Science.gov

Sample records for flow improving additives

  1. Improving the cold flow properties of biodiesel with synthetic branched diester additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A technical disadvantage of biodiesel relative to petroleum diesel fuel is inferior cold flow properties. One of many methodologies to address this deficiency is employment of cold flow improver (CFI) additives. Generally composed of low-molecular weight copolymers, CFIs originally developed for pet...

  2. High Flow Addition Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.; Ansari, Irfan; Cerny, Lawrence L.; Scheiman, Daniel A.

    1994-01-01

    A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (BTDB) for p-phenylenediamine (p -PDA) in a PMR-IL formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4'- (hexafluo- roisopropylidene) -diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the cor- responding PMR-11 polyimides. Long-term isothermal aging studies showed that BTDB- based 12F resins exhibited comparable thermo-oxidative stability to P-PDA based PMR-11 polyimides. The noncoplanar 2- and 2'-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal sta- bility of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343 C (650 F).

  3. Vildagliptin in addition to metformin improves retinal blood flow and erythrocyte deformability in patients with type 2 diabetes mellitus – results from an exploratory study

    PubMed Central

    2013-01-01

    Numerous rheological and microvascular alterations characterize the vascular pathology in patients with type 2 diabetes mellitus (T2DM). This study investigated effects of vildagliptin in comparison to glimepiride on retinal microvascular blood flow and erythrocyte deformability in T2DM. Fourty-four patients with T2DM on metformin monotherapy were included in this randomized, exploratory study over 24 weeks. Patients were randomized to receive either vildagliptin (50 mg twice daily) or glimepiride individually titrated up to 4 mg in addition to ongoing metformin treatment. Retinal microvascular blood flow (RBF) and the arteriolar wall to lumen ratio (WLR) were assessed using a laser doppler scanner. In addition, the erythrocyte elongation index (EI) was measured at different shear stresses using laserdiffractoscopy. Both treatments improved glycaemic control (p < 0.05 vs. baseline; respectively). While only slight changes in RBF and the WLR could be observed during treatment with glimepiride, vildagliptin significantly increased retinal blood flow and decreased the arterial WLR (p < 0.05 vs. baseline respectively). The EI increased during both treatments over a wide range of applied shear stresses (p < 0.05 vs. baseline). An inverse correlation could be observed between improved glycaemic control (HbA1c) and EI (r = −0.524; p < 0.0001) but not with the changes in retinal microvascular measurements. Our results suggest that vildagliptin might exert beneficial effects on retinal microvascular blood flow beyond glucose control. In contrast, the improvement in erythrocyte deformability observed in both treatment groups, seems to be a correlate of improved glycaemic control. PMID:23565740

  4. Novel additives to retard permeable flow

    SciTech Connect

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  5. Design and additive manufacture for flow chemistry.

    PubMed

    Capel, Andrew J; Edmondson, Steve; Christie, Steven D R; Goodridge, Ruth D; Bibb, Richard J; Thurstans, Matthew

    2013-12-01

    We review the use of additive manufacturing (AM) as a novel manufacturing technique for the production of milli-scale reactor systems. Five well-developed additive manufacturing techniques: stereolithography (SL), multi-jet modelling (MJM), selective laser melting (SLM), laser sintering (LS) and fused deposition modelling (FDM) were used to manufacture a number of miniaturised reactors which were tested using a range of organic and inorganic reactions. PMID:24100659

  6. Improving ED efficiency to capture additional revenue.

    PubMed

    Mandavia, Sujal; Samaniego, Loretta

    2016-06-01

    An increase in the number of patients visiting emergency departments (EDs) presents an opportunity for additional revenue if hospitals take four steps to optimize resources: Streamline the patient pathway and reduce the amount of time each patient occupies a bed in the ED. Schedule staff according to the busy and light times for patient arrivals. Perform registration and triage bedside, reducing initial wait times. Create an area for patients to wait for test results so beds can be freed up for new arrivals. PMID:27451568

  7. Electrolyte additive for improved battery performance

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1989-04-04

    In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

  8. Mitigating cold flow problems of biodiesel: Strategies with additives

    NASA Astrophysics Data System (ADS)

    Mohanan, Athira

    The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most

  9. Improvement of fuel properties of cottonseed oil methyl esters with commercial additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low temperature operability and oxidative stability of cottonseed (Gossypium hirsutum L.) oil methyl esters (CSME) were improved with addition of commercial additives. Four commercial anti-gel additives: Technol® B100 Biodiesel Cold Flow Improver, Gunk® Premium Diesel Fuel Anti-Gel, Heet® Dies...

  10. Difluorocarbene Addition to Alkenes and Alkynes in Continuous Flow.

    PubMed

    Rullière, Pauline; Cyr, Patrick; Charette, André B

    2016-05-01

    The first in-flow difluorocarbene generation and addition to alkenes and alkynes is reported. The application of continuous flow technology allowed for the controlled generation of difluorocarbene from TMSCF3 and a catalytic quantity of NaI. The in situ generated electrophilic carbene reacts smoothly with a broad range of alkenes and alkynes, allowing the synthesis of the corresponding difluorocyclopropanes and difluorocyclopropenes. The reaction is complete within a 10 min residence time at high reaction concentrations. With a production flow rate of 1 mmol/min, continuous flow chemistry enables scale up of this process in a green, atom-economic, and safe manner. PMID:27119573

  11. Simulating heat addition via mass addition in constant area compressible flows

    NASA Astrophysics Data System (ADS)

    Heiser, W. H.; McClure, W. B.; Wood, C. W.

    1995-01-01

    A study conducted demonstrated the striking similarity between the influence of heat addition and mass addition on compressible flows. These results encourage the belief that relatively modest laboratory experiments employing mass addition can be devised that will reproduce the leading phenomena of heat addition, such as the axial variation of properties, choking, and wall-boundary-layer separation. These suggest that some aspects of the complex behavior of dual-mode ramjet/scramjet combustors could be experimentally evaluated or demonstrated by replacing combustion with less expensive, more easily controlled, and safer mass addition.

  12. Precessing rotating flows with additional shear: Stability analysis

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Ω0 ) and the additional “precessing” Coriolis force (with angular velocity -ɛΩ0 ), normal to it. A “weak” shear flow, with rate 2ɛ of the same order of the Poincaré “small” ratio ɛ , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler’s equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov’s [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré’s [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small ɛ . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet’s theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small ɛ , but significant differences are obtained regarding growth rates and widths of instability bands, if larger ɛ values, up to 0.2, are considered. Finally, both flow cases

  13. Rinse trough with improved flow

    DOEpatents

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  14. Rinse trough with improved flow

    DOEpatents

    O'Hern, Timothy J.; Grasser, Thomas W.

    1998-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.

  15. Additional Observations for Quantifying Non-Darcian Flow (Invited)

    NASA Astrophysics Data System (ADS)

    Halford, K. J.

    2009-12-01

    Simulating non-Darcian flow in porous medium requires mathematical models that are mathematically more complex than Darcy's law and therefore require additional data for field-scale and regional characterization. Non-Darcian flow is affected by fluid velocity so flow logs and other geophysical tools are needed to identify flowing intervals and characterize mean pore diameter or fracture aperture. Flow-log interpretation often is complicated by vertical flow induced within and near the well by local contrasts in hydraulic conductivity. An effective wellbore analysis tool for simulating and evaluating complex well-aquifer system interaction is AnalyzeHOLE. In this analysis tool, the pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Non-Darcian flow occurs primarily in highly transmissive aquifers where environmental fluctuations can exceed drawdowns from pumping during aquifer tests. Attempts to accurately quantify drawdowns in highly transmissive aquifers must include a means to remove non-pumping fluctuations. Drawdown can be differentiated from environmental fluctuations by developing a synthetic response that simulates non-pumping water-level fluctuations during aquifer tests. The synthetic water-level response sums individual time-series of barometric pressure, tidal potential, and background water levels. Synthetic water levels are fit to measured water levels during unpumped conditions by adjusting the amplitude and phase of each component time series. Drawdowns of 0.01 m can be detected where environmental water-level fluctuations approach 1 m with the synthetic water-level approach, but continuous records are needed.

  16. Improved Ultrasonic Transducer For Measuring Cryogenic Flow

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis

    1991-01-01

    Improved ultrasonic transducer used to measure flow of cryogenic fluid. Includes wedge made nonintrusive by machining it out of bulk material of duct carrying fluid. Skewed surfaces of wedge suppress standing waves, thus reducing ringing and increasing signal-to-noise ratio. Increases accuracy of measurements of times of arrival of ultrasonic pulses, from which times flow inferred.

  17. Improved Panel-Method/Potential-Flow Code

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1991-01-01

    Panel code PMARC (Panel Method Ames Research Center) numerically simulates flow field around complex three-dimensional bodies, such as complete aircraft models. Based on potential-flow theory. Written in FORTRAN 77, with exception of namelist extension used for input. Structure facilitates addition of new features to code and tailoring of code to specific problems and computer hardware constraints.

  18. Resin additive improves performance of high-temperature hydrocarbon lubricants

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Loomis, W. R.

    1971-01-01

    Paraffinic resins, in high temperature applications, improve strength of thin lubricant film in Hertzian contacts even though they do not increase bulk oil viscosity. Use of resin circumvents corrosivity and high volatility problems inherent with many chemical additives.

  19. Improvement of GRCop-84 Through the Addition of Zirconium

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Lerch, Bradley A.

    2012-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has excellent strength, creep resistance, low cycle fatigue (LCF) life and stability at elevated temperatures. It suffers in comparison to many commercially available precipitation-strengthened alloys below 500 C (932 F). It was observed that the addition of Zr consistently improved the mechanical properties of Cu-based alloys especially below 500 C. In an effort to improve the low temperature properties of GRCop-84, 0.35 wt.% Zr was added to the alloy. Limited tensile, creep, and LCF testing was conducted to determine if improvements occur. The results showed some dramatic increases in the tensile and creep properties at the conditions tested with the probability of additional improvements being possible through cold working. LCF testing at room temperature did not show an improvement, but improvements might occur at elevated temperatures.

  20. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  1. The improvement of rechargeable lithium battery electrolyte performance with additives

    NASA Technical Reports Server (NTRS)

    Dominey, L. A.; Goldman, J. L.

    1990-01-01

    The deliberate introduction of additives like 2-methylfuran (2-MeF) is known to improve Li cycleability in cyclic ether electrolytes. The authors found that the proclivity of 2-MeF to polymerize in the bulk electrolyte or on a TiS2 cathode was inhibited by the addition of reduced oxygen species, such as O2- and OH-. Additionally, the polymerization of tetrahydrofuran and dioxolane and the destructive processes initiated by AsF6- decomposition to AsF5 and AsF3 were inhibited by the introduction of reduced oxygen species, particularly OH- at the 10-ppm to 100-ppm level.

  2. Improving Ecological Response Monitoring of Environmental Flows

    NASA Astrophysics Data System (ADS)

    King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  3. Additional longitudinal displacement for contaminant dispersion in wetland flow

    NASA Astrophysics Data System (ADS)

    Fu, Xudong; Gao, Ran; Wu, Zi

    2016-01-01

    When there is a sudden and uniform release of contaminant over the depth of wetland, the centroid of resulted solute cloud will travel downstream at the cross-sectional mean velocity of the flow. However, if the initial release is not uniform, there will be an additional longitudinal displacement of the centroid, which is important for predicting the concentration distribution but cannot be revealed by the classical one-dimensional Taylor dispersion model. For the most typical case of an initial point source release at the free-water-surface of the wetland, an idealized case modeling accidental leakage of toxic chemicals in waters, in the present paper we analytically deduce the longitudinal displacement by the method of concentration moment. The result is then incorporated in the analytical solutions of concentration distribution, which are further verified by our numerical simulations. The effects of the longitudinal displacement on the concentration distribution are analyzed in detail. It is shown that without considering the displacement, for vertical planes close to the edges of the contaminant cloud, the analytical solution can over- or under-estimate the vertical distribution of concentration for over 20% of the maximum concentration in the plane even at a large dimensionless time of t∗ = 5 . The longitudinal displacement is shown to decrease with the increase of the important damping factor α, which characterizes the effects of vegetation in wetlands. A simple application is given at the end of this paper to illustrate the evolution of the additional longitudinal displacement.

  4. Melt Rate Improvement for DWPF MB3: Sugar Addition Test

    SciTech Connect

    Stone, M.E.

    2001-06-20

    In order to meet certain production goals, the Defense Waste Processing Facility (DWPF) has focused on implementing a more temporally efficient method of waste vitrification. Changes in frit composition and alterations in the feed preparation process were investigated to determine if melt rate could be improved. The addition of sugar as an alternative reductant to formic acid was investigated for Macrobatch 3 (MB3).

  5. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  6. CEOs say patient deposits improve cash flow.

    PubMed

    Anderson, H J

    1991-02-20

    CEOs say it makes good business sense to require patients to make cash deposits toward their bills prior to admission, because improved cash flow is vital to financially strapped hospitals. But hospitals that require cash deposits should also be aware of the sensitive public relations issues involved, experts caution. PMID:1993531

  7. Improvement of modal scaling factors using mass additive technique

    NASA Technical Reports Server (NTRS)

    Zhang, Qiang; Allemang, Randall J.; Wei, Max L.; Brown, David L.

    1987-01-01

    A general investigation into the improvement of modal scaling factors of an experimental modal model using additive technique is discussed. Data base required by the proposed method consists of an experimental modal model (a set of complex eigenvalues and eigenvectors) of the original structure and a corresponding set of complex eigenvalues of the mass-added structure. Three analytical methods,i.e., first order and second order perturbation methods, and local eigenvalue modification technique, are proposed to predict the improved modal scaling factors. Difficulties encountered in scaling closely spaced modes are discussed. Methods to compute the necessary rotational modal vectors at the mass additive points are also proposed to increase the accuracy of the analytical prediction.

  8. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  9. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Vijaya, Rani; Zhu, Likun; Kim, Youngsik

    2015-02-01

    Porous LiMn0.6Fe0.4PO4 (LMFP) is synthesized by a modified sol-gel process. Highly conductive LMFP due to uniform dispersion of carbon throughout LMFP particles are achieved by the addition of sucrose as an additional carbon source. The LMFP obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer on the surface. The initial discharge capacity and energy density of the LMFP cathode is 152 mAh g-1 and 570 Wh kg-1, respectively, at 0.1C current rate. The combined effect of high porosity and high electrical conductivity lead to fast lithium ion diffusion and enhance initial capacity compared to materials prepared by the general sol-gel method. However, with conventional electrolyte (1M LiPF6 in EC/DMC) poor cycle performance is observed due to HF attack. To improve the cycle stability we add tris (trimethylsily) phosphite (TMSP) as an additive in the electrolyte which dramatically improves cycle stability and rate-capability.

  10. Efficient Improvement of Silage Additives by Using Genetic Algorithms

    PubMed Central

    Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.

    2000-01-01

    The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage

  11. The Addition of Graphene to Polymer Coatings for Improved Weathering

    DOE PAGESBeta

    Nuraje, Nurxat; Khan, Shifath I.; Misak, Heath; Asmatulu, Ramazan

    2013-01-01

    Graphene nanoflakes in different weight percentages were added to polyurethane top coatings, and the coatings were evaluated relative to exposure to two different experimental conditions: one a QUV accelerated weathering cabinet, while the other a corrosion test carried out in a salt spray chamber. After the exposure tests, the surface morphology and chemical structure of the coatings were investigated via atomic force microscopy (AFM) and Fourier transform infrared (FTIR) imaging. Our results show that the addition of graphene does in fact improve the resistance of the coatings against ultraviolet (UV) degradation and corrosion. It is believed that this process willmore » improve the properties of the polyurethane top coating used in many industries against environmental factors.« less

  12. Improvement of cement concrete strength properties by carbon fiber additives

    NASA Astrophysics Data System (ADS)

    Nevsky, Andrey; Kudyakov, Konstantin; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The paper presents the results of studies of fiber-reinforced concrete with carbon fibers. The effectiveness of carbon fibers uniform distribution in the concrete was obtained as a result of its preliminary mechanical mixing in water solution with chemical additives. Additives are to be used in the concrete technology as modifiers at initial stage of concrete mix preparing. The technology of preparing of fiber-reinforced concrete mix with carbon fibers is developed. The superplasticizer is based on ether carboxylates as a separator for carbon fibers. The technology allows increasing of concrete compressive strength up to 43.4% and tensile strength up to 17.5% as well as improving stability of mechanical properties.

  13. Additional Improvements to the NASA Lewis Ice Accretion Code LEWICE

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Bidwell, Colin S.

    1995-01-01

    Due to the feedback of the user community, three major features have been added to the NASA Lewis ice accretion code LEWICE. These features include: first, further improvements to the numerics of the code so that more time steps can be run and so that the code is more stable; second, inclusion and refinement of the roughness prediction model described in an earlier paper; third, inclusion of multi-element trajectory and ice accretion capabilities to LEWICE. This paper will describe each of these advancements in full and make comparisons with the experimental data available. Further refinement of these features and inclusion of additional features will be performed as more feedback is received.

  14. Non toxic additives for improved fabric filter performance

    SciTech Connect

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G.

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  15. Modifying shale oil to improve flow characteristics

    SciTech Connect

    Seitzer, W.H.; Lovell, P.F.

    1982-05-01

    Shale oil, which forms a viscous, wax slurry below 25 C, was treated in several different ways to try to improve its flow characteristics as measured in a concentric cylinder viscometer. Removing the wax does not greatly improve the pumpability of the oil. Hydrotreatment of the whole oil to take out nitrogen, sulfur, and oxygen can lower the viscosity by a factor of five or more, even though the pour point is not greatly affected. Apparently hydrogenolysis of the nitrogen, sulfur, and oxygen lowers the molecular weight of the oil without much modification of the paraffinic wax. The pour point of the shale oil can be decreased with various commercial pour improvers. Sometimes an accompanying drop in viscosity is observed, but most of this decrease is not stable to shear in the viscometer.

  16. Improved engineering models for turbulent wall flows

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Zou, Hong-Yue; Hussain, Fazle

    2015-11-01

    We propose a new approach, called structural ensemble dynamics (SED), involving new concepts to describe the mean quantities in wall-bounded flows, and its application to improving the existing engineering turbulence models, as well as its physical interpretation. First, a revised k - ω model for pipe flows is obtained, which accurately predicts, for the first time, both mean velocity and (streamwise) kinetic energy for a wide range of the Reynolds number (Re), validated by Princeton experimental data. In particular, a multiplicative factor is introduced in the dissipation term to model an anomaly in the energy cascade in a meso-layer, predicting the outer peak of agreeing with data. Secondly, a new one-equation model is obtained for compressible turbulent boundary layers (CTBL), building on a multi-layer formula of the stress length function and a generalized temperature-velocity relation. The former refines the multi-layer description - viscous sublayer, buffer layer, logarithmic layer and a newly defined bulk zone - while the latter characterizes a parabolic relation between the mean velocity and temperature. DNS data show our predictions to have a 99% accuracy for several Mach numbers Ma = 2.25, 4.5, improving, up to 10%, a previous similar one-equation model (Baldwin & Lomax, 1978). Our results promise notable improvements in engineering models.

  17. Improving properties of Mg with Al–Cu additions

    SciTech Connect

    Rashad, Muhammad; Pan, Fusheng; Asif, Muhammad; Hussain, Shahid; Saleem, Muhammad

    2014-09-15

    The present work reports improvement in tensile properties of the Mg matrix reinforced with micron-sized copper–aluminum particulate hybrids. The Al–Cu particulate hybrids were incorporated into the Mg matrix through powder metallurgy method. The synthesized alloys exhibited homogeneously dispersed Mg{sub 2}Cu particles in the matrix, therefore leading to a 110% increase in yield strength (221 MPa) and a 72% enhancement in ultimate tensile strength (284 MPa) by addition of 1.0 wt.%Al–0.6 wt.%Cu particle hybrids. Optical microscopy, scanning election microscopy, transmission electron microscopy and X-ray diffraction were used to investigate the microstructure and intermetallic phases of the synthesized alloys. - Highlights: • Mg matrix is reinforced with Al–Cu particulate hybrids. • Powder metallurgic method is used to fabricate the alloys. • Tensile strength and ductility were increased simultaneously.

  18. Turbulent flow of oil-water emulsions with polymer additives

    NASA Astrophysics Data System (ADS)

    Manzhai, V. N.; Monkam Clovis Le Grand, Monkam; Abdousaliamov, A. V.

    2014-08-01

    The article outlines direct and reverse oil-water emulsions. Microphotography study of these emulsions was carried out. The effect of water-soluble and oil soluble polymers on the emulsion structure and their turbulent flow velocity in cylindrical channel was investigated. It has been experimentally proven that if the fluid being transported is not homogeneous, but a two-phase oil-water emulsion, only the polymer that is compatible with dispersion medium and capable of dissolving in this medium can reduce the hydrodynamic resistance of the fluid flow. Thus, the resistance in direct emulsions can be reduced by water- soluble polyacrylamide, while oil-soluble polyhexene can be applied for reverse emulsions.

  19. The improvement of the Pluto orbit using additional new data

    NASA Astrophysics Data System (ADS)

    Girdiuk, A.

    2015-08-01

    Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.

  20. Nitrogen Flow in a Nanonozzle with Heat Addition

    NASA Astrophysics Data System (ADS)

    Averkin, Sergey; Zhang, Zetian; Gatsonis, Nikolaos

    2012-11-01

    The nitrogen flow in conical nanonozzles at atmospheric pressures are investigated using a three-dimensional unstructured direct simulation Monte Carlo (U3DSMC) method. The DSMC simulations are performed in computational domains that feature the plenum, the nanonozzle region and the external plume expansion region. The inlet and outlet boundaries are modeled by the Kinetic-Moment (KM) boundary conditions method. This methodology is based on the local one dimensional inviscid (LODI) formulation used in compressible (continuous) flow computations. The cross section for elastic collisions is based on the variable hard sphere (VHS) model. The Larsen-Borgnakke (L-B) model is used to simulate the exchange of the internal energy in the collision pair. Solid surfaces are modeled as being either diffuse or specularly reflecting. The effects of Knudsen number, aspect ratio, and nanonozzle scale on the heat transfer are investigating by ranging the throat diameters from 100-500 nm, exit diameter from 100-1000 nm, stagnation pressure from 1-10atm, and wall temperature from 300K-500K. Finite backpressure and vacuum conditions are considered. Macroscopic flow variables are obtained and compared with continuum predictions in order to elucidate the impacts of nanoscale.

  1. Improved numerical method for subchannel cross-flow calculations

    SciTech Connect

    Kaya, S.; Anghaie, S.

    1986-01-01

    COBRA-OSU is a fast running computer code for coupled kinetic and thermal-hydraulic analysis of nuclear reactor core subchannels, currently under development at Oregon State University. This code is a modified version of COBRA-IV with two major improved features. First, COBRA-OSU uses the Gaussian elimination method instead of Gauss-Seidel iteration for subchannel cross-flow calculation. Second, COBRA-OSU has an additional model for regionwise point reactor kinetics which includes all major feedback reactivity effects on calculation of the axial power profile during the course of a transient. This paper summarizes the improved numerical features of the COBRA-OSU code.

  2. Improved dental adhesive formulations based on reactive nanogel additives.

    PubMed

    Morães, R R; Garcia, J W; Wilson, N D; Lewis, S H; Barros, M D; Yang, B; Pfeifer, C S; Stansbury, J W

    2012-02-01

    Current challenges in adhesive dentistry include over-hydrophilic bonding formulations, which facilitate water percolation through the hybrid layer and result in unreliable bonded interfaces. This study introduces nanogel-modified adhesives as a way to control the material's hydrophobic character without changing the basic monomer formulation (keeping water-chasing capacity and operatory techniques unaltered). Nanogel additives of varied hydrophobicity were synthesized in solution, rendering 10- to 100-nm-sized particles. A model BisGMA/HEMA solvated adhesive was prepared (control), to which reactive nanogels were added. The increase in adhesive viscosity did not impair solvent removal by air-thinning. The degree of conversion in the adhesive was similar between control and nanogel-modified materials, while the bulk dry and, particularly, the wet mechanical properties were significantly improved through nanogel-based network reinforcement and reduced water solubility. As preliminary validation of this approach, short-term micro-tensile bond strengths to acid-etched and primed dentin were significantly enhanced by nanogel inclusion in the adhesive resins. PMID:22019910

  3. Viscosity index improver-dispersant additive useful in oil compositions

    SciTech Connect

    Gardiner, J.B.; Dick, M.N.

    1988-10-25

    A process comprising grafting in the substantial absence of solvent a hydrocarbon polymer of C/sub 2/ to C/sub 28/ olefin, the polymer having a number average molecular weight in the range of about 5,000 to 500,000 with an unsaturated material selected from the group consisting of: (A) ethylenically unsaturated C/sub 3/ to C/sub 10/ carboxylic acid having 1 to 2 carboxylic acid groups or an anhydride group, and (B) nitrogen-containing ethylenically unsaturated monomers containing 6 to 30 carbon atoms and 1 to 4 nitrogen atoms, in the presence of a free radical initiator and a chain stopping agent comprising at least one member selected from the group consisting of alphatic mercaptans having 4 to 24 carbon atoms, deithyl hydroxyl amine cumene and phenols, the grafting being conducted in a manner and under conditions sufficient to form a substantially oil soluble graft copolymer useful as a viscosity index improver-dispersant additive for lubricating oil compositions.

  4. Improved Dental Adhesive Formulations Based on Reactive Nanogel Additives

    PubMed Central

    Morães, R.R.; Garcia, J.W.; Wilson, N.D.; Lewis, S.H.; Barros, M.D.; Yang, B.; Pfeifer, C.S.; Stansbury, J.W.

    2012-01-01

    Current challenges in adhesive dentistry include over-hydrophilic bonding formulations, which facilitate water percolation through the hybrid layer and result in unreliable bonded interfaces. This study introduces nanogel-modified adhesives as a way to control the material’s hydrophobic character without changing the basic monomer formulation (keeping water-chasing capacity and operatory techniques unaltered). Nanogel additives of varied hydrophobicity were synthesized in solution, rendering 10- to 100-nm-sized particles. A model BisGMA/HEMA solvated adhesive was prepared (control), to which reactive nanogels were added. The increase in adhesive viscosity did not impair solvent removal by air-thinning. The degree of conversion in the adhesive was similar between control and nanogel-modified materials, while the bulk dry and, particularly, the wet mechanical properties were significantly improved through nanogel-based network reinforcement and reduced water solubility. As preliminary validation of this approach, short-term micro-tensile bond strengths to acid-etched and primed dentin were significantly enhanced by nanogel inclusion in the adhesive resins. PMID:22019910

  5. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  6. Mars-GRAM 2010: Additions and Resulting Improvements

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Burns, K. Lee

    2013-01-01

    factors. The adjustment factors generated by this process had to satisfy the gas law as well as the hydrostatic relation and are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The greatest adjustments are made at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km altitude as well as better agreement with MGS, ODY and MRO data at approximately 90-130 km altitude. Improved Mars-GRAM atmospheric simulations for various locations, times and dust conditions on Mars will be presented at the workshop session. The latest results validating Mars-GRAM 2010 versus Mars Climate Sounder data will also be presented. Mars-GRAM 2010 updates have resulted in improved atmospheric simulations which will be very important when beginning systems design, performance analysis, and operations planning for future aerocapture, aerobraking or landed missions to Mars.

  7. Improvements in floating point addition/subtraction operations

    DOEpatents

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  8. Enhancing the linear flow of fine granules through the addition of elongated particles

    PubMed Central

    Guo, Zhiguo; Chen, Xueli; Xu, Yang; Liu, Haifeng

    2015-01-01

    Sandglasses have been used to record time for thousands of years because of their constant flow rates; however, they now are drawing attention for their substantial scientific importance and extensive industrial applications. The presence of elongated particles in a binary granular system is believed to result in undesired flow because their shape implies a larger resistance to flow. However, our experiments demonstrate that the addition of elongated particles can substantially reduce the flow fluctuation of fine granules and produce a stable linear flow similar to that in an hourglass. On the basis of experimental data and previous reports of flow dynamics, we observed that the linear flow is driven by the “needle particle effect,” including flow orientation, reduced agglomeration, and local perturbation. This phenomenon is observed in several binary granular systems, including fine granules and secondary elongated particles, which demonstrates that our simple method can be widely applied to the accurate measurement of granular flows in industry. PMID:26551736

  9. Improved visualization of flow field measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1991-01-01

    A capability is proposed that makes it feasible to apply to measured flow field data the visualization tools developed to display numerical solutions for computational fluid dynamic problems. The measurement monitor surface (MMS) methodology was used for the analysis of flow field measurements within a low-aspect-ratio transonic axial-flow fan rotor acquired with two-dimensional laser anemometry. It is shown that the MMS method may be utilized to generate input for the multidimensional processing and analytical tools developed for numerical flow field simulation data. Thus an experimenter utilizing an interactive graphics program could illustrate scalar quantities such as Mach number by profiles, contour lines, carpet plots, and surfaces employing various color intensities. Also, flow directionality can be shown by the display of vector fields and particle traces.

  10. Similarity between particles and bubbles as micro-additives in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Mito, Yoichi

    2015-11-01

    The acceleration of turbulent fluid flow in a vertical channel by the use of a uniform distribution of microparticles and of microbubbles has been examined by using a direct numerical simulation to calculate the fluid velocities seen by the additives. The flows considered are the downward gas flow to which solid particles of density ratio of 103 are added and the upward liquid flow to which bubbles of density ratio of 10-3 are added. Both additives, ranging in volume fraction up to 2 ×10-3 , are represented as solid spheres. The Froude numbers are chosen so as to have similar effects in both flows by the use of the same volume fraction of the additives. The fluid-phase momentum balance, integrated over the domain, is used to examine the changes in drag, wall friction and averaged feedback force of the non-stationary flow models. The feedback force per volume fraction is unchanged in the bubble flow. It decreases with increasing volume fraction and inertia of particles in the particle flow. Similarities between the two disperse flows are seen at small times for small volume fractions. Drag is reduced by both additives. The amount of reduced drag decreases with time at large times in the bubble flow, due to the increases in the accumulation of bubbles above walls. This work was supported by JSPS KAKENHI Grant Number 26420097.

  11. Intraperitoneal Resuscitation Improves Intestinal Blood Flow Following Hemorrhagic Shock

    PubMed Central

    Zakaria, El Rasheid; Garrison, R. Neal; Spain, David A.; Matheson, Paul J.; Harris, Patrick D.; Richardson, J. David

    2003-01-01

    Objective To study the effects of peritoneal resuscitation from hemorrhagic shock. Summary Background Data Methods for conventional resuscitation (CR) from hemorrhagic shock (HS) often fail to restore adequate intestinal blood flow, and intestinal ischemia has been implicated in the activation of the inflammatory response. There is clinical evidence that intestinal hypoperfusion is a major factor in progressive organ failure following HS. This study presents a novel technique of peritoneal resuscitation (PR) that improves visceral perfusion. Methods Male Sprague-Dawley rats were bled to 50% of baseline mean arterial pressure (MAP) and resuscitated with shed blood plus 2 equal volumes of saline (CR). Groups were 1) sham, 2) HS + CR, and 3) HS + CR + PR with a hyperosmolar dextrose-based solution (Delflex 2.5%). Groups 1 and 2 had normal saline PR. In vivo videomicroscopy and Doppler velocimetry were used to assess terminal ileal microvascular blood flow. Endothelial cell function was assessed by the endothelium-dependent vasodilator acetylcholine. Results Despite restored heart rate and MAP to baseline values, CR animals developed a progressive intestinal vasoconstriction and tissue hypoperfusion compared to baseline flow. PR induced an immediate and sustained vasodilation compared to baseline and a marked increase in average intestinal blood flow during the entire 2-hour post-resuscitation period. Endothelial-dependent dilator function was preserved with PR. Conclusions Despite the restoration of MAP with blood and saline infusions, progressive vasoconstriction and compromised intestinal blood flow occurs following HS/CR. Hyperosmolar PR during CR maintains intestinal blood flow and endothelial function. This is thought to be a direct effect of hyperosmolar solutions on the visceral microvessels. The addition of PR to a CR protocol prevents the splanchnic ischemia that initiates systemic inflammation. PMID:12724637

  12. Coriolis Force Mass-Flow Meter Composed of a Straight Pipe and an Additional Resonance-Vibrator

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hirohide; Tomikawa, Yoshiro

    1993-05-01

    This paper deals with a new construction for a mass-flow meter using Coriolis force, and its basic experimental results. Some Coriolis force mass-flow meters, proposed up to now, are of a twin construction of, for example, a U-type pipe or a straight-type pipe, where the mass-flow is determined by measuring the relative displacement between the pipes. Therefore, their structure is too complex. To improve this situation, the authors propose a new mass-flow meter using one straight pipe, together with an additional flexural resonance-vibrator. The experimental results prove that a mass-flow meter can be realized by such a simple construction as dealt with here.

  13. Improving the assessment of instream flow needs for fish populations

    SciTech Connect

    Sale, M.J. ); Otto, R.G. and Associates, Arlington, VA )

    1991-01-01

    Instream flow requirements are one of the most frequent and most costly environmental issues that must be addressed in developing hydroelectric projects. Existing assessment methods for determining instream flow requirements have been criticized for not including all the biological response mechanisms that regulate fishery resources. A new project has been initiated to study the biological responses of fish populations to altered stream flows and to develop improved ways of managing instream flows. 21 refs., 3 figs.

  14. Improved dual flow aluminum hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart L.; Matthews, Donna

    1993-11-01

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  15. Flow reduction in high-flow arteriovenous fistulas improve cardiovascular parameters and decreases need for hospitalization.

    PubMed

    Balamuthusamy, Saravanan; Jalandhara, Nishant; Subramanian, Anand; Mohanaselvan, Arvindselvan

    2016-07-01

    High output heart failure (HF) and pulmonary hypertension have been demonstrated in patients with prevalent arteriovenous (AV) fistulas. Fistulas with flow >2000 mL/minutes are more likely to induce changes in cardiac geometry and pulmonary artery pressure. The effects of reducing flow in AV access and its implications on HF decompensation and hospitalizations have not been studied. Retrospective analysis of 12 patients who needed hospitalization for acute Congestive Heart Failure (CHF) decompensation with AV access flow of 2 L/minutes (as defined by Kidney Disease Outcomes Quality Initiative (KDOQI)) or more were included in the study. All the patients underwent banding of their inflow at the anastomosis with perioperative access flow measurement. Follow-up period was 6 months. 2D echo was done at 6 months postbanding in addition to access flow and clinical evaluation. Complete data was available for all the 12 patients. Study data was collected on all the 12 patients. Mean age was 64.7 years. The mean access flow pre and postbanding were 3784 mL/minutes and 1178 mL/minutes, respectively (P < 0.001). Eighty percent of the patients had diabetes and 41% had coronary artery disease. There was a statistically significant decrease in cardiac output (pre = 7.06 L/minutes, post = 6.47 L/minutes P = 0.03), pulmonary systolic pressure (pre = 54 mmHg, post = 44 mmHg P = 0.02), left ventricular mass index (LVMI) (pre = 130 g/m(2) , post = 125 g/m(2) P = 0.006) and need for rehospitalization for CHF decompensation. The New York Heart Association (NYHA) staging improved by 1 stage postbanding (P = 0.002). The hospitalization rate was 3.75 ± 1.2 in the 6 months before banding and was decreased to 1.08 ± 1.2 (P = 0.002) postbanding. The hemoglobin level, predialysis systolic blood pressure, calcium phosphorous product and the use of Renin Angiotensin Aldosterone System (RAAS) blockade agents and calcium channel blockers

  16. Improving chemical synthesis using flow reactors.

    PubMed

    Wiles, Charlotte; Watts, Paul

    2007-11-01

    Owing to the competitive nature of the pharmaceutical industry, researchers involved in lead compound generation are under continued pressure to identify and develop promising programmes of research in order to secure intellectual property. The potential of a compound for therapeutic development depends not only on structural complexity, but also on the identification of synthetic strategies that will enable the compound to be prepared on the desired scale. One approach that is of present interest to the pharmaceutical industry is the use of continuous flow reactors, with the flexible nature of the technology being particularly attractive as it bridges the changes in scale required between the initial identification of a target compound and its subsequent production. Based on these factors, a significant programme of research is presently underway into the development of flow reactors as tools for the synthetic chemist, with the transfer of many classes of reaction successfully reported to date. This article focuses on the application of continuous flow methodology to drug discovery and the subsequent production of pharmaceuticals. PMID:23484600

  17. Aerosil for the improvement of the flow behavior of powdered substances

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The tendency of powdered substances to agglomerate and stick together is studied. The highly dispersed silicic acid Aerosil (tradename) is studied as an agent to improve the free flowing characteristics of powdered materials. It was concluded that the use of Aerosil 200, Aerosil R 972, aluminum oxide C and sylicic acid D 17 as flow agents caused broad improvements in the flow properties of powders. Additionally, the sifting, dispersion, and spray behavior, as well as the grinding and air separation characteristics of powders were improved.

  18. Improved flow cytometer measurement of binding assays

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.

    1984-05-01

    A method of measuring binding assays is carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also known quantity of smaller particles with a coating of binder reactant. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating.

  19. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  20. Performance of Improved High-Order Filter Schemes for Turbulent Flows with Shocks

    NASA Technical Reports Server (NTRS)

    Kotov, Dmitry Vladimirovich; Yee, Helen M C.

    2013-01-01

    The performance of the filter scheme with improved dissipation control ? has been demonstrated for different flow types. The scheme with local ? is shown to obtain more accurate results than its counterparts with global or constant ?. At the same time no additional tuning is needed to achieve high accuracy of the method when using the local ? technique. However, further improvement of the method might be needed for even more complex and/or extreme flows.

  1. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  2. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    SciTech Connect

    Washington University- St. Louis: Muthanna Al-Dahhan E-mail: muthanna@wustl.edu Rajneesh Varma Khursheed Karim Mehul Vesvikar Rebecca Hoffman Oak Ridge National Laboratory: David Depaoli, Email: depaolidw@ornl.gov Thomas Klasson Alan L. Wintenberg Charles W Alexander Lloyd Clonts Iowa Energy Center Norm Olson Email: nolson@energy.iastate.edu

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately

  3. Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle

    NASA Technical Reports Server (NTRS)

    Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.

    2002-01-01

    As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.

  4. Effects of Li concentration and a Mg addition on serrated flow in Al-Li alloys

    SciTech Connect

    Zambo, S.J.; Wert, J.A. . Dept. of Materials Science and Engineering)

    1993-12-15

    Serrated flow phenomena have been reported in a variety of precipitation-strengthened aluminum alloys. In the particular case of precipitation-strengthened Al-Li alloys, serrated flow effects of similar character have been reported in binary Al-Li alloys and in commercial-type Al-Li alloys containing multiple alloying elements. Observations of serrated flow in binary Al-Li alloys indicate that the presence of Li alone is sufficient to produce serrated flow. Aging time has been used to probe the mechanisms that cause serrated flow in individual Al-Li alloys, and several investigators have noted that serrated flow disappears when Al-Li alloys are aged to peak strength or overaged. Much of the available experimental evidence supports dislocation-[delta][prime] interactions as the cause of serrated flow in Al-Li alloys, rather than dislocation-solute atom interactions to which serrated flow phenomena are traditionally attributed. Additional support for this conclusion could be provided by comparison of stress-strain curves for a solid solution Al-Li binary alloy of the same composition as the matrix phase of a precipitation-strengthened Al-Li binary alloy. The purpose of the present paper is to show stress--strain curves for Al-1.38Li, Al-1.80Li and Al-1.39Li-1.0Mg alloys, and to interpret the results in terms of the interactions proposed to account for serrated flow in Al-Li alloys.

  5. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  6. Turbulent Flow Enhancement by Polyelectrolyte Additives: Mechanistic Implications for Drag Reduction.

    NASA Astrophysics Data System (ADS)

    Wagger, David Leonard

    1992-01-01

    The drag reduction phenomenon was experimentally studied in two pipes, of diameters 1.46 and 1.02 cm, using seven polyelectrolytic HPAM additives, with molecular weights from 1 to 20 times 10^6 g/mole and degree of backbone hydrolysis from 8 to 60%, at concentrations from 1 to 1000 wppm, in saline solutions containing from 0.3 to 0.00001 N NaCl. Both laminar and turbulent flow behavior were greatly influenced by salinity-induced changes in the initial conformation of the HPAM additives. Initially collapsed, random-coiling conformations exhibited Newtonian laminar flow and Type-A turbulent drag reduction, while initially extended conformations exhibited shear-thinning in laminar flow and Type-B turbulent drag reduction. The gross-flow physics of Type-B drag reduction were delineated. A characteristic "ladder" structure prevailed, with polymeric regime segments that were roughly parallel to, but shifted upward from, the Prandtl-Karman line. In the polymeric regime, both Type-A fan and Type -B ladder structures were essentially independent of pipe diameter, and were scaled by the wall shear stress. The wall shear stress also scaled degradation during drag reduction. New onset and slope increment correlations were presented for Type-A drag reduction by HPAM additives. In Type-B drag reduction, flow enhancement was found proportional to additive concentration, and the intrinsic slip, Sigma = S^'/(c/M _{rm w}), varied roughly as the third power of backbone chain links N_ {rm bb}. New intrinsic slip and retro-onset correlations were presented for Type-B drag reduction by HPAM additives. Analysis of Type-B literature revealed a wide range of additive efficacies, with specific slips S^'/c from 0.0001 to 4. For the most effective additives, HPAM and asbestos fibers, the additive-pervaded volume fraction per unit flow enhancement, X_{rm v} /S^' ~ 3000, implied that these additives align during drag reduction. The slip ratio R_{rm sc}, which is the relative flow enhancement

  7. Trading water to improve environmental flow outcomes

    NASA Astrophysics Data System (ADS)

    Connor, Jeffery D.; Franklin, Brad; Loch, Adam; Kirby, Mac; Wheeler, Sarah Ann

    2013-07-01

    As consumptive extractions and water scarcity pressures brought about by climate change increase in many world river basins, so do the risks to water-dependent ecological assets. In response, public or not for profit environmental water holders (EWHs) have been established in many areas and bestowed with endowments of water and mandates to manage water for ecological outcomes. Water scarcity has also increasingly spawned water trade arrangements in many river basins, and in many instances, EWHs are now operating in water markets. A number of EWHs, especially in Australia, begin with an endowment of permanent water entitlements purchased from irrigators. Such water entitlements typically have relatively constant interannual supply profiles that often do not match ecological water demand involving flood pulses and periods of drying. This article develops a hydrologic-economic simulation model of the Murrumbidgee catchment within the Murray-Darling Basin to assess the scope of possibilities to improve environmental outcomes through EWH trading on an annual water lease market. We find that there are some modest opportunities for EWHs to improve environmental outcomes through water trade. The best opportunities occur in periods of drought and for ecological outcomes that benefit from moderately large floods. We also assess the extent to which EWH trading in annual water leases may create pecuniary externalities via bidding up or down the water lease prices faced by irrigators. Environmental water trading is found to have relatively small impacts on water market price outcomes. Overall our results suggest that the benefits of developing EWH trading may well justify the costs.

  8. Environmental Data Flow Six Sigma Process Improvement Savings Overview

    SciTech Connect

    Paige, Karen S

    2015-05-20

    An overview of the Environmental Data Flow Six Sigma improvement project covers LANL’s environmental data processing following receipt from the analytical laboratories. The Six Sigma project identified thirty-three process improvements, many of which focused on cutting costs or reducing the time it took to deliver data to clients.

  9. Additional flow quality measurements in the Langley Research Center 8-Foot Transonic Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Brooks, J. D.; Stainback, P. C.; Brooks, C. W., Jr.

    1980-01-01

    Additional tests were conducted to further define the disturbance characteristics of the Langley 8-Foot Transonic Pressure Tunnel. Measurements were made in the settling chamber with hot wire probes and in the test section with pressure transducers when various methods were used to choke the flow. In addition to presenting rms values measured at various locations and tunnel condition, autocorrelations and cross correlation data are also presented.

  10. Experimental investigations of the swirling flow in the conical diffuser using flow-feedback control technique with additional energy source

    NASA Astrophysics Data System (ADS)

    Tǎnasǎ, C.; Bosioc, A. I.; Susan-Resiga, R. F.; Muntean, S.

    2012-11-01

    The previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water injection along to the axis mitigates the pressure fluctuations associated to the precessing vortex rope [1]. However, for swirling flows similar to Francis turbines operated at partial discharge, the water jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, it was introduced a new approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser [2]. This is called flow-feedback control technique (FFCT) and it was investigated experimentally in order to assess its capability [3]. The FFCT approach not requires additional energy to supply the jet. Consequently, the turbine efficiency is not diminished due to the volumetric losses injected even if around 10% of the main flow is used. However, the equivalent amplitude of the pressure pulsations associated to the vortex rope decreases with 30% if 10% jet discharge is applied [3]. Using 12% water jet discharge from upstream then the equivalent amplitude of the pressure pulsations is mitigated with 70% according to Bosioc et al. [4]. In our case, an extra 2% jet discharge is required in order to obtain similar results with FFCT. This extra discharge is provided using an additional energy source. Therefore, the paper presents experimental investigation performed with FFCT with additional energy source. The experimental results obtained with this technique are compared against FFCT and the swirling flow with vortex rope, respectively.

  11. Features of quasistable laminar flows of He II and an additional dissipative process

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Klokol, K. A.; Sokolov, S. S.; Sheshin, G. A.

    2016-03-01

    Quasistable laminar flow of He II at a temperature of 140 mK is studied experimentally. The liquid flow was excited by a vibrating quartz tuning fork with a resonance frequency of about 24 kHz. It was found that for velocities of the tuning fork oscillations from 0.046 to 0.16 m/s, the He II flow can be both quasistable laminar and turbulent. Transitions between these flow regimes were observed. When the velocity of the tuning fork oscillations increases more rapidly, the velocity at which the quasistable flow becomes unstable and undergoes a transition to a turbulent flow is higher. Mechanisms for the dissipation of the energy of the oscillating tines of the tuning fork in the quasistable laminar flow regime are analyzed. It is found that there is an additional mechanism for dissipation of the energy of the oscillating tuning fork beyond internal friction in the quartz. This mechanism is associated with mutual friction owing to scattering of thermal excitations of He II on quantized vortices and leads to a cubic dependence of the exciting force on the fluid velocity.

  12. Improving Patient Flow Utilizing a Collaborative Learning Model.

    PubMed

    Tibor, Laura C; Schultz, Stacy R; Cravath, Julie L; Rein, Russell R; Krecke, Karl N

    2016-01-01

    This initiative utilized a collaborative learning approach to increase knowledge and experience in process improvement and systems thinking while targeting improved patient flow in seven radiology modalities. Teams showed improvements in their project metrics and collectively streamlined the flow for 530 patients per day by improving patient lead time, wait time, and first case on-time start rates. In a post-project survey of 50 project team members, 82% stated they had more effective solutions as a result of the process improvement methodology, 84% stated they will be able to utilize the process improvement tools again in the future, and 98% would recommend participating in another project to a colleague. PMID:27514106

  13. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.; Vandoormaal, J. P.

    1988-01-01

    The performance of discrete methods for the prediction of fluid flows can be enhanced by improving the convergence rate of solvers and by increasing the accuracy of the discrete representation of the equations of motion. This report evaluates the gains in solver performance that are available when various acceleration methods are applied. Various discretizations are also examined and two are recommended because of their accuracy and robustness. Insertion of the improved discretization and solver accelerator into a TEACH mode, that has been widely applied to combustor flows, illustrates the substantial gains to be achieved.

  14. A novel approach to improve operation and performance in flow field-flow fractionation.

    PubMed

    Johann, Christoph; Elsenberg, Stephan; Roesch, Ulrich; Rambaldi, Diana C; Zattoni, Andrea; Reschiglian, Pierluigi

    2011-07-01

    A new system design and setup are proposed for the combined use of asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) within the same instrumentation. To this purpose, three innovations are presented: (a) a new flow control scheme where focusing flow rates are measured in real time allowing to adjust the flow rate ratio as desired; (b) a new HF5 channel design consisting of two sets of ferrule, gasket and cap nut used to mount the fiber inside a tube. This design provides a mechanism for effective and straightforward sealing of the fiber; (c) a new AF4 channel design with only two fluid connections on the upper plate. Only one pump is needed to deliver the necessary flow rates. In the focusing/relaxation step the two parts of the focusing flow and a bypass flow flushing the detectors are created with two splits of the flow from the pump. In the elution mode the cross-flow is measured and controlled with a flow controller device. This leads to reduced pressure pulsations in the channel and improves signal to noise ratio in the detectors. Experimental results of the separation of bovine serum albumin (BSA) and of a mix of four proteins demonstrate a significant improvement in the HF5 separation performance, in terms of efficiency, resolution, and run-to-run reproducibility compared to what has been reported in the literature. Separation performance in HF5 mode is shown to be comparable to the performance in AF4 mode using a channel with two connections in the upper plate. PMID:21227436

  15. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  16. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

  17. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries

    SciTech Connect

    Zhang, Jianlu; Li, Liyu; Nie, Zimin; Chen, Baowei; Vijayakumar, M.; Kim, Soowhan; Wang, Wei; Schwenzer, Birgit; Liu, Jun; Yang, Zhenguo

    2011-10-01

    The stability of the electrolytes for all-vanadium redox flow battery was investigated with ex-situ heating/cooling treatment and in-situ flow-battery testing methods. The effects of inorganic and organic additives have been studied. The additives containing the ions of potassium, phosphate, and polyphosphate are not suitable stabilizing agents because of their reactions with V(V) ions, forming precipitates of KVSO6 or VOPO4. Of the chemicals studied, polyacrylic acid and its mixture with CH3SO3H are the most promising stabilizing candidates which can stabilize all the four vanadium ions (V2+, V3+, VO2+, and VO2+) in electrolyte solutions up to 1.8 M. However, further effort is needed to obtain a stable electrolyte solution with >1.8 M V5+ at temperatures higher than 40 °C.

  18. An improved near-wall treatment for turbulent channel flows

    NASA Astrophysics Data System (ADS)

    El Gharbi, Najla; Absi, Rafik; Benzaoui, Ahmed; Bennacer, Rachid

    2011-01-01

    The success of predictions of wall-bounded turbulent flows requires an accurate description of the flow in the near-wall region. This article presents a comparative study between different near-wall treatments and presents an improved method. The study is applied to fully developed plane channel flow (i.e. the flow between two infinitely large plates). Simulations were performed using Fluent. Near-wall treatments available in Fluent were tested: standard wall functions, non-equilibrium wall function and enhanced wall treatment. A user defined function (UDF), based on an analytical profile for the turbulent kinetic energy (Absi, R., 2008. Analytical solutions for the modeled k-equation. ASME Journal of Applied Mechanics, 75 (4), 044501), is developed and implemented. Predicted turbulent kinetic energy profiles are presented and validated by DNS data.

  19. ACHIEVING IRRIGATION RETURN FLOW QUALITY CONTROL THROUGH IMPROVED LEGAL SYSTEMS

    EPA Science Inventory

    The key to irrigated agricultural return flow quality control is proper utilization and management of the resource itself, and an accepted tool in out society is the law. This project is designed to develop legal alternatives that will facilitate the implementation of improved wa...

  20. Process for improving moisture resistance of epoxy resins by addition of chromium ions

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Stoakley, D. M.; St.clair, T. L.; Singh, J. J. (Inventor)

    1985-01-01

    A process for improving the moisture resistance properties of epoxidized TGMDA and DGEBA resin system by chemically incorporating chromium ions is described. The addition of chromium ions is believed to prevent the absorption of water molecules.

  1. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline.

    PubMed

    Magaril, Elena; Magaril, Romen

    2016-09-01

    The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented. PMID:27206755

  2. Packet Scheduling Mechanism to Improve Quality of Short Flows and Low-Rate Flows

    NASA Astrophysics Data System (ADS)

    Yokota, Kenji; Asaka, Takuya; Takahashi, Tatsuro

    In recent years elephant flows are increasing by expansion of peer-to-peer (P2P) applications on the Internet. As a result, bandwidth is occupied by specific users triggering unfair resource allocation. The main packet-scheduling mechanism currently employed is first-in first-out (FIFO) where the available bandwidth of short flows is limited by elephant flows. Least attained service (LAS), which decides transfer priority of packets by the total amount of transferred data in all flows, was proposed to solve this problem. However, routers with LAS limit flows with large amount of transferred data even if they are low-rate. Therefore, it is necessary to improve the quality of low-rate flows with long holding times such as voice over Internet protocol (VoIP) applications. This paper proposes rate-based priority control (RBPC), which calculates the flow rate and control the priority by using it. Our proposed method can transfer short flows and low-rate flows in advance. Moreover, its fair performance is shown through simulations.

  3. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    PubMed

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only. PMID:27253082

  4. Engineered mannitol ternary additives improve dispersion of lactose-salbutamol sulphate dry powder inhalations.

    PubMed

    Kaialy, Waseem; Nokhodchi, Ali

    2013-07-01

    The aim of this study was to evaluate the influence of novel engineered fine mannitol particles (4.7%, w/w) on the performance of lactose-salbutamol sulphate dry powder inhaler (DPI) formulations to obtain promising aerosolisation properties. The results showed that the more elongated the fine mannitol particles, the weaker the drug-carrier adhesion, the better the drug content homogeneity, the higher the amount of drug expected to be delivered to the lower airways and the higher the total DPI formulation desirability. Linear relationships were established showing that mannitol particles with a more elongated shape generated powders with broader size distributions and that were less uniform in shape. The weaker the drug-carrier adhesion, the higher the fine particle fraction of the drug is upon aerosolisation. It is believed that more elongated fine mannitol particles reduce the number of drug-carrier and drug-drug physical contact points and increase the ability of the drug particles to travel into the lower airways. Additionally, a lower drug-carrier contact area, lower drug-carrier press-on forces and easier drug-carrier detachment are suggested in the case of formulations containing more elongated fine mannitol particles. Ternary 'drug-coarse carrier-elongated fine ternary component' DPI formulations were more favourable than both 'drug-coarse carrier' and 'drug-elongated coarse carrier' binary formulations. This study provides a comprehensive approach for formulators to overcome the undesirable properties of dry powder inhalers, as both improved aerosolisation performance and reasonable flow characteristics were obtained using only a small amount of elongated engineered fine mannitol particles. PMID:23591748

  5. Improving Diffusing S-duct Performance by Secondary Flow Control

    NASA Technical Reports Server (NTRS)

    Reichert, Bruce A.; Wendt, Bruce J.

    1994-01-01

    The objective of this research was to study ways to reduce inlet flow distortion (i.e., total pressure nonuniformity) and improve total pressure recovery in a diffusing S-duct. This was accomplished by controlling the development of secondary flows within the duct through the use of tapered-fin type vortex generators. Reported are results for the bare duct and seven different configurations of vortex generators. Data presented for each configuration include surface static pressure, surface flow visualization, and exit plane total pressure and transverse velocity. The performance of each configuration was assessed by calculating total pressure recovery and inlet distortion descriptors from the data and comparing them to the values for the bare duct. The best configuration tested reduced distortion (as measured by the DC(45) and DC(90) descriptors) by more than 50 percent while improving total pressure recovery by 0.5 percent. These results should provide valuable guidance in designing vortex generator installations in ducts and for assessing the accuracy of computational fluid dynamics (CFD) methods to calculate duct flows with installed vortex generators.

  6. Improving patient flow: role of the orthopaedic discharge sister.

    PubMed

    Tytler, Beverley

    2016-03-01

    Timely and well-planned discharge improves the patient's experience, contributes to patient safety and reduces the length of hospital stays. The role of orthopaedic discharge sister was developed at James Cook University Hospital in 2007 to provide safe, timely and efficient discharge for patients from the trauma and theatre centre, and to improve patient experience and flow. This article gives an overview of the role and describes how the sister works with colleagues to plan patient discharges from pre-assessment and emergency department admission through their hospital stay until their departure. PMID:26948225

  7. Improvements on Digital Inline Holographic PIV for Turbulent Flow Measurement

    NASA Astrophysics Data System (ADS)

    Hong, Jiarong; Toloui, Mostafa; Mallery, Kevin

    2015-11-01

    Among all the 3D PIV techniques used in wall-bounded turbulent flow measurements, digital inline holographic (DIH) PIV provides the highest spatial resolution for near-wall flow diagnostics with low-cost, simple and compact optical set-ups. Despite these advantages, DIH-PIV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely implemented for high resolution 3D flow measurements. In this study, we present our work on improving holographic particle extraction algorithm with the goal of overcoming some of abovementioned limitations. Our new DIH-PIV processing method has been successfully implemented on multiple experimental cases ranging from 3D flow measurement within a micro-channel to imaging near-wall coherent structures in smooth and rough wall turbulent channel flows. This work is supported by the startup package of Jiarong Hong and the MnDrive Fellowship of Mostafa Toloui from University of Minnesota.

  8. High-Flow, High-Molecular-Weight, Addition-Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.

    1993-01-01

    In developed series of high-flow PMR-type polyimide resins, 2, 2'-bis(trifluoromethyl)-4, 4'-diaminobiphenyl (BTDB) substituted for 1, 4-pheylenediamine in PMR-II formulation. Polyimides designated either as PMR-12F when nadic ester (NE) end caps used, or as V-CAP-12F when p-aminostyrene end caps used. High-molecular-weight, addition-curing polyimides based on BTBD and HFDE highly processable high-temperature matrix resins used to make composite materials with excellent retention of properties during long-term exposure to air at 650 degrees F or higher temperature. Furthermore, 12F addition-curing polyimides useful for electronic applications; fluorinated rigid-rod polyimides known to exhibit low thermal expansion coefficients as well as low absorption of moisture.

  9. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.

    PubMed

    Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali

    2014-12-30

    The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. PMID:25447824

  10. Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow

    SciTech Connect

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-04-28

    The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO{sub 2} TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 {mu}s and 80 {mu}s are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay.

  11. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows.

    PubMed

    Li, Q; Luo, K H; Gao, Y J; He, Y L

    2012-02-01

    The existing lattice Boltzmann models for incompressible multiphase flows are mostly constructed with two distribution functions: one is the order parameter distribution function, which is used to track the interface between different phases, and the other is the pressure distribution function for solving the velocity field. In this paper, it is shown that in these models the recovered momentum equation is inconsistent with the target one: an additional force is included in the recovered momentum equation. The additional force has the following features. First, it is proportional to the macroscopic velocity. Second, it is zero in every single-phase region but is nonzero in the interface. Therefore it can be interpreted as an interfacial force. To investigate the effects of the additional interfacial force, numerical simulations are carried out for the problem of Rayleigh-Taylor instability, droplet splashing on a thin liquid film, and the evolution of a falling droplet under gravity. Numerical results demonstrate that, with the increase of the velocity or the Reynolds number, the additional interfacial force will gradually have an important influence on the interface and affect the numerical accuracy. PMID:22463354

  12. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  13. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  14. Efficacy of a feed-additive antibacterial combination for improving feedlot cattle performance and health.

    PubMed Central

    Gallo, G F; Berg, J L

    1995-01-01

    The effectiveness of a feed-additive antimicrobial combination for improving feedlot performance and health was tested using 4325 high-risk feeder calves randomly allocated to a control group or an experimental group. The experimental group received the conventional ration plus a feed additive containing 700 mg per head/day of chlortetracycline and sulfamethazine from arrival at the feedlot to day 56 of the feeding period. The inclusion of the feed additive to the ration significantly improved average daily gain for days 0-28 (P = 0.0163) and 0-56 (P = 0.0001), and the feed conversion for days 0-28 (P = 0.0061) and 0-56 (P = 0.0004). Additionally, the use of the feed additive significantly reduced the rate of bovine respiratory disease morbidity for days 0-28 (P = 0.0014) and 0-56 (P = 0.0001), the rate of relapses and mortality for days 0-56 (P = 0.0151 and P = 0.0209, respectively), and the rate of animals diagnosed with chronic respiratory disease for days 0-28 and 0-56 (P = 0.0009 and P = 0.0002, respectively). Performance and health improvements produced by the use of the feed additive were cost-effective. PMID:7600512

  15. An improved scheme for classifying susceptibility to preferential flow

    NASA Astrophysics Data System (ADS)

    Moeys, Julien; Koestel, John; Hollis, John M.; Jarvis, Nicholas J.

    2010-05-01

    The ability to reliably predict the occurrence and strength of preferential flow in different soils and land use systems would be of great benefit in environmental planning and management at multiple spatial scales, from field to catchments and regions. We recently proposed a simple classification scheme for predicting the susceptibility of soil horizons and pedons to macropore flow, designed to support predictive modelling (Jarvis N.J. et al., 2009. A conceptual model of soil susceptibility to macropore flow. Vadose Zone Journal, 8: 902-910). The scheme, which takes the form of a decision tree, was successfully validated against a small dataset of solute transport experiments. However, in its present form, it is strongly biased toward European agricultural soils, since it was developed to support pesticide risk assessment in the EU. In this poster, we propose an improved version of the classification scheme, which is much broader in scope, with relevance for a much wider range of soils worldwide, including those with clay mineralogies that limit the development of soil macro-structure and restrict macropore flow (e.g. Ferralsols and Andosols). The new scheme is tested in a literature meta-analysis exercise, making use of the temporal moments of solute breakthrough curves derived from fits of the mobile / immobile model to steady-state experiments on short laboratory columns.

  16. Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives

    NASA Technical Reports Server (NTRS)

    Dubief, Yves

    2003-01-01

    The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non

  17. Do water-saving technologies improve environmental flows?

    NASA Astrophysics Data System (ADS)

    Batchelor, Charles; Reddy, V. Ratna; Linstead, Conor; Dhar, Murli; Roy, Sumit; May, Rebecca

    2014-10-01

    Water saving and conservation technologies (WCTs) have been promoted widely in India as a practical means of improving the water use efficiency and freeing up water for other uses (e.g. for maintaining environmental flows in river systems). However, there is increasing evidence that, somewhat paradoxically, WCTs often contribute to intensification of water use by irrigated and rainfed farming systems. This occurs when: (1) Increased crop yields are coupled with increased consumptive water use and/or (2) Improved efficiency, productivity and profitability encourages farmers to increase the area cropped and/or to adopt multiple cropping systems. In both cases, the net effect is an increase in annual evapotranspiration that, particularly in areas of increasing water scarcity, can have the trade-off of reduced environmental flows. Recognition is also increasing that the claimed water savings of many WCTs may have been overstated. The root cause of this problem lies in confusion over what constitutes real water saving at the system or basin scales. The simple fact is that some of the water that is claimed to be ‘saved’ by WCTs would have percolated into the groundwater from where it can be and often is accessed and reused. Similarly, some of the “saved” runoff can be used downstream by, for example, farmers or freshwater ecosystems. This paper concludes that, particularly in areas facing increasing water scarcity, environmental flows will only be restored and maintained if they are given explicit (rather than theoretical or notional) attention. With this in mind, a simple methodology is proposed for deciding when and where WCTs may have detrimental impacts on environmental flows.

  18. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    SciTech Connect

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-28

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  19. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-01

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  20. The Effectiveness of an Additional Stretching Exercise Program in Improving Flexibility Level among Preschool Boys

    ERIC Educational Resources Information Center

    Lee, Wee Akina Sia Seng; Rengasamy, Shabeshan A/L; Raju, Subramaniam A/L

    2014-01-01

    This study was conducted to examine the effectiveness of a two minutes' additional stretching exercise program in a 30 minutes games teaching lesson in improving the flexibility level of 6 year old preschool boys (M = 5.92, SD = 0.27) in a preschool in Malaysia. Fifty (50) preschool boys were selected for the study based on the intact sampling…

  1. Chill water additive controls transfer of Salmonella and Campylobacter by improved chlorine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In earlier work, we showed that a proprietary additive (T-128) maintains chlorine activity in the presence of organic material such as broiler parts. T-128 improves the efficacy of chlorine to control transfer of Campylobacter and Salmonella from inoculated wings to un-inoculated wings during immer...

  2. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  3. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives

    SciTech Connect

    Ye, XC; Jin, LH; Caglayan, H; Chen, J; Xing, GZ; Zheng, C; Doan-Nguyen, V; Kang, YJ; Engheta, N; Kagan, CR; Murray, CB

    2012-03-01

    We report an improved synthesis of colloidal gold nanorods (NRs) by using aromatic additives that reduce the concentration of hexadecyltrimethylammonium bromide surfactant to similar to 0.05 M as opposed to 0.1 M in well-established protocols. The method optimizes the synthesis for each of the 11 additives studied, allowing a rich array of monodisperse gold NRs with longitudinal surface plasmon resonance tunable from 627 to 1246 nm to be generated. The gold NRs form large-area ordered assemblies upon slow evaporation of NR solution, exhibiting liquid crystalline ordering and several distinct local packing motifs that are dependent upon the NR's aspect ratio. Tailored synthesis of gold NRs with simultaneous improvements in monodispersity and dimensional tunability through rational introduction of additives will not only help to better understand the mechanism of seed-mediated growth of gold NRs but also advance the research on plasmonic metamaterials incorporating anisotropic metal nanostructures.

  4. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives.

    PubMed

    Ye, Xingchen; Jin, Linghua; Caglayan, Humeyra; Chen, Jun; Xing, Guozhong; Zheng, Chen; Doan-Nguyen, Vicky; Kang, Yijin; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B

    2012-03-27

    We report an improved synthesis of colloidal gold nanorods (NRs) by using aromatic additives that reduce the concentration of hexadecyltrimethylammonium bromide surfactant to ~0.05 M as opposed to 0.1 M in well-established protocols. The method optimizes the synthesis for each of the 11 additives studied, allowing a rich array of monodisperse gold NRs with longitudinal surface plasmon resonance tunable from 627 to 1246 nm to be generated. The gold NRs form large-area ordered assemblies upon slow evaporation of NR solution, exhibiting liquid crystalline ordering and several distinct local packing motifs that are dependent upon the NR's aspect ratio. Tailored synthesis of gold NRs with simultaneous improvements in monodispersity and dimensional tunability through rational introduction of additives will not only help to better understand the mechanism of seed-mediated growth of gold NRs but also advance the research on plasmonic metamaterials incorporating anisotropic metal nanostructures. PMID:22376005

  5. Process Improvements to Reform Patient Flow in the Emergency Department.

    PubMed

    Whatley, Shawn D; Leung, Alexander K; Duic, Marko

    2016-01-01

    Emergency departments (ED) function to diagnose, stabilize, manage and dispose patients as efficiently as possible. Although problems may be suspected at triage, ED physician input is required at each step of the patient journey through the ED, from diagnosis to disposition. If we want timely diagnosis, appropriate treatment and great outcomes, then ED processes should connect patients and physicians as quickly as possible. This article discusses the key concepts of ED patient flow, value and efficiency. Based on these fundamentals, it describes the significant impact of ED process improvements implemented on measures of ED efficiency at a large community ED in Ontario, Canada. PMID:27133605

  6. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    PubMed

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. PMID:26468606

  7. Influence of polymer additives on turbulence in von Karman swirling flow between two disks. II

    NASA Astrophysics Data System (ADS)

    Burnishev, Yuri; Steinberg, Victor

    2016-03-01

    We present the experimental studies of the influence of polymer additives on the statistical and scaling properties of the fully developed turbulent regime in a von Karman swirling flow driven either by the smooth or bladed disks using only the global measurements of torque Γ and pressure p fluctuations in water- and water-sugar-based solutions of different viscosities, or elasticity El, and different polymer concentrations ϕ as a function of Re in the same apparatus. There are three highlights achieved and reported in the paper: (i) An observation of turbulent drag reduction (TDR) at both the inertial and viscous flow forcing, in a contradiction to a currently accepted opinion that only the viscous forcing leads to TDR, and the unexpected drastic difference in the transition to the fully developed turbulent and TDR regimes in von Karman swirling flow of water-based polymer solutions depending on the way of the forcing; (ii) a continuous transition to TDR in both the normalized torque drop and the rms pressure fluctuations drop and universality in scaling behavior of Cf in an agreement with theoretical predictions; and (iii) the dramatic differences in the appearance of the frequency power spectra of Γ and in particular p due to the different ways of the forcing are also observed. We discuss and summarize further the results in accordance with these three main achievements. The main message of these studies is that both the inertial forcing and viscous forcing of von Karman swirling flow between two counter-rotating disks lead to TDR in the sharp contrast to the currently accepted opinion [O. Cadot et al., "Turbulent drag reduction in a closed flow system: Boundary layer versus bulk effects," Phys. Fluids 10, 426 (1998); D. Bonn et al., "From scale scales to large scales in three-dimensional turbulence: The effect of diluted polymers," Phys. Rev. E 47, R28 (1993); and D. Bonn et al., "Turbulent drag reduction by polymers," J. Phys.: Condens. Matter 17, S1195

  8. Evaluating mixtures of 14 hygroscopic additives to improve antibody microarray performance.

    PubMed

    Bergeron, Sébastien; Laforte, Veronique; Lo, Pik-Shan; Li, Huiyan; Juncker, David

    2015-11-01

    Microarrays allow the miniaturization and multiplexing of biological assays while only requiring minute amounts of samples. As a consequence of the small volumes used for spotting and the assays, evaporation often deteriorates the quality, reproducibility of spots, and the overall assay performance. Glycerol is commonly added to antibody microarray printing buffers to decrease evaporation; however, it often decreases the binding of antibodies to the surface, thereby negatively affecting assay sensitivity. Here, combinations of 14 hygroscopic chemicals were used as additives to printing buffers for contact-printed antibody microarrays on four different surface chemistries. The ability of the additives to suppress evaporation was quantified by measuring the residual buffer volume in open quill pins over time. The seven best additives were then printed either individually or as a 1:1 mixture of two additives, and the homogeneity, intensity, and reproducibility of both the spotted protein and of a fluorescently labeled analyte in an assay were quantified. Among the 28 combinations on the four slides, many were found to outperform glycerol, and the best additive mixtures were further evaluated by changing the ratio of the two additives. We observed that the optimal additive mixture was dependent on the slide chemistry, and that it was possible to increase the binding of antibodies to the surface threefold compared to 50 % glycerol, while decreasing whole-slide coefficient of variation to 5.9 %. For the two best slides, improvements were made for both the limit of detection (1.6× and 5.9×, respectively) and the quantification range (1.2× and 2.1×, respectively). The additive mixtures identified here thus help improve assay reproducibility and performance, and might be beneficial to all types of microarrays that suffer from evaporation of the printing buffers. PMID:26345442

  9. Improving the performance of ammonia-water absorption cycles using salt additives and membranes

    SciTech Connect

    Ibrahim, O.M.; Barnett, S.M.; Balamuru, V.G.

    1997-12-31

    This paper proposes a new design of an ammonia-water absorption refrigeration cycle for low-temperature heat sources such as solar energy and waste heat. The proposed cycle uses a salt additive to shift the chemical equilibrium toward more effective separation of ammonia molecules from aqueous solution (i.e., salting out). Since salt additives can affect all aspects of the absorption cycle, membranes have been chosen to control the flow of ions in the cycle and limit their effects to the generation side. This paper describes an absorption cycle that uses membrane separation processes, such as reverse osmosis, dialysis, and electrodialysis. To optimize the performance of the cycle, however, the membranes and salts must be carefully chosen.

  10. Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive.

    PubMed

    Holtshausen, L; Chung, Y-H; Gerardo-Cuervo, H; Oba, M; Beauchemin, K A

    2011-02-01

    A 3-part study was conducted to evaluate the effect of a developmental fibrolytic enzyme additive on the digestibility of selected forages and the production performance of early-lactation dairy cows. In part 1, 4 replicate 24-h batch culture in vitro incubations were conducted with alfalfa hay, alfalfa silage, and barley silage as substrates and ruminal fluid as the inoculum. A developmental fibrolytic enzyme additive (AB Vista, Marlborough, UK) was added at 5 doses: 0, 0.5, 1.0, 1.5, and 2.0 μL/g of forage dry matter (DM). After the 24-h incubation, DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) disappearance were determined. For alfalfa hay, DM, NDF, and ADF disappearance was greater at the highest dosage compared with no enzyme addition. Barley silage NDF and ADF and alfalfa silage NDF disappearance tended to be greater for the highest enzyme dosage compared with no enzyme addition. In part 2, 6 ruminally cannulated, lactating Holstein dairy cows were used to determine in situ degradation of alfalfa and barley silage, with (1.0 mL/kg of silage DM) and without added enzyme. Three cows received a control diet (no enzyme added) and the other 3 received an enzyme-supplemented (1.0 mL/kg of diet DM) diet. Enzyme addition after the 24h in situ incubation did not affect the disappearance of barley silage or alfalfa silage. In part 3, 60 early-lactation Holstein dairy cows were fed 1 of 3 diets for a 10-wk period: (1) control (CTL; no enzyme), (2) low enzyme (CTL treated with 0.5 mL of enzyme/kg of diet DM), and (3) high enzyme (CTL treated with 1.0 mL of enzyme/kg of diet DM). Adding enzyme to the diet had no effect on milk yield, but dry matter intake was lower for the high enzyme treatment and tended to be lower for the low enzyme treatment compared with CTL. Consequently, milk production efficiency (kg of 3.5% fat-corrected milk/kg of DM intake) linearly increased with increasing enzyme addition. Cows fed the low and high enzyme diets were 5

  11. An experimental survey of additives for improving dehydrogenation properties of magnesium hydride

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang; Fang, Zhigang Zak; Sun, Pei

    2015-03-01

    The use of a wide range of additives has been known as an important method for improving hydrogen storage properties of MgH2. There is a lack of a standard methodology, however, that can be used to select or compare the effectiveness of different additives. A systematic experimental survey was carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. MgH2 with various additives were prepared by using a high-energy-high-pressure planetary ball milling method and characterized by using thermogravimetric analysis (TGA) techniques. The results showed that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Additives such as Al, In, Sn, Si showed minor effects on the kinetics of the dehydrogenation of MgH2, while exhibiting moderate thermodynamic destabilizing effects. In combination, MgH2 with both kinetic and thermodynamic additives, such as the MgH2-In-TiMn2 system, exhibited a drastically decreased dehydrogenation temperature.

  12. Using LEAN to improve a segment of emergency department flow.

    PubMed

    Vose, Courtney; Reichard, Christine; Pool, Susan; Snyder, Megan; Burmeister, David

    2014-11-01

    Emergency department (ED) overcrowding is an organizational concern. This article describes how Toyota LEAN methods were used as a performance improvement framework to address ED overcrowding. This initiative also impacted "bolus of patients" or "batching" concerns, which occur when inpatient units receive an influx of patients from EDs and other areas at the same time. In addition to decreased incidence of overcrowding, the organization realized increased interprofessional collaboration. PMID:25340919

  13. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-01-01

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions. PMID:26506329

  14. Improvement of mechanical properties by additive assisted laser sintering of PEEK

    SciTech Connect

    Kroh, M. Bonten, C.; Eyerer, P.

    2014-05-15

    The additive assisted laser sintering was recently developed at IKT: A carbon black (CB) additive is used to adjust the polymer's laser absorption behavior with the aim to improve the interconnection of sintered powder layers. In this paper a parameter study, Polyetheretherketone (PEEK) samples were prepared with different contents of carbon black and were laser sintered with varying thermal treatment. The samples were mechanically tested and investigated by optical light and transmission electron microscopy. An influence on the morphology at the border areas of particles and intersections of laser sintered layers was found. Depending on the viscosity of the raw material and CB content, different shapes of lamellae were observed. These (trans-) crystalline or polymorph structures, respectively, influence the thermal and mechanical behavior of the virgin PEEK. Moreover, the thermal treatment during the sintering process caused an improvement of mechanical properties like tensile strength and elongation at break.

  15. Assessing the potential for improved scramjet performance through application of electromagnetic flow control

    NASA Astrophysics Data System (ADS)

    Lindsey, Martin Forrester

    Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.

  16. Improving the reliability of venous Doppler flow measurements: relevance of combined ECG, training and repeated measures.

    PubMed

    Staelens, Anneleen S E; Tomsin, Kathleen; Oben, Jolien; Mesens, Tinne; Grieten, Lars; Gyselaers, Wilfried

    2014-07-01

    The nature of venous Doppler waves is highly variable. An additional electrocardiogram (ECG) improves the interpretation of venous Doppler wave characteristics and allows measurement of venous pulse transit time. The purpose of this study was to assess the reproducibility of ECG-guided repeated measurements of venous Doppler flow characteristics before and after sonographer training and the inter- and intra-observer variability. In four groups of 25 healthy women, venous Doppler flow measurements were performed at the level of the kidneys and liver according to a standardized protocol. Intra-observer Pearson correlation coefficients of the renal interlobar vein Doppler indices were ≥ 0.80 with the addition of the ECG, which are higher than the results of a former study. The inter-observer correlation between an experienced ultrasonographer and an inexperienced ultrasonographer improved from ≥ 0.71 to ≥ 0.91 after training. The correlation range of all parameters between two independent observers improved when values were based on repeated measures. The addition of an ECG to the Doppler image, training and repeated measurements are helpful in improving venous Doppler wave interpretation. PMID:24631376

  17. Improved compressibility, flowability, dissolution and bioavailability of pioglitazone hydrochloride by emulsion solvent diffusion with additives.

    PubMed

    Patil, S V; Pawar, A P; Sahoo, S K

    2012-03-01

    Spherical agglomerates of pioglitazone hydrochloride were prepared by the emulsion solvent diffusion method with additives (polyethylene glycol 6000, polyvinyl pyrrolidone, beta cyclodextrin, eudragit RS100, low acyl gellan gum and xanthan gum) using methanol, chloroform and water as a good solvent, bridging liquid and poor solvent respectively. Prepared agglomerates were evaluated for compressibility, solubility, dissolution rate and bioavailability, and characterized by SEM, XRPD, DSC and FTIR spectroscopy. Particle size, flowability, compactibility, packability, solubility, dissolution rate and bioavailability of plain agglomerates and agglomerates with additives (except with polyvinyl pyrrolidone) were advantageously improved compared with raw crystalline pioglitazone hydrochloride. These improved properties for direct compression were due to their large-spherical shape and enhanced fragmentation during compaction, together with increased tensile strength and reduced elastic recovery of the compacts. XRPD and DSC studies indicated polymorphic transition of pioglitazone hydrochloride from form II to I during recrystallization but this was not associated with any chemical transition, as indicated by FTIR spectra, well supported by stability studies. Thus spherical crystallization by the emulsion solvent diffusion method with selected additives is a satisfactory method for direct tableting of pioglitazone hydrochloride giving improved bioavailability. PMID:22530302

  18. Improved Growth Factor Directed Vascularization into Fibrin Constructs Through Inclusion of Additional Extracellular Molecules

    PubMed Central

    Smith, JD; Melhem, ME; Magge, KT; Waggoner, AS; Campbell, PG

    2009-01-01

    Using the chick chorioallantoic membrane assay (CAM) and a novel histological technique we investigated the ability of blood vessels to directly invade fibrin-based scaffolds. In our initial experiments utilizing vascular endothelial growth factor (VEGF165) we found no direct invasion. Instead, the fibrin was completely degraded and replaced with highly vascularized new tissue. Addition of fibroblast growth factor-2 (FGF-2), bone morphogenic protein-2 (BMP-2), or platelet-derived growth factor-BB (PDGF-BB) to the fibrin construct also did not result in construct vascularization. Because natural and regenerating tissues exhibit complex extracellular matrices (ECMs), we hypothesized that a more complex scaffold may improve blood vessel invasion. Addition of fibronectin, hyaluronic acid, and collagen type I within 20 mg/mL fibrin constructs resulted in no significant improvement. However, the same additive concentrations within 10 mg/mL fibrin constructs resulted in dramatic improvements, specifically with hyaluronic acid. Overall, we believe these results indicate the importance of structural and functional cues of not only in the initial scaffold but also as the construct is degraded and remodeled. Furthermore, the CAM assay may represent a useful model for understanding ECM interactions as well as for screening and designing tissue engineered scaffolds. PMID:17223139

  19. Improved Li-TiS2 cell cycling in ether-based electrolytes with synergistic additives

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.; Dominey, L.; Koch, V. R.; Goldman, J.

    1991-01-01

    Results of the application of 2-MeF and KOH additives to improve the lithium stability in THF, dioxolane, and THF/2-MeTHF solvent-based electrolytes are presented. The stability of these electrolytes with and without additives is evaluated by microcalorimetry and AC impedance spectroscopy. A novel method, cathode turnover number, is proposed to represent the electrolyte performance in a given system. The lithium cycling efficiency and cathode turnover number of the electrolytes are calculated from the cycle life data in experimental Li-TiS2 cells. Overall, THF/2-MeTHF electrolyte containing 2-MeF and/or KOH exhibited higher stability, lithium cycling efficiency, and cathode turnover number compared to THF and dioxolane electrolytes with and without additives.

  20. Improved Li-TiS2 cell cycling in ether-based electrolytes with synergistic additives

    NASA Astrophysics Data System (ADS)

    Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.; Dominey, L.; Koch, V. R.; Goldman, J.

    Results of the application of 2-MeF and KOH additives to improve the lithium stability in THF, dioxolane, and THF/2-MeTHF solvent-based electrolytes are presented. The stability of these electrolytes with and without additives is evaluated by microcalorimetry and AC impedance spectroscopy. A novel method, cathode turnover number, is proposed to represent the electrolyte performance in a given system. The lithium cycling efficiency and cathode turnover number of the electrolytes are calculated from the cycle life data in experimental Li-TiS2 cells. Overall, THF/2-MeTHF electrolyte containing 2-MeF and/or KOH exhibited higher stability, lithium cycling efficiency, and cathode turnover number compared to THF and dioxolane electrolytes with and without additives.

  1. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  2. Evaluation of additive element to improve PZT piezoelectricity by using first-principles calculation

    NASA Astrophysics Data System (ADS)

    Yasoda, Yutaka; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2015-12-01

    Recently, piezoelectric material has a very important potential for functional material which configure Bio-MEMS (Biological Micro Electro Mechanical Systems) actuator and sensor. Specifically, in implementation of piezoelectric material for Bio-MEMS, thin film fabrication by sputtering method is made from the viewpoint of miniaturization. Furthermore, in piezoelectric material, perovskite type material composed of ABO3 has a high piezoelectricity. Then, PZT (Lead Zirconate Titanate) as the perovskite type piezoelectric material is widely used since it is easy to produce and has high piezoelectricity. PZT has zirconium or titanium in the B site of ABO3 structure. PZT has the features such as physical properties to greatly change by change in the B site composition ratio of zirconium and titanium. Thus, the B site greatly influences physical properties and therefore function improvement by additive element is tried widely. However, experimental method to lack in economy and quantitativeness is mainstream. Therefore, application of the result is difficult and new evaluation method of B site additive element for sputtering fabrication is necessary. Accordingly, in this research, search of an additive element at low cost and quantitative from the viewpoint of energy by first-principles calculation. First of all, the additive elements which capable of substituting for a B site of PZT were searched. Next, change of piezoelectricity was evaluated by change of crystal structure in a PZT system was introduced an additive element that substitution of the B site was possible. As a result, additive elements for the PZT B site capable of improving piezoelectricity were determined.

  3. Macrosegregation Improvement by Swirling Flow Nozzle for Bloom Continuous Castings

    NASA Astrophysics Data System (ADS)

    Sun, Haibo; Zhang, Jiaquan

    2014-06-01

    Based on mathematical model coupling electromagnetism, fluid flow, heat transfer, and solute transport, the metallurgical performances of conventional straight nozzle, swirling flow nozzle (SFN), and M-EMS have been evaluated and compared. The soundness improvement of bloom castings has been investigated by casting tests of adopting the newly designed SFN. As compared to the normal nozzle, center porosity has been eliminated along with the popular center radial crack, and a better chemical homogeneity was obtained by employing the SFN accordingly, where the maximum segregation degree of C and S at the strand cross section is decreased from 1.28 to 1.02 and from 1.32 to 1.06, respectively. Combined with the results of numerical simulation, the positive effect obtained can be attributed to the remarkable superheat dissipation under the implementation of SFN, where, compared with the normal nozzle, the melt superheat degree at the mold exit is reduced by 15.5 K, 9.8 K, and 17.3 K (15.5 °C, 9.8 °C, and 17.3 °C) under the other three casting measures of SFN, normal nozzle with M-EMS, and SFN with M-EMS, respectively.

  4. Methods to improve neural network performance in daily flows prediction

    NASA Astrophysics Data System (ADS)

    Wu, C. L.; Chau, K. W.; Li, Y. S.

    2009-06-01

    SummaryIn this paper, three data-preprocessing techniques, moving average (MA), singular spectrum analysis (SSA), and wavelet multi-resolution analysis (WMRA), were coupled with artificial neural network (ANN) to improve the estimate of daily flows. Six models, including the original ANN model without data preprocessing, were set up and evaluated. Five new models were ANN-MA, ANN-SSA1, ANN-SSA2, ANN-WMRA1, and ANN-WMRA2. The ANN-MA was derived from the raw ANN model combined with the MA. The ANN-SSA1, ANN-SSA2, ANN-WMRA1 and ANN-WMRA2 were generated by using the original ANN model coupled with SSA and WMRA in terms of two different means. Two daily flow series from different watersheds in China (Lushui and Daning) were used in six models for three prediction horizons (i.e., 1-, 2-, and 3-day-ahead forecast). The poor performance on ANN forecast models was mainly due to the existence of the lagged prediction. The ANN-MA, among six models, performed best and eradicated the lag effect. The performances from the ANN-SSA1 and ANN-SSA2 were similar, and the performances from the ANN-WMRA1 and ANN-WMRA2 were also similar. However, the models based on the SSA presented better performance than the models based on the WMRA at all forecast horizons, which meant that the SSA is more effective than the WMRA in improving the ANN performance in the current study. Based on an overall consideration including the model performance and the complexity of modeling, the ANN-MA model was optimal, then the ANN model coupled with SSA, and finally the ANN model coupled with WMRA.

  5. Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1

    NASA Technical Reports Server (NTRS)

    Burning, Pieter G.; Nichols, Robert H.; Tramel, Robert W.

    2009-01-01

    Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock.

  6. Improving wound care simulation with the addition of odor: a descriptive, quasi-experimental study.

    PubMed

    Roberson, Donna W; Neil, Janice A; Bryant, Elizabeth T

    2008-08-01

    Improving problem-solving skills and expertise in complex clinical care provision requires engaging students in the learning process--a challenging goal when clinical practicums and supervisors are limited. High-fidelity simulation has created many new opportunities for educating healthcare professionals. Because addressing malodorous wounds is a common problem that may be difficult to "teach," a descriptive, quasi-experimental simulation study was conducted. Following completion of a wound care simulation and Laerdal's Simulation Experience Evaluation Tool by 137 undergraduate nursing students, 50 control subjects were randomly selected and 49 volunteer students (experimental group) participated in a wound care simulation after one of three cheeses with a strong odor was added to simulate a malodorous wound. Compared to the control group, study group responses were significantly better (P <0.001) for eight of the 12 survey variables tested and indicated the addition of odor was beneficial in enhancing the perceived realism and value of the simulation. Students responded that the addition of odor in the simulation laboratory improved realism and they felt better prepared to handle malodorous wounds in a clinical setting. An unanticipated outcome was the enhanced feeling of involvement associated with paired care teams as opposed to working in larger groups. The results of this study indicate that wound care education outcomes improve when nursing students are able to practice using a multi-sensorial wound care simulation model. PMID:18716340

  7. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    PubMed

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity. PMID:25010741

  8. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2016-10-01

    The composting of lignocellulosic waste into compost is a potential way of sustainably disposing of a waste while generating a useful product. The current study determined whether the addition of sugarcane bagasse (SCB) (at 0, 15, and 25%) and/or exhausted grape marc (EGM) (at 0, 10, and 20%) improved the two-stage composting of green waste (GW). The combined addition of SCB and EGM improved composting conditions and the quality of the compost product in terms of temperature, water-holding capacity, particle-size distribution, coarseness index, pH, electrical conductivity, water-extractable organic carbon and nitrogen, microbial numbers, enzymatic activities, polysaccharide and lignin content, nutrient content, respiration, and phytotoxicity. The optimal two-stage composting and the best quality compost were obtained with the combined addition of 15% SCB and 20% EGM. With the optimized two-stage composting method, the compost matured in only 21days rather than in the 90-270days required for traditional composting. PMID:27376832

  9. Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.

    PubMed

    Ishihara, Takashi; Hosono, Mareto

    2015-07-15

    The performance of amino acids in Protein A affinity chromatography, anion exchange chromatography and cation exchange chromatography for monoclonal antibody purification was investigated. Glycine, threonine, arginine, glutamate, and histidine were used as buffer components in the equilibration, washing, and elution steps of these chromatographies. Improved clearance of impurity, high molecular weight species (HMW) and host cell proteins (HCP) was observed in the purification processes when using the amino acids as base-buffer constituents, additives or eluents compared with that of buffers without these amino acids. In addition, we designed a buffer system in which the mobile phases were composed of only a single amino acid, histidine, and applied it to the above three chromatographies. Effective HMW and HCP clearance was also obtained in this manner. These results suggest that amino acids may enhance impurity clearance during the purification of monoclonal antibodies. PMID:26057847

  10. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity

    NASA Astrophysics Data System (ADS)

    Caster, Joseph M.; Sethi, Manish; Kowalczyk, Sonya; Wang, Edina; Tian, Xi; Nabeel Hyder, Sayed; Wagner, Kyle T.; Zhang, Ying-Ao; Kapadia, Chintan; Man Au, Kin; Wang, Andrew Z.

    2015-01-01

    Chemosensitizers can improve the therapeutic index of chemotherapy and overcome treatment resistance. Successful translation of chemosensitizers depends on the development of strategies that can preferentially deliver chemosensitizers to tumors while avoiding normal tissue. We hypothesized that nanoparticle (NP) formulation of chemosensitizers can improve their delivery to tumors which can in turn improve their therapeutic index. To demonstrate the proof of principle of this approach, we engineered NP formulations of two chemosensitizers, the PI3-kindase inhibitor wortmanin (Wtmn) and the PARP inhibitor olaparib. NP Wtmn and NP olaparib were evaluated as chemosensitizers using lung cancer cells and breast cancer cells respectively. We found Wtmn to be an efficient chemosensitizer in all tested lung-cancer cell lines reducing tumor cell growth between 20 and 60% compared to drug alone. NP formulation did not decrease its efficacy in vitro. Olaparib showed less consistent chemosensitization as a free drug or in NP formulation. NP Wtmn was further evaluated as a chemosensitizer using mouse models of lung cancer. We found that NP Wtmn is an effective chemosensitizer and more effective than free Wtmn showing a 32% reduction in tumor growth compared to free Wtmn when given with etoposide. Importantly, NP Wtmn was able to sensitize the multi-drug resistant H69AR cells to etoposide. Additionally, the combination of NP Wtmn and etoposide chemotherapy did not significantly increase toxicity. The present study demonstrates the proof of principle of using NP formulation of chemosensitizing drugs to improve the therapeutic index of chemotherapy.

  11. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity

    PubMed Central

    Caster, Joseph M.; Sethi, Manish; Kowalczyk, Sonya; Wang, Edina; Tian, Xi; Hyder, Sayed Nabeel; Wagner, Kyle T.; Zhang, Ying-Ao; Kapadia, Chintan; Au, Kin Man; Wang, Andrew Z.

    2015-01-01

    Chemosensitizers can improve the therapeutic index of chemotherapy and overcome treatment resistance. Successful translation of chemosensitizers depends on the development of strategies that can preferentially deliver chemosensitizers to tumors while avoiding normal tissue. We hypothesized that nanoparticle (NP) formulation of chemosensitizers can improve their delivery to tumors which can in turn improve their therapeutic index. To demonstrate the proof of principle of this approach, we engineered NP formulations of two chemosensitizers, the PI3-kindase inhibitor wortmanin (Wtmn) and the PARP inhibitor olaparib. NP Wtmn and NP olaparib were evaluated as chemosensitizers using lung cancer cells and breast cancer cells respectively. We found Wtmn to be an efficient chemosensitizer in all tested lung-cancer cell lines reducing tumor cell growth between 20 and 60% compared to drug alone. NP formulation did not decrease its efficacy in vitro. Olaparib showed less consistent chemosensitization as a free drug or in NP formulation. NP Wtmn was further evaluated as a chemosensitizer using mouse models of lung cancer. We found that NP Wtmn is an effective chemosensitizer and more effective than free Wtmn showing a 32% reduction in tumor growth compared to free Wtmn when given with etoposide. Importantly, NP Wtmn was able to sensitize the multi-drug resistant H69AR cells to etoposide. Additionally, the combination of NP Wtmn and etoposide chemotherapy did not significantly increase toxicity. The present study demonstrates the proof of principle of using NP formulation of chemosensitizing drugs to improve the therapeutic index of chemotherapy. PMID:25584654

  12. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples - Normal mixture density case

    NASA Technical Reports Server (NTRS)

    Shahshahani, Behzad M.; Landgrebe, David A.

    1992-01-01

    The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.

  13. Planetary rover navigation: improving visual odometry via additional images and multisensor fusion

    NASA Astrophysics Data System (ADS)

    Casalino, G.; Zereik, E.; Simetti, E.; Turetta, A.; Torelli, S.; Sperindé, A.

    2013-12-01

    Visual odometry (VO) is very important for a mobile robot, above all in a planetary scenario, to accurately estimate the rover occurred motion. The present work deals with the possibility to improve a previously developed VO technique by means of additional image processing, together with suitable mechanisms such as the classical Extended/Iterated Kalman Filtering and also Sequence Estimators. The possible employment of both techniques is then addressed and, consequently, a better behaving integration scheme is proposed. Moreover, the eventuality of exploiting other localization sensors is also investigated, leading to a final multisensor scheme.

  14. Multifunctional fuel additives derived from aminodiols to improve the low-temperature properties of distillate fuels

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-19

    This patent describes a liquid hydrocarbyl fuel composition comprising a major amount of a combustible liquid hydrocarbon fuel and a minor low-temperature properties improving amount of from about 0.001% to about 10 wt % based on the total weight of the composition of an additive comprising a product of reaction made by reacting comonomers. It comprises: an aminodiol or combination or mixture of aminodiols with a reactive acid/anhydride product alone or in combination with other monomers derived from the reaction of benzophenone tetracarboxylic dianhydride or its acid equivalent.

  15. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    SciTech Connect

    Doligez, B.; Eschard, R.; Geffroy, F.

    1997-08-01

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  16. Additional improvement of stenosis geometry in human coronary arteries by stenting after balloon dilatation.

    PubMed

    Serruys, P W; Juilliere, Y; Bertrand, M E; Puel, J; Rickards, A F; Sigwart, U

    1988-05-01

    The purpose of this study was to assess the early changes in stenosis geometry after insertion of intravascular stents in human coronary arteries. Morphologic changes were evaluated by quantitative coronary angiography (using automated edge detection) and by calculation of the theoretical pressure decrease across the dilated and stented stenosis from the Poiseuille and turbulent resistances assuming a coronary blood flow of either 1 or 3 ml/s. Twenty-six patients were studied before and after angioplasty, as well as immediately after stent implantation. The stented coronary artery was the left anterior descending artery in 19 cases, the circumflex artery in 2 cases, the right coronary artery in 2 cases and a coronary artery bypass vein graft in 3 cases. After stent implantation, an additional increase in minimal luminal cross-sectional area of the dilated vessel was observed, suggesting that the self-expanding stainless steel endoprosthesis used in this study has a dilating function in addition to its stenting role. PMID:2966568

  17. One-dimensional analysis of unsteady flows due to supercritical heat addition in high speed condensing steam

    NASA Astrophysics Data System (ADS)

    Malek, N. A.; Hasini, H.; Yusoff, M. Z.

    2013-06-01

    Unsteadiness in supersonic flow in nozzles can be generated by the release of heat due to spontaneous condensation. The heat released is termed "supercritical" and may be responsible for turbine blades failure in turbine cascade as it causes a supersonic flow to decelerate. When the Mach number is reduced to unity, the flow can no longer sustain the additional heat and becomes unstable. This paper aims to numerically investigate the unsteadiness caused by supercritical heat addition in one-dimensional condensing flows. The governing equations for mass, momentum and energy, coupled with the equations describing the wetness fraction and droplet growth are integrated and solved iteratively to reveal the final solution. Comparison is made with well-established experimental and numerical solution done by previous researchers that shows similar phenomena.

  18. Improving patient flow at a family health clinic.

    PubMed

    Bard, Jonathan F; Shu, Zhichao; Morrice, Douglas J; Wang, Dongyang Ester; Poursani, Ramin; Leykum, Luci

    2016-06-01

    This paper presents an analysis of a residency primary care clinic whose majority of patients are underserved. The clinic is operated by the health system for Bexar County and staffed primarily with physicians in a three-year Family Medicine residency program at The University of Texas School of Medicine in San Antonio. The objective of the study was to obtain a better understanding of patient flow through the clinic and to investigate changes to current scheduling rules and operating procedures. Discrete event simulation was used to establish a baseline and to evaluate a variety of scenarios associated with appointment scheduling and managing early and late arrivals. The first steps in developing the model were to map the administrative and diagnostic processes and to collect time-stamped data and fit probability distributions to each. In conjunction with the initialization and validation steps, various regressions were performed to determine if any relationships existed between individual providers and patient types, length of stay, and the difference between discharge time and appointment time. The latter two statistics along with resource utilization and closing time were the primary metrics used to evaluate system performance.The results showed that up to an 8.5 % reduction in patient length of stay is achievable without noticeably affecting the other metrics by carefully adjusting appointment times. Reducing the no-show rate from its current value of 21.8 % or overbooking, however, is likely to overwhelm the system's resources and lead to excessive congestion and overtime. Another major finding was that the providers are the limiting factor in improving patient flow. With an average utilization rate above 90 % there is little prospect in shortening the total patient time in the clinic without reducing the providers' average assessment time. Finally, several suggestions are offered to ensure fairness when dealing with out-of-order arrivals. PMID:25155098

  19. Improving Brush Polymer Infrared One-Dimensional Photonic Crystals via Linear Polymer Additives

    SciTech Connect

    Macfarlane, Robert J.; Kim, Bongkeun; Lee, Byeongdu; Weitekamp, Raymond A.; Bates, Christopher M.; Lee, Siu Fung; Chang, Alice B.; Delaney, Kris T.; Fredrickson, Glen H.; Atwater, Harry A.; Grubbs, Robert H.

    2014-12-17

    Brush block copolymers (BBCPs) enable the rapid fabrication of self-assembled one-dimensional photonic crystals with photonic band gaps that are tunable in the UV-vis-IR, where the peak wavelength of reflection scales with the molecular weight of the BBCPs. Due to the difficulty in synthesizing very large BBCPs, the fidelity of the assembled lamellar nanostructures drastically erodes as the domains become large enough to reflect IR light, severely limiting their performance as optical filters. To overcome this challenge, short linear homopolymers are used to swell the arrays to ~180% of the initial domain spacing, allowing for photonic band gaps up to~1410 nm without significant opacity in the visible, demonstrating improved ordering of the arrays. Additionally, blending BBCPs with random copolymers enables functional groups to be incorporated into the BBCP array without attaching them directly to the BBCPs. The addition of short linear polymers to the BBCP arrays thus offers a facile means of improving the self-assembly and optical properties of these materials, as well as adding a route to achieving films with greater functionality and tailorability, without the need to develop or optimize the processing conditions for each new brush polymer synthesized.

  20. Solution of plane cascade flow using improved surface singularity methods

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1981-01-01

    A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.

  1. An analysis method for multistage transonic turbines with coolant mass flow addition

    SciTech Connect

    Mildner, F.; Gallus, H.E.

    1998-10-01

    The subject of this paper is a numerical method for the calculation of the transonic flow field of multistage turbines, taking high coolant flow into account. To reduce the processing time, a throughflow method based on the principles of Wu is used for the hub-to-tip calculation. The flow field is obtained by an iterative solution between a three-dimensional inviscid hyperbolic time-dependent algorithm with an implicit finite volume method for the blade-to-blade calculations using C-meshes and a single representative meridional S{sub 2m}-stream surface. Along the 2{sub 2m}-plane with respect to nonorthogonal curvilinear coordinates, the stream function equation governing fluid flow is established. The cooling air inflow inside the blade passage forbids the assumption of a constant mass flow along the main stream direction. To consider the change of the aerodynamic and thermodynamic behavior, a cooling air model was developed and implemented in the algorithm, which allows the mixing of radially arbitrarily distributed cooling air in the trailing edge section of each blade row. The viscous effects and the influence of cooling air mixing are considered by the use of selected loss correlations for profile, tip leakage, secondary flow and mixing losses in the S{sub 2m}-plane in terms of entropy. The method is applied to the four-stage high-temperature gas turbine Siemens KWU V84.3. The numerical results obtained are in good agreement with the experimental data.

  2. Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values.

    PubMed

    Tańska, Małgorzata; Roszkowska, Beata; Czaplicki, Sylwester; Borowska, Eulalia Julitta; Bojarska, Justyna; Dąbrowska, Aneta

    2016-09-01

    Fruit pomace remaining after juice extraction is still a source of bioactive compounds. Especially rich in these compounds is the pomace from blackcurrant fruit and from fruits of little-known horticultural plants, like: rowan, rosehip and elderberry. The addition of fruit pomace to bakery and confectionery products, especially to those made of white flour, may significantly enrich their composition with dietary fiber, vitamins and phenolic compounds. This study was aimed at determining the effect of 20 % addition of fruit pomace from rosehip, rowan, blackcurrant and elderberry on the properties of shortbread cookies. The pomace-containing cookies, compared to those without additives, were characterized by a darker color with a higher contribution of yellowness, and by higher hardness. The overall organoleptic assessment was comparable for all types of cookies, however the cookies with pomace were characterized by more perceptible taste and aroma, and were sourer. The extracts from pomace-supplemented cookies had a significantly stronger antioxidant capacity than that from the cookies without pomace, but they were ineffective in inhibiting lipid oxidation. The study showed that fruit pomace could improve the nutritional value of shortbread cookies. Furthermore, non-typical color of such a new product may be attractive to consumers. PMID:27319014

  3. Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by addition of nanostructured polypyrrole powder

    NASA Astrophysics Data System (ADS)

    Benhaddad, L.; Gamby, J.; Makhloufi, L.; Pailleret, A.; Pillier, F.; Takenouti, H.

    2016-03-01

    A nanostructured polypyrrole powder was synthesized in a previous work from the oxidation of pyrrole by a nanostructured MnO2 powder used simultaneously as an oxidizing agent and a sacrificial template in a redox heterogeneous mechanism. In this study, this original PPy powder was used as an active additive material with different ratio in carbon/carbon symmetrical supercapacitors whose performances were studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) using a Swagelok-type cell. From the EIS spectra, the complex capacitance was extracted using a model involving two Cole-Cole type complex capacitances linked in series. The specific capacitance values evaluated by EIS and cyclic voltammetry are in a good agreement between them. The results show that the addition of nanostructured polypyrrole powder improves significantly the specific capacitance of the carbon electrode and consequently the performances of carbon/carbon supercapacitors. The original and versatile synthesis method used to produce this polypyrrole powder appears to be attractive for large scale production of promising additives for electrode materials of supercapacitors.

  4. TOPAZ: The transient one-dimensional pipe flow analyzer: An update on code improvements and increased capabilities

    SciTech Connect

    Winters, W.S.

    1987-09-01

    TOPAZ is a ''user-friendly'' computer code for modeling the one-dimensional, transient physics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. This report, the fourth in a series of reports documenting TOPAZ, discusses coding improvements and the addition of new capabilities. These improvements make the current version of TOPAZ considerably more versatile than the original version which was distributed last year. For example, the new version does not restrict the user to modeling only hydrogen and helium isotope flows. Users now have the capability of modeling arbitrary gas mixture flows. In addition users may define time-dependent functions for mass generation, energy deposition, flow area, and maximum integration time step. Parallel flow paths and flows through channels having noncircular cross-sections may now be simulated. Improvements in TOPAZ mesh generation have been made which permit users to add additional ''plumbing'' to existing models without renumbering the mesh. 7 refs., 3 figs., 8 tabs.

  5. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    SciTech Connect

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  6. Improved macroscopic traffic flow model for aggressive drivers

    SciTech Connect

    Mendez, A. R.; Velasco, R. M.

    2011-03-24

    As has been done for the treatment of diluted gases, kinetic methods are formulated for the study of unidirectional freeway traffic. Fluid dynamic models obtained from kinetic equations have inherent restrictions, the principal one is the restriction to the low density regime. Macroscopic models obtained from kinetic equations tends to selfrestrict to this regime and makes impossible to observe the medium density region. In this work, we present some results heading to improve this model and extend the observable region. Now, we are presenting a fluid dynamic model for aggressive drivers obtained from kinetic assumptions to extend the model to the medium density region in order to study synchronization phenomena which is a very interesting transition phase between free flow and traffic jams. We are changing the constant variance prefactor condition imposed before by a variance prefactor density dependent, the numerical solution of the model is presented, analyzed and contrasted with the previous one. We are also comparing our results with heuristic macroscopic models and real traffic observations.

  7. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants

    PubMed Central

    Romanos, Jihane; Rosén, Anna; Kumar, Vinod; Trynka, Gosia; Franke, Lude; Szperl, Agata; Gutierrez-Achury, Javier; van Diemen, Cleo C; Kanninga, Roan; Jankipersadsing, Soesma A; Steck, Andrea; Eisenbarth, Georges; van Heel, David A; Cukrowska, Bozena; Bruno, Valentina; Mazzilli, Maria Cristina; Núñez, Concepcion; Bilbao, Jose Ramon; Mearin, M Luisa; Barisani, Donatella; Rewers, Marian; Norris, Jill M; Ivarsson, Anneli; Boezen, H Marieke; Liu, Edwin; Wijmenga, Cisca

    2014-01-01

    Background The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. Objective We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. Design We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case–control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. Results Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. Conclusions Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD. PMID:23704318

  8. Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle

    SciTech Connect

    Uke, Matthew N.; Stentiford, Edward

    2013-06-15

    Highlights: ► Combined downflow and upflow water addition improved hydraulic conductivity. ► Upflow water addition unclogged perforated screen leading to more leachate flow. ► The volume of water added and transmitted positively correlated with hydrolysis process. ► Combined downflow and upflow water addition increased COD production and yield. ► Combined downflow and upflow leachate recycle improved leachate and COD production. - Abstract: Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D and U at 22 ± 3 °C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D.

  9. Addition of Alarm Pheromone Components Improves the Effectiveness of Desiccant Dusts Against Cimex lectularius

    PubMed Central

    BENOIT, JOSHUA B.; PHILLIPS, SETH A.; CROXALL, TRAVIS J.; CHRISTENSEN, BRADY S.; YODER, JAY A.; DENLINGER, DAVID L.

    2009-01-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss. PMID:19496429

  10. Addition of alarm pheromone components improves the effectiveness of desiccant dusts against Cimex lectularius.

    PubMed

    Benoit, Joshua B; Phillips, Seth A; Croxall, Travis J; Christensen, Brady S; Yoder, Jay A; Denlinger, David L

    2009-05-01

    We demonstrate that the addition of bed bug, Cimex lectularius, alarm pheromone to desiccant formulations greatly enhances their effectiveness during short-term exposure. Two desiccant formulations, diatomaceous earth (DE) and Dri-die (silica gel), were applied at the label rate with and without bed bug alarm pheromone components, (E)-2-hexenal, (E)-2-octenal, and a (E)-2-hexenal:(E)-2-octenal blend. First-instar nymphs and adult females were subjected to 10-min exposures, and water loss rates were used to evaluate the response. Optimal effectiveness was achieved with a pheromone concentration of 0.01 M. With Dri-die alone, the water loss was 21% higher than in untreated controls, and water loss increased nearly two times with (E)-2-hexenal and (E)-2-octenal and three times with the (E)-2-hexenal: (E)-2-octenal blend. This shortened survival of first-instar nymphs from 4 to 1 d, with a similar reduction noted in adult females. DE was effective only if supplemented with pheromone, resulting in a 50% increase in water loss over controls with the (E)-2-hexenal:(E)-2-octenal blend, and a survival decrease from 4 to 2 d in first-instar nymphs. Consistently, the addition of the pheromone blend to desiccant dust was more effective than adding either component by itself or by using Dri-die or DE alone. Based on observations in a small microhabitat, the addition of alarm pheromone components prompted bed bugs to leave their protective harborages and to move through the desiccant, improving the use of desiccants for control. We concluded that short exposure to Dri-die is a more effective treatment against bed bugs than DE and that the effectiveness of the desiccants can be further enhanced by incorporation of alarm pheromone. Presumably, the addition of alarm pheromone elevates excited crawling activity, thereby promoting cuticular changes that increase water loss. PMID:19496429

  11. Triamine-Modified Polyimides Having Improved Processability and Low Melt Flow Viscosity

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor); Nguyen, Baochan N. (Inventor); Eby, Ronald K. (Inventor)

    2001-01-01

    Addition-cured polyimides that contain the reaction product of an aromatic triamine or trianhydride analogue thereof, a reactive end group such as 5-norbornene-2, 3-dicarboxylic acid, ester derivatives of 5-norbornene-2, 3-dicarboxylic acid, anhydride derivatives of 5-norbornene-2, 3-dicarboxylic acid, or 4-phenylethynylphthalic anhydride, an aromatic diamine, and a dialkyl ester of an aromatic tetracarboxylic acid. The resultant starlike polyimides; exhibit lower melt flow viscosity than its linear counterparts, providing for improved processability of the polyimide. Also disclosed are methods for the synthesis of these polyimides as well as composite structures formed using these polyimides.

  12. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  13. Flow-induced vibration of the SSME Lox posts: additional issues. [Space shuttle main engine

    SciTech Connect

    Chen, S.S.

    1984-12-01

    A mathematical model is presented for flow-induced vibration of the Space Shuttle Main Engine (SSME) liquid oxygen (LOX) posts. The definition of the critical flow velocity is addressed, and detuning of the vibrations of the LOX posts is discussed. Nonuniform flow distributions in the axial and transverse directions are examined briefly, followed by upstream turbulence. The dependence of response upon post location is addressed briefly. Scruton's number, a mass-damping parameter, is defined and its value for the SSME LOX posts is given. Also discussed are the interaction of turbulent buffeting and fluidelastic instability, post arrangement, and swirlers around the posts. The differences are discussed between the quasi-static, the analytical, and the general analytical mathematical models. (LEW)

  14. Improved superconducting properties of melt-textured Nd123 by additional heat treatment

    NASA Astrophysics Data System (ADS)

    Chikumoto, N.; Yoshioka, J.; Murakami, M.

    1997-02-01

    We have investigated the effect of additional heat-treatment on the superconducting transition and the flux pinning properties of NdBaCuO melt-textured in air. After the heat-treatment at high temperatures, >900°C, under low oxygen partial pressure, P(O 2) = 0.001 atm, the superconducting transition became sharper accompanied by an increase of Jc. However, the increase of Jc was very small and the secondary peak effect commonly observed in NdBaCuO melt textured in low P(O 2) could not be observed. Transmission electron microscopic observations and energy dispersive X-ray analyses show that the spatial variation of the Nd/Ba ratio is reduced after high-temperature heat-treatment, which indicates that an improvement in Tc and Jc is attributed to a suppression of Nd substitution on the Ba site.

  15. Use of additives to improve the particle-initiated breakdown strength of SF{sub 6}

    SciTech Connect

    Chalmers, I.D.; Farish, O.; MacGregor, S.J.

    1995-12-31

    There has been considerable effort over many years to identify gases which are superior to SF{sub 6} for use in gas-insulated-substation (GIS) applications. Most of this work has been concerned with the {open_quote}intrinsic{close_quote} or uniform-field strength of the new gas or gas mixture. However, the most important requirement in GIS is for an improved tolerance to the high local fields associated with electrode surface defects or with free conducting particles. Particulate contamination is almost impossible to eliminate in large GIS and moving particles can trigger breakdown at levels as low as 20% of the expected strength of the system based on the macroscopic field. Experiments in small point-plane gaps can provide useful insight into the mechanisms by which breakdown is initiated at surface protrusions, or when a particle comes into contact with an electrode. In such experiments, it has been found that some gas mixtures have nonuniform-field strengths considerably greater than pure SF{sub 6}. In particular the addition of small quantities ({approximately}1%) of triethylamine or Freon 113 were found to suppress the development of breakdown {open_quote}leader{close_quote} discharges and to provide enhanced corona shielding of the point. Point-plane studies in SF{sub 6} have pointed to the possibility of modelling ac particle-initiated breakdown on the basis of a leader propagation criterion, while the work with additives offered the promise of an improvement in particle tolerance of GIS. The present investigation was designed to find out whether the small-gap fixed-point results were confirmed in full-scale tests in coaxial geometry with the particles free to move under the action of the applied ac field.

  16. Significantly improved cyclability of lithium manganese oxide under elevated temperature by an easily oxidized electrolyte additive

    NASA Astrophysics Data System (ADS)

    Zhu, Yunmin; Rong, Haibo; Mai, Shaowei; Luo, Xueyi; Li, Xiaoping; Li, Weishan

    2015-12-01

    Spinel lithium manganese oxide, LiMn2O4, is a promising cathode for lithium ion battery in large-scale applications, because it possesses many advantages compared with currently used layered lithium cobalt oxide (LiCoO2) and olivine phosphate (LiFePO4), including naturally abundant resource, environmental friendliness and high and long work potential plateau. Its poor cyclability under high temperature, however, limits its application. In this work, we report a significant cyclability improvement of LiMn2O4 under elevated temperature by using dimethyl phenylphonite (DMPP) as an electrolyte additive. Charge/discharge tests demonstrate that the application of 0.5 wt.% DMPP yields a capacity retention improvement from 16% to 82% for LiMn2O4 after 200 cycles under 55 °C at 1 C (1C = 148 mAh g-1) between 3 and 4.5 V. Electrochemical and physical characterizations indicate that DMPP is electrochemically oxidized at the potential lower than that for lithium extraction, forming a protective cathode interphase on LiMn2O4, which suppresses the electrolyte decomposition and prevents LiMn2O4 from crystal destruction.

  17. Rational nanoconjugation improves biocatalytic performance of enzymes: aldol addition catalyzed by immobilized rhamnulose-1-phosphate aldolase.

    PubMed

    Ardao, Inés; Comenge, Joan; Benaiges, M Dolors; Álvaro, Gregorio; Puntes, Víctor F

    2012-04-17

    Gold nanoparticles (AuNPs) are attractive materials for the immobilization of enzymes due to several advantages such as high enzyme loading, absence of internal diffusion limitations, and Brownian motion in solution, compared to the conventional immobilization onto porous macroscopic supports. The affinity of AuNPs to different groups present at the protein surface enables direct enzyme binding to the nanoparticle without the need of any coupling agent. Enzyme activity and stability appear to be improved when the biocatalyst is immobilized onto AuNPs. Rhamnulose-1-phosphate aldolase (RhuA) was selected as model enzyme for the immobilization onto AuNPs. The enzyme loading was characterized by four different techniques: surface plasmon resonance (SPR) shift and intensity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). AuNPs-RhuA complexes were further applied as biocatalyst of the aldol addition reaction between dihydroxyacetone phosphate (DHAP) and (S)-Cbz-alaninal during two reaction cycles. In these conditions, an improved reaction yield and selectivity, together with a fourfold activity enhancement were observed, as compared to soluble RhuA. PMID:22428999

  18. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN < 0.5 mg/L, NO2(-) < 0.1 mg/L), which demonstrated that both the NA and FG could provide non-toxic water environment for fish culture. Nitrous oxide conversion ratio of the control, NA, and FG were 0.8, 1.2, and 1.7%, respectively, indicating that media-based aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics. PMID:26645232

  19. Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition.

    PubMed

    Ruiz, Ana I; Fernández, Raúl; Sánchez Jiménez, Nicanor; Rodríguez Rastrero, Manuel; Regadío, Mercedes; de Soto, Isabel S; Cuevas, Jaime

    2012-03-01

    Enhanced sand-clay mixtures have been prepared by using a sandstone arkosic material and have been evaluated for consideration as landfill liners. A lab-scale test was carried out under controlled conditions with different amended natural sandstones whereby leachate was passed through the compacted mixtures. The compacted samples consisted of siliceous sand (quartz-feldspar sand separated from the arkose sandstone) and clay (purified clay from arkose sandstone and two commercial bentonites) materials that were mixed in different proportions. The separation of mineral materials from a common and abundant natural source, for soil protection purposes, is proposed as an economic and environmentally efficient practice. The liner qualities were compared for their mineralogical, physicochemical and major ions transport and adsorption properties. Although all samples fulfilled hydraulic conductivity requirements, the addition of bentonite to arkose sandstone was determined to be an effective strategy to decrease the permeability of the soil and to improve the pollutants retention. The clay materials from arkose sandstone also contributed to pollutant retention by a significant improvement of the cation exchange capacity of the bulk material. However, the mixtures prepared with clay materials from the arkose, exhibited a slight increase of hydraulic conductivity. This effect has to be further evaluated. PMID:22285080

  20. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  1. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    PubMed Central

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  2. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    NASA Astrophysics Data System (ADS)

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-11-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  3. Improvement of ocean loading correction on gravity data with additional tide gauge measurements

    NASA Astrophysics Data System (ADS)

    Neumeyer, Juergen; del Pino, Jorge; Dierks, Olaf; Sun, He-Ping; Pflug, Hartmut

    2005-08-01

    Because a gravimeter records the sum of all gravity variations associated with mass redistribution in its near and far surrounding the investigation of a single special gravity effect (e.g. Earth tides or core modes) requires the reduction of all other effects from the data. In our study, we are dealing with the ocean loading effect. High-precision tidal gravity and atmospheric pressure observations are carried out at the station Rio Carpintero in combination with tide gauge measurements at the coast of Santiago de Cuba. The gravity data are subjected to atmospheric pressure and ocean loading corrections with different oceanic tidal models. In order to test the efficiency of the different ocean loading corrections the gravity data are analysed for various tidal waves and the determined Earth tide parameters are compared with model parameters. Additionally, tide gauge measurements are analysed and used for improving the ocean loading correction on gravity data. The results show that present-day global oceanic tidal models, e.g. NAO99b and FES2002 in combination with the ocean loading calculation program (LOAD97), are not sufficient for a complete correction of this effect. With our approach, the discrepancies between the observed Earth tide parameters and those from theoretical prediction for main waves in diurnal and semidiurnal tidal bands are further reduced when taking into account the tide gauge data recorded offshore. After additional removal of oceanic signals, based on the tide gauge data, the analysed Earth tide parameters are closer to the Wahr-Dehant model. The improvement is up to 4% and the noise is reduced from 20 nm/s 2 to 10 nm/s 2 within the examined period range of 10-1500 min. Therefore, high-precision gravity measurements (e.g. with Superconducting Gravimeters), especially for stations near the coastal lines, should take into account tide gauge measurements for the ocean loading correction. With improved ocean loading correction and reduced noise

  4. Improving patient flow in pre-operative assessment

    PubMed Central

    Stark, Cameron; Gent, Anne; Kirkland, Linda

    2015-01-01

    Annual patient attendances at a pre-operative assessment department increased by 24.8% from 5659 in 2009, to 7062 in 2012. The unit was staffed by administrative staff, nurses, and health care assistants (HCA). Medical review was accessed via on call medical staff, or notes were sent to anaesthetists for further review. With rising demand, patient waits increased. The average lead time for a patient (time from entering the department to leaving) was 79 minutes. 9.3% of patients attended within two weeks of their scheduled surgery date. 10% of patients were asked to return on a later day, as there was not sufficient capacity to undertake their assessment. There were nine routes of referral in to the department. Patients moved between different clinic rooms and the waiting area several times. Work patterns were uneven, as many attendances were from out-patient clinics which meant peak attendance times were linked to clinic times. There were substantial differences in the approaches of different nurses, making the HCA role difficult. Patients reported dissatisfaction with waits. Using a Lean quality improvement process with rapid PDSA cycles, the service changed to one in which patients were placed in a room, and remained there for the duration of their assessment. Standard work was developed for HCWs and nurses. Rooms were standardised using 5S processes, and set up improved to reduce time spent looking for supplies. A co-ordinator role was introduced using existing staff to monitor flow and to organise the required medical assessments and ECGs. Timing of booked appointments were altered to take account of clinic times. Routes in to the department were reduced from nine to one. Ten months after the work began, the average lead time had reduced to 59 minutes. The proportion of people attending within two weeks of their surgery decreased from 9.3% to 5.3%. Referrals for an anaesthetic opinion decreased from 30% to 20%, and in the month reviewed no one had to return to

  5. Improving patient flow in pre-operative assessment.

    PubMed

    Stark, Cameron; Gent, Anne; Kirkland, Linda

    2015-01-01

    Annual patient attendances at a pre-operative assessment department increased by 24.8% from 5659 in 2009, to 7062 in 2012. The unit was staffed by administrative staff, nurses, and health care assistants (HCA). Medical review was accessed via on call medical staff, or notes were sent to anaesthetists for further review. With rising demand, patient waits increased. The average lead time for a patient (time from entering the department to leaving) was 79 minutes. 9.3% of patients attended within two weeks of their scheduled surgery date. 10% of patients were asked to return on a later day, as there was not sufficient capacity to undertake their assessment. There were nine routes of referral in to the department. Patients moved between different clinic rooms and the waiting area several times. Work patterns were uneven, as many attendances were from out-patient clinics which meant peak attendance times were linked to clinic times. There were substantial differences in the approaches of different nurses, making the HCA role difficult. Patients reported dissatisfaction with waits. Using a Lean quality improvement process with rapid PDSA cycles, the service changed to one in which patients were placed in a room, and remained there for the duration of their assessment. Standard work was developed for HCWs and nurses. Rooms were standardised using 5S processes, and set up improved to reduce time spent looking for supplies. A co-ordinator role was introduced using existing staff to monitor flow and to organise the required medical assessments and ECGs. Timing of booked appointments were altered to take account of clinic times. Routes in to the department were reduced from nine to one. Ten months after the work began, the average lead time had reduced to 59 minutes. The proportion of people attending within two weeks of their surgery decreased from 9.3% to 5.3%. Referrals for an anaesthetic opinion decreased from 30% to 20%, and in the month reviewed no one had to return to

  6. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate

  7. Pioglitazone in addition to metformin improves erythrocyte deformability in patients with Type 2 diabetes mellitus.

    PubMed

    Forst, Thomas; Weber, Matthias M; Löbig, Mirjam; Lehmann, Ute; Müller, Jürgen; Hohberg, Cloth; Friedrich, Christiane; Fuchs, Winfried; Pfützner, Andreas

    2010-10-01

    The aim of the present study was to compare the effect of PIO (pioglitazone) or GLIM (glimepiride) on erythrocyte deformability in T2DM (Type 2 diabetes mellitus). The study covered 23 metformin-treated T2DM patients with an HbA1c (glycated haemoglobin) >6.5%. Patients were randomized to receive either PIO (15 mg, twice a day) or GLIM (1 mg, twice a day) in combination with metformin (850 mg, twice a day) for 6 months. Blood samples were taken for the measurement of fasting glucose, HbA1c, fasting insulin, intact proinsulin, adiponectin and Hct (haematocrit). In addition, the erythrocyte EI (elongation index) was measured using laser diffractoscopy. Both treatments significantly improved HbA1c levels (PIO, -0.9+/-1.1%; GLIM, -0.6+/-0.4%; both P<0.05) and resulted in comparable HbA1c levels after 6 months (PIO, 6.5+/-1.2%; GLIM, 6.2+/-0.4%) Treatment with PIO reduced fasting insulin levels (-8.7+/-15.8 milli-units/l; P=0.098), intact proinsulin levels (-11.8+/-9.5 pmol/l; P<0.05) and Hct (-1.3+/-2.3%; P=0.09), whereas adiponectin levels increased (8.2+/-4.9 microg/ml; P<0.05). No significant change in these parameters was observed during GLIM treatment. PIO improved the EI, resulting in a significant increase in EI at all physiological shear stress ranges (0.6-6.0 Pa; P<0.05). The improvement in EI correlated with the increase in adiponectin levels (r=0.74; P<0.001), and inversely with intact proinsulin levels (r=-0.47; P<0.05). This is the first study showing an improvement in EI during treatment with PIO, which was associated with an increase in adiponectin and a decrease in intact proinsulin levels, but independent of glycaemic control. PMID:20509857

  8. Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats.

    PubMed

    Yang, Hye Jeong; Kwon, Dae Young; Kim, Min Jung; Kang, Suna; Kim, Da Sol; Park, Sunmin

    2012-01-01

    Jerusalem artichoke (Helianthus tuberosus Linne, HTL) and chungkookjang (CKJ; fermented soybeans) both modulate energy and glucose metabolism. However, the mechanism and their additive effects are unknown. We investigated whether the consumption of HTL and CKJ altered insulin sensitivity, insulin secretion capacity and β-cell survival in type 2 diabetic animals. Rats were divided into partially pancreatectomized (Px) diabetic rats, and sham operated non-diabetic control rats and all fed high fat diets. Diabetic rats were sub-divided into an untreated diabetic control group and those fed 5% HTL, 5% CKJ or 5% HTL+5% CKJ for 8 weeks. HTL+CKJ treatment reduced visceral fat without modulating energy intake compared to the diabetic-control. Glucose tolerance was improved in an ascending order of diabetic-control, CKJ, HTL, HTL+CKJ, and normal-control, but by different mechanisms. CKJ and CKJ+HTL, but not HTL, increased first and second phase insulin secretion in comparison to the diabetic-control at hyperglycemic clamp. However, glucose infusion rates (mg/kg bw/min) were increased by and CKJ+HTL (13.5), but not HTL (9.4) or CKJ (9.5) alone, and HTL and CKJ+ HTL decreased hepatic glucose compared to diabetic-control during the hyperinsulinemic euglycemic study and were associated with decreased triglyceride accumulation and increased glycogen storage. The improved hepatic insulin sensitivity by HTL and CKJ+HTL was explained by potentiated insulin signaling (tyrosine phosphorylation of insulin receptor substrate 2→phosphorylation of Akt) and phosphorylation of AMPK→phosphorykation of acetyl Co carboxlase in comparison to diabetic-control and decreased PEPCK expression. Absolute β-cell mass was increased by CKJ (23.4mg) and CKJ+HTL (26.3 mg) by increasing proliferation compared to the diabetic-control (21.26 mg). Although HTL lowered β-cell apoptosis, it did not increase β-cell mass (20.8 mg). In conclusions, HTL and CKJ enhanced glucose tolerance in different

  9. Jerusalem artichoke and chungkookjang additively improve insulin secretion and sensitivity in diabetic rats

    PubMed Central

    2012-01-01

    Jerusalem artichoke (Helianthus tuberosus Linne, HTL) and chungkookjang (CKJ; fermented soybeans) both modulate energy and glucose metabolism. However, the mechanism and their additive effects are unknown. We investigated whether the consumption of HTL and CKJ altered insulin sensitivity, insulin secretion capacity and β-cell survival in type 2 diabetic animals. Rats were divided into partially pancreatectomized (Px) diabetic rats, and sham operated non-diabetic control rats and all fed high fat diets. Diabetic rats were sub-divided into an untreated diabetic control group and those fed 5% HTL, 5% CKJ or 5% HTL+5% CKJ for 8 weeks. HTL+CKJ treatment reduced visceral fat without modulating energy intake compared to the diabetic-control. Glucose tolerance was improved in an ascending order of diabetic-control, CKJ, HTL, HTL+CKJ, and normal-control, but by different mechanisms. CKJ and CKJ+HTL, but not HTL, increased first and second phase insulin secretion in comparison to the diabetic-control at hyperglycemic clamp. However, glucose infusion rates (mg/kg bw/min) were increased by and CKJ+HTL (13.5), but not HTL (9.4) or CKJ (9.5) alone, and HTL and CKJ+ HTL decreased hepatic glucose compared to diabetic-control during the hyperinsulinemic euglycemic study and were associated with decreased triglyceride accumulation and increased glycogen storage. The improved hepatic insulin sensitivity by HTL and CKJ+HTL was explained by potentiated insulin signaling (tyrosine phosphorylation of insulin receptor substrate 2→phosphorylation of Akt) and phosphorylation of AMPK→phosphorykation of acetyl Co carboxlase in comparison to diabetic-control and decreased PEPCK expression. Absolute β-cell mass was increased by CKJ (23.4mg) and CKJ+HTL (26.3 mg) by increasing proliferation compared to the diabetic-control (21.26 mg). Although HTL lowered β-cell apoptosis, it did not increase β-cell mass (20.8 mg). In conclusions, HTL and CKJ enhanced glucose tolerance in different

  10. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  11. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  12. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  13. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  14. Flue gas conditioning for improved particle collection in electrostatic precipitators. First topical report, Results of laboratory screening of additives

    SciTech Connect

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of {le} 10 {mu}m dia.

  15. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting.

    PubMed

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-02-01

    Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition to composting hen manure and barley straw at low flow rates proved most effective in reducing cumulative NH3 and CH4 losses. Addition of bio-char in combination with barley straw to hen manure at both high and low flow rates reduced total GHG emissions (as CO2-equivalents) by 27-32% compared with barley straw addition alone. Comparisons of flow rates showed that low flow could be an alternative strategy for reducing NH3 losses without any significant change in N2O emissions, pointing to the need for well-controlled composting conditions if gaseous emissions are to be minimised. PMID:24210550

  16. Methods for improved resolution of flow electrophoresis cells

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Fogal, G. L.

    1974-01-01

    First method involves remote adjusting of zeta potential. Second approach sandwiches two conducting metal plates between opposite cell walls and thin insulating layer. Third method forces buffer to flow in direction opposite particle streams.

  17. Addition of a monovalent cationic pesticide to improve efficacy of bipyridyl herbicides in Hulah Valley soils.

    PubMed

    Rytwo, Giora; Tavasi, Mordechai

    2003-11-01

    Bipyridyl herbicides are widely used in agriculture and gardening for non-selective weed control. Since they are toxic and relatively expensive, it is ecologically and economically desirable to reduce the amounts applied. A decrease in efficacy of these herbicides is caused by dust accumulated on leaves of weeds. This inactivation arises from the adsorption of the herbicides on dust particles, mainly made of clay minerals, lime and soil organic matter. In order to improve the efficacy and so lower the amounts applied, formulations were developed which include cationic pesticides approved for agricultural use, such as mepiquat or difenzoquat. Such addition restored the efficacy of the bipyridyl herbicides by reducing their binding to dust particles. The proposed formulations, which were tested on a number of different dust-covered plants, allowed the amounts of herbicide applied to be reduced to 50% of the minimum recommended rate. Neither mepiquat or difenzoquat had any herbicidal activity when sprayed alone at the added rates. The results suggest a procedure that may lower the required rates of contact herbicides, reducing costs and toxicity. This procedure, which can be applied immediately, may have broad implications in farming and gardening. PMID:14620056

  18. Improvement of Gd123 superconductor bulks with the additions of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Peng, Liqi; Zhou, Wenli; Zhou, Xiaojuan; Jia, Lingling; Izumi, Mitsuru

    2015-07-01

    The flux pinning performance of the superconductors is important for the application of the Gd123 bulk superconductors. The study shows that to introduce the secondary phases into the Gd123 bulk matrix can enhance the flux pinning performance. In this article, by using top-seeding melt texture growth process method, single domain GdBa2Cu3O7-δ superconductor bulks doping with the different amounts of BaFe12O19 (0.0mol% to 0.8mol%) were successfully achieved. The property and micro-structure have also been investigated. The result shows that there is an obvious improvement on JC with 0.2mol% BaFe12O19 addition. The fine distribution and smaller size of Gd211 particles appear in the micro-structure which may result in the enhancement of JC. At the same time, BaFe12O19 may also form an effective pinning center to increase JC.

  19. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect

    Lin, Wei-Ting; Cheng, An; Huang, Ran; Zou, Si-Yu

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  20. Addition of senna improves quality of colonoscopy preparation with magnesium citrate

    PubMed Central

    Vradelis, Stergios; Kalaitzakis, Evangelos; Sharifi, Yalda; Buchel, Otto; Keshav, Satish; Chapman, Roger W; Braden, Barbara

    2009-01-01

    AIM: To prospectively investigate the effectiveness and patient’s tolerance of two low-cost bowel cleansing preparation protocols based on magnesium citrate only or the combination of magnesium citrate and senna. METHODS: A total of 342 patients who were referred for colonoscopy underwent a colon cleansing protocol with magnesium citrate alone (n = 160) or magnesium citrate and senna granules (n = 182). The colonoscopist rated the overall efficacy of colon cleansing using an established score on a 4-point scale. Patients were questioned before undergoing colonoscopy for side effects and symptoms during bowel preparation. RESULTS: The percentage of procedures rescheduled because of insufficient colon cleansing was 7% in the magnesium citrate group and 4% in the magnesium citrate/senna group (P = 0.44). Adequate visualization of the colonic mucosa was rated superior under the citramag/senna regimen (P = 0.004). Both regimens were well tolerated, and did not significantly differ in the occurrence of nausea, bloating or headache. However, abdominal cramps were observed more often under the senna protocol (29.2%) compared to the magnesium citrate only protocol (9.9%, P < 0.0003). CONCLUSION: The addition of senna to the bowel preparation protocol with magnesium citrate significantly improves the cleansing outcome. PMID:19360920

  1. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    NASA Astrophysics Data System (ADS)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  2. Cross-flow turbines: physical and numerical model studies towards improved array simulations

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Bachant, P.

    2015-12-01

    Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An

  3. Toward an improved understanding of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Muccino, Julia C.; Gray, William G.; Ferrand, Lin A.

    1998-08-01

    Physical description of multiphase flow in porous media ideally should be based on conservation principles. In practice, however, Darcy's law is employed as the foundation of multiphase flow studies. Darcy's law is an empirical surrogate for momentum conservation based on data obtained from experimental study of one-dimensional single-phase flow. In its original form [Darcy, 1856], Darcy's law contained a single, constant coefficient that depended on the properties of the medium. Since 1856, Darcy's relation has been heuristically and progressively altered by allowing this coefficient to be a spatially dependent, nonlinear function of fluid and solid phase properties, particularly of the quantities of these phases within the flow system. The shortcoming of this approach is that the governing flow equation is obtained by enhancing a simple empirical coefficient with complex functional dependencies rather than by simplifying general conservation principles. As a result, some of the important physical phenomena are not properly accounted for. Also, some assumptions intrinsic to the equations are overlooked, making accurate simulation more of an art than an entirely scientific exercise. A more general and more theoretically appealing approach to the derivation of conservation principles for multiphase flow has been evolving over the last 30 years. This approach employs a mathematical procedure for deriving conservation principles at the length scale of interest, followed by imposition of thermodynamic constraints to restrict the generality of these expressions. The product of this approach is a set of balance equations that provides a framework in which the assumptions inherent in a hypothesized model of multiphase flow are clearly stated. Requirements for more comprehensive and physically complete models can then be specified.

  4. Microearthquakes at Valles Caldera, New Mexico: Improved Detection and Location with Two Additional Caldera Stations

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; House, L. S.; Ten Cate, J. A.

    2015-12-01

    , improvements can be made to the microearthquake locations for the time period before the additional stations were available. Comparisons of the results obtained with these two approaches will be shown and possible implications for the caldera-related origin of these events will be discussed. Public release of LASN data can be granted on a case-by-case basis.

  5. Nanoparticle embedded enzymes for improved lateral flow sensors.

    PubMed

    Özalp, Veli C; Zeydanlı, Uğur S; Lunding, Anita; Kavruk, Murat; Öz, M Tufan; Eyidoğan, Füsun; Olsen, Lars F; Öktem, Hüseyin A

    2013-08-01

    In this study, combining the nanoparticle embedded sensors with lateral flow assays, a novel strategy for ensuring the quality of signalling in lateral flow assays (LFAs) was developed. A LFA for reactive oxygen species (ROS) is reported that is based on horse radish peroxidase (HRP) which is co-entrapped with Texas Red dextran inside porous polyacrylamide nanoparticles. In this system, enzymes are protected in the porous matrix of polyacrylamide which freely allows the diffusion of the analyte. The sensor is rapid and sensitive for quantification of hydrogen peroxide concentrations. A test solution of hydrogen peroxides was quantified with this novel LFA-ROS sensor to obtain a linear range between 1 and 25 μM. Nanoparticle embedding of enzymes is proposed here as a general strategy for developing enzyme-based lateral flow assays, eliminating adverse effects associated with biological samples. PMID:23730687

  6. Elements of an improved model of debris‐flow motion

    USGS Publications Warehouse

    Iverson, Richard M.

    2009-01-01

    A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.

  7. U.S. Stream Flow Measurement and Data Dissemination Improve

    NASA Astrophysics Data System (ADS)

    Hirsch, Robert M.; Costa, John E.

    2004-05-01

    Stream flow information is essential for many important uses across a broad range of scales, including global water balances, engineering design, flood forecasting, reservoir operations, navigation, water supply, recreation, and environmental management. Growing populations and competing priorities for water, including preservation and restoration of aquatic habitat, are spurring demand for more accurate, timely, and accessible water data. To be most useful, stream flow information must be collected in a standardized manner, with a known accuracy, and for a long and continuous time period. The U.S. Geological Survey (USGS) operates over 7000 stream gauges nationwide, which constitute over 90% of the nation's stream gauges that provide daily stream flow records, and that are accessible to the public. Most stream flow records are not based on direct measurement of river discharge, but are derived from continuous measurements of river elevations or stage. These stage data, recorded to 3-mm accuracy, are then converted into discharge by use of a stage/discharge relation (rating) that is unique for each stream gauging location. Because stream beds and banks are not static, neither is the stage discharge rating. Much of the effort and cost associated with stream gauging lies in establishing and updating this relation. Ten years ago, USGS personnel would visit stream gauging stations 8 to 10 times a year to make direct measurements of river depth, width, and velocity using mechanical instruments: a sounding rod or cable, a tagline, and a current meter. From these data, flow rates were computed. The range of measured flow and concurrent river stages were then used to build the rating curve for each site and to track changes to the rating curve.

  8. Does the Addition of a Second Antipsychotic Drug Improve Clozapine Treatment?

    PubMed Central

    Barbui, Corrado; Signoretti, Alessandra; Mulè, Serena; Boso, Marianna; Cipriani, Andrea

    2009-01-01

    In patients with schizophrenia who do not have an optimal response to clozapine, it remains unclear if there is an evidence base to support a second antipsychotic in combination with clozapine. The present systematic review was therefore carried out to determine the efficacy of various clozapine combination strategies with antipsychotics. Relevant studies were located by searching the Cochrane Schizophrenia Group Trials Register, Medline, and Embase (up to November 2007). Only studies randomly allocating patients to clozapine plus another antipsychotic vs clozapine monotherapy were included. The search yielded 21 studies suitable for reanalysis. In 3 trials, clozapine was combined with a phenothiazine, in 8 trials with a benzamide, and in the remaining trials with risperidone. While the majority of randomized trials were not double blind, 6 studies were double-blind placebo-controlled trials. A total of 14 randomized open studies significantly favored clozapine combination strategy in terms of mean difference (random effect standardized mean difference [SMD] = −0.80, 95% confidence interval [CI] = −1.14 to −0.46); however, data extracted from 6 randomized double-blind studies did not show a statistically significant positive effect of this combination strategy in terms of mean difference (SMD = −0.12, 95% CI = −0.57 to 0.32). In terms of percentage of patients failing to show an improvement, a total of 10 randomized open studies significantly favored clozapine combination strategy (random effect relative risk [RR] = 0.64, 95% CI = 0.42 to 0.97), but data extracted from 6 randomized double-blind studies did not show a statistically significant positive effect of this combination strategy (RR = 0.91, 95% CI = 0.75 to 1.11). We conclude that the evidence base supporting a second antipsychotic in addition to clozapine in partially responsive patients with schizophrenia is weak. This weak evidence indicates modest to absent benefit. PMID:18436527

  9. What maintains the waters flowing in our rivers? - Rethinking hydrogeology to improve public policy

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Vitor Vieira

    2016-01-01

    This article discusses how new contributions from hydrogeological science in the 20th and 21st centuries have allowed for a better understanding of the processes that affect the maintenance of river flows. Moreover, the way in which this knowledge has been conveyed beyond academia and has been gradually incorporated into public policy for natural resource management is also discussed. This article explains the development of several approaches used to understand the relationships among the management of aquifers, vegetation and river flows, including water balance, aquifer recharge, the piston effect, seasonal effects, and safe and sustainable yields. Additionally, the current challenges regarding the modeling of hydrological processes that integrate groundwater and surface waters are discussed. Examples of studies applied in Brazil that demonstrate these processes and stimulate thought regarding water management strategies are presented. In light of the case studies, it is possible to propose different strategies, each adapted for specific hydrogeological context to maximize aquifer recharge or base flow maintenance. Based on these strategies, the role of infiltration ponds and other artificial recharge techniques is re-evaluated in the context of the mitigation of environmental impacts on the maintenance of river flows. Proposals for the improvement of public policies regarding the payment of related environmental services to stimulate investment in aquifer recharge and the maintenance of base flow, for which the goal is to attain win-win-win situations for the environment, farmers and water users, while preventing land speculation, are discussed. Lastly, a conceptual model for the dissemination of hydrogeological knowledge in public policies is provided, and its challenges and possibilities are discussed.

  10. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    SciTech Connect

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-07-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  11. Enhanced Efficacy of Doxorubicin by microRNA-499-Mediated Improvement of Tumor Blood Flow

    PubMed Central

    Okamoto, Ayaka; Asai, Tomohiro; Ryu, Sho; Ando, Hidenori; Maeda, Noriyuki; Dewa, Takehisa; Oku, Naoto

    2016-01-01

    Genetic therapy using microRNA-499 (miR-499) was combined with chemotherapy for the advanced treatment of cancer. Our previous study showed that miR-499 suppressed tumor growth through the inhibition of vascular endothelial growth factor (VEGF) production and subsequent angiogenesis. In the present study, we focused on blood flow in tumors treated with miR499, since some angiogenic vessels are known to lack blood flow. Tetraethylenepentamine-based polycation liposomes (TEPA-PCL) were prepared and modified with Ala-Pro-Arg-Pro-Gly peptide (APRPG) for targeted delivery of miR-499 (APRPG-miR-499) to angiogenic vessels and tumor cells. The tumor blood flow was significantly improved, so-called normalized, after systemic administration of APRPG-miR-499 to Colon 26 NL-17 carcinoma–bearing mice. In addition, the accumulation of doxorubicin (DOX) in the tumors was increased by pre-treatment with APRPG-miR-499. Moreover, the combination therapy of APRPG-miR-499 and DOX resulted in significant suppression of the tumors. Taken together, our present data indicate that miR-499 delivered with APRPG-modified-TEPA-PCL normalized tumor vessels, resulting in enhancement of intratumoral accumulation of DOX. Our findings suggest that APRPG-miR-499 may be a therapeutic, or a combination therapeutic, candidate for cancer treatment. PMID:26797645

  12. Enhanced Efficacy of Doxorubicin by microRNA-499-Mediated Improvement of Tumor Blood Flow.

    PubMed

    Okamoto, Ayaka; Asai, Tomohiro; Ryu, Sho; Ando, Hidenori; Maeda, Noriyuki; Dewa, Takehisa; Oku, Naoto

    2016-01-01

    Genetic therapy using microRNA-499 (miR-499) was combined with chemotherapy for the advanced treatment of cancer. Our previous study showed that miR-499 suppressed tumor growth through the inhibition of vascular endothelial growth factor (VEGF) production and subsequent angiogenesis. In the present study, we focused on blood flow in tumors treated with miR499, since some angiogenic vessels are known to lack blood flow. Tetraethylenepentamine-based polycation liposomes (TEPA-PCL) were prepared and modified with Ala-Pro-Arg-Pro-Gly peptide (APRPG) for targeted delivery of miR-499 (APRPG-miR-499) to angiogenic vessels and tumor cells. The tumor blood flow was significantly improved, so-called normalized, after systemic administration of APRPG-miR-499 to Colon 26 NL-17 carcinoma-bearing mice. In addition, the accumulation of doxorubicin (DOX) in the tumors was increased by pre-treatment with APRPG-miR-499. Moreover, the combination therapy of APRPG-miR-499 and DOX resulted in significant suppression of the tumors. Taken together, our present data indicate that miR-499 delivered with APRPG-modified-TEPA-PCL normalized tumor vessels, resulting in enhancement of intratumoral accumulation of DOX. Our findings suggest that APRPG-miR-499 may be a therapeutic, or a combination therapeutic, candidate for cancer treatment. PMID:26797645

  13. Perilla oil improves blood flow through inhibition of platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang-Sei; Lee, Sung-Pyo; Kang, Myung-Hwa; Choi, Ehn-Kyoung

    2014-01-01

    The inhibitory effects of perilla oil on the platelet aggregation in vitro and thrombosis in vivo were investigated in comparison with aspirin, a well-known blood flow enhancer. Rabbit platelet-rich plasma was incubated with perilla oil and aggregation inducers collagen or thrombin, and the platelet aggregation rate was analyzed. Perilla oil significantly inhibited both the collagen- and thrombin-induced platelet aggregations, in which the thromboxane B2 formation from collagen-activated platelets were reduced in a concentration-dependent manner. Rats were administered once daily by gavage with perilla oil for 1 week, carotid arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Perilla oil delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 0.5 mL/kg. In addition, a high dose (2 mL/kg) of perilla oil greatly prevented the occlusion, comparable to the effect of aspirin (30 mg/kg). The results indicate that perilla oil inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is proposed that perilla oil could be a good candidate without adverse effects for the improvement of blood flow. PMID:24707301

  14. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  15. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?

    PubMed Central

    Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell’Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant’Anna; Sepúlveda, Néstor

    2016-01-01

    Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility. PMID:27529819

  16. Addition of meloxicam to the treatment of clinical mastitis improves subsequent reproductive performance.

    PubMed

    McDougall, S; Abbeloos, E; Piepers, S; Rao, A S; Astiz, S; van Werven, T; Statham, J; Pérez-Villalobos, N

    2016-03-01

    A blinded, negative controlled, randomized intervention study was undertaken to test the hypothesis that addition of meloxicam, a nonsteroidal anti-inflammatory drug, to antimicrobial treatment of mild to moderate clinical mastitis would improve fertility and reduce the risk of removal from the herd. Cows (n=509) from 61 herds in 8 regions (sites) in 6 European countries were enrolled. Following herd-owner diagnosis of mild to moderate clinical mastitis within the first 120 d of lactation in a single gland, the rectal temperature, milk appearance, and California Mastitis Test score were assessed. Cows were randomly assigned within each site to be treated either with meloxicam or a placebo (control). All cows were additionally treated with 1 to 4 intramammary infusions of cephalexin and kanamycin at 24-h intervals. Prior to treatment and at 14 and 21 d posttreatment, milk samples were collected for bacteriology and somatic cell count. Cows were bred by artificial insemination and pregnancy status was subsequently defined. General estimating equations were used to determine the effect of treatment (meloxicam versus control) on bacteriological cure, somatic cell count, the probability of being inseminated by 21 d after the voluntary waiting period, the probability of conception to first artificial insemination, the number of artificial insemination/conception, the probability of pregnancy by 120 or 200 d postcalving, and the risk of removal by 300 d after treatment. Cox's proportional hazards models were used to test the effect of treatment on the calving to first insemination and calving to conception intervals. Groups did not differ in terms of age, clot score, California Mastitis Test score, rectal temperature, number of antimicrobial treatments given or bacteria present at the time of enrollment, but cows treated with meloxicam had greater days in milk at enrollment. Cows treated with meloxicam had a higher bacteriological cure proportion than those treated with

  17. Improved vortex methods for three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Winckelmans, G.; Leonard, A.

    1989-01-01

    Robust numerical methods are developed for three-dimensional incompressible vortical flows, using Lagrangian vortex elements. A successful scheme must be able to handle regions of intense vortex stretching and vortex reconnection with reasonable accuracy (without diverging). Here, consideration is given to vortex particles, also commonly called vortons or vortex sticks. The following issues are discussed: (1) use of delta-function elements and weak solutions of the vorticity equation; (2) use of smoothed elements and the choice of the smoothing function; (3) representation of viscous effects and the redistribution of element strength; and (4) conservation laws (are they satisfied?). The various proposed schemes have been tested on flows involving a strong interaction between two vortex rings.

  18. Building block style recipes for productivity improvement in OPC, RET and ILT flows

    NASA Astrophysics Data System (ADS)

    Wu, Linghui; Kwa, Denny; Wan, Jinyin; Wang, Tom; St. John, Matt; Deeth, Steven; Chen, Xiaohui; Cecil, Tom; Meng, Xiaodong; Lucas, Kevin

    2016-03-01

    Traditional model-based Optical Proximity Correction (OPC) and rule-based Resolution Enhancement Technology (RET) methods have been the workhorse mask synthesis methods in volume production for logic and memory devices for more than 15 years. Rule-based OPC methods have been in standard use for over 20 years now. With continuous technical enhancements, these methods have proven themselves robust, flexible and fast enough to meet many of the technical needs of even the most advanced nodes. Inverse Lithography Technology (ILT) methods are well known to have strong benefits in finding flexible mask pattern solutions to improve process window for the most advanced design locations where traditional methods are not sufficient. However, OPC/RET requirements at each node have changed radically in the last 20 years beyond just technical requirements. The volume of engineering work to be done has also skyrocketed. The number of device layers which need OPC/RET can be 10X higher than in earlier nodes. Additionally, the number of mask layers per device layer is often 2X or more times higher with multiple patterning. Finally, the number of features to correct per mask increases ~2X with each node. These factors led to a large increase in the number of OPC engineers needed to develop the complex new OPC/RET recipes for advanced nodes. In this paper, we describe new developments which significantly improve the productivity of OPC engineers to deploy Rule Based OPC (RBOPC), Model Based OPC (MBOPC), AF, and ILT recipes in modern manufacturing flows. In addition to technical improvements such as novel multiple segment hotspot fixing solvers and ILT hot-spot fixing necessary to support correction needs, we have re-architected the entire flow based on how OPC engineers now develop and maintain OPC/RET recipes. The re-architecture of the flow takes advantages of more recent developments in modular and structured programming methods which are known to benefit ease engineering software

  19. Improvement of Flow Characteristics for an Advanced Plasma Thruster

    SciTech Connect

    Inutake, M.; Hosokawa, Y.; Sato, R.; Ando, A.; Tobari, H.; Hattori, K

    2005-01-15

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Until the realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j x B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration.

  20. Elements of an improved model of debris-flow motion

    USGS Publications Warehouse

    Iverson, R.M.

    2009-01-01

    A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.

  1. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  2. Geohydrology of the Central Oahu, Hawaii, Ground-Water Flow System and Numerical Simulation of the Effects of Additional Pumping

    USGS Publications Warehouse

    Oki, Delwyn S.

    1998-01-01

    A two-dimensional, finite-difference, ground-water flow model was developed for the central Oahu flow system, which is the largest and most productive ground-water flow system on the island. The model is based on the computer code SHARP which simulates both freshwater and saltwater flow. The ground-water model was developed using average pumping and recharge conditions during the 1950's, which was considered to be a steady-state period. For 1950's conditions, model results indicate that 62 percent (90.1 million gallons per day) of the discharge from the Schofield ground-water area flows southward and the remaining 38 percent (55.2 million gallons per day) of the discharge from Schofield flows northward. Although the contribution of recharge from infiltration of rainfall and irrigation water directly on top of the southern and northern Schofield ground-water dams was included in the model, the distribution of natural discharge from the Schofield ground-water area was estimated exclusive of the recharge on top of the dams. The model was used to investigate the long-term effects of pumping under future land-use conditions. Future recharge was conservatively estimated by assuming no recharge associated with agricultural activities. Future pumpage used in the model was based on the 1995-allocated rates. Model results indicate that the long-term effect of pumping at the 1995-allocated rates will be a reduction of water levels from present (1995) conditions in all ground-water areas of the central Oahu flow system. In the Schofield ground-water area, model results indicate that water levels could decline about 30 feet from the 1995 water-level altitude of about 275 feet. In the remaining ground-water areas of the central Oahu flow system, water levels may decline from less than 1 foot to as much as 12 feet relative to 1995 water levels. Model results indicate that the bottoms of several existing deep wells in northern and southern Oahu extend below the model

  3. Study of flow distribution and its improvement on the header of plate-fin heat exchanger

    NASA Astrophysics Data System (ADS)

    Wen, Jian; Li, Yanzhong

    2004-11-01

    In order to enhance the uniformity of flow distribution, an improved header configuration of plate-fin heat exchanger is put forward in this paper. Based on the analysis of the fluid flow maldistribution for the conventional header used in industry, a baffle with small holes of three different kinds of diameters is recommended to install in the header. The flow maldistribution parameter S is obtained under different header configuration. When the baffle is properly installed with an optimum length, with stagger arranged and suitably distributed holes from axial line to baffle boundary, the ratio of the maximum flow velocity to the minimum flow velocity drops from 3.44-3.04 to 1.57-1.68 for various Reynolds numbers. The numerical results indicate that the improved header configuration can effectively improve the performance. The conclusion of this paper is of great significance in the improvement of plate-fin heat exchanger.

  4. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants

    PubMed Central

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-01-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988

  5. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    PubMed Central

    Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  6. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    PubMed

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  7. An improved lambda-scheme for one-dimensional flows

    NASA Technical Reports Server (NTRS)

    Moretti, G.; Dipiano, M. T.

    1983-01-01

    A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.

  8. Process for improving mechanical properties of epoxy resins by addition of cobalt ions

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K. (Inventor)

    1984-01-01

    A resin product useful as an adhesive, composite or casting resin is described as well as the process used in its preparation to improve its flexural strength mechanical property characteristics. Improved flexural strength is attained with little or no change in density, thermal stability or moisture resistance by chemically incorporating 1.2% to 10.6% by weight Co(3) ions in an epoxidized resin system.

  9. Improved positioning by addition of atmospheric corrections to local area differential GPS

    NASA Astrophysics Data System (ADS)

    Singh, Malkiat; Reilly, Michael H.

    2006-10-01

    A local area differential GPS (DGPS) method applies corrections from a reference GPS receiver to improve positioning accuracy for a roaming GPS receiver. Increasing separation between reference and roaming receivers dilutes this improvement, largely because ionospheric and tropospheric effects differ between their two locations. We correct differential corrections for this difference and determine the improvement with this "atmospheric" DGPS method at roaming receiver positions that are separated from a Coast Guard reference receiver at Annapolis, Maryland, by 44, 67, and 228 km. For ionospheric corrections we use our Raytrace-Ionospheric conductivity and electron density-Bent-Gallagher ionospheric propagation model with driving parameters obtained from two-frequency data of surveyed reference GPS receivers. For tropospheric corrections we use the Hopfield model and weather station data for surface temperature, pressure, and relative humidity. Internet delivery of atmospheric differential corrections is used to avoid blockage or range cutoff of radio transmissions. Some comparisons are made with Wide Area Augmentation System GPS receiver performance.

  10. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator.

    PubMed

    Passanha, Pearl; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J; Esteves, Sandra R

    2014-07-01

    External stress factors in the form of ionic species or temperature increases have been shown to produce a stress response leading to enhanced PHA production. The effect of five different NaCl concentrations, namely 3.5, 6.5, 9, 12 and 15 g/l NaCl on PHA productivity using Cupriavidus necator has been investigated alongside a control (no added NaCl). A dielectric spectroscopy probe was used to measure PHA accumulation online in conjunction with the chemical offline analysis of PHA. The highest PHA production was obtained with the addition of 9 g/l NaCl, which yielded 30% higher PHA than the control. Increasing the addition of NaCl to 15 g/l was found to inhibit the production of PHA. NaCl addition can therefore be used as a simple, low cost, sustainable, non toxic and non reactive external stress strategy for increasing PHA productivity. PMID:24835740

  11. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. PMID:26348286

  12. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  13. MoFlow: visualizing conformational changes in molecules as molecular flow improves understanding

    PubMed Central

    2015-01-01

    Background Current visualizations of molecular motion use a Timeline-analogous representation that conveys "first the molecule was shaped like this, then like this...". This scheme is orthogonal to the Pathline-like human understanding of motion "this part of the molecule moved from here to here along this path". We present MoFlow, a system for visualizing molecular motion using a Pathline-analogous representation. Results The MoFlow system produces high-quality renderings of molecular motion as atom pathlines, as well as interactive WebGL visualizations, and 3D printable models. In a preliminary user study, MoFlow representations are shown to be superior to canonical representations for conveying molecular motion. Conclusions Pathline-based representations of molecular motion are more easily understood than timeline representations. Pathline representations provide other advantages because they represent motion directly, rather than representing structure with inferred motion. PMID:26361501

  14. Addition of cover crops enhances no-till potential for improving soil physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of cover crops (CC) is growing. Inclusion of CC may be a potential strategy to boost no-till performance by improving soil physical properties. To assess this potential, we utilized a wheat [Triticum aestivum (L.)]-grain sorghum [Sorghum bicolor (L.) Moench] rotation, four N rate...

  15. Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

    2013-10-01

    Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

  16. Addition of glucose oxidase for the improvement of refrigerated dough quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Refrigerated dough encompasses a wide range of products and is a very popular choice for consumers. Two of the largest problems that occur during refrigerated dough storage are dough syruping and loss of dough strength. The goal of this study was to evaluate glucose oxidase as an additive to refri...

  17. Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics

    ERIC Educational Resources Information Center

    Zhu, Guangtian; Singh, Chandralekha

    2013-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…

  18. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  19. Using Sap Flow Monitoring for Improved Process-based Ecohydrologic Understanding 2022

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sap flow measurements can be an important tool for unraveling the complex web of ecosystem fluxes, especially when it is combined with other measurements like eddy covariance, isotopes, remote sensing, etc. In this talk, we will demonstrate how sap flow measurements have improved our process-level u...

  20. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  1. Improving emergency department flow through Rapid Medical Evaluation unit

    PubMed Central

    Chartier, Lucas; Josephson, Timothy; Bates, Kathy; Kuipers, Meredith

    2015-01-01

    The Toronto Western Hospital is an academic hospital in Toronto, Canada, with an annual Emergency Department (ED) volume of 64,000 patients. Despite increases in patient volumes of almost six percent per annum over the last decade, there have been no commensurate increases in resources, infrastructure, and staffing. This has led to substantial increase in patient wait times, most specifically for those patients with lower acuity presentations. Despite requiring only minimal care, these patients contribute disproportionately to ED congestion, which can adversely impact resource utilization and quality of care for all patients. We undertook a retrospective evaluation of a quality improvement initiative aimed at improving wait times experienced by patients with lower acuity presentations. A rapid improvement event was organized by frontline workers to rapidly overhaul processes of care, leading to the creation of the Rapid Medical Evaluation (RME) unit – a new pathway of care for patients with lower acuity presentations. The RME unit was designed by re-purposing existing resources and re-assigning one physician and one nurse towards the specific care of these patients. We evaluated the performance of the RME unit through measurement of physician initial assessment (PIA) times and total length of stay (LOS) times for multiple groups of patients assigned to various ED care pathways, during three periods lasting three months each. Weekly measurements of mean and 90th percentile of PIA and LOS times showed special cause variation in all targeted patient groups. Of note, the patients seen in the RME unit saw their median PIA and LOS times decrease from 98min to 70min and from 165min to 130min, respectively, from baseline. Despite ever-growing numbers of patient visits, wait times for all patients with lower acuity presentations remained low, and wait times of patients with higher acuity presentations assigned to other ED care pathways were not adversely affected. By

  2. LJUBLJANICA CONNECTS - Restoration of the Ljubljanica River corridor and improvement of the river's flow regime

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Sapač, Klaudija; Šraj, Mojca; Bezak, Nejc; Sečnik, Matej; Vidmar, Andrej; Brilly, Mitja

    2016-04-01

    The project Ljubljanica connects is focused on improving connectivity and living conditions in Ljubljanica River which flows through capital city of Slovenia, Ljubljana. It represents living environment for endangered and Natura 2000 targeted fish species Danube Salmon (Hucho hucho), Danube Roach (Rutilus pigus) and Striped Chub (Leuciscus souffia). The project consists of four sets of activities: concrete restoration actions including improvement of two fish passes, monitoring of fish migration, monitoring of eco-hydrological parameters, and raising of public awareness. To improve living conditions the concrete restoration measures were performed. The reconstructions of sill and two fish passes on the Ljubljanica River have been implemented and barrier's lifting system on the weir was modernized. Above the sill in Zalog there is an oxbow which was disconnected with main river channel during the low flows. Interrupted inflow of fresh water caused very poor living conditions for animals in the oxbow. The raise of the sill helped to improve this situation. One of the fish passes included in the project is more than 100 years old whereas both are protected as cultural and technical heritage. None was working properly and due to the protection no visible nor drastic measures were allowed. With smaller improvements we managed to re-establish their operation. A lifting system of the barrier at the Ambrožev trg gate was outdated and did not allow precise regulation of the water level. Too fast raising of the barrier instantly caused deterioration of eco-hydrological conditions downstream. With modernization of the electromechanical equipment the situation is improved. The fish monitoring helps us to evaluate success of concrete restoration actions. The fish population status is monitored with marking the fish with Visible Implant Elastomer (VIE) tags. Regarding the location of catch we implant tags beneath transparent or translucent tissue combining different tag

  3. Flow improvements in the circuit of the Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.

    1983-01-01

    The mean velocity profiles in both the horizontal and vertical planes of symmetry at specific locations throughout the tunnel circuit to identify the most promising means for improving the flow in the 4 by 7 meter wind tunnel were measured. In the base line tunnel flow surveys, the flow patterns near the end of the test section indicate a uniform mean velocity distribution. Downstream of the test section, unsymmetrical flow patterns result in low velocities along the inner walls and in flow separation along the inner wall of the diffuser upstream of the drive fan and along the outer wall of the large diffuser downstream of the drive fan. A set of trailing-edge flaps attached to the five flow-control vanes located just downstream of the first corner were installed. These flaps are successful in making the tunnel flow more symmetrical and in eliminating the regions of separation in the diffusers upstream and downstream of the drive fan.

  4. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while

  5. Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis.

    PubMed

    Braga, Cleiton Márcio Pinto; Delabona, Priscila da Silva; Lima, Deise Juliana da Silva; Paixão, Douglas Antônio Alvaredo; Pradella, José Geraldo da Cruz; Farinas, Cristiane Sanchez

    2014-10-01

    Accessory enzymes that assist biomass degradation could be used to improve the recovery of fermentable sugar for use in biorefineries. In this study, different fungal strains isolated from the Amazon rainforest were evaluated in terms of their ability to produce feruloyl esterase (FAE) and xylanase enzymes, and an assessment was made of the contributions of the enzymes in the hydrolysis of pretreated sugarcane bagasse. In the selection step, screening using plate assays was followed by shake flask submerged cultivations. After carbon source selection and cultivation in a stirred-tank bioreactor, Aspergillusoryzae P21C3 proved to be a promising strain for production of the enzymes. Supplementation of a commercial enzyme preparation with 30% (v/v) crude enzymatic complex from A. oryzae P21C3 increased the conversion of cellulose derived from pretreated sugarcane bagasse by 36%. Supplementation with FAE and xylanase enzymes produced on-site can therefore be used to improve the hydrolysis of sugarcane bagasse. PMID:25151076

  6. Improving the signal analysis for in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin

    2015-03-01

    At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.

  7. Time Domain Transformations to Improve Hydrologic Model Consistency: Parameterization in Flow-Corrected Time

    NASA Astrophysics Data System (ADS)

    Smith, T. J.; Marshall, L. A.; McGlynn, B. L.

    2015-12-01

    Streamflow modeling is highly complex. Beyond the identification and mapping of dominant runoff processes to mathematical models, additional challenges are posed by the switching of dominant streamflow generation mechanisms temporally and dynamic catchment responses to precipitation inputs based on antecedent conditions. As a result, model calibration is required to obtain parameter values that produce acceptable simulations of the streamflow hydrograph. Typical calibration approaches assign equal weight to all observations to determine the best fit over the simulation period. However, the objective function can be biased toward (i.e., implicitly weight) certain parts of the hydrograph (e.g., high streamflows). Data transformations (e.g., logarithmic or square root) scale the magnitude of the observations and are commonly used in the calibration process to reduce implicit weighting or better represent assumptions about the model residuals. Here, we consider a time domain data transformation rather than the more common data domain approaches. Flow-corrected time was previously employed in the transit time modeling literature. Conceptually, it stretches time during high streamflow and compresses time during low streamflow periods. Therefore, streamflow is dynamically weighted in the time domain, with greater weight assigned to periods with larger hydrologic flux. Here, we explore the utility of the flow-corrected time transformation in improving model performance of the Catchment Connectivity Model. Model process fidelity was assessed directly using shallow groundwater connectivity data collected at Tenderfoot Creek Experimental Forest. Our analysis highlights the impact of data transformations on model consistency and parameter sensitivity.

  8. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  9. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  10. Modification of silicone sealant to improve gamma radiation resistance, by addition of protective agents

    NASA Astrophysics Data System (ADS)

    González-Pérez, Giovanni; Burillo, Guillermina

    2013-09-01

    Poly (dimethylsiloxane) (PDMS) sealant (SS) was modified with the addition of different protective compounds to conserve its physical-chemical properties during gamma irradiation. 2-Vinyl naphthalene (2-VN), bisphenol-A (BPA) and poly (vinyl carbazole) (PVK) were used to evaluate radiation protection through the crosslinking effect of radiation. The samples were irradiated with doses from 100 kGy to 500 kGy at room temperature in air, with a 60Co gamma source, and the changes in molecular weight, thermal behavior, elastic properties and infrared spectra (FTIR-ATR) absorbance analysis were determined. The molecular weight of unmodified silicone sealant increases with the absorbed dose because of crosslinking as predominant effect. However, the crosslinking effect was inhibited with the addition of protective agent due to the aromatic compounds present. Modified silicone sealant films present better radiation resistance than unmodified system.

  11. Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Dahn, J. R.

    2016-08-01

    An electrolyte mixture containing 1 M LiPF6 in sulfolane:ethylmethyl carbonate 3:7 with vinylene carbonate and other electrolyte additives exhibited promising cycling and storage performance in high voltage Li(Ni0·4Mn0·4Co0.2)O2/graphite pouch type Li-ion cells tested to 4.5 V. Voltage drop during storage, coulombic efficiency, charge endpoint capacity slippage during ultra high precision cycling, charge-transfer resistance after storage or cycling, gas evolution during storage and cycling as well as capacity retention during long-term cycling were examined. The results for cells with sulfolane-based electrolytes were compared with those for cells with ethylene carbonate-based electrolytes containing state-of-the-art electrolyte additives. This survey showed that the combination of vinylene carbonate and triallyl phosphate as electrolyte additives in sulfolane:ethylmethyl carbonate electrolyte yielded cells capable of better performance during tests to 4.5 V than cells with ethylene carbonate-based electrolytes. These results suggest that sulfolane-based electrolytes may be promising for high voltage Li-ion cells.

  12. Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components

    SciTech Connect

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    2015-09-23

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in the expansion of United States operations for ECM Technologies.

  13. An Additive to Improve the Wear Characteristics of Perfluoropolyether Based Greases

    NASA Technical Reports Server (NTRS)

    Jones, David G. V.; Fowzy, Mahmoud A.; Landry, James F.; Jones, William R., Jr.; Shogrin, Bradley A.; Nguyen, QuynhGiao

    1999-01-01

    The friction and wear characteristics of two formulated perfluoropolyether based greases were compared to their non-additive base greases. One grease was developed for the electronics industry (designated as GXL-296A) while the other is for space applications (designated as GXL-320A). The formulated greases (GXL-296B and GXL-320B) contained a proprietary antiwear additive at an optimized concentration. Tests were conducted using a vacuum four-ball tribometer. AISI 52100 steel specimens were used for all GXL-296 tests. Both AISI 52100 steel and 440C stainless steel were tested with the GXL-320 greases. Test conditions included: a pressure less than 6.7 x 10(exp )-4 Pa, a 200N load, a sliding velocity of 28.8 mm/sec (100 rpm) and room temperature (approximately equal to 23 C). Wear rates for each grease were determined from the slope of the wear volume as a function of sliding distance. Both non-additive base greases yielded relatively high wear rates on the order of 10(exp -8) cu mm using AISI 52100 steel specimens. Formulated grease GXL-296B yielded a reduction in wear rate by a factor of approximately 21, while grease GXL-320B had a reduction of approximately 12 times. Lower wear rates (-50%) were observed with both GXL-320 greases using 440C stainless steel. Mean friction coefficients were slightly higher for both formulated greases compared to their base greases. The GXL-296 series (higher base oil viscosity) yielded much higher friction coefficients compared to their GXL-320 series (lower base oil viscosity) counterparts.

  14. Improvement of pattern collapse issue by additive-added D.I. water rinse process

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Naito, Ryoichiro; Kitada, Tomohiro; Kiba, Yukio; Yamada, Yoshiaki; Kobayashi, Masakazu; Ichikawa, Hiroyuki

    2003-06-01

    Reduction of critical dimension in lithography technology is aggressively promoted. At the same time, further resist thickness reduction is being pursued to increase the resolution capabilities of resist. However, thin film has its limitation because of etch requirements etc. As that result, the promotion of reduction results in increasing the aspect ratio, which leads to pattern collapse. It is well known that at drying step in developing process the capillary effect operates the photoresist pattern. If the force of the capillary effect is greater than the aggregation force of the resist pattern, the pattern collapse is generated. And the key parameters of the capillary effect are the space width between patterns, the aspect ratio, the contact angle of the D.I water rinse and the surface tension of rinse solution. Among these parameters the surface tension of rinse solution can be controlled by us. On the other hand, we've already reported that the penetration of TMAH and D.I water into the resist plays an important role on the lithographic latitude. For example, when we use the resist which TMA ion can be easily diffuse into, D.I water and TMA ion which are penetrated in the resist decreases the aggregation force of resist pattern and causes the pattern collapse even by the weak force against resist pattern. These results indicate that the swelling of photoresist by TMA ion and water is very important factor for controlling the pattern collapse. Currently, two methods are mainly tried to reduce the surface tension of rinse solution: SCF (Super Critical Fluid) and addition of additive to D.I water rinse. We used the latter method this time, because this technique has retrofittability and not special tool. And in this evaluation, we found that the degree of suppressing pattern collapse depends on the additive chemistry or formulation. With consideration given to process factors such as above, we investigated what factors contribute to suppressing pattern collapse

  15. Improved Li/TiS2 cell cycling in ether-based electrolytes with synergistic additives

    NASA Technical Reports Server (NTRS)

    Dominey, L. A.; Goldman, J. L.; Koch, V. R.; Shen, D.; Subbarao, S.; Huang, C.-K.; Halpert, G.; Deligiannis, F.

    1991-01-01

    Based on an extensive series of normalized full cell Li/TiS2 cycling studies, open-circuit storage tests, microcalorimetry and AC impedance studies, and chemical precedent, we propose an integrated chemical model consistent with experimental observations concerning the behavior of numerous LiAsF6/cyclic ether electrolytes. The particularly striking potency of certain additives such as 2-methylfuran and the hydroxide action resides in their ability to intercept several different adverse catalytic processes concurrently in the bulk electrolyte as well as the Li anode and TiS2 cathode.

  16. Multifunctional additives to improve the low-temperature properties of distillate fuels and compositions containing same

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1992-10-20

    This patent describes a product of the reaction of benzophenone tetracarboxylic dianhydride or its acid equivalent and an aminoalcohol or mixture of aminoalcohols or a combination of an aminoalcohol or mixture of aminoalcohols and a secondary amine the reactants being reacted in substantially molar, less than molar or more than molar amounts at temperatures varying from about 85[degrees] to about 250[degrees] C under pressures varying from about ambient or autogeneous to slightly higher for a time sufficient to obtain the desired ester or ester/amide additive product of reaction and wherein the aminoalcohol is derived from an olefin epoxide and a secondary amine.

  17. Water pipe flow simulation using improved virtual particles on smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ting, E. S.; Yeak, S. H.

    2014-12-01

    Smoothed Particle Hydrodynamics (SPH) is a meshless method used widely to solve problems such as fluid flows. Due to its meshless property, it is ideal to solve problems on complex geometry. In this paper, boundary treatment were implied for the rectangular pipe flow simulations using SPH. The repulsive force is applied to the boundary particles along with the improved virtual particles on different geometry alignment. The water flow is solved using incompressible SPH and will be examined throughout the simulation. Results from this simulation will be compared with single layered virtual particles. Based on the result of the study, it is found that the improved virtual particles is more accurate and stable.

  18. Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2

    NASA Technical Reports Server (NTRS)

    Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.

    1988-01-01

    The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.

  19. Development of improved p-type Si-20 at. % Ge by addition of fullerite

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Harringa, J. L.

    1994-08-01

    In a series of experiments designed to evaluate the possibility of lowering the lattice thermal conductivity of silicon-germanium alloys through the formation of an inert, intragranular nanophase, a number of p-type Si-20 at. % Ge alloys, with a nominal doping level of 0.5 at. % boron, were prepared with varying amounts of fullerite, a mixture of 90% C60+10% C70 with a particle size of 0.7 nm. The alloys were synthesized by mechanical alloying (MA) and the fullerite was added at various stages of the preparation sequence. Compacts consolidated by hot pressing at temperatures of 1200 °C to 1265 °C were found to be fully dense and homogeneous. Each compact was characterized by Hall effect at room temperature and also by electrical resistivity, Seebeck coefficient, and thermal diffusivity measurements to 1000 °C. A reduction in thermal conductivity of up to 22% compared to standard p-type alloys was observed in samples containing 0.8 weight percent additions. In this study, a maximum integrated average figure of merit, Z, between 300 and 1000 °C of 0.65×10-3 °C-1 was obtained, corresponding to 0.4 weight percent addition of fullerite. Observation of selected samples by transmission electron microscopy revealed that the fullerite reacted with silicon to form nanophase SiC inclusions.

  20. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth

    PubMed Central

    Chung, Stanley; Ercan, Batur; Roy, Amit K.; Webster, Thomas J.

    2016-01-01

    Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas. However, purified silk promotes microbial growth. Selenium nanoparticles have shown excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and mild improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics. PMID:27471473

  1. The addition of high magnifying endoscopy improves rates of high confidence optical diagnosis of colorectal polyps

    PubMed Central

    Iwatate, Mineo; Sano, Yasushi; Hattori, Santa; Sano, Wataru; Hasuike, Noriaki; Ikumoto, Taro; Kotaka, Masahito; Murakami, Yoshitaka; Hewett, David G.; Soetikno, Roy; Kaltenbach, Tonya; Fujimori, Takahiro

    2015-01-01

    Background and study aims: The real-time optical diagnosis of colorectal polyps with high confidence predictions can achieve high levels of accuracy. Increasing the rates of high confidence optical diagnosis can improve the clinical application of real-time optical diagnosis in routine practice. The primary aim of this prospective study was to evaluate whether high magnifying endoscopy improves the rates of high confidence narrow-band imaging (NBI) – based optical diagnosis for differentiating between neoplastic and non-neoplastic colorectal lesions according to the NBI international colorectal endoscopic (NICE) classification. Patients and methods: Consecutive adult patients undergoing colonoscopy with a high magnifying (maximum, × 80) colonoscope between April and August 2012 were recruited. The optical diagnosis for each polyp was evaluated during colonoscopy in two consecutive stages by the same endoscopist, who first used NBI with non-magnifying endoscopy (NBI-NME), then NBI with magnifying endoscopy (NBI-ME). A level of confidence was assigned to each prediction. Results: The analysis included 124 patients (mean age, 56.4 years; male-to-female ratio, 72:52) with 248 polyps smaller than 10 mm. Of the 248 polyps, 210 were 1 to 5 mm in size and 38 were 6 to 9 mm in size; 77 polyps were hyperplastic, 4 were sessile serrated adenomas/polyps, 160 were low grade adenomas, 5 were high grade adenomas, and 2 were deep submucosal invasive carcinomas. The rate of high confidence optical diagnosis when NBI-ME was used was significantly higher than the rate when NBI-NME was used for diminutive (1 – 5 mm) polyps (92.9 % vs 79.5 %, P < 0.001) and for small (6 – 9 mm) polyps (94.7 % vs 84.2 %, P = 0.048). Conclusion: High magnifying endoscopy significantly improved the rates of high confidence NBI-based optical diagnosis of diminutive and small colorectal polyps. Study registration: UMIN 000007608 PMID:26135657

  2. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    SciTech Connect

    Kim, Y S; Hofman, G L

    2011-06-01

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  3. Color reproductivity improvement with additional virtual color filters for WRGB image sensor

    NASA Astrophysics Data System (ADS)

    Kawada, Shun; Kuroda, Rihito; Sugawa, Shigetoshi

    2013-02-01

    We have developed a high accuracy color reproduction method based on an estimated spectral reflectance of objects using additional virtual color filters for a wide dynamic range WRGB color filter CMOS image sensor. The four virtual color filters are created by multiplying the spectral sensitivity of White pixel by gauss functions which have different central wave length and standard deviation, and the virtual sensor outputs of those virtual filters are estimated from the four real output signals of the WRGB image sensor. The accuracy of color reproduction was evaluated with a Macbeth Color Checker (MCC), and the averaged value of the color difference ΔEab of 24 colors was 1.88 with our approach.

  4. Quantification of myocardial blood flow using PET to improve the management of patients with stable ischemic coronary artery disease.

    PubMed

    Ohira, Hiroshi; Dowsley, Taylor; Dwivedi, Girish; deKemp, Robert A; Chow, Benjamin J; Ruddy, Terrence D; Davies, Ross A; DaSilva, Jean; Beanlands, Rob S B; Hessian, Renee

    2014-09-01

    Cardiac PET has been evolving over the past 30 years. Today, it is accepted as a valuable imaging modality for the noninvasive assessment of coronary artery disease. PET has demonstrated superior diagnostic accuracy for the detection of coronary artery disease compared with single-photon emission computed tomography, and also has a well-established prognostic value. The routine addition of absolute quantification of myocardial blood flow increases the diagnostic accuracy for three-vessel disease and provides incremental functional and prognostic information. Moreover, the characterization of the vasodilator capacity of the coronary circulation may guide proper decision-making and monitor the effects of lifestyle changes, exercise training, risk factor modification or medical therapy for improving regional and global myocardial blood flow. This type of image-guided approach to individualized patient therapy is now attainable with the routine use of cardiac PET flow reserve imaging. PMID:25354033

  5. Numerical study of water entry supercavitating flow around a vertical circular cylinder influenced by turbulent drag-reducing additives

    NASA Astrophysics Data System (ADS)

    Jiang, C. X.; Cheng, J. P.; Li, F. C.

    2015-01-01

    This paper attempts to introduce a numerical simulation procedure to simulate water-entry problems influenced by turbulent drag-reducing additives in a viscous incompressible medium. Firstly we performed a numerical investigation on water-entry supercavities in water and turbulent drag-reducing solution at the impact velocity of 28.4 m/s to confirm the accuracy of the numerical method. Based on the verification, projectile entering water and turbulent drag-reducing solution at relatively high velocity of 142.7 m/s (phase transition is considered) is simulated. The cross viscosity equation was adopted to represent the shear-thinning characteristic of aqueous solution of drag-reducing additives. The configuration and dynamic characteristics of water entry supercavity, flow resistance were discussed respectively. It was obtained that the numerical simulation results are in consistence with experimental data. Numerical results show that the supercavity length in drag-reducing solution is larger than one in water and the velocity attenuates faster at high velocity than at low velocity; the influence of drag-reducing solution is more obvious at high impact velocity. Turbulent drag-reducing additives have the great potential for enhancement of supercavity.

  6. Failure of the addition of fresh seminal plasma to cryopreserved-thawed sperm to improve semen parameters.

    PubMed

    Check, D J; Check, M L; Bollendorf, A; Check, J H

    1993-01-01

    Previous data has shown that subnormal motility in some semen specimens can be improved by the addition of fresh human seminal plasma (HSP). However, if the HSP was first frozen the motility-enhancing factor was lost. We hypothesized that some of the reduction in sperm motility of cryopreserved-thawed sperm may be related to damage of the "motility-enhancing factor" of HSP. This study evaluated whether the addition of fresh HSP could improve the motility of frozen-thawed sperm. Each frozen-thawed specimen was evaluated for motile density and hypoosmotic swelling and then divided into two aliquots. Equal volumes of HSP, human tubal fluid (HTF), and control media were added and the semen parameters were reevaluated. The mean scores for motile density and percent motility did not change compared with baseline thawed volumes with either HSP or HTF additives. There were some isolated cases that did improve with either HSP (21%) or HTF (14%). Future studies are needed to determine whether this improvement is coincidental or consistent, and to determine whether at least some individuals can benefit from the addition of fresh HSP to frozen-thawed sperm. PMID:8215691

  7. Improving Flow Response of a Variable-rate Aerial Application System by Interactive Refinement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to evaluate response of a variable-rate aerial application controller to changing flow rates and to improve its response at correspondingly varying system pressures. System improvements have been made by refinement of the control algorithms over time in collaboration with ...

  8. Experimental study on improvement effect of guide wall to water flow in bend of spillway chute.

    PubMed

    Zhang, Qinghua; Diao, Yanfang; Zhai, Xingtao; Li, Shuning

    2016-01-01

    In order to improve water flow in a bend of a spillway chute using a guide wall, modeling experiments with or without a guide wall under conditions of three different bend axial radii, three chute bottom slopes and three flow rates were carried out in this study. Two indexes were calculated, which are the improved water surface uniformity and the reduced rate of water surface difference in concave and convex banks of the cross-section. The results show that: (1) setting a guide wall in a bend can improve water flow in the bend because it increased the water surface uniformity of the cross-section and reduced the water surface difference in the concave and convex banks; (2) the smaller the bend axial radius, the better the water surface improvement effect will be using a guide wall; (3) the steeper the bottom slope, the more cross-sections with less water surface difference; and (4) flow rates have a great influence on water surface improvement in the bend, and the guide wall can improve water flow obviously when the water depth in the starting section of the bend is lower than the height of the guide wall. This study has important implications in engineering design of guide walls. PMID:26877052

  9. Accuracy improvement of the ice flow rate measurements on Antarctic ice sheet by DInSAR method

    NASA Astrophysics Data System (ADS)

    Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi

    2015-04-01

    to be apparent ones, the average could be a measure of flow rate estimation accuracy by DInSAR. Therefore, it is concluded that the accuracy of the ice flow rate measurement can be improved by using PRISM-DEM. In this presentation, we will show the results of the estimated flow rate of ice streams in the region of interest, and discuss the additional accuracy improvement of this method.

  10. Hemolysate-mediated platelet aggregation: an additional risk mechanism contributing to thrombosis of continuous flow ventricular assist devices.

    PubMed

    Tran, Phat L; Pietropaolo, Maria-Grazia; Valerio, Lorenzo; Brengle, William; Wong, Raymond K; Kazui, Toshinobu; Khalpey, Zain I; Redaelli, Alberto; Sheriff, Jawaad; Bluestein, Danny; Slepian, Marvin J

    2016-07-01

    Despite the clinical success and growth in the utilization of continuous flow ventricular assist devices (cfVADs) for the treatment of advanced heart failure, hemolysis and thrombosis remain major limitations. Inadequate and/or ineffective anticoagulation regimens, combined with high pump speed and non-physiological flow patterns, can result in hemolysis which often is accompanied by pump thrombosis. An unexpected increase in cfVADs thrombosis was reported by multiple major VAD implanting centers in 2014, highlighting the association of hemolysis and a rise in lactate dehydrogenase (LDH) presaging thrombotic events. It is well established that thrombotic complications arise from the abnormal shear stresses generated by cfVADs. What remains unknown is the link between cfVAD-associated hemolysis and pump thrombosis. Can hemolysis of red blood cells (RBCs) contribute to platelet aggregation, thereby, facilitating prothrombotic complications in cfVADs? Herein, we examine the effect of RBC-hemolysate and selected major constituents, i.e., lactate dehydrogenase (LDH) and plasma free hemoglobin (pHb) on platelet aggregation, utilizing electrical resistance aggregometry. Our hypothesis is that elements of RBCs, released as a result of shear-mediated hemolysis, will contribute to platelet aggregation. We show that RBC hemolysate and pHb, but not LDH, are direct contributors to platelet aggregation, posing an additional risk mechanism for cfVAD thrombosis. PMID:26590166