool to effectively collect network flow data from multiple sources and provide that information to engineers in a clear, concise way for analysis. The purpose of this method is to collect enough information to quickly (and automatically) identify poorly performing flows along with the cause of the problem. The method involves the development of a set of database tables that can be populated with flow data from multiple sources, along with an easyto- use, web-based front-end interface to help network engineers access, organize, analyze, and manage all the information.

  14. Hot Flow Anomaly Structure Analysis

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2010-12-01

    Hot Flow Anomaly observed on Interball-Tail on 03.14.1996 is investigated. The normal to the interplanetary current sheet interacting with bow shock was determined in assumption of tangential discontinuity. Calculated motional electric field was directed towards current sheet. The bow shock before HFA arrival to the spacecraft was quasi-perpendicular, and was quasi-parallel after HFA passage. Respectively, of the shocks, bracketing HFA, were quasi-perpendicular before HFA passage and quasi-parallel after it. With averaged velocity of plasma within the body of HFA and duration of HFA observation we determined its size in normal to the current sheet direction as ~ 2.5 RE. HFA consists of two regions separated by thin layer with different plasma characteristics. Convection of plasma within HFA, as observed along spacecraft trajectory by subtracting averaged velocity from observed velocities, show that plasma in each of two regions is moving from separating layer. It indicates that separating layer is the site of energy deposition from interaction of the solar wind with ions reflected from the shock. This is confirmed by analysis of ion velocity distributions in this layer.

  15. Analysis of katabatic flow using infrared imaging

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Cermak, J.

    2013-12-01

    We present a novel high-resolution IR method which is developed, tested and used for the analysis of katabatic flow. Modern thermal imaging systems allow for the recording of infrared picture sequences and thus the monitoring and analysis of dynamic processes. In order to identify, visualize and analyze dynamic air flow using infrared imaging, a highly reactive 'projection' surface is needed along the air flow. Here, a design for these types of analysis is proposed and evaluated. Air flow situations with strong air temperature gradients and fluctuations, such as katabatic flow, are particularly suitable for this new method. The method is applied here to analyze nocturnal cold air flows on gentle slopes. In combination with traditional methods the vertical and temporal dynamics of cold air flow are analyzed. Several assumptions on cold air flow dynamics can be confirmed explicitly for the first time. By observing the cold air flow in terms of frequency, size and period of the cold air fluctuations, drops are identified and organized in a newly derived classification system of cold air flow phases. In addition, new flow characteristics are detected, like sharp cold air caps and turbulence inside the drops. Vertical temperature gradients inside cold air drops and their temporal evolution are presented in high resolution Hovmöller-type diagrams and sequenced time lapse infrared videos.

  16. Content analysis in information flows

    NASA Astrophysics Data System (ADS)

    Grusho, Alexander A.; Grusho, Nick A.; Timonina, Elena E.

    2016-06-01

    The paper deals with architecture of content recognition system. To analyze the problem the stochastic model of content recognition in information flows was built. We proved that under certain conditions it is possible to solve correctly a part of the problem with probability 1, viewing a finite section of the information flow. That means that good architecture consists of two steps. The first step determines correctly certain subsets of contents, while the second step may demand much more time for true decision.

  17. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    NASA Astrophysics Data System (ADS)

    Lucas, Dan; Kerswell, Rich R.

    2015-04-01

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2π]2 torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, "Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow," J. Fluid Mech. 722, 554-595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida ["Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst," J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  18. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    SciTech Connect

    Lucas, Dan Kerswell, Rich R.

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2π]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, “Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow,” J. Fluid Mech. 722, 554–595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [“Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst,” J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  19. Analysis of lipid flow on minimal surfaces

    NASA Astrophysics Data System (ADS)

    Bahmani, Fatemeh; Christenson, Joel; Rangamani, Padmini

    2016-03-01

    Interaction between the bilayer shape and surface flow is important for capturing the flow of lipids in many biological membranes. Recent microscopy evidence has shown that minimal surfaces (planes, catenoids, and helicoids) occur often in cellular membranes. In this study, we explore lipid flow in these geometries using a `stream function' formulation for viscoelastic lipid bilayers. Using this formulation, we derive two-dimensional lipid flow equations for the commonly occurring minimal surfaces in lipid bilayers. We show that for three minimal surfaces (planes, catenoids, and helicoids), the surface flow equations satisfy Stokes flow equations. In helicoids and catenoids, we show that the tangential velocity field is a Killing vector field. Thus, our analysis provides fundamental insight into the flow patterns of lipids on intracellular organelle membranes that are characterized by fixed shapes reminiscent of minimal surfaces.

  20. Analysis of stratified flow mixing

    NASA Astrophysics Data System (ADS)

    Soo, S. L.; Lyczkowski, R. W.

    1985-06-01

    The Creare 1/5-scale Phase II experiments which model fluid and thermal mixing of relatively cold high pressure injection (PHI) water into a cold leg of a full-scale pressurized water reactor (PWR) having loop flow are analyzed and found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum controlled and gravity controlled (stratification).

  1. Analysis of stratified flow mixing

    SciTech Connect

    Soo, S.L.; Lyckowski, R.W.

    1985-11-01

    The Creare one-fifth-scale Phase II experiments which model fluid and thermal mixing of relatively cold high-pressure injection water into a cold leg of a full-scale pressurized water reactor having loop flow, are analyzed. It is found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum and gravity controlled (stratification).

  2. Impeller flow field measurement and analysis

    NASA Technical Reports Server (NTRS)

    Fagan, J. R.; Fleeter, S.

    1991-01-01

    A series of experiments are performed to investigate and quantify the three-dimensional mean flow field in centrifugal compressor flow passages and to evaluate contemporary internal flow models. The experiments include the acquisition and analysis of LDV data in the impeller passages of a low-speed moderate-scale research mixed-flow centrifugal compressor operating at its design point. Predictions from a viscous internal flow model are then correlated with these data. The LDV data show the traditional jet-wake structure observed in many centrifugal compressors, with the wake observed along the shroud 70 percent of the length from the pressure to suction surface. The viscous model predicts the major flow phenomena. However, the correlations of the viscous predictions with the LDV data were poor.

  3. Flow analysis of nozzle installations with strong airplane flow interactions

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1982-01-01

    A numerical procedure has been developed to calculate the flow fields resulting from the viscous-inviscid interactions that occur when a strong jet exhaust and aircraft flow field coupling exists. The approach used in the current procedure is to divide the interaction region into zones which are either predominantly viscous or inviscid. The flow in the inviscid zone, which surrounds most of the aircraft, is calculated using an existing linearized potential flow code. The viscous flow zone, which encompasses the jet plume, is modeled using a parabolized Navier-Stokes code. The key feature of the present procedure is the coupling of the zonal solutions such that sufficient information is transferred between the zones to preserve the effects of the interactions. The zonal boundaries overlap with the boundary conditions being the information link between zones. An iteraction scheme iterates the coupled analysis until convergence has been obtained. The procedure has been successfully used for several test cases for which the computed results are presented.

  4. Dimensional analysis of natural debris flows

    NASA Astrophysics Data System (ADS)

    Zhou, Gordon; Ouyang, Chaojun

    2015-04-01

    Debris flows occur when masses of poorly sorted sediment, agitated and saturated with water, surge down slopes in response to gravitational attraction. They are of great concern because they often cause catastrophic disasters due to the long run-out distance and large impact forc-es. Different from rock avalanches and sediment-laden water floods, both solid and fluid phases affected by multiple parameters can influence the motion of debris flows and govern their rheological properties. A dimensional analysis for a systematic study of the governing parameters is presented in this manuscript. Multiple dimensionless numbers with clear physical meanings are critically reviewed. Field data on natural debris flows are available here based on the fifty years' observation and measurement in the Jiangjia Gully, which is located in the Dongchuan City, Yunnan Province of China. The applications of field data with the dimensional analysis for studying natural debris flows are demonstrated. Specific values of dimensionless numbers (e.g., modified Savage Number, Reynolds number, Friction number) for classifying flowing regimes of natural debris flows on the large scales are obtained. Compared to previous physical model tests conducted mostly on small scales, this study shows that the contact friction between particles dominates in natural debris flows. In addition, the solid inertial stress due to particle collisions and the pore fluid viscous shear stress play key roles in governing the dynamic properties of debris flows and the total normal stress acting on the slope surfaces. The channel width as a confinement to the flows can affect the solids discharge per unit width significantly. Furthermore, a dimensionless number related to pore fluid pressure dissipation is found for distinguishing surge flows and continuous flows in field satisfactorily. It indicates that for surge debris flows, the high pore fluid pressures generated in granular body dissipate quite slowly and may

  5. Analysis of stratified flow mixing

    SciTech Connect

    Soo, S.L.; Lyczkowski, R.W.

    1985-01-01

    The Creare 1/5-scale Phase II experiments which model fluid and thermal mixing of relatively cold high pressure injection (HPI) water into a cold leg of a full-scale pressurized water reactor (PWR) having loop flow are analyzed and found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum controlled and gravity controlled (stratification). 18 refs., 9 figs.

  6. LFSTAT - Low-Flow Analysis in R

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor

    2013-04-01

    The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This

  7. SRMAFTE facility checkout model flow field analysis

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.

  8. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  9. POD analysis of turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Smits, Alexander J.; Hellström, Leo; Ganapathisubramani, Bharathram

    2015-11-01

    Proper Orthogonal Decomposition was introduced into the analysis of turbulent flow by Lumley (1967, 1981). Turbulent flows pose particular challenges for POD analysis because the energy is distributed over a wide range of scales. It has recently been found, however, that POD can be a powerful experimental tool for identifying the largest scales, especially the Large Scale Motions (LSMs) and Very Large Scale Motions (VLSMs) in turbulent pipe flow. It has also been useful, for example, to identify the large-scale motions that dominate the unsteady behavior of the flow downstream of a right-angled bend. Here, we summarize some of these experimental results, and discuss their implications for the understanding of turbulence structure. Supported under ONR Grant N00014-13-1-0174 and ERC Grant No. 277472.

  10. Recent advances in flow injection analysis.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila

    2016-04-01

    A dynamic development of methodologies of analytical flow injection measurements during four decades since their invention has reinforced the solid position of flow analysis in the arsenal of techniques and instrumentation of contemporary chemical analysis. With the number of published scientific papers exceeding 20 000, and advanced instrumentation available for environmental, food, and pharmaceutical analysis, flow analysis is well established as an extremely vital field of modern flow chemistry, which is developed simultaneously with methods of chemical synthesis carried out under flow conditions. This review work is based on almost 300 original papers published mostly in the last decade, with special emphasis put on presenting novel achievements from the most recent 2-3 years in order to indicate current development trends of this methodology. Besides the evolution of the design of whole measuring systems, and including especially new applications of various detections methods, several aspects of implications of progress in nanotechnology, and miniaturization of measuring systems for application in different field of modern chemical analysis are also discussed. PMID:26906258

  11. LV software for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The NASA Lewis Research Center (LeRC) maintains a leadership position in research into advanced aerospace propulsion systems. For the next generation of aircraft, engine designs continue to involve complex, high-speed flows. Performing the detailed flow diagnostics to properly evaluate these designs requires advanced instrumentation to probe these highly turbulent flows. The hostile flow environment often requires nonintrusive measurement techniques such as the laser velocimeter (LV). Since the LV is a proven instrument for nonintrusive flow measurement, it can provide quantitative velocity data with minimal interference to the flow. Based on anticipated flow conditions, laser velocimeter systems were procured from TSI, Inc. The initial system utilized counter processor technology, but later procurements this past year include a more advanced, correlator-based processor, which significantly improves the overall LV performance. To meet the needs of advanced research into propulsion, this instrument must be integrated into an existing VAX/VMS computer system for data acquisition, processing, and presentation. The work done under this grant before this period concentrated on developing the software required to setup and acquire data from the TSI MI-990 multichannel interface, and the RMR 1989 rotating machinery resolver. With the basis established for controlling the operation of the LV system, software development this past year shifted in emphasis from instrumentation control and data acquisition to data analysis and presentation. The progress of the program is reported.

  12. A clinical flow cytometry data analysis assistant

    SciTech Connect

    Salzman, G.C. ); Stewart, C.C. ); Duque, R.E. ); Braylan, R.C. . Coll. of Medicine)

    1990-01-01

    A rule-based expert system is being developed to assist clinicians in the analysis of multivariate flow cytometry data for patients with leukemias or lymphomas. The cells are stained with fluorescently labeled monoclonal antibodies and the cell fluorescence is measured with a flow cytometer. Cluster analysis is used to isolate subpopulations in the data on which the clinical decisions are made. Symbolic facts for the expert system are instantiated using these numerical data and the knowledge of the clinicians and experts in flow cytometry. The first prototype used a decision tree and rigid rules. Is successfully classified only nine of eleven leukemia cases. A second prototype incorporating certainty factors into the rules is now being developed that should remove the need for a rigid decision tree. 9 refs.

  13. Equilibria with incompressible flows from symmetry analysis

    SciTech Connect

    Kuiroukidis, Ap E-mail: gthroum@cc.uoi.gr; Throumoulopoulos, G. N. E-mail: gthroum@cc.uoi.gr

    2015-08-15

    We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.

  14. Automated Protein Assay Using Flow Injection Analysis

    NASA Astrophysics Data System (ADS)

    Wolfe, Carrie A. C.; Oates, Matthew R.; Hage, David S.

    1998-08-01

    The technique of flow injection analysis (FIA) is a common instrumental method used in detecting a variety of chemical and biological agents. This paper describes an undergraduate laboratory that uses FIA to perform a bicinchoninic acid (BCA) colorimetric assay for quantitating protein samples. The method requires less than 2 min per sample injection and gives a response over a broad range of protein concentrations. This method can be used in instrumental analysis labs to illustrate the principles and use of FIA, or as a means for introducing students to common methods employed in the analysis of biological agents.

  15. Flow analysis with cumulants: Direct calculations

    SciTech Connect

    Bilandzic, Ante; Snellings, Raimond; Voloshin, Sergei

    2011-04-15

    Anisotropic flow measurements in heavy-ion collisions provide important information on the properties of hot and dense matter. These measurements are based on analysis of azimuthal correlations and might be biased by contributions from correlations that are not related to the initial geometry, so-called nonflow. To improve anisotropic flow measurements, advanced methods based on multiparticle correlations (cumulants) have been developed to suppress nonflow contribution. These multiparticle correlations can be calculated by looping over all possible multiplets, however, this quickly becomes prohibitively CPU intensive. Therefore, the most used technique for cumulant calculations is based on generating functions. This method involves approximations, and has its own biases, which complicates the interpretation of the results. In this paper we present a new exact method for direct calculations of multiparticle cumulants using moments of the flow vectors.

  16. Flow sorting of microorganisms for molecular analysis.

    PubMed Central

    Wallner, G; Fuchs, B; Spring, S; Beisker, W; Amann, R

    1997-01-01

    Not only classical cultivation-based methods but also the new molecular approaches may result in incomplete and selective information on the natural diversity of microbial communities. Flow sorting of microorganisms from environmental samples allows the deliberate selection of cell populations of interest from highly diverse systems for molecular analysis. Several cellular parameters that can be measured by flow cytometry are useful as sort criteria. Here, we report sorting of bacteria from activated sludge, lake water, and lake sediment according to differences in light scattering, DNA content, and/or affiliation to certain phylogenetic groups as assessed by fluorescein-labeled, rRNA-targeted oligonucleotide probes. Microscopy of the sorted cells showed that populations of originally low abundance could be strongly enriched by flow sorting (up to 280-fold), depending on the original abundance of the cells of interest and the type of sample sorted. The purity of the cells of interest could be further increased by repeated sorting, but this increase was limited by cell aggregation in the case of activated-sludge samples. It was possible to amplify almost full-length 16S ribosomal DNA (rDNA) fragments from sorted microbial cells by PCR, even after fixation with paraformaldehyde and in situ hybridization. Dot blot hybridization and sequencing demonstrated that most of the amplified rDNA originated from those cells that had been selected for by flow sorting. Comparative analysis of 16S rDNA sequences revealed previously unknown species of magnetotactic or activated-sludge bacteria. PMID:9361408

  17. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  18. Dual throat thruster cold flow analysis

    NASA Technical Reports Server (NTRS)

    Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.

    1978-01-01

    The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.

  19. Residual ozone determination by flow injection analysis

    SciTech Connect

    Straka, M.R.; Pacey, G.E.; Gordon, G.

    1984-09-01

    It has been proposed that ozone be used to replace free chlorine for the disinfection of drinking water and waste water. For the use of ozone in this capacity, it would be necessary to have a fast accurate and precise method to analyze for the presence of residuals. An automated method for ozone determination based on the indigo reagent method is presented. This method is based on the advantages of flow injection analysis (FIA) techniques. 19 references, 3 tables, 2 figures.

  20. Recent Electrochemical and Optical Sensors in Flow-Based Analysis

    PubMed Central

    Chailapakul, Orawon; Ngamukot, Passapol; Yoosamran, Alongkorn; Siangproh, Weena; Wangfuengkanagul, Nattakarn

    2006-01-01

    Some recent analytical sensors based on electrochemical and optical detection coupled with different flow techniques have been chosen in this overview. A brief description of fundamental concepts and applications of each flow technique, such as flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA), and multipumped FIA (MPFIA) were reviewed.

  1. Dynamic feature analysis in bidirectional pedestrian flows

    NASA Astrophysics Data System (ADS)

    Xiao-Xia, Yang; Winnie, Daamen; Serge, Paul Hoogendoorn; Hai-Rong, Dong; Xiu-Ming, Yao

    2016-02-01

    Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do. Project supported jointly by the National Natural Science Foundation of China (Grant No. 61233001) and the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007).

  2. Numerical analysis of flows in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Takata, H.; Kojima, M.

    1986-07-01

    A numerical method of the analysis for three-dimensional turbulent flow in cylinders of reciprocating engines with arbitrary geometry is described. A scheme of the finite volume/finite element methods is used, employing a large number of small elements of arbitrary shapes to form a cylinder. The fluid dynamic equations are expressed in integral form for each element, taking into account the deformation of the element shape according to the piston movements, and are solved in the physical space using rectangular coordinates. The conventional k-epsilon two-equation model is employed to describe the flow turbulence. Example calculations are presented for simple pancake-type combustion chambers having an annular intake port at either center or asymmetric position of the cylinder head. The suction inflow direction is also changed in several ways. The results show a good simulation of overall fluid movements within the engine cylinder.

  3. Radioisotope method of compound flow analysis

    NASA Astrophysics Data System (ADS)

    Petryka, Leszek; Zych, Marcin; Hanus, Robert; Sobota, Jerzy; Vlasak, Pavel; Malczewska, Beata

    2015-05-01

    The paper presents gamma radiation application to analysis of a multicomponent or multiphase flow. Such information as a selected component content in the mixture transported through pipe is crucial in many industrial or laboratory installations. Properly selected sealed radioactive source and collimators, deliver the photon beam, penetrating cross section of the flow. Detectors mounted at opposite to the source side of the pipe, allow recording of digital signals representing composition of the stream. In the present development of electronics, detectors and computer software, a significant progress in know-how of this field may be observed. The paper describes application of this method to optimization and control of hydrotransport of solid particles and propose monitoring facilitating prevent of a pipe clogging or dangerous oscillations.

  4. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The software for configuring a Laser Velocimeter (LV) counter processor system was developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system was developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  5. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  6. Flow simulation and analysis of high-power flow batteries

    NASA Astrophysics Data System (ADS)

    Knudsen, E.; Albertus, P.; Cho, K. T.; Weber, A. Z.; Kojic, A.

    2015-12-01

    The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm2 to 400 cm2, are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation.

  7. Coupled ensemble flow line advection and analysis.

    PubMed

    Guo, Hanqi; Yuan, Xiaoru; Huang, Jian; Zhu, Xiaomin

    2013-12-01

    Ensemble run simulations are becoming increasingly widespread. In this work, we couple particle advection with pathline analysis to visualize and reveal the differences among the flow fields of ensemble runs. Our method first constructs a variation field using a Lagrangian-based distance metric. The variation field characterizes the variation between vector fields of the ensemble runs, by extracting and visualizing the variation of pathlines within ensemble. Parallelism in a MapReduce style is leveraged to handle data processing and computing at scale. Using our prototype system, we demonstrate how scientists can effectively explore and investigate differences within ensemble simulations. PMID:24051840

  8. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  9. Bulk-Flow Analysis, part A

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1993-01-01

    The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.

  10. A study of grout flow pattern analysis

    SciTech Connect

    Lee, S. Y.; Hyun, S.

    2013-01-10

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

  11. Unsaturated Zone Flow Patterns and Analysis

    SciTech Connect

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be reduced and

  12. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  13. Computer program for compressible flow network analysis

    NASA Technical Reports Server (NTRS)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  14. Data-Flow Based Model Analysis

    NASA Technical Reports Server (NTRS)

    Saad, Christian; Bauer, Bernhard

    2010-01-01

    The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application domain with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become an integral part of many areas in computer science. While the definition of modeling languages through the use of meta models, e.g. in Unified Modeling Language (UML), is a well-understood process, their validation and the extraction of behavioral information is still a challenge. In this paper we present a novel approach for dynamic model analysis along with several fields of application. Examining the propagation of information along the edges and nodes of the model graph allows to extend and simplify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an "abstract interpretation"-like analysis method for the modeling domain.

  15. Space Station resource node flow field analysis

    NASA Technical Reports Server (NTRS)

    Kania, Lee; Kumar, Ganesh; Mcconnaughey, Paul

    1991-01-01

    An analysis of the flow field within the Space Station Freedom resource node with operational intermodule ventilation and temperature/humidity control ventilation systems has been conducted. The INS3D code, an incompressible, steady-state Navier-Stokes solver has been used to assess the design of the ventilation system via quantification of the level of fluid mixing and identification of 'dead air' regions and short-circuit ventilation. Numerical results indicate significant short-circuit ventilation in the forward and midsections of the node and insufficient fluid mixing is found to exist in the aft node section. These results as well as results from a solution grid dependence study are presented.

  16. Methodologies and techniques for analysis of network flow data

    SciTech Connect

    Bobyshev, A.; Grigoriev, M.; /Fermilab

    2004-12-01

    Network flow data gathered at the border routers and core switches is used at Fermilab for statistical analysis of traffic patterns, passive network monitoring, and estimation of network performance characteristics. Flow data is also a critical tool in the investigation of computer security incidents. Development and enhancement of flow based tools is an on-going effort. This paper describes the most recent developments in flow analysis at Fermilab.

  17. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  18. Numerical analysis of granular flows in a silo bed on flow regime characterization.

    PubMed

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  19. Numerical Analysis of Granular Flows in a Silo Bed on Flow Regime Characterization

    PubMed Central

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  20. Woody debris flow behavior from experimental analysis

    NASA Astrophysics Data System (ADS)

    Bateman, Allen; Medina, Vicente; Morloti, Emanuele; Renaud, Alexis

    2010-05-01

    A consequence of debris flow in streams are well known, the collapse of the stream flooding all over the land. The high momentum flux of those flows can devastate houses, drag and crushes cars, etc. The presence of woody debris into the flow rise the flow depth and increment the collapse of the streams, bridges and structures. The present preliminary study offer a qualitative comparison between a debris flow and a woody debris flow with similar flow characteristics. To obtain this a series of experiments were performed in the Morph-dynamic Laboratory of the Hydraulic, Marine and Environmental Department. A high slope flume of 9 meters length, 40 cm width and 60 cm high was used. Up to 5 experiments were running in the flume. Initially the material was placed dry in the bed conforming a 20 cm depth of granular material changing the way of water wave entrance. Always water wave was introduced as a step function with different step size and different flow duration in order to introduce the same volume of water, just enough to saturate all the material in the channel. The flow was filmed with a handycam in order to see the general flow characteristics and with a high speed camera, just in a section, to visualize the flow velocities. Several woody pieces were placed along the channel to simulate the presence of wood and tress in the stream. Each tree was constructed in such a way that each one have a root made by rocks simulating a real root and different mass distribution. The comparison with experiments without wood was clever to understand the influence of woods in the debris flow. The woody debris flow alone creates natural dams along the stream without presence of inciters obstacles along the reach.

  1. Analysis of Pulsed Flow Modification Alternatives, Lower Missouri River, 2005

    USGS Publications Warehouse

    Jacobson, Robert B.

    2008-01-01

    The graphical, tabular, and statistical data presented in this report resulted from analysis of alternative flow regime designs considered by a group of Missouri River managers, stakeholders, and scientists during the summer of 2005. This plenary group was charged with designing a flow regime with increased spring flow pulses to support reproduction and survival of the endangered pallid sturgeon. Environmental flow components extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes. The analysis is based on modeled flow releases from Gavins Point Dam (near Yankton, South Dakota) for nine design alternatives and two reference scenarios; the reference scenarios are the run-of-the-river and the water-control plan implemented in 2004. The alternative designs were developed by the plenary group with the goal of providing pulsed spring flows, while retaining traditional social and economic uses of the river.

  2. Gas flow analysis in melting furnaces

    SciTech Connect

    Kiss, L.I.; Bui, R.T.; Charette, A.; Bourgeois, T.

    1998-12-01

    The flow structure inside round furnaces with various numbers of burners, burner arrangement, and exit conditions has been studied experimentally with the purpose of improving the flow conditions and the resulting heat transfer. Small-scale transparent models were built according to the laws of geometric and dynamic similarity. Various visualization and experimental techniques were applied. The flow pattern in the near-surface regions was visualized by the fluorescent minituft and popcorn techniques; the flow structure in the bulk was analyzed by smoke injection and laser sheet illumination. For the study of the transient effects, high-speed video photography was applied. The effects of the various flow patterns, like axisymmetric and rotational flow, on the magnitude and uniformity of the residence time, as well as on the formation of stagnation zones, were discussed. Conclusions were drawn and have since been applied for the improvement of furnace performance.

  3. Analysis of seawater flow through optical fiber

    NASA Astrophysics Data System (ADS)

    Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia

    2015-04-01

    The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem

  4. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.

  5. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  6. Analysis and control of cavity flow

    NASA Astrophysics Data System (ADS)

    Kourta, A.; Vitale, E.

    2008-07-01

    A flow above a cavity leads to an unsteady separated flow. This configuration exhibits an intense aeroacoustic coupling, where very intense aerodynamic noise can be emitted. Moreover, a majority of tangential flow above a cavity has an oscillatory character, resulting from a strong coupling between the acoustic and the flow dynamics. In the present work, we are interested in characterizing the dynamics and the frequency distribution of a cavity flow. First, the dynamics of the cavity are analyzed and the frequency distribution is established, which is followed by a study of nonlinear interaction. An open loop control using a synthetic jet is then applied in order to reduce noise generation. Finally, by choosing suitable jet parameters a significant noise reduction is obtained.

  7. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  8. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  9. A linearized Euler analysis of unsteady transonic flows in turbomachinery

    SciTech Connect

    Hall, K.C.; Clark, W.S.; Lorence, C.B. . Dept. of Mechanical Engineering and Materials Science)

    1994-07-01

    A computational method for efficiently predicting unsteady transonic flows in two- and three-dimensional cascades is presented. The unsteady flow is modeled using a linearized Euler analysis whereby the unsteady flow field is decomposed into a nonlinear mean flow plus a linear harmonically varying unsteady flow. The equations that govern the perturbation flow, the linearized Euler equations, are linear variable coefficient equations. For transonic flows containing shocks, shock capturing is used to model the shock impulse (the unsteady load due to the harmonic motion of the shock). A conservative Lax-Wendroff scheme is used to obtain a set of linearized finite volume equations that describe the harmonic small disturbance behavior of the flow. Conditions under which such a discretization will correctly predict the shock impulse are investigated. Computational results are presented that demonstrate the accuracy and efficiency of the present method as well as the essential role of unsteady shock impulse loads on the flutter stability of fans.

  10. Multimodel Simulation of Water Flow: Uncertainty Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at the field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic pr...

  11. Analysis of three-dimensional viscous internal flows

    NASA Astrophysics Data System (ADS)

    Ghia, Kirti N.; Ghia, Urmila

    1985-12-01

    The objective of this study was to acquire improved understanding of viscous internal flows related to turbomachinery components by analyzing appropriate model flow problems. Significant effort was directed towards developing basic computational methods which were made available to interested researchers involved in computational fluid dynamics (CFD) research and to users involved in the design of turbomachinery components. Several analyses were developed and included are: an analysis for the fully developed three-dimensional flow in curved ducts, a parabolized Navier-Strokes analysis for developing flow in curved ducts, an unsteady Navier-Strokes analysis for internal and external flows, adaptive grid generation for one and two dimensional viscous flows, analysis of the Neumann problem in generalized orthogonal coordinates, efficient semi-implicit solution techniques consisting of the alternating direction implicit multigrid and strongly implicit multigrid methods, the direct block Gaussian elimination (GBE) method for solution of the Poisson equation for the unsteady Navier-Stokes analysis of incompressible flows. For the flow inside a shear driven cavity, the asymptotic flow in curved ducts and clarity for interpretation of the available corresponding experimental results and have now become benchmark solutions for these problems.

  12. Automated analysis for fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    A new approach for visualizing vector data sets was developed by reducing the original vector field to a set of critical points and their connections, and was applied to fluid flow data sets. The critical point representation allows for considerable reduction in the data complexity. The representations are displayed as surfaces which are much simpler than the original data set, yet retain all the pertinent flow topology information. It is suggested that topological representations may be useful for database comparison.

  13. Finite element analysis of inviscid subsonic boattail flow

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Gerhart, P. M.

    1981-01-01

    A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.

  14. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies.

    PubMed

    Ruzicka, Jaromir Jarda

    2016-09-01

    Automation of reagent based assays, also known as Flow Analysis, is based on sample processing, in which a sample flows towards and through a detector for monitoring of its components. The Achilles heel of this methodology is that the majority of FA techniques use constant continuous forward flow to transport the sample - an approach which continually consumes reagents and generates chemical waste. Therefore the purpose of this report is to highlight recent developments of flow programming that not only save reagents, but also lead by means of advanced sample processing to selective and sensitive assays based on stop flow measurement. Flow programming combined with a novel approach to data harvesting yields a novel approach to single standard calibration, and avoids interference caused by refractive index. Finally, flow programming is useful for sample preparation, such as rapid, extensive sample dilution. The principles are illustrated by selected references to an available online tutorial http://www.flowinjectiontutorial,com/. PMID:27343609

  15. Three-dimensional analysis of partially open butterfly valve flows

    SciTech Connect

    Huang, C.; Kim, R.H.

    1996-09-01

    A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.

  16. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  17. Linear stability analysis of swirling turbulent flows with turbulence models

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Juniper, Matthew

    2013-11-01

    In this paper, we consider the growth of large scale coherent structures in turbulent flows by performing linear stability analysis around a mean flow. Turbulent flows are characterized by fine-scale stochastic perturbations. The momentum transfer caused by these perturbations affects the development of larger structures. Therefore, in a linear stability analysis, it is important to include the perturbations' influence. One way to do this is to include a turbulence model in the stability analysis. This is done in the literature by using eddy viscosity models (EVMs), which are first order turbulence models. We extend this approach by using second order turbulence models, in this case explicit algebraic Reynolds stress models (EARSMs). EARSMs are more versatile than EVMs, in that they can be applied to a wider range of flows, and could also be more accurate. We verify our EARSM-based analysis by applying it to a channel flow and then comparing the results with those from an EVM-based analysis. We then apply the EARSM-based stability analysis to swirling pipe flows and Taylor-Couette flows, which demonstrates the main benefit of EARSM-based analysis. This project is supported by EPSRC and Rolls-Royce through a Dorothy Hodgkin Research Fellowship.

  18. Kinetic analysis of ultrarelativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2012-10-01

    The ultrarelativistic shock layer around the triangle prism is numerically analyzed using the relativistic Boltzmann equation to investigate the dissipation process under two types of ultrarelativistic limits: namely, the Lorentz contraction limit, in which the uniform flow velocity approximates to the speed of light, and the thermally relativistic limit, in which the temperature of the uniform flow approximates to infinity. The relativistic Boltzmann equation is numerically solved using the direct simulation Monte Carlo method. We discuss dissipation process in the flow field by focusing on profiles of the dynamic pressure and heat flux along the stagnation streamline under the Lorentz contraction limit or the thermally relativistic limit. Our numerical results confirm that profiles of the dynamic pressure and heat flux along the stagnation streamline strongly depend on the Lorentz contraction and thermally relativistic effects under their ultrarelativistic limits, as predicted by Chapman-Enskog expansion on the basis of the generic Knudsen number.

  19. Flow analysis of C. elegans swimming

    NASA Astrophysics Data System (ADS)

    Montenegro-Johnson, Thomas; Gagnon, David; Arratia, Paulo; Lauga, Eric

    2015-11-01

    Improved understanding of microscopic swimming has the potential to impact numerous biomedical and industrial processes. A crucial means of analyzing these systems is through experimental observation of flow fields, from which it is important to be able to accurately deduce swimmer physics such as power consumption, drag forces, and efficiency. We examine the swimming of the nematode worm C. elegans, a model system for undulatory micro-propulsion. Using experimental data of swimmer geometry and kinematics, we employ the regularized stokeslet boundary element method to simulate the swimming of this worm outside the regime of slender-body theory. Simulated flow fields are then compared with experimentally extracted values confined to the swimmer beat plane, demonstrating good agreement. We finally address the question of how to estimate three-dimensional flow information from two-dimensional measurements.

  20. Through flow analysis of pumps and fans

    NASA Astrophysics Data System (ADS)

    Neal, A. N.

    1980-08-01

    Incompressible through flow calculations in axial, mixed and centrifugal flow pumps and fans are described. An iterative scheme is used. A simple blade to blade model is applied on the surfaces of revolution defined by the meridional streamlines. This defines the fluid properties and the mean stream surface (S2 surface) for the next meridional solution. A computer program is available allowing the method to be applied for design purposes. APL is used for input and output and FORTRAN IV for computation. A typical calculation requires 30 sec of Univac 1100 time.

  1. Heat transfer analysis for peripheral blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Hattori, Hideharu; Sato, Nobuhiko; Ichige, Yukiko; Kiguchi, Masashi

    2009-06-01

    Some disorders such as circulatory disease and metabolic abnormality cause many problems to peripheral blood flow condition. Therefore, frequent measurement of the blood flow condition is bound to contribute to precaution against those disorders and to control of conditions of the diseases. We propose a convenient means of blood flow volume measurement at peripheral part, such as fingertips. Principle of this measurement is based on heat transfer characteristics of peripheral part containing the blood flow. Transition response analysis of skin surface temperature has provided measurement model of the peripheral blood flow volume. We developed the blood flow measurement system based on that model and evaluated it by using artificial finger under various temperature conditions of ambience and internal fluid. The evaluation results indicated that proposed method could estimate the volume of the fluid regardless of temperature condition of them. Finally we applied our system to real finger testing and have obtained results correlated well with laser Doppler blood flow meter values.

  2. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  3. An Aerodynamic Analysis of a Mixed Flow Turbine

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Civinskas, Kestutis C.

    1994-01-01

    The aerodynamic performance of a high-work Mixed Flow Turbine (MFT) is computed and compared with experimental data. A three dimensional (3-D) viscous analysis is applied to the single stage MFT geometry with a relatively long upstream transition duct. Predicted vane surface static pressures and circumferentially averaged spanwise quantities at stator and rotor exits agree favorably with data. Compared to the results of axisymmetric flow analysis from design intent, the 3-D computation agrees much better especially in the endwall regions where throughflow prediction fails to assess the loss mechanism properly. Potential sources of performance loss such as tip leakage and secondary flows are also properly captured by the analysis.

  4. Theoretical analysis on flow characteristics of melt gear pump

    NASA Astrophysics Data System (ADS)

    Zhao, R. J.; Wang, J. Q.; Kong, F. Y.

    2016-05-01

    The relationship between Geometric parameters and theoretical flow of melt gear pump is revealed, providing a theoretical basis to melt gear pump design. The paper has an analysis of meshing movement of melt gear pump on the condition of four different tooth numbers, stack movement law and flow ripple. The regulation of flow pulsation coefficient is researched by MATLAB software. The modulus formula of melt gear pump is proposed, consistent with actual situation.

  5. Statistical Distribution of Inflation on Lava Flows: Analysis of Flow Surfaces on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Glazel, L. S.; Anderson, S. W.; Stofan, E. R.; Baloga, S.

    2003-01-01

    The surface morphology of a lava flow results from processes that take place during the emplacement of the flow. Certain types of features, such as tumuli, lava rises and lava rise pits, are indicators of flow inflation or endogenous growth of a lava flow. Tumuli in particular have been identified as possible indicators of tube location, indicating that their distribution on the surface of a lava flow is a junction of the internal pathways of lava present during flow emplacement. However, the distribution of tumuli on lava flows has not been examined in a statistically thorough manner. In order to more rigorously examine the distribution of tumuli on a lava flow, we examined a discrete flow lobe with numerous lava rises and tumuli on the 1969 - 1974 Mauna Ulu flow at Kilauea, Hawaii. The lobe is located in the distal portion of the flow below Holei Pali, which is characterized by hummocky pahoehoe flows emplaced from tubes. We chose this flow due to its discrete nature allowing complete mapping of surface morphologies, well-defined boundaries, well-constrained emplacement parameters, and known flow thicknesses. In addition, tube locations for this Mauna Ulu flow were mapped by Holcomb (1976) during flow emplacement. We also examine the distribution of tumuli on the distal portion of the hummocky Thrainsskjoldur flow field provided by Rossi and Gudmundsson (1996). Analysis of the Mauna Ulu and Thrainsskjoldur flow lobes and the availability of high-resolution MOC images motivated us to look for possible tumuli-dominated flow lobes on the surface of Mars. We identified a MOC image of a lava flow south of Elysium Mons with features morphologically similar to tumuli. The flow is characterized by raised elliptical to circular mounds, some with axial cracks, that are similar in size to the tumuli measured on Earth. One potential avenue of determining whether they are tumuli is to look at the spatial distribution to see if any patterns similar to those of tumuli

  6. A theoretical analysis of vertical flow equilibrium

    SciTech Connect

    Yortsos, Y.C.

    1992-01-01

    The assumption of Vertical Flow Equilibrium (VFE) and of parallel flow conditions, in general, is often applied to the modeling of flow and displacement in natural porous media. However, the methodology for the development of the various models is rather intuitive, and no rigorous method is currently available. In this paper, we develop an asymptotic theory using as parameter the variable R{sub L} = (L/H){radical}(k{sub V})/(k{sub H}). It is rigorously shown that present models represent the leading order term of an asymptotic expansion with respect to 1/R{sub L}{sup 2}. Although this was numerically suspected, it is the first time that is is theoretically proved. Based on the general formulation, a series of models are subsequently obtained. In the absence of strong gravity effects, they generalize previous works by Zapata and Lake (1981), Yokoyama and Lake (1981) and Lake and Hirasaki (1981), on immiscible and miscible displacements. In the limit of gravity-segregated flow, we prove conditions for the fluids to be segregated and derive the Dupuit and Dietz (1953) approximations. Finally, we also discuss effects of capillarity and transverse dispersion.

  7. Quantitative transverse flow measurement using OCT speckle decorrelation analysis

    PubMed Central

    Liu, Xuan; Huang, Yong; Ramella-Roman, Jessica C.; Mathews, Scott A.; Kang, Jin U.

    2014-01-01

    We propose an inter-Ascan speckle decorrelation based method that can quantitatively assess blood flow normal to the direction of the OCT imaging beam. To validate this method, we performed a systematic study using both phantom and in vivo animal models. Results show that our speckle analysis method can accurately extract transverse flow speed with high spatial and temporal resolution. PMID:23455305

  8. Substance Flow Analysis of Mercury in China

    NASA Astrophysics Data System (ADS)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding

  9. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    In the last progress report (Feb. 1988) some results were presented for a parametric analysis on the vibrational power flow between two coupled plate structures using the mobility power flow approach. The results reported then were for changes in the structural parameters of the two plates, but with the two plates identical in their structural characteristics. Herein, limitation is removed. The vibrational power input and output are evaluated for different values of the structural damping loss factor for the source and receiver plates. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. The results obtained from the mobility power flow approach are compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between the SEA results and the mobility power flow results. Furthermore, the benefits derived from using the mobility power flow approach are examined.

  10. Analysis of Fluid Flow over a Surface

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L. (Inventor)

    2013-01-01

    A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.

  11. Covariant Lyapunov analysis of chaotic Kolmogorov flows.

    PubMed

    Inubushi, Masanobu; Kobayashi, Miki U; Takehiro, Shin-ichi; Yamada, Michio

    2012-01-01

    Hyperbolicity is an important concept in dynamical system theory; however, we know little about the hyperbolicity of concrete physical systems including fluid motions governed by the Navier-Stokes equations. Here, we study numerically the hyperbolicity of the Navier-Stokes equation on a two-dimensional torus (Kolmogorov flows) using the method of covariant Lyapunov vectors developed by Ginelli et al. [Phys. Rev. Lett. 99, 130601 (2007)]. We calculate the angle between the local stable and unstable manifolds along an orbit of chaotic solution to evaluate the hyperbolicity. We find that the attractor of chaotic Kolmogorov flows is hyperbolic at small Reynolds numbers, but that smaller angles between the local stable and unstable manifolds are observed at larger Reynolds numbers, and the attractor appears to be nonhyperbolic at a certain Reynolds numbers. Also, we observed some relations between these hyperbolic properties and physical properties such as time correlation of the vorticity and the energy dissipation rate. PMID:22400681

  12. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  13. Long-range correlation analysis of economic news flow intensity

    NASA Astrophysics Data System (ADS)

    Sidorov, S. P.; Faizliev, A. R.; Balash, V. A.; Korobov, E. A.

    2016-02-01

    The goal of the paper is to examine the auto-correlation properties for time series of the news flow intensity using different methods, such as the fluctuation analysis, the detrended fluctuation analysis and the detrending moving average analysis. Empirical findings for news analytics data show the presence of long-range correlations for the time series of news intensity data.

  14. CFD analysis of coverplate receiver flow

    SciTech Connect

    Popp, O.; Zimmermann, H.; Kutz, J.

    1998-01-01

    The flow field in a preswirled cooling air supply to a turbine rotor has been investigated by means of CFD simulations. Coefficients for system efficiency are derived. The influences of various geometric parameters for different configurations have been correlated with the help of appropriate coefficients. For some of the most important geometric parameters of the coverplate receiver, design recommendations have been made. For the preswirl nozzles, the potential of efficiency improvement by contour design is highlighted.

  15. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    NASA Astrophysics Data System (ADS)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  16. Nitrogen Flow Analysis in Huizhou, South China

    NASA Astrophysics Data System (ADS)

    Ma, Xiaobo; Wang, Zhaoyin; Yin, Zegao; Koenig, Albert

    2008-03-01

    Eutrophication due to uncontrolled discharges of nitrogen and phosphorus has become a serious pollution problem in many Chinese rivers. This article analyzes the nitrogen flow in Huizhou City in the East River watershed in south China. The material accounting method was applied to investigate the nitrogen flows related to human activities, which consist of the natural and anthropogenic systems. In Huizhou City, the nonpoint source pollution was quantified by the export coefficient method and the domestic discharge was estimated as the product of per capita nitrogen contribution and population. This research was conducted based on statistical information and field data from 1998 in the Huizhou City. The results indicated that the major nitrogen flows in this area were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal manure volatilization, and processes related to burning and other emissions. In 1998, about 40% of the nitrogen was retained in the system and could result in potential environmental problems. Nitrogen export was mainly by rivers, which account for about 57% of the total nitrogen exported. Comparisons made between the East River and the Danube and Yangtze Rivers show that the unit area nitrogen export was of the same magnitude and the per capita nitrogen export was comparable.

  17. Asymptotic and numerical analysis of electrohydrodynamic flows of dielectric liquid.

    PubMed

    Suh, Y K; Baek, K H; Cho, D S

    2013-08-01

    We perform an asymptotic analysis of electrohydrodynamic (EHD) flow of nonpolar liquid subjected to an external, nonuniform electric field. The domain of interest covers the bulk as well as the thin dissociation layers (DSLs) near the electrodes. Outer (i.e., bulk) equations for the ion transport in hierarchical order of perturbation parameters can be expressed in linear form, whereas the inner (i.e., DSL) equations take a nonlinear form. We derive a simple formula in terms of various parameters which can be used to estimate the relative importance of the DSL-driven flow compared with the bulk-driven flow. EHD flow over a pair of cylindrical electrodes is then solved asymptotically and numerically. It is found that in large geometric scale and high ion concentration the EHD flow is dominated by the bulk-charge-induced flow. As the scale and concentration are decreased, the DSL-driven slip velocity increases and the resultant flow tends to dominate the domain and finally leads to flow reversal. We also conduct a flow-visualization experiment to verify the analysis and attain good agreement between the two results with parameter tuning. We finally show, based on the comparison of experimental and numerical solutions, that the rate of free-ion generation (dissociation) should be less than the one predicted from the existing formula. PMID:24032920

  18. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  19. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  20. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  1. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.

  2. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Astrophysics Data System (ADS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-06-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  3. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  4. Spherical harmonic analysis of steady photospheric flows

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1987-01-01

    A technique is presented in which full disk Doppler velocity measurements are analyzed using spherical harmonic functions to determine the characteristics of the spectrum of spherical harmonic modes and the nature of steady photospheric flows. Synthetic data are constructed in order to test the technique. In spite of the mode mixing due to the lack of information about the motions on the backside of the sun, solar rotation and differential rotation can be accurately measured and monitored for secular changes, and meridional circulations with small amplitudes can be measured. Furthermore, limb shift measurements can be accurately obtained, and supergranules can be fully resolved and separated from giant cells by their spatial characteristics.

  5. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    NASA Astrophysics Data System (ADS)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  6. Stochastic uncertainty analysis for unconfined flow systems

    USGS Publications Warehouse

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  7. Potential Flow Analysis of Dynamic Ground Effect

    NASA Technical Reports Server (NTRS)

    Feifel, W. M.

    1999-01-01

    Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length. Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley 14x22 ft wind tunnel. Northup-Grumman is conducting time accurate CFD (Computational Fluid Dynamics) Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow methodology which are thought to provide much needed insight in, physics of this very complex problem. The present report summarizes the results of these potential flow studies.

  8. Critical assessment of automated flow cytometry data analysis techniques.

    PubMed

    Aghaeepour, Nima; Finak, Greg; Hoos, Holger; Mosmann, Tim R; Brinkman, Ryan; Gottardo, Raphael; Scheuermann, Richard H

    2013-03-01

    Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks: (i) mammalian cell population identification, to determine whether automated algorithms can reproduce expert manual gating and (ii) sample classification, to determine whether analysis pipelines can identify characteristics that correlate with external variables (such as clinical outcome). This analysis presents the results of the first FlowCAP challenges. Several methods performed well as compared to manual gating or external variables using statistical performance measures, which suggests that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis. PMID:23396282

  9. Web-Based Analysis and Publication of Flow Cytometry Experiments

    PubMed Central

    Kotecha, Nikesh; Krutzik, Peter O.; Irish, Jonathan M.

    2014-01-01

    Cytobank is a web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permissions from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at www.cytobank.org PMID:20578106

  10. Navier-Stokes Flow Field Analysis of Compressible Flow in a Pressure Relief Valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K.

    1993-01-01

    The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface.

  11. Navier-Stokes flow field analysis of compressible flow in a pressure relief valve

    NASA Astrophysics Data System (ADS)

    Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K.

    1993-07-01

    The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface.

  12. Bi-global Stability Analysis of Compressible Open Cavity Flows

    NASA Astrophysics Data System (ADS)

    Sun, Yiyang; Taira, Kunihiko; Cattafesta, Louis; Ukeiley, Lawrence

    2015-11-01

    The effect of compressibility on stability characteristics of rectangular open cavity flows is numerically examined. In our earlier work with two-dimensional direct numerical simulation of open cavity flows, we found that increasing Mach number destabilizes the flow in the subsonic regime but stabilizes the flow in the transonic regime. To further examine the compressibility effect, linear bi-global stability analysis is performed over the same range of Mach numbers to investigate the influence of three-dimensional instabilities in flows over open cavities with length-to-depth ratios of 2 and 6. We identify dominant eigenmodes for varied Mach numbers and spanwise wavelengths with respect to two-dimensional stable and unstable steady states. Over a range of spanwise wavelengths, we reveal the growth/damp rates and frequencies of the dominant global modes. Based on the insights from the present analysis, we compare our findings from global stability analysis with our companion three-dimensional flow control experiments aimed at reducing pressure fluctuation caused by cavity flow unsteadiness. This work was supported by the US Air Force Office of Scientific Research (Grant FA9550-13-1-0091).

  13. CFD modeling of turbulent duct flows for coolant channel analysis

    NASA Astrophysics Data System (ADS)

    Ungewitter, Ronald J.; Chan, Daniel C.

    1993-07-01

    The design of modern liquid rocket engines requires the analysis of chamber coolant channels to maximize the heat transfer while minimizing the coolant flow. Coolant channels often do not remain at a constant cross section or at uniform curvature. New designs require higher aspect ratio coolant channels than previously used. To broaden the analysis capability and to complement standard analysis tools an investigation on the accuracy of CFD predictions for coolant channel flow has been initiated. Validation of CFD capabilities for coolant channel analysis will enhance the capabilities for optimizing design parameters without resorting to extensive experimental testing. The eventual goal is to use CFD to determine the flow fields of unique coolant channel designs and therefore determine critical heat transfer coefficients. In this presentation the accuracy of a particular CFD code is evaluated for turbulent flows. The first part of the presentation is a comparison of numerical results to existing cold flow data for square curved ducts (NASA CR-3367, 'Measurements of Laminar and Turbulent Flow in a Curved Duct with Thin Inlet Boundary Layers'). The results of this comparison show good agreement with the relatively coarse experimental data. The second part of the presentation compares two cases of higher aspect ratio channels (AR=2.5,10) to show changes in axial and secondary flow strength. These cases match experimental work presently in progress and will be used for future validation. The comparison shows increased secondary flow strength of the higher aspect ratio case due to the change in radius of curvature. The presentation includes a test case with a heated wall to demonstrate the program's capability. The presentation concludes with an outline of the procedure used to validate the CFD code for future design analysis.

  14. Power flow analysis of an L-shaped plate structure

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  15. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  16. Numerical analysis of 3-D potential flow in centrifugal turbomachines

    NASA Astrophysics Data System (ADS)

    Daiguji, H.

    1983-09-01

    A numerical method is developed for analysing a three-dimensional steady incompressible potential flow through an impeller in centrifugal turbomachines. The method is the same as the previous method which was developed for the axial flow turbomachines, except for some treatments in the downstream region. In order to clarify the validity and limitation of the method, a comparison with the existing experimental data and numerical results is made for radial flow compressor impellers. The calculated blade surface pressure distributions almost coincide with the quasi-3-D calculation by Krimerman and Adler (1978), but are different partly from the quasi-3-D calculation using one meridional flow analysis. It is suggested from this comparison that the flow through an impeller with high efficiency near the design point can be predicted by this fully 3-D numerical method.

  17. Anharmonic analysis of arterial blood pressure and flow pulses.

    PubMed

    Voltairas, P A; Fotiadis, D I; Massalas, C V; Michalis, L K

    2005-07-01

    Fourier analysis is usually employed for the computation of blood flow in arteries. Although the orthogonality of Fourier eigenfunctions guarantees the accurate mathematical modeling of the blood pressure and flow waveforms, the physics behind this objective function is frequently missing. We propose a new method to account for the blood pressure and flow, single-cycle (systole-diastole) waveforms. It is based on the one dimensional hydrodynamic mass and momentum conservation equations for viscous flow. The similarity of the linear problem, under discussion, with related transmission line theory in electromagnetic wave propagation, permits expansion in anharmonic, non-separable eigenfunctions. In some cases one term in the expansion is adequate to fit the main peak of the observed waveforms. Analytical formulas are derived for the dependence of the pressure and flow main peaks on whole blood viscosity and distance from the heart, which interpret observations related to hypertension. PMID:15922753

  18. Development of a three-dimensional turbulent duct flow analysis

    NASA Technical Reports Server (NTRS)

    Eiseman, P. R.; Levy, R.; Mcdonald, H.; Briley, W. R.

    1978-01-01

    A method for computing three-dimensional turbulent subsonic flow in curved ducts is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The derivation is coordinate invariant, and the resulting equations are expressed in terms of tensors. General tube-like coordinates were developed for a general class of geometries applicable to many internal flow problems. The coordinates are then particularized to pipes having superelliptic cross sections whose shape can vary continuously between a circle and a near rectangle. The analysis is applied to a series of relevant aerodynamic problems including transition from nearly square to round pipes and flow through a pipe with an S-shaped bend.

  19. Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.

    2016-01-01

    The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.

  20. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  1. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  2. Precipitator inlet particulate distribution flow analysis

    SciTech Connect

    LaRose, J.A.; Averill, A.

    1994-12-31

    The B and W Rothemuhle precipitators located at PacifiCorp`s Wyodak Generating Station in Gillette, Wyoming have, for the past two years, been experiencing discharge wire breakage. The breakage is due to corrosion of the wires: however, the exact cause of the corrosion is unknown. One aspect thought to contribute to the problem is an unbalance of ash loading among the four precipitators. Plant operation has revealed that the ash loading to precipitator C appears to be the heaviest of the four casing, and also appears to have the most severe corrosion. Data from field measurements showed that the gas flows to the four precipitators are fairly uniform, within {+-}9% of the average. The ash loading data showed a large maldistribution among the precipitators. Precipitator C receives 60% more ash than the next heaviest loaded precipitator. A numerical model was created which showed the same results. The model was then utilized to determine design modifications to the existing flue and turning vanes to improve the ash loading distribution. The resulting design was predicted to improve the ash loading to all the precipitators, within {+-}10% of the average.

  3. Automated High-Dimensional Flow Cytometric Data Analysis

    NASA Astrophysics Data System (ADS)

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I.; Maier, Lisa; Baecher-Allan, Clare; McLachlan, Geoffrey; Tamayo, Pablo; Hafler, David; de Jager, Philip; Mesirov, Jill

    Flow cytometry is widely used for single cell interrogation of surface and intracellular protein expression by measuring fluorescence intensity of fluorophore-conjugated reagents. We focus on the recently developed procedure of Pyne et al. (2009, Proceedings of the National Academy of Sciences USA 106, 8519-8524) for automated high- dimensional flow cytometric analysis called FLAME (FLow analysis with Automated Multivariate Estimation). It introduced novel finite mixture models of heavy-tailed and asymmetric distributions to identify and model cell populations in a flow cytometric sample. This approach robustly addresses the complexities of flow data without the need for transformation or projection to lower dimensions. It also addresses the critical task of matching cell populations across samples that enables downstream analysis. It thus facilitates application of flow cytometry to new biological and clinical problems. To facilitate pipelining with standard bioinformatic applications such as high-dimensional visualization, subject classification or outcome prediction, FLAME has been incorporated with the GenePattern package of the Broad Institute. Thereby analysis of flow data can be approached similarly as other genomic platforms. We also consider some new work that proposes a rigorous and robust solution to the registration problem by a multi-level approach that allows us to model and register cell populations simultaneously across a cohort of high-dimensional flow samples. This new approach is called JCM (Joint Clustering and Matching). It enables direct and rigorous comparisons across different time points or phenotypes in a complex biological study as well as for classification of new patient samples in a more clinical setting.

  4. POD analysis of PIV measurements in complex near wake flows

    NASA Astrophysics Data System (ADS)

    Al-Garni, A. M.; Bernal, L. P.

    2003-11-01

    Proper Orthogonal Decomposition analysis of PIV measurements is used to study the turbulent flow structure in the near wake of bluff bodies. Several body geometries are considered including two-dimensional cylindrical shapes, rounded-nose bluff bodies and typical road vehicle geometries. The main goal of the study is to determine the more energetic POD modes and associated unsteady flow, and the underlying near wake dynamics. We briefly review the results of POD analysis of PIV measurements in two-dimensional geometries. We show that in more complicated flow fields, different POD modes capture the turbulent energy in different regions of the wake. For example, in the flow over a pickup truck, modes 1 and 2 capture the turbulent structure in the underbody shear layer, while mode 4 captures the turbulent structure of the flow over the bed. This result has significant implications for flow control applications. The POD methodology is used to identify generic unsteady flow structures in the near wake. The dominant modes are an oscillation of the length of the recirculation region behind the body (breathing mode) and a lateral oscillation of the wake (flapping mode). In some cases a vortex shedding mode reminiscent of the Karman-Roshko structure in circular cylinders is also observed. Efforts to determine the dynamics of the experimentally measured POD modes are discussed.

  5. Precessing rotating flows with additional shear: Stability analysis

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Ω0 ) and the additional “precessing” Coriolis force (with angular velocity -ɛΩ0 ), normal to it. A “weak” shear flow, with rate 2ɛ of the same order of the Poincaré “small” ratio ɛ , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler’s equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov’s [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré’s [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small ɛ . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet’s theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small ɛ , but significant differences are obtained regarding growth rates and widths of instability bands, if larger ɛ values, up to 0.2, are considered. Finally, both flow cases

  6. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  7. Automated high-dimensional flow cytometric data analysis

    PubMed Central

    Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I; Maier, Lisa M.; Baecher-Allan, Clare; McLachlan, Geoffrey J.; Tamayo, Pablo; Hafler, David A.; De Jager, Philip L.; Mesirov, Jill P.

    2009-01-01

    Flow cytometric analysis allows rapid single cell interrogation of surface and intracellular determinants by measuring fluorescence intensity of fluorophore-conjugated reagents. The availability of new platforms, allowing detection of increasing numbers of cell surface markers, has challenged the traditional technique of identifying cell populations by manual gating and resulted in a growing need for the development of automated, high-dimensional analytical methods. We present a direct multivariate finite mixture modeling approach, using skew and heavy-tailed distributions, to address the complexities of flow cytometric analysis and to deal with high-dimensional cytometric data without the need for projection or transformation. We demonstrate its ability to detect rare populations, to model robustly in the presence of outliers and skew, and to perform the critical task of matching cell populations across samples that enables downstream analysis. This advance will facilitate the application of flow cytometry to new, complex biological and clinical problems. PMID:19443687

  8. CRITICAL ASSESSMENT OF AUTOMATED FLOW CYTOMETRY DATA ANALYSIS TECHNIQUES

    PubMed Central

    Aghaeepour, Nima; Finak, Greg; Hoos, Holger; Mosmann, Tim R.; Gottardo, Raphael; Brinkman, Ryan; Scheuermann, Richard H.

    2013-01-01

    Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks – mammalian cell population identification to determine if automated algorithms can reproduce expert manual gating, and sample classification to determine if analysis pipelines can identify characteristics that correlate with external variables (e.g., clinical outcome). This analysis presents the results of the first of these challenges. Several methods performed well compared to manual gating or external variables using statistical performance measures, suggesting that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis. PMID:23396282

  9. Asymmetric tensor analysis for flow visualization.

    PubMed

    Zhang, Eugene; Yeh, Harry; Lin, Zhongzang; Laramee, Robert S

    2009-01-01

    The gradient of a velocity vector field is an asymmetric tensor field which can provide critical insight that is difficult to infer from traditional trajectory-based vector field visualization techniques. We describe the structures in the eigenvalue and eigenvector fields of the gradient tensor and how these structures can be used to infer the behaviors of the velocity field. To illustrate the structures in asymmetric tensor fields, we introduce the notions of eigenvalue and eigenvector manifolds. These concepts afford a number of theoretical results that clarify the connections between symmetric and antisymmetric components in tensor fields. In addition, these manifolds naturally lead to partitions of tensor fields, which we use to design effective visualization strategies. Both eigenvalue manifold and eigenvector manifold are supported by a tensor reparameterization with physical meaning. This allows us to relate our tensor analysis to physical quantities such as rotation, angular deformation, and dilation, which provide physical interpretation of our tensor-driven vector field analysis in the context of fluid mechanics. To demonstrate the utility of our approach, we have applied our visualization techniques and interpretation to the study of the Sullivan Vortex as well as computational fluid dynamics simulation data. PMID:19008559

  10. Adjoint sensitivity analysis of hydrodynamic stability in cyclonic flows

    NASA Astrophysics Data System (ADS)

    Guzman Inigo, Juan; Juniper, Matthew

    2015-11-01

    Cyclonic separators are used in a variety of industries to efficiently separate mixtures of fluid and solid phases by means of centrifugal forces and gravity. In certain circumstances, the vortex core of cyclonic flows is known to precess due to the instability of the flow, which leads to performance reductions. We aim to characterize the unsteadiness using linear stability analysis of the Reynolds Averaged Navier-Stokes (RANS) equations in a global framework. The system of equations, including the turbulence model, is linearised to obtain an eigenvalue problem. Unstable modes corresponding to the dynamics of the large structures of the turbulent flow are extracted. The analysis shows that the most unstable mode is a helical motion which develops around the axis of the flow. This result is in good agreement with LES and experimental analysis, suggesting the validity of the approach. Finally, an adjoint-based sensitivity analysis is performed to determine the regions of the flow that, when altered, have most influence on the frequency and growth-rate of the unstable eigenvalues.

  11. Power flow analysis of two coupled plates with arbitrary characteristics

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    The limitation of keeping two plates identical is removed and the vibrational power input and output are evaluated for different area ratios, plate thickness ratios, and for different values of the structural damping loss factor for the source plate (plate with excitation) and the receiver plate. In performing this parametric analysis, the source plate characteristics are kept constant. The purpose of this parametric analysis is to be able to determine the most critical parameters that influence the flow of vibrational power from the source plate to the receiver plate. In the case of the structural damping parametric analysis, the influence of changes in the source plate damping is also investigated. As was done previously, results obtained from the mobility power flow approach will be compared to results obtained using a statistical energy analysis (SEA) approach. The significance of the power flow results are discussed together with a discussion and a comparison between SEA results and the mobility power flow results. Furthermore, the benefits that can be derived from using the mobility power flow approach, are also examined.

  12. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  13. Analysis of homogeneous turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Leonard, A. D.; Hill, J. C.; Mahalingam, S.; Ferziger, J. H.

    1988-01-01

    Full turbulence simulations at low Reynolds numbers were made for the single-step, irreversible, bimolecular reaction between non-premixed reactants in isochoric, decaying homogeneous turbulence. Various initial conditions for the scalar field were used in the simulations to control the initial scalar dissipation length scale, and simulations were also made for temperature-dependent reaction rates and for non-stoichiometric and unequal diffusivity conditions. Joint probability density functions (pdf's), conditional pdf's, and various statistical quantities appearing in the moment equations were computed. Preliminary analysis of the results indicates that compressive strain-rate correlates better than other dynamical quantities with local reaction rate, and the locations of peak reaction rates seem to be insensitive to the scalar field initial conditions.

  14. Analysis of the stochastic excitability in the flow chemical reactor

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  15. Solar Subsurface Flows derived with Ring-Diagram Analysis

    NASA Astrophysics Data System (ADS)

    Komm, R.; Howe, R.; Gonzalez Hernandez, I.; Hill, F.; Haber, D. A.

    2010-12-01

    Local helioseismology makes it possible to map the horizontal flows in the outer convection zone of the Sun. For the ring-diagram analysis, we start from full-disk Doppler velocity images of the Sun and track a region at about the surface rotation rate for a period of a day. Each tracked data cube of velocity is then Fourier transformed. The resulting 3-D power spectrum shows structures that correspond to the acoustic waves. These structures appear as rings in a 2-D plane at a given temporal frequency. Since acoustic waves are advected by subsurface flows, the velocity of these horizontal flows can be determined from the offset of the ring centers. Using ring-diagram analysis of Doppler images of the Sun obtained with the ground-based Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory spacecraft (SOHO), we are studying, for example, the large-scale subsurface flows (E-W rotation and N-S meridional flow) and their variation with the solar cycle of magnetic activity. We are also studying subsurface flows associated with active regions on the Sun focusing on their evolution (emergence and decay). In addition, we have started to analyze data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) spacecraft. We will present some recent results.

  16. Image Cross-Correlation Analysis of Time Varying Flows.

    PubMed

    Marquezin, Cassia A; Ceffa, Nicolò G; Cotelli, Franco; Collini, Maddalena; Sironi, Laura; Chirico, Giuseppe

    2016-07-19

    In vivo studies of blood circulation pathologies have great medical relevance and need methods for the characterization of time varying flows at high spatial and time resolution in small animal models. We test here the efficacy of the combination of image correlation techniques and single plane illumination microscopy (SPIM) in characterizing time varying flows in vitro and in vivo. As indicated by numerical simulations and by in vitro experiments on straight capillaries, the complex analytical form of the cross-correlation function for SPIM detection can be simplified, in conditions of interest for hemodynamics, to a superposition of Gaussian components, easily amenable to the analysis of variable flows. The possibility to select a wide field of view with a good spatial resolution along the collection optical axis and to compute the cross-correlation between regions of interest at varying distances on a single time stack of images allows one to single out periodic flow components from spurious peaks on the cross-correlation functions and to infer the duration of each flow component. We apply this cross-correlation analysis to the blood flow in Zebrafish embryos at 4 days after fertilization, measuring the average speed and the duration of the systolic and diastolic phases. PMID:27348197

  17. River flow fluctuation analysis: Effect of watershed area

    NASA Astrophysics Data System (ADS)

    Hirpa, Feyera A.; Gebremichael, Mekonnen; Over, Thomas M.

    2010-12-01

    This study presents the results of a detailed river flow fluctuation analysis on daily records from 14 stations in the Flint River Basin in Georgia in the southeastern United States with special focus on the effect of watershed area on long memory of river flow fluctuations. The areas of the watersheds draining to the stations range from 23 to 19,606 km2. The climatic and seasonal trends are removed using the detrended fluctuation analysis technique. Results show that (1) river flow fluctuations have two distinct scaling regimes, and the scaling break is delayed for large watershed areas; (2) large watersheds have more persistent river flow fluctuations and stronger long memory (i.e., for lag times beyond the scale break) than small watersheds do; (3) the long memory of river flow fluctuations does not come from the long memory of precipitation; (4) a linear reservoir unit hydrograph transfer function approach does not capture correctly the basin processes that convert short-memory precipitation to long-memory streamflow; and (5) the degree of multifractality of river flow fluctuations decreases with increasing watershed area. The results clearly indicate that watershed area is an important factor in the long-memory studies of streamflow such as streamflow prediction.

  18. Evaluation of uncertainties due to hydrogeological modeling and groundwater flow analysis: Steady flow, transient flow, and thermal studies

    SciTech Connect

    Doughty, Christine; Karasaki, Kenzi

    2002-12-11

    Starting with regional geographic, geologic, surface and subsurface hydrologic, and geophysical data for the Tono area in Gifu, Japan, we develop an effective continuum model to simulate subsurface flow and transport in a 4 km by 6 km by 3 km thick fractured granite rock mass overlain by sedimentary layers. Individual fractures are not modeled explicitly. Rather, continuum permeability and porosity distributions are assigned stochastically, based on well-test data and fracture density measurements. Lithologic layering and one major fault, the Tsukiyoshi Fault, are assigned deterministically. We conduct three different studies: (1) the so-called base case, in which the model simulates the steady-state groundwater flow through the site, and then stream trace analysis is used to calculate travel times to the model boundary from specified release points; (2) simulations of transient flow during long term pump tests (LTPT) using the base-case model; and (3) thermal studies in which coupled heat flow and fluid flow are modeled, to examine the effects of the geothermal gradient on groundwater flow. The base-case study indicates that the choice of open or closed lateral boundaries has a strong influence on the regional groundwater flow patterns produced by the models, but no field data exist that can be used to determine which boundary conditions are more realistic. The LTPT study cannot be used to distinguish between the alternative boundary conditions, because the pumping rate is too small to produce an analyzable pressure response at the model boundaries. In contrast, the thermal study shows that the temperature distributions produced by the open and closed models differ greatly. Comparison with borehole temperature data may be used to eliminate the closed model from further consideration.

  19. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  20. Spherical harmonic analysis of earth's conductive heat flow

    NASA Astrophysics Data System (ADS)

    Hamza, V. M.; Cardoso, R. R.; Ponte Neto, C. F.

    2008-04-01

    A reappraisal of the international heat flow database has been carried out and the corrected data set was employed in spherical harmonic analysis of the conductive component of global heat flow. Procedures used prior to harmonic analysis include analysis of the heat flow data and determination of representative mean values for a set of discretized area elements of the surface of the earth. Estimated heat flow values were assigned to area elements for which experimental data are not available. However, no corrections were made to account for the hypothetical effects of regional-scale convection heat transfer in areas of oceanic crust. New sets of coefficients for 12° spherical harmonic expansion were calculated on the basis of the revised and homogenized data set. Maps derived on the basis of these coefficients reveal several new features in the global heat flow distribution. The magnitudes of heat flow anomalies of the ocean ridge segments are found to have mean values of less than 150 mW/m2. Also, the mean global heat flow values for the raw and binned data are found to fall in the range of 56-67 mW/m2, down by nearly 25% compared to the previous estimate of 1993, but similar to earlier assessments based on raw data alone. To improve the spatial resolution of the heat flow anomalies, the spherical harmonic expansions have been extended to higher degrees. Maps derived using coefficients for 36° harmonic expansion have allowed identification of new features in regional heat flow fields of several oceanic and continental segments. For example, lateral extensions of heat flow anomalies of active spreading centers have been outlined with better resolution than was possible in earlier studies. Also, the characteristics of heat flow variations in oceanic crust away from ridge systems are found to be typical of conductive cooling of the lithosphere, there being little need to invoke the hypothesis of unconfined hydrothermal circulation on regional scales. Calculations

  1. Flow Analysis of X-34 Main Propulsion System Feedlines

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Garcia, Robert

    2000-01-01

    The X-34 Main Propulsion System (MPS) configuration includes the liquid oxygen (LOX) and rocket propellant #1 (RP-1) feedlines. The flow analyses of these feedlines were performed and documented in previous studies. These analyses predicted a relatively low inlet distortion and nearly even flow split at the engine interface. The new design for these MPS feedlines has been recommended recently. The new configuration includes a tighter radius in the RP-1 feedline and a neck-down section between the gimbals. Conversely, the LOX feedline is very similar to the previous design. There were concerns that this new RP-1 configuration might generate a greater flow distortion at the engine interface than the original design. To resolve this issue, a Computation Fluid Dynamics (CFD) analysis was conducted to determine the flow Field in the new RP-1 feedlines.

  2. Production flow analysis: a tool for designing a lean hospital.

    PubMed

    Karvonen, Sauli; Korvenranta, Heikki; Paatela, Mikael; Seppälä, Timo

    2007-01-01

    Production flow analysis (PFA) was used in the planning process for a new acute care hospital. The PFA demonstrated that functional organisation--for example, with centralised medical imaging-- generates a lot of back and forth patient transfers between functional units. This to-and-fro patient flow increases lead times of care processes and also exposes the patients to unnecessary complications. PFA produced an ideal patient flow model and layout model for the acute care hospital. Thus, PFA revealed information for use in proximity ranking of different units of the hospital; the planning team then decided which units should be placed next to each other. Medical imaging should be essentially ubiquitous, to achieve simple, high-velocity patient flow. Thus, a modern decentralized layout model for medical imaging was planned. Furthermore, PFA enables optimizing transfer routes for patients and also, e.g., lift capacity in the hospital. PMID:17621771

  3. FLDA: Latent Dirichlet Allocation Based Unsteady Flow Analysis.

    PubMed

    Hong, Fan; Lai, Chufan; Guo, Hanqi; Shen, Enya; Yuan, Xiaoru; Li, Sikun

    2014-12-01

    In this paper, we present a novel feature extraction approach called FLDA for unsteady flow fields based on Latent Dirichlet allocation (LDA) model. Analogous to topic modeling in text analysis, in our approach, pathlines and features in a given flow field are defined as documents and words respectively. Flow topics are then extracted based on Latent Dirichlet allocation. Different from other feature extraction methods, our approach clusters pathlines with probabilistic assignment, and aggregates features to meaningful topics at the same time. We build a prototype system to support exploration of unsteady flow field with our proposed LDA-based method. Interactive techniques are also developed to explore the extracted topics and to gain insight from the data. We conduct case studies to demonstrate the effectiveness of our proposed approach. PMID:26356968

  4. Lagrangian analysis of fluid transport in empirical vortex ring flows

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn C.; Dabiri, John O.; Marsden, Jerrold E.

    2006-04-01

    In this paper we apply dynamical systems analyses and computational tools to fluid transport in empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and detrainment that are consistent with previous theoretical and numerical studies. In addition, the vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the framework of dynamical systems to elucidate similar lobe dynamics in a naturally occurring biological flow. For the mechanically generated rings, a comparison of the net entrainment rate based on the present methods with a previous Eulerian analysis shows good correspondence. However, the current Lagrangian framework is more effective than previous analyses in capturing the transport geometry, especially when the flow becomes more unsteady, as in the case of the free-swimming jellyfish. Extensions of these results to more complex flow geometries is suggested.

  5. Finite element analysis of aeroacoustic jet-flap flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1977-01-01

    A computational analysis was performed on the steady, turbulent aerodynamic flowfields associated with a jet-blown flap. For regions devoid of flow separation, a parabolic approximation to the governing time-averaged Navier-Stokes equations was applied. Numerical results are presented for the symmetry plane flow of a slot-nozzle planar jet flap geometry, including prediction of flowfield evolution within the secondary mixing region immediately downstream of the trailing edge. Using a two equation turbulence kinetic energy closure model, rapid generation and decay of large spatial gradients in mean and correlated fluctuating velocity components within the immediate wake region were predicted. Modifications to the turbulent flow structure, as induced by porous surface treatment of the flap, were evaluated. The recirculating flow within a representative discrete slot in the surface was evaluated, using the two dimensional, time-averaged Navier-Stokes equations.

  6. Fluid flow systems analysis to save energy

    SciTech Connect

    Parekh, P.S.

    1999-07-01

    Industrial processes use rotating equipment (e.g.; pump, fan, blower, centrifugal compressor, positive displacement compressor) and pipe (or duct) to move fluid from point A to B, with many processes using electric motors as the prime mover. Most of the systems in the industry are over-designed to meet a peak load demand which might occur over a small fraction of the time or to satisfy a higher pressure demanded by a much smaller user in the same process. The system over-design will result in a selection of larger but inefficient rotating equipment and electric motor system. A careful life cycle cost and economic evaluation must be undertaken to ensure that the process audit, reengineering and equipment selections are not impacting the industrial process goals, but result in a least optimal cost over the life of the project. The paper will define, discuss, and present various process systems in chemical, hydrocarbon and pulp and paper industries. It will discuss the interactive impact of the changes in the mechanical system configuration and the changes in the process variables to better redesign the system and reduce the cost of operation. it will also present a check list of energy conservation measures (ECM) or opportunities. Such ECMs will be related to hydraulics, system components, process modifications, and system efficiency. Two or three case studies will be presented focusing on various conservation measures that improve electrical operating efficiency of a distillation column system. An incremental cost and payback analysis will be presented to assist the investment in process optimization and energy savings' measures.

  7. A critical review on photochemical conversions in flow analysis.

    PubMed

    Rocha, Diogo L; Kamogawa, Marcos Y; Rocha, Fábio R P

    2015-10-01

    Photochemical conversions are cost-effective and environmental friendly processes that require mild experimental conditions and avoid generation of highly acidic wastes. Treated samples are then compatible with most of the analytical techniques. These characteristics become more relevant when the photoconversions are accomplished to flow analysis, thus allowing exploitation of incomplete reactions, the effective use of the photogenerated unstable radicals and in-line sample treatment. Decreasing of reagent consumption and waste generation, sample processing in a closed environment, and improvement of efficiency of the photochemical processes are other inherent advantages. These aspects are critically reviewed in this article, which emphasizes applications to fractionation and speciation analysis, photo-induced luminescence, miniaturization, and in-line waste treatment. Design of flow-through photochemical cells, use of auxiliary reagents in homogeneous and heterogeneous media, and configurations of flow manifolds are also discussed. PMID:26481985

  8. A multicommutated tester of bioreactors for flow analysis.

    PubMed

    Pokrzywnicka, Marta; Kamiński, Jacek; Michalec, Michał; Koncki, Robert; Tymecki, Łukasz

    2016-11-01

    Enzymes are often used in the modern analytical procedures allowing selective recognition and conversion of target analytes into easily detected products. In flow analysis systems, enzymes are predominantly applied in the immobilized forms as flow-through bioreactors. In this research the multicommutated flow analysis (MCFA) system for evaluation and comparison of analytical parameters of bioreactors has been developed. The MCFA manifold allows simultaneous testing up to four bioreactors, but if necessary their number can be easily increased. The system allows comparison of several parameters of tested bioreactors including activity, repeatability, reproducibility, operational and storage stability. The performance of developed bioreactor tester is presented using urea-urease model system based on plastic open-tubular bioreactor with covalently immobilized enzyme. Product of enzymatic reaction is detected using two different chemical methods and by dedicated optoelectronic ammonium detectors. Moreover, the utility of developed MCFA manifold for evaluation of other enzyme bioreactors is demonstrated. PMID:27591609

  9. Tularosa Basin Play Fairway Analysis: Methodology Flow Charts

    SciTech Connect

    Adam Brandt

    2015-11-15

    These images show the comprehensive methodology used for creation of a Play Fairway Analysis to explore the geothermal resource potential of the Tularosa Basin, New Mexico. The deterministic methodology was originated by the petroleum industry, but was custom-modified to function as a knowledge-based geothermal exploration tool. The stochastic PFA flow chart uses weights of evidence, and is data-driven.

  10. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  11. Flow Analysis on a Limited Volume Chilled Water System

    SciTech Connect

    Zheng, Lin

    2012-07-31

    LANL Currently has a limited volume chilled water system for use in a glove box, but the system needs to be updated. Before we start building our new system, a flow analysis is needed to ensure that there are no high flow rates, extreme pressures, or any other hazards involved in the system. In this project the piping system is extremely important to us because it directly affects the overall design of the entire system. The primary components necessary for the chilled water piping system are shown in the design. They include the pipes themselves (perhaps of more than one diameter), the various fitting used to connect the individual pipes to form the desired system, the flow rate control devices (valves), and the pumps that add energy to the fluid. Even the most simple pipe systems are actually quite complex when they are viewed in terms of rigorous analytical considerations. I used an 'exact' analysis and dimensional analysis considerations combined with experimental results for this project. When 'real-world' effects are important (such as viscous effects in pipe flows), it is often difficult or impossible to use only theoretical methods to obtain the desired results. A judicious combination of experimental data with theoretical considerations and dimensional analysis are needed in order to reduce risks to an acceptable level.

  12. Study of design and analysis methods for transonic flow

    NASA Technical Reports Server (NTRS)

    Murman, E. M.

    1977-01-01

    An airfoil design program and a boundary layer analysis were developed. Boundary conditions were derived for ventilated transonic wind tunnels and performing transonic windtunnel wall calculations. A computational procedure for rotational transonic flow in engine inlet throats was formulated. Results and conclusions are summarized.

  13. A CLIPS expert system for clinical flow cytometry data analysis

    NASA Technical Reports Server (NTRS)

    Salzman, G. C.; Duque, R. E.; Braylan, R. C.; Stewart, C. C.

    1990-01-01

    An expert system is being developed using CLIPS to assist clinicians in the analysis of multivariate flow cytometry data from cancer patients. Cluster analysis is used to find subpopulations representing various cell types in multiple datasets each consisting of four to five measurements on each of 5000 cells. CLIPS facts are derived from results of the clustering. CLIPS rules are based on the expertise of Drs. Stewart, Duque, and Braylan. The rules incorporate certainty factors based on case histories.

  14. A Homemade Autosampler/Injector Commutator for Flow Injection Analysis

    PubMed Central

    de Figueiredo, Eduardo Costa; de Souza, Leandro Ruela; de Magalhães, Cristiana Schmidt; Wisniewski, Célio

    2006-01-01

    An autosampler/injector commutator for flow injection analysis (FIA) was constructed with electronic components of used equipments. The apparatus is controlled by commercially available multifunctional interface (PCL711B) connected to a personal computer, and the software was written in Visual Basic language. The system was applied to water analysis and it presented satisfactory results. The low cost and simplicity are the principal characteristics of the autosampler/injector commutator. PMID:17671617

  15. Kinetic analysis of thermally relativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  16. Two-Phase Mass Flow Measurement Using Noise Analysis

    SciTech Connect

    Evans, Robert Pugmire; Keller, Joseph George; Stephens, A. G.; Blotter, J.

    1999-05-01

    The purpose of this work is to develop a low cost, non-intrusive, mass flow measurement sensor for two-phase flow conditions in geothermal applications. The emphasis of the work to date has been on a device that will monitor two-phase flow in the above-ground piping systems. The flashing brines have the potential for excessive scaling and corrosion of exposed surfaces, which can reduce the effectiveness of any measurement device. A major objective in the work has been the development of an instrument that is less susceptible to the scaling and corrosion effects. The focus of the project efforts has been on transducer noise analysis, a technology initiated at the INEEL. A transducer sensing a process condition will have, in addition to its usual signal, various noise components superimposed upon the primary signal that can be related to flow. Investigators have proposed that this technique be applied to steam and liquid water flow mixtures where the signal from an accelerometer mounted on an external pipe surface is evaluated to determine flow rate.

  17. Kinetic analysis of thermally relativistic flow with dissipation

    SciTech Connect

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-15

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  18. Linear stability analysis of inclined two-layer stratified flows

    NASA Astrophysics Data System (ADS)

    Negretti, M. Eletta; Socolofsky, Scott A.; Jirka, Gerhard H.

    2008-09-01

    Two-layer stratified flows are commonly observed in geophysical and environmental contexts. At the interface between the two layers, both velocity shear and buoyancy interplay, resulting in various modes of instability. Results from a temporal linear stability analysis of a two-layer stratified exchange flow under the action of a mean advection are presented, investigating the effect of a mild bottom slope on the stability of the interface. The spatial acceleration is directly included in the governing stability equations. The results demonstrate that increasing the bottom slope has a similar effect on the stability of the flow as does increasing the ratio R of the thickness of the velocity mixing layer δν to that of the density layer δρ as it causes the flow to be more unstable to the Kelvin-Helmholtz instabilities. The transition from Kelvin-Helmholtz modes to stable flow occurs at lower Richardson numbers and wavenumbers compared to the horizontal two-layer flow. Kelvin-Helmholtz modes are decreasingly amplified for 1

  19. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  20. Computational analysis of swirling flows in a pipe

    NASA Astrophysics Data System (ADS)

    Ochoa, Obdulio

    The vortex breakdown of a swirling jet flow entering a finite-length pipe is studied in this thesis. The theories of Rusak and co-authors which provide fundamental tools to predict the first occurrence of breakdown and simulate the flow behavior are applied. To demonstrate the ideas, the detailed experimental data of Novak and Sarpkaya (2000) are used, specifically, the upstream (inlet) axial and circumferential velocity profiles ahead of the breakdown (stagnation) point. The critical swirl ratios, o0 and o1, that respectively form the necessary and sufficient conditions for the occurrence of breakdown in a swirling jet flow, are computed from the ordinary differential equations of the problem. It is found that for the upstream velocity profiles o0 = 0.5607 and o 1 = 1.35196. The swirl level in the experiment of Novak and Sarpkaya (2000) was o = 1, and it shows that vortex breakdown may occur downstream of the inlet in the vortex flow field, as indeed is found in the experiments. Moreover, the experiments provide flow profiles along the whole pipe which are compared with simulation results based on Granata (2014) for a swirling flow in a pipe that has the same inlet conditions. An agreement is found between the simulated results and the experimental data all along the pipe from the upstream inlet state up to the breakdown point. Behind the breakdown point, no concise agreement is found which may be due to the high turbulence in the high-Re experimental flow or a result of non-full convergence of simulated results. The present theoretical analysis and simulations shed light on the breakdown process of swirling jet flows in pipes.

  1. Tailings dam-break flow - Analysis of sediment transport

    NASA Astrophysics Data System (ADS)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  2. First analysis of anisotropic flow with Lee-Yang zeros

    SciTech Connect

    Bastid, N.; Barret, V.; Crochet, P.; Dupieux, P.; Lopez, X.; Basrak, Z.; Caplar, R.; Delalija, M.; Gaspariae, I.; Korolija, M.

    2005-07-01

    We report on the first analysis of directed and elliptic flow with the new method of Lee-Yang zeros. Experimental data are presented for Ru+Ru reactions at 1.69A GeV measured with the FOPI detector at SIS/GSI. The results obtained with several methods, based on the event-plane reconstruction, on Lee-Yang zeros, and on multiparticle cumulants (up to fifth order) applied for the first time at SIS energies, are compared. They show conclusive evidence that azimuthal correlations between nucleons and composite particles at this energy are largely dominated by anisotropic flow.

  3. Large perturbation flow field analysis and simulation for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Varner, M. O.; Martindale, W. R.; Phares, W. J.; Kneile, K. R.; Adams, J. C., Jr.

    1984-01-01

    An analysis technique for simulation of supersonic mixed compression inlets with large flow field perturbations is presented. The approach is based upon a quasi-one-dimensional inviscid unsteady formulation which includes engineering models of unstart/restart, bleed, bypass, and geometry effects. Numerical solution of the governing time dependent equations of motion is accomplished through a shock capturing finite difference algorithm, of which five separate approaches are evaluated. Comparison with experimental supersonic wind tunnel data is presented to verify the present approach for a wide range of transient inlet flow conditions.

  4. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    SciTech Connect

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-07-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  5. General flow field analysis methods for helicopter rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C. Gordon; Bliss, Donald B.

    1991-01-01

    Previous work in the analysis of rotor flow fields for aeroacoustic applications involved the preliminary development of an efficient and accurate Lagrangian simulation of the unsteady vorticity field in the vicinity of helicopter main rotor that could analyze a limited class of rotor/wake interactions. The capabilities of this analysis have subsequently been considerably enhanced to allow it to serve as the foundation for a general analysis of the rotor/wake interaction noise. This paper presents the details of these enhancements, which focus on the expansion of the reconstruction approach developed previously to handle arbitrary vortex wake interactions within three-dimensional regions located near or within the rotor disk. Also, the development of nearfield velocity corrections appropriate for the analysis of such interactions is described, as is a preliminary study of methods for using the new high-resolution flow field analysis for noise predictions. The results show that by employing this novel flow field reconstruction technique it is possible to employ full-span free wake analyses with temporal and spatial resolution suitable for acoustic applications while reducing the computation time required by one to two orders of magnitude relative to traditional methods.

  6. Is the modal approach appropriate for analysis of energy flow?

    NASA Astrophysics Data System (ADS)

    Pavic, Goran

    2002-11-01

    Modal superposition is a most commonly used approach in a numerical analysis of vibration. However, the computation requirements of a typical analysis of energy flow limit the attractiveness of the modal approach because, as a rule, a very large number of modes have to be taken into account in order to produce realistic results. The reason for this particularity is that the energy analysis involves not only vibration displacements but also higher derivatives of these which are contributed by higher modes, the higher the derivative order. More careful analysis of structure-borne vibration shows that the modal truncation is not the only inconvenience where the modal approach is used. An equally important factor limiting its use is the representation of vibration dissipation by modal damping. The paper shows comparisons of computed energy flow in plates using modal and wave approaches. The differences between the two are noticeable, in particular where the vectorial functions of energy flow field, divergence and curl, are concerned. The wave approach to vibration analysis is shown to be more physically consistent than the modal approach.

  7. Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Lockhard, David P.; Brentner, Kenneth S.; Khorrami, Mehdi R.; Berkman, Mert E.; Choudhari, Meelan

    2000-01-01

    An acoustic analysis based on the Ffowcs Williams and Hawkings equation was performed for a high-lift system. As input, the acoustic analysis used un- steady flow data obtained from a highly resolved, time-dependent, Reynolds-averaged Navier-Stokes calculation. The analysis strongly suggests that vor- tex shedding from the trailing edge of the slat results in a high-amplitude, high-frequency acoustic signal, similar to that which was observed in a correspond- ing experimental study of the high-lift system.

  8. Detailed analysis of POD method applied on turbulent flow

    NASA Astrophysics Data System (ADS)

    Kellnerova, Radka; Kukacka, Libor; Uruba, Vaclav; Jurcakova, Klara; Janour, Zbynek

    2012-04-01

    Proper orthogonal decomposition (POD) of a very turbulent flow inside a street canyon is performed. The energy contribution of each mode is obtained. Also, physical meaning of the POD result is clarified. Particular modes of POD are assigned to the particular flow events like a sweep event, a vortex behind a roof or a vortex at the bottom of a street. Test of POD sensitivity to the acquisition time of data records is done. Test with decreasing sample frequency is also executed. Further, interpolation of POD expansion coefficient is performed in order to test possible increase in sample frequency and get new information about the flow from the POD analysis. We tested a linear and a spline type of the interpolation and the linear one carried out a slightly better result.

  9. Flow Cytometric Analysis of Immune Cells Within Murine Aorta.

    PubMed

    Gjurich, Breanne N; Taghavie-Moghadam, Parésa L; Galkina, Elena V

    2015-01-01

    The immune system plays a critical role in the modulation of atherogenesis at all stages of the disease. However, there are many technical difficulties when studying the immune system within murine aortas. Common techniques such as PCR and immunohistochemistry have answered many questions about the presence of immune cells and mediators of inflammation within the aorta yet many questions remain unanswered due to the limitations of these techniques. On the other hand, cumulatively the flow cytometry approach has propelled the immunology field forward but it has been challenging to apply this technique to aortic tissues. Here, we describe the methodology to isolate and characterize the immune cells within the murine aorta and provide examples of functional assays for aortic leukocytes using flow cytometry. The method involves the harvesting and enzymatic digestion of the aorta, extracellular and intracellular protein staining, and a subsequent flow cytometric analysis. PMID:26445788

  10. Bifurcation analysis of a speed gradient continuum traffic flow model

    NASA Astrophysics Data System (ADS)

    Ai, Wen-Huan; Shi, Zhong-Ke; Liu, Da-Wei

    2015-11-01

    A bifurcation analysis approach is presented based on the macroscopic traffic flow model. This method can be used to describe and predict the nonlinear traffic phenomena on the highway from a system global stability perspective. Based on a recently proposed speed gradient continuum traffic flow model, the types and stabilities of the equilibrium solutions are discussed and the existence of Hopf bifurcation and saddle-node bifurcation is proved. Then various bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles, Cusp bifurcation and Bogdanov-Takens bifurcation are found and the traffic flow behaviors at some of them are analyzed. When the Hopf bifurcation is selected as the starting point of density temporal evolution, it may help to explain the stop-and-go traffic phenomena.

  11. Kootenai River Instream Flow Analysis, 2004 Technical Report.

    SciTech Connect

    Miller, William J.; Geise, Doran; Montana Department of Fish, Wildlife and Parks Staff

    2004-10-01

    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Kootenai River from Libby Dam downstream to Bonners Ferry, Idaho. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and rainbow trout (Oncorhynchus mykiss), as a function of discharge in the river. This study used physical data and habitat use information from previous studies in the 1990s. The present study adapted the one-dimensional physical data into a georeferenced data set for each study site. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that the quantity of suitable habitat is greater at lower discharges than higher discharges and that the more stable flow regime from 1993 through 2002 provided more stable habitat conditions when compared to the highly variable flow regime from 1983 through 1992. The daily and weekly variability under 1983-1992 conditions forces subadult bull trout to use less productive habitat during the night by repetitively wetting and drying stream channel margin area. Subadult bull trout exhibit a distinct difference between daytime and nighttime habitat use (Muhlfeld 2002). These fish utilize deeper main channel habitats during the day and move to shallow channel margin areas at night. The productivity of lower trophic levels is low within the consistently watered and dewatered marginal areas and thus these areas provide little foraging value to subadult bull trout that utilize those areas as flows increase. The more stable flow regime (for weekly or daily timesteps) from 1993-2002 should be more productive than flow regimes with high weekly or daily variability. The highly variable flows likely stress subadult bull trout and rainbow trout due to the additional movement required to find suitable habitat or through the utilization of

  12. Extended forward sensitivity analysis of one-dimensional isothermal flow

    SciTech Connect

    Johnson, M.; Zhao, H.

    2013-07-01

    Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)

  13. Analysis of three-dimensional viscous internal flows

    NASA Astrophysics Data System (ADS)

    Ghia, K. N.; Ghia, U.

    1983-08-01

    In the first research category, two different areas were studied: Analysis of laminar duct flows, and study of laminar and turbulent separated flows. These studies were aimed at acquiring a better understanding of isolated physical phenomena significant to turbomachinery applications via the use of appropriate model problems. The second research category is aimed at obtaining flow-dependent computational grids efficiently so that critical regions can be accurately modeled. The final research category includes the analysis of numerical methods, with the goal of improving the efficiency and accuracy of the various methods developed and implemented. Preliminary fine-grid marching solutions were obtained in the entrance region of the duct for eight different duct configurations. Streamwise separation was examined, using the model problem of laminar flow through a constricted asymmetric channel. True transient results were obtained for several flow configurations with extremely fine grids, so as to provide benchmark solutions which can permit assessment of other solutions obtained using approximate methods. Turbulence modeling was pursued, with the wall region being described by low-remodeling. Although the wall region can be modeled more accurately by this method, the fine grids required retard the convergence rate of the approximate factorization method used. Flow-dependent grids were generated for a 1-D nonlinear viscous Burgers' equation. For the first time, accurate results were computed using totally central-difference schemes for Re up to 10,000. Finally, in the last category, in the area of semi-implicit methods, a multi-grid method was developed to provide fine-grid solutions for the Neumann problem.

  14. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    PubMed Central

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for

  15. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  16. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  17. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  18. Solid rocket motor aft field joint flow field analysis

    NASA Technical Reports Server (NTRS)

    Sabnis, Jayant S.; Gibeling, Edward J.; Mcdonald, Henry

    1987-01-01

    An efficient Navier-Stokes analysis was successfully applied to simulate the complex flow field in the vicinity of a slot in a solid rocket motor with segment joints. The capability of the computer code to resolve the flow near solid surfaces without using a wall function assumption was demonstrated. In view of the complex nature of the flow field in the vicinity of the slot, this approach is considered essential. The results obtained from these calculations provide valuable design information, which would otherwise be extremely difficult to obtain. The results of the axisymmetric calculations indicate the presence of a region of reversed axial flow at the aft-edge of the slot and show the over-pressure in the slot to be only about 10 psi. The results of the asymmetric calculations indicate that a pressure asymmetry more than two diameters downstream of the slot has no noticeable effect on the flow field in the slot. They also indicate that the circumferential pressure differential caused in the slot due to failure of a 15 deg section of the castable inhibitor will be approximately 1 psi.

  19. Statistical analysis of magnetotail fast flows and related magnetic disturbances

    NASA Astrophysics Data System (ADS)

    Frühauff, Dennis; Glassmeier, Karl-Heinz

    2016-04-01

    This study presents an investigation on the occurrence of fast flows in the magnetotail using the complete available data set of the THEMIS spacecraft for the years 2007 to 2015. The fast flow events (times of enhanced ion velocity) are detected through the use of a velocity criterion, therefore making the resulting database as large as almost 16 000 events. First, basic statistical findings concerning velocity distributions, occurrence rates, group structures are presented. Second, Superposed Epoch Analysis is utilized to account for average profiles of selected plasma quantities. The data reveal representative time series in near and far tail of the Earth with typical timescales of the order of 1-2 min, corresponding to scale sizes of 3 RE. Last, related magnetic field disturbances are analyzed. It is found that the minimum variance direction is essentially confined to a plane almost perpendicular to the main flow direction while, at the same time, the maximum variance direction is aligned with flow and background field directions. The presentation of the database and first statistical findings will prove useful both as input for magneto-hydrodynamical simulations and theoretical considerations of fast flows.

  20. Computational Analysis of the G-III Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan

    2011-01-01

    Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.

  1. Progress Toward Efficient Laminar Flow Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas

    2011-01-01

    A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.

  2. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    Energy Science and Technology Software Center (ESTSC)

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  3. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    SciTech Connect

    Lottes, Steven A.

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cells in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.

  4. Energy flow: image correspondence approximation for motion analysis

    NASA Astrophysics Data System (ADS)

    Wang, Liangliang; Li, Ruifeng; Fang, Yajun

    2016-04-01

    We propose a correspondence approximation approach between temporally adjacent frames for motion analysis. First, energy map is established to represent image spatial features on multiple scales using Gaussian convolution. On this basis, energy flow at each layer is estimated using Gauss-Seidel iteration according to the energy invariance constraint. More specifically, at the core of energy invariance constraint is "energy conservation law" assuming that the spatial energy distribution of an image does not change significantly with time. Finally, energy flow field at different layers is reconstructed by considering different smoothness degrees. Due to the multiresolution origin and energy-based implementation, our algorithm is able to quickly address correspondence searching issues in spite of background noise or illumination variation. We apply our correspondence approximation method to motion analysis, and experimental results demonstrate its applicability.

  5. Dual Solutions for Nonlinear Flow Using Lie Group Analysis

    PubMed Central

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996

  6. Flow Injection as a Teaching Tool for Gravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Sartini, Raquel P.; Zagatto, Elias A. G.; Oliveira, Cláudio C.

    2000-06-01

    A flow-injection system to carry out gravimetric analysis is presented. Students are faced with an instrumental approach for gravimetric procedures. Crucibles, muffle furnaces, and desiccators are not required. A flowing suspension is established by simultaneously injecting an aqueous sample and a precipitating reagent into two merging carrier streams. The precipitate is accumulated on a minifilter hanging under the plate of an analytical balance and is weighed inside the main stream. Since Archimedes' principle holds, a drying step is not needed. After measurement, the precipitate is dissolved and disposed of. As an application, the determination of phosphate based on precipitation with ammonium and magnesium ions in slightly alkaline medium is chosen. The proposed system is very stable and well suited for demonstration. When applied to analysis of fertilizer extracts with 0.10-1.00% w/v P, it yields precise results (RSD < 0.042) in agreement with an official spectrophotometric method.

  7. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  8. A numerical analysis of the unsteady flow past bluff bodies

    NASA Astrophysics Data System (ADS)

    Fernando, M. S. U. K.; Modi, V. J.

    1990-01-01

    The paper describes in detail a relatively sophisticated numerical approach, using the Boundary Element Method in conjunction with the Discrete Vortex Model, to represent the complex unsteady flow field around a bluff body with separating shear layers. Important steps in the numerical analysis of this challenging problem are discussed and a performance evaluation algorithm established. Of considerable importance is the effect of computational parameters such as number of elements representing the geometry, time-step size, location of the nascent vortices, etc., on the accuracy of results and the associated cost. As an example, the method is applied to the analysis of the flow around a stationary Savonius rotor. A detailed parametric study provides fundamental information concerning the starting torque time histories, evolution of the wake, Strouhal number, etc. A comparison with the wind tunnel test data shows remarkable correlation suggesting considerable promise for the approach.

  9. Analysis of some acoustics-jet flow interaction problems

    NASA Technical Reports Server (NTRS)

    Chow, P. L.

    1984-01-01

    Analytical problems in the interactions between the mean-shear flows and the acoustic field in the planar and circular jets are examined. These problems are basic in understanding the effects of coherent large structure on the generation and complications of sound in a sub-sonic jet. Three problems were investigated: (1) spatial (vs. temporal) normal mode analysis in a planar jets; (2) a slightly divergent, planar jet; and (3) acoustic waves in an axisymmetrical jet.

  10. Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry

    PubMed Central

    Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.

    2010-01-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively

  11. Sensitivity Analysis of Chaotic Flow around Two-Dimensional Airfoil

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Wang, Qiqi; Nielsen, Eric; Diskin, Boris

    2015-11-01

    Computational methods for sensitivity analysis are invaluable tools for fluid dynamics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods, including the adjoint method, break down when applied to long-time averaged quantities in chaotic fluid flow fields, such as high-fidelity turbulence simulations. This break down is due to the ``Butterfly Effect'' the high sensitivity of chaotic dynamical systems to the initial condition. A new sensitivity analysis method developed by the authors, Least Squares Shadowing (LSS), can compute useful and accurate gradients for quantities of interest in chaotic dynamical systems. LSS computes gradients using the ``shadow trajectory'', a phase space trajectory (or solution) for which perturbations to the flow field do not grow exponentially in time. To efficiently compute many gradients for one objective function, we use an adjoint version of LSS. This talk will briefly outline Least Squares Shadowing and demonstrate it on chaotic flow around a Two-Dimensional airfoil.

  12. Multi-scale analysis for environmental dispersion in wetland flow

    NASA Astrophysics Data System (ADS)

    Wu, Zi; Li, Z.; Chen, G. Q.

    2011-08-01

    Presented in this work is a multi-scale analysis for longitudinal evolution of contaminant concentration in a fully developed flow through a shallow wetland channel. An environmental dispersion model for the mean concentration is devised as an extension of Taylor's classical formulation by a multi-scale analysis. Corresponding environmental dispersivity is found identical to that determined by the method of concentration moments. For typical contaminant constituents of chemical oxygen demand, biochemical oxygen demand, total phosphorus, total nitrogen and heavy metal, the evolution of contaminant cloud is illustrated with the critical length and duration of the contaminant cloud with constituent concentration beyond some given environmental standard level.

  13. Analysis of Oxygen, Anaesthesia Agent and Flows in Anaesthesia Machine

    PubMed Central

    Garg, Rakesh; Gupta, Ramesh Chand

    2013-01-01

    The technical advancement in the anaesthesia workstations has made the peri-operative anaesthesia more safer. Apart from other monitoring options, respiratory gas analysis has become an integral part of the modern anaesthesia workstations. Monitoring devices, such as an oxygen analyser with an audible alarm, carbon dioxide analyser, a vapour analyser, whenever a volatile anaesthetic is delivered have also been recommended by various anaesthesia societies. This review article discusses various techniques for analysis of flow, volumes and concentration of various anaesthetic agents including oxygen, nitrous oxide and volatile anaesthetic agents. PMID:24249881

  14. Probabilistic constrained load flow based on sensitivity analysis

    SciTech Connect

    Karakatsanis, T.S.; Hatziargyriou, N.D. )

    1994-11-01

    This paper presents a method for network constrained setting of control variables based on probabilistic load flow analysis. The method determines operating constraint violations for a whole planning period together with the probability of each violation. An iterative algorithm is subsequently employed providing adjustments of the control variables based on sensitivity analysis of the constrained variables with respect to the control variables. The method is applied to the IEEE 14 busbar system and to a realistic model of the Hellenic Interconnected system indicating its suitability for short-term operational planning applications.

  15. Analysis for flow of Jeffrey fluid with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Asad, Sadia; Alsaedi, A.

    2015-04-01

    An analysis of the boundary layer flow and heat transfer in a Jeffrey fluid containing nanoparticles is presented in this paper. Here, fluid motion is due to a stretchable cylinder. The thermal conductivity of the fluid is taken to be temperature-dependent. The partial differential equations of velocity, temperature, and concentration fields are transformed to a dimensionless system of ordinary differential equations. Nonlinear governing analysis is computed for the homotopy solutions. The behaviors of Brownian motion and thermophoresis diffusion of nanoparticles have been examined graphically. Numerical values of the local Nusselt number are computed and analyzed.

  16. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  17. A guide to human in vivo microcirculatory flow image analysis.

    PubMed

    Massey, Michael J; Shapiro, Nathan I

    2016-01-01

    Various noninvasive microscopic camera technologies have been used to visualize the sublingual microcirculation in patients. We describe a comprehensive approach to bedside in vivo sublingual microcirculation video image capture and analysis techniques in the human clinical setting. We present a user perspective and guide suitable for clinical researchers and developers interested in the capture and analysis of sublingual microcirculatory flow videos. We review basic differences in the cameras, optics, light sources, operation, and digital image capture. We describe common techniques for image acquisition and discuss aspects of video data management, including data transfer, metadata, and database design and utilization to facilitate the image analysis pipeline. We outline image analysis techniques and reporting including video preprocessing and image quality evaluation. Finally, we propose a framework for future directions in the field of microcirculatory flow videomicroscopy acquisition and analysis. Although automated scoring systems have not been sufficiently robust for widespread clinical or research use to date, we discuss promising innovations that are driving new development. PMID:26861691

  18. Analysis of transient storage subject to unsteady flow: Diel flow variation in an Antarctic stream

    USGS Publications Warehouse

    Runkel, R.L.; McKnight, Diane M.; Andrews, E.D.

    1998-01-01

    Transport of dissolved material in streams and small rivers may be characterized using tracer-dilution methods and solute transport models. Recent studies have quantified stream/substream interactions using models of transient storage. These studies are based on tracer-dilution data obtained during periods of steady flow. We present a modeling framework for the analysis of transient storage in stream systems with unsteady flows. The framework couples a kinematic wave routing model with a solute transport model that includes transient storage. The routing model provides time-varying flows and cross-sectional areas that are used as input to the solute transport model. The modeling framework was used to quantify stream/substream interaction in Huey Creek, an Antarctic stream fed exclusively by glacial meltwater. Analysis of tracer-dilution data indicates that there was substantial interaction between the flowing surface water and the hyporheic (substream) zone. The ratio of storage zone area to stream cross-sectional area (A(s)/A) was >1 in all stream reaches, indicating that the substream area contributing to hyporheic exchange was large relative to stream cross-sectional area. The rate of exchange, as governed by the transient storage exchange coefficient (??), was rapid because of a high stream gradient and porous alluvial materials. Estimates of ?? generally exceed those determined for other small streams. The high degree of hyporheic exchange supports the hypothesis that weathering reactions within the hyporheos account for observed increases in solute concentration with stream length, as noted in other studies of Antarctic streams.

  19. Analysis and performance of subsonic ejectors for pulsatile flow applications

    SciTech Connect

    Roche, J.G.; Liburdy, J.A.

    1994-12-31

    This study looks at the application of ejectors to four-stroke engines. The goal is to develop a system of exhaust gas emission control by premixing exhaust gas with fresh atmospheric air. The constraints on the system include relatively low pressure pulsatile flow of the primary gas, geometric constraints (small size), significant density differences between the two fluid streams and possible large back-pressure operating conditions. A model is applied to the ejector application to pulsatile flow based on a global control volume analysis. The model constrains the operating conditions based on conservation of mass, momentum and energy for incompressible flow conditions. The time dependent effects are modeled by including a representative inertia term in the momentum equation based on quasi-steady conditions. The results are used to illustrate the operating characteristics for a small four-stroke engine application. The sensitivity of operation to the operating and design parameters of the system are illustrated. In particular, the effects of the pulsatile flow on the operation are shown to increase the performance under certain operating conditions. The model simulation is compared to some data available in the literature.

  20. Computational heat transfer analysis for oscillatory channel flows

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kannapareddy, Mohan

    1993-01-01

    An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

  1. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.

    PubMed

    Glöser, Simon; Soulier, Marcel; Tercero Espinoza, Luis A

    2013-06-18

    We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910-2010) enhanced by a unique data set of recent global semifinished goods production and copper end-use sectors provided by the copper industry. To enable the consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper recycling from end-of-life (EoL) scrap--the EoL recycling rate--was estimated to be 45% on average, ± 5% (one standard deviation) due to uncertainty and variability over time in the period 2000-2010. As uncertainties of specific input data--mainly concerning assumptions on end-use lifetimes and their distribution--are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 10(5) simulation runs. PMID:23725041

  2. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.

    PubMed

    Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi

    2014-01-01

    Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. PMID:24012480

  3. Adaptive computational methods for SSME internal flow analysis

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1986-01-01

    Adaptive finite element methods for the analysis of classes of problems in compressible and incompressible flow of interest in SSME (space shuttle main engine) analysis and design are described. The general objective of the adaptive methods is to improve and to quantify the quality of numerical solutions to the governing partial differential equations of fluid dynamics in two-dimensional cases. There are several different families of adaptive schemes that can be used to improve the quality of solutions in complex flow simulations. Among these are: (1) r-methods (node-redistribution or moving mesh methods) in which a fixed number of nodal points is allowed to migrate to points in the mesh where high error is detected; (2) h-methods, in which the mesh size h is automatically refined to reduce local error; and (3) p-methods, in which the local degree p of the finite element approximation is increased to reduce local error. Two of the three basic techniques have been studied in this project: an r-method for steady Euler equations in two dimensions and a p-method for transient, laminar, viscous incompressible flow. Numerical results are presented. A brief introduction to residual methods of a-posterior error estimation is also given and some pertinent conclusions of the study are listed.

  4. Computational analysis of an axial flow pediatric ventricular assist device.

    PubMed

    Throckmorton, Amy L; Untaroiu, Alexandrina; Allaire, Paul E; Wood, Houston G; Matherne, Gaynell Paul; Lim, David Scott; Peeler, Ben B; Olsen, Don B

    2004-10-01

    Longer-term (>2 weeks) mechanical circulatory support will provide an improved quality of life for thousands of pediatric cardiac failure patients per year in the United States. These pediatric patients suffer from severe congenital or acquired heart disease complicated by congestive heart failure. There are currently very few mechanical circulatory support systems available in the United States as viable options for this population. For that reason, we have designed an axial flow pediatric ventricular assist device (PVAD) with an impeller that is fully suspended by magnetic bearings. As a geometrically similar, smaller scaled version of our axial flow pump for the adult population, the PVAD has a design point of 1.5 L/min at 65 mm Hg to meet the full physiologic needs of pediatric patients. Conventional axial pump design equations and a nondimensional scaling technique were used to estimate the PVAD's initial dimensions, which allowed for the creation of computational models for performance analysis. A computational fluid dynamic analysis of the axial flow PVAD, which measures approximately 65 mm in length by 35 mm in diameter, shows that the pump will produce 1.5 L/min at 65 mm Hg for 8000 rpm. Fluid forces (approximately 1 N) were also determined for the suspension and motor design, and scalar stress values remained below 350 Pa with maximum particle residence times of approximately 0.08 milliseconds in the pump. This initial design demonstrated acceptable performance, thereby encouraging prototype manufacturing for experimental validation. PMID:15384993

  5. New Methods for Sensitivity Analysis in Chaotic, Turbulent Fluid Flows

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Wang, Qiqi

    2012-11-01

    Computational methods for sensitivity analysis are invaluable tools for fluid mechanics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in chaotic fluid flowfields, such as those obtained using high-fidelity turbulence simulations. Also, a number of dynamical properties of chaotic fluid flows, most notably the ``Butterfly Effect,'' make the formulation of new sensitivity analysis methods difficult. This talk will outline two chaotic sensitivity analysis methods. The first method, the Fokker-Planck adjoint method, forms a probability density function on the strange attractor associated with the system and uses its adjoint to find gradients. The second method, the Least Squares Sensitivity method, finds some ``shadow trajectory'' in phase space for which perturbations do not grow exponentially. This method is formulated as a quadratic programing problem with linear constraints. This talk is concluded with demonstrations of these new methods on some example problems, including the Lorenz attractor and flow around an airfoil at a high angle of attack.

  6. Loop flow analysis of dissolved reactive phosphorus in aqueous samples.

    PubMed

    Ma, Jian; Li, Quanlong; Yuan, Dongxing

    2014-06-01

    The current flow based method for the determination of dissolved reactive phosphorus (DRP) suffers interference from salinity (e.g. index refractive difference) and the incidentally formed bubbles, which can be a problem for optical detection. Here we reported a simple and robust loop flow analysis (LFA) method for accurate measurement of DRP in different aqueous samples. The chemistry is based on the classic phosphomolybdenum blue (PMB) reaction and the PMB formed in a novel cross-shaped flow cell was detected at 700 nm using a miniature spectrophotometer. The effects of reagents on the kinetic formation of PMB were evaluated. The detection limit was 32 nM with an optical pathlength of 1cm and the relative standard deviations for repetitive determinations of 1, 2 and 8 µM phosphate solutions were 1.8% (n=113, without any stoppage during repeating analysis for >7h), 1.0% (n=49) and 0.39% (n=9), respectively. The analysis time was 4 min sample(-1). The effects of salinity and interfering ions (silicate and arsenate) were evaluated and showed no interference under the proposed protocol for DRP analysis. Using the LFA method, different aqueous samples with a salinity range of 0-34 were analyzed and the results showed excellent agreement with the reference method (slope 0.9982±0.0063, R(2)=0.9987, n=34). Recoveries for spiked samples varied from 95.4% to 103.7%. The proposed method showed insignificant interference from salinity, silicate and arsenate, higher reproducibility, easier operation and was free of the bubble problem. PMID:24725885

  7. Multimodal Pressure-Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Hu, Kun; Liu, Yanhui; Peng, C.-K.; Novak, Vera

    2008-12-01

    Quantification of nonlinear interactions between two nonstationary signals presents a computational challenge in different research fields, especially for assessments of physiological systems. Traditional approaches that are based on theories of stationary signals cannot resolve nonstationarity-related issues and, thus, cannot reliably assess nonlinear interactions in physiological systems. In this review we discuss a new technique called multimodal pressure flow (MMPF) method that utilizes Hilbert-Huang transformation to quantify interaction between nonstationary cerebral blood flow velocity (BFV) and blood pressure (BP) for the assessment of dynamic cerebral autoregulation (CA). CA is an important mechanism responsible for controlling cerebral blood flow in responses to fluctuations in systemic BP within a few heart-beats. The MMPF analysis decomposes BP and BFV signals into multiple empirical modes adaptively so that the fluctuations caused by a specific physiologic process can be represented in a corresponding empirical mode. Using this technique, we showed that dynamic CA can be characterized by specific phase delays between the decomposed BP and BFV oscillations, and that the phase shifts are significantly reduced in hypertensive, diabetics and stroke subjects with impaired CA. Additionally, the new technique can reliably assess CA using both induced BP/BFV oscillations during clinical tests and spontaneous BP/BFV fluctuations during resting conditions.

  8. Flow injection analysis with amperometric detection of naltrexone in pharmaceuticals.

    PubMed

    Fernández-Abedul, M T; Costa-García, A

    1997-09-01

    Flow injection analysis (FIA) with amperometric detection using a carbon paste electrode is applied to the determination of naltrexone. The sample solution was injected into the carrier stream of 0.1 M perchloric acid, being determined by oxidation at +1.0 V vs. Ag/AgCl/sat. KCl using a flow rate of 4 ml min-1. A relative standard deviation of 1.5% was calculated for a concentration level of 10(-5) M (n = 17) without carrying out a carbon paste electrode pretreatment. Calibration curves were found to be linear between 2 x 10(-8) and 10(-5) M (almost three orders of magnitude) and the method has a detection limit of 2 x 10(-8) M. A simple and reproducible procedure is proposed for the determination of naltrexone in pharmaceuticals. The results compared favourably with those obtained by an HPLC-UV method. PMID:9447547

  9. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  10. Lagrangian analysis of contaminant dispersal in bounded turbulent shear flows

    SciTech Connect

    Bernard, P.S.; Wallace, J.M.; Balint, J.L.

    1992-01-01

    Laboratory experiments and direct numerical simulations (DNS) of passive scalar contaminant disperal in bounded shear flows have been carried out. Several modifications to the laboratory windtunnel have been carried out which will make possible laser sheet flow visualization along the whole length of the 8m test section. Backward particle paths needed to perform a Lagrangian analysis of scalar transport are in the process of being computed for each of the numerical data sets previously described. A light sheet system is being implemented which is capable of visualizing a 30cm X 30cm X 5cm portion of the wall layer in order to extract quantitative information about the structure of the scalar plumes.

  11. Computational analysis of the SSME fuel preburner flow

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Farmer, R. C.

    1986-01-01

    A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures.

  12. Analysis and control of supersonic vortex breakdown flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  13. Numerical analysis of flow through oscillating cascade sections

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1989-01-01

    The design of turbomachinery blades requires the prevention of flutter for all operating conditions. However, flow field predictions used for aeroelastic analysis are not well understood for all flow regimes. The present research focuses on numerical solutions of the Euler and Navier-Stokes equations using an ADI procedure to model two-dimensional, transonic flow through oscillating cascades. The model prescribes harmonic pitching motions for the blade sections for both zero and non-zero inter-blade phase angles. The code introduces the use of a deforming grid technique for convenient specification of the periodic boundary conditions. Approximate nonreflecting boundary conditions have been coded for the inlet and exit boundary conditions. Sample unsteady solutions have been performed for an oscillating cascade and compared to experimental data. Also, test cases were fun for a flat plate cascade to compare with an unsteady, small-perturbation, subsonic analysis. The predictions for oscillating cascades with non-zero inter-blade phase angles are in good agreement with experimental data and small-perturbation theory. The zero degree inter-blade phase angle cases, which were near a resonant condition, differ from the experiment and theory. Studies on reflecting versus non-reflecting inlet and exit boundary conditions show that the treatment of the boundary can have a significant effect on the first harmonic, unsteady pressure distributions for certain flow conditions. This code is expected to be used as a tool for reviewing simpler models that do not include the full nonlinear aerodynamics or as a final check for designs against flutter in turbomachinery.

  14. Analysis of a cryolava flow-like feature on Titan

    USGS Publications Warehouse

    Le, Corre L.; Le, Mouelic S.; Sotin, C.; Combe, J.-P.; Rodriguez, S.; Barnes, J.W.; Brown, R.H.; Buratti, B.J.; Jaumann, R.; Soderblom, J.; Soderblom, L.A.; Clark, R.; Baines, K.H.; Nicholson, P.D.

    2009-01-01

    This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 ??m). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.. ?? 2009 Elsevier Ltd.

  15. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  16. Bootstrap position analysis for forecasting low flow frequency

    USGS Publications Warehouse

    Tasker, Gary D.; Dunne, P.

    1997-01-01

    A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.

  17. Flow-cytometry-based DNA hybidization and polymorphism analysis

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Kommander, Kristina; White, P. S.; Nolan, John P.

    1998-05-01

    Functional analysis of the human genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well- suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. We are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. Our approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advantages of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  18. Energy-decomposition analysis for viscous free-surface flows.

    PubMed

    Colagrossi, Andrea; Bouscasse, Benjamin; Marrone, Salvatore

    2015-11-01

    This work is dedicated to the energy decomposition analysis of a viscous free-surface flow. In the presence of a free surface, the viscous dissipation for a Newtonian liquid can be decomposed into two terms: an enstrophy component and a free-surface deformation component. The latter requires the evaluation of volume and surface integrals in the meshless framework. The analysis is based on the weakly compressible smoothed particle hydrodynamics formalism. The behavior of the energy terms is studied in standing wave problems by changing the viscosity and the wave amplitude. Finally, an analysis of a complex shallow water breaking wave case is provided. It is shown that in presence of intense breaking phenomena the two energy components are always comparable, whereas generally the free surface component is dominant on the viscous dissipation of gravity waves. PMID:26651775

  19. Gravity flow of powder in a lunar environment. Part 2: Analysis of flow initiation

    NASA Technical Reports Server (NTRS)

    Pariseau, W. G.

    1971-01-01

    A small displacement-small strain finite element technique utilizing the constant strain triangle and incremental constitutive equations for elasticplastic (media nonhardening and obeying a Coulomb yield condition) was applied to the analysis of gravity flow initiation. This was done in a V-shaped hopper containing a powder under lunar environmental conditions. Three methods of loading were examined. Of the three, the method of computing the initial state of stress in a filled hopper prior to drawdown, by adding material to the hopper layer by layer, was the best. Results of the analysis of a typical hopper problem show that the initial state of stress, the elastic moduli, and the strength parameters have an important influence on material response subsequent to the opening of the hopper outlet.

  20. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-01-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  1. Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve

    NASA Astrophysics Data System (ADS)

    Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat

    1993-12-01

    The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.

  2. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  3. Comparative analysis of volumetric flow meters used for mass flow estimation in multiphase and multidensity environments

    NASA Astrophysics Data System (ADS)

    Pedone, Richard; Korman, Valentin; Wiley, John T.

    2006-05-01

    Accurate and reliable multiphase flow measurements are needed for liquid propulsion systems. Existing volumetric flow meters are adequate for flow measurements with well-characterized, clean liquids and gases. However, these technologies are inadequate for multiphase environments, such as cryogenic fluids. Although, properly calibrated turbine flow meters can provide highly accurate and repeatable data, problems are still prevalent with multiphase flows. Limitations are thus placed on the applicability of intrusive turbine flow meters.

  4. Wing analysis using a transonic potential flow computational method

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Hicks, R. M.

    1978-01-01

    The ability of the method to compute wing transonic performance was determined by comparing computed results with both experimental data and results computed by other theoretical procedures. Both pressure distributions and aerodynamic forces were evaluated. Comparisons indicated that the method is a significant improvement in transonic wing analysis capability. In particular, the computational method generally calculated the correct development of three-dimensional pressure distributions from subcritical to transonic conditions. Complicated, multiple shocked flows observed experimentally were reproduced computationally. The ability to identify the effects of design modifications was demonstrated both in terms of pressure distributions and shock drag characteristics.

  5. One-dimensional analysis of choked-flow turbines

    NASA Technical Reports Server (NTRS)

    English, Robert E; Cavicchi, Richard H

    1953-01-01

    Turbines for most applications requiring high work output per stage have one or more blade rows which are choked. This analysis indicated that the area ratios and equivalent blade speed are the controlling factors in the design and operation of such turbines. Six criteria are stated that will aid in establishing from test data of multistage turbines which blade rows are choked and which are not. The variation in internal flow conditions with operating conditions for a turbine equipped with an adjustable stator is determined for one application of stator adjustment.

  6. Flow Cytometry Analysis of Thymic Epithelial Cells and Their Subpopulations.

    PubMed

    Ohigashi, Izumi; Takahama, Yousuke

    2016-01-01

    The parenchyma of the thymus is compartmentalized into the cortex and the medulla, which are constructed by cortical thymic epithelial cells (cortical TECs, cTECs) and medullary thymic epithelial cells (mTECs), respectively. cTECs and mTECs essentially and differentially regulate the development and repertoire selection of T cells. Consequently, the biology of T cell development and selection includes the study of TECs in addition to the study of developing T cells and other hematopoietic cells including dendritic cells. In this chapter, we describe the methods for flow cytometric analysis and sorting of TECs and their subpopulations, including cTECs and mTECs. PMID:26294398

  7. Performance analysis of program execution on data flow systems

    SciTech Connect

    Jennings, S.F.; Oldehoeft, A.E.

    1983-01-01

    A Petri Net model and graph analysis technique is presented for program execution on data flow systems. The model encompasses static systems in which recurrent computations reuse the same copy of a program node and dynamic systems in which reuse of a node results in the creation of a new copy. Program execution time, assuming sufficient resources, is analysed by use of the theory of state machine decomposable petri nets and an approximation technique based on graph reduction. Numerical simulation results are presented for validation of the model for static systems. 14 references.

  8. Digital analysis and sorting of fluorescence lifetime by flow cytometry.

    PubMed

    Houston, Jessica P; Naivar, Mark A; Freyer, James P

    2010-09-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 micros, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 micros and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to approximately 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to

  9. Finite element methodology for integrated flow-thermal-structural analysis

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.; Ramakrishnan, R.; Vemaganti, G. R.

    1988-01-01

    Papers entitled, An Adaptive Finite Element Procedure for Compressible Flows and Strong Viscous-Inviscid Interactions, and An Adaptive Remeshing Method for Finite Element Thermal Analysis, were presented at the June 27 to 29, 1988, meeting of the AIAA Thermophysics, Plasma Dynamics and Lasers Conference, San Antonio, Texas. The papers describe research work supported under NASA/Langley Research Grant NsG-1321, and are submitted in fulfillment of the progress report requirement on the grant for the period ending February 29, 1988.

  10. Microscopic analysis of Hopper flow with ellipsoidal particles

    NASA Astrophysics Data System (ADS)

    Liu, Sida; Zhou, Zongyan; Zou, Ruiping; Pinson, David; Yu, Aibing

    2013-06-01

    Hoppers are widely used in process industries. With such widespread application, difficulties in achieving desired operational behaviors have led to extensive experimental and mathematical studies in the past decades. Particularly, the discrete element method has become one of the most important simulation tools for design and analysis. So far, most studies are on spherical particles for computational convenience. In this work, ellipsoidal particles are used as they can represent a large variation of particle shapes. Hopper flow with ellipsoidal particles is presented highlighting the effect of particle shape on the microscopic properties.

  11. An analysis method for two-dimensional transonic viscous flow

    NASA Technical Reports Server (NTRS)

    Bavitz, P. C.

    1975-01-01

    A method for the approximate calculation of transonic flow over airfoils, including shock waves and viscous effects, is described. Numerical solutions are obtained by use of a computer program which is discussed in the appendix. The importance of including the boundary layer in the analysis is clearly demonstrated, as well as the need to improve on existing procedures near the trailing edge. Comparisons between calculations and experimental data are presented for both conventional and supercritical airfoils, emphasis being on the surface pressure distribution, and good agreement is indicated.

  12. Analysis of turbulent cavitating flow in a micro channel

    NASA Astrophysics Data System (ADS)

    Egerer, Christian; Hickel, Stefan; Schmidt, Steffen; Adams, Nikolaus

    2013-11-01

    Associated with the collapse of vapor cavities is the formation of shock waves and liquid micro-jets, which can lead to the damage of material (cavitation erosion) or even failure of engineering devices, e.g. fuel injectors. We performed Large-Eddy Simulations of the turbulent cavitating flow through a micro channel, resembling a throttle valve commonly found in fuel injectors, at two different operating points with the aim of indentifying such erosion sensitive areas. The underlying numerical method of our flow solver INCA solves the compressible Navier-Stokes equations on a Cartesian adaptive grid for a homogeneous mixture of liquid and vapor in order to account for all relevent physical effects, i.e., compressibility of the liquid-vapor mixture as well as transitional flow and turbulence. The effect of non-represented scales on the represented ones is accounted for by the Adaptive Local Deconvolution Method, a non-linear finite volume scheme for the convective fluxes. We will present a comparison of numerical results with experiments as well as a detailed analysis of the interplay between vortical and cavitation structures. Furthermore, tools enabling the automatic detection of erosion sensitive areas will be discussed and applied.

  13. Anthropogenic phosphorus flow analysis of Hefei City, China.

    PubMed

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. PMID:20863550

  14. Analysis of electric current flow through the HTc multilayered superconductors

    NASA Astrophysics Data System (ADS)

    Sosnowski, J.

    2016-02-01

    Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.

  15. Accurate analysis of multicomponent fuel spray evaporation in turbulent flow

    NASA Astrophysics Data System (ADS)

    Rauch, Bastian; Calabria, Raffaela; Chiariello, Fabio; Le Clercq, Patrick; Massoli, Patrizio; Rachner, Michael

    2012-04-01

    The aim of this paper is to perform an accurate analysis of the evaporation of single component and binary mixture fuels sprays in a hot weakly turbulent pipe flow by means of experimental measurement and numerical simulation. This gives a deeper insight into the relationship between fuel composition and spray evaporation. The turbulence intensity in the test section is equal to 10%, and the integral length scale is three orders of magnitude larger than the droplet size while the turbulence microscale (Kolmogorov scales) is of same order as the droplet diameter. The spray produced by means of a calibrated droplet generator was injected in a gas flow electrically preheated. N-nonane, isopropanol, and their mixtures were used in the tests. The generalized scattering imaging technique was applied to simultaneously determine size, velocity, and spatial location of the droplets carried by the turbulent flow in the quartz tube. The spray evaporation was computed using a Lagrangian particle solver coupled to a gas-phase solver. Computations of spray mean diameter and droplet size distributions at different locations along the pipe compare very favorably with the measurement results. This combined research tool enabled further investigation concerning the influencing parameters upon the evaporation process such as the turbulence, droplet internal mixing, and liquid-phase thermophysical properties.

  16. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

    NASA Astrophysics Data System (ADS)

    Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

    2015-12-01

    This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

  17. Gust response analysis for cascades operating in nonuniform mean flows

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Verdon, Joseph M.

    1991-01-01

    The linearized unsteady aerodynamic response of a cascade of airfoils subjected to entropic, vortical, and acoustic gusts is analyzed. Field equations for the first-order unsteady perturbation flow are obtained by linearizing the full time-dependent mass, momentum, and energy conservation equations about a nonlinear, isentropic, and irrotational mean or steady flow. A splitting technique is then used to decompose the unsteady velocity field into irrotational and rotational parts leading to field equations for the unsteady entropy, rotational velocity, and irrotational velocity fluctuations that are coupled only sequentially. The entropic and rotational velocity fluctuations can be described in terms of the mean-flow drift and stream functions which can be computed numerically. The irrotational unsteady velocity is described by an inhomogeneous linearized potential equation which contains a source term that depends on the rotational velocity field. This equation is solved via a finite difference technique. Results are presented to indicate the status of the numerical solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described leads to very efficient predictions of cascade unsteady aerodynamics phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  18. Gust response analysis for cascades operating in nonuniform mean flows

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Verdon, Joseph M.

    1990-01-01

    The linearized unsteady aerodynamic response of a cascade of airfoils subjected to entropic, vortical, and acoustic gusts is analyzed. Field equations for the first-order unsteady perturbation flow are obtained by linearizing the full time-dependent mass, momentum, and energy conservation equations about a nonlinear, isentropic, and irrotational mean or steady flow. A splitting technique is then used to decompose the unsteady velocity field into irrotational and rotational parts leading to field equations for the unsteady entropy, rotational velocity, and irrotational velocity fluctuations that are coupled only sequentially. The entropic and rotational velocity fluctuations can be described in terms of the mean-flow drift and stream functions which can be computed numerically. The irrotational unsteady velocity is described by an inhomogeneous linearized potential equation which contains a source term that depends on the rotational velocity field. This equation is solved via a finite difference technique. Results are presented to indicate the status of the numerical solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described leads to very efficient predictions of cascade unsteady aerodynamic phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  19. Flow cytometric analysis of circulating microparticles in plasma.

    PubMed

    Orozco, Aaron F; Lewis, Dorothy E

    2010-06-01

    Microparticles, which include exosomes, micro-vesicles, apoptotic bodies and apoptotic microparticles, are small (0.05 - 3 mum in diameter), membranous vesicles that can contain DNA, RNA, miRNA, intracellular proteins and express extracellular surface markers from the parental cells. They can be secreted from intracellular multivesicular bodies or released from the surface of blebbing membranes. Circulating microparticles are abundant in the plasma of normal individuals and can be derived from circulating blood cells such as platelets, red blood cells and leukocytes as well as from tissue sources, such as endothelial and placental tissues. Elevated levels of microparticles are associated with various diseases such as thrombosis (platelet microparticles), congestive heart failure (endothelial microparticles), breast cancer patients (leukocyte microparticles) and women with preeclampsia (syncytiotrophoblast microparticles). Although microparticles can be detected by microscopy, enzyme-linked immunoassays and functional assays, flow cytometry is the preferred method because of the ability to quantitate (fluorescent bead- or flow rate-based method) and because of polychromatic capabilities. However, standardization of pre-analytical and analytical modus operandi for isolating, enumerating and fluorescent labeling of microparticles remains a challenge. The primary focus of this article is to review the preliminary steps required to optimally study circulating in vivo microparticles which include: 1) centrifugation speed used, 2) quantitation of microparticles before antibody labeling, 3) levels of fluorescence intensity of antibody-labeled microparticles, 4) polychromatic flow cytometric analysis of microparticle sub-populations and 5) use of polyclonal antibodies designed for Western blotting for flow cytometry. These studies determine a roadmap to develop microparticles as biomarkers for a variety of conditions. PMID:20235276

  20. Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Ta'asan, Shlomo

    1996-01-01

    In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.

  1. Value flow mapping: Using networks to inform stakeholder analysis

    NASA Astrophysics Data System (ADS)

    Cameron, Bruce G.; Crawley, Edward F.; Loureiro, Geilson; Rebentisch, Eric S.

    2008-02-01

    Stakeholder theory has garnered significant interest from the corporate community, but has proved difficult to apply to large government programs. A detailed value flow exercise was conducted to identify the value delivery mechanisms among stakeholders for the current Vision for Space Exploration. We propose a method for capturing stakeholder needs that explicitly recognizes the outcomes required of the value creating organization. The captured stakeholder needs are then translated into input-output models for each stakeholder, which are then aggregated into a network model. Analysis of this network suggests that benefits are infrequently linked to the root provider of value. Furthermore, it is noted that requirements should not only be written to influence the organization's outputs, but also to influence the propagation of benefit further along the value chain. A number of future applications of this model to systems architecture and requirement analysis are discussed.

  2. Portable real time analysis system for regional cerebral blood flow

    SciTech Connect

    Tiernan, T.; Entine, G.; Stump, D.A.; Prough, D.S.

    1988-02-01

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit.

  3. Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion

    NASA Astrophysics Data System (ADS)

    Mikel-Stites, Maxwell; Staples, Anne

    2014-11-01

    While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).

  4. ASRM Multi-Port Igniter Flow Field Analysis

    NASA Technical Reports Server (NTRS)

    Kania, Lee; Dumas, Catherine; Doran, Denise

    1993-01-01

    The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.

  5. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  6. Flow cytometric life cycle analysis in cellular radiation biology

    SciTech Connect

    Wood, J.C.S.

    1982-01-01

    Three approaches to flow cytometric histogram analysis were developed: (1) differential histogram analysis, (2) DNA histogram analysis, and (3) multiparameter data analysis. These techniques were applied to an important unresolved problem in radiation biology. The initial responses to irradiation of a mammalian cell which occur during the first two cell cycles following the irradiation are of considerable interest to the radiation biologist. During the first two post-irradiation cell cycles, cells which ultimately will survive repair radiation-induced damage, while some cells begin to express some of the radiation-induced nuclear and chomatin damage. Caffeine- and thymidine-treated, and untreated gamma-irradiated cell populations were studied with respect to the radiation-induced G2 delay, deficient DNA synthesis, and the appearance of cells with abnormal DNA contents. It is hypothesized that the measured deficiency in DNA synthesis observed in the first post-irradiation cell cycle may be a result of daughter cells from abnormal first post-irradiation mitoses.

  7. Center-to-center analysis of flow lineation and flow direction in Eocene welded ignimbrites, Twin Peaks, Idaho

    SciTech Connect

    Olsen, H.J. . Geology Dept.)

    1993-04-01

    Ignimbrites of the Eocene Twin Peaks caldera (Hardyman, 1982) in central Idaho's Challis Volcanic Field comprise both caldera-fill and outflow facies. The vents and mode of emplacement of these ignimbrites are problematic, because the Twin Peaks caldera has been strongly structurally disrupted, and lineations are sparse in the ignimbrites. Six oriented samples from three separate cooling units were studied using the Fry center-to-center method (Seaman and Williams, 1992) in order to determine flow lineation and flow direction of the ignimbrites inside the caldera. Flow lineation is defined in the plane parallel to flattened pumice and assumes that phenocryst are at maximum spacing in this plane. The flow lineation then coincides with the long axis of a center-to-center ellipse. Flow direction is defined in the plane perpendicular to flattening, which is inclined with respect to the flow plane and dips towards the source of flow. Four of five samples from the upper two cooling units near the thickest part of the caldera fill have well developed center-to-center strain ellipsoids producing flow lineations oriented N35W ([+-]7[degree]). The samples from the bottom cooling unit also has a well developed strain ellipsoid, but with a lineation oriented N80E. The difference in flow lineation suggests that the lowest cooling unit had a separate vent. Strain analysis of perpendicular sections are underway to establish the flow direction of the ignimbrites.

  8. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    PubMed

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge. PMID:25238428

  9. Correlation and analysis of oil flow data for an air-breathing missile model

    NASA Technical Reports Server (NTRS)

    Stoy, S. L.; Dillon, J. L.; Roman, A. P.

    1985-01-01

    This paper will present the results of an oil flow investigation on an airbreathing missile model. This oil flow study examined the flow around the model, which can be configured with both axisymmetric and two-dimensional inlets. Flow visualization analyses were conducted for both types of geometries by examining the surface flow patterns made visible by the oil flows for Mach numbers of 2.5 and 3.95. The analysis has shown the extent of flow spillage around the inlet which has helped explain the force and moment data collected during previous testing of the model. The oil flow data has also been used to develop guidelines for modeling the location of the crossflow separation line along inlet fairings. Finally, the oil flow analysis has been used to identify unique features of the boattail flow. These boattail flow characteristics have been correlated with previous oil flow analysis of noncircular body models. This paper demonstrates the use of this type of oil flow analysis in developing missile flow field analysis and aerodynamic predictions ranging from impact angle methods through Navier-Stokes methods.

  10. Aqueous semi-solid flow cell: demonstration and analysis

    SciTech Connect

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.