Science.gov

Sample records for flow prediction tools

  1. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  2. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  3. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  4. Compressor map prediction tool

    NASA Astrophysics Data System (ADS)

    Ravi, Arjun; Sznajder, Lukasz; Bennett, Ian

    2015-08-01

    Shell Global Solutions uses an in-house developed system for remote condition monitoring of centrifugal compressors. It requires field process data collected during operation to calculate and assess the machine's performance. Performance is assessed by comparing live results of polytropic head and efficiency versus design compressor curves provided by the Manufacturer. Typically, these design curves are given for specific suction conditions. The further these conditions on site deviate from those prescribed at design, the less accurate the health assessment of the compressor becomes. To address this specified problem, a compressor map prediction tool is proposed. The original performance curves of polytropic head against volumetric flow for varying rotational speeds are used as an input to define a range of Mach numbers within which the non-dimensional invariant performance curve of head and volume flow coefficient is generated. The new performance curves of polytropic head vs. flow for desired set of inlet conditions are then back calculated using the invariant non-dimensional curve. Within the range of Mach numbers calculated from design data, the proposed methodology can predict polytropic head curves at a new set of inlet conditions within an estimated 3% accuracy. The presented methodology does not require knowledge of detailed impeller geometry such as throat areas, blade number, blade angles, thicknesses nor other aspects of the aerodynamic design - diffusion levels, flow angles, etc. The only required mechanical design feature is the first impeller tip diameter. Described method makes centrifugal compressor surveillance activities more accurate, enabling precise problem isolation affecting machine's performance.

  5. New Tool to Predict Glaucoma

    MedlinePlus

    ... News About Us Donate In This Section A New Tool to Predict Glaucoma email Send this article ... determine if a patient has glaucoma. Recently, a new tool has become available to eye care specialists ...

  6. Flow Analysis Tool White Paper

    NASA Technical Reports Server (NTRS)

    Boscia, Nichole K.

    2012-01-01

    Faster networks are continually being built to accommodate larger data transfers. While it is intuitive to think that implementing faster networks will result in higher throughput rates, this is often not the case. There are many elements involved in data transfer, many of which are beyond the scope of the network itself. Although networks may get bigger and support faster technologies, the presence of other legacy components, such as older application software or kernel parameters, can often cause bottlenecks. Engineers must be able to identify when data flows are reaching a bottleneck that is not imposed by the network and then troubleshoot it using the tools available to them. The current best practice is to collect as much information as possible on the network traffic flows so that analysis is quick and easy. Unfortunately, no single method of collecting this information can sufficiently capture the whole endto- end picture. This becomes even more of a hurdle when large, multi-user systems are involved. In order to capture all the necessary information, multiple data sources are required. This paper presents a method for developing a flow analysis tool to effectively collect network flow data from multiple sources and provide that information to engineers in a clear, concise way for analysis. The purpose of this method is to collect enough information to quickly (and automatically) identify poorly performing flows along with the cause of the problem. The method involves the development of a set of database tables that can be populated with flow data from multiple sources, along with an easyto- use, web-based front-end interface to help network engineers access, organize, analyze, and manage all the information.

  7. Prediction of Geophysical Flow Mobility

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Piersanti, A.

    2014-12-01

    The prediction of the mobility of geophysical flows to assess their hazards is one of the main research goals in the earth sciences. Our laboratory experiments and numerical simulations are carried out to understand the effects of grain size and flow volume on the mobility of the centre of mass of dry granular flows of angular rock fragments that have pyroclastic flows and rock avalanches as counterpart in nature. We focus on the centre of mass because it provides information about the intrinsic ability of a flow to dissipate more or less energy as a function of its own features. We show that the grain size and flow volume effects can be expressed by a linear relationship between scaling parameters where the finer the grain size or the smaller the flow volume, the more mobile the centre of mass of the granular flow. The grain size effect is the result of the decrease of particle agitation per unit of flow mass, and thus, the decrease of energy dissipation per unit of travel distance, as grain size decreases. In this sense, flows with different grain sizes are like cars with engines with different fuel efficiencies. The volume effect is the result of the fact that the deposit accretes backward during its formation on a slope change (either gradual or abrupt). We adopt for the numerical simulations a 3D discrete element modeling which confirms the grain size and flow volume effects shown by the laboratory experiments. This confirmation is obtained without prior fine tuning of the parameter values to get the desired output. The numerical simulations reveal also that the larger the initial compaction of the granular mass before release, the more mobile the flow. This behaviour must be taken into account to prevent misinterpretation of laboratory and field data. Discrete element modeling predicts the correct effects of grain size and flow volume because it takes into consideration particle interactions that are responsible for the energy dissipated by the flows.

  8. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  9. Behavior Prediction Tools Strengthen Nanoelectronics

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Several years ago, NASA started making plans to send robots to explore the deep, dark craters on the Moon. As part of these plans, NASA needed modeling tools to help engineer unique electronics to withstand extremely cold temperatures. According to Jonathan Pellish, a flight systems test engineer at Goddard Space Flight Center, "An instrument sitting in a shadowed crater on one of the Moon s poles would hover around 43 K", that is, 43 kelvin, equivalent to -382 F. Such frigid temperatures are one of the main factors that make the extreme space environments encountered on the Moon and elsewhere so extreme. Radiation is another main concern. "Radiation is always present in the space environment," says Pellish. "Small to moderate solar energetic particle events happen regularly and extreme events happen less than a handful of times throughout the 7 active years of the 11-year solar cycle." Radiation can corrupt data, propagate to other systems, require component power cycling, and cause a host of other harmful effects. In order to explore places like the Moon, Jupiter, Saturn, Venus, and Mars, NASA must use electronic communication devices like transmitters and receivers and data collection devices like infrared cameras that can resist the effects of extreme temperature and radiation; otherwise, the electronics would not be reliable for the duration of the mission.

  10. Predictive Data Tools Find Uses in Schools

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2011-01-01

    The use of analytic tools to predict student performance is exploding in higher education, and experts say the tools show even more promise for K-12 schools, in everything from teacher placement to dropout prevention. Use of such statistical techniques is hindered in precollegiate schools, however, by a lack of researchers trained to help…

  11. Predicting Flows of Rarefied Gases

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.; Wilmoth, Richard G.

    2005-01-01

    DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.

  12. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  13. Vibration analysis as a predictive maintenance tool

    SciTech Connect

    Dischner, J.M.

    1995-09-01

    Vibration analysis is a powerful and effective tool in both predicting and isolating incipient fault conditions. Vibration can assist in the identification of root cause failure analysis and can be used to establish maintenance procedures on a condition assessment basis rather than a scheduled or calendar basis. Recent advances in technology allow for not only new types of testing to be performed, but when integrated with other types of machine information, can lead to even greater insight and accuracy of the entire predictive maintenance program. Case studies and recent findings will be presented along with a discussion of how vibration is used as an invaluable tool in the detection of defects in gearboxes, mill stands, and roll chatter detection and correction. Acceptable vibration criteria and cost benefit summaries will be included.

  14. Predicting fish population response to instream flows

    SciTech Connect

    Studley, T.K.; Baldridge, J.E.; Railsback, S.F.

    1996-10-01

    A cooperative research program initiated by Pacific Gas and Electric is described. The goals of the project are to determine if trout populations respond to changes in base streamflows in a predictible manner, and to evaluate and improve the methods used to predict rainbow and brown trout population responses under altered flow regimes. Predictive methods based on computer models of the Physical Habitat Simulation System are described, and predictions generated for four diversions and creeks are tabulated. Baseline data indicates that instream flow assessments can be improved by using guild criteria in streams with competing species and including additional limiting factors (low recruitment, high winter flow, and high stream temperatures) in the analyses.

  15. Overview of Aircraft Noise Prediction Tools Assessment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2007-01-01

    The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction at the system level and at the component level. These include semi-empirical, statistical, analytical, and numerical codes. An example of system level results is shown for an aircraft. Component level results are shown for airframe flaps and landing gear, for jet noise from a variety of nozzles, and for broadband fan noise. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.

  16. On the prediction of turbulent secondary flows

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  17. A new methodology for predictive tool wear

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sik

    turned with various cutting conditions and the results were compared with the proposed analytical wear models. The crater surfaces after machining have been carefully studied to shed light on the physics behind the crater wear. In addition, the abrasive wear mechanism plays a major role in the development of crater wear. Laser shock processing (LSP) has been applied to locally relieve the deleterious tensile residual stresses on the crater surface of a coated tool, thus to improve the hardness of the coating. This thesis shows that LSP has indeed improve wear resistance of CVD coated alumina tool inserts, which has residual stress due to high processing temperature. LSP utilizes a very short laser pulse with high energy density, which induces high-pressure stress wave propagation. The residual stresses are relieved by incident shock waves on the coating surface. Residual stress levels of LSP CVD alumina-coated carbide insert were evaluated by the X-ray diffractometer. Based on these results, LSP parameters such as number of laser pulses and laser energy density can be controlled to reduce residual stress. Crater wear shows that the wear resistance increase with LSP treated tool inserts. Because the hardness data are used to predict the wear, the improvement in hardness and wear resistance shows that the mechanism of crater wear also involves abrasive wear.

  18. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  19. Wind Prediction Accuracy for Air Traffic Management Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Cole, Rod; Green, Steve; Jardin, Matt; Schwartz, Barry; Benjamin, Stan

    2000-01-01

    The performance of Air Traffic Management and flight deck decision support tools depends in large part on the accuracy of the supporting 4D trajectory predictions. This is particularly relevant to conflict prediction and active advisories for the resolution of conflicts and the conformance with of traffic-flow management flow-rate constraints (e.g., arrival metering / required time of arrival). Flight test results have indicated that wind prediction errors may represent the largest source of trajectory prediction error. The tests also discovered relatively large errors (e.g., greater than 20 knots), existing in pockets of space and time critical to ATM DST performance (one or more sectors, greater than 20 minutes), are inadequately represented by the classic RMS aggregate prediction-accuracy studies of the past. To facilitate the identification and reduction of DST-critical wind-prediction errors, NASA has lead a collaborative research and development activity with MIT Lincoln Laboratories and the Forecast Systems Lab of the National Oceanographic and Atmospheric Administration (NOAA). This activity, begun in 1996, has focussed on the development of key metrics for ATM DST performance, assessment of wind-prediction skill for state of the art systems, and development/validation of system enhancements to improve skill. A 13 month study was conducted for the Denver Center airspace in 1997. Two complementary wind-prediction systems were analyzed and compared to the forecast performance of the then standard 60 km Rapid Update Cycle - version 1 (RUC-1). One system, developed by NOAA, was the prototype 40-km RUC-2 that became operational at NCEP in 1999. RUC-2 introduced a faster cycle (1 hr vs. 3 hr) and improved mesoscale physics. The second system, Augmented Winds (AW), is a prototype en route wind application developed by MITLL based on the Integrated Terminal Wind System (ITWS). AW is run at a local facility (Center) level, and updates RUC predictions based on an

  20. Predictability of Turbulent Flow in Street Canyons

    NASA Astrophysics Data System (ADS)

    Lo, K. W.; Ngan, K.

    2015-08-01

    Although predictability is a subject of great importance in atmospheric modelling, there has been little research on urban boundary-layer flows. Here the predictability of street-canyon flow is examined numerically via large-eddy simulation of a unit-aspect-ratio canyon and neutrally stratified atmosphere. In spectral space there is indication of cascade-like behaviour away from the canyon at early times, but the error growth is essentially independent of scale inside the canyon; in physical space the error field is rather inhomogeneous and shows clear differences among the canyon, shear layer and inertial sublayer. The error growth is largely driven by the shear layer: errors generated above roof level are advected into the canyon while contributions from intermittent bursting and in situ development within the canyon play a relatively minor role. This work highlights differences between the predictability of urban flows and canonical turbulent flows and should be useful in developing modelling strategies for more realistic time-dependent urban flows.

  1. Unsteady jet flow computation towards noise prediction

    NASA Technical Reports Server (NTRS)

    Soh, Woo-Yung

    1994-01-01

    An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.

  2. Geostatistical prediction of flow-duration curves

    NASA Astrophysics Data System (ADS)

    Pugliese, A.; Castellarin, A.; Brath, A.

    2013-11-01

    We present in this study an adaptation of Topological kriging (or Top-kriging), which makes the geostatistical procedure capable of predicting flow-duration curves (FDCs) in ungauged catchments. Previous applications of Top-kriging mainly focused on the prediction of point streamflow indices (e.g. flood quantiles, low-flow indices, etc.). In this study Top-kriging is used to predict FDCs in ungauged sites as a weighted average of standardised empirical FDCs through the traditional linear-weighting scheme of kriging methods. Our study focuses on the prediction of period-of-record FDCs for 18 unregulated catchments located in Central Italy, for which daily streamflow series with length from 5 to 40 yr are available, together with information on climate referring to the same time-span of each daily streamflow sequence. Empirical FDCs are standardised by a reference streamflow value (i.e. mean annual flow, or mean annual precipitation times the catchment drainage area) and the overall deviation of the curves from this reference value is then used for expressing the hydrological similarity between catchments and for deriving the geostatistical weights. We performed an extensive leave-one-out cross-validation to quantify the accuracy of the proposed technique, and to compare it to traditional regionalisation models that were recently developed for the same study region. The cross-validation points out that Top-kriging is a reliable approach for predicting FDCs, which can significantly outperform traditional regional models in ungauged basins.

  3. Engineering Property Prediction Tools for Tailored Polymer Composite Structures

    SciTech Connect

    Nguyen, Ba Nghiep; Foss, Peter; Wyzgoski, Michael; Trantina, Gerry; Kunc, Vlastimil; Schutte, Carol; Smith, Mark T.

    2009-12-23

    This report summarizes our FY 2009 research activities for the project titled:"Engineering Property Prediction Tools for Tailored Polymer Composite Structures." These activities include (i) the completion of the development of a fiber length attrition model for injection-molded long-fiber thermoplastics (LFTs), (ii) development of the a fatigue damage model for LFTs and its implementation in ABAQUS, (iii) development of an impact damage model for LFTs and its implementation in ABAQUS, (iv) development of characterization methods for fatigue testing, (v) characterization of creep and fatigue responses of glass-fiber/polyamide (PA6,6) and glass-fiber/polypropylene (PP), (vi) characterization of fiber length distribution along the flow length of glass/PA6,6 and glass-fiber/PP, and (vii) characterization of impact responses of glass-fiber/PA6,6. The fiber length attrition model accurately captures the fiber length distribution along the flow length of the studied glass-fiber/PP material. The fatigue damage model is able to predict the S-N and stiffness reduction data which are valuable to the fatigue design of LFTs. The impact damage model correctly captures damage accumulation observed in experiments of glass-fiber/PA6,6 plaques.Further work includes validations of these models for representative LFT materials and a complex LFT part.

  4. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  5. GAPIT: genome association and prediction integrated tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in high throughput sequencing have improved the detection of genes underlying important traits as well as the prediction accuracy of disease risk and breeding value of crop or livestock. Software programs developed to perform statistical genetic analysis that support these activities should...

  6. SUSY predictions and SUSY tools at the LHC

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.

    2009-01-01

    We provide a bestiary of public codes and other algorithmic tools that can be used for analysing supersymmetric phenomenology. We also describe the organisation of the different tools and communication between them. Tools exist that calculate supersymmetric spectra and decay widths, simulate Monte Carlo events as well as those that make predictions of dark matter relic density or that predict precision electroweak or b-observables. Some global fitting tools for use in SUSY phenomenology are also presented. In each case, a description and a link to the relevant web-site is provided. It is hoped that this review could serve as an “entry-gate” and map for prospective users.

  7. CFD Validation Studies for Hypersonic Flow Prediction

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N, flow over a hollow cylinder-flare with 30 deg flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 deg and aft-cone angle of 55 deg. Both sets of experiments involve 30 deg compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  8. CFD Validation Studies for Hypersonic Flow Prediction

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30 degree flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 degrees and aft-cone angle of 55 degrees. Both sets of experiments involve 30 degree compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  9. Predictive Technologies: Can Smart Tools Augment the Brain's Predictive Abilities?

    PubMed Central

    Pezzulo, Giovanni; D'Ausilio, Alessandro; Gaggioli, Andrea

    2016-01-01

    The ability of “looking into the future”—namely, the capacity of anticipating future states of the environment or of the body—represents a fundamental function of human (and animal) brains. A goalkeeper who tries to guess the ball's direction; a chess player who attempts to anticipate the opponent's next move; or a man-in-love who tries to calculate what are the chances of her saying yes—in all these cases, people are simulating possible future states of the world, in order to maximize the success of their decisions or actions. Research in neuroscience is showing that our ability to predict the behavior of physical or social phenomena is largely dependent on the brain's ability to integrate current and past information to generate (probabilistic) simulations of the future. But could predictive processing be augmented using advanced technologies? In this contribution, we discuss how computational technologies may be used to support, facilitate or enhance the prediction of future events, by considering exemplificative scenarios across different domains, from simpler sensorimotor decisions to more complex cognitive tasks. We also examine the key scientific and technical challenges that must be faced to turn this vision into reality. PMID:27199648

  10. Predictive Technologies: Can Smart Tools Augment the Brain's Predictive Abilities?

    PubMed

    Pezzulo, Giovanni; D'Ausilio, Alessandro; Gaggioli, Andrea

    2016-01-01

    The ability of "looking into the future"-namely, the capacity of anticipating future states of the environment or of the body-represents a fundamental function of human (and animal) brains. A goalkeeper who tries to guess the ball's direction; a chess player who attempts to anticipate the opponent's next move; or a man-in-love who tries to calculate what are the chances of her saying yes-in all these cases, people are simulating possible future states of the world, in order to maximize the success of their decisions or actions. Research in neuroscience is showing that our ability to predict the behavior of physical or social phenomena is largely dependent on the brain's ability to integrate current and past information to generate (probabilistic) simulations of the future. But could predictive processing be augmented using advanced technologies? In this contribution, we discuss how computational technologies may be used to support, facilitate or enhance the prediction of future events, by considering exemplificative scenarios across different domains, from simpler sensorimotor decisions to more complex cognitive tasks. We also examine the key scientific and technical challenges that must be faced to turn this vision into reality. PMID:27199648

  11. Common features of microRNA target prediction tools.

    PubMed

    Peterson, Sarah M; Thompson, Jeffrey A; Ufkin, Melanie L; Sathyanarayana, Pradeep; Liaw, Lucy; Congdon, Clare Bates

    2014-01-01

    The human genome encodes for over 1800 microRNAs (miRNAs), which are short non-coding RNA molecules that function to regulate gene expression post-transcriptionally. Due to the potential for one miRNA to target multiple gene transcripts, miRNAs are recognized as a major mechanism to regulate gene expression and mRNA translation. Computational prediction of miRNA targets is a critical initial step in identifying miRNA:mRNA target interactions for experimental validation. The available tools for miRNA target prediction encompass a range of different computational approaches, from the modeling of physical interactions to the incorporation of machine learning. This review provides an overview of the major computational approaches to miRNA target prediction. Our discussion highlights three tools for their ease of use, reliance on relatively updated versions of miRBase, and range of capabilities, and these are DIANA-microT-CDS, miRanda-mirSVR, and TargetScan. In comparison across all miRNA target prediction tools, four main aspects of the miRNA:mRNA target interaction emerge as common features on which most target prediction is based: seed match, conservation, free energy, and site accessibility. This review explains these features and identifies how they are incorporated into currently available target prediction tools. MiRNA target prediction is a dynamic field with increasing attention on development of new analysis tools. This review attempts to provide a comprehensive assessment of these tools in a manner that is accessible across disciplines. Understanding the basis of these prediction methodologies will aid in user selection of the appropriate tools and interpretation of the tool output. PMID:24600468

  12. Water Impact Prediction Tool for Recoverable Rockets

    NASA Technical Reports Server (NTRS)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  13. Predicting Operator Execution Times Using CogTool

    NASA Technical Reports Server (NTRS)

    Santiago-Espada, Yamira; Latorella, Kara A.

    2013-01-01

    Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.

  14. Virtual Beach: Decision Support Tools for Beach Pathogen Prediction

    EPA Science Inventory

    The Virtual Beach Managers Tool (VB) is decision-making software developed to help local beach managers make decisions as to when beaches should be closed due to predicted high levels of water borne pathogens. The tool is being developed under the umbrella of EPA's Advanced Monit...

  15. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    PubMed

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  16. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  17. Microgravity Geyser and Flow Field Prediction

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.

    2006-01-01

    Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.

  18. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  19. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  20. Predictive models for moving contact line flows

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Stephen

    2003-01-01

    Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.

  1. Development of Doppler Global Velocimetry as a Flow Diagnostics Tool

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1995-01-01

    The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

  2. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  3. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  4. Flow and heat transfer predictions for film cooling.

    PubMed

    Acharya, S; Tyagi, M; Hoda, A

    2001-05-01

    Film cooling flows are characterized by a row of jets injected at an angle from the blade surface or endwalls into the heated crossflow. The resulting flowfield is quite complex, and accurate predictions of the flow and heat transfer have been difficult to obtain, particularly in the near field of the injected jet. The flowfield is characterized by a spectrum of vortical structures including the dominant kidney vortex, the horse-shoe vortex, the wake vortices and the shear layer vortices. These anisotropic and unsteady structures are not well represented by empirical or ad-hoc turbulence models, and lead to inaccurate predictions in the near field of the jet. In this paper, a variety of modeling approaches have been reviewed, and the limitations of these approaches are identified. Recent emergence of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) tools allow the resolution of the coherent structure dynamics, and it is shown in this paper, that such approaches provide improved predictions over that obtained with turbulence models. PMID:11460622

  5. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  6. The Predictive Validity of the Early Warning System Tool

    ERIC Educational Resources Information Center

    Johnson, Evelyn; Semmelroth, Carrie

    2010-01-01

    The Early Warning System is a tool developed by the National High School Center to collect data on indicators including attendance, grade point average, course failures, and credits earned. These indicators have been found to be highly predictive of a student's likelihood of dropping out of high school in large, urban areas. The Early Warning…

  7. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool

    EPA Science Inventory

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  8. PLIO: a generic tool for real-time operational predictive optimal control of water networks.

    PubMed

    Cembrano, G; Quevedo, J; Puig, V; Pérez, R; Figueras, J; Verdejo, J M; Escaler, I; Ramón, G; Barnet, G; Rodríguez, P; Casas, M

    2011-01-01

    This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation). PMID:22097020

  9. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  10. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia

    PubMed Central

    Behan, Laura; Dimitrov, Borislav D.; Kuehni, Claudia E.; Hogg, Claire; Carroll, Mary; Evans, Hazel J.; Goutaki, Myrofora; Harris, Amanda; Packham, Samantha; Walker, Woolf T.

    2016-01-01

    Symptoms of primary ciliary dyskinesia (PCD) are nonspecific and guidance on whom to refer for testing is limited. Diagnostic tests for PCD are highly specialised, requiring expensive equipment and experienced PCD scientists. This study aims to develop a practical clinical diagnostic tool to identify patients requiring testing. Patients consecutively referred for testing were studied. Information readily obtained from patient history was correlated with diagnostic outcome. Using logistic regression, the predictive performance of the best model was tested by receiver operating characteristic curve analyses. The model was simplified into a practical tool (PICADAR) and externally validated in a second diagnostic centre. Of 641 referrals with a definitive diagnostic outcome, 75 (12%) were positive. PICADAR applies to patients with persistent wet cough and has seven predictive parameters: full-term gestation, neonatal chest symptoms, neonatal intensive care admittance, chronic rhinitis, ear symptoms, situs inversus and congenital cardiac defect. Sensitivity and specificity of the tool were 0.90 and 0.75 for a cut-off score of 5 points. Area under the curve for the internally and externally validated tool was 0.91 and 0.87, respectively. PICADAR represents a simple diagnostic clinical prediction rule with good accuracy and validity, ready for testing in respiratory centres referring to PCD centres. PMID:26917608

  11. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia.

    PubMed

    Behan, Laura; Dimitrov, Borislav D; Kuehni, Claudia E; Hogg, Claire; Carroll, Mary; Evans, Hazel J; Goutaki, Myrofora; Harris, Amanda; Packham, Samantha; Walker, Woolf T; Lucas, Jane S

    2016-04-01

    Symptoms of primary ciliary dyskinesia (PCD) are nonspecific and guidance on whom to refer for testing is limited. Diagnostic tests for PCD are highly specialised, requiring expensive equipment and experienced PCD scientists. This study aims to develop a practical clinical diagnostic tool to identify patients requiring testing.Patients consecutively referred for testing were studied. Information readily obtained from patient history was correlated with diagnostic outcome. Using logistic regression, the predictive performance of the best model was tested by receiver operating characteristic curve analyses. The model was simplified into a practical tool (PICADAR) and externally validated in a second diagnostic centre.Of 641 referrals with a definitive diagnostic outcome, 75 (12%) were positive. PICADAR applies to patients with persistent wet cough and has seven predictive parameters: full-term gestation, neonatal chest symptoms, neonatal intensive care admittance, chronic rhinitis, ear symptoms, situs inversus and congenital cardiac defect. Sensitivity and specificity of the tool were 0.90 and 0.75 for a cut-off score of 5 points. Area under the curve for the internally and externally validated tool was 0.91 and 0.87, respectively.PICADAR represents a simple diagnostic clinical prediction rule with good accuracy and validity, ready for testing in respiratory centres referring to PCD centres. PMID:26917608

  12. Prediction of Liquid Sodium Flow Rate through the Core of the IBR-2M Reactor Using Nonlinear Autoregressive Neural Networks

    NASA Astrophysics Data System (ADS)

    Ososkov, G.; Pepelyshev, Yu.; Tsogtsaikhan, Ts.

    2016-02-01

    This paper presents an artificial neural network method for long-term prediction of liquid sodium flow rate through the core of the IBR-2M reactor. The nonlinear autoregressive neural network (NAR) with local feedback connection has been considered as the most appropriate tool for such a prediction. The predicted results were compared with experimental values. NAR model predicts slow changes of liquid sodium flow rate up to two days with an error less than 5%.

  13. Prediction of the decay process in turbulent swirl flow

    NASA Astrophysics Data System (ADS)

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    The paper describes a numerical procedure for predicting the decay of a swirl flow by computing the swirl intensity and tangential and axial velocity distributions at any downstream section of the pipe from the flow parameters at the inlet of the test pipe. The predictions were compared with experimental results obtained on a flow in a test pipe of 74-mm-diameter and 7400-mm-length. Air was used as the working fluid; its stream was given a swirling motion by means of a radial cascade with adjustable blades installed at the inlet. The flow in this set-up was created by a blower, and the rate of flow was regulated by means of a throttling disk. Data obtained on four different flows on the variation of the swirl number along the axis of the test pipe agreed with theoretical predictions within the range of experimental errors. A flow chart for the computational procedure is included.

  14. Risk prediction tools for cancer in primary care.

    PubMed

    Usher-Smith, Juliet; Emery, Jon; Hamilton, Willie; Griffin, Simon J; Walter, Fiona M

    2015-12-22

    Numerous risk tools are now available, which predict either current or future risk of a cancer diagnosis. In theory, these tools have the potential to improve patient outcomes through enhancing the consistency and quality of clinical decision-making, facilitating equitable and cost-effective distribution of finite resources such as screening tests or preventive interventions, and encouraging behaviour change. These potential uses have been recognised by the National Cancer Institute as an 'area of extraordinary opportunity' and an increasing number of risk prediction models continue to be developed. The data on predictive utility (discrimination and calibration) of these models suggest that some have potential for clinical application; however, the focus on implementation and impact is much more recent and there remains considerable uncertainty about their clinical utility and how to implement them in order to maximise benefits and minimise harms such as over-medicalisation, anxiety and false reassurance. If the potential benefits of risk prediction models are to be realised in clinical practice, further validation of the underlying risk models and research to assess the acceptability, clinical impact and economic implications of incorporating them in practice are needed. PMID:26633558

  15. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed. PMID:20945519

  16. Risk prediction tools for cancer in primary care

    PubMed Central

    Usher-Smith, Juliet; Emery, Jon; Hamilton, Willie; Griffin, Simon J; Walter, Fiona M

    2015-01-01

    Numerous risk tools are now available, which predict either current or future risk of a cancer diagnosis. In theory, these tools have the potential to improve patient outcomes through enhancing the consistency and quality of clinical decision-making, facilitating equitable and cost-effective distribution of finite resources such as screening tests or preventive interventions, and encouraging behaviour change. These potential uses have been recognised by the National Cancer Institute as an ‘area of extraordinary opportunity' and an increasing number of risk prediction models continue to be developed. The data on predictive utility (discrimination and calibration) of these models suggest that some have potential for clinical application; however, the focus on implementation and impact is much more recent and there remains considerable uncertainty about their clinical utility and how to implement them in order to maximise benefits and minimise harms such as over-medicalisation, anxiety and false reassurance. If the potential benefits of risk prediction models are to be realised in clinical practice, further validation of the underlying risk models and research to assess the acceptability, clinical impact and economic implications of incorporating them in practice are needed. PMID:26633558

  17. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  18. HostPhinder: A Phage Host Prediction Tool

    PubMed Central

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell; Zschach, Henrike; Lund, Ole; Nielsen, Morten; Larsen, Mette Voldby

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]. PMID:27153081

  19. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  20. HostPhinder: A Phage Host Prediction Tool.

    PubMed

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell; Zschach, Henrike; Lund, Ole; Nielsen, Morten; Larsen, Mette Voldby

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]. PMID:27153081

  1. A survey of aftbody flow prediction methods

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.; Mace, J.

    1981-01-01

    A survey of computational methods used in the calculation of nozzle aftbody flows is presented. One class of methods reviewed are those which patch together solutions for the inviscid, boundary layer, and plume flow regions. The second class of methods reviewed are those which computationally solve the Navier Stokes equations over nozzle aftbodies with jet exhaust flow. Computed results from the methods are compared with experiment. Advantages and disadvantages of the various methods are discussed along with opportunities for further development of these methods.

  2. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    NASA Technical Reports Server (NTRS)

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  3. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  4. Water flow algorithm decision support tool for travelling salesman problem

    NASA Astrophysics Data System (ADS)

    Kamarudin, Anis Aklima; Othman, Zulaiha Ali; Sarim, Hafiz Mohd

    2016-08-01

    This paper discuss about the role of Decision Support Tool in Travelling Salesman Problem (TSP) for helping the researchers who doing research in same area will get the better result from the proposed algorithm. A study has been conducted and Rapid Application Development (RAD) model has been use as a methodology which includes requirement planning, user design, construction and cutover. Water Flow Algorithm (WFA) with initialization technique improvement is used as the proposed algorithm in this study for evaluating effectiveness against TSP cases. For DST evaluation will go through usability testing conducted on system use, quality of information, quality of interface and overall satisfaction. Evaluation is needed for determine whether this tool can assists user in making a decision to solve TSP problems with the proposed algorithm or not. Some statistical result shown the ability of this tool in term of helping researchers to conduct the experiments on the WFA with improvements TSP initialization.

  5. Empirical flow parameters : a tool for hydraulic model validity

    USGS Publications Warehouse

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  6. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan A.; Venkatapathy, Ethiraj

    1993-01-01

    The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  7. Research On Rainfall and The Prediction of Debris Flow

    NASA Astrophysics Data System (ADS)

    Yu, B.

    Accurate prediction of debris flow so that economic losses and human ca- sualties can be reduced or prevented is currently the most focused and difficult point of studying debris flows. Most predictive methods have relied on rainfall as the basic parameter to make predictions, with the result that there is only the prediction of the actual occurrence without that of its arrival time and scale. This article takes Jiangjia Gully in Dongchuan of Yunnan Province as an example, and considers, on the basis of the already possessed essential condition U solid material, the abundant conditions for ° the formation of debris flow. Based on the mechanism of the occurrence of debris flow and the volume of rainfall in the basin, this paper also gives a systematic analysis on the arrival time and scale of debris flow, and suggests that the hydrological condition for forming debris flow is the unit discharge of the flood 8805; 0.35m2/s.m. It uses the ten-minute rainfall intensity to calculate both the runoffs of the rainfall and the unit discharge from the runoff, thus predicting the occurrence of debris flow. The velocity and the arrival time of a debris flow can be figured out by using the unit discharge of the runoffs. The total amount of debris flow can be calculated out and the scale of a debris flow can be predicted by using the ten-minute intensity of rainfall and the total volume of the runoffs, together with the volume concentration of sediment in a debris flow and the basin block up coefficient.

  8. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  9. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  10. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  11. Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models

    NASA Technical Reports Server (NTRS)

    Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.

    1996-01-01

    An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.

  12. Radial and elliptic flow at RHIC: Further predictions

    SciTech Connect

    Huovinen, Pasi; Kolb, Peter F.; Heinz, Ulrich; Ruuskanen, P.V.; Voloshin, Sergei A.

    2001-01-30

    Using a hydrodynamic model, we predict the transverse momentum dependence of the spectra and the elliptic flow for different hadrons in Au+Au collisions at sqrt(s)=130 AGeV. The dependence of the differential and p{_}t-integrated elliptic flow on the hadron mass, equation of state and freeze-out temperature is studied both numerically and analytically.

  13. Development of Design Tools for Flow-Control Actuators

    NASA Technical Reports Server (NTRS)

    Mathew, Jose; Gallas, Quentin; Cattafesta, Louis N., III

    2003-01-01

    This report discusses the: 1. Development coupled electro/fluid/structural lumped-element model (LEM) of a prototypical flow-control actuator. 2. Validation the coupled electro/fluid/structural dynamics lumped-element models. 3. Development simple, yet effective, design tools for actuators. 4. Development structural dynamic models that accurately characterize the dynamic response of piezoelectric flap actuators using the Finite Element Method (FEW as well as analytical methods. 5. Perform a parametric study of a piezo-composite flap actuator. 6.Develop an optimization scheme for maximizing the actuator performance.

  14. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1987-01-01

    An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.

  15. Prediction of Stream Flow in Ungauged Basins - a Comprehensive Framework

    NASA Astrophysics Data System (ADS)

    Ganti, R.; Agarwal, V.; Shetty, A.

    2012-12-01

    It is well established that critical information on stream-flow is essential in reducing uncertainties in planning and design of various water resource projects. Lack of data, at the desired spatial and temporal resolution, poses an enormous challenge in developing meaningful prediction models. Powerful techniques like Artificial Neural Network (ANN) modeling provide reasonably accurate prediction models, however development of such models require substantial amount of past data. Currently, empirical equations developed across the span of several hundred years are used on a regionalized basis. These equations are usually very simple, allowing for easy application, however not very accurate. This limited accuracy can be attributed to the use of noisy data and inclusion of only limited stream-flow variables. This study is an attempt to process noisy data and incorporate catchment variables to improve the accuracy of existing relationships whilst maintaining their simplicity. This study presents a comprehensive framework starting from data-processing to data-analysis that enables the development of regionalized empirical equations. A case-study has been presented for the sub-basins in "Dakshina Kannada" (Coastal Karnataka, India). Firstly, the data has first been processed to remove any outliers and estimate missing values, by replacing missing values with the average values of the neighboring entries for discrete data-sets or by using Least Square principles (LS) for continuously distributed date. Secondly, the existing models have been improved based on the processed dataset obtained through Exploratory Data Analysis (EDA). Further, utilizing Principal Component Analysis (PCA) other important parameters have been identified. All these parameters have then been included to arrive at an "improved regionalized relationship". Finally, the improved regionalized relationships have been evaluated for their performance based on the Correlation Coefficient and Standard Error

  16. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  17. Applications Determine the Best Model to Predict Flow Duration Curves in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Muller, M. F.; Thompson, S. E.

    2014-12-01

    Flow duration curves (FDCs) are an important tool for watershed management and their prediction in ungauged catchments is a challenging problem. Selecting the most appropriate model for prediction the FDC is itself a challenge that determines how theoretical improvements in prediction are transferred into engineering practice. Available performance metrics (e.g., Nash Sutcliffe Coefficient, error on flow moments) typically consider the aggregated ability of the model to predict all streamflow quantiles. These metrics may be inappropriate for model selection in practice because watershed management decisions are typically driven by a limited number of streamflow quantiles that may be poorly represented by an aggregate performance metric. As an illustrative case study, the performance of three distinct FDC prediction approaches -- graphical, statistical and process-based -- are compared for ungauged streams in Nepal. The practical application of these predictions is to inform the design of run-of-river hydropower plants. The process-based approach provides the best prediction of the observed flow distribution and results in significantly higher Nash coefficients. However, the graphical approach provides the best prediction of the flow quantiles that are most relevant for hydropower design and reduces the design error caused by streamflow estimation. To assist in an application driven model selection process, we propose a novel model selection framework.

  18. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    PubMed

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. PMID:26209067

  19. Predicting the impact of chromium on flow-accelerated corrosion

    SciTech Connect

    Chexal, B.; Goyette, L.F.; Horowitz, J.S.; Ruscak, M.

    1996-12-01

    Flow-Accelerated Corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Many experiments have been performed to understand the mechanism of FAC. For approximately twenty years, it has ben widely recognized that the presence of small amounts of chromium will reduce the rate of FAC. This effect was quantified in the eighties by research performed in France, Germany and the Netherlands. The results of this research has been incorporated into the computer-based tools used by utility engineers to deal with this issue. For some time, plant data from Diablo Canyon has suggested that the existing correlations relating the concentration of chromium to the rate of FAC are conservative. Laboratory examinations have supported this observation. It appears that the existing correlations fail to capture a change in mechanism from a FAC process with linear kinetics to a general corrosion process with parabolic kinetics. This change in mechanism occurs at a chromium level of approximately 0.1%, within the allowable alloy range of typical carbon steel (ASTM/ASME A106 Grade B) used in power piping in most domestic plants. It has been difficult to obtain plant data that has sufficient chromium to develop a new correlation. Data from Diablo Canyon and the Dukovany Power Plant in the Czech Republic will be used to develop a new chromium correlation for predicting FAC rate.

  20. Surface topography prediction on laser processed tool steel

    NASA Astrophysics Data System (ADS)

    Ukar, E.; Lamikiz, A.; Martínez, S.; López de Lacalle, L. N.

    2012-04-01

    In laser surface treatment the laser beam is used as energy source for surface modification improving aspects such as mechanical properties, tribology or surface texture. Modeling tools have special interest in processes with many variables, like laser surface processing, in order to minimize the tryout testing to find the optimal process parameters. The work presented here focuses on the prediction of the final topography in laser polishing process. By FFT analysis of the surface profile it is possible to get the different frequency components of the initial topography. On the other hand, thermal field simulation was carried out to evaluate the melt duration. Matching this with the spatial frequency damping during process, the reconstruction of the processed topography was obtained.

  1. Prediction of High-Lift Flows using Turbulent Closure Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild

    1997-01-01

    The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.

  2. Orbit Prediction Tool for Different Classes of Space Debris Orbits

    NASA Astrophysics Data System (ADS)

    Wnuk, Edwin; Wytrzyszczak, Iwona; Golembiewska, Justyna; Klinkrad, Heiner

    There are two aspects of the orbital evolution of space debris: the long-term evolution and the short-term prediction of individual object orbits. In the case of the long-term evolution (years or tens of years time span) general characteristics (e.g. total number of objects, spa-tial distribution and density) of a future space environment are predicted with the use of a relatively simple theory of motion for statistical analysis of future orbits of a large number of objects -a cloud of particles". In the short-term orbital evolution of space debris objects, as considered in this paper, future positions and velocities of individual objects are calculated for a few days or a few weeks time span. A much more sophisticated theory of satellite motion is applied in this case. The paper presents the orbital prediction tool that uses an analytical and semi-analytical theories of satellite motion. The force model includes all important perturbing factors: geopotential effects with arbitrary degree and order spherical harmonic coefficients taken into account, luni-solar attractions, solar radiation pressure and atmospheric drag. The analytical theory of motion is of the second order and is not sensitive to singularities for small eccentricities and small inclinations. A new algorithm for the transformation between mean and osculating elements for the second order theory is applied. Predicted positions of a satel-lite on a given level of accuracy are calculated only with the use of terms that essentially influence on predicted satellite orbit, all other terms are omitted. The number of terms in for-mulas for perturbations, and thus complexity of the theory, depends on the defined level of accuracy and the type of orbit. In practice, we create a dynamical model for a given class of satellite orbit. Geopotential and luni-solar perturbations are calculated in the two following steps. In the first step, values of secular terms and all amplitudes of periodic terms are calculated

  3. A Predictive Simulation Tool for Plasma Facing Antennas

    NASA Astrophysics Data System (ADS)

    Maggiora, R.; Parisot, A.

    2005-10-01

    TOPICA is an innovative tool for the simulation of plasma facing antennas that incorporates commercial-grade 3D graphic interfaces and an accurate description of the plasma. The coaxial feeding line or waveguide are modeled as such; computation and visualization of relevant parameters (input scattering parameters, current and field distributions, etc.) complete the suite. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked self-consistently by representing the field continuity in terms of equivalent (unknown) sources. In the vacuum region all the calculations are executed in the spatial domain, and this allows triangular-facet description of the arbitrarily shaped conductors and associated currents; in the plasma region a spectral representation of the fields is used, which allows to enter the plasma effect via impedance matrix. This work is devoted to an extensive set of comparisons between system parameters measured during operation and simulated. The comparison demonstrates a very good agreement, leading to a validation of TOPICA as a reliable predictive tool.

  4. iFlow: A Graphical User Interface for Flow Cytometry Tools in Bioconductor

    PubMed Central

    Lee, Kyongryun; Hahne, Florian; Sarkar, Deepayan; Gentleman, Robert

    2009-01-01

    Flow cytometry (FCM) has become an important analysis technology in health care and medical research, but the large volume of data produced by modern high-throughput experiments has presented significant new challenges for computational analysis tools. The development of an FCM software suite in Bioconductor represents one approach to overcome these challenges. In the spirit of the R programming language (Tree Star Inc., “FlowJo,” http://www.owjo.com), these tools are predominantly console-driven, allowing for programmatic access and rapid development of novel algorithms. Using this software requires a solid understanding of programming concepts and of the R language. However, some of these tools|in particular the statistical graphics and novel analytical methods|are also useful for nonprogrammers. To this end, we have developed an open source, extensible graphical user interface (GUI) iFlow, which sits on top of the Bioconductor backbone, enabling basic analyses by means of convenient graphical menus and wizards. We envision iFlow to be easily extensible in order to quickly integrate novel methodological developments. PMID:20049160

  5. Software Tool Integrating Data Flow Diagrams and Petri Nets

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Tavana, Madjid

    2010-01-01

    Data Flow Diagram - Petri Net (DFPN) is a software tool for analyzing other software to be developed. The full name of this program reflects its design, which combines the benefit of data-flow diagrams (which are typically favored by software analysts) with the power and precision of Petri-net models, without requiring specialized Petri-net training. (A Petri net is a particular type of directed graph, a description of which would exceed the scope of this article.) DFPN assists a software analyst in drawing and specifying a data-flow diagram, then translates the diagram into a Petri net, then enables graphical tracing of execution paths through the Petri net for verification, by the end user, of the properties of the software to be developed. In comparison with prior means of verifying the properties of software to be developed, DFPN makes verification by the end user more nearly certain, thereby making it easier to identify and correct misconceptions earlier in the development process, when correction is less expensive. After the verification by the end user, DFPN generates a printable system specification in the form of descriptions of processes and data.

  6. Predicting Transition from Laminar to Turbulent Flow over a Surface

    NASA Technical Reports Server (NTRS)

    Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of boundary-layer properties at the point are obtained from a steady-state solution of a fluid flow in a region adjacent to the point. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For each instability mode in the plurality of instability modes, a covariance vector is determined, which is the covariance of a predicted local growth rate with the known instability growth rates. Each covariance vector is used with the vector of regressor weights to determine a predicted local growth rate at the point. Based on the predicted local growth rates, an n-factor envelope at the point is determined.

  7. Modeling and Prediction of Hot Deformation Flow Curves

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Cabrera, Jose Maria; Najafizadeh, Abbas

    2012-01-01

    The modeling of hot flow stress and prediction of flow curves for unseen deformation conditions are important in metal-forming processes because any feasible mathematical simulation needs accurate flow description. In the current work, in an attempt to summarize, generalize, and introduce efficient methods, the dynamic recrystallization (DRX) flow curves of a 17-4 PH martensitic precipitation hardening stainless steel, a medium carbon microalloyed steel, and a 304 H austenitic stainless steel were modeled and predicted using (1) a hyperbolic sine equation with strain dependent constants, (2) a developed constitutive equation in a simple normalized stress-normalized strain form and its modified version, and (3) a feed-forward artificial neural network (ANN). These methods were critically discussed, and the ANN technique was found to be the best for the modeling available flow curves; however, the developed constitutive equation showed slightly better performance than that of ANN and significantly better predicted values than those of the hyperbolic sine equation in prediction of flow curves for unseen deformation conditions.

  8. Predicting Transition from Laminar to Turbulent Flow over a Surface

    NASA Technical Reports Server (NTRS)

    Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For an instability mode in the plurality of instability modes, a covariance vector is determined. A predicted local instability growth rate at the point is determined using the covariance vector and the vector of regressor weights. Based on the predicted local instability growth rate, an n-factor envelope at the point is determined.

  9. Interfacial shear modeling and flow predictions for internal film condesation flows

    NASA Technical Reports Server (NTRS)

    Narain, A.

    1992-01-01

    Internal flow of pure vapor experiencing film condesation on the walls of a straight duct is studied. The commonly occuring case of turbulent (or laminar) vapor flow in the core and laminar flow of the liquid condensate-with or without waves on the interface-is emphasized. We propose and implement a new first principle methodolgy which model interfacial shear with the help of reliable experimental data on heat transfer rates. Other details of the flow are predicted with the help of this model. These predictions are shown to be in agreement with relevant experimental data. Correlations for film thickness and heat transfer rates are also given.

  10. Flow Control Analysis on the Hump Model with RANS Tools

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Vatsa, Veer N.; Rumsey, Christopher L.; Carpenter, Mark H.

    2003-01-01

    A concerted effort is underway at NASA Langley Research Center to create a benchmark for Computational Fluid Dynamic (CFD) codes. both unstructured and structured, against a data set for the hump model with actuation. The hump model was tested in the NASA Langley 0.3-m Transonic Cryogenic Tunnel. The CFD codes used for the analyses are the FUN2D (Full Unstructured Navier-Stokes 2-Dimensional) code, the structured TLNS3D (Thin-Layer Navier-Stokes 3-Dimensional) code, and the structured CFL3D code, all developed at NASA Langley. The current investigation uses the time-accurate Reynolds-Averaged Navier-Stokes (RANS) approach to predict aerodynamic performance of the active flow control experimental database for the hump model. Two-dimensional computational results verified that steady blowing and suction and oscillatory suction/blowing can be used to significantly reduce the separated flow region on the model. Discrepancies do exist between the CFD results and experimental data in the region downstream of the slot with the largest differences in the oscillatory cases. Overall, the structured CFD codes exhibited similar behavior with each other for a wide range of control conditions, with the unstructured FUN2D code showing moderately different results in the separated flow region for the suction and oscillatory cases.

  11. Simulation of pressure-tooling wire-coating flow with Phan-Thien/Tanner models

    NASA Astrophysics Data System (ADS)

    Ngamaramvaranggul, V.; Webster, M. F.

    2002-03-01

    Annular pressure-tooling extrusion is simulated for a low density polymer melt using a Taylor-Petrov-Galerkin finite element scheme. This represents industrial-scale wire-coating. Viscoelastic fluids are modeled via three forms of Phan-Thien/Tanner (PTT) constitutive laws employed for short-die and full specification pressure-tooling. Effects of variation in Weissenberg number (We) and polymeric viscosity are investigated. Particular attention is paid to mesh refinement to predict accurate results. The impact of variation in shear-thinning and strain-softening properties is considered upon the modelling predictions. For the short-die flow, the influence of the lack of strain softening is identified. For the full-die flow and more severe deformation rates, the linear PTT model failed to converge. In contrast, the exponential PTT model is found to be more stable numerically and to adequately reflect the material response. Comparing short-die and full-die pressure-tooling results, shear rates increase 10-fold, while strain rates increase one hundred times. Copyright

  12. Comparison of Performance Predictions for New Low-Thrust Trajectory Tools

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie

    2006-01-01

    Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.

  13. Doppler flowmetry as a tool of predictive, preventive and personalised dentistry.

    PubMed

    Orekhova, Liudmila Yu; Barmasheva, Anna A

    2013-01-01

    Periodontal lesions are considered a major problem in the global burden of oral diseases due to their high frequency and negative impact on quality of life. Periodontal inflammation is accomplished by a breakdown of microcirculatory function. Early detection of gingival microvessel dysfunction helps diagnose and prevent the progression of initial periodontal pathology. Doppler flowmetry is a useful tool in the diagnosis, monitoring, prognosis and management of periodontal patients which allows access not only of gingival blood flow but also of pulpal microcirculation. Doppler flowmeters might help to realise the ultimate target of predictive, preventive and personalised periodontology tailored with respect to the particular patient. This article highlights the main working principles of laser Doppler flowmeters and the ultrasonic Doppler flowmeters. The advances in blood flow measurement by ultrasonic flowmetry are discussed. PMID:23981527

  14. Temperature as a predictive tool for plantar triaxial loading.

    PubMed

    Yavuz, Metin; Brem, Ryan W; Davis, Brian L; Patel, Jalpa; Osbourne, Abe; Matassini, Megan R; Wood, David A; Nwokolo, Irene O

    2014-11-28

    Diabetic foot ulcers are caused by moderate repetitive plantar stresses in the presence of peripheral neuropathy. In severe cases, the development of these foot ulcers can lead to lower extremity amputations. Plantar pressure measurements have been considered a capable predictor of ulceration sites in the past, but some investigations have pointed out inconsistencies when solely relying on this method. The other component of ground reaction forces/stresses, shear, has been understudied due to a lack of adequate equipment. Recent articles reported the potential clinical significance of shear in diabetic ulcer etiology. With the lack of adequate tools, plantar temperature has been used as an alternative method for determining plantar triaxial loading and/or shear. However, this method has not been previously validated. The purpose of this study was to analyze the potential association between exercise-induced plantar temperature increase and plantar stresses. Thirteen healthy individuals walked on a treadmill for 10 minutes at 3.2km/h. Pre and post-exercise temperature profiles were obtained with a thermal camera. Plantar triaxial stresses were quantified with a custom-built stress plate. A statistically significant correlation was observed between peak shear stress (PSS) and temperature increase (r=0.78), but not between peak resultant stress (PRS) and temperature increase (r=0.46). Plantar temperature increase could predict the location of PSS and PRS in 23% and 39% of the subjects, respectively. Only a moderate linear relationship was established between triaxial plantar stresses and walking-induced temperature increase. Future research will investigate the value of nonlinear models in predicting plantar loading through foot temperature. PMID:25446272

  15. sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2014-07-01

    Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (Flow"target="_blank">www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).

  16. MODFLOW 2. 0: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F. . Dept. of Nuclear Engineering); Paik, I.K. )

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  17. Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes

    NASA Astrophysics Data System (ADS)

    Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis

    2016-04-01

    Post-wildfire natural hazards such as flooding and debris flows threaten infrastructure and can even lead to loss of life. The risk from these natural hazards could be reduced if floods and debris flows could be predicted from modeling. Our ability to test predictive models is primarily constrained by a lack of observational data that can be used for comparison with model predictions. Following the 2009 Station Fire in the San Gabriel Mountains, CA, USA, we conducted a study with high-resolution topography and hydrologic measurements to test the effectiveness of two different hydrologic routing models to predict flood and debris flow timing. Our research focuses on comparing the performance of two hydrologic models with differing levels of complexity and efficiency using high-resolution, lidar-derived digital elevation models. The simpler model uses the kinematic wave approximation to route flows, while the more complex model uses the full shallow water equations. In both models precipitation is spatially uniform and infiltration is simulated using the Green-Ampt infiltration equation. Input data for the numerical models was constrained by time series data of soil moisture, and rainfall collected at field sites as well as high-resolution lidar-derived digital elevation models. We ran the numerical models and varied parameter values for the roughness coefficient and hydraulic conductivity. These parameter values were calibrated by minimizing the difference between the simulated and observed flow timing. Moreover, the two parameters were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. The calibrated parameters were subsequently used to model a third watershed, and the results show a good match with observed timing of flow peaks for both models. Calibrated roughness coefficients are generally higher when using the kinematic wave approximation relative to the full shallow water equations, and decrease with increasing spatial

  18. Predictive mapping of the natural flow regimes of France

    NASA Astrophysics Data System (ADS)

    Snelder, Ton H.; Lamouroux, Nicolas; Leathwick, John R.; Pella, Hervé; Sauquet, Eric; Shankar, Ude

    2009-06-01

    SummaryHydrologic variability is important in sustaining a variety of ecological processes in streams and rivers. Natural flow regime classifications group streams and rivers that are relatively homogeneous with respect to flow variability and have been promoted as a method of defining units for management of river flows. Although there has been considerable interest in classifying natural flow regimes, there has been less emphasis given to developing accurate methods of extrapolating these classifications to locations without flow data. We developed a method of mapping flow regime classes using boosted regression trees (BRT) that automatically fits non-linear functions and interactions between explanatory variables of flow regimes, both of which can be expected when comparing responses between complex systems such as watersheds. A natural flow regimes classification of continental France was developed from cluster analysis of 157 hydrological indices derived from 763 gauging stations representing unmodified flows. BRT models were used to predict the likelihood of gauging stations belonging to each class based on the watershed characteristics. These models were used to extrapolate the natural flow regime classification to all segments of a national river network. The performance of the BRT models were compared with other methods of assigning locations to flow regime classes, including the use of geographically contiguous regions, linear discriminant analysis (LDA) and classification and regression trees (CART). The "fitted" misclassification rate (associated with model fits) for assignment based on the BRT models was 13% whereas the fitted misclassification rates for geographically contiguous regions, LDA and CART were 52%, 44% and 39% respectively. A "predictive" misclassification rate (calculated for new cases) was estimated for assignments based on the BRT, LDA and CART models using cross validation analysis. For assignment based on the BRT models, the mean

  19. ANFIS modeling for prediction of particle motions in fluid flows

    NASA Astrophysics Data System (ADS)

    Safdari, Arman; Kim, Kyung Chun

    2015-11-01

    Accurate dynamic analysis of parcel of solid particles driven in fluid flow system is of interest for many natural and industrial applications such as sedimentation process, study of cloud particles in atmosphere, etc. In this paper, numerical modeling of solid particles in incompressible flow using Eulerian-Lagrangian approach is carried out to investigate the dynamic behavior of particles in different flow conditions; channel and cavity flow. Although modern computers have been well developed, the high computational time and costs for this kind of problems are still demanded. The Lattice Boltzmann Method (LBM) is used to simulate fluid flows and combined with the Lagrangian approach to predict the motion of particles in the range of masses. Some particles are selected, and subjected to Adaptive-network-based fuzzy inference system (ANFIS) to predict the trajectory of moving solid particles. Using a hybrid learning procedure from computational particle movement, the ANFIS can construct an input-output mapping based on fuzzy if-then rules and stipulated computational fluid dynamics prediction pairs. The obtained results from ANFIS algorithm is validated and compared with the set of benchmark data provided based on point-like approach coupled with the LBM method.

  20. Ensemble stream flow predictions using the ECMWF forecasts

    NASA Astrophysics Data System (ADS)

    Kiczko, Adam; Romanowicz, Renata; Osuch, Marzena; Pappenberger, Florian; Karamuz, Emilia

    2015-04-01

    Floods and low flows in rivers are seasonal phenomena that can cause several problems to society. To anticipate high and low flow events, flow forecasts are crucial. They are of particular importance in mountainous catchments, where the lead time of forecasts is usually short. In order to prolong the forecast lead-time, numerical weather predictions (NWPs) are used as a hydrological model driving force. The forecasted flow is commonly given as one value, even though it is uncertain. There is an increasing interest in accounting for the uncertainty in flood early warning and decision support systems. When NWP are given in the form of ensembles, such as the ECMWF forecasts, the uncertainty of these forecasts can be accounted for. Apart from the forecast uncertainty the uncertainty related to the hydrological model used also plays an important role in the uncertainty of the final flow prediction. The aim of this study is the development of a stream flow prediction system for the Biała Tarnowska, a mountainous catchment in the south of Poland. We apply two different hydrological models. One is a conceptual HBV model for rainfall-flow predictions, applied within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, the second is a data-based DBM model, adjusted for Polish conditions by adding the Soil Moisture Accounting (SMA) and snow-melt modules. Both models provide the uncertainty of the predictions, but the DBM approach is much more numerically efficient, therefore more suitable for the real-time forecasting.. The ECMWF forecasts require bias reduction in order to correspond to observations. Therefore we applied Quantile Mapping with and without seasonal adjustment for bias correction. Up to seven-days ahead forecast skills are compared using the Relative Operation Characteristic (ROC) graphs, for the flood warning and flood alarm flow value thresholds. The ECMWF forecasts are obtained from the project TIGGE (http

  1. Prediction of swirling reacting flow in ramjet combustors

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Samples, J. W.; Rhode, D. L.

    1981-01-01

    Numerical computations have been undertaken for a basic two-dimensional axisymmetric flowfield which is similar to that found in conventional gas turbine and ramjet combustors. A swirling flow enters a larger chamber via a sudden or gradual expansion. The calculation method involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation turbulence energy-turbulence dissipation rate turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. The results include recirculation zone characterization and predicted mean streamline patterns. Predictions with and without chemical reaction are obtained. An associated isothermal experimental flow study is providing a useful data base. Successful outcomes of the work can be incorporated into the more combustion- and hardware-oriented activities of industrial concerns.

  2. Predictive modeling of particle-laden turbulent flows. Final report

    SciTech Connect

    Shaffer, F.; Bolio, E.J.; Hrenya, C.M.

    1993-12-31

    Earlier work of Sinclair and Jackson which treats the laminar flow of gas-solid suspensions is extended to model dilute turbulent flow. The random particle motion, often exceeding the turbulent fluctuations in the gas, is obtained using a model based on kinetic theory of granular materials. A two-equation low Reynolds number turbulence model is, modified to account for the presence of the dilute particle phase. Comparisons of the model predictions with available experimental data for the mean and fluctuating velocity profiles for both phases indicate that the resulting theory captures many of the flow features observed in the pneumatic transport of large particles. The model predictions did not manifest an extreme sensitivity to the degree of inelasticity in the particle-particle collisions for the range of solid loading ratios investigated.

  3. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2003-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  4. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2001-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  5. Numerical prediction of turbulent oscillating flow and associated heat transfer

    NASA Astrophysics Data System (ADS)

    Koehler, W. J.; Patankar, S. V.; Ibele, W. E.

    1991-08-01

    A crucial point for further development of engines is the optimization of its heat exchangers which operate under oscillatory flow conditions. It has been found that the most important thermodynamic uncertainties in the Stirling engine designs for space power are in the heat transfer between gas and metal in all engine components and in the pressure drop across the heat exchanger components. So far, performance codes cannot predict the power output of a Stirling engine reasonably enough if used for a wide variety of engines. Thus, there is a strong need for better performance codes. However, a performance code is not concerned with the details of the flow. This information must be provided externally. While analytical relationships exist for laminar oscillating flow, there has been hardly any information about transitional and turbulent oscillating flow, which could be introduced into the performance codes. In 1986, a survey by Seume and Simon revealed that most Stirling engine heat exchangers operate in the transitional and turbulent regime. Consequently, research has since focused on the unresolved issue of transitional and turbulent oscillating flow and heat transfer. Since 1988, the University of Minnesota oscillating flow facility has obtained experimental data about transitional and turbulent oscillating flow. However, since the experiments in this field are extremely difficult, lengthy, and expensive, it is advantageous to numerically simulate the flow and heat transfer accurately from first principles. Work done at the University of Minnesota on the development of such a numerical simulation is summarized.

  6. Numerical prediction of turbulent oscillating flow and associated heat transfer

    NASA Technical Reports Server (NTRS)

    Koehler, W. J.; Patankar, S. V.; Ibele, W. E.

    1991-01-01

    A crucial point for further development of engines is the optimization of its heat exchangers which operate under oscillatory flow conditions. It has been found that the most important thermodynamic uncertainties in the Stirling engine designs for space power are in the heat transfer between gas and metal in all engine components and in the pressure drop across the heat exchanger components. So far, performance codes cannot predict the power output of a Stirling engine reasonably enough if used for a wide variety of engines. Thus, there is a strong need for better performance codes. However, a performance code is not concerned with the details of the flow. This information must be provided externally. While analytical relationships exist for laminar oscillating flow, there has been hardly any information about transitional and turbulent oscillating flow, which could be introduced into the performance codes. In 1986, a survey by Seume and Simon revealed that most Stirling engine heat exchangers operate in the transitional and turbulent regime. Consequently, research has since focused on the unresolved issue of transitional and turbulent oscillating flow and heat transfer. Since 1988, the University of Minnesota oscillating flow facility has obtained experimental data about transitional and turbulent oscillating flow. However, since the experiments in this field are extremely difficult, lengthy, and expensive, it is advantageous to numerically simulate the flow and heat transfer accurately from first principles. Work done at the University of Minnesota on the development of such a numerical simulation is summarized.

  7. Global Crustal Heat Flow Using Random Decision Forest Prediction

    NASA Astrophysics Data System (ADS)

    Becker, J. J.; Wood, W. T.; Martin, K. M.

    2014-12-01

    We have applied supervised learning with random decision forests (RDF) to estimate, or predict, a global, densely spaced grid of crustal heat flow. The results are similar to global heat flow predictions that have been previously published but are more accurate and offer higher resolution. The training inputs are measurement values and uncertainties of existing sparsely sampled, (~8,000 locations), geographically biased, yet globally extensive, datasets of crustal heat flow. The RDF estimate is a highly non-linear empirical relationship between crustal heat flow and dozens of other parameters (attributes) that we have densely sampled, global, estimates of (e.g., crustal age, water depth, crustal thickness, seismic sound speed, seafloor temperature, sediment thickness, and sediment grain type). Synthetic attributes were key to obtaining good results using the RDF method. We created synthetic attributes by applying physical intuition and statistical analyses to the fundamental attributes. Statistics include median, kurtosis, and dozens of other functions, all calculated at every node and averaged over a variety of ranges from 5 to 500km. Other synthetic attributes are simply plausible, (e.g., distance from volcanoes, seafloor porosity, mean grain size). More than 600 densely sampled attributes are used in our prediction, and for each we estimated their relative importance. The important attributes included all those expected from geophysics, (e.g., inverse square root of age, gradient of depth, crustal thickness, crustal density, sediment thickness, distance from trenches), and some unexpected but plausible attributes, (e.g., seafloor temperature), but none that were unphysical. The simplicity of the RDF technique may also be of great interest beyond the discipline of crustal heat flow as it allows for more geologically intelligent predictions, decreasing the effect of sampling bias, and improving predictions in regions with little or no data, while rigorously

  8. Micropollutants in urban watersheds : substance flow analysis as management tool

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.

    2009-04-01

    Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment

  9. Simulator predicts transient flow for Malaysian subsea pipeline

    SciTech Connect

    Inayat-Hussain, A.A.; Ayob, M.S.; Zain, A.B.M.

    1996-04-15

    In a step towards acquiring in-house capability in multiphase flow technology, Petronas Research and Scientific Services Sdn. Bhd., Kuala Lumpur, has developed two-phase flow simulation software for analyzing slow gas-condensate transient flow. Unlike its general-purpose contemporaries -- TACITE, OLGA, Traflow (OGJ, Jan. 3, 1994, p. 42; OGJ, Jan. 10, 1994, p. 52), and PLAC (AEA Technology, U.K.) -- ABASs is a dedicated software for slow transient flows generated during pigging operations in the Duyong network, offshore Malaysia. This network links the Duyong and Bekok fields to the onshore gas terminal (OGT) on the east coast of peninsular Malaysia. It predicts the steady-state pressure drop vs. flow rates, condensate volume in the network, pigging dynamics including volume of produced slug, and the condensate build-up following pigging. The predictions of ABASs have been verified against field data obtained from the Duyong network. Presented here is an overview of the development, verification, and application of the ABASs software. Field data are presented for verification of the software, and several operational scenarios are simulated using the software. The field data and simulation study documented here will provide software users and developers with a further set of results on which to benchmark their own software and two-phase pipeline operating guidelines.

  10. Spatial statistics for predicting flow through a rock fracture

    SciTech Connect

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  11. Prediction of strongly-heated internal gas flows

    SciTech Connect

    McEligot, D.M. ||; Shehata, A.M.; Kunugi, Tomoaki |

    1997-12-31

    The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions.

  12. On predicting debris flows in arid mountain belts

    NASA Astrophysics Data System (ADS)

    Stolle, Amelie; Langer, Maria; Blöthe, Jan Henrik; Korup, Oliver

    2015-03-01

    The use of topographic metrics for estimating the susceptibility to, and reconstructing the characteristics of, debris flows has a long research tradition, although largely devoted to humid mountainous terrain. The exceptional 2010 monsoonal rainstorms in the high-altitude mountain desert of Ladakh and Zanskar, NW India, were a painful reminder of how susceptible arid regions are to rainfall-triggered flash floods, landslides, and debris flows. The rainstorms of August 4-6 triggered numerous debris flows, killing 182 people, devastating 607 houses, and more than 10 bridges around Ladakh's capital of Leh. The lessons from this disaster motivated us to revisit methods of predicting (a) flow parameters such as peak discharge and maximum velocity from field and remote sensing data, and (b) the susceptibility to debris flows from catchment morphometry. We focus on quantifying uncertainties tied to these approaches. Comparison of high-resolution satellite images pre- and post-dating the 2010 rainstorm reveals the extent of damage and catastrophic channel widening. Computations based on these geomorphic markers indicate maximum flow velocities of 1.6-6.7 m s- 1 with runout of up to ~ 10 km on several alluvial fans that sustain most of the region's settlements. We estimate median peak discharges of 310-610 m3 s- 1, which are largely consistent with previous estimates. Monte Carlo-based error propagation for a single given flow-reconstruction method returns a variance in discharge similar to one derived from juxtaposing several different flow reconstruction methods. We further compare discriminant analysis, classification tree modelling, and Bayesian logistic regression to predict debris-flow susceptibility from morphometric variables of 171 catchments in the Ladakh Range. These methods distinguish between fluvial and debris flow-prone catchments at similar success rates, but Bayesian logistic regression allows quantifying uncertainties and relationships between potential

  13. Predicting sediment delivery from debris flows after wildfire

    NASA Astrophysics Data System (ADS)

    Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.

    2015-12-01

    Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the

  14. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  15. Predictive modeling of particle-laden, turbulent flows

    SciTech Connect

    Sinclair, J.L.

    1992-01-01

    The successful prediction of particle-laden, turbulent flows relies heavily on the representation of turbulence in the gas phase. Several types of turbulence models for single-phase gas flow have been developed which compare reasonably well with experimental data. In the present work, a low-Reynolds'' k-[epsilon], closure model is chosen to describe the Reynolds stresses associated with gas-phase turbulence. This closure scheme, which involves transport equations for the turbulent kinetic energy and its dissipation rate, is valid in the turbulent core as well as the viscous sublayer. Several versions of the low-Reynolds k-[epsilon] closure are documented in the literature. However, even those models which are similar in theory often differ considerably in their quantitative and qualitative predictions, making the selection of such a model a difficult task. The purpose of this progress report is to document our findings on the performance of ten different versions of the low-Reynolds k-[epsilon] model on predicting fully developed pipe flow. The predictions are compared with the experimental data of Schildknecht, et al. (1979). With the exception of the model put forth by Hoffman (1975), the predictions of all the closures show reasonable agreement for the mean velocity profile. However, important quantitative differences exist for the turbulent kinetic energy profile. In addition, the predicted eddy viscosity profile and the wall-region profile of the turbulent kinetic energy dissipation rate exhibit both quantitative and qualitative differences. An effort to extend the present comparisons to include experimental measurements of other researchers is recommended in order to further evaluate the performance of the models.

  16. Thermal Protection System Evaluation Using Arc-jet Flows: Flight Simulation or Research Tool?

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    The arc-jet has been used to evaluate thermal protection systems (TPS) and materials for the past forty years. Systems that have been studied in this environmerd include ablators, active, and passive TPS concepts designed for vehicles entering planetary and Earth atmospheres. The question of whether arc-jet flow can simulate a flight environment or is it a research tool that provides an aero-thermodynamic heating environment to obtain critical material properties will be addressed. Stagnation point tests in arc-jets are commonly used to obtain material properties such as mass loss rates, thermal chemical stability data, optical properties, and surface catalytic efficiency. These properties are required in computational fluid dynamic codes to accurately predict the performance of a TPS during flight. Special facilities have been developed at NASA Ames Research Center to approximate the flow environment over the mid-fuselage and body flap regions of proposed space-planes type vehicles. This paper compares flow environments generated in flight over a vehicle with those created over an arc-jet test articles in terms of scale, chemistry, and fluid dynamic properties. Flight experiments are essential in order to validate the material properties obtained from arc-jet tests and used to predict flight performance of any TPS being considered for use on a vehicle entering the Earth atmosphere at hypersonic speed.

  17. Prediction and archival tools for asteroid radar observations

    NASA Astrophysics Data System (ADS)

    Margot, J.

    2014-07-01

    The Earth-based radar facilities at Arecibo and Goldstone have provided very powerful tools for characterizing the trajectories and physical properties of asteroids. This is especially important for near-Earth asteroids (NEAs) which are key in the contexts of hazard mitigation, spacecraft exploration, and resource utilization. Over 10,000 NEAs have been identified and over 430 have been detected with radar (http://radarastronomy.org). Both of these numbers are growing rapidly, necessitating efficient tools for data archival and observation planning. The asteroid radar database hosted at radarastronomy.org keeps track of all radar detections, documents NEA physical properties, and provides NEA observability conditions. With the help of UCLA students, we are integrating a number of tools with the database to facilitate recordkeeping and observation planning. For instance, a geometry-finder tool allows us to identify the optimal times to observe specific NEAs and to compute rise-transit-set windows. Signal-to-noise (SNR) tools allow us to compute SNR values for both Arecibo and Goldstone observations. Python-based graphical tools help visualize the history of asteroid detections and plan future observations. A collaborative research environment (wiki) facilitates interactions among radar observers. These tools and others in preparation enable a more coordinated and efficient process for asteroid radar observations.

  18. Controller Strategies for Automation Tool Use under Varying Levels of Trajectory Prediction Uncertainty

    NASA Technical Reports Server (NTRS)

    Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua

    2013-01-01

    A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.

  19. Predicting tool operator capacity to react against torque within acceptable handle deflection limits in automotive assembly.

    PubMed

    Radwin, Robert G; Chourasia, Amrish; Fronczak, Frank J; Subedi, Yashpal; Howery, Robert; Yen, Thomas Y; Sesto, Mary E; Irwin, Curtis B

    2016-05-01

    The proportion of tool operators capable of maintaining published psychophysically derived threaded fastener tool handle deflection limits were predicted using a biodynamic tool operator model, interacting with the tool, task and workstation. Tool parameters, including geometry, speed and torque were obtained from the specifications for 35 tools used in an auto assembly plant. Tool mass moments of inertia were measured for these tools using a novel device that engages the tool in a rotating system of known inertia. Task parameters, including fastener target torque and joint properties (soft, medium or hard), were ascertained from the vehicle design specifications. Workstation parameters, including vertical and horizontal distances from the operator were measured using a laser rangefinder for 69 tool installations in the plant. These parameters were entered into the model and tool handle deflection was predicted for each job. While handle deflection for most jobs did not exceed the capacity of 75% females and 99% males, six jobs exceeded the deflection criterion. Those tool installations were examined and modifications in tool speed and operator position improved those jobs within the deflection limits, as predicted by the model. We conclude that biodynamic tool operator models may be useful for identifying stressful tool installations and interventions that bring them within the capacity of most operators. PMID:26851480

  20. Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2004-01-01

    Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.

  1. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  2. Prediction of unsteady transonic flow around missile configurations

    NASA Technical Reports Server (NTRS)

    Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.

    1990-01-01

    This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.

  3. Applied genomics: Tools ranging from genomic prediction to bioconservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This invited presentation will provide an overview of the development of genomic tools in cattle and goats, and how these approaches and methodologies can be adapted for bioconservation of endangered ruminant species....

  4. Development of a numerical method for the prediction of turbulent flows in dump diffusers

    NASA Astrophysics Data System (ADS)

    Ando, Yasunori; Kawai, Masafumi; Sato, Yukinori; Toh, Hidemi

    1987-01-01

    In order to obtain an effective tool to design dump diffusers for gas turbine combustors, a finite-volume numerical calculation method has been developed for the solution of two-dimensional/axisymmetric incompressible steady Navier-Stokes equation in general curvilinear coordinate system. This method was applied to the calculations of turbulent flows in a two-dimensional dump diffuser with uniform and distorted inlet velocity profiles as well as an annular dump diffuser with uniform inlet velocity profile, and the calculated results were compared with experimental data. The numerical results showed a good agreement with experimental data in case of both inlet velocity profiles; eventually, the numerical method was confirmed to be an effective tool for the development of dump diffusers which can predict the flow pattern, velocity distribution and the pressure loss.

  5. LES with wall models for trailing-edge flow prediction

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Cabot, William; Moin, Parviz

    1999-11-01

    Large-eddy simulation of wall-bounded turbulent flows becomes formidably expensive at high Reynolds numbers, unless the severe near-wall resolution requirement is removed though the use of a suitable wall model. The applicability of this approach to complex turbulent flows with separation is assessed by considering turbulent boundary layer flows past an asymmetric trailing-edge and the associated aeroacoustics. A simple stress balance model coupled with a mixing-length eddy viscosity, with or without pressure gradient imposed from the outer LES solution, is found to predict velocity statistics fairly well compared with those from the resolved LES, at less than 10 % of the original computational cost. In particular, the separation point near the trailing-edge is predicted correctly. The pressure gradient term is found necessary for the model to capture the correct behavior of the wall shear-stress in the favorable pressure gradient region. Numerical experiments using more elaborate wall models based on approximate boundary layer equations are underway. The effect of wall-modeling on the prediction of surface pressure fluctuations and noise radiation is investigated, and the results will be discussed.

  6. Special session: computational predictability of natural convection flows in enclosures

    SciTech Connect

    Christon, M A; Gresho, P M; Sutton, S B

    2000-08-14

    Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.

  7. Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool

    SciTech Connect

    Yu, Zhenzhen; Zhang, Wei; Choo, Hahn; Feng, Zhili

    2012-01-01

    A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

  8. Transition prediction and control in subsonic flow over a hump

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.; Iyer, Venkit

    1993-01-01

    The influence of a surface roughness element in the form of a two-dimensional hump on the transition location in a two-dimensional subsonic flow with a free-stream Mach number up to 0.8 is evaluated. Linear stability theory, coupled with the N-factor transition criterion, is used in the evaluation. The mean flow over the hump is calculated by solving the interacting boundary-layer equations; the viscous-inviscid coupling is taken into consideration, and the flow is solved within the separation bubble. The effects of hump height, length, location, and shape; unit Reynolds number; free-stream Mach number, continuous suction level; location of a suction strip; continuous cooling level; and location of a heating strip on the transition location are evaluated. The N-factor criterion predictions agree well with the experimental correlation of Fage; in addition, the N-factor criterion is more general and powerful than experimental correlations. The theoretically predicted effects of the hump's parameters and flow conditions on transition location are consistent and in agreement with both wind-tunnel and flight observations.

  9. 3PE: A Tool for Estimating Groundwater Flow Vectors

    EPA Science Inventory

    Evaluation of hydraulic gradients and the associated groundwater flow rates and directions is a fundamental aspect of hydrogeologic characterization. Many methods, ranging in complexity from simple three-point solution techniques to complex numerical models of groundwater flow, ...

  10. Predictions of Flow Duration Curve Shifts Due to Anthropogenic and Climatic Changes

    NASA Astrophysics Data System (ADS)

    Henry, N. F.; Kroll, C. N.; Endreny, T. A.

    2014-12-01

    Methods are needed to understand and predict streamflows in systems undergoing anthropogenic and climatic alteration. This study is motivated by a need to develop methods to accurately estimate historical and future flow regimes of the Delaware River to inform management decisions for the endangered dwarf wedgemussel (Alasmidonta heterodon). Many streamflow regimes in this system have undergone substantial alteration within the past 100 years. Here, flow duration curves (FDCs), a common hydrologic tool used to assess flow regimes, are created and examined at 145 Delaware River Basin catchments. These catchments have experienced various hydrologic alterations, including land use changes, water withdrawals, and river regulation due to dams and reservoirs. Linear regression models are developed for various percentile flows across a FDC. These models use watershed characteristics that describe observed flow regimes in altered as well as unaltered systems. The characteristics that have the most significant influence on the shape of the FDCs are then identified and isolated as descriptors of the alteration. Once these models are developed to include these key variables, given a specific alteration (e.g. fresh water withdrawals, change in annual precipitation, etc.), a new flow regime can be estimated. Preliminary results indicate that certain watershed characteristics related to alteration (e.g. magnitude of land fragmentation, water withdrawals, hydrologic disturbance index) are significant in our models and influence FDC patterns. The results of this study may prove to have broader applications in regards to water resources management as the methods developed here may serve as a predictive tool as human interference and climatic changes continue to alter flow regimes.

  11. IPMP 2013 - A comprehensive data analysis tool for predictive microbiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predictive microbiology is an area of applied research in food science that uses mathematical models to predict the changes in the population of pathogenic or spoilage microorganisms in foods undergoing complex environmental changes during processing, transportation, distribution, and storage. It f...

  12. The Efficacy of Violence Prediction: A Meta-Analytic Comparison of Nine Risk Assessment Tools

    ERIC Educational Resources Information Center

    Yang, Min; Wong, Stephen C. P.; Coid, Jeremy

    2010-01-01

    Actuarial risk assessment tools are used extensively to predict future violence, but previous studies comparing their predictive accuracies have produced inconsistent findings as a result of various methodological issues. We conducted meta-analyses of the effect sizes of 9 commonly used risk assessment tools and their subscales to compare their…

  13. Prediction of Transitional Flows in the Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Huang, George; Xiong, Guohua

    1998-01-01

    Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence

  14. Predictive onboard flow control for packet switching satellites

    NASA Technical Reports Server (NTRS)

    Bobinsky, Eric A.

    1992-01-01

    We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.

  15. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1993-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  16. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1992-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  17. Prediction and Archival Tools for Asteroid Radar Observations

    NASA Astrophysics Data System (ADS)

    Miles, Brittany; Margot, J.

    2014-01-01

    The Earth-based radar facilities at Arecibo and Goldstone have provided very powerful tools for characterizing the trajectories and physical properties of asteroids. This is especially important for near-Earth asteroids (NEAs) (perihelion distance < 1.3 AU) which are important in the context of hazard mitigation and resource utilization. Over 10,000 NEAs have been identified (https://www.iau.org/public/themes/neo/nea/) and over 400 have been detected with radar (http://radarastronomy.org). Both of these numbers are growing rapidly, necessitating efficient tools for data archival and observation planning. The asteroid radar database hosted at radarastronomy.org keeps track of all radar detections, documents NEA physical properties, and provides NEA observability conditions. We have integrated a number of tools with the database to facilitate recordkeeping and observation planning. First, a geometry finder program allows us to identify the optimal times to observe specific NEAs and to compute rise-transit-set windows. Second, a python-based signal-to-noise (SNR) tool allows us to compute SNR values for both Arecibo and Goldstone observations. SNR is dependent on asteroid properties (size, spin, reflectivity), geocentric distance, and telescope parameters. Finally, python-based graphical tools help visualize the history of asteroid detections.

  18. Advances and Computational Tools towards Predictable Design in Biological Engineering

    PubMed Central

    2014-01-01

    The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694

  19. Bubble size prediction in co-flowing streams

    NASA Astrophysics Data System (ADS)

    van Hoeve, W.; Dollet, B.; Gordillo, J. M.; Versluis, M.; van Wijngaarden, L.; Lohse, D.

    2011-06-01

    In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low-Reynolds-number flows and by conservation of momentum. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate Qi, the outer liquid flow rate Qo, and the tube radius R. For a very low gas-to-liquid flow rate ratio (Qi/Qo→0) the bubble radius scales as r_{b}/R \\propto \\sqrt{Q_{i}/Q_{o}} , independently of the inner-to-outer viscosity ratio ηi/ηo and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e. ηi/ηoLt1, the bubble diameter scales as rb~(Qi/Qo)β, with β smaller than 1/2.

  20. Assessment of RANS to predict flows with large streamline curvature

    NASA Astrophysics Data System (ADS)

    Yin, J. L.; Wang, D. Z.; Cheng, H.; Gu, W. G.

    2013-12-01

    In order to provide a guideline for choosing turbulence models in computation of complex flows with large streamline curvature, this paper presents a comprehensive comparison investigation of different RANS models widely used in engineering to check each model's sensibility on the streamline curvature. First, different models including standard k-ε, Realizable k-ε, Renormalization-group (RNG) k-ε model, Shear-stress transport k-ω model and non-linear eddy-viscosity model v2-f model are tested to simulated the flow in a 2D U-bend which has the standard bench mark available. The comparisons in terms of non-dimensional velocity and turbulent kinetic energy show that large differences exist among the results calculated by various models. To further validate the capability to predict flows with secondary flows, the involved models are tested in a 3D 90° bend flow. Also, the velocities are compared. As a summary, the advantages and disadvantages of each model are analysed and guidelines for choice of turbulence model are presented.

  1. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James

    2010-01-01

    Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.

  2. SSFinder: high throughput CRISPR-Cas target sites prediction tool.

    PubMed

    Upadhyay, Santosh Kumar; Sharma, Shailesh

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online. PMID:25089276

  3. Detailed flow measurements and predictions for a three-stage transonic fan

    NASA Astrophysics Data System (ADS)

    Calvert, W. J.; Stapleton, A. W.

    1994-04-01

    Detailed flow measurements were taken at DRA Pyestock on a Rolls-Royce three-stage transonic research fan using advanced laser transit velocimetry and holography techniques to supplement the fixed pressure and temperature instrumentation. The results have been compared with predictions using the DRA S1-S2 quasi-three-dimensional flow calculation system at a range of speeds. The agreement was generally encouraging, both for the overall performance and for details of the internal flow such as positions of shock waves. Taken together with the computational efficiency of the calculations and previous experience on single-stage transonic fans and core compressors, this establishes the S1-S2 system as a viable design tool for future multistage transonic fans.

  4. Prediction of Daily Flow Duration Curves and Streamflow for Ungauged Catchments Using Regional Flow Duration Curves

    EPA Science Inventory

    This study presents a method to predict flow duration curves (FDCs) and streamflow for ungauged catchments in the Mid-Atlantic Region, USA. We selected 29 catchments from the Appalachian Plateau, Ridge and Valley, and Piedmont physiographic provinces to develop and test the propo...

  5. Engineering Property Prediction Tools for Tailored Polymer Composite Structures (49465)

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil

    2009-12-29

    Process and constitutive models as well as characterization tools and testing methods were developed to determine stress-strain responses, damage development, strengths and creep of long-fiber thermoplastics (LFTs). The developed models were implemented in Moldflow and ABAQUS and have been validated against LFT data obtained experimentally.

  6. From Gaged to Ungaged- Predicting Long-term Environmental Flows, and Ecosystems Responses.

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Adams, S. K.; Stein, E. D.; Mazor, R.; Bledsoe, B. P.

    2015-12-01

    Modern management needs, such as water supply, quality, and ecosystem protection place numerous demands on instream flows. Many regions are interested in developing numeric flow criteria as a way of ensuring maintenance of flow patterns that protect biological resources while meeting other demands. Developing flow criteria requires the capacity to generate reliable time series of the daily flow at any stream reach of interest and to relate flow patterns to biological indicators of stream health. Most stream reaches are not gaged, and it is impractical to develop detailed models for all reaches where flow alteration needs to be evaluated. We present a novel mechanistic approach to efficiently predict flows and flow alteration at all ungaged stream locations within a region of interest. We used an "ensemble approach" whereby a series of regionally representative models were developed and calibrated. New sites of interest are assigned to one of the ensemble models based on similarity of catchment properties. For southern California, we selected 43 gaged sites representing the range of geomorphology, and watershed characteristics of streams in the region. For each gaged site, we developed a hydrologic model (HEC-HMS) to predict daily flows for a period representing dry, wet and normal precipitation. The final goal is to relate flow alterations to ecological responses, the models were calibrated to three separate performance metrics that reflect conditions important for instream biological communities- proportion of low flow days, flashiness and Nash Sutcliffe efficiency for overall model performance. We cross-validated the models using a "jack-knife" approach. Models were assigned to novel 840 bioassessment sites based on the results of a Random Forest model that identified catchment properties that most affected the runoff patterns. Daily flow data for existing and "reference conditions" was simulated for a 23-year period for current and reference (undeveloped

  7. TAS: A Transonic Aircraft/Store flow field prediction code

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1983-01-01

    A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.

  8. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    NASA Astrophysics Data System (ADS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  9. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    SciTech Connect

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-04-07

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  10. Error estimation for CFD aeroheating prediction under rarefied flow condition

    NASA Astrophysics Data System (ADS)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  11. Prediction of inverted velocity profile for gas flow in nanochannel

    NASA Astrophysics Data System (ADS)

    Zhang, T. T.; Ren, Y. R.

    2014-11-01

    Velocity inversion is an interesting phenomenon of nanoscale which means that the velocity near the wall is greater than that of center. To solve this problem, fluid flow in nanochannel attracts more attention in recent years. The physical model of gas flow in two-dimensional nanochannel was established here. To describe the process with conventional control equations, Navier-Stokes equations combined with high-order accurate slip boundary conditions was used as mathematical model. With the introduction of new dimensionless variables, the problem was reduced to an ordinary differential equation. Then it was analytically solved and investigated using homotopy analysis method (HAM). The results were verified by comparing with other available experiment data. Result shows that the proposed method could predict velocity phenomenon.

  12. Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka)

    NASA Astrophysics Data System (ADS)

    Brès, Guillaume A.; Freed, David; Wessels, Michael; Noelting, Swen; Pérot, Franck

    2012-03-01

    Flow and noise predictions for the tandem cylinder benchmark are performed using lattice Boltzmann and Ffowcs Williams-Hawkings methods. The numerical results are compared to experimental measurements from the Basic Aerodynamic Research Tunnel and Quiet Flow Facility (QFF) at NASA Langley Research Center. The present study focuses on two configurations: the first configuration corresponds to the typical setup with uniform inflow and spanwise periodic boundary condition. To investigate installation effects, the second configuration matches the QFF setup and geometry, including the rectangular open jet nozzle, and the two vertical side plates mounted in the span to support the test models. For both simulations, the full span of 16 cylinder diameters is simulated, matching the experimental dimensions. Overall, good agreement is obtained with the experimental surface data, flow field, and radiated noise measurements. In particular, the presence of the side plates significantly reduces the excessive spanwise coherence observed with periodic boundary conditions and improves the predictions of the tonal peak amplitude in the far-field noise spectra. Inclusion of the contributions from the side plates in the calculation of the radiated noise shows an overall increase in the predicted spectra and directivity, leading to a better match with the experimental measurements. The measured increase is about 1 to 2 dB at the main shedding frequency and harmonics, and is likely caused by reflections on the spanwise side plates. The broadband levels are also slightly higher by about 2 to 3 dB, likely due to the shear layers from the nozzle exit impacting the side plates.

  13. A new tool for predicting drought: An application over India

    PubMed Central

    Kulkarni, M. N.

    2015-01-01

    This is the first attempt of application of atmospheric electricity for rainfall prediction. The atmospheric electrical columnar resistance based on the model calculations involving satellite data has been proposed as a new predictor. It is physically sound, simple to calculate and not probabilistic like the standardized precipitation index. After applying this new predictor over India, it has been found that the data solely over the Bay of Bengal (BB) are sufficient to predict a drought over the country as a whole. Finally, two independent new methods to predict drought conditions and a preliminary forecast of the same for India for year 2014 have been given. Unlike the existing drought prediction techniques, the identification of drought conditions in a pre-drought year during 1981–1990 and 2001–2013 over India has been achieved 100% successfully using the suggested new methods. The association between rainfall and this new predictor has also been found on the sub-regional scale. So, the present predictor is expected to get global application and application in climate models. From the analysis, generally, a long period rising trend in aerosol concentration over the BB causes weak monsoon over India but that for a short time i.e. in pre-monsoon period strengthens it. PMID:25567244

  14. A new tool for predicting drought: an application over India.

    PubMed

    Kulkarni, M N

    2015-01-01

    This is the first attempt of application of atmospheric electricity for rainfall prediction. The atmospheric electrical columnar resistance based on the model calculations involving satellite data has been proposed as a new predictor. It is physically sound, simple to calculate and not probabilistic like the standardized precipitation index. After applying this new predictor over India, it has been found that the data solely over the Bay of Bengal (BB) are sufficient to predict a drought over the country as a whole. Finally, two independent new methods to predict drought conditions and a preliminary forecast of the same for India for year 2014 have been given. Unlike the existing drought prediction techniques, the identification of drought conditions in a pre-drought year during 1981-1990 and 2001-2013 over India has been achieved 100% successfully using the suggested new methods. The association between rainfall and this new predictor has also been found on the sub-regional scale. So, the present predictor is expected to get global application and application in climate models. From the analysis, generally, a long period rising trend in aerosol concentration over the BB causes weak monsoon over India but that for a short time i.e. in pre-monsoon period strengthens it. PMID:25567244

  15. USM3D Predictions of Supersonic Nozzle Flow

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.

    2014-01-01

    This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.

  16. Fractal analysis: A new remote sensing tool for lava flows

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Many important quantitative parameters have been developed that relate to the rheology and eruption and emplacement mechanics of lavas. This research centers on developing additional, unique parameters, namely the fractal properties of lava flows, to add to this matrix of properties. There are several methods of calculating the fractal dimension of a lava flow margin. We use the 'structured walk' or 'divider' method. In this method, we measure the length of a given lava flow margin by walking rods of different lengths along the margin. Since smaller rod lengths transverse more smaller-scaled features in the flow margin, the apparent length of the flow outline will increase as the length of the measuring rod decreases. By plotting the apparent length of the flow outline as a function of the length of the measuring rod on a log-log plot, fractal behavior can be determined. A linear trend on a log-log plot indicates that the data are fractal. The fractal dimension can then be calculated from the slope of the linear least squares fit line to the data. We use this 'structured walk' method to calculate the fractal dimension of many lava flows using a wide range of rod lengths, from 1/8 to 16 meters, in field studies of the Hawaiian islands. We also use this method to calculate fractal dimensions from aerial photographs of lava flows, using lengths ranging from 20 meters to over 2 kilometers. Finally, we applied this method to orbital images of extraterrestrial lava flows on Venus, Mars, and the Moon, using rod lengths up to 60 kilometers.

  17. AVISPA: a web tool for the prediction and analysis of alternative splicing.

    PubMed

    Barash, Yoseph; Vaquero-Garcia, Jorge; González-Vallinas, Juan; Xiong, Hui Yuan; Gao, Weijun; Lee, Leo J; Frey, Brendan J

    2013-01-01

    Transcriptome complexity and its relation to numerous diseases underpins the need to predict in silico splice variants and the regulatory elements that affect them. Building upon our recently described splicing code, we developed AVISPA, a Galaxy-based web tool for splicing prediction and analysis. Given an exon and its proximal sequence, the tool predicts whether the exon is alternatively spliced, displays tissue-dependent splicing patterns, and whether it has associated regulatory elements. We assess AVISPA's accuracy on an independent dataset of tissue-dependent exons, and illustrate how the tool can be applied to analyze a gene of interest. AVISPA is available at http://avispa.biociphers.org. PMID:24156756

  18. Monthly to seasonal low flow prediction: statistical versus dynamical models

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with

  19. Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries.

    PubMed

    Gautam, Aditi; Sharma, Asuda; Jaiswal, Sarika; Fatma, Samar; Arora, Vasu; Iquebal, M A; Nandi, S; Sundaray, J K; Jayasankar, P; Rai, Anil; Kumar, Dinesh

    2016-09-01

    Microbial diseases in fish, plant, animal and human are rising constantly; thus, discovery of their antidote is imperative. The use of antibiotic in aquaculture further compounds the problem by development of resistance and consequent consumer health risk by bio-magnification. Antimicrobial peptides (AMPs) have been highly promising as natural alternative to chemical antibiotics. Though AMPs are molecules of innate immune defense of all advance eukaryotic organisms, fish being heavily dependent on their innate immune defense has been a good source of AMPs with much wider applicability. Machine learning-based prediction method using wet laboratory-validated fish AMP can accelerate the AMP discovery using available fish genomic and proteomic data. Earlier AMP prediction servers are based on multi-phyla/species data, and we report here the world's first AMP prediction server in fishes. It is freely accessible at http://webapp.cabgrid.res.in/fishamp/ . A total of 151 AMPs related to fish collected from various databases and published literature were taken for this study. For model development and prediction, N-terminus residues, C-terminus residues and full sequences were considered. Best models were with kernels polynomial-2, linear and radial basis function with accuracy of 97, 99 and 97 %, respectively. We found that performance of support vector machine-based models is superior to artificial neural network. This in silico approach can drastically reduce the time and cost of AMP discovery. This accelerated discovery of lead AMP molecules having potential wider applications in diverse area like fish and human health as substitute of antibiotics, immunomodulator, antitumor, vaccine adjuvant and inactivator, and also for packaged food can be of much importance for industries. PMID:27141850

  20. Neural networks as tools for predicting materials properties

    SciTech Connect

    Sumpter, B.G.; Noid, D.W.

    1995-12-31

    Materials science is of fundamental significance to science and technology because our industrial base and society depend upon our ability to develop advanced materials. Materials and materials processing cuts across almost every sector of industry. The key in all of these areas is the ability to rapidly screen possible designs which will have significant impact. However up to now materials design and processing have been to a large extent empirical sciences. In addition we are still unable to design new alloys and polymers to meet application specific requirements. Being able to do so quickly and at minimum cost would provide an incredible advantage. Obviously, the ability to predict physical, chemical, or mechanical properties of compounds prior to their synthesis is of great technological value in optimizing their design, processing, or recycling. In addition, in order to realize the ultimate goal of materials by computational design, the reverse problem, prediction of chemical structure based on desired properties, has to be resolved. Research at ORNL has lead to the development of a novel computational paradigm (coupling computational neural networks with graph theory, genetic algorithms, wavelet theory, fuzzy logic, molecular dynamics, and quantum chemistry) capable of performing accurate computational synthesis (both predictions of properties or the design of compounds that have specified performance criteria). The computational paradigm represents a hybrid of a number of emerging technologies and has proven to work very well for test compounds ranging from small organic molecules to polymeric materials. Fundamental to the method is the neural network-based formulation of the correlations between structure and properties. The advantages of this method is in its ease of use, speed, accuracy, and that it can be used to predict both properties from structure, and also structure from properties.

  1. A tool for the prediction of structures of complex sugars.

    PubMed

    Xia, Junchao; Margulis, Claudio

    2008-12-01

    In two recent back to back articles(Xia et al., J Chem Theory Comput 3:1620-1628 and 1629-1643, 2007a, b) we have started to address the problem of complex oligosaccharide conformation and folding. The scheme previously presented was based on exhaustive searches in configuration space in conjunction with Nuclear Overhauser Effect (NOE) calculations and the use of a complex rotameric library that takes branching into account. NOEs are extremely useful for structural determination but only provide information about short range interactions and ordering. Instead, the measurement of residual dipolar couplings (RDC), yields information about molecular ordering or folding that is long range in nature. In this article we show the results obtained by incorporation RDC calculations into our prediction scheme. Using this new approach we are able to accurately predict the structure of six human milk sugars: LNF-1, LND-1, LNF-2, LNF-3, LNnT and LNT. Our exhaustive search in dihedral configuration space combined with RDC and NOE calculations allows for highly accurate structural predictions that, because of the non-ergodic nature of these molecules on a time scale compatible with molecular dynamics simulations, are extremely hard to obtain otherwise (Almond et al., Biochemistry 43:5853-5863, 2004). Molecular dynamics simulations in explicit solvent using as initial configurations the structures predicted by our algorithm show that the histo-blood group epitopes in these sugars are relatively rigid and that the whole family of oligosaccharides derives its conformational variability almost exclusively from their common linkage (beta-D: -GlcNAc-(1-->3)-beta-D: -Gal) which can exist in two distinct conformational states. A population analysis based on the conformational variability of this flexible glycosidic link indicates that the relative population of the two distinct states varies for different human milk oligosaccharides. PMID:18953494

  2. Challenges in Lagrangian transport and predictability in 3D flows

    NASA Astrophysics Data System (ADS)

    Branicki, M.; Wiggins, S.; Kirwan, A. D.; Malek-Madani, R.

    2011-12-01

    The interplay between the geometrical theory of dynamical systems and the trajectory-based description of aperiodically time-dependent fluid flows has led to significant advances in understanding the role of chaotic transport in geophysical flows at scales dominated by advection. Lagrangian transport analysis utilizing either the time-dependent geometry of intersecting stable and unstable manifolds of the so-called Distinguished Hyperbolic Trajectories (DHT), or ridges of finite-time Lyapunov exponent fields (LCS), provide a much needed and complementary insight into ephemeral mechanisms responsible for the existence of `leaky' transport barriers and 'leaky' mesoscale eddies. However, to date most oceanic applications have been confined to 2D analysis of near surface regions in 'perfect' flows not accounting for model or measurement error, and with the tacit assumption of negligible vertical velocities. I will systematically address issues concerning the regimes of applicability of two-dimensional analysis in 3D aperiodically time-dependent flows, as well as outstanding challenges in fully 3D Lagrangian transport analysis. Even for perfect horizontal velocities, little is known about the vertical extent of stable/unstable manifolds associated with DHTs and/or other special structures relevant to stratified 3D flows. In particular, their sensitivity to errors in the vertical velocities and data assimilation methods has been little studied. Rigorous results regarding the above issues will be illustrated by revealing and mathematically tractable toy models, as well as examples from a detailed study in an eddy-rich region from the Gulf of Mexico and the Mediterranean. New ways of quantifying the uncertainty in Lagrangian predictions will also be presented.

  3. Introduction: Prediction of F-16XL Flight Flow Physics

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    2009-01-01

    This special section is the result of fruitful endeavors by an international group of researchers in industry, government laboratories and university-led efforts to improve the technology readiness level of their CFD solvers through comparisons with flight data collected on the F-16XL-1 aircraft at a variety of test conditions. These 1996 flight data were documented and detailed the flight-flow physics of this aircraft through surface tufts and pressures, boundary-layer rakes and skin-friction measurements. The flight project was called the Cranked Wing Aerodynamics Project (CAWAP), due to its leading-edge sweep crank (70 degrees inboard, 50 degrees outboard), and served as a basis for the International comparisons to be made, called CAWAPI. This highly focused effort was one of two vortical flow studies facilitated by the NATO Research and Technology Organization through its Applied Vehicle Panel with a title of Understanding and Modeling Vortical Flows to Improve the Technology Readiness Level for Military Aircraft. It was given a task group number of AVT-113 and had an official start date of Spring 2003. The companion part of this task group dealt with fundamentals of vortical flow from both an experimental and numerical perspective on an analytically describable 65 degree delta-wing model for which much surface pressure data had already been measured at NASA Langley Research Center at a variety of Mach and Reynolds numbers and is called the Vortex Flow Experiment - 2 (VFE-2). These two parts or facets helped one another in understanding the predictions and data that had been or were being collected.

  4. Production flow analysis: a tool for designing a lean hospital.

    PubMed

    Karvonen, Sauli; Korvenranta, Heikki; Paatela, Mikael; Seppälä, Timo

    2007-01-01

    Production flow analysis (PFA) was used in the planning process for a new acute care hospital. The PFA demonstrated that functional organisation--for example, with centralised medical imaging-- generates a lot of back and forth patient transfers between functional units. This to-and-fro patient flow increases lead times of care processes and also exposes the patients to unnecessary complications. PFA produced an ideal patient flow model and layout model for the acute care hospital. Thus, PFA revealed information for use in proximity ranking of different units of the hospital; the planning team then decided which units should be placed next to each other. Medical imaging should be essentially ubiquitous, to achieve simple, high-velocity patient flow. Thus, a modern decentralized layout model for medical imaging was planned. Furthermore, PFA enables optimizing transfer routes for patients and also, e.g., lift capacity in the hospital. PMID:17621771

  5. Geostatistical prediction of flow-duration curves in an index-flow framework

    NASA Astrophysics Data System (ADS)

    Pugliese, Alessio; Castellarin, Attilio; Brath, Armando

    2014-05-01

    An empirical period-of-record Flow-Duration Curve (FDC) describes the percentage of time (duration) in which a given streamflow was equaled or exceeded over an historical period of time. FDCs have always attracted a great deal of interest in engineering applications because of their ability to provide a simple yet comprehensive graphical view of the overall historical variability of streamflows in a river basin, from floods to low-flows. Nevertheless, in many practical applications one has to construct FDC in basins that are ungauged or where very few observations are available. We present in this study an application strategy of Topological kriging (or Top-kriging), which makes the geostatistical procedure capable of predicting flow-duration curves (FDCs) in ungauged catchments. Previous applications of Top-kriging mainly focused on the prediction of point streamflow indices (e.g. flood quantiles, low-flow indices, etc.). In this study Top-kriging is used to predict FDCs in ungauged sites as a weighted average of standardised empirical FDCs through the traditional linear-weighting scheme of kriging methods. Our study focuses on the prediction of FDCs for 18 unregulated catchments located in Central Italy, for which daily streamflow series with length from 5 to 40 years are available, together with information on climate referring to the same time-span of each daily streamflow sequence. Empirical FDCs are standardised by a reference index-flow value (i.e. mean annual flow, or mean annual precipitation times the catchment drainage area) and the overall deviation of the curves from this reference value is then used for expressing the hydrological similarity between catchments and for deriving the geostatistical weights. We performed an extensive leave-one-out cross-validation to quantify the accuracy of the proposed technique, and to compare it to traditional regionalisation models that were recently developed for the same study region. The cross-validation points

  6. Can Nutritional Assessment Tools Predict Response to Nutritional Therapy?

    PubMed

    Patel, Chirag; Omer, Endashaw; Diamond, Sarah J; McClave, Stephen A

    2016-04-01

    Traditional tools and scoring systems for nutritional assessment have focused solely on parameters of poor nutritional status in the past, in an effort to define the elusive concept of malnutrition. Such tools fail to account for the contribution of disease severity to overall nutritional risk. High nutritional risk, caused by either deterioration of nutritional status or greater disease severity (or a combination of both factors), puts the patient in a metabolic stress state characterized by adverse outcome and increased complications. Newer scoring systems for determining nutritional risk, such as the Nutric Score and the Nutritional Risk Score-2002 have created a paradigm shift connecting assessment and treatment with quality outcome measures of success. Clinicians now have the opportunity to identify high risk patients through their initial assessment, provide adequate or sufficient nutrition therapy, and expect improved patient outcomes as a result. These concepts are supported by observational and prospective interventional trials. Greater clinical experience and refinement in these scoring systems are needed in the future to optimize patient response to nutrition therapy. PMID:26936031

  7. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  8. UK tornado climatology and the development of simple prediction tools

    NASA Astrophysics Data System (ADS)

    Holden, J.; Wright, A.

    2004-04-01

    The principle features of tornado climatology in the UK are presented based on the 5-year period from January 1995. Just over one third of reported tornadoes occurred in the south-east region of England, and most tornado activity took place during the spring and summer while the least activity occurred during autumn. This was different to the seasonal distribution for the period from 1960 to 1989 when autumn had the greatest number of tornadoes. The reported tornado distribution was shown to be significantly affected by topography and the density of potential observers. Of the ground-based meteorological variables tested, air temperature was most closely related to tornado occurrence with a peak at 13 deg;C. An equation incorporating air temperature, dew-point temperature, wind speed and pressure was shown to predict a tornado day with an accuracy of 86. 2%. The probability that a tornado would occur on a predicted day was 81. 2%. The model was used to predict actual tornado occurrences across England, Wales and Scotland during the 5-year study period, and it was estimated that just over five-times as many tornadoes occurred than were reported. The model results suggest that the bias induced by population density was not greater than the combined influence of topography and spatial setting. This is important in the UK, because most tornadoes are reported in lowland areas which are heavily populated and it has been difficult until now to determine the extent to which tornado reports are biased by the density of potential observers.

  9. Current tools for predicting cancer-specific T cell immunity.

    PubMed

    Gfeller, David; Bassani-Sternberg, Michal; Schmidt, Julien; Luescher, Immanuel F

    2016-07-01

    Tumor exome and RNA sequencing data provide a systematic and unbiased view on cancer-specific expression, over-expression, and mutations of genes, which can be mined for personalized cancer vaccines and other immunotherapies. Of key interest are tumor-specific mutations, because T cells recognizing neoepitopes have the potential to be highly tumoricidal. Here, we review recent developments and technical advances in identifying MHC class I and class II-restricted tumor antigens, especially neoantigen derived MHC ligands, including in silico predictions, immune-peptidome analysis by mass spectrometry, and MHC ligand validation by biochemical methods on T cells. PMID:27622028

  10. Reactive metabolites in early drug development: predictive in vitro tools.

    PubMed

    Pelkonen, Olavi; Pasanen, Markku; Tolonen, Ari; Koskinen, Mikko; Hakkola, Jukka; Abass, Khaled; Laine, Jaana; Hakkinen, Merja; Juvonen, Risto; Auriola, Seppo; Storvik, Markus; Huuskonen, Pasi; Rousu, Timo; Rahikkala, Maiju

    2015-01-01

    Drug metabolism can result in the formation of highly reactive metabolites that are known to play a role in toxicity resulting in a significant proportion of attrition during drug development and clinical use. Thus, the earlier such reactivity was detected, the better. This review summarizes our multi-year project, together with pertinent literature, to examine a battery of in vitro tests capable of detecting the formation of reactive metabolites. Principal prerequisites for such tests were delineated: chemicals known/not known to cause tissue injury and produce reactive metabolites, activation system (mainly human-derived), small- and large-molecular targets (small-molecular trappers, peptides, proteins), analytical techniques (mass spectrometry), and cellular toxicity biomarkers. The current status of in vitro tools to detect reactive intermediates is the following: 1. Small-molecular trapping agents such glutathione or cyanide detect the production of reactive species with high sensitivity by proper MS technique. However, it seems that also putative "negatives" give rise to corresponding adducts. 2. Results from peptide and dG (DNA targeting) trapper studies are generally in line with those of small-molecular trappers, although also important differences exist. These two trapping platforms do not overlap. 3. It is anticipated that the in vitro adduct studies could be fully interpreted only in conjunction with toxicity biomarker (such as the Nrf2 pathway) information from whole cells or tissues. However, while there are tools to characterize the chemical liability and there are correlation between individual/integrated endpoints and toxicity, there are still severe gaps in understanding the mechanisms behind the link between reactive metabolites and adverse effects. PMID:25312212

  11. Correlations predict gas-condensate flow through chokes

    SciTech Connect

    Osman, M.E.; Dokla, M.E. )

    1992-03-16

    Empirical correlations have developed to describe the behavior of gas-condensate flow through surface chokes. The field data were obtained from a Middle East gas-condensate reservoir and cover a wide range of flow rates and choke sizes. Correlations for gas-condensate systems have not been previously available. These new correlations will help the production engineer to size chokes for controlling production of gas-condensate wells and predicting the performance of flowing wells under various conditions. Four forms of the correlation were developed and checked against data. One form correlates choke upstream pressure with liquid production rate, gas/liquid ratio, and choke size. The second form uses gas production rate instead of the liquid rate. The other two forms use the pressure drop across the choke instead of upstream pressure. All four of the correlations are presented in this paper as nomograms. Accuracy of the different forms was checked with five error parameters: root-mean-square error, mean-absolute error, simple-mean error, mean-percent-age-absolute error, and mean-percentage error. The correlation was found to be the most accurate when pressure-drop data are used instead of choke upstream pressure.

  12. JV Task 5 - Predictive Coal Quality Effects Screening Tool (PCQUEST)

    SciTech Connect

    Jason Laumb; Joshua Stanislowski

    2007-07-01

    PCQUEST, a package of eight predictive indices, was developed with U.S. Department of Energy (DOE) support by the Energy & Environmental Research Center to predict fireside performance in coal-fired utility boilers more reliably than traditional indices. Since the development of PCQUEST, the need has arisen for additional improvement, validation, and enhancement of the model, as well as to incorporate additional fuel types into the program database. PCQUEST was developed using combustion inorganic transformation theory from previous projects and from empirical data derived from laboratory experiments and coal boiler field observations. The goal of this joint venture project between commercial industry clients and DOE is to further enhance PCQUEST and improve its utility for a variety of new fuels and systems. Specific objectives include initiating joint venture projects with utilities, boiler vendors, and coal companies that involve real-world situations and needs in order to strategically improve algorithms and input-output functions of PCQUEST, as well as to provide technology transfer to the industrial sector. The main body of this report provides a short summary of the projects that were closed from February 1999 through July 2007. All of the reports sent to the commercial clients can be found in the appendix.

  13. Evaluation of predictive tools for cell culture clarification performance.

    PubMed

    Senczuk, Anna; Petty, Krista; Thomas, Anne; McNerney, Thomas; Moscariello, John; Yigzaw, Yinges

    2016-03-01

    Recent advances in the productivity of industrial mammalian cell culture processes have resulted in part in increased cell density. This increase and the associated increase in cellular debris are known to challenge harvest operations, however this understanding is limited and largely qualitative. Part of the issue arises from the heterogeneous size and composition of cellular debris, which makes harvest feed stream extremely difficult to characterize. Improved characterization methods would facilitate the development of clarification approaches that are consistent and scalable. This work describes how both particle size and cholesterol analysis can be used to characterize the feed stream. Particle size analysis by focused beam reflectance and dynamic light scattering are shown to be predictive of centrate filterability under certain harvest conditions. Because of the particle size range limitations of each detector, their applicability is limited to a particular stage or method of clarification. The measurement of cholesterol present in the cell culture supernatant or centrate was successfully used in providing relative amount of lysed cellular debris and enabled us to predict clarification performance of acid precipitated harvest regardless of particle size distribution profile. PMID:26332572

  14. JV TASK - PREDICTIVE COAL QUALITY EFFECTS SCREENING TOOL (PCQUEST)

    SciTech Connect

    Jason D. Laumb; Joshua J. Stanislowski

    2006-08-01

    PCQUEST, a package of eight predictive indices, was developed with U.S. Department of Energy (DOE) support by the Energy and Environmental Research Center to predict fireside performance in coal-fired utility boilers more reliably than traditional indices. Since the development of PCQUEST, the need has arisen for additional fuel types into the program database. PCQUEST was developed using combustion inorganic transformation theory from previous projects and from empirical data derived from laboratory experiments and coal boiler field observations. The goal of this joint venture project between commercial industry clients and DOE is to further enhance PCQUEST and improve its utility for a variety of new fuels and systems. Specific objectives include initiating joint venture projects with utilities, boiler vendors, and coal companies that involve real-world situations and needs in order to strategically improve algorithms and input-output functions of PCQUEST, as well as to provide technology transfer to the industrial sector. The main body of this report provides a short summary of the projects that were closed from February 1999 through June 2006. All of the reports sent to the commercial clients can be found in the appendix.

  15. An Assessment of Open Rotor Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2012-01-01

    Assess the current capability for predicting the aerodynamic and acoustic performance of open rotors. The testbed is a GE blade set called F31/A31 for which significant amount of aerodynamic and acoustic data was acquired in model scale tests. F31/A31 is a vintage 1990s design with a 12-bladed front rotor and a 10-bladed aft rotor. This blade set was tested in both low-speed regime (representative of approach and takeoff conditions) and high-speed regime (representative of climb and cruise conditions). Uninstalled as well as installed configurations were tested. The focus of this interim presentation is on a subset of the low-speed tests for which the tip speed was varied, but the blade setting angles and tunnel Mach number were held fixed.

  16. The Monte Carlo technique as a tool to predict LOAEL.

    PubMed

    Veselinović, Jovana B; Veselinović, Aleksandar M; Toropova, Alla P; Toropov, Andrey A

    2016-06-30

    Quantitative structure - activity relationships (QSARs) for the Lowest Observed Adverse Effect Level (LOAEL) for a large set of organic compounds (n = 341) are suggested. The molecular structures of these compounds are represented by Simplified Molecular Input-Line Entry Systems (SMILES). A criteria for the estimation quality of split into the "visible" training set (used for developing a model) and "invisible" external validation set is suggested. The correlation between the above criterion and the predictive potential of developed QSAR model (root-mean-square error for "invisible" validation set) has been detected. One-variable models are built up for several different splits into the "visible" training set and "invisible" validation set. The statistical quality of these models is quite good. Mechanistic interpretation and the domain of applicability for these models are defined according to probabilistic point of view. The methodology for defining applicability domain in QSAR modeling with SMILES notation based optimal descriptors is presented. PMID:27060758

  17. Rapid decision tool to predict earthquake destruction in Sumatra by using first motion study

    NASA Astrophysics Data System (ADS)

    Bhakta, Shardul Sanjay

    The main idea of this project is to build an interactive and smart Geographic Information system tool which can help predict intensity of real time earthquakes in Sumatra Island of Indonesia. The tool has an underlying intelligence to predict the intensity of an earthquake depending on analysis of similar earthquakes in the past in that specific region. Whenever an earthquake takes place in Sumatra, a First Motion Study is conducted; this decides its type, depth, latitude and longitude. When the user inputs this information into the input string, the tool will try to find similar earthquakes with a similar First Motion Survey and depth. It will do a survey of similar earthquakes and predict if this real time earthquake can be disastrous or not. This tool has been developed in JAVA. I have used MOJO (Map Objects JAVA Objects) to show map of Indonesia and earthquake locations in the form of points. ESRI has created MOJO which is a set of JAVA API's. The Indonesia map, earthquake location points and its co-relation was all designed using MOJO. MOJO is a powerful tool which made it easy to design the tool. This tool is easy to use and the user has to input only a few parameters for the end result. I hope this tool justifies its use in prediction of earthquakes and help save lives in Sumatra.

  18. How Well Do Selection Tools Predict Performance Later in a Medical Programme?

    ERIC Educational Resources Information Center

    Shulruf, Boaz; Poole, Phillippa; Wang, Grace Ying; Rudland, Joy; Wilkinson, Tim

    2012-01-01

    The choice of tools with which to select medical students is complex and controversial. This study aimed to identify the extent to which scores on each of three admission tools (Admission GPA, UMAT and structured interview) predicted the outcomes of the first major clinical year (Y4) of a 6 year medical programme. Data from three student cohorts…

  19. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    Energy Science and Technology Software Center (ESTSC)

    2013-09-17

    INT is a toolkit for computing radiative heat exchange between particles. The algorithm is based on the the 'Photon Monte Carlo" approach described by Wang and Modest and implemented as a library that can be interfaced with a variety of CFD codes to analyze radiative heat transfer in particle laden flows.

  20. Debris flow early warning systems in Norway: organization and tools

    NASA Astrophysics Data System (ADS)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance

  1. Prediction of liver cirrhosis, using diagnostic imaging tools

    PubMed Central

    Yeom, Suk Keu; Lee, Chang Hee; Cha, Sang Hoon; Park, Cheol Min

    2015-01-01

    Early diagnosis of liver cirrhosis is important. Ultrasound-guided liver biopsy is the gold standard for diagnosis of liver cirrhosis. However, its invasiveness and sampling bias limit the applicability of the method. Basic imaging for the diagnosis of liver cirrhosis has developed over the last few decades, enabling early detection of morphological changes of the liver by ultrasonography (US), computed tomography, and magnetic resonance imaging (MRI). They are also accurate diagnostic methods for advanced liver cirrhosis, for which early diagnosis is difficult. There are a number of ways to compensate for this difficulty, including texture analysis to more closely identify the homogeneity of hepatic parenchyma, elastography to measure the stiffness and elasticity of the liver, and perfusion studies to determine the blood flow volume, transit time, and velocity. Amongst these methods, elastography using US and MRI was found to be slightly easier, faster, and able to provide an accurate diagnosis. Early diagnosis of liver cirrhosis using MRI or US elastography is therefore a realistic alternative, but further research is still needed. PMID:26301049

  2. Comparison Between Predicted and Experimentally Measured Flow Fields at the Exit of the SSME HPFTP Impeller

    NASA Technical Reports Server (NTRS)

    Bache, George

    1993-01-01

    Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.

  3. DEEP--a tool for differential expression effector prediction.

    PubMed

    Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten

    2007-07-01

    High-throughput methods for measuring transcript abundance, like SAGE or microarrays, are widely used for determining differences in gene expression between different tissue types, dignities (normal/malignant) or time points. Further analysis of such data frequently aims at the identification of gene interaction networks that form the causal basis for the observed properties of the systems under examination. To this end, it is usually not sufficient to rely on the measured gene expression levels alone; rather, additional biological knowledge has to be taken into account in order to generate useful hypotheses about the molecular mechanism leading to the realization of a certain phenotype. We present a method that combines gene expression data with biological expert knowledge on molecular interaction networks, as described by the TRANSPATH database on signal transduction, to predict additional--and not necessarily differentially expressed--genes or gene products which might participate in processes specific for either of the examined tissues or conditions. In a first step, significance values for over-expression in tissue/condition A or B are assigned to all genes in the expression data set. Genes with a significance value exceeding a certain threshold are used as starting points for the reconstruction of a graph with signaling components as nodes and signaling events as edges. In a subsequent graph traversal process, again starting from the previously identified differentially expressed genes, all encountered nodes 'inherit' all their starting nodes' significance values. In a final step, the graph is visualized, the nodes being colored according to a weighted average of their inherited significance values. Each node's, or sub-network's, predominant color, ranging from green (significant for tissue/condition A) over yellow (not significant for either tissue/condition) to red (significant for tissue/condition B), thus gives an immediate visual clue on which molecules

  4. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  5. Flow Injection as a Teaching Tool for Gravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Sartini, Raquel P.; Zagatto, Elias A. G.; Oliveira, Cláudio C.

    2000-06-01

    A flow-injection system to carry out gravimetric analysis is presented. Students are faced with an instrumental approach for gravimetric procedures. Crucibles, muffle furnaces, and desiccators are not required. A flowing suspension is established by simultaneously injecting an aqueous sample and a precipitating reagent into two merging carrier streams. The precipitate is accumulated on a minifilter hanging under the plate of an analytical balance and is weighed inside the main stream. Since Archimedes' principle holds, a drying step is not needed. After measurement, the precipitate is dissolved and disposed of. As an application, the determination of phosphate based on precipitation with ammonium and magnesium ions in slightly alkaline medium is chosen. The proposed system is very stable and well suited for demonstration. When applied to analysis of fertilizer extracts with 0.10-1.00% w/v P, it yields precise results (RSD < 0.042) in agreement with an official spectrophotometric method.

  6. RNAsoft: a suite of RNA secondary structure prediction and design software tools

    PubMed Central

    Andronescu, Mirela; Aguirre-Hernández, Rosalía; Condon, Anne; Hoos, Holger H.

    2003-01-01

    DNA and RNA strands are employed in novel ways in the construction of nanostructures, as molecular tags in libraries of polymers and in therapeutics. New software tools for prediction and design of molecular structure will be needed in these applications. The RNAsoft suite of programs provides tools for predicting the secondary structure of a pair of DNA or RNA molecules, testing that combinatorial tag sets of DNA and RNA molecules have no unwanted secondary structure and designing RNA strands that fold to a given input secondary structure. The tools are based on standard thermodynamic models of RNA secondary structure formation. RNAsoft can be found online at http://www.RNAsoft.ca. PMID:12824338

  7. The use of dielectric spectroscopy as a tool for predicting meat quality in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in dielectric spectroscopy has increased due to its potential use as an on-line tool for predicting meat quality. The use of dielectric spectroscopy for predicting poultry meat quality was investigated. The following quality parameters were measured: pH, color, water holding capacity (WHC)...

  8. Methods to improve neural network performance in daily flows prediction

    NASA Astrophysics Data System (ADS)

    Wu, C. L.; Chau, K. W.; Li, Y. S.

    2009-06-01

    SummaryIn this paper, three data-preprocessing techniques, moving average (MA), singular spectrum analysis (SSA), and wavelet multi-resolution analysis (WMRA), were coupled with artificial neural network (ANN) to improve the estimate of daily flows. Six models, including the original ANN model without data preprocessing, were set up and evaluated. Five new models were ANN-MA, ANN-SSA1, ANN-SSA2, ANN-WMRA1, and ANN-WMRA2. The ANN-MA was derived from the raw ANN model combined with the MA. The ANN-SSA1, ANN-SSA2, ANN-WMRA1 and ANN-WMRA2 were generated by using the original ANN model coupled with SSA and WMRA in terms of two different means. Two daily flow series from different watersheds in China (Lushui and Daning) were used in six models for three prediction horizons (i.e., 1-, 2-, and 3-day-ahead forecast). The poor performance on ANN forecast models was mainly due to the existence of the lagged prediction. The ANN-MA, among six models, performed best and eradicated the lag effect. The performances from the ANN-SSA1 and ANN-SSA2 were similar, and the performances from the ANN-WMRA1 and ANN-WMRA2 were also similar. However, the models based on the SSA presented better performance than the models based on the WMRA at all forecast horizons, which meant that the SSA is more effective than the WMRA in improving the ANN performance in the current study. Based on an overall consideration including the model performance and the complexity of modeling, the ANN-MA model was optimal, then the ANN model coupled with SSA, and finally the ANN model coupled with WMRA.

  9. Ensemble stream flow predictions, a way towards better hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Edlund, C.

    2009-04-01

    The hydrological forecasting division at SMHI has been using hydrological EPS and hydrological probabilities forecasts operationally since some years ago. The inputs to the hydrological model HBV are the EPS forecasts from ECMWF. From the ensemble, non-exceedance probabilities are estimated and final correction of the ensemble spread, based on evaluation is done. Ensemble stream flow predictions are done for about 80 indicator basins in Sweden, where there is a real-time discharge gauge. The EPS runs are updated daily against the latest observed discharge. Flood probability maps for exceeding a certain threshold, i.e. a certain warning level, are produced automatically once a day. The flood probabilistic forecasts are based on a HBV- model application, (called HBV-Sv, HBV Sweden) that covers the whole country and consist of 1001 subbasins with an average size between 200 and 700 km2. Probabilities computations for exceeding a certain warning level are made for each one of these 1001 subbasins. Statistical flood levels have been calculated for each river sub-basin. Hydrological probability forecasts should be seen as an early warning product that can give better support in decision making to end-users communities, for instance Civil Protections Offices and County Administrative Boards, within flood risk management. The main limitations with probability forecasts are: on one hand, difficulties to catch small-scale rain (mainly due to resolution of meteorological models); on the other hand, the hydrological model can't be updated against observations in all subbasins. The benefits of working with probabilities consist, first of all, of a new approach when working with flood risk management and scenarios. A probability forecast can give an early indication for Civil Protection that "something is going to happen" and to gain time in preparing aid operations. The ensemble stream flow prediction at SMHI is integrated with the national forecasting system and the products

  10. An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran

    2010-01-01

    This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…

  11. Transition length prediction for flows with rapidly changing pressure gradients

    SciTech Connect

    Solomon, W.J.; Walker, G.J.; Gostelow, J.P.

    1996-10-01

    A new method for calculating intermittency in transitional boundary layers with changing pressure gradients is proposed and tested against standard turbomachinery flow cases. It is based on recent experimental studies, which show the local pressure gradient parameter to have a significant effect on turbulent spot spreading angles and propagation velocities (and hence transition length). This can be very important for some turbomachinery flows. On a turbine blade suction surface, for example, it is possible for transition to start in a region of favorable pressure gradient and finish in a region of adverse pressure gradient. Calculation methods that estimate the transition length from the local pressure gradient parameter at the start of transition will seriously overestimate the transition length under these conditions. Conventional methods based on correlations of zero pressure gradient transition date are similarly inaccurate. The new calculation method continuously adjusts the spot growth parameters in response to changes in the local pressure gradient through transition using correlations based on data given in the companion paper by Gostelow et al. (1996). Recent experiment correlations of Gostelow et al. (1994a) are used to estimate the turbulent spot generation rate at the start of transition. The method has been incorporated in a linear combination integral computation and tested with good results on cases that report both the intermittency and surface pressure distribution data. It has resulted in a much reduced sensitivity to errors in predicting the start of the transition zone, and can be recommended for engineering use in calculating boundary layer development on axial turbomachine blades.

  12. Predicting the stability of a compressible periodic parallel jet flow

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    1996-01-01

    It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.

  13. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates.

    PubMed

    Paul, Sinu; Sidney, John; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    Computational prediction of T cell epitope candidates is currently being used in several applications including vaccine discovery studies, development of diagnostics, and removal of unwanted immune responses against protein therapeutics. There have been continuous improvements in the performance of MHC binding prediction tools, but their general adoption by immunologists has been slow due to the lack of user-friendly interfaces and guidelines. Current tools only provide minimal advice on what alleles to include, what lengths to consider, how to deal with homologous peptides, and what cutoffs should be considered relevant. This protocol provides step-by-step instructions with necessary recommendations for prediction of the best T cell epitope candidates with the newly developed online tool called TepiTool. TepiTool, which is part of the Immune Epitope Database (IEDB), provides some of the top MHC binding prediction algorithms for number of species including humans, chimpanzees, bovines, gorillas, macaques, mice, and pigs. The TepiTool is freely accessible at http://tools.iedb.org/tepitool/. © 2016 by John Wiley & Sons, Inc. PMID:27479659

  14. Major histocompatibility complex linked databases and prediction tools for designing vaccines.

    PubMed

    Singh, Satarudra Prakash; Mishra, Bhartendu Nath

    2016-03-01

    Presently, the major histocompatibility complex (MHC) is receiving considerable interest owing to its remarkable role in antigen presentation and vaccine design. The specific databases and prediction approaches related to MHC sequences, structures and binding/nonbinding peptides have been aggressively developed in the past two decades with their own benchmarks and standards. Before using these databases and prediction tools, it is important to analyze why and how the tools are constructed along with their strengths and limitations. The current review presents insights into web-based immunological bioinformatics resources that include searchable databases of MHC sequences, epitopes and prediction tools that are linked to MHC based vaccine design, including population coverage analysis. In T cell epitope forecasts, MHC class I binding predictions are very accurate for most of the identified MHC alleles. However, these predictions could be further improved by integrating proteasome cleavage (in conjugation with transporter associated with antigen processing (TAP) binding) prediction, as well as T cell receptor binding prediction. On the other hand, MHC class II restricted epitope predictions display relatively low accuracy compared to MHC class I. To date, pan-specific tools have been developed, which not only deliver significantly improved predictions in terms of accuracy, but also in terms of the coverage of MHC alleles and supertypes. In addition, structural modeling and simulation systems for peptide-MHC complexes enable the molecular-level investigation of immune processes. Finally, epitope prediction tools, and their assessments and guidelines, have been presented to immunologist for the design of novel vaccine and diagnostics. PMID:26585361

  15. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    SciTech Connect

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  16. Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests

    USGS Publications Warehouse

    Denlinger, R.P.; Iverson, R.M.

    2001-01-01

    Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.

  17. Prediction of feather damage in laying hens using optical flows and Markov models

    PubMed Central

    Lee, Hyoung-joo; Roberts, Stephen J.; Drake, Kelly A.; Dawkins, Marian Stamp

    2011-01-01

    Feather pecking in laying hens is a major welfare and production problem for commercial egg producers, resulting in mortality, loss of production as well as welfare issues for the damaged birds. Damaging outbreaks of feather pecking are currently impossible to control, despite a number of proposed interventions. However, the ability to predict feather damage in advance would be a valuable research tool for identifying which management or environmental factors could be the most effective interventions at different ages. This paper proposes a framework for forecasting the damage caused by injurious pecking based on automated image processing and statistical analysis. By frame-by-frame analysis of video recordings of laying hen flocks, optical flow measures are calculated as indicators of the movement of the birds. From the optical flow datasets, measures of disturbance are extracted using hidden Markov models. Based on these disturbance measures and age-related variables, the levels of feather damage in flocks in future weeks is predicted. Applying the proposed method to real-world datasets, it is shown that the disturbance measures offer improved predictive values for feather damage thus enabling an identification of flocks with probable prevalence of damage and injury later in lay. PMID:20659929

  18. The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.; Nunes, A. C., Jr.

    2000-01-01

    The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.

  19. Introduction: Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation

    NASA Astrophysics Data System (ADS)

    Schmisseur, John D.; Erbland, Peter

    2012-01-01

    This article provides an introduction and overview to the efforts of NATO Research and Technology Organization Task Group AVT-136, Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation. During the period of 2006-2010, AVT-136 coordinated international contributions to assess the state-of-the-art and research challenges for the prediction of critical aerothermodynamic flight phenomena based on the extrapolation of ground test and numerical simulation. To achieve this goal, efforts were organized around six scientific topic areas: (1) Noses and leading edges, (2) Shock Interactions and Control Surfaces, (3) Shock Layers and Radiation, (4) Boundary Layer Transition, (5) Gas-Surface Interactions, and (6) Base and Afterbody Flows. A key component of the AVT-136 strategy was comparison of state-of-the-art numerical simulations with data to be acquired from planned flight research programs. Although it was recognized from the onset of AVT-136 activities that reliance on flight research data yet to be collected posed a significant risk, the group concluded the substantial benefit to be derived from comparison of computational simulations with flight data warranted pursuit of such a program of work. Unfortunately, program delays and failures in the flight programs contributing to the AVT-136 effort prevented timely access to flight research data. Despite this setback, most of the scientific topic areas developed by the Task Group made significant progress in the assessment of current capabilities. Additionally, the activities of AVT-136 generated substantial interest within the international scientific research community and the work of the Task Group was prominently featured in a total of six invited sessions in European and American technical conferences. In addition to this overview, reviews of the state-of-the-art and research challenges identified by the six research thrusts of AVT-136 are also included in this special

  20. Automatic generation of bioinformatics tools for predicting protein–ligand binding sites

    PubMed Central

    Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro

    2016-01-01

    Motivation: Predictive tools that model protein–ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein–ligand binding predictive tools would be useful. Results: We developed a system for automatically generating protein–ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5–1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. Availability and implementation: The source code and web application are freely available for download at http://utprot.net. They are implemented in Python and supported on Linux. Contact: shimizu@bi.a.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26545824

  1. Nutrition Screening Tools and the Prediction of Clinical Outcomes among Chinese Hospitalized Gastrointestinal Disease Patients.

    PubMed

    Wang, Fang; Chen, Wei; Bruening, Kay Stearns; Raj, Sudha; Larsen, David A

    2016-01-01

    Nutrition risk Screening 2002 (NRS-2002) and Subjective Global Assessment (SGA) are widely used screening tools but have not been compared in a Chinese population. We conducted secondary data analysis of a cross-sectional study which included 332 hospitalized gastrointestinal disease patients, collected by the Gastrointestinal department of Peking Union Medical College Hospital (PUMCH) in 2008. Results of NRS-2002 and SGA screening tools, complications, length of stay (LOS), cost, and death were measured. The agreement between the tools was assessed via Kappa (κ) statistics. The performance of NRS-2002 and SGA in predicting LOS and cost was assessed via linear regression. The complications and death prediction of tools was assessed using receiver operating characteristic (ROC) curves. NRS-2002 and SGA identified nutrition risk at 59.0% and 45.2% respectively. Moderate agreement (κ >0.50) between the two tools was found among all age groups except individuals aged ≤ 20, which only slight agreement was found (κ = 0.087). NRS-2002 (R square 0.130) and SGA (R square 0.140) did not perform differently in LOS prediction. The cost prediction of NRS-2002 (R square 0.198) and SGA (R square 0.190) were not significantly different. There was no difference between NRS-2002 (infectious complications: area under ROC (AUROC) = 0.615, death: AUROC = 0.810) and SGA (infectious complications: AUROC = 0.600, death: AUROC = 0.846) in predicting infectious complication and death, but NRS-2002 (0.738) seemed to perform better than SGA (0.552) in predicting non-infectious complications. The risk of malnutrition among patients was high. NRS-2002 and SGA have similar capacity to predict LOS, cost, infectious complications and death, but NRS-2002 performed better in predicting non-infectious complications. PMID:27490480

  2. Nutrition Screening Tools and the Prediction of Clinical Outcomes among Chinese Hospitalized Gastrointestinal Disease Patients

    PubMed Central

    Wang, Fang; Chen, Wei; Bruening, Kay Stearns; Raj, Sudha

    2016-01-01

    Nutrition risk Screening 2002 (NRS-2002) and Subjective Global Assessment (SGA) are widely used screening tools but have not been compared in a Chinese population. We conducted secondary data analysis of a cross-sectional study which included 332 hospitalized gastrointestinal disease patients, collected by the Gastrointestinal department of Peking Union Medical College Hospital (PUMCH) in 2008. Results of NRS-2002 and SGA screening tools, complications, length of stay (LOS), cost, and death were measured. The agreement between the tools was assessed via Kappa (κ) statistics. The performance of NRS-2002 and SGA in predicting LOS and cost was assessed via linear regression. The complications and death prediction of tools was assessed using receiver operating characteristic (ROC) curves. NRS-2002 and SGA identified nutrition risk at 59.0% and 45.2% respectively. Moderate agreement (κ >0.50) between the two tools was found among all age groups except individuals aged ≤ 20, which only slight agreement was found (κ = 0.087). NRS-2002 (R square 0.130) and SGA (R square 0.140) did not perform differently in LOS prediction. The cost prediction of NRS-2002 (R square 0.198) and SGA (R square 0.190) were not significantly different. There was no difference between NRS-2002 (infectious complications: area under ROC (AUROC) = 0.615, death: AUROC = 0.810) and SGA (infectious complications: AUROC = 0.600, death: AUROC = 0.846) in predicting infectious complication and death, but NRS-2002 (0.738) seemed to perform better than SGA (0.552) in predicting non-infectious complications. The risk of malnutrition among patients was high. NRS-2002 and SGA have similar capacity to predict LOS, cost, infectious complications and death, but NRS-2002 performed better in predicting non-infectious complications. PMID:27490480

  3. A comparison of predicted and measured inlet distortion flows in a subsonic axial inlet flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1992-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  4. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  5. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  6. Prediction of frequencies in thermosolutal convection from mean flows

    NASA Astrophysics Data System (ADS)

    Turton, Sam E.; Tuckerman, Laurette S.; Barkley, Dwight

    2015-04-01

    Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean.

  7. Prediction of frequencies in thermosolutal convection from mean flows.

    PubMed

    Turton, Sam E; Tuckerman, Laurette S; Barkley, Dwight

    2015-04-01

    Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean. PMID:25974582

  8. Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.

  9. Software tools for simultaneous data visualization and T cell epitopes and disorder prediction in proteins.

    PubMed

    Jandrlić, Davorka R; Lazić, Goran M; Mitić, Nenad S; Pavlović, Mirjana D

    2016-04-01

    We have developed EpDis and MassPred, extendable open source software tools that support bioinformatic research and enable parallel use of different methods for the prediction of T cell epitopes, disorder and disordered binding regions and hydropathy calculation. These tools offer a semi-automated installation of chosen sets of external predictors and an interface allowing for easy application of the prediction methods, which can be applied either to individual proteins or to datasets of a large number of proteins. In addition to access to prediction methods, the tools also provide visualization of the obtained results, calculation of consensus from results of different methods, as well as import of experimental data and their comparison with results obtained with different predictors. The tools also offer a graphical user interface and the possibility to store data and the results obtained using all of the integrated methods in the relational database or flat file for further analysis. The MassPred part enables a massive parallel application of all integrated predictors to the set of proteins. Both tools can be downloaded from http://bioinfo.matf.bg.ac.rs/home/downloads.wafl?cat=Software. Appendix A includes the technical description of the created tools and a list of supported predictors. PMID:26851400

  10. Bioinformatics Resources and Tools for Conformational B-Cell Epitope Prediction

    PubMed Central

    Sun, Pingping; Ju, Haixu; Liu, Zhenbang; Ning, Qiao; Zhang, Jian; Zhao, Xiaowei; Huang, Yanxin; Ma, Zhiqiang; Li, Yuxin

    2013-01-01

    Identification of epitopes which invoke strong humoral responses is an essential issue in the field of immunology. Localizing epitopes by experimental methods is expensive in terms of time, cost, and effort; therefore, computational methods feature for its low cost and high speed was employed to predict B-cell epitopes. In this paper, we review the recent advance of bioinformatics resources and tools in conformational B-cell epitope prediction, including databases, algorithms, web servers, and their applications in solving problems in related areas. To stimulate the development of better tools, some promising directions are also extensively discussed. PMID:23970944

  11. BacPP: a web-based tool for Gram-negative bacterial promoter prediction.

    PubMed

    de Avila E Silva, S; Notari, D L; Neis, F A; Ribeiro, H G; Echeverrigaray, S

    2016-01-01

    Bacterial Promoter Prediction (BacPP) is a tool used to predict given sequences as promoters of Gram-negative bacteria according to the σ factor that recognizes it. The first version of BacPP was implemented in Python language in a desktop version without a friendly interface. For this reason, a web version of BacPP is now available with the purpose of improving its usability and availability. The present paper describes the implementation of the web version of this tool, focusing on its software architecture and user functionalities. The software is available at www.bacpp.bioinfoucs.com/home. PMID:27173187

  12. Predicting the impact of water demand and river flow regulation over riparian vegetation through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, A.; Pons, C.; Frances, F.

    2013-12-01

    The vegetation of the riversides is a main part of the complex riparian ecosystems and has an important role maintaining the fluvial ecosystems. Biotic and abiotic interactions between the river and the riverbank are essential for the subsistence and the development of both ecosystems. In semi-arid Mediterranean areas, the riparian vegetation growth and distribution is especially controlled by the water accessibility, determining the limit between the lush riparian bands and the sparse upland. Human intervention can alter the river hydrology determining the riparian vegetation wellbeing and its distribution and, in consequence, affecting both riparian and fluvial ecosystems. Predictive models are necessary decision support tools for adequate river management and restoration initiatives. In this context, the RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation. RibAV is able to reproduce the vegetation performance on the riverside allowing the scenarios analysis in terms of vegetation distribution and wellbeing. In this research several flow regulation and water demand scenarios are proposed and the impacts over three plant functional types (PFTs) are analyzed. The PFTs group the herbaceous riparian plants, the woody riparian plants and the terrestrial vegetation. The study site is the Terde reach at the Mijares River, a 539m length reach located in a semi-arid Mediterranean area in Spain. The scenarios represent river flow alterations required to attend different human demands. These demands encompass different seasonality, magnitude and location. The seasonality is represented as hydroelectric (constant all over the year), urban (increased during the summer period) and agricultural demands (monthly seasonality). The magnitude is varied considering the 20%, the 40% and the 80% of the mean daily flow. Two locations are considered, upstream or downstream the study site. To attend the demands located

  13. Predicting the pressure driven flow of gases through micro-capillaries and micro-orifices

    SciTech Connect

    Anderson, B.L.; Carlson, R.W.; Fischer, L.E.

    1994-11-01

    A large body of experimentally measured gas flow rates were obtained from the literature and then compared to the predictions obtained with constitutive flow equations. This was done to determine whether the equations apply to the predictions of gas flow rates from leaking containment vessels used to transport radioactive materials. The experiments consisted of measuring the volumetric pressure-driven flow of gases through micro-capillaries and micro-orifices. The experimental results were compared to the predictions obtained with the equations given in ANSI N14.5 the American National Standard for Radioactive Materials-Leakage Tests on Package for Shipment. The equations were applied to both (1) the data set according to the recommendations given in ANSI N14.5 and (2) globally to the complete data set. It was found that: The continuum and molecular flow equation provided good agreement between the experimental and calculated flow rates for flow rates less than about 1 atm{center_dot}cm{sup 3}/s. The choked flow equation resulted in over-prediction of the flow rates for flow rates less than about 1 atm-cm{sup 3}/s. For flow rates higher than 1 atm{center_dot}cm{sup 3}/s, the molecular and continuum flow equation over-predicted the measured flow rates and the predictions obtained with the choked flow equation agreed well with the experimental values. Since the flow rates of interest for packages used to transport radioactive materials are almost always less than 1 atm{center_dot}cm{sup 3}/s, it is suggested that the continuum and molecular flow equation be used for gas flow rate predictions related to these applications.

  14. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  15. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools.

    PubMed

    Tao, L; Zhang, P; Qin, C; Chen, S Y; Zhang, C; Chen, Z; Zhu, F; Yang, S Y; Wei, Y Q; Chen, Y Z

    2015-06-23

    In-silico methods have been explored as potential tools for assessing ADME and ADME regulatory properties particularly in early drug discovery stages. Machine learning methods, with their ability in classifying diverse structures and complex mechanisms, are well suited for predicting ADME and ADME regulatory properties. Recent efforts have been directed at the broadening of application scopes and the improvement of predictive performance with particular focuses on the coverage of ADME properties, and exploration of more diversified training data, appropriate molecular features, and consensus modeling. Moreover, several online machine learning ADME prediction servers have emerged. Here we review these progresses and discuss the performances, application prospects and challenges of exploring machine learning methods as useful tools in predicting ADME and ADME regulatory properties. PMID:26037068

  16. Substance flow analysis as a tool for mitigating the impact of pharmaceuticals on the aquatic system.

    PubMed

    Chèvre, Nathalie; Coutu, Sylvain; Margot, Jonas; Wynn, Htet Kyi; Bader, Hans-Peter; Scheidegger, Ruth; Rossi, Luca

    2013-06-01

    Pharmaceuticals constitute an important environmental issue for receiving waters. A holistic approach, taking into consideration the sources of these compounds (hospitals, domestic use), discharges (wastewater effluent, combined sewer overflows) and related risks to the environment, is therefore needed to develop the best protection strategy. The substance flow analysis (SFA) approach, applied, for example, to the city of Lausanne, Switzerland, is an ideal tool to tackle these issues. Four substances were considered: one antibiotic (ciprofloxacin), an analgesic (diclofenac), and two anti-epileptics (carbamazepine and gabapentin). Consumption data for the main hospital of the city (916 beds) and for the population were available. Micropollutant concentrations were measured at different points of the system: wastewater inlet and outlet (WWTP), combined sewer overflows (CSO) and in the receiving waters (Vidy Bay, Lake Geneva). Measured and predicted concentrations were in agreement, except for diclofenac, for which analytical uncertainties were expected. Seven different scenarios were considered (supplementary treatment at the WWTP, at the hospital or at both places, etc.). Based on the results obtained, the supplementary treatment at the WWTP decreases the load of pharmaceuticals reaching surface water by a factor between 2 and 27, depending on the compound and on the technique. The treatment at the hospitals only influences the amount of ciprofloxacin reaching the environment and decreases the release by one third. The contribution of CSO to surface water pollution is low compared to that of the WWTP for the selected compounds. Regarding the risk for the receiving waters, ciprofloxacin was found to be the most problematic compound, with a risk quotient far above 1. In this particular case, a treatment at the WWTP is not sufficient to reduce the risk, and additional measures at the CSO or at the hospital should be considered. SFA is an ideal tool for developing the

  17. On-Line, Self-Learning, Predictive Tool for Determining Payload Thermal Response

    NASA Technical Reports Server (NTRS)

    Jen, Chian-Li; Tilwick, Leon

    2000-01-01

    This paper will present the results of a joint ManTech / Goddard R&D effort, currently under way, to develop and test a computer based, on-line, predictive simulation model for use by facility operators to predict the thermal response of a payload during thermal vacuum testing. Thermal response was identified as an area that could benefit from the algorithms developed by Dr. Jeri for complex computer simulations. Most thermal vacuum test setups are unique since no two payloads have the same thermal properties. This requires that the operators depend on their past experiences to conduct the test which requires time for them to learn how the payload responds while at the same time limiting any risk of exceeding hot or cold temperature limits. The predictive tool being developed is intended to be used with the new Thermal Vacuum Data System (TVDS) developed at Goddard for the Thermal Vacuum Test Operations group. This model can learn the thermal response of the payload by reading a few data points from the TVDS, accepting the payload's current temperature as the initial condition for prediction. The model can then be used as a predictive tool to estimate the future payload temperatures according to a predetermined shroud temperature profile. If the error of prediction is too big, the model can be asked to re-learn the new situation on-line in real-time and give a new prediction. Based on some preliminary tests, we feel this predictive model can forecast the payload temperature of the entire test cycle within 5 degrees Celsius after it has learned 3 times during the beginning of the test. The tool will allow the operator to play "what-if' experiments to decide what is his best shroud temperature set-point control strategy. This tool will save money by minimizing guess work and optimizing transitions as well as making the testing process safer and easier to conduct.

  18. Influence of the Tool Shoulder Contact Conditions on the Material Flow During Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Doude, Haley R.; Schneider, Judy A.; Nunes, Arthur C.

    2014-09-01

    Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.

  19. Loss estimation of debris flow events in mountain areas - An integrated tool for local authorities

    NASA Astrophysics Data System (ADS)

    Papathoma-Koehle, M.; Zischg, A.; Fuchs, S.; Keiler, M.; Glade, T.

    2012-04-01

    Torrents prone to debris flows regularly cause extensive destruction of the built environment, loss of life stock, agricultural land and loss of life in mountain areas. Climate change may increase the frequency and intensity of such events. On the other hand, extensive development of mountain areas is expected to change the spatial pattern of elements at risk exposed and their vulnerability. Consequently, the costs of debris flow events are likely to increase in the coming years. Local authorities responsible for disaster risk reduction are in need of tools that may enable them to assess the future consequences of debris flow events, in particular with respect to the vulnerability of elements at risk. An integrated tool for loss estimation is presented here which is based on a newly developed vulnerability curve and which is applied in test sites in the Province of South Tyrol, Italy. The tool has a dual function: 1) continuous updating of the database regarding damages and process intensities that will eventually improve the existing vulnerability curve and 2) loss estimation of future events and hypothetical events or built environment scenarios by using the existing curve. The tool integrates the vulnerability curve together with new user friendly forms of damage documentation. The integrated tool presented here can be used by local authorities not only for the recording of damage caused by debris flows and the allocation of compensation to the owners of damaged buildings but also for land use planning, cost benefit analysis of structural protection measures and emergency planning.

  20. Cost Minimization Using an Artificial Neural Network Sleep Apnea Prediction Tool for Sleep Studies

    PubMed Central

    Teferra, Rahel A.; Grant, Brydon J. B.; Mindel, Jesse W.; Siddiqi, Tauseef A.; Iftikhar, Imran H.; Ajaz, Fatima; Aliling, Jose P.; Khan, Meena S.; Hoffmann, Stephen P.

    2014-01-01

    Rationale: More than a million polysomnograms (PSGs) are performed annually in the United States to diagnose obstructive sleep apnea (OSA). Third-party payers now advocate a home sleep test (HST), rather than an in-laboratory PSG, as the diagnostic study for OSA regardless of clinical probability, but the economic benefit of this approach is not known. Objectives: We determined the diagnostic performance of OSA prediction tools including the newly developed OSUNet, based on an artificial neural network, and performed a cost-minimization analysis when the prediction tools are used to identify patients who should undergo HST. Methods: The OSUNet was trained to predict the presence of OSA in a derivation group of patients who underwent an in-laboratory PSG (n = 383). Validation group 1 consisted of in-laboratory PSG patients (n = 149). The network was trained further in 33 patients who underwent HST and then was validated in a separate group of 100 HST patients (validation group 2). Likelihood ratios (LRs) were compared with two previously published prediction tools. The total costs from the use of the three prediction tools and the third-party approach within a clinical algorithm were compared. Measurements and Main Results: The OSUNet had a higher +LR in all groups compared with the STOP-BANG and the modified neck circumference (MNC) prediction tools. The +LRs for STOP-BANG, MNC, and OSUNet in validation group 1 were 1.1 (1.0–1.2), 1.3 (1.1–1.5), and 2.1 (1.4–3.1); and in validation group 2 they were 1.4 (1.1–1.7), 1.7 (1.3–2.2), and 3.4 (1.8–6.1), respectively. With an OSA prevalence less than 52%, the use of all three clinical prediction tools resulted in cost savings compared with the third-party approach. Conclusions: The routine requirement of an HST to diagnose OSA regardless of clinical probability is more costly compared with the use of OSA clinical prediction tools that identify patients who should undergo this procedure when OSA is expected to

  1. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    PubMed

    Song, Jiangning; Tan, Hao; Perry, Andrew J; Akutsu, Tatsuya; Webb, Geoffrey I; Whisstock, James C; Pike, Robert N

    2012-01-01

    The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using

  2. Material Flow Tracking for Various Tool Geometries During the Friction Stir Spot Welding Process

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Ching; Liu, Ju-Jen; Chen, Jiun-Nan

    2013-12-01

    This study applied powder-tracing techniques to mount Cu and W powders on A6061-T6 aluminum sheets to investigate the material flow mechanism of friction stir spot welding (FSSW) using various geometric tools. The experimental results showed that the geometry of the tools plays a crucial role and determines the entrances of material flow during FSSW. It was believed that instantaneous voids were filled up with material flow in all directions for triangular pins, and the voids were located at the pin bottom for cylindrical pins. In accordance with the plastic rule of material flow, the pressure gradient is the necessary condition to cause material flow during FSSW; therefore, the transient constraint space (TCS) is required to generate pressure in this space. Enlargement of the TCS accompanies the evolution of the stir zone (SZ). A generated void causes a steep pressure gradient, which is regarded as the entrance of material flow. A tool with screw threads causes downward driving force, which determines the intermixing behavior between the upper and lower sheets, and also affects the size of the SZs.

  3. A Tool Preference Choice Method for RNA Secondary Structure Prediction by SVM with Statistical Tests

    PubMed Central

    Hor, Chiou-Yi; Yang, Chang-Biau; Chang, Chia-Hung; Tseng, Chiou-Ting; Chen, Hung-Hsin

    2013-01-01

    The Prediction of RNA secondary structures has drawn much attention from both biologists and computer scientists. Many useful tools have been developed for this purpose. These tools have their individual strengths and weaknesses. As a result, based on support vector machines (SVM), we propose a tool choice method which integrates three prediction tools: pknotsRG, RNAStructure, and NUPACK. Our method first extracts features from the target RNA sequence, and adopts two information-theoretic feature selection methods for feature ranking. We propose a method to combine feature selection and classifier fusion in an incremental manner. Our test data set contains 720 RNA sequences, where 225 pseudoknotted RNA sequences are obtained from PseudoBase, and 495 nested RNA sequences are obtained from RNA SSTRAND. The method serves as a preprocessing way in analyzing RNA sequences before the RNA secondary structure prediction tools are employed. In addition, the performance of various configurations is subject to statistical tests to examine their significance. The best base-pair accuracy achieved is 75.5%, which is obtained by the proposed incremental method, and is significantly higher than 68.8%, which is associated with the best predictor, pknotsRG. PMID:23641141

  4. Using SWPBS Expectations as a Screening Tool to Predict Behavioral Risk in Middle School

    ERIC Educational Resources Information Center

    Burke, Mack D.; Davis, John L.; Hagan-Burke, Shanna; Lee, Yuan-Hsuan; Fogarty, Melissa Shea

    2014-01-01

    School-wide positive behavior support (SWPBS) focuses on promoting social competence through the establishment of behavior expectations that are explicitly taught and reinforced by all teachers across all settings. This study investigated the validity of using adherence to SWPBS behavior expectations as a screening tool for predicting behavior…

  5. Overview: what's worked and what hasn't as a guide towards predictive admissions tool development.

    PubMed

    Siu, Eric; Reiter, Harold I

    2009-12-01

    Admissions committees and researchers around the globe have used diligence and imagination to develop and implement various screening measures with the ultimate goal of predicting future clinical and professional performance. What works for predicting future job performance in the human resources world and in most of the academic world may not, however, work for the highly competitive world of medical school applicants. For the job of differentiating within the highly range-restricted pool of medical school aspirants, only the most reliable assessment tools need apply. The tools that have generally shown predictive validity in future performance include academic scores like grade point average, aptitude tests like the Medical College Admissions Test, and non-cognitive testing like the multiple mini-interview. The list of assessment tools that have not robustly met that mark is longer, including personal interview, personal statement, letters of reference, personality testing, emotional intelligence and (so far) situational judgment tests. When seen purely from the standpoint of predictive validity, the trends over time towards success or failure of these measures provide insight into future tool development. PMID:19340597

  6. Users' experiences of an emergency department patient admission predictive tool: A qualitative evaluation.

    PubMed

    Jessup, Melanie; Crilly, Julia; Boyle, Justin; Wallis, Marianne; Lind, James; Green, David; Fitzgerald, Gerard

    2016-09-01

    Emergency department overcrowding is an increasing issue impacting patients, staff and quality of care, resulting in poor patient and system outcomes. In order to facilitate better management of emergency department resources, a patient admission predictive tool was developed and implemented. Evaluation of the tool's accuracy and efficacy was complemented with a qualitative component that explicated the experiences of users and its impact upon their management strategies, and is the focus of this article. Semi-structured interviews were conducted with 15 pertinent users, including bed managers, after-hours managers, specialty department heads, nurse unit managers and hospital executives. Analysis realised dynamics of accuracy, facilitating communication and enabling group decision-making Users generally welcomed the enhanced potential to predict and plan following the incorporation of the patient admission predictive tool into their daily and weekly decision-making processes. They offered astute feedback with regard to their responses when faced with issues of capacity and communication. Participants reported an growing confidence in making informed decisions in a cultural context that is continually moving from reactive to proactive. This information will inform further patient admission predictive tool development specifically and implementation processes generally. PMID:25916833

  7. Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models

    NASA Astrophysics Data System (ADS)

    Starn, J. J.; Belitz, K.

    2014-12-01

    National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions

  8. Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas

    NASA Astrophysics Data System (ADS)

    Easton, Zachary M.; Fuka, Daniel R.; Walter, M. Todd; Cowan, Dillon M.; Schneiderman, Elliot M.; Steenhuis, Tammo S.

    2008-01-01

    SummaryMany water quality models use some form of the Natural Resources Conservation Services (formerly Soil Conservation Service) curve number (CN) equation to predict storm runoff in ways that implicitly assume an infiltration-excess response to rainfall. Because of this, these models may fail to predict variable source areas (VSAs) correctly, i.e. where runoff is typically generated in rural, humid regions. In this study, the Soil and Water Assessment Tool (SWAT) model was re-conceptualized to distribute overland flow in ways consistent with VSA hydrology by modifying how the CN and available water content were defined; the new modeling approach is called SWAT-VSA. Both SWAT and SWAT-VSA were applied to a sub-watershed in the Cannonsville basin in upstate New York to compare model predictions of integrated and distributed responses, including surface runoff, shallowly perched water table depth, and stream phosphorus loads against direct measures. Event runoff was predicted similarly well for SWAT-VSA and SWAT. However, the distribution of shallowly perched water table depth was predicted better by SWAT-VSA and it is this shallow groundwater that governs VSAs. Event based dissolved phosphorus export from the watershed was also predicted better by SWAT-VSA, presumably because the distribution of runoff source areas was better predicted particularly from areas where manure was applied. This has important consequences for using models to evaluate and guide watershed management because correctly predicting where runoff is generated is critical to locating best management practices to control non-point source pollution.

  9. Predictive Validity of Pressure Ulcer Risk Assessment Tools for Elderly: A Meta-Analysis.

    PubMed

    Park, Seong-Hi; Lee, Young-Shin; Kwon, Young-Mi

    2016-04-01

    Preventing pressure ulcers is one of the most challenging goals existing for today's health care provider. Currently used tools which assess risk of pressure ulcer development rarely evaluate the accuracy of predictability, especially in older adults. The current study aimed at providing a systemic review and meta-analysis of 29 studies using three pressure ulcer risk assessment tools: Braden, Norton, and Waterlow Scales. Overall predictive validities of pressure ulcer risks in the pooled sensitivity and specificity indicated a similar range with a moderate accuracy level in all three scales, while heterogeneity showed more than 80% variability among studies. The studies applying the Braden Scale used five different cut-off points representing the primary cause of heterogeneity. Results indicate that commonly used screening tools for pressure ulcer risk have limitations regarding validity and accuracy for use with older adults due to heterogeneity among studies. PMID:26337859

  10. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  11. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-09-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  12. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  13. sedFlow - a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2015-01-01

    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow

  14. Noise produced by turbulent flow into a rotor: Users manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Caplin, B.

    1989-01-01

    A users manual for a computer program for predicting atmospheric turbulence and mean flow and turbulence contraction as part of a noise prediction scheme for nonisotropic turbulence ingestion noise in helicopters is described. Included are descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.

  15. The predictive accuracy of PREDICT: a personalized decision-making tool for Southeast Asian women with breast cancer.

    PubMed

    Wong, Hoong-Seam; Subramaniam, Shridevi; Alias, Zarifah; Taib, Nur Aishah; Ho, Gwo-Fuang; Ng, Char-Hong; Yip, Cheng-Har; Verkooijen, Helena M; Hartman, Mikael; Bhoo-Pathy, Nirmala

    2015-02-01

    Web-based prognostication tools may provide a simple and economically feasible option to aid prognostication and selection of chemotherapy in early breast cancers. We validated PREDICT, a free online breast cancer prognostication and treatment benefit tool, in a resource-limited setting. All 1480 patients who underwent complete surgical treatment for stages I to III breast cancer from 1998 to 2006 were identified from the prospective breast cancer registry of University Malaya Medical Centre, Kuala Lumpur, Malaysia. Calibration was evaluated by comparing the model-predicted overall survival (OS) with patients' actual OS. Model discrimination was tested using receiver-operating characteristic (ROC) analysis. Median age at diagnosis was 50 years. The median tumor size at presentation was 3 cm and 54% of patients had lymph node-negative disease. About 55% of women had estrogen receptor-positive breast cancer. Overall, the model-predicted 5 and 10-year OS was 86.3% and 77.5%, respectively, whereas the observed 5 and 10-year OS was 87.6% (difference: -1.3%) and 74.2% (difference: 3.3%), respectively; P values for goodness-of-fit test were 0.18 and 0.12, respectively. The program was accurate in most subgroups of patients, but significantly overestimated survival in patients aged <40 years, and in those receiving neoadjuvant chemotherapy. PREDICT performed well in terms of discrimination; areas under ROC curve were 0.78 (95% confidence interval [CI]: 0.74-0.81) and 0.73 (95% CI: 0.68-0.78) for 5 and 10-year OS, respectively. Based on its accurate performance in this study, PREDICT may be clinically useful in prognosticating women with breast cancer and personalizing breast cancer treatment in resource-limited settings. PMID:25715267

  16. Prediction of vortex shedding from circular and noncircular bodies in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.

  17. The Fast-Flow Discharge Reactor as an Undergraduate Instructional Tool.

    ERIC Educational Resources Information Center

    Provencher, G. M.

    1981-01-01

    A fast-flow discharge reactor has been used in an analytical chemistry demonstration of gas phase titration, in inorganic preparative chemistry, and in physical chemistry as a "practice" vacuum line, kinetic reactor, and spectroscopic source as well as an undergraduate research tool. (SK)

  18. Flow ensemble prediction for flash flood warnings at ungauged basins

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; Caseri, Angelica; Ramos, Maria-Helena; de Saint Aubin, Céline; Jurdy, Nicolas

    2015-04-01

    Flash floods, which are typically triggered by severe rainfall events, are difficult to monitor and predict at the spatial and temporal scales of interest due to large meteorological and hydrologic uncertainties. In particular, uncertainties in quantitative precipitation forecasts (QPF) and quantitative precipitation estimates (QPE) need to be taken into account to provide skillful flash flood warnings with increased warning lead time. In France, the AIGA discharge-threshold flood warning system is currently being enhanced to ingest high-resolution ensemble QPFs from convection-permitting numerical weather prediction (NWP) models, as well as probabilistic QPEs, to improve flash flood warnings for small-to-medium (from 10 to 1000 km²) ungauged basins. The current deterministic AIGA system is operational in the South of France since 2005. It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes (Javelle et al. 2014). This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates of given return periods. Warnings are then provided to the French national hydro-meteorological and flood forecasting centre (SCHAPI) and regional flood forecasting offices, based on the estimated severity of ongoing events. The calibration and regionalization of the hydrologic model has been recently enhanced to implement an operational flash flood warning system for the entire French territory. To quantify the QPF uncertainty, the COSMO-DE-EPS rainfall ensembles from the Deutscher Wetterdienst (20 members at a 2.8-km resolution for a lead time of 21 hours), which are available on the North-eastern part of France, were ingested in the hydrologic model of the AIGA system. Streamflow ensembles were produced and probabilistic flash flood warnings were derived for the Meuse and Moselle river basins and

  19. The Novel 10-Item Asthma Prediction Tool: External Validation in the German MAS Birth Cohort

    PubMed Central

    Grabenhenrich, Linus B.; Reich, Andreas; Fischer, Felix; Zepp, Fred; Forster, Johannes; Schuster, Antje; Bauer, Carl-Peter; Bergmann, Renate L.; Bergmann, Karl E.; Wahn, Ulrich; Keil, Thomas; Lau, Susanne

    2014-01-01

    Background A novel non-invasive asthma prediction tool from the Leicester Cohort, UK, forecasts asthma at age 8 years based on 10 predictors assessed in early childhood, including current respiratory symptoms, eczema, and parental history of asthma. Objective We aimed to externally validate the proposed asthma prediction method in a German birth cohort. Methods The MAS-90 study (Multicentre Allergy Study) recorded details on allergic diseases prospectively in about yearly follow-up assessments up to age 20 years in a cohort of 1,314 children born 1990. We replicated the scoring method from the Leicester cohort and assessed prediction, performance and discrimination. The primary outcome was defined as the combination of parent-reported wheeze and asthma drugs (both in last 12 months) at age 8. Sensitivity analyses assessed model performance for outcomes related to asthma up to age 20 years. Results For 140 children parents reported current wheeze or cough at age 3 years. Score distribution and frequencies of later asthma resembled the Leicester cohort: 9% vs. 16% (MAS-90 vs. Leicester) of children at low risk at 3 years had asthma at 8 years, at medium risk 45% vs. 48%. Performance of the asthma prediction tool in the MAS-90 cohort was similar (Brier score 0.22 vs. 0.23) and discrimination slightly better than in the original cohort (area under the curve, AUC 0.83 vs. 0.78). Prediction and discrimination were robust against changes of inclusion criteria, scoring and outcome definitions. The secondary outcome ‘physicians’ diagnosed asthma at 20 years' showed the highest discrimination (AUC 0.89). Conclusion The novel asthma prediction tool from the Leicester cohort, UK, performed well in another population, a German birth cohort, supporting its use and further development as a simple aid to predict asthma risk in clinical settings. PMID:25536057

  20. Prediction of flow rates through an orifice at pressures corresponding to the transition between molecular and isentropic flow

    SciTech Connect

    DeMuth, S.F.; Watson, J.S.

    1985-01-01

    A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab.

  1. The use of machine learning and nonlinear statistical tools for ADME prediction.

    PubMed

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future. PMID:19239395

  2. Laser Hardening Prediction Tool Based On a Solid State Transformations Numerical Model

    SciTech Connect

    Martinez, S.; Ukar, E.; Lamikiz, A.

    2011-01-17

    This paper presents a tool to predict hardening layer in selective laser hardening processes where laser beam heats the part locally while the bulk acts as a heat sink.The tool to predict accurately the temperature field in the workpiece is a numerical model that combines a three dimensional transient numerical solution for heating where is possible to introduce different laser sources. The thermal field was modeled using a kinetic model based on Johnson-Mehl-Avrami equation. Considering this equation, an experimental adjustment of transformation parameters was carried out to get the heating transformation diagrams (CHT). With the temperature field and CHT diagrams the model predicts the percentage of base material converted into austenite. These two parameters are used as first step to estimate the depth of hardened layer in the part.The model has been adjusted and validated with experimental data for DIN 1.2379, cold work tool steel typically used in mold and die making industry. This steel presents solid state diffusive transformations at relative low temperature. These transformations must be considered in order to get good accuracy of temperature field prediction during heating phase. For model validation, surface temperature measured by pyrometry, thermal field as well as the hardened layer obtained from metallographic study, were compared with the model data showing a good adjustment.

  3. Predicting multidimensional annular flow with a locally based two-fluid model

    SciTech Connect

    Antal, S.P.; Edwards, D.P.; Strayer, T.D.

    1998-06-01

    The purpose of this work was to: develop a methodology to predict annular flows using a multidimensional four-field, two-fluid Computational Fluid Dynamics (CFD) computer code; develop closure models which use the CFD predicted local velocities, phasic volume fractions, etc...; implement a numerical method which allows the discretized equations to have the same characteristics as the differential form; and compare predicted results to local flow field data taken in a R-134a working fluid test section.

  4. GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy *S⃞

    PubMed Central

    Xue, Yu; Ren, Jian; Gao, Xinjiao; Jin, Changjiang; Wen, Longping; Yao, Xuebiao

    2008-01-01

    Identification of protein phosphorylation sites with their cognate protein kinases (PKs) is a key step to delineate molecular dynamics and plasticity underlying a variety of cellular processes. Although nearly 10 kinase-specific prediction programs have been developed, numerous PKs have been casually classified into subgroups without a standard rule. For large scale predictions, the false positive rate has also never been addressed. In this work, we adopted a well established rule to classify PKs into a hierarchical structure with four levels, including group, family, subfamily, and single PK. In addition, we developed a simple approach to estimate the theoretically maximal false positive rates. The on-line service and local packages of the GPS (Group-based Prediction System) 2.0 were implemented in Java with the modified version of the Group-based Phosphorylation Scoring algorithm. As the first stand alone software for predicting phosphorylation, GPS 2.0 can predict kinase-specific phosphorylation sites for 408 human PKs in hierarchy. A large scale prediction of more than 13,000 mammalian phosphorylation sites by GPS 2.0 was exhibited with great performance and remarkable accuracy. Using Aurora-B as an example, we also conducted a proteome-wide search and provided systematic prediction of Aurora-B-specific substrates including protein-protein interaction information. Thus, the GPS 2.0 is a useful tool for predicting protein phosphorylation sites and their cognate kinases and is freely available on line. PMID:18463090

  5. Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.

  6. Development of predictive simulation capability for reactive multiphase flow

    SciTech Connect

    VanderHeyden, W.B.; Kendrick, B.K.

    1998-12-31

    This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.

  7. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    NASA Astrophysics Data System (ADS)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  8. Prediction of flow profiles in arteries from local measurements.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Atabek, H. B.

    1971-01-01

    This paper develops an approximate numerical method for calculating flow profiles in arteries. The theory takes into account the nonlinear terms of the Navier-Stokes equations as well as the large deformations of the arterial wall. The method, assuming axially symmetric flow, determines velocity distribution and wall shear at a given location from the locally measured values of the pressure, pressure gradient, and pressure-radius relation. The computed results agree well with the corresponding experimental data.

  9. SU-D-BRB-01: A Predictive Planning Tool for Stereotactic Radiosurgery

    SciTech Connect

    Palefsky, S; Roper, J; Elder, E; Dhabaan, A

    2015-06-15

    Purpose: To demonstrate the feasibility of a predictive planning tool which provides SRS planning guidance based on simple patient anatomical properties: PTV size, PTV shape and distance from critical structures. Methods: Ten framed SRS cases treated at Winship Cancer Institute of Emory University were analyzed to extract data on PTV size, sphericity (shape), and distance from critical structures such as the brainstem and optic chiasm. The cases consisted of five pairs. Each pair consisted of two cases with a similar diagnosis (such as pituitary adenoma or arteriovenous malformation) that were treated with different techniques: DCA, or IMRS. A Naive Bayes Classifier was trained on this data to establish the conditions under which each treatment modality was used. This model was validated by classifying ten other randomly-selected cases into DCA or IMRS classes, calculating the probability of each technique, and comparing results to the treated technique. Results: Of the ten cases used to validate the model, nine had their technique predicted correctly. The three cases treated with IMRS were all identified as such. Their probabilities of being treated with IMRS ranged between 59% and 100%. Six of the seven cases treated with DCA were correctly classified. These probabilities ranged between 51% and 95%. One case treated with DCA was incorrectly predicted to be an IMRS plan. The model’s confidence in this case was 91%. Conclusion: These findings indicate that a predictive planning tool based on simple patient anatomical properties can predict the SRS technique used for treatment. The algorithm operated with 90% accuracy. With further validation on larger patient populations, this tool may be used clinically to guide planners in choosing an appropriate treatment technique. The prediction algorithm could also be adapted to guide selection of treatment parameters such as treatment modality and number of fields for radiotherapy across anatomical sites.

  10. Guidelines for reporting and using prediction tools for genetic variation analysis.

    PubMed

    Vihinen, Mauno

    2013-02-01

    Computational prediction methods are widely used for the analysis of human genome sequence variants and their effects on gene/protein function, splice site aberration, pathogenicity, and disease risk. New methods are frequently developed. We believe that guidelines are essential for those writing articles about new prediction methods, as well as for those applying these tools in their research, so that the necessary details are reported. This will enable readers to gain the full picture of technical information, performance, and interpretation of results, and to facilitate comparisons of related methods. Here, we provide instructions on how to describe new methods, report datasets, and assess the performance of predictive tools. We also discuss what details of predictor implementation are essential for authors to understand. Similarly, these guidelines for the use of predictors provide instructions on what needs to be delineated in the text, as well as how researchers can avoid unwarranted conclusions. They are applicable to most prediction methods currently utilized. By applying these guidelines, authors will help reviewers, editors, and readers to more fully comprehend prediction methods and their use. PMID:23169447

  11. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  12. Star-Shaped Fluid Flow Tool for Use in Making Differential Measurements

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2014-01-01

    A fluid flow tool's plate-like structure has a ring portion defining a flow hole, a support portion extending radially away from the ring portion and adapted to be coupled to conduit wall, and extensions extending radially away from the ring portion such that a periphery of the plate-like structure is defined by the extensions and trough regions between adjacent extensions. One or more ports formed in the ring portion are in fluid communication with the flow hole. A first manifold in the plate-like structure is in fluid communication with each port communicating with the flow hole. One or more ports are formed in the periphery of the plate-like structure. A second manifold in the plate-like structure is in fluid communication with each port formed in the periphery. The first and second manifolds extend through the plate-like structure to terminate and be accessible at the conduit wall.

  13. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Takahashi, Takashi; Aoyama, Takashi

    2015-10-01

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  14. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    SciTech Connect

    Kanamori, Masashi Takahashi, Takashi Aoyama, Takashi

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  15. Providing access to risk prediction tools via the HL7 XML-formatted risk web service.

    PubMed

    Chipman, Jonathan; Drohan, Brian; Blackford, Amanda; Parmigiani, Giovanni; Hughes, Kevin; Bosinoff, Phil

    2013-07-01

    Cancer risk prediction tools provide valuable information to clinicians but remain computationally challenging. Many clinics find that CaGene or HughesRiskApps fit their needs for easy- and ready-to-use software to obtain cancer risks; however, these resources may not fit all clinics' needs. The HughesRiskApps Group and BayesMendel Lab therefore developed a web service, called "Risk Service", which may be integrated into any client software to quickly obtain standardized and up-to-date risk predictions for BayesMendel tools (BRCAPRO, MMRpro, PancPRO, and MelaPRO), the Tyrer-Cuzick IBIS Breast Cancer Risk Evaluation Tool, and the Colorectal Cancer Risk Assessment Tool. Software clients that can convert their local structured data into the HL7 XML-formatted family and clinical patient history (Pedigree model) may integrate with the Risk Service. The Risk Service uses Apache Tomcat and Apache Axis2 technologies to provide an all Java web service. The software client sends HL7 XML information containing anonymized family and clinical history to a Dana-Farber Cancer Institute (DFCI) server, where it is parsed, interpreted, and processed by multiple risk tools. The Risk Service then formats the results into an HL7 style message and returns the risk predictions to the originating software client. Upon consent, users may allow DFCI to maintain the data for future research. The Risk Service implementation is exemplified through HughesRiskApps. The Risk Service broadens the availability of valuable, up-to-date cancer risk tools and allows clinics and researchers to integrate risk prediction tools into their own software interface designed for their needs. Each software package can collect risk data using its own interface, and display the results using its own interface, while using a central, up-to-date risk calculator. This allows users to choose from multiple interfaces while always getting the latest risk calculations. Consenting users contribute their data for future

  16. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.

    PubMed

    Kanyanta, V; Ivankovic, A; Karac, A

    2009-08-01

    Fluid-structure interaction (FSI) numerical models are now widely used in predicting blood flow transients. This is because of the importance of the interaction between the flowing blood and the deforming arterial wall to blood flow behaviour. Unfortunately, most of these FSI models lack rigorous validation and, thus, cannot guarantee the accuracy of their predictions. This paper presents the comprehensive validation of a two-way coupled FSI numerical model, developed to predict flow transients in compliant conduits such as arteries. The model is validated using analytical solutions and experiments conducted on polyurethane mock artery. Flow parameters such as pressure and axial stress (and precursor) wave speeds, wall deformations and oscillating frequency, fluid velocity and Poisson coupling effects, were used as the basis of this validation. Results show very good comparison between numerical predictions, analytical solutions and experimental data. The agreement between the three approaches is generally over 95%. The model also shows accurate prediction of Poisson coupling effects in unsteady flows through flexible pipes, which up to this stage have only being predicted analytically. Therefore, this numerical model can accurately predict flow transients in compliant vessels such as arteries. PMID:19482285

  17. Tools for Predicting Optical Damage on Inertial Confinement Fusion-Class Laser Systems

    SciTech Connect

    Nostrand, M C; Carr, C W; Liao, Z M; Honig, J; Spaeth, M L; Manes, K R; Johnson, M A; Adams, J J; Cross, D A; Negres, R A; Widmayer, C C; Williams, W H; Matthews, M J; Jancaitis, K S; Kegelmeyer, L M

    2010-12-20

    Operating a fusion-class laser to its full potential requires a balance of operating constraints. On the one hand, the total laser energy delivered must be high enough to give an acceptable probability for ignition success. On the other hand, the laser-induced optical damage levels must be low enough to be acceptably handled with the available infrastructure and budget for optics recycle. Our research goal was to develop the models, database structures, and algorithmic tools (which we collectively refer to as ''Loop Tools'') needed to successfully maintain this balance. Predictive models are needed to plan for and manage the impact of shot campaigns from proposal, to shot, and beyond, covering a time span of years. The cost of a proposed shot campaign must be determined from these models, and governance boards must decide, based on predictions, whether to incorporate a given campaign into the facility shot plan based upon available resources. Predictive models are often built on damage ''rules'' derived from small beam damage tests on small optics. These off-line studies vary the energy, pulse-shape and wavelength in order to understand how these variables influence the initiation of damage sites and how initiated damage sites can grow upon further exposure to UV light. It is essential to test these damage ''rules'' on full-scale optics exposed to the complex conditions of an integrated ICF-class laser system. Furthermore, monitoring damage of optics on an ICF-class laser system can help refine damage rules and aid in the development of new rules. Finally, we need to develop the algorithms and data base management tools for implementing these rules in the Loop Tools. The following highlights progress in the development of the loop tools and their implementation.

  18. Designing a Collaborative Visual Analytics Tool for Social and Technological Change Prediction.

    SciTech Connect

    Wong, Pak C.; Leung, Lai-Yung R.; Lu, Ning; Scott, Michael J.; Mackey, Patrick S.; Foote, Harlan P.; Correia, James; Taylor, Zachary T.; Xu, Jianhua; Unwin, Stephen D.; Sanfilippo, Antonio P.

    2009-09-01

    We describe our ongoing efforts to design and develop a collaborative visual analytics tool to interactively model social and technological change of our society in a future setting. The work involves an interdisciplinary team of scientists from atmospheric physics, electrical engineering, building engineering, social sciences, economics, public policy, and national security. The goal of the collaborative tool is to predict the impact of global climate change on the U.S. power grids and its implications for society and national security. These future scenarios provide critical assessment and information necessary for policymakers and stakeholders to help formulate a coherent, unified strategy toward shaping a safe and secure society. The paper introduces the problem background and related work, explains the motivation and rationale behind our design approach, presents our collaborative visual analytics tool and usage examples, and finally shares the development challenge and lessons learned from our investigation.

  19. Bigger Data, Collaborative Tools and the Future of Predictive Drug Discovery

    PubMed Central

    Clark, Alex M.; Swamidass, S. Joshua; Litterman, Nadia; Williams, Antony J.

    2014-01-01

    Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service (SaaS) commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas. PMID:24943138

  20. Bigger data, collaborative tools and the future of predictive drug discovery.

    PubMed

    Ekins, Sean; Clark, Alex M; Swamidass, S Joshua; Litterman, Nadia; Williams, Antony J

    2014-10-01

    Over the past decade we have seen a growth in the provision of chemistry data and cheminformatics tools as either free websites or software as a service commercial offerings. These have transformed how we find molecule-related data and use such tools in our research. There have also been efforts to improve collaboration between researchers either openly or through secure transactions using commercial tools. A major challenge in the future will be how such databases and software approaches handle larger amounts of data as it accumulates from high throughput screening and enables the user to draw insights, enable predictions and move projects forward. We now discuss how information from some drug discovery datasets can be made more accessible and how privacy of data should not overwhelm the desire to share it at an appropriate time with collaborators. We also discuss additional software tools that could be made available and provide our thoughts on the future of predictive drug discovery in this age of big data. We use some examples from our own research on neglected diseases, collaborations, mobile apps and algorithm development to illustrate these ideas. PMID:24943138

  1. Computational tools and resources for prediction and analysis of gene regulatory regions in the chick genome

    PubMed Central

    Khan, Mohsin A. F.; Soto-Jimenez, Luz Mayela; Howe, Timothy; Streit, Andrea; Sosinsky, Alona; Stern, Claudio D.

    2013-01-01

    The discovery of cis-regulatory elements is a challenging problem in bioinformatics, owing to distal locations and context-specific roles of these elements in controlling gene regulation. Here we review the current bioinformatics methodologies and resources available for systematic discovery of cis-acting regulatory elements and conserved transcription factor binding sites in the chick genome. In addition, we propose and make available, a novel workflow using computational tools that integrate CTCF analysis to predict putative insulator elements, enhancer prediction and TFBS analysis. To demonstrate the usefulness of this computational workflow, we then use it to analyze the locus of the gene Sox2 whose developmental expression is known to be controlled by a complex array of cis-acting regulatory elements. The workflow accurately predicts most of the experimentally verified elements along with some that have not yet been discovered. A web version of the CTCF tool, together with instructions for using the workflow can be accessed from http://toolshed.g2.bx.psu.edu/view/mkhan1980/ctcf_analysis. For local installation of the tool, relevant Perl scripts and instructions are provided in the directory named “code” in the supplementary materials. PMID:23355428

  2. A spline-based tool to assess and visualize the calibration of multiclass risk predictions.

    PubMed

    Van Hoorde, K; Van Huffel, S; Timmerman, D; Bourne, T; Van Calster, B

    2015-04-01

    When validating risk models (or probabilistic classifiers), calibration is often overlooked. Calibration refers to the reliability of the predicted risks, i.e. whether the predicted risks correspond to observed probabilities. In medical applications this is important because treatment decisions often rely on the estimated risk of disease. The aim of this paper is to present generic tools to assess the calibration of multiclass risk models. We describe a calibration framework based on a vector spline multinomial logistic regression model. This framework can be used to generate calibration plots and calculate the estimated calibration index (ECI) to quantify lack of calibration. We illustrate these tools in relation to risk models used to characterize ovarian tumors. The outcome of the study is the surgical stage of the tumor when relevant and the final histological outcome, which is divided into five classes: benign, borderline malignant, stage I, stage II-IV, and secondary metastatic cancer. The 5909 patients included in the study are randomly split into equally large training and test sets. We developed and tested models using the following algorithms: logistic regression, support vector machines, k nearest neighbors, random forest, naive Bayes and nearest shrunken centroids. Multiclass calibration plots are interesting as an approach to visualizing the reliability of predicted risks. The ECI is a convenient tool for comparing models, but is less informative and interpretable than calibration plots. In our case study, logistic regression and random forest showed the highest degree of calibration, and the naive Bayes the lowest. PMID:25579635

  3. Development of predictive simulation capability for reactive multiphase flow

    SciTech Connect

    VanderHeyden, W.B.; Kendrick, B.K.

    1998-12-31

    This is the final report of a proposed three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was terminated after the first year due to changes in funding priorities. The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments in the first year included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient method for handling particle size distribution in multiphase flow simulation codes and finally the incorporation of precipitation growth and agglomeration kinetics in LANL`s CFDLIB multiphase flow code library.

  4. PredAlgo: a new subcellular localization prediction tool dedicated to green algae.

    PubMed

    Tardif, Marianne; Atteia, Ariane; Specht, Michael; Cogne, Guillaume; Rolland, Norbert; Brugière, Sabine; Hippler, Michael; Ferro, Myriam; Bruley, Christophe; Peltier, Gilles; Vallon, Olivier; Cournac, Laurent

    2012-12-01

    The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion. PMID:22826458

  5. Predicted Variations in Flow Patterns in a Horizontal CVD Reactor

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    Expressions in terms of common reactor operating parameters were derived for the ratio of the Grashof number to the Reynolds number, Gr/Re, the ratio of the Grashof to the square of 2 the Reynolds number, Gr/Re(exp 2), and the Rayleigh number, Ra. Values for these numbers were computed for an example horizontal CVD reactor and compared to numerical simulations to gauge their effectiveness as predictors of the presence or absence of transverse and longitudinal rolls in the reactor. Comparisons were made for both argon and hydrogen carrier gases over the pressure range 2- 101 kPa. Reasonable agreement was achieved in most cases when using Gr/Re to predict the presence of transverse rolls and Ra to predict the presence of longitudinal rolls. The ratio Gr/Re(exp 2) did not yield useful predictions regarding the presence of transverse rolls. This comparison showed that the ratio of the Grashof number to the Reynolds number, as well as the Rayleigh number, can be used to predict the presence or absence of transverse and longitudinal rolls in a horizontal CVD reactor for a given set of reactor conditions. These predictions are approximate, and care must be exercised when making predictions near transition regions.

  6. Geological applications of automatic grid generation tools for finite elements applied to porous flow modeling

    SciTech Connect

    Gable, C.W.; Trease, H.E.; Cherry, T.A.

    1996-04-01

    The construction of grids that accurately reflect geologic structure and stratigraphy for computational flow and transport models poses a formidable task. Even with a complete understanding of stratigraphy, material properties, boundary and initial conditions, the task of incorporating data into a numerical model can be difficult and time consuming. Furthermore, most tools available for representing complex geologic surfaces and volumes are not designed for producing optimal grids for flow and transport computation. We have developed a modeling tool, GEOMESH, for automating finite element grid generation that maintains the geometric integrity of geologic structure and stratigraphy. The method produces an optimal (Delaunay) tetrahedral grid that can be used for flow and transport computations. The process of developing a flow and transport model can be divided into three parts: (1) Developing accurate conceptual models inclusive of geologic interpretation, material characterization and construction of a stratigraphic and hydrostratigraphic framework model, (2) Building and initializing computational frameworks; grid generation, boundary and initial conditions, (3) Computational physics models of flow and transport. Process (1) and (3) have received considerable attention whereas (2) has not. This work concentrates on grid generation and its connections to geologic characterization and process modeling. Applications of GEOMESH illustrate grid generation for two dimensional cross sections, three dimensional regional models, and adaptive grid refinement in three dimensions. Examples of grid representation of wells and tunnels with GEOMESH can be found in Cherry et al. The resulting grid can be utilized by unstructured finite element or integrated finite difference models.

  7. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  8. Transonic Turbulent Flow Predictions With Two-Equation Turbulence Models

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Shih, Tsan-Hsing

    1996-01-01

    Solutions of the Favre-averaged Navier-Stokes equations for two well-documented transonic turbulent flows are compared in detail with existing experimental data. While the boundary layer in the first case remains attached, a region of extensive flow separation has been observed in the second case. Two recently developed k-epsilon, two-equation, eddy-viscosity models are used to model the turbulence field. These models satisfy the realizability constraints of the Reynolds stresses. Comparisons with the measurements are made for the wall pressure distribution, the mean streamwise velocity profiles, and turbulent quantities. Reasonably good agreement is obtained with the experimental data.

  9. The prediction of secondary flow in curved ducts of square cross-section

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.; Cornelison, J. W.; Barker, L. A.

    1989-01-01

    A three-dimensional, fully-viscous Navier-Stokes code designated INS3D is presently used for the prediction of secondary and axial flows in curved ducts of square cross-section. Attention is given to a 90-deg bend, an S-shaped duct with two 22.5-deg bends, and an 180-deg bend. The sensitivity of predicted axial and secondary flows to grid resolution and artificial dissipation is investigated in the 90-deg bend case. Good agreement is found between predicted and experimentally measured flow components.

  10. Microbial flow cytometry: An ideal tool for prospective antimicrobial drug development.

    PubMed

    Muthirulan, Pushpanathan; Chandrasekaran, Arun Richard

    2016-09-15

    Flow cytometry has tremendous applications in qualitative and quantitative analysis of characteristics of single microbial cells. Its ability to efficiently discriminate and quantify multiple parameters of microbial cells has made it a powerful tool to catalog the mechanism of action of antimicrobial peptides (AMPs) on target cells. Here, we provide a comprehensive overview and strategic design on how multi-parametric analysis of flow cytometry is unsurpassed in studying the antimicrobial process of AMPs in an accurate and rapid way. This strategy provides a conceptual framework for understanding distinct classes of AMPs and getting insights into antimicrobial mechanisms of novel AMPs. PMID:27288557

  11. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  12. Issues and approach to develop validated analysis tools for hypersonic flows: One perspective

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1992-01-01

    Critical issues concerning the modeling of low-density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools. A description of the activity in the Ames Research Center's Aerothermodynamics Branch is also given. Inherent in the process is a strong synergism between ground test and real-gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flow-field simulation codes are discussed. These models have been partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions are sparse; reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground-based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high-enthalpy flow facilities, such as shock tubes and ballistic ranges.

  13. Prediction of the vortex wake for noncircular missiles in supersonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkins, S. C., Jr.

    1984-01-01

    Engineering prediction methods with the capability to calculate induced effects of lee-side separation vorticity associated with circular and noncircular missiles at high angles of attack in supersonic flow are compared. Methods of interest include a discrete vortex cloud technique, concentrated vortex models, and solutions of Euler's equations with specified separation. Comparison of measured and predicted surface pressure distributions and flow field surveys are presented for bodies with circular and elliptic cross sections. Two flow models for computing lee-side vortex-induced effects on control fins in the vicinity of the vortex field are examined, and suggestions regarding the appropriate flow model for specific situations are included.

  14. Exploring the Potential of the Will, Skill, Tool Model in Ghana: Predicting Prospective and Practicing Teachers' Use of Technology

    ERIC Educational Resources Information Center

    Agyei, Douglas D.; Voogt, Joke M.

    2011-01-01

    Research has shown that "will" (positive attitudes), "skill" (technology competency), and "tool" (access to technology tools) are all essential ingredients for a teacher to effectively integrate information technology into classroom practices. This study focuses on the "will," "skill" and "tool" as essential measures for the predictability of…

  15. Turbulent flow and pressure fluctuation prediction of the impeller in an axial-flow pump based on LES

    NASA Astrophysics Data System (ADS)

    Shen, J. F.; Li, Y. J.; Liu, Z. Q.; Tang, X. L.

    2013-12-01

    The Large Eddy Simulation method with sliding mesh technique has been used for analyzing the unsteady flow in an axial-flow pump at five different flow rates. The tip leakage flow in the tip-gap region and the pressure pulsations on the blade surface were examined. The results indicate that the agreement between predicted pump performance and experimental data was reasonably good. The dominate tip-leakage vortex(TLV) extended to the pressure side of the neighboring blade for all five investigated flow rates. As the flow rate increases from 0.7Qd to 1.2Qd, the angle between the dominate TLV and the blade reduced from 20 deg to 14 deg. The results also showed that the amplitude of pressure fluctuation on the near-tip zone of the blade surface increases as the flow rate farer from the design flow rate, especially on the pressure side of the blade. At the 0.7Qd operation condition, the pressure fluctuation amplitude of the monitoring point PP3 (at the near-tip zone on the pressure side of the blade close to the blade leading edge) was 8.5 times of the one at design flow rate, and the high-frequency(18fr) pulsation occurred due to tip leakage vortex. When the flow rate was more than 1.0Qd, the pressure fluctuations of PP3 was dominated by the rotation frequency(fr).

  16. Biodiversity in environmental assessment-current practice and tools for prediction

    SciTech Connect

    Gontier, Mikael . E-mail: gontier@kth.se; Balfors, Berit . E-mail: balfors@kth.se; Moertberg, Ulla . E-mail: mortberg@kth.se

    2006-04-15

    Habitat loss and fragmentation are major threats to biodiversity. Environmental impact assessment and strategic environmental assessment are essential instruments used in physical planning to address such problems. Yet there are no well-developed methods for quantifying and predicting impacts of fragmentation on biodiversity. In this study, a literature review was conducted on GIS-based ecological models that have potential as prediction tools for biodiversity assessment. Further, a review of environmental impact statements for road and railway projects from four European countries was performed, to study how impact prediction concerning biodiversity issues was addressed. The results of the study showed the existing gap between research in GIS-based ecological modelling and current practice in biodiversity assessment within environmental assessment.

  17. A Tool for Predicting Regulatory Approval After Phase II Testing of New Oncology Compounds.

    PubMed

    DiMasi, J A; Hermann, J C; Twyman, K; Kondru, R K; Stergiopoulos, S; Getz, K A; Rackoff, W

    2015-11-01

    We developed an algorithm (ANDI) for predicting regulatory marketing approval for new cancer drugs after phase II testing has been conducted, with the objective of providing a tool to improve drug portfolio decision-making. We examined 98 oncology drugs from the top 50 pharmaceutical companies (2006 sales) that first entered clinical development from 1999 to 2007, had been taken to at least phase II development, and had a known final outcome (research abandonment or regulatory marketing approval). Data on safety, efficacy, operational, market, and company characteristics were obtained from public sources. Logistic regression and machine-learning methods were used to provide an unbiased approach to assess overall predictability and to identify the most important individual predictors. We found that a simple four-factor model (activity, number of patients in the pivotal phase II trial, phase II duration, and a prevalence-related measure) had high sensitivity and specificity for predicting regulatory marketing approval. PMID:26239772

  18. Development of a computer simulation technique for predicting heat transfer in multiphase liquid-particle flow systems

    SciTech Connect

    Malone, Kevin F.; Xu, Bao H.; Fairweather, Michael

    2007-07-01

    Many of the highly active waste liquors that result from the reprocessing of spent nuclear fuel contain particulate solids of various materials. Operations for safe processing, handling and intermediate storage of these wastes often pose significant technical challenges due to the need for effective cooling systems to remove the heat generated by the radioactive solids. The multi-scale complexity of liquid-particle flow systems is such that investigation and prediction of their heat transfer characteristics based on experimental studies is a difficult task. Fortunately, the increasing availability of cheap computing power means that predictive simulation tools may be able to provide a means to investigate these systems without the need for expensive pilot studies. In this work we describe the development of a Combined Continuum and Discrete Model (CCDM) for predicting the heat transfer behaviour of systems of particles suspended in liquids. (authors)

  19. DAPPLE 2: a Tool for the Homology-Based Prediction of Post-Translational Modification Sites.

    PubMed

    Trost, Brett; Maleki, Farhad; Kusalik, Anthony; Napper, Scott

    2016-08-01

    The post-translational modification of proteins is critical for regulating their function. Although many post-translational modification sites have been experimentally determined, particularly in certain model organisms, experimental knowledge of these sites is severely lacking for many species. Thus, it is important to be able to predict sites of post-translational modification in such species. Previously, we described DAPPLE, a tool that facilitates the homology-based prediction of one particular post-translational modification, phosphorylation, in an organism of interest using known phosphorylation sites from other organisms. Here, we describe DAPPLE 2, which expands and improves upon DAPPLE in three major ways. First, it predicts sites for many post-translational modifications (20 different types) using data from several sources (15 online databases). Second, it has the ability to make predictions approximately 2-7 times faster than DAPPLE depending on the database size and the organism of interest. Third, it simplifies and accelerates the process of selecting predicted sites of interest by categorizing them based on gene ontology terms, keywords, and signaling pathways. We show that DAPPLE 2 can successfully predict known human post-translational modification sites using, as input, known sites from species that are either closely (e.g., mouse) or distantly (e.g., yeast) related to humans. DAPPLE 2 can be accessed at http://saphire.usask.ca/saphire/dapple2 . PMID:27367363

  20. Small error dynamics and the predictability of atmospheric flows

    NASA Technical Reports Server (NTRS)

    Farrell, Brian F.

    1990-01-01

    In this paper, linear small-error theory is applied to the study of weather predictability. A simple baroclinic shear model and a barotropic channel model with a localized jet are used as examples. It is shown that increase in error on synoptic forecast time scales is controlled by rapidly growing perturbations that are not of normal mode form. Unpredictable regimes are not necessarily associated with larger exponential growth rates than are relatively more predictable regimes. Model problems illustrating baroclinic and barotropic dynamics suggest that asymptotic measures of divergence in phase space, while applicable in the limit of infinite time, may not be appropriate over time intervals addressed by present synoptic forecast.

  1. An Empiric HIV Risk Scoring Tool to Predict HIV-1 Acquisition in African Women

    PubMed Central

    Brown, Elizabeth; Palanee, Thesla; Nair, Gonasagrie; Gafoor, Zakir; Zhang, Jingyang; Richardson, Barbra A.; Chirenje, Zvavahera M.; Marrazzo, Jeanne M.; Baeten, Jared M.

    2016-01-01

    Objective: To develop and validate an HIV risk assessment tool to predict HIV acquisition among African women. Design: Data were analyzed from 3 randomized trials of biomedical HIV prevention interventions among African women (VOICE, HPTN 035, and FEM-PrEP). Methods: We implemented standard methods for the development of clinical prediction rules to generate a risk-scoring tool to predict HIV acquisition over the course of 1 year. Performance of the score was assessed through internal and external validations. Results: The final risk score resulting from multivariable modeling included age, married/living with a partner, partner provides financial or material support, partner has other partners, alcohol use, detection of a curable sexually transmitted infection, and herpes simplex virus 2 serostatus. Point values for each factor ranged from 0 to 2, with a maximum possible total score of 11. Scores ≥5 were associated with HIV incidence >5 per 100 person-years and identified 91% of incident HIV infections from among only 64% of women. The area under the curve (AUC) for predictive ability of the score was 0.71 (95% confidence interval [CI]: 0.68 to 0.74), indicating good predictive ability. Risk score performance was generally similar with internal cross-validation (AUC = 0.69; 95% CI: 0.66 to 0.73) and external validation in HPTN 035 (AUC = 0.70; 95% CI: 0.65 to 0.75) and FEM-PrEP (AUC = 0.58; 95% CI: 0.51 to 0.65). Conclusions: A discrete set of characteristics that can be easily assessed in clinical and research settings was predictive of HIV acquisition over 1 year. The use of a validated risk score could improve efficiency of recruitment into HIV prevention research and inform scale-up of HIV prevention strategies in women at highest risk. PMID:26918545

  2. Tool design in friction stir processing: dynamic forces and material flow

    SciTech Connect

    D. E. Clark; K. S. Miller; C. R. Tolle

    2006-08-01

    Friction stir processing involves severe plastic flow within the material; the nature of this flow determines the final morphology of the weld, the resulting microstructures, and the presence or absence of defects such as internal cavities or "wormholes." The forces causing this plastic flow are a function of process parameters, including spindle speed, travel speed, and tool design and angle. Some of these forces are directly applied or a result of the mechanical constraints and compliance of the apparatus, while others are resolved forces resulting from an interaction of these applied forces and tool forces governed by processing parameters, and can be diminished or even reversed in sign with appropriate choices of process parameters. The present investigation is concerned mostly with the friction stir processing of 6061-T6 aluminum plates in a low-cost apparatus built from a commercial milling machine. A rotating dynamometer allows in-process measurement of actual spindle speed, torque, and forces in the x-, y-, and z-directions, as well as force control on these axes. Two main types of tool, both unthreaded, were used. The first had a pin about 4 mm in diameter and 4 mm in length, with a shoulder about 10 mm in diameter, and produced wormhole defects; the second, with a tapered pin about 5 mm long, a base diameter of about 6 mm, a tip diameter of about 4 mm, and a shoulder diameter (flat or dished) of about 19 mm, produced sound welds over a wide range of parameters.

  3. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and

  4. Considerations in predicting burnout of cylinders in flow boiling

    NASA Astrophysics Data System (ADS)

    Sadasivan, P.; Lienhard, J. H.

    1992-02-01

    Previous investigations of the critical heat flux in flow boiling have resulted in widely different hydrodynamic mechanisms for the occurrence of burnout. Results of the present study indicate that existing models are not completely realistic representations of the process. The present study sorts out the infuences of the far-wake bubble breakoff and vapor sheet characteristics, gravity, surface wettability, and heater surface temperature distribution on the peak heat flux in flow boiling on cylindrical heaters. The results indicate that burnout is dictated by near-surface effects. The controlling factor appears to be the vapor escape pattern close to the heater surface. It is also shown that a deficiency of liquid at the downstream end of the heater surface is not the cause of burnout.

  5. Using Prediction Markets to Track Information Flows: Evidence from Google

    NASA Astrophysics Data System (ADS)

    Cowgill, Bo; Wolfers, Justin; Zitzewitz, Eric

    Since 2005, Google has conducted the largest corporate experiment with prediction markets we are aware of. In this paper, we illustrate how markets can be used to study how an organization processes information. We show that market participants are not typical of Google’s workforce, and that market participation and success is skewed towards Google’s engineering and quantitatively oriented employees.

  6. Inflammation-driven malnutrition: a new screening tool predicts outcome in Crohn's disease.

    PubMed

    Jansen, Irene; Prager, Matthias; Valentini, Luzia; Büning, Carsten

    2016-09-01

    Malnutrition is a frequent feature in Crohn's disease (CD), affects patient outcome and must be recognised. For chronic inflammatory diseases, recent guidelines recommend the development of combined malnutrition and inflammation risk scores. We aimed to design and evaluate a new screening tool that combines both malnutrition and inflammation parameters that might help predict clinical outcome. In a prospective cohort study, we examined fifty-five patients with CD in remission (Crohn's disease activity index (CDAI) <200) at 0 and 6 months. We assessed disease activity (CDAI, Harvey-Bradshaw index), inflammation (C-reactive protein (CRP), faecal calprotectin (FC)), malnutrition (BMI, subjective global assessment (SGA), serum albumin, handgrip strength), body composition (bioelectrical impedance analysis) and administered the newly developed 'Malnutrition Inflammation Risk Tool' (MIRT; containing BMI, unintentional weight loss over 3 months and CRP). All parameters were evaluated regarding their ability to predict disease outcome prospectively at 6 months. At baseline, more than one-third of patients showed elevated inflammatory markers despite clinical remission (36·4 % CRP ≥5 mg/l, 41·5 % FC ≥100 µg/g). Prevalence of malnutrition at baseline according to BMI, SGA and serum albumin was 2-16 %. At 6 months, MIRT significantly predicted outcome in numerous nutritional and clinical parameters (SGA, CD-related flares, hospitalisations and surgeries). In contrast, SGA, handgrip strength, BMI, albumin and body composition had no influence on the clinical course. The newly developed MIRT was found to reliably predict clinical outcome in CD patients. This screening tool might be used to facilitate clinical decision making, including treatment of both inflammation and malnutrition in order to prevent complications. PMID:27546478

  7. FITBAR: a web tool for the robust prediction of prokaryotic regulons

    PubMed Central

    2010-01-01

    Background The binding of regulatory proteins to their specific DNA targets determines the accurate expression of the neighboring genes. The in silico prediction of new binding sites in completely sequenced genomes is a key aspect in the deeper understanding of gene regulatory networks. Several algorithms have been described to discriminate against false-positives in the prediction of new binding targets; however none of them has been implemented so far to assist the detection of binding sites at the genomic scale. Results FITBAR (Fast Investigation Tool for Bacterial and Archaeal Regulons) is a web service designed to identify new protein binding sites on fully sequenced prokaryotic genomes. This tool consists in a workbench where the significance of the predictions can be compared using different statistical methods, a feature not found in existing resources. The Local Markov Model and the Compound Importance Sampling algorithms have been implemented to compute the P-value of newly discovered binding sites. In addition, FITBAR provides two optimized genomic scanning algorithms using either log-odds or entropy-weighted position-specific scoring matrices. Other significant features include the production of a detailed genomic context map for each detected binding site and the export of the search results in spreadsheet and portable document formats. FITBAR discovery of a high affinity Escherichia coli NagC binding site was validated experimentally in vitro as well as in vivo and published. Conclusions FITBAR was developed in order to allow fast, accurate and statistically robust predictions of prokaryotic regulons. This feature constitutes the main advantage of this web tool over other matrix search programs and does not impair its performance. The web service is available at http://archaea.u-psud.fr/fitbar. PMID:21070640

  8. FLUSH - PREDICTION OF FLOW PARAMETERS OF SLUSH HYDROGEN

    NASA Technical Reports Server (NTRS)

    Hardy, T.

    1994-01-01

    Slush hydrogen, a mixture of the solid and liquid phases of hydrogen, is a possible source of fuel for the National Aerospace Plane (NASP) Project. Advantages of slush hydrogen over liquid hydrogen include greater heat capacity and greater density. However, practical use of slush hydrogen as a fuel requires systems of lines, valves, etc. which are designed to deliver the fuel in slush form with minimal solid loss as a result of pipe heating or flow friction. Engineers involved with the NASP Project developed FLUSH to calculate the pressure drop and slush hydrogen solid fraction loss for steady-state, one-dimensional flow. FLUSH solves the steady-state, one-dimensional energy equation and the Bernoulli equation for pipe flow. The program performs these calculations for each two-node element--straight pipe length, elbow, valve, fitting, or other part of the piping system--specified by the user. The user provides flow rate, upstream pressure, initial solid hydrogen fraction, element heat leak, and element parameters such as length and diameter. For each element, FLUSH first calculates the pressure drop, then figures the slush solid fraction exiting the element. The code employs GASPLUS routines to calculate thermodynamic properties for the slush hydrogen. FLUSH is written in FORTRAN IV for DEC VAX series computers running VMS. An executable is provided on the tape. The GASPLUS physical properties routines which are required for building the executable are included as one object library on the program media (full source code for GASPLUS is available separately as COSMIC Program Number LEW-15091). FLUSH is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard media) or on a TK50 tape cartridge. FLUSH was developed in 1989.

  9. Supersonic Rocket Thruster Flow Predicted by Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad

    2004-01-01

    Despite efforts in the search for alternative means of energy, combustion still remains the key source. Most propulsion systems primarily use combustion for their needed thrust. Associated with these propulsion systems are the high-velocity hot exhaust gases produced as the byproducts of combustion. These exhaust products often apply uneven high temperature and pressure over the surfaces of the appended structures exposed to them. If the applied pressure and temperature exceed the design criteria of the surfaces of these structures, they will not be able to protect the underlying structures, resulting in the failure of the vehicle mission. An understanding of the flow field associated with hot exhaust jets and the interactions of these jets with the structures in their path is critical not only from the design point of view but for the validation of the materials and manufacturing processes involved in constructing the materials from which the structures in the path of these jets are made. The hot exhaust gases often flow at supersonic speeds, and as a result, various incident and reflected shock features are present. These shock structures induce abrupt changes in the pressure and temperature distribution that need to be considered. In addition, the jet flow creates a gaseous plume that can easily be traced from large distances. To study the flow field associated with the supersonic gases induced by a rocket engine, its interaction with the surrounding surfaces, and its effects on the strength and durability of the materials exposed to it, NASA Glenn Research Center s Combustion Branch teamed with the Ceramics Branch to provide testing and analytical support. The experimental work included the full range of heat flux environments that the rocket engine can produce over a flat specimen. Chamber pressures were varied from 130 to 500 psia and oxidizer-to-fuel ratios (o/f) were varied from 1.3 to 7.5.

  10. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    NASA Astrophysics Data System (ADS)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  11. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  12. Flow prediction for three-dimensional intakes and ducts using viscous-inviscid interaction methods

    NASA Astrophysics Data System (ADS)

    Wrisdale, Ian Edward

    1991-02-01

    A numerical scheme for the prediction of flows in engine intakes is presented. The scheme, which employs a viscous-inviscid interaction approach, is aimed at the treatment of high Reynolds number flows in which a significant region of inviscid core flow exists in the intake. The scheme is restricted to the treatment of attached flows; however, it is suitable for the treatment of highly rotational flows. The subsonic core flow calculations in the intake duct are performed using an Euler space marching scheme. Accurate flow prediction using the scheme requires the specification of detailed boundary conditions at the inlet plane of the duct. Appropriate conditions have been obtained by using a finite volume time marching scheme to calculate the flow field around inlet cowls at incidence. Hence, the boundary conditions for the duct calculations take account of the lip flows which are dependent on free stream conditions, incidence, and the mass flow ratio. Careful matching of the cowl and duct calculations provides a solution of the complete inviscid flow field both internal and external. The viscous-inviscid interaction scheme couples the inviscid solutions to a fully three-dimensional boundary layer method using a displacement surface model. The integral boundary layer method is aimed at the treatment of attached, turbulent boundary layers and includes the effects of rotational outer flows. Although the method is restricted to attached flows it may be used to indicate the onset of three-dimensional flow separation. The coupling of the inviscid flows and the boundary layers on the internal and external surface of the intake provide a complete description of the entire flow field. Numerical examples are presented throughout the work to illustrate the various methods. The complete scheme is then used to calculate the flow in an S-shaped intake duct operating under choked conditions at varying angles of incidence.

  13. Use of finite volume radiation for predicting the Knudsen minimum in 2D channel flow

    SciTech Connect

    Malhotra, Chetan P.; Mahajan, Roop L.

    2014-12-09

    In an earlier paper we employed an analogy between surface-to-surface radiation and free-molecular flow to model Knudsen flow through tubes and onto planes. In the current paper we extend the analogy between thermal radiation and molecular flow to model the flow of a gas in a 2D channel across all regimes of rarefaction. To accomplish this, we break down the problem of gaseous flow into three sub-problems (self-diffusion, mass-motion and generation of pressure gradient) and use the finite volume method for modeling radiation through participating media to model the transport in each sub-problem as a radiation problem. We first model molecular self-diffusion in the stationary gas by modeling the transport of the molecular number density through the gas starting from the analytical asymptote for free-molecular flow to the kinetic theory limit of gaseous self-diffusion. We then model the transport of momentum through the gas at unit pressure gradient to predict Poiseuille flow and slip flow in the 2D gas. Lastly, we predict the generation of pressure gradient within the gas due to molecular collisions by modeling the transport of the forces generated due to collisions per unit volume of gas. We then proceed to combine the three radiation problems to predict flow of the gas over the entire Knudsen number regime from free-molecular to transition to continuum flow and successfully capture the Knudsen minimum at Kn ∼ 1.

  14. Cellometer image cytometry as a complementary tool to flow cytometry for verifying gated cell populations.

    PubMed

    Kuksin, Dmitry; Kuksin, Christina Arieta; Qiu, Jean; Chan, Leo Li-Ying

    2016-06-15

    Traditionally, many cell-based assays that analyze cell populations and functionalities have been performed using flow cytometry. However, flow cytometers remain relatively expensive and require highly trained operators for routine maintenance and data analysis. Recently, an image cytometry system has been developed by Nexcelom Bioscience (Lawrence, MA, USA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Image cytometry is analogous to flow cytometry in that gating operations can be performed on the cell population based on size and fluorescent intensity. In addition, the image cytometer is capable of capturing bright-field and fluorescent images, allowing for the measurement of cellular size and fluorescence intensity data. In this study, we labeled a population of cells with an enzymatic vitality stain (calcein-AM) and a cell viability dye (propidium iodide) and compared the data generated by flow and image cytometry. We report that measuring vitality and viability using the image cytometer is as effective as flow cytometric assays and allows for visual confirmation of the sample to exclude cellular debris. Image cytometry offers a direct method for performing fluorescent cell-based assays but also may be used as a complementary tool to flow cytometers for aiding the analysis of more complex samples. PMID:27033005

  15. Issues and approach to develop validated analysis tools for hypersonic flows: One perspective

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1993-01-01

    Critical issues concerning the modeling of low density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools, and the activity in the NASA Ames Research Center's Aerothermodynamics Branch is described. Inherent in the process is a strong synergism between ground test and real gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flowfield simulation codes are discussed. These models were partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions is sparse and reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high enthalpy flow facilities, such as shock tubes and ballistic ranges.

  16. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    southern California. This study demonstrates that logistic regression is a valuable tool for developing models that predict the probability of debris flows occurring in recently burned landscapes.

  17. Pressure drop and thrust predictions for transonic micronozzle flows

    NASA Astrophysics Data System (ADS)

    Gomez, J.; Groll, R.

    2016-02-01

    In this paper, the expansion of xenon, argon, krypton, and neon gases through a Laval nozzle is studied experimentally and numerically. The pressurized gases are accelerated through the nozzle into a vacuum chamber in an attempt to simulate the operating conditions of a cold-gas thruster for attitude control of a micro-satellite. The gases are evaluated at several mass flow rates ranging between 0.178 mg/s and 3.568 mg/s. The Re numbers are low (8-256) and the estimated values of Kn number lie between 0.33 and 0.02 (transition and slip-flow regime). Direct Simulation Monte Carlo (DSMC) and continuum-based simulations with a no-slip boundary condition are performed. The DSMC and the experimental results show good agreement in the range Kn > 0.1, while the Navier-Stokes results describe the experimental data more accurately for Kn < 0.05. Comparison between the experimental and Navier-Stokes results shows high deviations at the lower mass flow rates and higher Kn numbers. A relation describing the deviation of the pressure drop through the nozzle as a function of Kn is obtained. For gases with small collision cross sections, the experimental pressure results deviate more strongly from the no-slip assumption. From the analysis of the developed function, it is possible to correct the pressure results for the studied gases, both in the slip-flow and transition regimes, with four gas-independent accommodation coefficients. The thrust delivered by the cold-gas thruster and the specific impulse is determined based on the numerical results. Furthermore, an increase of the thickness of the viscous boundary layer through the diffuser of the micronozzle is observed. This results in a shock-less decrease of the Mach number and the flow velocity, which penalizes thrust efficiency. The negative effect of the viscous boundary layer on thrust efficiency can be lowered through higher values of Re and a reduction of the diffuser length.

  18. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  19. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    NASA Astrophysics Data System (ADS)

    Kim, D.; Winkler, M.; Muste, M.

    2015-06-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats.

  20. A Risk Assessment Tool to Predict Sustained PTSD Symptoms Among Women Reporting Abuse

    PubMed Central

    Maddoux, John; McFarlane, Judith; Pennings, Jacquelyn

    2016-01-01

    Abstract Background: Nationally and worldwide, 30% or more of women are likely to have experienced intimate partner violence. Maternal mental health symptoms predict child function. When mothers have sustained posttraumatic stress disorder (PTSD), their children at are risk for growth and developmental delays and poor behavioral outcomes that may adversely affect the course of their lives. While many who experience trauma will recover without intervention, a significant proportion will experience PTSD, with negative consequences for their personal lives and the lives of their families. Early identification of those at high risk for PTSD symptoms will support early interventions to prevent PTSD and its negative consequences. Methods: This paper describes the development of a tool that can predict PTSD symptoms at 8 months in mothers who are primarily of low socioeconomic status and primarily members of underrepresented groups. The tool consists of four key measures. Conclusions: Using this tool to identify mothers at high risk for sustained PTSD and entering them into early intervention programs may protect mothers and their children from negative outcomes and promote their health and wellbeing. PMID:26267645

  1. The prediction of steady, three-dimensional flow in pressurized water-stream generators

    NASA Astrophysics Data System (ADS)

    Hulme, G.; Phelps, P. J.; Spalding, D. B.; Tatchell, D. G.

    A calculation procedure is described for three dimensional flow and heat transfer in stea generators. Options are provided to calculate slip between the phases, and to treat the flow as homogeneous (i.e., phase velocities equal). Typical homogeneous-flow results are shown for a steam generator of the type used in pressurized-water reactors. The predicted effect of removing the flow-distribution plate is illustrated. These results, and others reported elsewhere, show that practical, three dimensional predictions of steam generator flow phenomena can now be made. These can be utilised by designers and operators to: improve performance at the design stage by, for example, examining effects of flow distributing devices on performance; analyze the effects of changes in operating conditions, or deterioration, which occur during use; or, examine the causes of failure in use, and the effectiveness of proposed cures.

  2. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools

    PubMed Central

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C.

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find “hot spots” in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants’ experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models. PMID:26361227

  3. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    PubMed

    Jia, Lei; Yarlagadda, Ramya; Reed, Charles C

    2015-01-01

    Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html) is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG) and melting temperature change (dTm) were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor) and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models. PMID:26361227

  4. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  5. Predicting regime shifts in flow of the Colorado River

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; McCabe, G. J.; Brekke, L. D.

    2010-12-01

    The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River Basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g. decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. Boxplot of risk outlooks in the Colorado River Basin from the nine flow reconstructions developed in Gangopadhyay et al. (2009). Gangopadhyay, S., B.L. Harding, B. Rajagopalan, J.J. Lukas, and T.J. Fulp, (2009) A non-parametric approach for paleohydrologic reconstruction of annual streamflow ensembles. Water Resour. Res., 45, W06417.

  6. Development of a CME-associated geomagnetic storm intensity prediction tool

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; DeHart, J. M.

    2015-12-01

    From 1995 to 2012, the Wind spacecraft recorded 168 magnetic cloud (MC) events. Among those events, 79 were found to have upstream shock waves and their source locations on the Sun were identified. Using a recipe of interplanetary magnetic field (IMF) Bz initial turning direction after shock (Wu et al., 1996, GRL), it is found that the north-south polarity of 66 (83.5%) out of the 79 events were accurately predicted. These events were tested and further analyzed, reaffirming that the Bz intial turning direction was accurate. The results also indicate that 37 of the 79 MCs originate from the north (of the Sun) averaged a Dst_min of -119 nT, whereas 42 of the MCs originating from the south (of the Sun) averaged -89 nT. In an effort to provide this research to others, a website was built that incorporated various tools and pictures to predict the intensity of the geomagnetic storms. The tool is capable of predicting geomagnetic storms with different ranges of Dst_min (from no-storm to gigantic storms). This work was supported by Naval Research Lab HBCU/MI Internship program and Chief of Naval Research.

  7. Tools for beach health data management, data processing, and predictive model implementation

    USGS Publications Warehouse

    U.S. Geological Survey

    2013-01-01

    This fact sheet describes utilities created for management of recreational waters to provide efficient data management, data aggregation, and predictive modeling as well as a prototype geographic information system (GIS)-based tool for data visualization and summary. All of these utilities were developed to assist beach managers in making decisions to protect public health. The Environmental Data Discovery and Transformation (EnDDaT) Web service identifies, compiles, and sorts environmental data from a variety of sources that help to define climatic, hydrologic, and hydrodynamic characteristics including multiple data sources within the U.S. Geological Survey and the National Oceanic and Atmospheric Administration. The Great Lakes Beach Health Database (GLBH-DB) and Web application was designed to provide a flexible input, export, and storage platform for beach water quality and sanitary survey monitoring data to compliment beach monitoring programs within the Great Lakes. A real-time predictive modeling strategy was implemented by combining the capabilities of EnDDaT and the GLBH-DB for timely, automated prediction of beach water quality. The GIS-based tool was developed to map beaches based on their physical and biological characteristics, which was shared with multiple partners to provide concepts and information for future Web-accessible beach data outlets.

  8. Prediction of inviscid stagnation pressure losses in supersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Azevedo, David J.; Liu, Ching Shi; Rae, William J.

    1990-01-01

    An effort is made to quantify the stagnation pressure losses associated with shock-wave systems that may be present in such high Mach number flows as those of scramjet hypersonic diffusers. If the shock-related contribution turns out to be much larger than that attributable to viscous effects, a designer could introduce methods for the minimization of the shock system's scale; in particular, the size of the normal shock should be reduced. The angles presently treated may be approached during vehicle maneuvering or other transients.

  9. Simple numerical method for predicting steady compressible flows

    NASA Technical Reports Server (NTRS)

    Vonlavante, Ernst; Nelson, N. Duane

    1986-01-01

    A numerical method for solving the isenthalpic form of the governing equations for compressible viscous and inviscid flows was developed. The method was based on the concept of flux vector splitting in its implicit form. The method was tested on several demanding inviscid and viscous configurations. Two different forms of the implicit operator were investigated. The time marching to steady state was accelerated by the implementation of the multigrid procedure. Its various forms very effectively increased the rate of convergence of the present scheme. High quality steady state results were obtained in most of the test cases; these required only short computational times due to the relative efficiency of the basic method.

  10. Combined CFD/Population Balance Model for Gas Hydrate Particle Size Prediction in Turbulent Pipeline Flow

    NASA Astrophysics Data System (ADS)

    Balakin, Boris V.; Hoffmann, Alex C.; Kosinski, Pawel; Istomin, Vladimir A.; Chuvilin, Evgeny M.

    2010-09-01

    A combined computational fluid dynamics/population balance model (CFD-PBM) is developed for gas hydrate particle size prediction in turbulent pipeline flow. The model is based on a one-moment population balance technique, which is coupled with flow field parameters computed using commercial CFD software. The model is calibrated with a five-moment, off-line population balance model and validated with experimental data produced in a low-pressure multiphase flow loop.

  11. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    PubMed Central

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  12. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    SciTech Connect

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  13. A numerical tool for reproducing driver behaviour: experiments and predictive simulations.

    PubMed

    Casucci, M; Marchitto, M; Cacciabue, P C

    2010-03-01

    This paper presents the simulation tool called SDDRIVE (Simple Simulation of Driver performance), which is the numerical computerised implementation of the theoretical architecture describing Driver-Vehicle-Environment (DVE) interactions, contained in Cacciabue and Carsten [Cacciabue, P.C., Carsten, O. A simple model of driver behaviour to sustain design and safety assessment of automated systems in automotive environments, 2010]. Following a brief description of the basic algorithms that simulate the performance of drivers, the paper presents and discusses a set of experiments carried out in a Virtual Reality full scale simulator for validating the simulation. Then the predictive potentiality of the tool is shown by discussing two case studies of DVE interactions, performed in the presence of different driver attitudes in similar traffic conditions. PMID:19249745

  14. FIND: A new software tool and development platform for enhanced multicolor flow analysis

    PubMed Central

    2011-01-01

    Background Flow Cytometry is a process by which cells, and other microscopic particles, can be identified, counted, and sorted mechanically through the use of hydrodynamic pressure and laser-activated fluorescence labeling. As immunostained cells pass individually through the flow chamber of the instrument, laser pulses cause fluorescence emissions that are recorded digitally for later analysis as multidimensional vectors. Current, widely adopted analysis software limits users to manual separation of events based on viewing two or three simultaneous dimensions. While this may be adequate for experiments using four or fewer colors, advances have lead to laser flow cytometers capable of recording 20 different colors simultaneously. In addition, mass-spectrometry based machines capable of recording at least 100 separate channels are being developed. Analysis of such high-dimensional data by visual exploration alone can be error-prone and susceptible to unnecessary bias. Fortunately, the field of Data Mining provides many tools for automated group classification of multi-dimensional data, and many algorithms have been adapted or created for flow cytometry. However, the majority of this research has not been made available to users through analysis software packages and, as such, are not in wide use. Results We have developed a new software application for analysis of multi-color flow cytometry data. The main goals of this effort were to provide a user-friendly tool for automated gating (classification) of multi-color data as well as a platform for development and dissemination of new analysis tools. With this software, users can easily load single or multiple data sets, perform automated event classification, and graphically compare results within and between experiments. We also make available a simple plugin system that enables researchers to implement and share their data analysis and classification/population discovery algorithms. Conclusions The FIND (Flow

  15. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging

    PubMed Central

    Roethke, Matthias C.; Kuru, Timur H.; Mueller-Wolf, Maya B.; Agterhuis, Erik; Edler, Christopher; Hohenfellner, Markus; Schlemmer, Heinz-Peter; Hadaschik, Boris A.

    2016-01-01

    Objective To evaluate the diagnostic performance of an automated analysis tool for the assessment of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) of the prostate. Methods A fully automated analysis tool was used for a retrospective analysis of mpMRI sets (T2-weighted, T1-weighted dynamic contrast-enhanced, and diffusion-weighted sequences). The software provided a malignancy prediction value for each image pixel, defined as Malignancy Attention Index (MAI) that can be depicted as a colour map overlay on the original images. The malignancy maps were compared to histopathology derived from a combination of MRI-targeted and systematic transperineal MRI/TRUS-fusion biopsies. Results In total, mpMRI data of 45 patients were evaluated. With a sensitivity of 85.7% (with 95% CI of 65.4–95.0), a specificity of 87.5% (with 95% CI of 69.0–95.7) and a diagnostic accuracy of 86.7% (with 95% CI of 73.8–93.8) for detection of prostate cancer, the automated analysis results corresponded well with the reported diagnostic accuracies by human readers based on the PI-RADS system in the current literature. Conclusion The study revealed comparable diagnostic accuracies for the detection of prostate cancer of a user-independent MAI-based automated analysis tool and PI-RADS-scoring-based human reader analysis of mpMRI. Thus, the analysis tool could serve as a detection support system for less experienced readers. The results of the study also suggest the potential of MAI-based analysis for advanced lesion assessments, such as cancer extent and staging prediction. PMID:27454770

  16. Residual bias in a multiphase flow model calibration and prediction

    USGS Publications Warehouse

    Poeter, E.P.; Johnson, R.H.

    2002-01-01

    When calibrated models produce biased residuals, we assume it is due to an inaccurate conceptual model and revise the model, choosing the most representative model as the one with the best-fit and least biased residuals. However, if the calibration data are biased, we may fail to identify an acceptable model or choose an incorrect model. Conceptual model revision could not eliminate biased residuals during inversion of simulated DNAPL migration under controlled conditions at the Borden Site near Ontario Canada. This paper delineates hypotheses for the source of bias, and explains the evolution of the calibration and resulting model predictions.

  17. Prediction of rotating disc flow and heat transfer in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Chew, John W.

    Motivated by the need to improve design techniques for aero engines considerable effort has been put into developing predictive techniques for rotating disc flow and heat transfer. Some notable advances have been made recently and these are reviewed here. The theoretical techniques employed include analytical solutions for laminar flow, momentum-integral methods for turbulent flow, and finite difference solutions of the Reynolds-averaged Navier-Stokes equations. Each of these methods is discussed and predictive capability is illustrated through comparisons with experimental data.

  18. Flow status of three transboundary rivers in Northern Greece as a tool for hydro-diplomacy

    NASA Astrophysics Data System (ADS)

    Hatzigiannakis, Eyaggelos; Hatzispiroglou, Ioannis; Arampatzis, Georgios; Ilia, Andreas; Pantelakis, Dimitrios; Filintas, Agathos; Panagopoulos, Andreas

    2015-04-01

    The aim of this paper is to examine how the river flow monitoring consists a tool for hydro-diplomacy. Management of transboundary catchments and the demand of common water resources, often comprise the cause of conflicts and tension threatening the peaceful coexistence of nations. The Water Framework Directive 2000/60/EU sets a base for water management contributing to common approaches, common goals, common principles as well as providing new definitions and measures for Europe's water resources. In northern Greece the main renewable resources are "imported" (over 25% of its water reserves) and for this reason the implementation of continuous flow measurements throughout the year is necessary, even though difficult to achieve. This paper focuses on the three largest transboundary rivers in Northern Greece. Axios and Strymonas river flow across the region of Central Macedonia in Northern Greece. Axios flows from FYROM to Greece, and Strymonas from Bulgaria to Greece. Nestos river flows from Bulgaria to Greece. The Greek part is in the region of Eastern Macedonia and Thrace in Northern Greece. Significant productive agricultural areas around these rivers are irrigated from them so they are very important for the local society. Measurements of the river flow velocity and the flow depth have been made at bridges. The frequency of the measurements is roughly monthly, because it is expected a significant change in the depth flow and discharge. A series of continuously flow measure-ments were performed during 2013 and 2014 using flowmeters (Valeport and OTT type). The cross-section characteristics, the river flow velocity of segments and the mean water flow velocity and discharge total profile were measured and calculated re-spectively. Measurements are conducted in the framework of the national water resources monitoring network, which is realised in compliance to the Water Framework Directive under the supervision and coordination of the Hellenic Ministry for the

  19. Non-invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world.

    PubMed

    Meimoun, Patrick; Tribouilloy, Christophe

    2008-07-01

    Transthoracic Doppler echocardiography, introduced in the echo-lab in recent last years, to measure coronary flow and coronary flow reserve, is a very attractive tool, totally non-invasive, and easily available at bedside. This review summarizes the actual possibilities of this tool, its multiple potential clinical applications and diagnostic insights, and its arising prognosis value, in coronary artery disease as in various settings affecting the coronary microcirculation. PMID:18296409

  20. Predicting regime shifts in flow of the Colorado River

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.

    2010-10-01

    The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.

  1. Simple tool for prediction of parotid gland sparing in intensity-modulated radiation therapy

    SciTech Connect

    Gensheimer, Michael F.; Hummel-Kramer, Sharon M.; Cain, David; Quang, Tony S.

    2015-10-01

    Sparing one or both parotid glands is a key goal when planning head and neck cancer radiation treatment. If the planning target volume (PTV) overlaps one or both parotid glands substantially, it may not be possible to achieve adequate gland sparing. This finding results in physicians revising their PTV contours after an intensity-modulated radiation therapy (IMRT) plan has been run and reduces workflow efficiency. We devised a simple formula for predicting mean parotid gland dose from the overlap of the parotid gland and isotropically expanded PTV contours. We tested the tool using 44 patients from 2 institutions and found agreement between predicted and actual parotid gland doses (mean absolute error = 5.3 Gy). This simple method could increase treatment planning efficiency by improving the chance that the first plan presented to the physician will have optimal parotid gland sparing.

  2. Investigation of computational aeroacoustic tools for noise predictions of wind turbine aerofoils

    NASA Astrophysics Data System (ADS)

    Humpf, A.; Ferrer, E.; Munduate, X.

    2007-07-01

    In this work trailing edge noise levels of a research aerofoil have been computed and compared to aeroacoustic measurements using two different approaches. On the other hand, aerodynamic and aeroacoustic calculations were performed with the full Navier-Stokes CFD code Fluent [Fluent Inc 2005 Fluent 6.2 Users Guide, Lebanon, NH, USA] on the basis of a steady RANS simulation. Aerodynamic characteristics were computed by the aid of various turbulence models. By the combined usage of implemented broadband noise source models, it was tried to isolate and determine the trailing edge noise level. Throughout this work two methods of different computational cost have been tested and quantitative and qualitative results obtained. On the one hand, the semi-empirical noise prediction tool NAFNoise [Moriarty P 2005 NAFNoise User's Guide. Golden, Colorado, July. http://wind.nrel.gov/designcodes/ simulators/NAFNoise] was used to directly predict trailing edge noise by taking into consideration the nature of the experiments.

  3. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  4. An Interactive Tool For Semi-automated Statistical Prediction Using Earth Observations and Models

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Berhane, F.; Tadesse, T.

    2015-12-01

    We developed a semi-automated statistical prediction tool applicable to concurrent analysis or seasonal prediction of any time series variable in any geographic location. The tool was developed using Shiny, JavaScript, HTML and CSS. A user can extract a predictand by drawing a polygon over a region of interest on the provided user interface (global map). The user can select the Climatic Research Unit (CRU) precipitation or Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as predictand. They can also upload their own predictand time series. Predictors can be extracted from sea surface temperature, sea level pressure, winds at different pressure levels, air temperature at various pressure levels, and geopotential height at different pressure levels. By default, reanalysis fields are applied as predictors, but the user can also upload their own predictors, including a wide range of compatible satellite-derived datasets. The package generates correlations of the variables selected with the predictand. The user also has the option to generate composites of the variables based on the predictand. Next, the user can extract predictors by drawing polygons over the regions that show strong correlations (composites). Then, the user can select some or all of the statistical prediction models provided. Provided models include Linear Regression models (GLM, SGLM), Tree-based models (bagging, random forest, boosting), Artificial Neural Network, and other non-linear models such as Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS). Finally, the user can download the analysis steps they used, such as the region they selected, the time period they specified, the predictand and predictors they chose and preprocessing options they used, and the model results in PDF or HTML format. Key words: Semi-automated prediction, Shiny, R, GLM, ANN, RF, GAM, MARS

  5. Predictive optimal control of sewer networks using CORAL tool: application to Riera Blanca catchment in Barcelona.

    PubMed

    Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J

    2009-01-01

    This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control. PMID:19700825

  6. Molecular modeling as a predictive tool for the development of solid dispersions.

    PubMed

    Maniruzzaman, Mohammed; Pang, Jiayun; Morgan, David J; Douroumis, Dennis

    2015-04-01

    In this study molecular modeling is introduced as a novel approach for the development of pharmaceutical solid dispersions. A computational model based on quantum mechanical (QM) calculations was used to predict the miscibility of various drugs in various polymers by predicting the binding strength between the drug and dimeric form of the polymer. The drug/polymer miscibility was also estimated by using traditional approaches such as Van Krevelen/Hoftyzer and Bagley solubility parameters or Flory-Huggins interaction parameter in comparison to the molecular modeling approach. The molecular modeling studies predicted successfully the drug-polymer binding energies and the preferable site of interaction between the functional groups. The drug-polymer miscibility and the physical state of bulk materials, physical mixtures, and solid dispersions were determined by thermal analysis (DSC/MTDSC) and X-ray diffraction. The produced solid dispersions were analyzed by X-ray photoelectron spectroscopy (XPS), which confirmed not only the exact type of the intermolecular interactions between the drug-polymer functional groups but also the binding strength by estimating the N coefficient values. The findings demonstrate that QM-based molecular modeling is a powerful tool to predict the strength and type of intermolecular interactions in a range of drug/polymeric systems for the development of solid dispersions. PMID:25734898

  7. Development and Validation of a Clinical Risk-Assessment Tool Predictive of All-Cause Mortality

    PubMed Central

    Bello, Ghalib A; Dumancas, Gerard G; Gennings, Chris

    2015-01-01

    In clinical settings, the diagnosis of medical conditions is often aided by measurement of various serum biomarkers through the use of laboratory tests. These biomarkers provide information about different aspects of a patient’s health and overall function of multiple organ systems. We have developed a statistical procedure that condenses the information from a variety of health biomarkers into a composite index, which could be used as a risk score for predicting all-cause mortality. It could also be viewed as a holistic measure of overall physiological health status. This health status metric is computed as a function of standardized values of each biomarker measurement, weighted according to their empirically determined relative strength of association with mortality. The underlying risk model was developed using the biomonitoring and mortality data of a large sample of US residents obtained from the National Health and Nutrition Examination Survey (NHANES) and the National Death Index (NDI). Biomarker concentration levels were standardized using spline-based Cox regression models, and optimization algorithms were used to estimate the weights. The predictive accuracy of the tool was optimized by bootstrap aggregation. We also demonstrate how stacked generalization, a machine learning technique, can be used for further enhancement of the prediction power. The index was shown to be highly predictive of all-cause mortality and long-term outcomes for specific health conditions. It also exhibited a robust association with concurrent chronic conditions, recent hospital utilization, and current health status as assessed by self-rated health. PMID:26380550

  8. Comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1992-01-01

    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls.

  9. Comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1992-01-01

    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared wery well with the experimental data, and performed better than the Thomas model near the walls.

  10. Statistical prediction of dynamic distortion of inlet flow using minimum dynamic measurement. An application to the Melick statistical method and inlet flow dynamic distortion prediction without RMS measurements

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Chen, Y. S.

    1986-01-01

    The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

  11. RAXJET: A computer program for predicting transonic, axisymmetric flow over nozzle afterbodies with supersonic jet exhausts

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1982-01-01

    A viscous-inviscid interaction method to calculate the subsonic and transonic flow over nozzle afterbodies with supersonic jet exhausts was developed. The method iteratively combines a relaxation solution of the full potential equation for the inviscid external flow, a shock capturing-shock fitting inviscid jet solution, an integral boundary layer solution, a control volume method for treating separated flows, and an overlaid mixing layer solution. A computer program called RAXJET which incorporates the method, illustrates the predictive capabilities of the method by comparison with experimental data is described, a user's guide to the computer program is provided. The method accurately predicts afterbody pressures, drag, and flow field properties for attached and separated flows for which no shock induced separation occurs.

  12. Evaluation of prediction intervals for expressing uncertainties in groundwater flow model predictions

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    1999-01-01

    We tested the accuracy of 95% individual prediction intervals for hydraulic heads, streamflow gains, and effective transmissivities computed by groundwater models of two Danish aquifers. To compute the intervals, we assumed that each predicted value can be written as the sum of a computed dependent variable and a random error. Testing was accomplished by using a cross-validation method and by using new field measurements of hydraulic heads and transmissivities that were not used to develop or calibrate the models. The tested null hypotheses are that the coverage probability of the prediction intervals is not significantly smaller than the assumed probability (95%) and that each tail probability is not significantly different from the assumed probability (2.5%). In all cases tested, these hypotheses were accepted at the 5% level of significance. We therefore conclude that for the groundwater models of two real aquifers the individual prediction intervals appear to be accurate.We tested the accuracy of 95% individual prediction intervals for hydraulic heads, streamflow gains, and effective transmissivities computed by groundwater models of two Danish aquifers. To compute the intervals, we assumed that each predicted value can be written as the sum of a computed dependent variable and a random error. Testing was accomplished by using a cross-validation method and by using new field measurements of hydraulic heads and transmissivities that were not used to develop or calibrate the models. The tested null hypotheses are that the coverage probability of the prediction intervals is not significantly smaller than the assumed probability (95%) and that each tail probability is not significantly different from the assumed probability (2.5%). In all cases tested, these hypotheses were accepted at the 5% level of significance. We therefore conclude that for the groundwater models of two real aquifers the individual prediction intervals appear to be accurate.

  13. En route Spacing Tool: Efficient Conflict-free Spacing to Flow-Restricted Airspace

    NASA Technical Reports Server (NTRS)

    Green, S.

    1999-01-01

    This paper describes the Air Traffic Management (ATM) problem within the U.S. of flow-restricted en route airspace, an assessment of its impact on airspace users, and a set of near-term tools and procedures to resolve the problem. The FAA is committed, over the next few years, to deploy the first generation of modem ATM decision support tool (DST) technology under the Free-Flight Phase-1 (FFp1) program. The associated en route tools include the User Request Evaluation Tool (URET) and the Traffic Management Advisor (TMA). URET is an initial conflict probe (ICP) capability that assists controllers with the detection and resolution of conflicts in en route airspace. TMA orchestrates arrivals transitioning into high-density terminal airspace by providing controllers with scheduled times of arrival (STA) and delay feedback advisories to assist with STA conformance. However, these FFPl capabilities do not mitigate the en route Miles-In-Trail (MIT) restrictions that are dynamically applied to mitigate airspace congestion. National statistics indicate that en route facilities (Centers) apply Miles-In-Trail (MIT) restrictions for approximately 5000 hours per month. Based on results from this study, an estimated 45,000 flights are impacted by these restrictions each month. Current-day practices for implementing these restrictions result in additional controller workload and an economic impact of which the fuel penalty alone may approach several hundred dollars per flight. To mitigate much of the impact of these restrictions on users and controller workload, a DST and procedures are presented. The DST is based on a simple derivative of FFP1 technology that is designed to introduce a set of simple tools for flow-rate (spacing) conformance and integrate them with conflict-probe capabilities. The tool and associated algorithms are described based on a concept prototype implemented within the CTAS baseline in 1995. A traffic scenario is used to illustrate the controller's use of

  14. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  15. Noise from interaction of flow with rigid surfaces: A review of current status of prediction techniques

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1972-01-01

    A brief review of some fundamental aspects of sound arising from turbulent boundary layers, noise due to flow past a single discontinuity (trailing edge), noise from airfoils operating in turbulent flow, and noise due to rigid flow discontinuities (spoilers) immersed in rigid ducts is presented. Emphasis is on dipole-like sound fields associated with turbulent flow past a trailing edge, rigid bodies in turbulence and in-duct spoilers. Representative available data are reviewed and evaluated in terms of theoretical considerations and, where possible, empirical prediction techniques are given in terms of convenient aerodynamic and geometric parameters. Limitations on current knowledge are discussed.

  16. Establishing Minimum Flow Requirements Based on Benthic Vegetation: What are Some Issues Related to Identifying Quantity of Inflow and Tools Used to Quantify Ecosystem Response?

    NASA Astrophysics Data System (ADS)

    Hunt, M. J.; Nuttle, W. K.; Cosby, B. J.; Marshall, F. E.

    2005-05-01

    Establishing minimum flow requirements in aquatic ecosystems is one way to stipulate controls on water withdrawals in a watershed. The basis of the determination is to identify the amount of flow needed to sustain a threshold ecological function. To develop minimum flow criteria an understanding of ecological response in relation to flow is essential. Several steps are needed including: (1) identification of important resources and ecological functions, (2) compilation of available information, (3) determination of historical conditions, (4) establishment of technical relationships between inflow and resources, and (5) identification of numeric criteria that reflect the threshold at which resources are harmed. The process is interdisciplinary requiring the integration of hydrologic and ecologic principles with quantitative assessments. The tools used quantify the ecological response and key questions related to how the quantity of flow influences the ecosystem are examined by comparing minimum flow determination in two different aquatic systems in South Florida. Each system is characterized by substantial hydrologic alteration. The first, the Caloosahatchee River is a riverine system, located on the southwest coast of Florida. The second, the Everglades- Florida Bay ecotone, is a wetland mangrove ecosystem, located on the southern tip of the Florida peninsula. In both cases freshwater submerged aquatic vegetation (Vallisneria americana or Ruppia maritima), located in areas of the saltwater- freshwater interface has been identified as a basis for minimum flow criteria. The integration of field studies, laboratory studies, and literature review was required. From this information we developed ecological modeling tools to quantify and predict plant growth in response to varying environmental variables. Coupled with hydrologic modeling tools questions relating to the quantity and timing of flow and ecological consequences in relation to normal variability are addressed.

  17. The East London glaucoma prediction score: web-based validation of glaucoma risk screening tool

    PubMed Central

    Stephen, Cook; Benjamin, Longo-Mbenza

    2013-01-01

    AIM It is difficult for Optometrists and General Practitioners to know which patients are at risk. The East London glaucoma prediction score (ELGPS) is a web based risk calculator that has been developed to determine Glaucoma risk at the time of screening. Multiple risk factors that are available in a low tech environment are assessed to provide a risk assessment. This is extremely useful in settings where access to specialist care is difficult. Use of the calculator is educational. It is a free web based service. Data capture is user specific. METHOD The scoring system is a web based questionnaire that captures and subsequently calculates the relative risk for the presence of Glaucoma at the time of screening. Three categories of patient are described: Unlikely to have Glaucoma; Glaucoma Suspect and Glaucoma. A case review methodology of patients with known diagnosis is employed to validate the calculator risk assessment. RESULTS Data from the patient records of 400 patients with an established diagnosis has been captured and used to validate the screening tool. The website reports that the calculated diagnosis correlates with the actual diagnosis 82% of the time. Biostatistics analysis showed: Sensitivity = 88%; Positive predictive value = 97%; Specificity = 75%. CONCLUSION Analysis of the first 400 patients validates the web based screening tool as being a good method of screening for the at risk population. The validation is ongoing. The web based format will allow a more widespread recruitment for different geographic, population and personnel variables. PMID:23550097

  18. Comparison of Human Modeling Tools for Efficiency of Prediction of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Design of ExtraVehicular Activity (EVA) interfaces for International Space Station is important to successful assembly. This is highlighted by the recent rise in the estimate of time required for EVA during the assembly to 900 hours. The traditional method of evaluating EVA design is examination of mockups in neutral buoyancy testing. While effective, this is costly. Any tools for streamlining this process have positive cost and schedule implications for Station design. The human modelling software package Jack has been shown to be a useful tool in computer-aided design of space hardware requiring actuation in EVA. The package has been used to aid in the design of flight hardware for a Station Assembly Mission; evaluation was based on comparison of the computer simulations with neutral buoyancy simulations. When used to predict the feasibility of tasks, the software was found to be effective for reach and visibility evaluation. Some limitations have been encountered in prediction of work clearances. Another human simulator is currently being evaluated using the same hardware and comparisons to the same Neutral Buoyancy simulations. Preliminary results for ERGO, which is derived from robotics software, indicate similar strengths and weaknesses.

  19. Hospitalization in older patients due to adverse drug reactions -the need for a prediction tool.

    PubMed

    Parameswaran Nair, Nibu; Chalmers, Leanne; Peterson, Gregory M; Bereznicki, Bonnie J; Castelino, Ronald L; Bereznicki, Luke R

    2016-01-01

    Adverse drug reactions (ADRs) represent a major burden on society, resulting in significant morbidity, mortality, and health care costs. Older patients living in the community are particularly susceptible to ADRs, and are at an increased risk of ADR-related hospitalization. This review summarizes the available evidence on ADR-related hospital admission in older patients living in the community, with a particular focus on risk factors for ADRs leading to hospital admission and the need for a prediction tool for risk of ADR-related hospitalization in these individuals. The reported proportion of hospital admissions due to ADRs has ranged from 6% to 12% of all admissions in older patients. The main risk factors or predictors for ADR-related admissions were advanced age, polypharmacy, comorbidity, and potentially inappropriate medications. There is a clear need to design intervention strategies to prevent ADR-related hospitalization in older patients. To ensure the cost-effectiveness of such strategies, it would be necessary to target them to those older individuals who are at highest risk of ADR-related hospitalization. Currently, there are no validated tools to assess the risk of ADRs in primary care. There is a clear need to investigate the utility of tools to identify high-risk patients to target appropriate interventions toward prevention of ADR-related hospital admissions. PMID:27194906

  20. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.

    PubMed

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-01-01

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation. PMID:27306108

  1. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites

    PubMed Central

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-01-01

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation. PMID:27306108

  2. BFH-OST, a new predictive screening tool for identifying osteoporosis in postmenopausal Han Chinese women

    PubMed Central

    Ma, Zhao; Yang, Yong; Lin, JiSheng; Zhang, XiaoDong; Meng, Qian; Wang, BingQiang; Fei, Qi

    2016-01-01

    Purpose To develop a simple new clinical screening tool to identify primary osteoporosis by dual-energy X-ray absorptiometry (DXA) in postmenopausal women and to compare its validity with the Osteoporosis Self-Assessment Tool for Asians (OSTA) in a Han Chinese population. Methods A cross-sectional study was conducted, enrolling 1,721 community-dwelling postmenopausal Han Chinese women. All the subjects completed a structured questionnaire and had their bone mineral density measured using DXA. Using logistic regression analysis, we assessed the ability of numerous potential risk factors examined in the questionnaire to identify women with osteoporosis. Based on this analysis, we build a new predictive model, the Beijing Friendship Hospital Osteoporosis Self-Assessment Tool (BFH-OST). Receiver operating characteristic curves were generated to compare the validity of the new model and OSTA in identifying postmenopausal women at increased risk of primary osteoporosis as defined according to the World Health Organization criteria. Results At screening, it was found that of the 1,721 subjects with DXA, 22.66% had osteoporosis and a further 47.36% had osteopenia. Of the items screened in the questionnaire, it was found that age, weight, height, body mass index, personal history of fracture after the age of 45 years, history of fragility fracture in either parent, current smoking, and consumption of three of more alcoholic drinks per day were all predictive of osteoporosis. However, age at menarche and menopause, years since menopause, and number of pregnancies and live births were irrelevant in this study. The logistic regression analysis and item reduction yielded a final tool (BFH-OST) based on age, body weight, height, and history of fracture after the age of 45 years. The BFH-OST index (cutoff =9.1), which performed better than OSTA, had a sensitivity of 73.6% and a specificity of 72.7% for identifying osteoporosis, with an area under the receiver operating

  3. An Empirical Method for Fast Prediction of Rarefied Flow Field around a Vertical Plate

    NASA Astrophysics Data System (ADS)

    He, Tao; Wang, Jiang-Feng

    2016-06-01

    Numerical study is conducted to investigate the effects of free-stream Knudsen (Kn) number on rarefied flow field around a vertical plate employing an unstructured DSMC method, and an empirical method for fast prediction of flow-field structure at different Kn numbers in a given inflow velocity is proposed. First, the flow at a velocity 7500m/s is simulated using a perfect-gas model with free-stream Kn changing from 0.035 to 13.36. The flow-field characteristics in these cases with varying Kn numbers are analyzed and a linear-expansion phenomenon as a function of the square of Kn is discovered. An empirical method is proposed for fast flow-field prediction at different Kn based on the least-square-fitting method. Further, the effects of chemical reactions on flow field are investigated to verify the applicability of the empirical method in the real gas conditions. Three of the cases in perfect-gas flow are simulated again by introducing five-species air chemical module. The flow properties with and without chemical reactions are compared. In the end, the variation of chemical-reaction flow field as a function of Kn is analyzed and it is shown that the empirical method are also suitable when considering chemical reactions.

  4. Correlation of lava flows on Cascade volcanoes: Tool development and example from Burney Spring Mountain, California

    NASA Astrophysics Data System (ADS)

    O'Brien, Timothy Michael

    Bedrock mapping in volcanic terrains is a challenge, and generally requires extensive field work and petrographic and geochemical analysis. Paleomagnetism, when used in conjunction with field, geochemical and petrographic data offers a complimentary geophysical tool to field mapping, assisting in the correlation of lava flows across faults and aiding in determination of fault kinematics. Secular variation of the Earth's magnetic field imprints individually distinguishable magnetic orientations in igneous rocks emplaced >100 years apart, resulting in magnetic fingerprints that can be used to correlate lava flows across eroded areas, or that have been displaced by faulting or modified by weathering. A successful paleomagnetic study requires establishment of a well constrained magnetic orientation for individual lava flows, against which structural corrections can be made for sample sites in rotated blocks. The resulting structural corrections provide insight into the mode and degree of movement along the fault since emplacement of the lava flows. This methodology was applied to mapping a tectonically modified Pliocene-Pleistocene volcanic edifice, Burney Spring Mountain, within the Hat Creek Graben of northeastern California. The establishment of a general range of paleomagnetic orientations for Burney Spring Mountain serves to distinguish between lava flows sourced from Burney Spring Mountain and those that overlap the edifice from surrounding volcanic vents. Paleomagnetic results have thus assisted in delineating the areal extent of Burney Spring Mountain and have furthermore revealed the presence of local block rotations adjacent to the fault, clarifying the kinematics of the faults themselves. Supporting geochemical analyses were conducted to assist in the correlation of Burney Spring Mountain lava flows involving the use of an electron-dispersive x-ray spectrometer (EDS) outfitted scanning electron microscope (SEM) and a portable x-ray fluorescence (pXRF) device

  5. LncDisease: a sequence based bioinformatics tool for predicting lncRNA-disease associations

    PubMed Central

    Wang, Junyi; Ma, Ruixia; Ma, Wei; Chen, Ji; Yang, Jichun; Xi, Yaguang; Cui, Qinghua

    2016-01-01

    LncRNAs represent a large class of noncoding RNA molecules that have important functions and play key roles in a variety of human diseases. There is an urgent need to develop bioinformatics tools as to gain insight into lncRNAs. This study developed a sequence-based bioinformatics method, LncDisease, to predict the lncRNA-disease associations based on the crosstalk between lncRNAs and miRNAs. Using LncDisease, we predicted the lncRNAs associated with breast cancer and hypertension. The breast-cancer-associated lncRNAs were studied in two breast tumor cell lines, MCF-7 and MDA-MB-231. The qRT-PCR results showed that 11 (91.7%) of the 12 predicted lncRNAs could be validated in both breast cancer cell lines. The hypertension-associated lncRNAs were further evaluated in human vascular smooth muscle cells (VSMCs) stimulated with angiotensin II (Ang II). The qRT-PCR results showed that 3 (75.0%) of the 4 predicted lncRNAs could be validated in Ang II-treated human VSMCs. In addition, we predicted 6 diseases associated with the lncRNA GAS5 and validated 4 (66.7%) of them by literature mining. These results greatly support the specificity and efficacy of LncDisease in the study of lncRNAs in human diseases. The LncDisease software is freely available on the Software Page: http://www.cuilab.cn/. PMID:26887819

  6. LncDisease: a sequence based bioinformatics tool for predicting lncRNA-disease associations.

    PubMed

    Wang, Junyi; Ma, Ruixia; Ma, Wei; Chen, Ji; Yang, Jichun; Xi, Yaguang; Cui, Qinghua

    2016-05-19

    LncRNAs represent a large class of noncoding RNA molecules that have important functions and play key roles in a variety of human diseases. There is an urgent need to develop bioinformatics tools as to gain insight into lncRNAs. This study developed a sequence-based bioinformatics method, LncDisease, to predict the lncRNA-disease associations based on the crosstalk between lncRNAs and miRNAs. Using LncDisease, we predicted the lncRNAs associated with breast cancer and hypertension. The breast-cancer-associated lncRNAs were studied in two breast tumor cell lines, MCF-7 and MDA-MB-231. The qRT-PCR results showed that 11 (91.7%) of the 12 predicted lncRNAs could be validated in both breast cancer cell lines. The hypertension-associated lncRNAs were further evaluated in human vascular smooth muscle cells (VSMCs) stimulated with angiotensin II (Ang II). The qRT-PCR results showed that 3 (75.0%) of the 4 predicted lncRNAs could be validated in Ang II-treated human VSMCs. In addition, we predicted 6 diseases associated with the lncRNA GAS5 and validated 4 (66.7%) of them by literature mining. These results greatly support the specificity and efficacy of LncDisease in the study of lncRNAs in human diseases. The LncDisease software is freely available on the Software Page: http://www.cuilab.cn/. PMID:26887819

  7. A Simple Tool to Predict ESRD Within 1 Year in Elderly Patients with Advanced CKD

    PubMed Central

    Drawz, Paul E.; Goswami, Puja; Azem, Reem; Babineau, Denise C.; Rahman, Mahboob

    2013-01-01

    BACKGROUND/OBJECTIVES Chronic kidney disease (CKD) is common in older patients; currently, no tools are available to predict the risk of end-stage renal disease (ESRD) within 1 year. The goal of this study was to develop and validate a model to predict the 1 year risk for ESRD in elderly subjects with advanced CKD. DESIGN Retrospective study SETTING Veterans Affairs Medical Center PARTICIPANTS Patients over 65 years of age with CKD with an estimated (eGFR) less than 30mL/min/1.73m2. MEASUREMENTS The outcome was ESRD within 1 year of the index eGFR. Cox regression was used to develop a predictive model (VA risk score) which was validated in a separate cohort. RESULTS Of the 1,866 patients in the developmental cohort, 77 developed ESRD. Risk factors for ESRD in the final model were age, congestive heart failure, systolic blood pressure, eGFR, potassium, and albumin. In the validation cohort, the C index for the VA risk score was 0.823. The risk for developing ESRD at 1 year from lowest to highest tertile was 0.08%, 2.7%, and 11.3% (P<0.001). The C-index for the recently published Tangri model in the validation cohort was 0.780. CONCLUSION A new model using commonly available clinical measures shows excellent ability to predict the onset of ESRD within the next year in elderly subjects. Additionally, the Tangri model had very good predictive ability. Patients and physicians can use these risk models to inform decisions regarding preparation for renal replacement therapy in patients with advanced CKD. PMID:23617782

  8. Computational Fluid Dynamics-Icing: a Predictive Tool for In-Flight Icing Risk Management

    NASA Astrophysics Data System (ADS)

    Zeppetelli, Danial

    In-flight icing is a hazard that continues to afflict the aviation industry, despite all the research and efforts to mitigate the risks. The recurrence of these types of accidents has given renewed impetus to the development of advanced analytical predictive tools to study both the accretion of ice on aircraft components in flight, and the aerodynamic consequences of such ice accumulations. In this work, an in-depth analysis of the occurrence of in-flight icing accidents and incidents was conducted to identify high-risk flight conditions. To investigate these conditions more thoroughly, a computational fluid dynamics model of a representative airfoil was developed to recreate experiments from the icing wind tunnel that occurred in controlled flight conditions. The ice accumulations and resulting aerodynamic performance degradations of the airfoil were computed for a range or pitch angles and flight speeds. These simulations revealed substantial performance losses such as reduced maximum lift, and decreased stall angle. From these results, an icing hazard analysis tool was developed, using risk management principles, to evaluate the dangers of in-flight icing for a specific aircraft based on the atmospheric conditions it is expected to encounter, as well as the effectiveness of aircraft certification procedures. This method is then demonstrated through the simulation of in-flight icing scenarios based on real flight data from accidents and incidents. The risk management methodology is applied to the results of the simulations and the predicted performance degradation is compared to recorded aircraft performance characteristics at the time of the occurrence. The aircraft performance predictions and resulting risk assessment are found to correspond strongly to the pilot's comments as well as to the severity of the incident.

  9. Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes

    PubMed Central

    Luo, Hao; Zhang, Chun-Ting; Gao, Feng

    2014-01-01

    DNA replication is one of the most basic processes in all three domains of cellular life. With the advent of the post-genomic era, the increasing number of complete archaeal genomes has created an opportunity for exploration of the molecular mechanisms for initiating cellular DNA replication by in vivo experiments as well as in silico analysis. However, the location of replication origins (oriCs) in many sequenced archaeal genomes remains unknown. We present a web-based tool Ori-Finder 2 to predict oriCs in the archaeal genomes automatically, based on the integrated method comprising the analysis of base composition asymmetry using the Z-curve method, the distribution of origin recognition boxes identified by FIMO tool, and the occurrence of genes frequently close to oriCs. The web server is also able to analyze the unannotated genome sequences by integrating with gene prediction pipelines and BLAST software for gene identification and function annotation. The result of the predicted oriCs is displayed as an HTML table, which offers an intuitive way to browse the result in graphical and tabular form. The software presented here is accurate for the genomes with single oriC, but it does not necessarily find all the origins of replication for the genomes with multiple oriCs. Ori-Finder 2 aims to become a useful platform for the identification and analysis of oriCs in the archaeal genomes, which would provide insight into the replication mechanisms in archaea. The web server is freely available at http://tubic.tju.edu.cn/Ori-Finder2/. PMID:25309521

  10. Mean surface temperature prediction models for broiler chickens—a study of sensible heat flow

    NASA Astrophysics Data System (ADS)

    Nascimento, Sheila Tavares; da Silva, Iran José Oliveira; Maia, Alex Sandro Campos; de Castro, Ariane Cristina; Vieira, Frederico Marcio Corrêa

    2014-03-01

    Body surface temperature can be used to evaluate thermal equilibrium in animals. The bodies of broiler chickens, like those of all birds, are partially covered by feathers. Thus, the heat flow at the boundary layer between broilers' bodies and the environment differs between feathered and featherless areas. The aim of this investigation was to use linear regression models incorporating environmental parameters and age to predict the surface temperatures of the feathered and featherless areas of broiler chickens. The trial was conducted in a climate chamber, and 576 broilers were distributed in two groups. In the first trial, 288 broilers were monitored after exposure to comfortable or stressful conditions during a 6-week rearing period. Another 288 broilers were measured under the same conditions to test the predictive power of the models. Sensible heat flow was calculated, and for the regions covered by feathers, sensible heat flow was predicted based on the estimated surface temperatures. The surface temperatures of the feathered and featherless areas can be predicted based on air, black globe or operative temperatures. According to the sensible heat flow model, the broilers' ability to maintain thermal equilibrium by convection and radiation decreased during the rearing period. Sensible heat flow estimated based on estimated surface temperatures can be used to predict animal responses to comfortable and stressful conditions.

  11. Comparing flow duration curve and rainfall-runoff modelling for predicting daily runoff in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Vaze, Jai; Chiew, Francis H. S.; Li, Ming

    2015-06-01

    Predicting daily runoff time series in ungauged catchments is both important and challenging. For the last few decades, the rainfall-runoff (RR) modelling approach has been the method of choice. There have been very few studies reported in literature which attempt to use flow duration curve (FDC) to predict daily runoff time series. This study comprehensively compares the two approaches using an extensive dataset (228 catchments) for a large region of south-eastern Australia and provides guidelines for choosing the suitable method. For each approach we used the nearest neighbour method and two weightings - a 5-donor simple mathematical average (SA) and a 5-donor inverse-distance weighting (5-IDW) - to predict daily runoff time series. The results show that 5-IDW was noticeably better than a single donor to predict daily runoff time series, especially for the FDC approach. The RR modelling approach calibrated against daily runoff outperformed the FDC approach for predicting high flows. The FDC approach was better at predicting medium to low flows in traditional calibration against the Nash-Sutcliffe-Efficiency or Root Mean Square Error, but when calibrated against a low flow objective function, both the FDC and rainfall-runoff models performed equally well in simulating the low flows. These results indicate that both methods can be further improved to simulate daily hydrographs describing the range of flow metrics in ungauged catchments. Further studies should be carried out for improving the accuracy of predicted FDC in ungauged catchments, including improving the FDC model structure and parameter fitting.

  12. Debris-flow runout predictions based on the average channel slope (ACS)

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.

  13. Development of a new fertility prediction model for stallion semen, including flow cytometry.

    PubMed

    Barrier Battut, I; Kempfer, A; Becker, J; Lebailly, L; Camugli, S; Chevrier, L

    2016-09-01

    Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45

  14. Getting into the musical zone: trait emotional intelligence and amount of practice predict flow in pianists.

    PubMed

    Marin, Manuela M; Bhattacharya, Joydeep

    2013-01-01

    Being "in flow" or "in the zone" is defined as an extremely focused state of consciousness which occurs during intense engagement in an activity. In general, flow has been linked to peak performances (high achievement) and feelings of intense pleasure and happiness. However, empirical research on flow in music performance is scarce, although it may offer novel insights into the question of why musicians engage in musical activities for extensive periods of time. Here, we focused on individual differences in a group of 76 piano performance students and assessed their flow experience in piano performance as well as their trait emotional intelligence. Multiple regression analysis revealed that flow was predicted by the amount of daily practice and trait emotional intelligence. Other background variables (gender, age, duration of piano training and age of first piano training) were not predictive. To predict high achievement in piano performance (i.e., winning a prize in a piano competition), a seven-predictor logistic regression model was fitted to the data, and we found that the odds of winning a prize in a piano competition were predicted by the amount of daily practice and the age at which piano training began. Interestingly, a positive relationship between flow and high achievement was not supported. Further, we explored the role of musical emotions and musical styles in the induction of flow by a self-developed questionnaire. Results suggest that besides individual differences among pianists, specific structural and compositional features of musical pieces and related emotional expressions may facilitate flow experiences. Altogether, these findings highlight the role of emotion in the experience of flow during music performance and call for further experiments addressing emotion in relation to the performer and the music alike. PMID:24319434

  15. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  16. PNS predictions for supersonic/hypersonic flows over finned missile configurations

    NASA Technical Reports Server (NTRS)

    Bhutta, Bilal A.; Lewis, Clark H.

    1992-01-01

    Finned missile design entails accurate and computationally fast numerical techniques for predicting viscous flows over complex lifting configurations at small to moderate angles of attack and over Mach 3 to 15; these flows are often characterized by strong embedded shocks, so that numerical algorithms are also required to capture embedded shocks. The recent real-gas Flux Vector Splitting technique is here extended to investigate the Mach 3 flow over a typical finned missile configuration with/without side fin deflections. Elliptic grid-generation techniques for Mach 15 flows are shown to be inadequate for Mach 3 flows over finned configurations and need to be modified. Fin-deflection studies indicate that even small amounts of missile fin deflection can substantially modify vehicle aerodynamics. This 3D parabolized Navier-Stokes scheme is also extended into an efficient embedded algorithm for studying small axially separated flow regions due to strong fin and control surface deflections.

  17. The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1990-01-01

    The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.

  18. Automated antibody structure prediction using Accelrys tools: Results and best practices

    PubMed Central

    Fasnacht, Marc; Butenhof, Ken; Goupil-Lamy, Anne; Hernandez-Guzman, Francisco; Huang, Hongwei; Yan, Lisa

    2014-01-01

    We describe the methodology and results from our participation in the second Antibody Modeling Assessment experiment. During the experiment we predicted the structure of eleven unpublished antibody Fv fragments. Our prediction methods centered on template-based modeling; potential templates were selected from an antibody database based on their sequence similarity to the target in the framework regions. Depending on the quality of the templates, we constructed models of the antibody framework regions either using a single, chimeric or multiple template approach. The hypervariable loop regions in the initial models were rebuilt by grafting the corresponding regions from suitable templates onto the model. For the H3 loop region, we further refined models using ab initio methods. The final models were subjected to constrained energy minimization to resolve severe local structural problems. The analysis of the models submitted show that Accelrys tools allow for the construction of quite accurate models for the framework and the canonical CDR regions, with RMSDs to the X-ray structure on average below 1 Å for most of these regions. The results show that accurate prediction of the H3 hypervariable loops remains a challenge. Furthermore, model quality assessment of the submitted models show that the models are of quite high quality, with local geometry assessment scores similar to that of the target X-ray structures. Proteins 2014; 82:1583–1598. © 2014 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:24833271

  19. Engineering Property Prediction Tools for Tailored Polymer Composite Structures (FY06 Annual Report)

    SciTech Connect

    Nguyen, Ba Nghiep; Holbery, Jim; Kunc, Vlastimil

    2006-12-31

    Recently, long-fiber injection molded thermoplastics (LFTs) have generated great interest within the automotive industry as these materials can be used for structural applications in order to reduce vehicle weight. However, injection-molding of these materials poses a great challenge because of two main reasons: (i) no process models for LFTs have been developed that can be used to predict the processing of an LFT part, and (ii) no experimental characterization methods exist to fully characterize the as-formed LFT microstructure to determine the fiber orientation and length distributions and fiber dispersion that are critical for any process model development. This report summarizes the work conducted during the fiscal year 2006 (FY06) that includes (i) the assessment of current process modeling approaches, (ii) experimental evaluation of LFT microstructure and mechanical properties, and (iii) the computation of thermoelastic properties using the measured and predicted orientation distributions as well as the measured fiber length distribution. Our objective is two-fold. First, it is necessary to assess current process models and characterization techniques in order to determine their capabilities and limitations, and the necessary developments for LFTs. Second, before modeling the nonlinear behaviors of LFTs, it is essential to develop computation tools for predicting the elastic and thermoelastic properties of these materials.

  20. Lumped Parameter Modeling as a Predictive Tool for a Battery Status Monitor

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; Chinh D. Ho; John L. Morrison; Ronald C. Fenton; Vincent S. Battaglia; Tien Q. Duong

    2003-10-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of lithium-ion cells (i.e., Gen 2 cells). Both the Gen 2 Baseline and Variant C cells are tested in accordance with the cell-specific test plan, and are removed at roughly equal power fade increments and sent for destructive diagnostic analysis. The diagnostic laboratories did not need all test cells for analysis, and returned five spare cells to the Idaho National Engineering and Environmental Laboratory (INEEL). INEEL used these cells for special pulse testing at various duty cycles, amplitudes, and durations to investigate the usefulness of the lumped parameter model (LPM) as a predictive tool in a battery status monitor (BSM). The LPM is a simplified linear model that accurately predicts the voltage response during certain pulse conditions. A database of parameter trends should enable dynamic predictions of state-of-charge and state-of-health conditions during in-vehicle pulsing. This information could be used by the BSM to provide accurate information to the vehicle control system.

  1. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    PubMed

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  2. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins.

    PubMed

    Jain, Prerna; Thukral, Nitin; Gahlot, Lokesh Kumar; Hasija, Yasha

    2015-06-01

    Interactions between proteins largely govern cellular processes and this has led to numerous efforts culminating in enormous information related to the proteins, their interactions and the function which is determined by their interactions. The main concern of the present study is to present interface analysis of cardiovascular-disorder (CVD) related proteins to shed lights on details of interactions and to emphasize the importance of using structures in network studies. This study combines the network-centred approach with three dimensional studies to comprehend the fundamentals of biology. Interface properties were used as descriptors to classify the CVD associated proteins and non-CVD associated proteins. Machine learning algorithm was used to generate a classifier based on the training set which was then used to predict potential CVD related proteins from a set of polymorphic proteins which are not known to be involved in any disease. Among several classifying algorithms applied to generate models, best performance was achieved using Random Forest with an accuracy of 69.5 %. The tool named CARDIO-PRED, based on the prediction model is present at http://www.genomeinformatics.dce.edu/CARDIO-PRED/. The predicted CVD related proteins may not be the causing factor of particular disease but can be involved in pathways and reactions yet unknown to us thus permitting a more rational analysis of disease mechanism. Study of their interactions with other proteins can significantly improve our understanding of the molecular mechanism of diseases. PMID:25972989

  3. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

    PubMed Central

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  4. Prediction of Flow-Limiting Fractional Flow Reserve in Patients With Stable Coronary Artery Disease Based on Quantitative Myocardial Perfusion Imaging.

    PubMed

    Tanaka, Haruki; Takahashi, Teruyuki; Kozono, Nami; Tanakamaru, Yoshiki; Ohashi, Norihiko; Yasunobu, Yuji; Tanaka, Koichi; Okada, Takenori; Kaseda, Shunichi; Nakanishi, Toshio; Kihara, Yasuki

    2016-05-01

    Although fractional flow reserve (FFR) and myocardial perfusion imaging (MPI) findings fundamentally differ, several cohort studies have revealed that these findings correlate. Here, we investigated whether flow-limiting FFR could be predicted from adenosine stress thallium-201 MPI with single-photon emission computed tomography (SPECT) findings derived from 84 consecutive, prospectively identified patients with stable coronary artery disease and 212 diseased vessels. Among them, FFR was measured in 136 diseased vessels (64%). The findings were compared with regional perfusion abnormalities including stress total perfusion defect (TPD) - rest TPD determined using quantitative perfusion single-photon emission computed tomography software. The FFR inversely correlated the most accurately with stress TPD - rest TPD (r = -0.552, p <0.001). Predictors of major vessels of interest comprising FFR <0.80, included stress TPD - rest TPD, the transient ischemic dilation ratio, left ventricular ejection fraction at rest and beta blockers for left anterior descending artery (LAD) regions, and stress TPD - rest TPD, left ventricular mass, left ventricular ejection fraction at rest, right coronary artery lesions, the transient ischemic dilation ratio, and age for non-LAD regions. The diagnostic accuracy of formulas to predict major vessels of interest with FFR <0.80 was high (sensitivity, specificity and accuracy for LAD and non-LAD: 84%, 87% and 86%, and 75%, 93% and 87%, respectively). In conclusion, although somewhat limited by a sample size and a single-center design, flow-limiting FFR could be predicted from MPI findings with a defined probability. A cohort study might validate our results and provide a novel adjunctive tool with which to diagnose functionally significant coronary artery disease from MPI findings. PMID:26970815

  5. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    SciTech Connect

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant

  6. Computer program predicts thermal and flow transients experienced in a reactor loss- of-flow accident

    NASA Technical Reports Server (NTRS)

    Hale, C. J.

    1967-01-01

    Program analyzes the consequences of a loss-of-flow accident in the primary cooling system of a heterogeneous light-water moderated and cooled nuclear reactor. It produces a temperature matrix 36 x 41 /x,y/ which includes fuel surface temperatures relative to the time the pump power was lost.

  7. Quantitative precipitation and river flow predictions over the southwestern United States

    SciTech Connect

    Kim, J.; Miller, N.L.

    1996-09-01

    Accurate predictions of local precipitation and river flow are crucial in the western US steep terrain and narrow valleys can cause local flooding during short term heavy precipitation. Typical size of hydrologically uniform watersheds within the mountainous part of the western US ranges 10{sup 2} to 10{sup 3} km{sup 2}. Such small watershed size, together with large variations in terrain elevations and a strong dependence of precipitation on terrain elevation, requires a find-resolution and well-localized NWP to improve QPF and river predictions. The most important aspects of accurate QPF and river flow predictions in the western US are: (1) partitioning the total precipitation into rainfall and snowfall, (2) representing hydrologic processes within individual watersheds, and (3) map watershed areas onto the regularly-spaced atmospheric grid model grid. In the following, we present the QPF and river flow calculations by the CARS system during two winter seasons from Nov. 1994 to Apr. 1995.

  8. Prediction of vortex shedding from circular and noncircular bodies in subsonic flow

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.

    1987-01-01

    An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.

  9. Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Swafford, Timothy W.; Reddy, T. S. R.

    1991-01-01

    A compressible flow code that can predict the nonlinear unsteady aerodynamic associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions, although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior.

  10. Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Swafford, Timothy W.; Reddy, T. S. R.

    1991-01-01

    A compressible flow code that can predict the nonlinear unsteady aerodynamics associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions, although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior.

  11. Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions

    NASA Technical Reports Server (NTRS)

    Lewis, J. P.; Pletcher, R. H.

    1986-01-01

    Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.

  12. Theoretical prediction of stationary positions in the rectangular chamber during asymmetric electroosmotic flow

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Most microscopic cell electrophoretic work depends on the theortical prediction of stationary positions by Smoluchowski and Komagata. Their theoretical solutions are based on the assumption that the electroosmotic flow in a chamber is symmetric. Because experiences with the rectangular chamber indicate that symmetric flow occurs during less than 8% of the experiments, the existing theory for stationary position determination is expanded to include the more general case of asymmetric flow. Smoluchowski's equation for symmetric electroosmotic flow in a rectangular chamber having a width much smaller than its height or length is examined. Smoluchowski's approach is used to approximate stationary positions in rectangular chambers with height/width ratios greater than 40. Support for the theoretical prediction of stationary positions using is given by three types of experimental evidence.

  13. Two-phase flow predictions of the turbulent flow in a combustion chamber including particle-particle interactions

    NASA Astrophysics Data System (ADS)

    Breuer, Michael; Alletto, Michael

    2011-12-01

    Relying on large-eddy simulation (LES) and an efficient algorithm to track a huge number of Lagrangian particles through turbulent flow fields in general complex 3D domains, the flow in a pipe and a model combustion chamber is tackled. The influence of particle-fluid (two-way coupling) as well as particle-particle interactions (four-way coupling) is investigated. The latter is modeled based on deterministic collision detection. First, the LES results of a particle-laden vertical pipe flow with a specular wall and a mass loading of 110% are evaluated based on DNS data from the literature. Second, the predicted LES data of a ring combustion chamber at two different mass loadings (22% and 110%) are analyzed and compared with experimental measurements.

  14. SCRAM - AN ENGINEER'S TOOL FOR PREDICTION OF AIRFRAME INTEGRATED SCRAMJET PERFORMANCE

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    This program determines the one-dimensional performance for an airframe integrated supersonic combustion ramjet (scramjet). The supersonic combustion ramjet cycle, which uses hydrogen for fuel and atmospheric air for oxidation, is essential for the development of a propulsion system for single-stage-to-orbit aerospace vehicles. These vehicles are intended to be launched horizontally, as opposed to vertical launching for current space vehicles. In addition, they must achieve hypersonic flight to Mach 25 prior to orbital insertion into low Earth orbit. The propulsion system of these vehicles must be reusable, efficient, and cost effective. The scramjet cycle analysis code performs nose-to-tail, hydrogen fueled, Airframe Integrated Scramjet (AIS) simulation in a real gas flow with equilibrium thermodynamic properties. This allows ready generation of preliminary estimates for SCRAM cycle performance. SCRAM is a reliable, efficient, and speedy design tool that is useable on all standard computers down to IBM PC-AT compatible machines. Developed in the Hypersonic Propulsion Branch at NASA Langley Research Center for the Hypersonic Research Engine and Langley 3-Strut engine programs, the current version of this code has been modified by the NASA Dryden Flight Research Facility of the Ames Research Center for the purpose of supporting the Langley Strutless Parametric engine and National AeroSpace Plane (NASP) engine test programs. The current version of SCRAM optimizes the tradeoffs between the needs for computational speed, accuracy, and future modifications. The program utilizes a five station geometry model, with variable step size between each station, to analyze a vehicle nose-to-tail mass capture stream tube control-volume with real gas equilibrium flow properties. SCRAM applies the laws of Conservation of Mass, Momentum, and Energy across each step to calculate the changing flow parameters along the control volume. The code incorporates an integral boundary layer

  15. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations

    PubMed Central

    2015-01-01

    Identification of the usefulness of lipid-based formulations (LBFs) for delivery of poorly water-soluble drugs is at date mainly experimentally based. In this work we used a diverse drug data set, and more than 2,000 solubility measurements to develop experimental and computational tools to predict the loading capacity of LBFs. Computational models were developed to enable in silico prediction of solubility, and hence drug loading capacity, in the LBFs. Drug solubility in mixed mono-, di-, triglycerides (Maisine 35-1 and Capmul MCM EP) correlated (R2 0.89) as well as the drug solubility in Carbitol and other ethoxylated excipients (PEG400, R2 0.85; Polysorbate 80, R2 0.90; Cremophor EL, R2 0.93). A melting point below 150 °C was observed to result in a reasonable solubility in the glycerides. The loading capacity in LBFs was accurately calculated from solubility data in single excipients (R2 0.91). In silico models, without the demand of experimentally determined solubility, also gave good predictions of the loading capacity in these complex formulations (R2 0.79). The framework established here gives a better understanding of drug solubility in single excipients and of LBF loading capacity. The large data set studied revealed that experimental screening efforts can be rationalized by solubility measurements in key excipients or from solid state information. For the first time it was shown that loading capacity in complex formulations can be accurately predicted using molecular information extracted from calculated descriptors and thermal properties of the crystalline drug. PMID:26568134

  16. Analytical prediction of labyrinth-seal-flow-induced arotor excitation forces

    NASA Technical Reports Server (NTRS)

    Rajakumar, C.; Sisto, E.

    1985-01-01

    An analytical method to calculate the rotor excitation forces arising from labyrinth seals is presented. The objective is to model the gas flow through the seal clearance passages and cavities when the rotor is positioned eccentricly relative to the stator center. The seal flow model used in the analysis yields solutions which validate the experimentally observed influence of seal parameters on seal forces reported in the literature. The analytically predicted seal pressure distributions and forces were compared with published experimental results.

  17. Prediction of overall and blade-element performance for axial-flow pump configurations

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Okiishi, T. H.; Miller, M. J.

    1973-01-01

    A method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial flow pump configurations are described and evaluated. The method uses the blade-element flow model and an iterative numerical solution of the radial equilbrium and continuity conditions. Correlated experimental results are used to generate alternative methods for estimating blade-element turning and loss characteristics. Detailed descriptions of the computer program are included, with example input and typical computed results.

  18. Getting into the musical zone: trait emotional intelligence and amount of practice predict flow in pianists

    PubMed Central

    Marin, Manuela M.; Bhattacharya, Joydeep

    2013-01-01

    Being “in flow” or “in the zone” is defined as an extremely focused state of consciousness which occurs during intense engagement in an activity. In general, flow has been linked to peak performances (high achievement) and feelings of intense pleasure and happiness. However, empirical research on flow in music performance is scarce, although it may offer novel insights into the question of why musicians engage in musical activities for extensive periods of time. Here, we focused on individual differences in a group of 76 piano performance students and assessed their flow experience in piano performance as well as their trait emotional intelligence. Multiple regression analysis revealed that flow was predicted by the amount of daily practice and trait emotional intelligence. Other background variables (gender, age, duration of piano training and age of first piano training) were not predictive. To predict high achievement in piano performance (i.e., winning a prize in a piano competition), a seven-predictor logistic regression model was fitted to the data, and we found that the odds of winning a prize in a piano competition were predicted by the amount of daily practice and the age at which piano training began. Interestingly, a positive relationship between flow and high achievement was not supported. Further, we explored the role of musical emotions and musical styles in the induction of flow by a self-developed questionnaire. Results suggest that besides individual differences among pianists, specific structural and compositional features of musical pieces and related emotional expressions may facilitate flow experiences. Altogether, these findings highlight the role of emotion in the experience of flow during music performance and call for further experiments addressing emotion in relation to the performer and the music alike. PMID:24319434

  19. Prediction of gas-liquid two-phase flow regime in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho; Platt, Jonathan A.

    1993-01-01

    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.

  20. Prediction of forces and moments on finned bodies at high angle of attack in transonic flow

    SciTech Connect

    Oberkampf, W. L.

    1981-04-01

    This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.

  1. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  2. SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment.

    PubMed

    Sobolev, Vladimir; Eyal, Eran; Gerzon, Sergey; Potapov, Vladimir; Babor, Mariana; Prilusky, Jaime; Edelman, Marvin

    2005-07-01

    We describe a suite of SPACE tools for analysis and prediction of structures of biomolecules and their complexes. LPC/CSU software provides a common definition of inter-atomic contacts and complementarity of contacting surfaces to analyze protein structure and complexes. In the current version of LPC/CSU, analyses of water molecules and nucleic acids have been added, together with improved and expanded visualization options using Chime or Java based Jmol. The SPACE suite includes servers and programs for: structural analysis of point mutations (MutaProt); side chain modeling based on surface complementarity (SCCOMP); building a crystal environment and analysis of crystal contacts (CryCo); construction and analysis of protein contact maps (CMA) and molecular docking software (LIGIN). The SPACE suite is accessed at http://ligin.weizmann.ac.il/space. PMID:15980496

  3. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  4. Numerical predictions of flows past two tandem cylinders of different diameters under unconfined and confined flows

    NASA Astrophysics Data System (ADS)

    Jiang, Renjie; Lin, Jianzhong; Ku, Xiaoke

    2014-04-01

    Flows past two tandem cylinders of different diameters placed in a free-stream velocity and between two parallel walls are numerically studied via a lattice Boltzmann method. In both the big-small arrangement (BSA) and the small-big arrangement (SBA), the diameter of the big cylinder is adopted as the characteristic length and the diameter ratios of two cylinders are 0.5, 0.625, 0.75 and 0.875, respectively. The effects of the Reynolds number, diameter ratio, arrangement pattern, cylinder spacing and plane boundaries on the flows are systematically investigated. In the binary-vortex regime, the results show that for both the unconfined and confined cases, vortices are shed from both cylinders in a coupled frequency which is mainly dependent on the front cylinder in contrast with the case of an isolated cylinder. The vortex structures in BSA are more regular than those observed in SBA and the plane boundaries have a modulation effect on the flow. In SBA, the flow structure becomes more irregular as the diameter ratio is decreased and as the Reynolds number is increased and the mechanism of such a phenomenon is also discussed. In both BSA and SBA, when the cylinder spacing is increased to a threshold, the wake structure translates from the reattachment regime to the co-shedding regime and the critical spacing in BSA is smaller than that in SBA. As the cylinders are placed in proximity to each other, the negative and positive drag coefficients of the downstream cylinder are observed in BSA and SBA, respectively. The positive drag coefficient in SBA decreases as the diameter ratio is increased.

  5. miRNAfe: A comprehensive tool for feature extraction in microRNA prediction.

    PubMed

    Yones, Cristian A; Stegmayer, Georgina; Kamenetzky, Laura; Milone, Diego H

    2015-12-01

    miRNAfe is a comprehensive tool to extract features from RNA sequences. It is freely available as a web service, allowing a single access point to almost all state-of-the-art feature extraction methods used today in a variety of works from different authors. It has a very simple user interface, where the user only needs to load a file containing the input sequences and select the features to extract. As a result, the user obtains a text file with the features extracted, which can be used to analyze the sequences or as input to a miRNA prediction software. The tool can calculate up to 80 features where many of them are multidimensional arrays. In order to simplify the web interface, the features have been divided into six pre-defined groups, each one providing information about: primary sequence, secondary structure, thermodynamic stability, statistical stability, conservation between genomes of different species and substrings analysis of the sequences. Additionally, pre-trained classifiers are provided for prediction in different species. All algorithms to extract the features have been validated, comparing the results with the ones obtained from software of the original authors. The source code is freely available for academic use under GPL license at http://sourceforge.net/projects/sourcesinc/files/mirnafe/0.90/. A user-friendly access is provided as web interface at http://fich.unl.edu.ar/sinc/web-demo/mirnafe/. A more configurable web interface can be accessed at http://fich.unl.edu.ar/sinc/web-demo/mirnafe-full/. PMID:26499212

  6. CarSPred: a computational tool for predicting carbonylation sites of human proteins.

    PubMed

    Lv, Hongqiang; Han, Jiuqiang; Liu, Jun; Zheng, Jiguang; Liu, Ruiling; Zhong, Dexing

    2014-01-01

    Protein carbonylation is one of the most pervasive oxidative stress-induced post-translational modifications (PTMs), which plays a significant role in the etiology and progression of several human diseases. It has been regarded as a biomarker of oxidative stress due to its relatively early formation and stability compared with other oxidative PTMs. Only a subset of proteins is prone to carbonylation and most carbonyl groups are formed from lysine (K), arginine (R), threonine (T) and proline (P) residues. Recent advancements in analysis of the PTM by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites. However, the experimental approaches to identifying carbonylation sites are costly, time-consuming and capable of processing a limited number of proteins, and there is no bioinformatics method or tool devoted to predicting carbonylation sites of human proteins so far. In the paper, a computational method is proposed to identify carbonylation sites of human proteins. The method extracted four kinds of features and combined the minimum Redundancy Maximum Relevance (mRMR) feature selection criterion with weighted support vector machine (WSVM) to achieve total accuracies of 85.72%, 85.95%, 83.92% and 85.72% for K, R, T and P carbonylation site predictions respectively using 10-fold cross-validation. The final optimal feature sets were analysed, the position-specific composition and hydrophobicity environment of flanking residues of modification sites were discussed. In addition, a software tool named CarSPred has been developed to facilitate the application of the method. Datasets and the software involved in the paper are available at https://sourceforge.net/projects/hqlstudio/files/CarSPred-1.0/. PMID:25347395

  7. Natech events in mud flow prone areas. Methods and tools for risk prevention and mitigation

    NASA Astrophysics Data System (ADS)

    Ceudech, A.; Galderisi, A.; Profice, A. S.

    2009-04-01

    The main objective of the present work, which is part of a National Research Project running between 2007 and 2009, is to develop methods and tools towards a better knowledge and mitigation of the Natech risk. The work grounds on the deeping of a case study: the Municipality of Siano, in the Campania Region (Italy), located in a valley area often subjected to hydro-geological events. More specifically the examined area is periodically affected by significant hydro-geological events that trigger rapidly evolving destructive phenomena (mud flows). A liquefied gas deposit (LPG), classified as a hazardous industrial plant (according to the Seveso II Directive and the Italian Law 334/99), is also localized in the town, in an area potentially affected by mud flows, next to a residential zone and to the main way of access and escape from town. In order to single out possible strategies of mitigation and emergency management, a scenario hypothesis of events, impacts and damages was outlined, starting from singling out possible mud flows triggering points. The complexity of the problem, characterised by simultaneous mud flow events and potential secondary technological hazards, required the implementation of a GIS capable of integrating not only data deriving from different disciplinary areas (geology, land use planning) but also automatic algorithms to estimate the possible impacts and damages of each chain generated from each mud flows and taking into account the potential of secondary hazards (technological accidents). Furthermore, because the evolution of these phenomena (mud flows) highly depends on the morphology of the territory and position of the buildings, it seemed appropriate to set up a tridimensional model of the area. The scenario is sketched as a logical-conceptual chain that, grounding on the characterisation of the primary event (mud flow) and on the tridimensional model of the site and buildings, leads to single out the possible impacts of the event on

  8. Development of a high resolution modeling tool for prediction of waterflows through complex mires: Example of the Mukhrino bog complex in West Siberian middle Taiga Zone

    NASA Astrophysics Data System (ADS)

    Zarov, Evgeny A.; Schmitz, Oliver; Bleuten, Wladimir

    2015-04-01

    Water flow through peat bogs differ substantially from mineral soil landscapes. Permeability of the peatlayers decrease dramatically with depth within the permanently watersaturated peat layers (Catotelm), whereas the 10-60 cm thick superficial layer (Acrotelm) has a very high conductivity. Water flows predominantly in this acrotelm layer where an open structure of stems of mosses and few plants hardly limit water flow. By omitting this superficial flow infrastructures in many places block the waterflow. Moreover, the different bog types within a complex bog have different hydrological conductivities. Without considering the typical water-flow of bogs the construction of roads and platforms for oil and gas production threatens downhill mire ecosystems by partly drainage. The objective of our study was to develop a modeling tool which can be used to predict quantitatively spatially distributed water-flow of a bog complex. A part of the extensive bog complex "Mukhrino bog complex" located at the left bank of Irtysh river near the West Siberian town Khanty-Mansiysk' was chosen as modeling area. Water discharge from this bog catchment occurs by "waterfalls" at the East margin where a scarp with ca. 8 m elevation difference has been developed by backward erosion into the bog by the Mukhrino river. From field observations it was proven that no discharge of groundwater occurred at the margin of the bog catchment area. We used PCRaster-MODFLOW as modeling environment. The model area size was 3.8 km2, cell size 5 m and the model included 3 Acrotelm layers and 3 Catotelm layers. Thickness of Acrotelm and Catotelm have been measured by coring in transects. Input data of rain, snow have been recorded in the study area. Evapotranspiration was measured with small lysimeters and crop factors for different land unit types (open water, raised bog, patterned bog, poor fens) were elaborated by water balance modeling (1-D). Land unit types have been mapped by supervised classification

  9. Predicting heat flow in the 2001 Bhuj earthquake (Mw=7.7) region of Kachchh (Western India), using an inverse recurrence method

    NASA Astrophysics Data System (ADS)

    Vedanti, N.; Pandey, O. P.; Srivastava, R. P.; Mandal, P.; Kumar, S.; Dimri, V. P.

    2011-09-01

    Terrestrial heat flow is considered an important parameter in studying the regional geotectonic and geodynamic evolutionary history of any region. However, its distribution is still very uneven. There is hardly any information available for many geodynamically important areas. In the present study, we provide a methodology to predict the surface heat flow in areas, where detailed seismic information such as depth to the lithosphere-asthenosphere boundary (LAB) and crustal structure is known. The tool was first tested in several geotectonic blocks around the world and then used to predict the surface heat flow for the 2001 Bhuj earthquake region of Kachchh, India, which has been seismically active since historical times and where aftershock activity is still continuing nine years after the 2001 main event. Surface heat flow for this region is estimated to be about 61.3 mW m-2. Beneath this region, heat flow input from the mantle as well as the temperatures at the Moho are quite high at around 44 mW m-2 and 630 °C, respectively, possibly due to thermal restructuring of the underlying crust and mantle lithosphere. In absence of conventional data, the proposed tool may be used to estimate a first order heat flow in continental regions for geotectonic studies, as it is also unaffected by the subsurface climatic perturbations that percolate even up to 2000 m depth.

  10. Ecotoxicity on a stick: A novel analytical tool for predicting the ecotoxicity of petroleum contaminated samples

    SciTech Connect

    Parkerton, T.F.; Stone, M.A.

    1995-12-31

    Hydrocarbons generally elicit toxicity via a nonpolar narcotic mechanism. Recent research suggests that chemicals acting by this mode invoke ecotoxicity when the molar concentration in organisms lipid exceeds a critical threshold. Since ecotoxicity of nonpolar narcotic mixtures appears to be additive, the ecotoxicity of hydrocarbon mixtures thus depends upon: (1) the partitioning of individual hydrocarbons comprising the mixture from the environment to lipids and (2) the total molar sum of the constituent hydrocarbons in lipids. These insights have led previous investigators to advance the concept of biomimetic extraction as a novel tool for assessing potential narcosis-type or baseline ecotoxicity in aqueous samples. Drawing from this earlier work, the authors have developed a method to quantify Bioavailable Petroleum Hydrocarbons (BPHS) in hydrocarbon-contaminated aqueous and soil/sediment samples. A sample is equilibrated with a solid phase microextraction (SPME) fiber that serves as a surrogate for organism lipids. The total moles of hydrocarbons that partition to the SPME fiber is then quantified using a simple GC/FID procedure. Research conducted to support the development and initial validation of this method will be presented. Results suggest that BPH analyses provide a promising, cost-effective approach for predicting the ecotoxicity of environmental samples contaminated with hydrocarbon mixtures. Consequently, BPH analyses may provide a valuable analytical screening tool for ecotoxicity assessment in product and effluent testing, environmental monitoring and site remediation applications.

  11. Predicting debris flow occurrence in Eastern Italian Alps based on hydrological and geomorphological modelling

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Efthymios I.; Borga, Marco; Destro, Elisa; Marchi, Lorenzo

    2015-04-01

    Most of the work so far on the prediction of debris flow occurrence is focused on the identification of critical rainfall conditions. However, findings in the literature have shown that critical rainfall thresholds cannot always accurately identify debris flow occurrence, leading to false detections (positive or negative). One of the main reasons for this limitation is attributed to the fact that critical rainfall thresholds do not account for the characteristics of underlying land surface (e.g. geomorphology, moisture conditions, sediment availability, etc), which are strongly related to debris flow triggering. In addition, in areas where debris flows occur predominantly as a result of channel bed failure (as in many Alpine basins), the triggering factor is runoff, which suggests that identification of critical runoff conditions for debris flow prediction is more pertinent than critical rainfall. The primary objective of this study is to investigate the potential of a triggering index (TI), which combines variables related to runoff generation and channel morphology, for predicting debris flows occurrence. TI is based on a threshold criterion developed on past works (Tognacca et al., 2000; Berti and Simoni, 2005; Gregoretti and Dalla Fontana, 2008) and combines information on unit width peak flow, local channel slope and mean grain size. Estimation of peak discharge is based on the application of a distributed hydrologic model, while local channel slope is derived from a high-resolution (5m) DEM. Scaling functions of peak flows and channel width with drainage area are adopted since it is not possible to measure channel width or simulate peak flow at all channel nodes. TI values are mapped over the channel network thus allowing spatially distributed prediction but instead of identifying debris flow occurrence on single points, we identify their occurrence with reference to the tributary catchment involved. Evaluation of TI is carried out for five different basins

  12. The morphology of lava flows in planetary environments - Predictions from analog experiments

    NASA Technical Reports Server (NTRS)

    Griffiths, Ross W.; Fink, Jonathan H.

    1992-01-01

    Computations are carried out of the rates of surface cooling and lateral flow of lavas extruded onto the surfaces of terrestrial planets and the outer planet satellites, and the likely flow morphologies predicted by extrapolation of the laboratory analog results are determined. Results of this approach are presented for the earth, Venus, Mars, the moon, and the silicate flows on Io. The experiments, which involved the spreading of a viscous liquid under gravity in the presence of a solidifying surface crust, revealed a set of four distinct surface morphologies.

  13. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool - A case of predicting potential zones of sustainable groundwater resources

    NASA Astrophysics Data System (ADS)

    Adiat, K. A. N.; Nawawi, M. N. M.; Abdullah, K.

    2012-05-01

    SummaryInappropriate handling/integration of data from various sources is a problem that can make any spatial prediction tasking and inaccurate. Attempt was made in this study to offer solution to this problem by exploring the capability of GIS-based elementary MCDA as a spatial prediction tool. In order to achieve the set objectives, spatial prediction of potential zones of sustainable groundwater resources in a given study area was used as a case study. A total of five set of criteria/factors believed to be influencing groundwater storage potential in the area were selected. Each criterion/factor was assigned appropriate weight based on Saaty's 9 point scale and the weights were normalized through the analytic hierarchy process (AHP). The process was integrated in the GIS environment to produce the groundwater potential prediction map for the area. The effect of coherence of criteria on the efficiency of MCDA as a prediction tool was also examined. The prediction map produced was found to be 81.25% accurate. The results of the examination of the effect of coherence of criteria revealed that the ability of the method to produce accurate prediction is dependent on the exhaustiveness of the set of criteria used. It was established in the study that the GIS-based elementary MCDA technique is capable of producing accurate and reliable prediction particularly if the set of criteria use for the prediction is coherent.

  14. Numerical Prediction of Transient Axial Thrust and Internal Flows in a Rocket Engine Turbopump

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine; Bailey, John W.; Majumdar, Alok

    1999-01-01

    This paper presents the application of the Generalized Fluid System Simulation Program (GFSSP) to model the time-dependent flow in a complex secondary flow circuit of the turbopump of the Fastrac engine currently under development at Marshall Space Flight Center. GFSSP is a general purpose computer program for analyzing steady-state and time-dependant flowrates, pressures, temperatures, and concentrations in a complex flow network. The program employs a finite volume formulation of mass, momentum and energy conservation equations in conjunction with the thermodynamic equation of state of real fluids. GFSSP was used to calculate the axial thrust and internal flow distribution of the Fastrac engine turbopump during the start and shut down transients. The models discussed in this paper use boundary conditions that were extracted from turbopump test data. The GFSSP predicted turbopump secondary flow passage pressures and temperatures were compared with actual measured values.

  15. A predictive, size-dependent continuum model for dense granular flows

    PubMed Central

    Henann, David L.; Kamrin, Ken

    2013-01-01

    Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular flow, posing an obstacle in industrial and geophysical applications. Here we propose a 3D constitutive model for well-developed, dense granular flows aimed at filling this need. The key ingredient of the theory is a grain-size-dependent nonlocal rheology—inspired by efforts for emulsions—in which flow at a point is affected by the local stress as well as the flow in neighboring material. The microscopic physical basis for this approach borrows from recent principles in soft glassy rheology. The size-dependence is captured using a single material parameter, and the resulting model is able to quantitatively describe dense granular flows in an array of different geometries. Of particular importance, it passes the stringent test of capturing all aspects of the highly nontrivial flows observed in split-bottom cells—a geometry that has resisted modeling efforts for nearly a decade. A key benefit of the model is its simple-to-implement and highly predictive final form, as needed for many real-world applications. PMID:23536300

  16. Turbulent flow computation through a model Francis turbine and its performance prediction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liu, S.; Wu, X.; Dou, H.; Zhang, L.; Tao, X.

    2010-08-01

    In this paper an improved k-ω turbulence model is proposed, which brings the nonlinear term of the mean fluid flow transition to the ω equation in the original k-ω model of Wilcox. Based on the improved k-ω turbulence model, three dimensional turbulent flow computation is carried out through the whole flow passage including the spiral casing, stay vanes, guide vanes, runner and draft tube of a model Francis turbine. In calculation the direct coupling method is used to solve the RANS turbulent flow governing equations for the Francis model turbine by Ansys CFX software. Since the feasibility of the improved k-ω turbulence model to hydro-turbine performance prediction is the present main concern, its validation is conducted by the steady flow simulation. Comparisons of the computational results on energy characteristics with test data and with different turbulence models at different flow rate cases indicate that the present method has sufficient potential to simulate the turbulent flow in hydraulic turbines and to predict their performances.

  17. Predicting pathogen growth during short-term temperature abuse of raw pork, beef, and poultry products: use of an isothermal-based predictive tool.

    PubMed

    Ingham, Steven C; Fanslau, Melody A; Burnham, Greg M; Ingham, Barbara H; Norback, John P; Schaffner, Donald W

    2007-06-01

    A computer-based tool (available at: www.wisc.edu/foodsafety/meatresearch) was developed for predicting pathogen growth in raw pork, beef, and poultry meat. The tool, THERM (temperature history evaluation for raw meats), predicts the growth of pathogens in pork and beef (Escherichia coli O157:H7, Salmonella serovars, and Staphylococcus aureus) and on poultry (Salmonella serovars and S. aureus) during short-term temperature abuse. The model was developed as follows: 25-g samples of raw ground pork, beef, and turkey were inoculated with a five-strain cocktail of the target pathogen(s) and held at isothermal temperatures from 10 to 43.3 degrees C. Log CFU per sample data were obtained for each pathogen and used to determine lag-phase duration (LPD) and growth rate (GR) by DMFit software. The LPD and GR were used to develop the THERM predictive tool, into which chronological time and temperature data for raw meat processing and storage are entered. The THERM tool then predicts a delta log CFU value for the desired pathogen-product combination. The accuracy of THERM was tested in 20 different inoculation experiments that involved multiple products (coarse-ground beef, skinless chicken breast meat, turkey scapula meat, and ground turkey) and temperature-abuse scenarios. With the time-temperature data from each experiment, THERM accurately predicted the pathogen growth and no growth (with growth defined as delta log CFU > 0.3) in 67, 85, and 95% of the experiments with E. coli 0157:H7, Salmonella serovars, and S. aureus, respectively, and yielded fail-safe predictions in the remaining experiments. We conclude that THERM is a useful tool for qualitatively predicting pathogen behavior (growth and no growth) in raw meats. Potential applications include evaluating process deviations and critical limits under the HACCP (hazard analysis critical control point) system. PMID:17612076

  18. MODFLOW 2.0: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F.; Paik, I.K.

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  19. Code requirements document: MODFLOW 2.1: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F.; Paik, I.K.

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  20. Code requirements document: MODFLOW 2. 1: A program for predicting moderator flow patterns

    SciTech Connect

    Peterson, P.F. . Dept. of Nuclear Engineering); Paik, I.K. )

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  1. A risk-based predictive tool to prevent accidental introductions of nonindigenous marine species.

    PubMed

    Floerl, Oliver; Inglis, Graeme J; Hayden, Barbara J

    2005-06-01

    Preventing the introduction of nonindigenous species (NIS) is the most efficient way to avoid the costs and impacts of biological invasions. The transport of fouling species on ship hulls is an important vector for the introduction of marine NIS. We use quantitative risk screening techniques to develop a predictive tool of the abundance and variety of organisms being transported by ocean-going yachts. We developed and calibrated an ordinal rank scale of the abundance of fouling assemblages on the hulls of international yacht hulls arriving in New Zealand. Fouling ranks were allocated to 783 international yachts that arrived in New Zealand between 2002 and 2004. Classification tree analysis was used to identify relationships between the fouling ranks and predictor variables that described the maintenance and travel history of the yachts. The fouling ranks provided reliable indications of the actual abundance and variety of fouling assemblages on the yachts and identified most (60%) yachts that had fouling on their hulls. However, classification tree models explained comparatively little of the variation in the distribution of fouling ranks (22.1%), had high misclassification rates (approximately 43%), and low predictive power. In agreement with other studies, the best model selected the age of the toxic antifouling paint on yacht hulls as the principal risk factor for hull fouling. Our study shows that the transport probability of fouling organisms is the result of a complex suite of interacting factors and that large sample sizes will be needed for calibration of robust risk models. PMID:15940401

  2. A software tool for material data analysis and property prediction: CASAC-ANA

    SciTech Connect

    Zhou, J.; Xie, Q.; Feng, J.; Li, S.; Xu, Z.; Chen, L.; Gui, Z.

    1995-12-31

    In this paper, a user-friendly software, CASAC-ANA, for material data analysis and property prediction is presented. In CASAC-ANA, there are seven methods: Nonlinear Mapping (NLM), Principal Component Analysis (PCA), Stepwise Discriminant Analysis (SDA), Discriminant Analysis with Constellation Graph (DACG), Hierarchical Clustering Analysis (HCA), Stepwise Multiple Linear Regression (SMLR), and Artificial Neural Networks (ANN). The software has some noteworthy features: (1) only one input file is needed and multipath output is produced; (2) both quantitative and qualitative data of dependent variables are accepted; and (3) it is easy to link with materials property databases. As a generalized modeling tool, CASAC-ANA can be used to treat material data concerning composition, technological processes, properties, and to predict properties of materials. The validity of the CASAC-ANA software has been tested successfully with three typical case studies concerning structural alloy steels, nickel-base superalloys, and continuously cast copper alloys. These CASAC-ANA methods have been compared and discussed.

  3. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity

    PubMed Central

    Grimm, Dominik G.; Azencott, Chloé-Agathe; Aicheler, Fabian; Gieraths, Udo; MacArthur, Daniel G.; Samocha, Kaitlin E.; Cooper, David N.; Stenson, Peter D.; Daly, Mark J.; Smoller, Jordan W.; Duncan, Laramie E.; Borgwardt, Karsten M.

    2015-01-01

    Prioritizing missense variants for further experimental investigation is a key challenge in current sequencing studies for exploring complex and Mendelian diseases. A large number of in silico tools have been employed for the task of pathogenicity prediction, including PolyPhen-2, SIFT, FatHMM, MutationTaster-2, MutationAssessor, CADD, LRT, phyloP and GERP++, as well as optimized methods of combining tool scores, such as Condel and Logit. Due to the wealth of these methods, an important practical question to answer is which of these tools generalize best, that is, correctly predict the pathogenic character of new variants. We here demonstrate in a study of ten tools on five datasets that such a comparative evaluation of these tools is hindered by two types of circularity: they arise due to (1) the same variants or (2) different variants from the same protein occurring both in the datasets used for training and for evaluation of these tools, which may lead to overly optimistic results. We show that comparative evaluations of predictors that do not address these types of circularity may erroneously conclude that circularity-confounded tools are most accurate among all tools, and may even outperform optimized combinations of tools. PMID:25684150

  4. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity.

    PubMed

    Grimm, Dominik G; Azencott, Chloé-Agathe; Aicheler, Fabian; Gieraths, Udo; MacArthur, Daniel G; Samocha, Kaitlin E; Cooper, David N; Stenson, Peter D; Daly, Mark J; Smoller, Jordan W; Duncan, Laramie E; Borgwardt, Karsten M

    2015-05-01

    Prioritizing missense variants for further experimental investigation is a key challenge in current sequencing studies for exploring complex and Mendelian diseases. A large number of in silico tools have been employed for the task of pathogenicity prediction, including PolyPhen-2, SIFT, FatHMM, MutationTaster-2, MutationAssessor, Combined Annotation Dependent Depletion, LRT, phyloP, and GERP++, as well as optimized methods of combining tool scores, such as Condel and Logit. Due to the wealth of these methods, an important practical question to answer is which of these tools generalize best, that is, correctly predict the pathogenic character of new variants. We here demonstrate in a study of 10 tools on five datasets that such a comparative evaluation of these tools is hindered by two types of circularity: they arise due to (1) the same variants or (2) different variants from the same protein occurring both in the datasets used for training and for evaluation of these tools, which may lead to overly optimistic results. We show that comparative evaluations of predictors that do not address these types of circularity may erroneously conclude that circularity confounded tools are most accurate among all tools, and may even outperform optimized combinations of tools. PMID:25684150

  5. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  6. Outcome Prediction of Consciousness Disorders in the Acute Stage Based on a Complementary Motor Behavioural Tool

    PubMed Central

    Jöhr, Jane; Gilart de Keranflec'h, Charlotte; Van De Ville, Dimitri; Preti, Maria Giulia; Meskaldji, Djalel E.; Hömberg, Volker; Laureys, Steven; Draganski, Bogdan; Frackowiak, Richard; Diserens, Karin

    2016-01-01

    Introduction Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. Methods From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. Results Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation

  7. Potential of thermal imaging as a tool for prediction of cardiovascular disease

    PubMed Central

    Thiruvengadam, Jayanthi; Anburajan, M.; Menaka, M.; Venkatraman, B.

    2014-01-01

    Vascular dysfunction is associated with onset of cardiovascular disease (CVD). Its effect is reflected as temperature change on the skin. The aim of this work was to test the potential of thermal imaging as cost effective screening tool for prediction of CVD. Thermal imaging of various parts of the subject (N = 80, male/female =44/36, aged 25-75 years) was done using noncontact infrared (IR) camera. In each subject, total cholesterol (TC; mg/dl) and high-density lipoprotein (HDL, mg/dl) were measured according to standard biochemical analysis. Based on National Cholesterol Education Program ATP III criteria, subject with known CVD (N = 16) and age- and sex- matched normal subjects (N = 21) were included in the study. The average surface temperature of various parts from head to toe was calculated and statistical analysis was performed between the groups. In the total population (N = 37), correlation study shows TC (mg/dl) was correlated with measured surface temperature of the following regions: Temporal left (r = −0.316) and right (r = −0.417), neck left (r = 0.347) and right (r = −0.410), and hand left (r = 0.387). HDL (mg/dl) was found to be correlated with measured surface temperature of the following regions: Temporal left (r = 0.445) and right (r = 0.458), hand left (r = −0.470), and foot anterior left (r = −0.332) and right (r = −0.336). Temperature asymmetry was more significant in upper extremity in CVD group. Using the surface temperature, regression models were calculated for noninvasive estimation of TC and HDL. The predictive ability of measured surface temperature for TC and HDL was 60%. The model for noninvasive estimation gave sensitivity and specificity value of 79 and 83% for TC and 78 and 81% for HDL, respectively. Thus, the surface temperature can be one of the screening tools for prediction of CVD. The limitation of the present study is also discussed under future work. PMID:24872607

  8. Same admissions tools, different outcomes: a critical perspective on predictive validity in three undergraduate medical schools

    PubMed Central

    2013-01-01

    Background Admission to medical school is one of the most highly competitive entry points in higher education. Considerable investment is made by universities to develop selection processes that aim to identify the most appropriate candidates for their medical programs. This paper explores data from three undergraduate medical schools to offer a critical perspective of predictive validity in medical admissions. Methods This study examined 650 undergraduate medical students from three Australian universities as they progressed through the initial years of medical school (accounting for approximately 25 per cent of all commencing undergraduate medical students in Australia in 2006 and 2007). Admissions criteria (aptitude test score based on UMAT, school result and interview score) were correlated with GPA over four years of study. Standard regression of each of the three admissions variables on GPA, for each institution at each year level was also conducted. Results Overall, the data found positive correlations between performance in medical school, school achievement and UMAT, but not interview. However, there were substantial differences between schools, across year levels, and within sections of UMAT exposed. Despite this, each admission variable was shown to add towards explaining course performance, net of other variables. Conclusion The findings suggest the strength of multiple admissions tools in predicting outcomes of medical students. However, they also highlight the large differences in outcomes achieved by different schools, thus emphasising the pitfalls of generalising results from predictive validity studies without recognising the diverse ways in which they are designed and the variation in the institutional contexts in which they are administered. The assumption that high-positive correlations are desirable (or even expected) in these studies is also problematised. PMID:24373207

  9. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    SciTech Connect

    Dong, Jing; Mahmassani, Hani S.

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  10. Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2000-01-01

    In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone

  11. Predictions and experiments of the VAWT viscous flow field. [Vertical Axis Wind Turbine

    SciTech Connect

    Paraschivoiu, I.; Rajagopalan, R.G.; Masson, C.

    1987-06-01

    The first objective of the work was to compare the aerodynamic loads and performance predicted by the double-multiple-streamtube model with the viscous-flow-field analysis of a vertical-axis wind turbine. Second, to check the validity of the two performance/load models, their predictions were compared with available experimental data. When the dynamic effects at low tip-speed ratios (dynamic stall) and added mass and circulatory effects at high tip-speed ratios were included, significant improvement was obtained in the prediction of the aerodynamic characteristics of the turbine, such as induced velocities and instantaneous blade forces. 11 references.

  12. A prediction method for flow in the Shuttle tile strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1987-01-01

    The Shuttle Orbiter thermal protection system uses a Strain Isolation Pad (SIP) between the tile and the Orbiter. This paper presents experimental measurements of the pressure drop and associated flow rate through a sample of the SIP material. Included are data for a range of air densities representative of Shuttle ascent and re-entry trajectories. Also presented are new theoretical and correlative methods which predict the experimental data. These methods will help in predicting venting characteristics of tile assemblies during ascent, and hot gas leak under the tiles during descent. The predictive philosophy developed is useful in the study of fibrous and porous media fluid mechanics.

  13. Prediction of effects of hydraulic fracturing using reservoir and well flow simulation

    SciTech Connect

    Mineyuki Hanano; Tayuki Kondo

    1992-01-01

    This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

  14. Shear-wave splitting as a diagnostic tool for resolving plume-related mantle flow around hotspots

    NASA Astrophysics Data System (ADS)

    Bokelmann, G. H.; Walker, K. T.; Klemperer, S. L.

    2003-12-01

    beneath Hawaii, Eifel, and eastern Nevada. The best plume model for Hawaii fits the few observations well, but more data are needed to critically test it. The optimum Eifel plume model predicts the splitting fast directions fairly well, with complexity observed between nearby stations that suggests contributions from lithospheric and/or shallow asthenospheric sources. Fast directions from six stations in Idaho, in addition to splitting data collected across eastern Idaho, western Utah, and Nevada are predicted well by a plume model centered in eastern Nevada, but not beneath Yellowstone. We show that shear-wave splitting may be resolving plume-related mantle flow around some hotspots, and therefore if enough splitting data are collected, they could be used as a diagnostic tool to help resolve between plume and non-plume sources for other hotspots. A helpful complement to such future splitting investigations are regional surface-wave anisotropy investigations to better determine the depth extent of azimuthal anisotropy, and the development of better tools that more accurately predict fast directions and delay times from numerical mantle flow models.

  15. Prediction of flow separation from aircraft tails using a RSM turbulence model

    NASA Astrophysics Data System (ADS)

    Masi, Andrea; Benton, Jeremy; Tucker, Paul G.

    2014-11-01

    Enhancing engineers' capability to predict flow separation would generate important benefits in aircraft design. In this study the attention is focused on the vertical tail plane (VTP), which consists of a fixed part (the fin) and a moveable control surface (the rudder). For standard two-engine aircraft configurations, the size of the VTP is driven by the condition of loss of an engine during takeoff and low speed climb: in this condition the fin and the rudder have to be sufficient in size to balance the aircraft. Due to uncertainties in prediction of VTP effectiveness, aircraft designers keep to a conservative approach, risking specifying a larger size for the VTP than it is probably necessary. Uncertainties come from difficulties in predicting the separation of the flow from the surfaces of the aircraft using current CFD techniques, which are based on the use of RANS equations with eddy viscosity turbulence models. The CFD simulations presented in this study investigate the use of a RSM turbulence model with RANS and URANS. The introduction of a time-dependency gives benefits in the accuracy of the flow solution in presence of massive flow separation. This leads to the investigation of hybrid RANS/LES techniques with the aim of improving the solution of the detached flow. EU FP7 project ANADE (Grant Agreement Number 289428).

  16. On the prediction of the phase distribution of bubbly flow in a horizontal pipe.

    PubMed

    Yeoh, G H; Cheung, Sherman C P; Tu, J Y

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  17. Defining boundary conditions for RANS predictions of urban flows using mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Garcia Sanchez, Clara; Gorle, Catherine; van Beeck, Jeroen

    2015-11-01

    Pollutant dispersion and wind flows in urban canopies are major concerns for human health and energy, and the complex nature of the flow and transport processes remains a challenge when using Computational Fluid Dynamics (CFD) to predict wind flows. The definition of the inflow boundary condition in Reynolds-Averaged Navier-Stokes simulations (RANS) is one of the uncertainties that will strongly influence the prediction of the flow field, and thus, the dispersion pattern. The goal of the work presented is to define a methodology that improves the level of realism in the inflow condition for RANS simulations by accounting for larger mesoscale effects. The Weather Research and Forecasting model (WRF) is used to forecast mesoscale flow patterns, and two different approaches are used to define inflow conditions for the RANS simulations performed with OpenFOAM: 1) WRF variables such as local velocity magnitude, ABL height and friction velocity are directly interpolated onto the boundaries of the CFD domain; 2) WRF predictions for the geostrophic wind and friction velocity are applied as a forcing boundary condition. Simulations of the Joint Urban 2003 experimental campaign in Oklahoma City have been performed using both approaches and a comparison of the results will be presented.

  18. On the prediction of the phase distribution of bubbly flow in a horizontal pipe

    PubMed Central

    Yeoh, G.H.; Cheung, Sherman C.P.; Tu, J.Y.

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  19. Numerical prediction of three-dimensional juncture region flow using the parabolic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.

    1979-01-01

    A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.

  20. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    NASA Astrophysics Data System (ADS)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  1. Predictive Capabilities of a Relaxation Model for Parcel-Based Granular Flow Simulations

    NASA Astrophysics Data System (ADS)

    Radl, Stefan; Sundaresan, Sankaran

    2011-11-01

    Parcel-based methods have a great potential to reduce the computational cost of particle simulations for dense flows. Here we investigate a relaxation model, similar to that of Bhatnagar-Gross-Krook (BGK), when applied to such a parcel-based simulation method. Specifically, we have chosen the simulation methodology initially proposed by Patankar and Joseph, and combined it with the relaxation model published by O'Rourke and Snider. We show that a relaxation model is key to correctly predicting macroscopic flow features, e.g., the scattering pattern of a granular jet impinging on a flat surface, studied experimentally by Cheng et al.. Simple shear flow simulations reveal that calculation of the locally-averaged velocity is a critical ingredient to correctly predict streaming and collisional stresses. SR acknowledges the support of the Austrian Science Foundation through the Erwin-Schroedinger fellowship J-3072.

  2. On the Vortical-Flow Prediction Capability of an Unstructured-Grid Euler Solver

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1994-01-01

    The results from a concentrated computational effort are presented with the primary objective being directed at evaluating the vortical-flow-prediction capability of an unstructured-grid Euler solver. Both viscous and inviscid solutions, obtained from an established structured-grid method, along with an experimental wind-tunnel data are used as bench-mark measures to assess the validity of the unstructured-grid Euler results. Viscous effects on vortical flows are first identified by comparing the viscous and inviscid solutions obtained form the structured-grid method. Computational data analysis are then presented which reveal excellent correlations between the inviscid structured and unstructured-grid results in terms of off-surface flow structures, surface pressure distribution and the predicted longitudinal aerodynamic characteristics. The sensitivity of the unstructured-grid inviscid solutions to grid refinement is also discussed along with an analysis of the convergence and performance characteristics for each method.

  3. Measurement of velocity and kinetic energy of turbulence in swirling flows and their numerical prediction

    NASA Astrophysics Data System (ADS)

    Sampath, S.; Ganesan, V.

    1986-04-01

    A method is offered for measuring turbulence levels in three directions in gas turbine combustion systems and high intensity industrial furnaces, using a hot wire anemometer. A detailed analysis of the turbulence in the flow is necessary to achieve optimum combustion conditions, and until now there has been no established method available for measuring turbulence in swirling and recirculating flows. The merit of the new method is the use of a single-wire probe rather than the X-probe. The method has been used to measure turbulence levels in swirling recirculating flows generated by vane swirlers. From the measured turbulence levels, the kinetic energy of turbulence has been calculated and the results are compared with a well-established numerical prediction method. Mean velocity measurements have also been made using a 3-hole Pitot probe. The agreement between the measured and predicted values is quite satisfactory.

  4. Validity of a simple Internet-based outcome-prediction tool in patients with total hip replacement: a pilot study.

    PubMed

    Stöckli, Cornel; Theiler, Robert; Sidelnikov, Eduard; Balsiger, Maria; Ferrari, Stephen M; Buchzig, Beatus; Uehlinger, Kurt; Riniker, Christoph; Bischoff-Ferrari, Heike A

    2014-04-01

    We developed a user-friendly Internet-based tool for patients undergoing total hip replacement (THR) due to osteoarthritis to predict their pain and function after surgery. In the first step, the key questions were identified by statistical modelling in a data set of 375 patients undergoing THR. Based on multiple regression, we identified the two most predictive WOMAC questions for pain and the three most predictive WOMAC questions for functional outcome, while controlling for comorbidity, body mass index, age, gender and specific comorbidities relevant to the outcome. In the second step, a pilot study was performed to validate the resulting tool against the full WOMAC questionnaire among 108 patients undergoing THR. The mean difference between observed (WOMAC) and model-predicted value was -1.1 points (95% confidence interval, CI -3.8, 1.5) for pain and -2.5 points (95% CI -5.3, 0.3) for function. The model-predicted value was within 20% of the observed value in 48% of cases for pain and in 57% of cases for function. The tool demonstrated moderate validity, but performed weakly for patients with extreme levels of pain and extreme functional limitations at 3 months post surgery. This may have been partly due to early complications after surgery. However, the outcome-prediction tool may be useful in helping patients to become better informed about the realistic outcome of their THR. PMID:24585892

  5. Developing tools to link environmental flows science and its practice in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Eriyagma, N.; Jinapala, K.

    2014-09-01

    The term "Environmental Flows (EF)" may be defined as "the quantity, timing and quality of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems". It may be regarded as "water for nature" or "environmental demand" similar to crop water requirements, industrial or domestic water demand. The practice of EF is still limited to a few developed countries such as Australia, South Africa and the UK. In many developing countries EF is rarely considered in water resources planning and is often deemed "unimportant". Sri Lanka, being a developing country, is no exception to this general rule. Although the country underwent an extensive irrigation/water resources development phase during the 1960s through to the 1980s, the concept of EF was hardly considered. However, as Sri Lanka's water resources are being exploited more and more for human usage, ecologists, water practitioners and policymakers alike have realized the importance of EF in sustaining not only freshwater and estuarine ecosystems, but also their services to humans. Hence estimation of EF has been made mandatory in environmental impact assessments (EIAs) of all large development projects involving river regulation/water abstraction. Considering EF is especially vital under the rapid urbanization and infrastructure development phase that dawned after the end of the war in the North and the East of the country in 2009. This paper details simple tools (including a software package which is under development) and methods that may be used for coarse scale estimation of EF at/near monitored locations on major rivers of Sri Lanka, along with example applications to two locations on River Mahaweli. It is hoped that these tools will help bridge the gap between EF science and its practice in Sri Lanka and other developing countries.

  6. Vortical Flow Prediction using an Adaptive Unstructured Grid Method. Chapter 11

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2009-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving vortical flow problems. The first test case concerns vortex flow over a simple 65 delta wing with different values of leading-edge radius. Although the geometry is quite simple, it poses a challenging problem for computing vortices originating from blunt leading edges. The second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the wind-tunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  7. Literature search of publications concerning the prediction of dynamic inlet flow distortion and related topics

    NASA Technical Reports Server (NTRS)

    Schweikhhard, W. G.; Chen, Y. S.

    1983-01-01

    Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.

  8. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation.

    PubMed

    Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  9. Predicting Flow Reversals in a Computational Fluid Dynamics Simulated Thermosyphon Using Data Assimilation

    PubMed Central

    Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.

    2016-01-01

    A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061

  10. A disaggregation theory for predicting concentration gradient distributions in heterogeneous flows

    NASA Astrophysics Data System (ADS)

    Le Borgne, Tanguy; Huck, Peter; Dentz, Marco; Villermaux, Emmanuel

    2016-04-01

    Many transport processes occurring in fluid flows depend on concentration gradients, including a wide range of chemical reactions, such as mixing-driven precipitation, and biological processes, such as chemotaxis. A general framework for predicting the distribution of concentration gradients in heterogeneous flow fields is proposed based on a disaggregation theory. The evolution of concentration fields under the combined action of heterogeneous advection and diffusion is quantified from the analysis of the development and aggregation of elementary lamellar structures, which naturally form under the stretching action of flow fields. Therefore spatial correlations in concentrations can be estimated based on the understanding of the lamellae aggregation process that determine the concentration levels at neighboring spatial locations. Using this principle we quantify the temporal evolution of the concentration gradient Probability Density Functions in heterogeneous Darcy fields for arbitrary Peclet numbers. This approach is shown to provide accurate predictions of concentration gradient distributions for a range of flow systems, including turbulent flows and low Reynolds number porous media flows, for confined and dispersing mixtures.

  11. Prediction of flow and drawdown for the site characterization and validation site in the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Mauldon, A.D.; Nelson, K.; Martel, S.; Fuller, P.; and Karasaki, K.

    1992-01-01

    Geophysical and hydrologic data from a location in the Stripa Mine in Sweden, called the Site Characterization and Validation (SCV) block, has been used to create a series of models for flow through the fracture network. The models can be characterized as ``equivalent discontinuum`` models. Equivalent discontinuum models are derived starting from a specified lattice or 6 ``template``. An inverse analysis called ``Simulated Annealing`` is used to make a random search through the elements of the lattice to find a configuration that can reproduce the measured responses. Evidence at Stripa points to hydrology which is dominated by fracture zones. These have been identified and located through extensive characterization efforts. Lattice templates were arranged to lie on the fracture zones identified by Black and Olsson. The fundamental goal of this project was to build a fracture flow model based an initial data set, and use this model to make predictions of the flow behavior during a new test. Then given data from the new test, predict a second test, etc. The first data set was an interference test called C1-2. Both a two-dimensional and a three-dimensional model were annealed to the C1-2 data and use this model to predict the behavior of the Simulated Drift Experiment (SDE). The SDE measured the flow into, and drawdown due to reducing the pressure in a group of 6 parallel boreholes. Then both the C1-2 and SDE data were used to predict the flow into and drawdown due to an excavation, the Validation Drift (VD), made through the boreholes. Finally, all the data was used to predict the hydrologic response to opening another hole, T1.

  12. Prediction of flow and drawdown for the site characterization and validation site in the Stripa Mine

    SciTech Connect

    Long, J.C.S.; Mauldon, A.D.; Nelson, K.; Martel, S.; Fuller, P.; and Karasaki, K.

    1992-01-01

    Geophysical and hydrologic data from a location in the Stripa Mine in Sweden, called the Site Characterization and Validation (SCV) block, has been used to create a series of models for flow through the fracture network. The models can be characterized as equivalent discontinuum'' models. Equivalent discontinuum models are derived starting from a specified lattice or 6 template''. An inverse analysis called Simulated Annealing'' is used to make a random search through the elements of the lattice to find a configuration that can reproduce the measured responses. Evidence at Stripa points to hydrology which is dominated by fracture zones. These have been identified and located through extensive characterization efforts. Lattice templates were arranged to lie on the fracture zones identified by Black and Olsson. The fundamental goal of this project was to build a fracture flow model based an initial data set, and use this model to make predictions of the flow behavior during a new test. Then given data from the new test, predict a second test, etc. The first data set was an interference test called C1-2. Both a two-dimensional and a three-dimensional model were annealed to the C1-2 data and use this model to predict the behavior of the Simulated Drift Experiment (SDE). The SDE measured the flow into, and drawdown due to reducing the pressure in a group of 6 parallel boreholes. Then both the C1-2 and SDE data were used to predict the flow into and drawdown due to an excavation, the Validation Drift (VD), made through the boreholes. Finally, all the data was used to predict the hydrologic response to opening another hole, T1.

  13. Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Bocquet, Lydéric

    2016-06-01

    In this paper, we investigate the hydrodynamic permeance of water through graphene-based membranes, inspired by recent experimental findings on graphene-oxide membranes. We consider the flow across multiple graphene layers having nanoslits in a staggered alignment, with an inter-layer distance ranging from sub-nanometer to a few nanometers. We compare results for the permeability obtained by means of molecular dynamics simulations to continuum predictions obtained by using the lattice Boltzmann calculations and hydrodynamic modelization. This highlights that, in spite of extreme confinement, the permeability across the graphene-based membrane is quantitatively predicted on the basis of a continuum expression, taking properly into account entrance and slippage effects of the confined water flow. Our predictions refute the breakdown of hydrodynamics at small scales in these membrane systems. They constitute a benchmark to which we compare published experimental data.

  14. Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions.

    PubMed

    Yoshida, Hiroaki; Bocquet, Lydéric

    2016-06-21

    In this paper, we investigate the hydrodynamic permeance of water through graphene-based membranes, inspired by recent experimental findings on graphene-oxide membranes. We consider the flow across multiple graphene layers having nanoslits in a staggered alignment, with an inter-layer distance ranging from sub-nanometer to a few nanometers. We compare results for the permeability obtained by means of molecular dynamics simulations to continuum predictions obtained by using the lattice Boltzmann calculations and hydrodynamic modelization. This highlights that, in spite of extreme confinement, the permeability across the graphene-based membrane is quantitatively predicted on the basis of a continuum expression, taking properly into account entrance and slippage effects of the confined water flow. Our predictions refute the breakdown of hydrodynamics at small scales in these membrane systems. They constitute a benchmark to which we compare published experimental data. PMID:27334184

  15. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    SciTech Connect

    Lenormand, R.

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  16. An Introduction to Automated Flow Cytometry Gating Tools and Their Implementation

    PubMed Central

    Verschoor, Chris P.; Lelic, Alina; Bramson, Jonathan L.; Bowdish, Dawn M. E.

    2015-01-01

    Current flow cytometry (FCM) reagents and instrumentation allow for the measurement of an unprecedented number of parameters for any given cell within a homogenous or heterogeneous population. While this provides a great deal of power for hypothesis testing, it also generates a vast amount of data, which is typically analyzed manually through a processing called “gating.” For large experiments, such as high-content screens, in which many parameters are measured, the time required for manual analysis as well as the technical variability inherent to manual gating can increase dramatically, even becoming prohibitive depending on the clinical or research goal. In the following article, we aim to provide the reader an overview of automated FCM analysis as well as an example of the implementation of FLOw Clustering without K, a tool that we consider accessible to researchers of all levels of computational expertise. In most cases, computational assistance methods are more reproducible and much faster than manual gating, and for some, also allow for the discovery of cellular populations that might not be expected or evident to the researcher. We urge any researcher who is planning or has previously performed large FCM experiments to consider implementing computational assistance into their analysis pipeline. PMID:26284066

  17. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.

    PubMed

    Wang, Xiaofeng; Yan, Renxiang; Li, Jinyan; Song, Jiangning

    2016-08-16

    Protein S-sulfenylation (SOH) is a type of post-translational modification through the oxidation of cysteine thiols to sulfenic acids. It acts as a redox switch to modulate versatile cellular processes and plays important roles in signal transduction, protein folding and enzymatic catalysis. Reversible SOH is also a key component for maintaining redox homeostasis and has been implicated in a variety of human diseases, such as cancer, diabetes, and atherosclerosis, due to redox imbalance. Despite its significance, the in situ trapping of the entire 'sulfenome' remains a major challenge. Yang et al. have recently experimentally identified about 1000 SOH sites, providing an enriched benchmark SOH dataset. In this work, we developed a new ensemble learning tool SOHPRED for identifying protein SOH sites based on the compositions of enriched amino acids and the physicochemical properties of residues surrounding SOH sites. SOHPRED was built based on four complementary predictors, i.e. a naive Bayesian predictor, a random forest predictor and two support vector machine predictors, whose training features are, respectively, amino acid occurrences, physicochemical properties, frequencies of k-spaced amino acid pairs and sequence profiles. Benchmarking experiments on the 5-fold cross validation and independent tests show that SOHPRED achieved AUC values of 0.784 and 0.799, respectively, which outperforms several previously developed tools. As a real application of SOHPRED, we predicted potential SOH sites for 193 S-sulfenylated substrates, which had been experimentally detected through a global sulfenome profiling in living cells, though the actual SOH sites were not determined. The web server of SOHPRED has been made publicly available at for the wider research community. The source codes and the benchmark datasets can be downloaded from the website. PMID:27364688

  18. Tool wear modelling/life prediction: Final report for the period September 1, 1986--February 29, 1988

    SciTech Connect

    Kramer, B.M.

    1988-12-01

    A calibrated analytical model of cutting tool wear has been developed to allow for the prediction of the wear rates of potential coatings for cutting tool materials. The model has been used to select coating compositions which may provide improved performance, as compared to existing titanium nitride based coatings. The model predicts that the wear resistance of the IVB nitrides will increase in the order TiN, ZrN and HfN. In addition, it predicts that the wear resistance of the binary nitride (Ti,Hf)N will be greater than that of either of the component mononitrides under the cutting conditions which are commonly used in the machining of steel with high speed steel tooling. 7 refs., 6 figs.

  19. UPIOM: a new tool of MFA and its application to the flow of iron and steel associated with car production.

    PubMed

    Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya

    2011-02-01

    Identification of the flow of materials and substances associated with a product system provides useful information for Life Cycle Analysis (LCA), and contributes to extending the scope of complementarity between LCA and Materials Flow Analysis/Substances Flow Analysis (MFA/SFA), the two major tools of industrial ecology. This paper proposes a new methodology based on input-output analysis for identifying the physical input-output flow of individual materials that is associated with the production of a unit of given product, the unit physical input-output by materials (UPIOM). While the Sankey diagram has been a standard tool for the visualization of MFA/SFA, with an increase in the complexity of the flows under consideration, which will be the case when economy-wide intersectoral flows of materials are involved, the Sankey diagram may become too complex for effective visualization. An alternative way to visually represent material flows is proposed which makes use of triangulation of the flow matrix based on degrees of fabrication. The proposed methodology is applied to the flow of pig iron and iron and steel scrap that are associated with the production of a passenger car in Japan. Its usefulness to identify a specific MFA pattern from the original IO table is demonstrated. PMID:21174465

  20. A New Finite Element Approach for Prediction of Aerothermal Loads: Progress in Inviscid Flow Computations

    NASA Technical Reports Server (NTRS)

    Bey, K. S.; Thornton, E. A.; Dechaumphai, P.; Ramakrishnan, R.

    1985-01-01

    Recent progress in the development of finite element methodology for the prediction of aerothermal loads is described. Two dimensional, inviscid computations are presented, but emphasis is placed on development of an approach extendable to three dimensional viscous flows. Research progress is described for: (1) utilization of a commerically available program to construct flow solution domains and display computational results, (2) development of an explicit Taylor-Galerkin solution algorithm, (3) closed form evaluation of finite element matrices, (4) vector computer programming strategies, and (5) validation of solutions. Two test problems of interest to NASA Langley aerothermal research are studied. Comparisons of finite element solutions for Mach 6 flow with other solution methods and experimental data validate fundamental capabilities of the approach for analyzing high speed inviscid compressible flows.

  1. Performance Of Bathymetric Lidar On Flow Properties Predicted With A 2-Dimensional Hydraulic Model

    NASA Astrophysics Data System (ADS)

    Tonina, D.; McKean, J. A.; Wright, C. W.

    2014-12-01

    Increased computer processing speeds and new computational fluid dynamics codes have significantly improved numerical modeling of flow and sediment transport over large domains of streams, up to several kilometers in length. Recent developments in remote sensing technologies have also greatly improved our ability to map the morphology of streams over similar spatial extents. However, limited information is available on whether the remote sensing methods can map channel topography with sufficient accuracy to define the flow boundary necessary for a fluid dynamics model. We assessed the ability of a second generation airborne bathymetric sensor, the Experimental Advanced Airborne Research Lidar (EAARL-B), to support a two dimensional fluid dynamics model of a small morphologically-complex mountain stream. We compared flow model predictions using the lidar bathymetry with those made using a total station field survey of the channel. In this riverscape, results suggest EAARL bathymetric lidar can map channel topography with sufficient accuracy to support a two dimensional computational flow model.

  2. A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.

    1989-01-01

    A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.

  3. A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.

    1990-01-01

    A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.

  4. Development of an Automated, Real Time Surveillance Tool for Predicting Readmissions at a Community Hospital

    PubMed Central

    Gildersleeve, R.; Cooper, P.

    2013-01-01

    Background The Centers for Medicare and Medicaid Services’ Readmissions Reduction Program adjusts payments to hospitals based on 30-day readmission rates for patients with acute myocardial infarction, heart failure, and pneumonia. This holds hospitals accountable for a complex phenomenon about which there is little evidence regarding effective interventions. Further study may benefit from a method for efficiently and inexpensively identifying patients at risk of readmission. Several models have been developed to assess this risk, many of which may not translate to a U.S. community hospital setting. Objective To develop a real-time, automated tool to stratify risk of 30-day readmission at a semirural community hospital. Methods A derivation cohort was created by extracting demographic and clinical variables from the data repository for adult discharges from calendar year 2010. Multivariate logistic regression identified variables that were significantly associated with 30-day hospital readmission. Those variables were incorporated into a formula to produce a Risk of Readmission Score (RRS). A validation cohort from 2011 assessed the predictive value of the RRS. A SQL stored procedure was created to calculate the RRS for any patient and publish its value, along with an estimate of readmission risk and other factors, to a secure intranet site. Results Eleven variables were significantly associated with readmission in the multivariate analysis of each cohort. The RRS had an area under the receiver operating characteristic curve (c-statistic) of 0.74 (95% CI 0.73-0.75) in the derivation cohort and 0.70 (95% CI 0.69-0.71) in the validation cohort. Conclusion Clinical and administrative data available in a typical community hospital database can be used to create a validated, predictive scoring system that automatically assigns a probability of 30-day readmission to hospitalized patients. This does not require manual data extraction or manipulation and uses commonly

  5. Dual oxidase 1: A predictive tool for the prognosis of hepatocellular carcinoma patients

    PubMed Central

    CHEN, SHENGSEN; LING, QINGXIA; YU, KANGKANG; HUANG, CHONG; LI, NING; ZHENG, JIANMING; BAO, SUXIA; CHENG, QI; ZHU, MENGQI; CHEN, MINGQUAN

    2016-01-01

    Dual oxidase 1 (DUOX1), which is the main source of reactive oxygen species (ROS) production in the airway, can be silenced in human lung cancer and hepatocellular carcinomas. However, the prognostic value of DUOX1 expression in hepatocellular carcinoma patients is still unclear. We investigated the prognostic value of DUOX1 expression in liver cancer patients. DUOX1 mRNA expression was determined in tumor tissues and non-tumor tissues by real-time PCR. For evaluation of the prognostic value of DUOX1 expression, Kaplan-Meier method and Cox's proportional hazards model (univariate analysis and multivariate analysis) were employed. A simple risk score was devised by using significant variables obtained from the Cox's regression analysis to further predict the HCC patient prognosis. We observed a reduced DUOX1 mRNA level in the cancer tissues in comparison to the non-cancer tissues. More importantly, Kaplan-Meier analysis showed that patients with high DUOX1 expression had longer disease-free survival and overall survival compared with those with low expression of DUOX1. Cox's regression analysis indicated that DUOX1 expression, age, and intrahepatic metastasis may be significant prognostic factors for disease-free survival and overall survival. Finally, we found that patients with total scores of >2 and >1 were more likely to relapse and succumb to the disease than patients whose total scores were ≤2 and ≤1. In conclusion, DUOX1 expression in liver tumors is a potential prognostic tool for patients. The risk scoring system is useful for predicting the survival of liver cancer patients after tumor resection. PMID:27108801

  6. Augmenting Predictive Modeling Tools with Clinical Insights for Care Coordination Program Design and Implementation

    PubMed Central

    Johnson, Tracy L.; Brewer, Daniel; Estacio, Raymond; Vlasimsky, Tara; Durfee, Michael J.; Thompson, Kathy R.; Everhart, Rachel M.; Rinehart, Deborath J.; Batal, Holly

    2015-01-01

    Context: The Center for Medicare and Medicaid Innovation (CMMI) awarded Denver Health’s (DH) integrated, safety net health care system $19.8 million to implement a “population health” approach into the delivery of primary care. This major practice transformation builds on the Patient Centered Medical Home (PCMH) and Wagner’s Chronic Care Model (CCM) to achieve the “Triple Aim”: improved health for populations, care to individuals, and lower per capita costs. Case description: This paper presents a case study of how DH integrated published predictive models and front-line clinical judgment to implement a clinically actionable, risk stratification of patients. This population segmentation approach was used to deploy enhanced care team staff resources and to tailor care-management services to patient need, especially for patients at high risk of avoidable hospitalization. Developing, implementing, and gaining clinical acceptance of the Health Information Technology (HIT) solution for patient risk stratification was a major grant objective. Findings: In addition to describing the Information Technology (IT) solution itself, we focus on the leadership and organizational processes that facilitated its multidisciplinary development and ongoing iterative refinement, including the following: team composition, target population definition, algorithm rule development, performance assessment, and clinical-workflow optimization. We provide examples of how dynamic business intelligence tools facilitated clinical accessibility for program design decisions by enabling real-time data views from a population perspective down to patient-specific variables. Conclusions: We conclude that population segmentation approaches that integrate clinical perspectives with predictive modeling results can better identify high opportunity patients amenable to medical home-based, enhanced care team interventions. PMID:26290884

  7. Dual oxidase 1: A predictive tool for the prognosis of hepatocellular carcinoma patients.

    PubMed

    Chen, Shengsen; Ling, Qingxia; Yu, Kangkang; Huang, Chong; Li, Ning; Zheng, Jianming; Bao, Suxia; Cheng, Qi; Zhu, Mengqi; Chen, Mingquan

    2016-06-01

    Dual oxidase 1 (DUOX1), which is the main source of reactive oxygen species (ROS) production in the airway, can be silenced in human lung cancer and hepatocellular carcinomas. However, the prognostic value of DUOX1 expression in hepatocellular carcinoma patients is still unclear. We investigated the prognostic value of DUOX1 expression in liver cancer patients. DUOX1 mRNA expression was determined in tumor tissues and non-tumor tissues by real‑time PCR. For evaluation of the prognostic value of DUOX1 expression, Kaplan-Meier method and Cox's proportional hazards model (univariate analysis and multivariate analysis) were employed. A simple risk score was devised by using significant variables obtained from the Cox's regression analysis to further predict the HCC patient prognosis. We observed a reduced DUOX1 mRNA level in the cancer tissues in comparison to the non‑cancer tissues. More importantly, Kaplan-Meier analysis showed that patients with high DUOX1 expression had longer disease-free survival and overall survival compared with those with low expression of DUOX1. Cox's regression analysis indicated that DUOX1 expression, age, and intrahepatic metastasis may be significant prognostic factors for disease-free survival and overall survival. Finally, we found that patients with total scores of >2 and >1 were more likely to relapse and succumb to the disease than patients whose total scores were ≤2 and ≤1. In conclusion, DUOX1 expression in liver tumors is a potential prognostic tool for patients. The risk scoring system is useful for predicting the survival of liver cancer patients after tumor resection. PMID:27108801

  8. Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for ß-thalassemia screening.

    PubMed

    Risoluti, Roberta; Materazzi, Stefano; Sorrentino, Francesco; Maffei, Laura; Caprari, Patrizia

    2016-10-01

    β-Thalassemia is a hemoglobin genetic disorder characterized by the absence or reduced β-globin chain synthesis, one of the constituents of the adult hemoglobin tetramer. In this study the possibility of using thermogravimetric analysis (TGA) followed by chemometrics as a new approach for β-thalassemia detection is proposed. Blood samples from patients with β-thalassemia were analyzed by the TG7 thermobalance and the resulting curves were compared to those typical of healthy individuals. Principal Component Analysis (PCA) was used to evaluate the correlation between the hematological parameters and the thermogravimetric results. The thermogravimetric profiles of blood samples from β-thalassemia patients were clearly distinct from those of healthy individuals as result of the different quantities of water content and corpuscular fraction. The hematological overview showed significant decreases in the values of red blood cell indices and an increase in red cell distribution width value in thalassemia subjects when compared with those of healthy subjects. The implementation of a predictive model based on Partial Least Square Discriminant Analysis (PLS-DA) for β-thalassemia diagnosis, was performed and validated. This model permitted the discrimination of anemic patients and healthy individuals and was able to detect thalassemia in clinically heterogeneous patients as in the presence of δβ-thalassemia and β-thalassemia combined with Hb Lepore. TGA and Chemometrics are capable of predicting ß-thalassemia syndromes using only a few microliters of blood without any pretreatment and with an hour of analysis time. A fast, rapid and cost-effective diagnostic tool for the β-thalassemia screening is proposed. PMID:27474327

  9. Prediction of Liquid Slosh Damping Using a High Resolution CFD Tool

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Purandare, Ravi; Peugeot, John; West, Jeff

    2012-01-01

    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. Our previous effort has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, and slosh mass center coordinates). For a practical partially-filled smooth wall propellant tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To accurately predict this very low damping value is a challenge for any CFD tool, as one must resolve a thin boundary layer near the wall and must minimize numerical damping. This work extends our previous effort to extract this challenging parameter from first principles: slosh damping for smooth wall and for ring baffle. First the experimental data correlated into the industry standard for smooth wall were used as the baseline validation. It is demonstrated that with proper grid resolution, CFD can indeed accurately predict low damping values from smooth walls for different tank sizes. The damping due to ring baffles at different depths from the free surface and for different sizes of tank was then simulated, and fairly good agreement with experimental correlation was observed. The study demonstrates that CFD technology can be applied to the design of future propellant tanks with complex configurations and with smooth walls or multiple baffles, where previous experimental data is not available.

  10. Development and verification of methods for predicting flow rates through leaks in valves and couplings

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1993-01-01

    This is the final report of a research effort which addresses the title problem. The report discusses two broad models of flows, which represent the following extreme cases: (1) inertia-dominated flow, where friction is relatively insignificant; and (2) friction-dominated flow where inertia is insignificant. In class (2), the leak channel might consist of the gap between a scratch in a plastic seal and a polished metal plate against which the seal is pressed. Here, the cross section of the leak channel is modeled as a flat bottomed crescent. A publication generated under the present grant period presents an exact solution of the equations of fully-developed laminar pipe flow of a liquid in the case of a crescent beneath a hyperbolic arc. A Master's thesis project supported by the present grant presents the corresponding solution beneath a circular arc. A second publication reviews the flow of a gas through the same channel, which may be analyzed by a standard one-dimensional model (Fanno flow) for an engineering approximation. Finally, the report discusses the design and progress in the fabrication of a leak-test cell, in which one may measure the flow of fluid through a controlled flaw in a seal. The aim of such measurements is to furnish data for comparison with the predictions of the theory.

  11. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation

    PubMed Central

    Rayz, V.L.; Boussel, L.; Lawton, M.T.; Acevedo-Bolton, G.; Ge, L.; Young, W.L.; Higashida, R.T.; Saloner, D.

    2009-01-01

    The deposition of intralumenal thrombus in intracranial aneurysms adds a risk of thrombo-embolism over and above that posed by mass-effect and rupture. In addition to biochemical factors, hemodynamic factors that are governed by lumenal geometry and blood flow rates likely play an important role in the thrombus formation and deposition process. In this study, patient-specific computational fluid dynamics (CFD) models of blood flow were constructed from MRA data for three patients who had fusiform basilar aneurysms that were thrombus-free and then proceeded to develop intra-lumenal thrombus. In order to determine whether features of the flow fields could suggest which regions had an elevated potential for thrombus deposition, the flow was modeled in the baseline, thrombus-free geometries. Pulsatile flow simulations were carried out using patient-specific inlet flow conditions measured with MR velocimetry. Newtonian and non-Newtonian blood behavior was considered. A strong similarity was found between the intra-aneurysmal regions with CFD-predicted slow, recirculating flows and the regions of thrombus deposition observed in vivo in the follow-up MR studies. In two cases with larger aneurysms, the agreement between the low velocity zones and clotted off regions improved when non-Newtonian blood behavior was taken into account. A similarity was also found between the calculated low shear stress regions and the regions that were later observed to clot. PMID:18787954

  12. A priori models for predicting drag reduction for flow over heterogeneous slip boundaries

    NASA Astrophysics Data System (ADS)

    Heck, Margaret; Papavassiliou, Dimitrios

    2015-11-01

    Slip at fluid-fluid/fluid-solid interfaces is a subject of interest for many engineering applications, ranging from porous materials to biomedical devices to separation processes. Despite remarkable effort to include the effects of surface topology and various flow and physical properties in models describing fluid slip, the mathematical description of flow over mixed slip boundaries is still under investigation. Using similarity theory, which is based on the generalized homogeneity of physical laws governing most systems and takes advantage of similarity in the spatial distribution of characteristics of motion, the equivalent slip velocity is shown to be a function of the geometry of a microfluidic system. The results are used to predict the slip velocity for flow over surfaces with periodically repeating no-slip/free-shear boundaries in the shape of rectangles for 16%-50% solid fractions. The equivalent slip velocity for flow over rectangular boundaries can then be related to the those for flow over surfaces with square and circular no-slip boundaries using characteristic length ratios. The models developed using this apporach can be directly used to estimate the slip velocity for flow over various free-shear/no-slip boundaries for Couette, laminar flow conditions.

  13. Method and tool for controlling fluid flow from a tubing string into a low pressure earth formation

    SciTech Connect

    Gurley, D.G.; Nelson, W.F.

    1981-04-07

    A tool is disclosed for controlling flow of treating fluid from a tubing string into an earth formation, in which the bottom hole pressure is less than the hydrostatic pressure of the fluid in the string. In another application, the tool is used in conjunction with a wash tool to wash sediment out of casing perforations and slotted liners. Before the downhole operation is commenced, a slidable piston in this tool closes off fluid outlet ports, to prevent the fluid from ''gravity flowing'' out of the tubing string. The piston is held in the closed position by the co-action of an adjusting bolt and a compression spring. The fluid is released from the tubing string by applying sufficient fluid pressure against the piston to overcome the spring load and thus move the piston downwardly past the fluid outlet port.

  14. Automated protein motif generation in the structure-based protein function prediction tool ProMOL.

    PubMed

    Osipovitch, Mikhail; Lambrecht, Mitchell; Baker, Cameron; Madha, Shariq; Mills, Jeffrey L; Craig, Paul A; Bernstein, Herbert J

    2015-12-01

    ProMOL, a plugin for the PyMOL molecular graphics system, is a structure-based protein function prediction tool. ProMOL includes a set of routines for building motif templates that are used for screening query structures for enzyme active sites. Previously, each motif template was generated manually and required supervision in the optimization of parameters for sensitivity and selectivity. We developed an algorithm and workflow for the automation of motif building and testing routines in ProMOL. The algorithm uses a set of empirically derived parameters for optimization and requires little user intervention. The automated motif generation algorithm was first tested in a performance comparison with a set of manually generated motifs based on identical active sites from the same 112 PDB entries. The two sets of motifs were equally effective in identifying alignments with homologs and in rejecting alignments with unrelated structures. A second set of 296 active site motifs were generated automatically, based on Catalytic Site Atlas entries with literature citations, as an expansion of the library of existing manually generated motif templates. The new motif templates exhibited comparable performance to the existing ones in terms of hit rates against native structures, homologs with the same EC and Pfam designations, and randomly selected unrelated structures with a different EC designation at the first EC digit, as well as in terms of RMSD values obtained from local structural alignments of motifs and query structures. This research is supported by NIH grant GM078077. PMID:26573864

  15. Evaluation of transabdominal ultrasound as a tool for predicting the success of abdominocentesis in horses.

    PubMed

    Beccati, F; Nannarone, S; Gialletti, R; Lotto, E; Cercone, M; Dante, S; Bazzica, C; Pepe, M

    2014-03-01

    The aim of this study was to evaluate the transabdominal ultrasonography as a tool for predicting the success of abdominocentesis in horses. Patients were included in the study if a complete transabdominal ultrasonography examination and abdominocentesis were performed as part of the clinical work-up. Ultrasonographically, the amount of peritoneal fluid was assessed using a 4-point grading system, as well as the amount of peritoneal fluid collected. A χ(2) or Fischer exact test was performed to test for an association between the ultrasonography findings and fluid retrieved, and between the two grading scales. Interobserver and intraobserver agreement values were calculated using k statistics. Values of P<0.05 were considered significant; 109 horses met the inclusion criteria. Peritoneal fluid was identified ultrasonographically in 72 per cent of horses, and it was collected from 93 per cent of these cases. In horses with no peritoneal fluid identified at ultrasonography (28 per cent), fluid was collected in 70 per cent of cases. There is a significant association between transabdominal ultrasonography detection of peritoneal fluid and the likelihood to obtain a diagnostic amount of peritoneal fluid at abdominocentesis; however, even when peritoneal fluid is not detected during abdominal ultrasonography examination, an amount of peritoneal fluid useful for gross, clinicopathological and cytological evaluation can frequently be obtained. PMID:24496716

  16. Toxmatch--a chemical classification and activity prediction tool based on similarity measures.

    PubMed

    Gallegos-Saliner, Ana; Poater, Albert; Jeliazkova, Nina; Patlewicz, Grace; Worth, Andrew P

    2008-11-01

    Chemical similarity forms the underlying basis for the development of (Quantitative) Structure-Activity Relationships ((Q)SARs), expert systems and chemical groupings. Recently a new software tool to facilitate chemical similarity calculations named Toxmatch was developed. Toxmatch encodes a number of similarity indices to help in the systematic development of chemical groupings, including endpoint specific groupings and read-across, and the comparison of model training and test sets. Two rule-based classification schemes were additionally implemented, namely: the Verhaar scheme for assigning mode of action for aquatic toxicants and the BfR rulebase for skin irritation and corrosion. In this study, a variety of different descriptor-based similarity indices were used to evaluate and compare the BfR training set with respect to its test set. The descriptors utilised in this comparison were the same as those used to derive the original BfR rules i.e. the descriptors selected were relevant for skin irritation/corrosion. The Euclidean distance index was found to be the most predictive of the indices in assessing the performance of the rules. PMID:18617309

  17. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  18. Assessment of 3D Codes for Predicting Liner Attenuation in Flow Ducts

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nark, D. M.; Jones, M. G.

    2008-01-01

    This paper presents comparisons of seven propagation codes for predicting liner attenuation in ducts with flow. The selected codes span the spectrum of methods available (finite element, parabolic approximation, and pseudo-time domain) and are collectively representative of the state-of-art in the liner industry. These codes are included because they have two-dimensional and three-dimensional versions and can be exported to NASA's Columbia Supercomputer. The basic assumptions, governing differential equations, boundary conditions, and numerical methods underlying each code are briefly reviewed and an assessment is performed based on two predefined metrics. The two metrics used in the assessment are the accuracy of the predicted attenuation and the amount of wall clock time to predict the attenuation. The assessment is performed over a range of frequencies, mean flow rates, and grazing flow liner impedances commonly used in the liner industry. The primary conclusions of the study are (1) predicted attenuations are in good agreement for rigid wall ducts, (2) the majority of codes compare well to each other and to approximate results from mode theory for soft wall ducts, (3) most codes compare well to measured data on a statistical basis, (4) only the finite element codes with cubic Hermite polynomials capture extremely large attenuations, and (5) wall clock time increases by an order of magnitude or more are observed for a three-dimensional code relative to the corresponding two-dimensional version of the same code.

  19. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.

    PubMed

    Krause, Egon

    2003-01-01

    Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature. PMID:12545239

  20. Flow unit modeling and fine-scale predicted permeability validation in Atokan sandstones: Norcan East Kansas

    USGS Publications Warehouse

    Bhattacharya, S.; Byrnes, A.P.; Watney, W.L.; Doveton, J.H.

    2008-01-01

    Characterizing the reservoir interval into flow units is an effective way to subdivide the net-pay zone into layers for reservoir simulation. Commonly used flow unit identification techniques require a reliable estimate of permeability in the net pay on a foot-by-foot basis. Most of the wells do not have cores, and the literature is replete with different kinds of correlations, transforms, and prediction methods for profiling permeability in pay. However, for robust flow unit determination, predicted permeability at noncored wells requires validation and, if necessary, refinement. This study outlines the use o f a spreadsheet-based permeability validation technique to characterize flow units in wells from the Norcan East field, Clark County, Kansas, that produce from Atokan aged fine- to very fine-grained quartzarenite sandstones interpreted to have been deposited in brackish-water, tidally dominated restricted tidal-flat, tidal-channel, tidal-bar, and estuary bay environments within a small incised-valley-fill system. The methodology outlined enables the identification of fieldwide free-water level and validates and refines predicted permeability at 0.5-ft (0.15-m) intervals by iteratively reconciling differences in water saturation calculated from wire-line log and a capillary-pressure formulation that models fine- to very fine-grained sandstone with diagenetic clay and silt or shale laminae. The effectiveness of this methodology was confirmed by successfully matching primary and secondary production histories using a flow unit-based reservoir model of the Norcan East field without permeability modifications. The methodologies discussed should prove useful for robust flow unit characterization of different kinds of reservoirs. Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  1. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.

    PubMed

    Castillo-Hair, Sebastian M; Sexton, John T; Landry, Brian P; Olson, Evan J; Igoshin, Oleg A; Tabor, Jeffrey J

    2016-07-15

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond. PMID:27110723

  2. Prediction of noninertial focusing of red blood cells in Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Hariprasad, Daniel S.; Secomb, Timothy W.

    2015-09-01

    The motions of a red blood cell in Poiseuille flows in a range of channel widths are simulated using a two-dimensional model. For a range of initial off-centerline distances in a 12-μ m channel, cell trajectories converge to a specific off-centerline position and exhibit tank-treading motions. This behavior coexists with initial positions that lead to migration towards the centerline. The predicted off-centerline focusing effect is shown to depend on the curvature of the flow profile and on interactions with both solid boundaries.

  3. Prediction of non-inertial focusing of red blood cells in Poiseuille flow

    PubMed Central

    Hariprasad, Daniel S.; Secomb, Timothy W.

    2016-01-01

    The motions of a red blood cell in Poiseuille flows in a range of channel widths are simulated using a two-dimensional model. For a range of initial off-centerline distances in a 12-μm channel, cell trajectories converge to a specific off-centerline position and exhibit tank-treading motions. This behavior coexists with initial positions that lead to migration towards the centerline. The predicted off-centerline focusing effect is shown to depend on the curvature of the flow profile and on interactions with both solid boundaries. PMID:26465557

  4. The predictive validity of common risk assessment tools in men with intellectual disabilities and problematic sexual behaviors.

    PubMed

    Fedoroff, J Paul; Richards, Deborah; Ranger, Rebekah; Curry, Susan

    2016-10-01

    This CIHR-funded study examined whether certain current risk assessment tools were effective in appraising risk of recidivism in a sample of sex offenders with intellectual disabilities (ID). Fifty men with ID who had engaged in problematic sexual behavior (PSB) were followed for an average of 2.5 years. Recidivism was defined and measured as any illegal or problematic behavior, as well as any problematic but not necessarily illegal behavior. At the beginning of the study, each participant was rated on two risk assessment tools: the Violence Risk Appraisal Guide (VRAG) and the Sex Offender Risk Appraisal Guide (SORAG). During each month of follow-up, participants were also rated on the Short-Dynamic Risk Scale (SDRS), an assessment tool intended to measure the risk of future problematic behaviors. Data was analyzed using t-tests, Cohen's d and area under the curve (AUC) to test predictive validity of the assessment tools. Using the AUC, results showed that the VRAG was predictive of sexual (AUC=0.74), sexual and/or violent (AUC=0.71) and of any criminally chargeable event (AUC=0.69). The SORAG was only significantly predictive of sexual events (AUC=0.70) and the SDRS was predictive of violent events (AUC=0.71). The t-test and Cohen's d analyses, which are less robust to deviations from the assumptions of normal and continuous distribution than AUC, did not yield significant results in each category, and therefore, while the results of this study suggest that the VRAG and the SORAG may be effective tools in measuring the short term risk of sexual recidivism; and the VRAG and SDRS may be effective tools in appraising long term risk of sexual and/or violent recidivism in this population, it should be used with caution. Regardless of the assessment tool used, risk assessments should take into account the differences between sex offenders with and without ID to ensure effective measurement. PMID:27372881

  5. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    USGS Publications Warehouse

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2010-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  6. Physical Limits on the Predictability of Erosion and Sediment Transport by Landslides and Debris Flows

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.

    2015-12-01

    Episodic landslides and debris flows play a key role in sculpting many steep landscapes, and they also pose significant natural hazards. Field evidence, laboratory experiments, and theoretical analyses show that variations in the quantity, speed, and distance of sediment transport by landslides and debris flows can depend strongly on nuanced differences in initial conditions. Moreover, initial conditions themselves can be strongly dependent on the geological legacy of prior events. The scope of these dependencies is revealed by the results of landslide dynamics experiments [Iverson et al., Science, 2000], debris-flow erosion experiments [Iverson et al., Nature Geosci., 2011], and numerical simulations of the highly destructive 2014 Oso, Washington, landslide [Iverson et al., Earth Planet. Sci. Let., 2015]. In each of these cases, feedbacks between basal sediment deformation and pore-pressure generation cause the speed and distance of sediment transport to be very sensitive to subtle differences in the ambient sediment porosity and water content. On the other hand, the onset of most landslides and debris flows depends largely on pore-water pressure distributions and only indirectly on sediment porosity and water content. Thus, even if perfect predictions of the locations and timing of landslides and debris flows were available, the dynamics of the events - and their consequent hazards and sediment transport - would be difficult to predict. This difficulty is a manifestation of the nonlinear physics involved, rather than of poor understanding of those physics. Consequently, physically based models for assessing the hazards and sediment transport due to landslides and debris flows must take into account both evolving nonlinear dynamics and inherent uncertainties about initial conditions. By contrast, landscape evolution models that use prescribed algebraic formulas to represent sediment transport by landslides and debris flows lack a sound physical basis.

  7. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate: Computer program description and users manual

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1979-01-01

    A method was developed for predicting the potential flow velocity field at the plane of a propeller operating under the influence of a wing-fuselage-cowl or nacelle combination. A computer program was written which predicts the three dimensional potential flow field. The contents of the program, its input data, and its output results are described.

  8. Evaluating the use of high-resolution numerical weather forecast for debris flow prediction.

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Efthymios I.; Bartsotas, Nikolaos S.; Borga, Marco; Kallos, George

    2015-04-01

    The sudden occurrence combined with the high destructive power of debris flows pose a significant threat to human life and infrastructures. Therefore, developing early warning procedures for the mitigation of debris flows risk is of great economical and societal importance. Given that rainfall is the predominant factor controlling debris flow triggering, it is indisputable that development of effective debris flows warning procedures requires accurate knowledge of the properties (e.g. duration, intensity) of the triggering rainfall. Moreover, efficient and timely response of emergency operations depends highly on the lead-time provided by the warning systems. Currently, the majority of early warning systems for debris flows are based on nowcasting procedures. While the latter may be successful in predicting the hazard, they provide warnings with a relatively short lead-time (~6h). Increasing the lead-time is necessary in order to improve the pre-incident operations and communication of the emergency, thus coupling warning systems with weather forecasting is essential for advancing early warning procedures. In this work we evaluate the potential of using high-resolution (1km) rainfall fields forecasted with a state-of-the-art numerical weather prediction model (RAMS/ICLAMS), in order to predict the occurrence of debris flows. Analysis is focused over the Upper Adige region, Northeast Italy, an area where debris flows are frequent. Seven storm events that generated a large number (>80) of debris flows during the period 2007-2012 are analyzed. Radar-based rainfall estimates, available from the operational C-band radar located at Mt Macaion, are used as the reference to evaluate the forecasted rainfall fields. Evaluation is mainly focused on assessing the error in forecasted rainfall properties (magnitude, duration) and the correlation in space and time with the reference field. Results show that the forecasted rainfall fields captured very well the magnitude and

  9. A dynamic hybrid RANS/LES modeling methodology for turbulent/transitional flow field prediction

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Faridul

    A dynamic hybrid Reynolds-averaged Navier-Stokes (RANS)-Large Eddy Simulation (LES) modeling framework has been investigated and further developed to improve the Computational Fluid Dynamics (CFD) prediction of turbulent flow features along with laminar-to-turbulent transitional phenomena. In recent years, the use of hybrid RANS/LES (HRL) models has become more common in CFD simulations, since HRL models offer more accuracy than RANS in regions of flow separation at a reduced cost relative to LES in attached boundary layers. The first part of this research includes evaluation and validation of a dynamic HRL (DHRL) model that aims to address issues regarding the RANS-to-LES zonal transition and explicit grid dependence, both of which are inherent to most current HRL models. Simulations of two test cases---flow over a backward facing step and flow over a wing with leading-edge ice accretion---were performed to assess the potential of the DHRL model for predicting turbulent features involved in mainly unsteady separated flow. The DHRL simulation results are compared with experimental data, along with the computational results for other HRL and RANS models. In summary, these comparisons demonstrate that the DHRL framework does address many of the weaknesses inherent in most current HRL models. Although HRL models are widely used in turbulent flow simulations, they have limitations for transitional flow predictions. Most HRL models include a fully turbulent RANS component for attached boundary layer regions. The small number of HRL models that do include transition-sensitive RANS models have issues related to the RANS model itself and to the zonal transition between RANS and LES. In order to address those issues, a new transition-sensitive HRL modeling methodology has been developed that includes the DHRL methodology and a physics-based transition-sensitive RANS model. The feasibility of the transition-sensitive dynamic HRL (TDHRL) model has been investigated by

  10. A hybrid method for the numerical prediction of enthalpy transport in fluid flow

    SciTech Connect

    Stevanovic, V.D.; Jovanovic, Z.L.

    2000-01-01

    The solution of the transient thermal energy transport by convection in forced fluid flow is a necessary step in thermal design, simulation and analyses regarding the operational conditions of various energy and chemical plants. It is of primary importance for the prediction of cooling or heating rate changes in the thermal equipment flow channels, as well as for the prediction of the boiling boundary location in a boiling channel. For instance, prediction of water enthalpy front propagation in complex pipeline networks of a district heating system is necessary for the setup of operating procedures, which will enable punctual and optimal heat supply to customers. Here, hybrid method (HM) is proposed for the prediction f convective enthalpy transport and the boiling boundary location. The momentum equation is solved with the SIMPLE procedure, while the energy equation is solved with the Method of Characteristics (MOC) and with the application of the Lagrange interpolation polynomial (LIP). The MOC method is applied on an equidistant grid. The initial values at the starting points of characteristic paths are calculated with the LIP. The accuracy of the method is demonstrated on tests of the transient boiling boundary prediction and the well known problem of a propagating discontinuity. The dependence of the hybrid method on the spatial integration step size and the degree of the LIP is analyzed. The LIP of the third degree is recommended. by which practically exact solutions with acceptable number of nodes are obtained.

  11. Flow structure generated by perpendicular blade vortex interaction and implications for helicopter noise predictions

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Glegg, Stewart A. L.

    1994-01-01

    Activities carried out in support of research on flow structure generated by perpendicular blade vortex interaction and implications for helicopter noise prediction are summarized. Progress in the following areas is described: (1) construction of 8 inch-chord NACA 0012 full-span blade; (2) Acquisition of two full-span blades; (3) preparation for hot wire measurements; (4) related work on a modified Betz's theory; and (5) work related to helicopter noise prediction. In addition, a list of publications based on the results of prior experimentation is presented.

  12. Clinical Frailty Scale in an Acute Medicine Unit: a Simple Tool That Predicts Length of Stay

    PubMed Central

    Juma, Salina; Taabazuing, Mary-Margaret; Montero-Odasso, Manuel

    2016-01-01

    Background Frailty is characterized by increased vulnerability to external stressors. When frail older adults are admitted to hospital, they are at increased risk of adverse events including falls, delirium, and disability. The Clinical Frailty Scale (CFS) is a practical and efficient tool for assessing frailty; however, its ability to predict outcomes has not been well studied within the acute medical service. Objective To examine the CFS in elderly patients admitted to the acute medical ward and its association with length of stay. Design Prospective cohort study in an acute care university hospital in London, Ontario, Canada, involving 75 patients over age 65, admitted to the general internal medicine clinical teaching units (CTU). Measurements Patient demographics were collected through chart review, and CFS score was assigned to each patient after brief clinician assessment. The CFS ranges from 1 (very fit) to 9 (terminally ill) based on descriptors and pictographs of activity and functional status. The CFS was collapsed into three categories: non-frail (CFS 1–4), mild-to-moderately frail (CFS 5–6), and severely frail (CFS 7–8). Outcomes of length of stay and 90-day readmission were gathered through the LHSC electronic patient record. Results Severe frailty was associated with longer lengths of stay (Mean = 12.6 ± 12.7 days) compared to mild-to-moderate frailty (mean = 11.2 ± 10.8 days), and non-frailty (mean = 4.1 ± 2.1 days, p = .014). This finding was significant after adjusting for age, sex, and number of medications. Participants with higher frailty scores showed higher readmission rates when compared with those with no frailty (31.2% for severely frail, vs. 34.2% for mild-to-moderately frail vs. 19% for non-frail) although there was no significant difference in the adjusted analysis. Conclusion The CFS helped identify patients that are more likely to have prolonged hospital stays on the acute medical ward. The CFS is an easy to use tool which

  13. Effect of prediction on the self-organization of pedestrian counter flow

    NASA Astrophysics Data System (ADS)

    Wang, Ziyang; Ma, Jian; Zhao, Hui; Qin, Yong; Jia, Limin

    2012-08-01

    Pedestrians may predict the behavior of others and then adjust their movement accordingly to avoid potential conflicts in advance. Motivated by this fact, we propose a predictive control theory-based pedestrian counter flow model, which describes the predictive mechanism underlying pedestrian self-organization phenomena. In this model, a pedestrian will make in-advance-avoid behavior based on the estimation of future moving gain within a given predictive length to reduce potential conflicts. The future gain in the present model is affected by three factors, i.e. the predictive length, the smooth degree of entrance and the influential area of coming pedestrians. Simulation results of the model show that increasing predictive length has a remarkable effect on reducing conflicts, improving pedestrian velocity, smoothing pedestrian movement and stabilizing the self-organized lanes. When enlarging the influential area of coming pedestrians, pedestrians tend to aggregate to the formed self-organized lanes, which makes the lanes wider and the lane number reduced. Interestingly, moderate enlargement (of the influential area) will reduce conflicts significantly, while excessive enlargement will lead to an increase in conflicts. We also discuss the predictive effect toward the smooth degree of entrance. When there are some formed self-organized lanes in the system, the effect is significant, and it will make the lanes more regular and stable, while when the existing lanes are unstable, the effect has little impact on the system.

  14. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1980-01-01

    A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.

  15. Geostatistical prediction of stream-flow regime in southeastern United States

    NASA Astrophysics Data System (ADS)

    Pugliese, Alessio; Castellarin, Attilio; Archfield, Stacey; Farmer, William

    2015-04-01

    A Flow-Duration Curve (FDC) represents the percentage of time (duration) during which a given stream-flow is equalled or exceeded over a given period of time. In many water-engineering applications FDCs need to be predicted for ungauged sites (Prediction in Ungauged Basins, PUB problem) using the information collected in donor neighboring gauged basins. We present an application of kriging procedures which makes the procedures capable of predicting FDCs in ungauged catchments. As many of the techniques proposed in the recent literature, the curve is predicted at the target site as a weighted average of empirical dimensionless FDCs that are constructed for neighboring streamgauges and standardized by discharge Q*. Geostatistical weights are obtained by applying two different interpolation techniques, i.e. Top-kriging (TK, see e.g. Pugliese et al., 2014) and Ordinary-kriging (OK, see e.g. Castiglioni et al., 2009), for interpolating a point streamflow-index computed as the overall negative deviation of each empirical curve from Q*, which we term Total Negative Deviation (TND). Empirical TND values can be used to assess the hydrological similarity between catchments and can be interpolated using TK or OK procedures along the stream-network. We consider period-of-record/annual, and complete/seasonal FDCs standardized by two different Q* values, i.e. Mean Annual Flow (MAF) and Mean Annual Precipitation at catchment scale times the drainage area (MAP*), and we apply TK and OK in a wide study area in the Southeastern United States including 182 unregulated gauged catchments. The accuracy of the predicted FDCs is assessed comprehensively under different operational conditions through the (1) leave-one-out and (2) three-fold cross-validation procedures. The results are compared with six different methods for predicting FDCs from synthetically generated daily stream-flow series, which were recently analysed by U.S. Geological Survey. The application of OK and TK reveal

  16. Development of a mechanistic model for predicting corrosion rate in multiphase oil/water/gas flows

    SciTech Connect

    Zhang, R.; Gopal, M.; Jepson, W.P.

    1997-09-01

    A mechanistic model has been developed to predict corrosion rates in multiphase (water/oil/CO{sub 2}) flow conditions. The model takes into account electrochemistry, reaction kinetics, and, mass transport effects. This paper describes the equations used to determine pH and bulk concentrations of various ions, which are then used to calculate the mass transfer rates to the corrosion surface. The result includes the determination of the mass transfer coefficients of various ionic species and corrosion rates. Details of relations used for determination of mass transfer coefficients for multiphase flows, and rates of electrochemical reaction kinetics are discussed and predicted results are compared with experimental observations. Agreement between model results and experimental data is good.

  17. Predicting Turbulent Convective Heat Transfer in Three-Dimensional Duct Flows

    NASA Technical Reports Server (NTRS)

    Rokni, M.; Gatski, T. B.

    1999-01-01

    The performance of an explicit algebraic stress model is assessed in predicting the turbulent flow and forced heat transfer in straight ducts, with square, rectangular, trapezoidal and triangular cross-sections, under fully developed conditions over a range of Reynolds numbers. Iso-thermal conditions are imposed on the duct walls and the turbulent heat fluxes are modeled by gradient-diffusion type models. At high Reynolds numbers (>/= 10(exp 5)), wall functions are used for the velocity and temperature fields; while at low Reynolds numbers damping functions are introduced into the models. Hydraulic parameters such as friction factor and Nusselt number are well predicted even when damping functions are used, and the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Comparison between the models is presented in terms of the hydraulic parameters, friction factor and Nusselt number, as well as in terms of the secondary flow patterns occurring within the ducts.

  18. The Achievement Flow Motive as an Element of the Autotelic Personality: Predicting Educational Attainment in Three Cultures

    ERIC Educational Resources Information Center

    Busch, Holger; Hofer, Jan; Chasiotis, Athanasios; Campos, Domingo

    2013-01-01

    Human behavior is directed by an implicit and an explicit motivational system. The intrinsic form of the implicit achievement motive has been demonstrated to predict the experience of flow. Thus, this achievement flow motive can be considered an integral component of the autotelic personality, posited in Flow Theory as dispositional difference in…

  19. Assessment of Lightning Transients on a De-Iced Rotor Blade with Predictive Tools and Coaxial Return Measurements

    NASA Astrophysics Data System (ADS)

    Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.

    2012-05-01

    The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.

  20. Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems

    USGS Publications Warehouse

    Larsen, L.G.; Harvey, J.W.; Crimaldi, J.P.

    2009-01-01

    Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.

  1. Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    1996-01-01

    A method Is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization Is accomplished by a cell-centered finite-volume formulation using an accurate lin- ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward- Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy In predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.

  2. Classification and Prediction of Traffic Flow Based on Real Data Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Pamuła, Teresa

    2012-12-01

    This paper presents a method of classification of time series of traffic flow, on the section of the main road leading into the city of Gliwice. Video detectors recorded traffic volume data was used, covering the period of one year in 5-minute intervals - from June 2011 to May 2012. In order to classify the data a statistical analysis was performed, which resulted in the proposition of splitting the daily time series into four classes. The series were smoothed to obtain hourly flow rates. The classification was performed using neural networks with different structures and using a variable number of input data. The purpose of classification is the prediction of traffic flow rates in the afternoon basing on the morning traffic and the assessment of daily traffic volumes for a particular day of the week. The results can be utilized by intelligent urban traffic management systems.

  3. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  4. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    SciTech Connect

    Anglart, H.; Nylund, O.; Kurul, N.

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  5. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer

    PubMed Central

    Bertoli, Gloria; Cava, Claudia; Castiglioni, Isabella

    2015-01-01

    Dysregulation of microRNAs (miRNAs) is involved in the initiation and progression of several human cancers, including breast cancer (BC), as strong evidence has been found that miRNAs can act as oncogenes or tumor suppressor genes. This review presents the state of the art on the role of miRNAs in the diagnosis, prognosis, and therapy of BC. Based on the results obtained in the last decade, some miRNAs are emerging as biomarkers of BC for diagnosis (i.e., miR-9, miR-10b, and miR-17-5p), prognosis (i.e., miR-148a and miR-335), and prediction of therapeutic outcomes (i.e., miR-30c, miR-187, and miR-339-5p) and have important roles in the control of BC hallmark functions such as invasion, metastasis, proliferation, resti