Science.gov

Sample records for flow pressure-driven flow

  1. Pressure-driven peristaltic flow

    NASA Astrophysics Data System (ADS)

    Mingalev, S. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2013-03-01

    The peristaltic motion of an incompressible fluid in two-dimensional channel is investigated. Instead of fixing the law of wall's coordinate variation, the law of pressure variation on the wall is fixed and the border's coordinate changes to provide the law of pressure variation on the wall. In case of small amplitude of pressure-variation on the wall A, expansion wave propagates along the length of channel and the wave results in the peristaltic transport of fluid. In the case of large A, the channel divides into two parts. The small pulsating part in the end of the tube creates the flow as a human heart, while the other big part loses this function. The solution of problem for the first peristaltic mode is stable, while the solution for the second "heart" mode is unstable and depends heavily on boundary conditions.

  2. Pressure driven flow in porous tubular membranes

    NASA Astrophysics Data System (ADS)

    Tilton, Nils; Martinand, Denis; Serre, Eric; Lueptow, Richard

    2011-11-01

    We consider the steady laminar flow of a Newtonian incompressible fluid in a porous tubular membrane with pressure-driven transmembrane flow. Due to its fundamental importance to membrane filtration systems, this flow has been studied extensively both analytically and numerically, yet a robust analytic solution has not been found. The problem is challenging due to the coupling between the transmembrane pressure and velocity with the simultaneous coupling between the axial pressure gradient and the axial velocity. We present a robust analytical solution which incorporates Darcy's law on the membrane surface. The solution is in the form of an asymptotic expansion about a small parameter related to the membrane permeability. We verify the analytical solution with comparison to 2-D spectral direct numerical simulations of ultrafiltration and microfiltration systems with typical operating conditions, as well as extreme cases of cross-flow reversal and axial flow exhaustion. In all cases, the agreement between the analytical and numerical results is excellent. Finally, we use the analytical and numerical results to provide guidelines about when common simplifying assumptions about the permeate flow may be made. Specifically, the assumptions of a parabolic axial velocity profile and uniform transmembrane velocity are valid only for small permeabilities.

  3. Pressure-driven suspension flow near jamming.

    PubMed

    Oh, Sangwon; Song, Yi-qiao; Garagash, Dmitry I; Lecampion, Brice; Desroches, Jean

    2015-02-27

    We report here magnetic resonance imaging measurements performed on suspensions with a bulk solid volume fraction (ϕ_{0}) up to 0.55 flowing in a pipe. We visualize and quantify spatial distributions of ϕ and velocity across the pipe at different axial positions. For dense suspensions (ϕ_{0}>0.5), we found a different behavior compared to the known cases of lower ϕ_{0}. Our experimental results demonstrate compaction within the jammed region (characterized by a zero macroscopic shear rate) from the jamming limit ϕ_{m}≈0.58 at its outer boundary to the random close packing limit ϕ_{rcp}≈0.64 at the center. Additionally, we show that ϕ and velocity profiles can be fairly well captured by a frictional rheology accounting for both further compaction of jammed regions as well as normal stress differences. PMID:25768782

  4. Effective slip in pressure-driven Stokes flow

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Stone, Howard A.

    2003-08-01

    Nano-bubbles have recently been observed experimentally on smooth hydrophobic surfaces; cracks on a surface can likewise be the site of bubbles when partially wetting fluids are used. Because these bubbles may provide a zero shear stress boundary condition and modify considerably the friction generated by the solid boundary, it is of interest to quantify their influence on pressure-driven flow, with particular attention given to small geometries. We investigate two simple configurations of steady pressure-driven Stokes flow in a circular pipe whose surface contains periodically distributed regions of zero surface shear stress. In the spirit of experimental studies probing slip at solid surfaces, the effective slip length of the resulting flow is evaluated as a function of the degrees of freedom describing the surface heterogeneities, namely the relative width of the no-slip and no-shear stress regions and their distribution along the pipe. Comparison of the model with experimental studies of pressure-driven flow in capillaries and microchannels reporting slip is made and a possible interpretation of the experimental results is offered which is consistent with a large number of distributed slip domains such as nano-size and micron-size nearly flat bubbles coating the solid surface. Further, the possibility is suggested of a shear-dependent effective slip length, and an explanation is proposed for the seemingly paradoxical behaviour of the measured slip length increasing with system size, which is consistent with experimental results to date.

  5. Pressure-driven flow in a channel with porous walls

    NASA Astrophysics Data System (ADS)

    Liu, Qianlong; Prosperetti, Andrea

    2010-11-01

    The finite-Reynolds-number three-dimensional flow in a channel bounded by one and two parallel porous walls is studied numerically. The porous medium is modelled by spheres in a simple cubic arrangement. The results for the slip velocity at the surface of the porous layers are compared with the phenomenological Beavers-Joseph model. It is found that the value of the slip coefficient is different for pressure-driven and shear-driven flow. A modification of the relation is suggested to deal with this feature. Furthermore, detailed results on the flow structure and the hydrodynamic forces and couple acting on the sphere layer bounding the porous medium are reported and their dependence on the Reynolds number illustrated. It is shown that, at finite Reynolds numbers, a lift force acts on the spheres, which may be expected to contribute to the the mobilization of bottom sediments.

  6. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor

    PubMed Central

    Cheri, Mohammad Sadegh; Shahraki, Hamidreza; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Latifi, Hamid

    2014-01-01

    Measurement and control of pressure-driven flow (PDF) has a great potential to enhance the performance of chemical and biological experiments in Lab on a Chip technology. In this paper, we present an optofluidic flow sensor for real-time measurement and control of PDF. The optofluidic flow sensor consists of an on-chip micro Venturi and two optical Fabry-Pérot (FP) interferometers. Flow rate was measured from the fringe shift of FP interferometers resulted from movement fluid in the on-chip micro Venturi. The experimental results show that the optofluidic flow sensor has a minimum detectable flow change of 5 nl/min that is suitable for real time monitoring and control of fluids in many chemical and biological experiments. A Finite Element Method is used to solve the three dimensional (3D) Navier–Stokes and continuity equations to validate the experimental results. PMID:25584118

  7. Dislodgement of carbon nanotube bundles under pressure driven flow.

    PubMed

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2010-04-16

    Experimental and predicted flow rates through carbon nanotubes vary considerably but generally are reported to be well in excess of that predicted by the conventional Poiseuille flow, and therefore nanotubes embedded in a matrix might provide membranes with exceptional mass transport properties. In this paper, applied mathematical modelling is undertaken to estimate the three forces acting on a nanotube bundle, namely the molecular interaction force, the viscous force, and the static pressure force. In deducing estimates of these forces we introduce a modification of the notion of the effective dead area for a carbon nanotube membrane, and we calculate the total forces necessary to push one or more of the nanotubes out of the bundle, thus creating a channel through which further enhancement of flow may take place. However, careful analysis shows that the nett dislodgement force is entirely independent on the useable flow area, but rather depends only on the total cross-sectional area perpendicular to the flow. This rather surprising result is a consequence of the flow being steady and a balance of the viscous and pressure forces. PMID:20332554

  8. A pressure-driven flow analysis of gas trapping behavior in nanocomposite thermite films

    NASA Astrophysics Data System (ADS)

    Sullivan, K. T.; Bastea, S.; Kuntz, J. D.; Gash, A. E.

    2013-10-01

    This article is in direct response to a recently published article entitled Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites (K. T. Sullivan et al., J. Appl. Phys., 112(2), 2012), in which we introduced a non-dimensional parameter as the ratio of gas production to gas escape within a thin porous thermite film. In our original analysis, we had treated the problem as Fickian diffusion of gases through the porous network. However, we believe a more physical representation of the problem is to treat this as pressure-driven flow of gases in a porous medium. We offer a new derivation of the non-dimensional parameter which calculates gas velocity using the well-known Poiseuille's Law for pressure-driven flow in a pipe. This updated analysis incorporates the porosity, gas viscosity, and pressure gradient into the equation.

  9. Solitary and transitional waves in pressure-driven two-layer microchannel flow

    NASA Astrophysics Data System (ADS)

    Sisoev, G. M.; Bennett, C. J.

    2014-04-01

    Similar to the case of the gravity-driven flow (Sisoev and Bennett 2013 Fluid Dyn. Res. 45 015503) we use the integral method to derive evolution equations modeling a pressure-driven two-layer flow of immiscible viscous fluids in a plane microchannel. It is shown that the system possesses a vast set of steady-traveling solitary and transitional waves. Analysis of the phase trajectories of the relevant dynamical system indicates the existence of families of steady-traveling periodic waves.

  10. Lattice-Boltzmann simulation for pressure driven microscale gas flows in transition regime

    NASA Astrophysics Data System (ADS)

    Yue, Xiang-Ji; Wu, Ze-Huan; Ba, Yao-Shuai; Lu, Yan-Jun; Zhu, Zhi-Peng; Ba, De-Chun

    2015-09-01

    This paper carries out numerical simulation for pressure driven microscale gas flows in transition flow regime. The relaxation time of LBM model was modified with the application of near wall effective mean free path combined with a combination of Bounce-back and Specular Reflection (BSR) boundary condition. The results in this paper are more close to those of DSCM and IP-DSCM compared with the results obtained by other LBM models. The calculation results show that in transition regime, with the increase of Knudsen number, the dimensionless slip velocity at the wall significantly increases, but the maximum linear deviation of nonlinear pressure distribution gradually decreases.

  11. Molecular simulation of pressure-driven fluid flow in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Takaba, Hiromitsu; Onumata, Yasushi; Nakao, Shin-ichi

    2007-08-01

    An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4×106Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately <20σ. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores.

  12. Predicting the pressure driven flow of gases through micro-capillaries and micro-orifices

    SciTech Connect

    Anderson, B.L.; Carlson, R.W.; Fischer, L.E.

    1994-11-01

    A large body of experimentally measured gas flow rates were obtained from the literature and then compared to the predictions obtained with constitutive flow equations. This was done to determine whether the equations apply to the predictions of gas flow rates from leaking containment vessels used to transport radioactive materials. The experiments consisted of measuring the volumetric pressure-driven flow of gases through micro-capillaries and micro-orifices. The experimental results were compared to the predictions obtained with the equations given in ANSI N14.5 the American National Standard for Radioactive Materials-Leakage Tests on Package for Shipment. The equations were applied to both (1) the data set according to the recommendations given in ANSI N14.5 and (2) globally to the complete data set. It was found that: The continuum and molecular flow equation provided good agreement between the experimental and calculated flow rates for flow rates less than about 1 atm{center_dot}cm{sup 3}/s. The choked flow equation resulted in over-prediction of the flow rates for flow rates less than about 1 atm-cm{sup 3}/s. For flow rates higher than 1 atm{center_dot}cm{sup 3}/s, the molecular and continuum flow equation over-predicted the measured flow rates and the predictions obtained with the choked flow equation agreed well with the experimental values. Since the flow rates of interest for packages used to transport radioactive materials are almost always less than 1 atm{center_dot}cm{sup 3}/s, it is suggested that the continuum and molecular flow equation be used for gas flow rate predictions related to these applications.

  13. Linear stability of pressure-driven flow over longitudinal superhydrophobic grooves

    NASA Astrophysics Data System (ADS)

    Yu, K. H.; Teo, C. J.; Khoo, B. C.

    2016-02-01

    The modal analysis of pressure-driven flows in channels patterned with superhydrophobic surfaces containing periodic grooves and ribs aligned longitudinally to the flow direction has been performed. The effects of shear-free fraction (" separators=" δ ) and groove-rib spatial period normalized by full-channel height (" separators=" L ) on the linear flow stability of such flows have been explored. By performing a BiGlobal linear stability analysis via the pseudo-spectral method, such surfaces have been found to potentially exert a stabilizing or destabilizing effect on the base flow, depending predominantly on the normalized groove-rib spacing. For small values of L (i.e., L = 0.01 and 0.02), a stabilizing effect is predicted for flows over longitudinal superhydrophobic grooves, in agreement with the results obtained using a local stability analysis which employs a homogeneous slip condition along the walls. For a moderate value of normalized groove-rib spacing where the groove-rib periodic spacing is one-tenth of the channel height, the presence of longitudinal superhydrophobic grooves leads to flow instabilities at a lower critical Reynolds number. The redistribution of the base flow resulting from the vanishing shear rates along the liquid-gas interface could give rise to an inflectional instability that promotes temporal instability. The effects of patterning the superhydrophobic surfaces on one or both channel walls are also examined.

  14. Transverse migration of a polyelectrolyte driven by electric and pressure-driven flow fields

    NASA Astrophysics Data System (ADS)

    Ladd, Tony; Kekre, Rahul; Butler, Jason

    2010-03-01

    Capillary electrophoresis experiments show that a flexible polyelectrolyte migrates under the combined action of electric and pressure-driven-flow fields [1]. When the fields act in conjunction, the polymer migrates to the center of the channel, but when the pressure gradient and external force act in opposite directions, the polymer migrates towards the boundaries. We have previously proposed that this is caused by long-range dipolar interactions between segments of the polyelectrolyte chain [2]. Due to the stretching and orientation of the chain by the local shear flow, there is a net motion transverse to the flow and field lines. Here I will describe a coarse-grained simulation of polyelectrolyte migration, including hydrodynamic interactions from the imposed flow and electric fields. The effects of the no-slip condition on the walls are included by regularized Green's functions. Our results explain the experimentally observed migration under different combinations of flow and electric field. [1] J. Zheng and E. S. Yeung. Anal. Chem., 74:4536, 2002; 75:3675, 2003. [2] O. B. Usta, J. E. Butler and A. J. C. Ladd. Phys. Rev. Lett., 98:098301, 2007.

  15. Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics.

    PubMed

    Matin, M H; Ohshima, H

    2016-08-15

    The present study deals with thermal transport characteristics of an electrolyte solution flowing through a slit nanochannel with polyelectrolyte walls, known as soft nanochannel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the impact of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL. Therefore, the PEL-electrolyte interface acts as a semi-penetrable membrane. To the best of our knowledge, the thermal analysis of mixed electrokinetically and pressure driven flow in such soft nanochannels has never been addressed. The Poisson-Boltzmann equation is solved assuming the Debye-Huckel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential; velocity and temperature distributions in terms of governing dimensionless parameters. Also results for the Nusselt number are presented and discussed in detail. PMID:27214147

  16. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2013-01-01

    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584

  17. Kinetic theory of a confined polymer driven by an external force and pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Usta, O. Berk; Kekre, Rahul; Ladd, Anthony J. C.

    2007-11-01

    Kinetic theory is used to investigate the mechanisms causing cross-stream migration of confined polymers and polyelectrolytes under the influence of external forces and flow fields. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this paper, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external force. Further modifications account for counterion screening within a Debye-Hückel approximation. This enables qualitative comparison with experimental results [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] on DNA migration under combined electric and pressure-driven flow fields. The comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r3, rather than exponentially. The theory qualitatively reproduces results of both simulations and experiments for the migration of neutral polymers and polyelectrolytes. Concentration profiles similar to those found in numerical simulations are observed, but the Peclet numbers differ by factors of 2-3.

  18. Sedimentation of an elliptical particle in periodic oscillatory pressure driven flow

    NASA Astrophysics Data System (ADS)

    Yuan, Wenjun; Deng, Jianqiang; Cao, Zheng; Mei, Mei

    2015-12-01

    The sedimentation of a heavy elliptical particle in a two-dimensional channel filled with Newtonian fluid under oscillatory pressure driven flow has been numerically investigated by using the finite element arbitrary Lagrangian-Eulerian method. The effects of particle Reynolds number, initial position, blockage ratio, as well as oscillation frequency and amplitude on the flow patterns during sedimentation have been studied. The results show that there exists an equilibrium position for high frequency flow, and the position of the heavier particle is closer to the centerline. As rotation contributes to non-uniform pressure on particle surface, the further initial position and lower amplitude lead to the larger scale zigzag migration; however, the maximum lateral displacements of these low frequency zigzag motions are nearly the same due to the consistent lubrication limit. Moreover, our simulation results indicate that there are five distinct modes of settling in oscillatory flow: horizontal with offset, oscillating, tumbling throughout channel, tumbling at one side and the special ‘resonance’ phenomenon. The ‘resonance’ induced by the wall is shown to have a close association with the harmonious change of drag and lift on particle surface, and be sensitive to the oscillation in the wake and the periodic discharge of vorticity from behind the body.

  19. Solute dispersion under electric and pressure driven flows; pore scale processes

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Raoof, Amir; Schotting, Ruud

    2014-09-01

    Solute dispersion is one of the major mixing mechanisms in transport through porous media, originating from velocity variations at different scales, starting from the pore scale. Different driving forces, such as pressure driven flow (PDF) and electro-osmotic flow (EOF), establish different velocity profiles within individual pores, resulting in different spreading of solutes at this scale. While the velocity profile in PDF is parabolic due to the wall friction effects, the velocity in EOF is typically plug flow, due to the wall charge effects. In this study, we applied a pore network modeling formulation to simulate the velocity field driven by pressure and electric potential to calculate and compare the corresponding average solute dispersivity values. The influence of different driving forces on the hydrodynamic dispersion of a tracer solute is investigated. Applying the pore network modeling, we could capture the velocity variations among different pores, which is the main contribution for the dispersion coefficient. The correlation between pore velocities against pore sizes is found to be different for EOF and PDF, causing different solute dispersion coefficients. The results can provide insight into modeling of electrokinetic remediation for contaminant cleanup in low permeable soils.

  20. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  1. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  2. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  3. Nonlinear wave evolution in pressure-driven stratified flow of Newtonian and Herschel-Bulkley fluids

    NASA Astrophysics Data System (ADS)

    Valluri, Prashant; Sahu, Kirti; Ding, Hang; Spelt, Peter; Matar, Omar; Lawrence, Chris

    2007-11-01

    Pressure-driven stratified channel flow of a Newtonian fluid flowing over a Herschel-Bulkley (HB) fluid is considered. The effects of yield stress and shear-thinning rheology on the nonlinear wave evolution are studied using numerical simulations; the HB rheology is regularized at low shear rates using a bi-viscosity formulation. Two different numerical methods were used to carry out the computations: a level-set method (based on that by Spelt, J. Comput. Phys. 2005) and a diffuse-interface method (based on that by Ding et al., J. Comput. Phys., in press). The simulations, which account for fluid inertia, surface tension and gravity are validated against linear theory predictions at early times. The results at later times show the spatio-temporal evolution into the nonlinear regime wherein waves are strongly deformed, leading to the onset of drop entrainment. It is shown that the apparent viscosity in the region of the HB fluid directly involved in the onset of entrainment is almost constant; unyielded regions are confined to wave troughs at late stages of the nonlinear evolution.

  4. Pressure-driven flow past spheres moving in a circular tube

    NASA Astrophysics Data System (ADS)

    Sheard, G. J.; Ryan, K.

    A computational investigation, supported by a theoretical analysis, is performed to investigate a pressure-driven flow around a line of equispaced spheres moving at a prescribed velocity along the axis of a circular tube. This fundamental study underpins a range of applications including physiological circulation research. A spectral-element formulation in cylindrical coordinates is employed to solve for the incompressible fluid flow past the spheres, and the flows are computed in the reference frame of the translating spheres.Both the volume flow rate relative to the spheres and the forces acting on each sphere are computed for specific sphere-to-tube diameter ratios and sphere spacing ratios. Conditions at which zero axial force on the spheres are identified, and a region of unsteady flow is detected at higher Reynolds numbers (based on tube diameter and sphere velocity). A regular perturbation analysis and the reciprocal theorem are employed to predict flow rate and drag coefficient trends at low Reynolds numbers. Importantly, the zero drag condition is well-described by theory, and states that at this condition, the sphere velocity is proportional to the applied pressure gradient. This result was verified for a range of spacing and diameter ratios. Theoretical approximations agree with computational results for Reynolds numbers up to O(100).The geometry dependence of the zero axial force condition is examined, and for a particular choice of the applied dimensionless pressure gradient, it is found that this condition occurs at increasing Reynolds numbers with increasing diameter ratio, and decreasing Reynolds number with increasing sphere spacing.Three-dimensional simulations and predictions of a Floquet linear stability analysis independently elucidate the bifurcation scenario with increasing Reynolds number for a specific diameter ratio and sphere spacing. The steady axisymmetric flow first experiences a small region of time-dependent non

  5. Real-time Depth Sectioning: Isolating the Effect of Stress on Structure Development in Pressure-Driven Flow

    SciTech Connect

    Fernandez-Ballester, L.; Thurman, D; Kornfield, J

    2009-01-01

    Transient structure development at a specific distance from the channel wall in a pressure-driven flow is obtained from a set of real-time measurements that integrate contributions throughout the thickness of a rectangular channel. This 'depth sectioning method' retains the advantages of pressure-driven flow while revealing flow-induced structures as a function of stress. The method is illustrated by applying it to isothermal shear-induced crystallization of an isotactic polypropylene using both synchrotron x-ray scattering and optical retardance. Real-time, depth-resolved information about the development of oriented precursors reveals features that cannot be extracted from ex-situ observation of the final morphology and that are obscured in the depth-averaged in-situ measurements. For example, at 137 degrees C and at the highest shear stress examined (65 kPa), oriented thread-like nuclei formed rapidly, saturated within the first 7 s of flow, developed significant crystalline overgrowth during flow and did not relax after cessation of shear. At lower stresses, threads formed later and increased at a slower rate. The depth sectioning method can be applied to the flow-induced structure development in diverse complex fluids, including block copolymers, colloidal systems, and liquid-crystalline polymers.

  6. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)

    PubMed Central

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221

  7. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE).

    PubMed

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221

  8. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)

    NASA Astrophysics Data System (ADS)

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis.

  9. An analysis of pressure driven cross-flow through a long slot connecting two parallel channels

    SciTech Connect

    Shadday, M.A. Jr.

    1992-12-31

    Cross-flow between two parallel channels that were connected by a long narrow slot has been measured. The data was presented primarily in terms of transverse resistance coefficients. This data has been analyzed with momentum balances applied to both the axial and transverse components of the slot flow. The importance of wall friction to the slot flow and the necessity of calculating the axial component of the slot flow is demonstrated.

  10. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.

    PubMed

    Wu, Qihua; Ok, Jeong Tae; Sun, Yongpeng; Retterer, S T; Neeves, Keith B; Yin, Xiaolong; Bai, Baojun; Ma, Yinfa

    2013-03-21

    Microfluidic and nanofluidic devices have undergone rapid development in recent years. Functions integrated onto such devices provide lab-on-a-chip solutions for many biomedical, chemical, and engineering applications. In this paper, a lab-on-a-chip technique for direct visualization of the single- and two-phase pressure-driven flows in nano-scale channels was developed. The nanofluidic chip was designed and fabricated; concentration dependent fluorescence signal correlation was developed for the determination of flow rate. Experiments of single and two-phase flow in nano-scale channels with 100 nm depth were conducted. The linearity correlation between flow rate and pressure drop in nanochannels was obtained and fit closely into Poiseuille's Law. Meanwhile, three different flow patterns, single, annular, and stratified, were observed from the two-phase flow in the nanochannel experiments and their special features were described. A two-phase flow regime map for nanochannels is presented. Results are of critical importance to both fundamental study and many applications. PMID:23370894

  11. A stochastic two-scale model for pressure-driven flow between rough surfaces

    PubMed Central

    Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas

    2016-01-01

    Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975

  12. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  13. Freezing and Pressure-Driven Flow of Solid Helium in Vycor

    NASA Astrophysics Data System (ADS)

    Day, James; Herman, Tobias; Beamish, John

    2005-07-01

    The recent torsional oscillator results of Kim and Chan suggest a supersolid phase transition in solid 4He confined in Vycor. We have used a capacitive technique to directly monitor density changes for helium confined in Vycor at low temperature and have used a piezoelectrically driven diaphragm to study the pressure-induced flow of solid helium into the Vycor pores. Our measurements showed no indication of a mass redistribution in the Vycor that could mimic supersolid decoupling and put an upper limit of about 0.003 μm/s on any pressure-induced supersolid flow in the pores of Vycor.

  14. Evaluation of a microchip electrophoresis-mass spectrometry platform deploying a pressure-driven make-up flow.

    PubMed

    Li, Xiangtang; Zhao, Shulin; Liu, Yi-Ming

    2013-04-12

    Integration of a pressure-driven make-up flow (MUF) into a microchip electrophoresis (MCE) platform in order to facilitate its coupling with electrospray ionization-mass spectrometric detection (ESI-MS) is described. In the glass/PDMS hybrid microchip, a MUF channel was made to intersect with the MCE separation channel at an angle of 45°. The MUF was generated by a syringe pump. Microscopic image results from simulation studies showed that the pressure-driven MUF and the potential-driven electroosmotic flow in the MCE separation channel could be run separately without interfering with each other and mixed well at the joint point by adjusting either the MUF flow rate or the potential applied for MCE separation. The MUF had several desirable functions, including making the start of electrospray easy and cleaning the nanoESI emitter continuously when not spraying. High separation efficiency was achieved with the proposed MCE-nanoESI-MS system in separating an amino acid mixture containing glutamine, serine, threonine, phenylalanine, and glutamic acid. All of them were baseline separated from each other within 3 min. Plate numbers of >10,000 (on a 2.5 cm MCE separation channel) were obtained. The analytical platform also showed a linear response for quantification of DOPA with a detection limit (S/N=3) of 0.10 μM. In addition, on-line derivatization of MCE elutes in order to enhance MS detection sensitivity was easily carried out by adding the tagging reagent into the MUF. These results indicated that the present system might have a good potential in MCE-MS applications. PMID:23473508

  15. Non-isothermal flow through a rotating straight duct with wide range of rotational and pressure driven parameters

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Alam, Md. Mahmud; Ferdows, M.; Sivasankaran, S.

    2013-10-01

    Numerical study is performed to investigate the Non-isothermal flow in a rotating straight duct under various flow conditions. Spectral method is applied as a main tool for the numerical technique, where the Chebyshev polynomial, the Collocation methods, the Arc-length method and the Newton-Raphson method are also used as secondary tools. The characteristics of the flow mentioned above are described here. The incompressible viscous steady Non-isothermal flow through a straight duct of rectangular cross-section rotating at a constant angular velocity about the center of the duct cross-section is investigated numerically to examine the combined effects of Rotation parameter (Coriolis force), Grashof number (parameter which is used in heat, transfer studies involving free, forced or natural convection and is equql to , where L is the characteristic length, ρ the density, g the acceleration due to gravity, β the thermal expansion coefficient, Δ T the temperature difference, μ the viscosity and ν the kinematic viscosity of the fluid. The expansion coefficient β is a measure of the rate at which the volume V of the fluid changes with temperature at a given pressure P), Prandtl number, aspect ratio and Pressure-driven parameter (centrifugal force) on the flow. We examine the structures in case of rotation of the duct axis and the Pressure-driven parameter with large aspect ratio where other parameters are fixed. The calculations are carried out for 0 ≤ T r ≤ 300, 2 ≤ γ ≤ 6, G r = 100, P r = 7.0 and 0 ≤ P r ≤ 800 by applying the Spectral method. When Ω > 0 and the rotation is in the same direction as the Coriolis force enforces the centrifugal force, multiple solutions of Non-symmetric the secondary flow patterns with 10-vortex (maximum) are obtained in case of T r = 100 and 150 with large aspect ratio. The intense of the temperature field is very strong near the heated wall in all cases. Finally, the overall solutions of the problems considered in

  16. Linear stability analysis of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Valluri, Prashant; Spelt, Peter; Matar, Omar

    2007-11-01

    The linear stability of pressure-driven channel flow of a Newtonian layer past a non-Newtonian fluid is studied; the latter is assumed to possess a finite yield stress and to exhibit a power-law behaviour. Coupled Orr-Sommerfeld-type eigenvalue equations are derived and solved using a spectral collocation method in the absence of unyielded regions. The numerical solutions of these equations are in agreement with analytical predictions valid in the long-wave limit. Our results indicate that increasing the yield stress (prior to the formation of unyielded regions) and shear thickening tendency of the non-Newtonian fluid promote instability. An analysis of the disturbance `energy' illustrates the presence of an unstable, `interfacial' mode at all Reynolds numbers studied, and an additional, less unstable `shear' mode at relatively high Reynolds numbers. The influence of non-Newtonian rheology on the stability characteristics of these modes is elucidated.

  17. Linear instability of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid

    NASA Astrophysics Data System (ADS)

    Sahu, K. C.; Valluri, P.; Spelt, P. D. M.; Matar, O. K.

    2007-12-01

    The linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. A pair of coupled Orr-Sommerfeld eigenvalue equations are derived and solved using an efficient spectral collocation method for cases in which unyielded regions are absent. An asymptotic analysis is also carried out in the long-wave limit, the results of which are in excellent agreement with the numerical predictions. Our analytical and numerical results indicate that increasing the dimensionless yield stress, prior to the formation of unyielded plugs below the interface, is destabilizing. Increasing the shear-thinning tendency of the lower fluid is stabilizing.

  18. A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Redapangu, Prasanna; Vanka, Pratap; Sahu, Kirti

    2012-11-01

    The pressure-driven displacement of two immiscible fluids in an inclined channel in the presence of viscosity and density gradients is investigated using a multiphase lattice Boltzmann approach. The effects of viscosity ratio, Atwood number, Froude number, capillary number and channel inclination are investigated through flow structures, front velocities and fluid displacement rates. Our results indicate that increasing viscosity ratio between the fluids decreases the displacement rate. We observe that increasing the viscosity ratio has a non-monotonic effect on the velocity of the leading front; however, the velocity of the trailing edge decreases with increasing the viscosity ratio. The displacement rate of the thin-layers formed at the later times of the displacement process increases with increasing the angle of inclination because of the increase in the intensity of the interfacial instabilities. Our results also predict the front velocity of the lock-exchange flow of two immiscible fluids in the exchange flow dominated regime. Department of Science and Technology, India.

  19. Gas-bubble snap-off under pressure driven flow in constricted noncircular capillaries

    SciTech Connect

    Kovscek, A.R.; Radke, C.J.

    1996-04-01

    A model for snap-off of a gas thread in a constricted cornered pore is developed. The time for wetting liquid to accumulate at a pore throat into an unstable collar is examined, as for the resulting pore-spanning lens to be displaced from the pore so that snap-off is the time may repeat. A comer-flow hydrodynamic analysis for the accumulation rate of wetting liquid due to both gradients in interfacial curvature and in applied liquid-phase pressure reveals that wetting-phase pressure gradients significantly increase the frequency of liquid accumulation for snap-off as compared to liquid rearrangement driven only by differences in pore-wall curvature. For moderate and large pressure gradients, the frequency of accumulation increases linearly with pressure gradient because of the increased rate of wetting liquid flow along pore comers. Pore topology is important to the theory, for pores with relatively small throats connected to large bodies demonstrate excellent ability to snapoff gas threads even when the initial capillary pressure is high or equivalently when the liquid saturation is low. A macroscopic momentum balance across the lens resulting from snap-off reveals that lens displacement rates are not linear with the imposed pressure drop. Instead, the frequency of lens displacement scales with powers between 0.5 and 0.6 for pores with dimensionless constriction radii between 0.15 and 0.40. Statistical percolation arguments are employed to form a generation rate expression and connect pore-level foam generation events to macroscopic pressure gradients in porous media. The rate of foam generation by capillary snap-off increases linearly with the liquid-phase pressure gradient and according to a power-law relationship with respect to the imposed gas-phase pressure gradient.

  20. X-ray evidence for capillary pressure driven flow in preserved core from The Geysers

    SciTech Connect

    Bonner, B.P.; Roberts, J.J.; Schneberk, D.J.

    1997-03-01

    Improved understanding of fluid storage and transport mechanisms relevant to The Geysers reservoir is fundamental to efficient and economic long term production of steam. X-ray computed tomographs of core from research borehole SB-15D made within 72 hours of drilling show characteristic x-ray attenuation profiles that can only be explained by imbibition of drilling fluid at reservoir conditions. The shape of the profile is highly diagnostic. Early time scans, when interpreted taking into account independent measurements of pore size distribution, permeabilities and capillary pressures for the rock matrix sampled by SB-15D, are consistent with strong capillary suctions for the recovered rocks. This indirect indication of imbibition under reservoir conditions, along with detailed analysis of x-ray attenuation in recovered core, suggests that water content was low in much of the preserved core. These measurements are part of a series of laboratory experiments monitored by x-ray methods intended to evaluate movement of various fluids to determine the relative importance capillarity, Darcy flow and vapor phase diffusion.

  1. Near-wall similarity in three-dimensional turbulent boundary layers. I - Model review. II - Pressure-driven flow results

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.; Mcallister, J. E.; Tennant, M. H.

    1982-01-01

    Eleven proposed models for near-wall similarity for three-dimensional turbulent boundary layer flows are reviewed. Six of these models are comparatively simple scalar models and five are more complex and/or two-component vector models. Ten of the models can be tested as to their validity or predictive capability with the aid of measured mean velocity field, wall pressure field, and direct wall shear stress field (magnitude and direction) data. One of the models cannot be tested owing to its dependence on two parameters that are at present extremely difficult (if not impossible) to measure. Ten three-dimensional near-wall similarity models are then evaluated with direct wall shear, velocity field, and pressure gradient data from a three-dimensional pressure-driven boundary layer flow. In a primary focus of the interval where y+ is between 50 and 300, graphical results suggest that six simpler models and the freestream component of one complex model are adequate for profiles with monotone increasing skew up to about 15 deg.

  2. Coarse-grained theory to predict red blood cell migration in pressure-driven flow at zero Reynolds number

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Narsimhan, Vivek; Shaqfeh, Eric S. G.

    2015-11-01

    The pressure-driven flow of blood in a rectangular channel is studied via the development of a modified Boltzmann collision theory. It is well known that the deformability of red blood cells(RBC) creates a hydrodynamic lift away from the channel walls and most importantly, forms a cell-free or `Fahraeus-Lindqvist'' layer at the wall. A theory is presented to predict the uneven concentration distribution of RBCs in the cross-stream direction. We demonstrate that cell migration is mainly due to the balance between the hydrodynamic lift from the wall and cell-cell binary collisions. Each of these components is determined independently via boundary element simulations. The lift velocity shows a scaling with wall displacement law similar to that from previous vesicle experiments. The collisional displacements vary nonlinearly with cross-stream positions -a key input to the theory. Unlike the case of simple shear flow, a nonlocal shear rate correction is necessary to overcome the problem of zero lift and collision at the centerline. Finally a diffusional term is added to account for higher order collisions. The results indicate a decrease in cell-free layer thickness with increasing RBC volume fraction that is in good agreement with simulation of blood in 10-20% range of hematocrit.

  3. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones. PMID:26083027

  4. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study

    PubMed Central

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones. PMID:26083027

  5. Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion-ion interactions.

    PubMed

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2014-03-01

    We study the coupled effect of electrokinetic phenomena and fluid rheology in altering the induced streaming potential in narrow fluidic confinements, which is manifested by establishing a time periodic pressure-driven flow in presence of electrical double layer phenomenon. However, in sharp contrast with reported literature, we take into account nonelectrostatic ion-ion interactions toward estimating the same in addition to electrostatic interactions and steric effects. We employ power law based rheological model for estimating the induced streaming potential. We bring out an intricate interaction between nonelectrostatic interactions and fluid rheology on the concerned electrokinetic phenomena, bearing immense consequences toward designing of integrated lab-on-a-chip-based microdevices and nanodevices. PMID:24132646

  6. Interfacial instability of thin liquid films at the walls of a parallel-plate channel, sheared by pressure-driven gas flow

    NASA Astrophysics Data System (ADS)

    Vécsei, Miklós; Dietzel, Mathias; Hardt, Steffen

    2015-11-01

    Gas flow between liquid films is a commonly used model system for flows in the respiratory system and is also present during flow boiling in microchannels. The emergence of long-wavelength interfacial instabilities due to viscous stresses is a well-known property of these systems. We show that its description is often reducible to two coupled partial differential equations. Thus the characteristic quantities, such as the most unstable wavelength and the marginally stable wavenumber, can be obtained in a straightforward manner from the linear stability analysis. The analysis of the weakly nonlinear equations shows that if the material properties of the liquid films and their undisturbed thicknesses are identical, their interfaces should only be destabilized by the inertial forces. Moreover, for this configuration the emerging patterns on the two interfaces are found to be identical in the long-time limit. A different setup, where the liquid films have identical material properties, but their undisturbed thicknesses differ, is studied numerically. The results show that even for this configuration the interfacial deformations of the two films remain closely correlated for a broad range of parameters.

  7. Separated flow

    NASA Technical Reports Server (NTRS)

    Sellers, W. L., III; Dunham, R. E., Jr.; Goodman, W. L.; Howard, F. G.; Margason, R. J.; Rudy, D. H.; Rumsey, C. L.; Stough, H. P., III; Thomas, J. L.

    1986-01-01

    A brief overview of flow separation phenomena is provided. Langley has many active research programs in flow separation related areas. Three cases are presented which describe specific examples of flow separation research. In each example, a description of the fundamental fluid physics and the complexity of the flow field is presented along with a method of either reducing or controlling the extent of separation. The following examples are discussed: flow over a smooth surface with an adverse pressure gradient; flow over a surface with a geometric discontinuity; and flow with shock-boundary layer interactions. These results will show that improvements are being made in the understanding of flow separation and its control.

  8. Oscillatory Magnetogasdynamic Slip Flow in a Microchannel

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    2009-11-01

    The problem of pressure driven Magnetogasdynamic (MGD) slip flow with small rarefaction through a long micro-channel is considered. The flow is driven by steady or oscillatory pressure gradient. The study of MGD flows in microchannels is of great interest since they occur in magnetic thin films and other electromagnetic micro-scale devices. In obtaining the micro-fluidic solutions in the presence of a magnetic field, some additional physical, mathematical and numerical issues need to be considered. These issues deal with the scaling laws for micro-scale MHD flows and the relevant parameters such as Mach number, Reynolds number, Hartmann number, magnetic Reynolds number, and Knudsen number. For planar constant area micro-channel, it is possible to obtain the analytical solutions for both steady and oscillatory pressure driven flows. As physically expected, the higher value of the magnetic field (higher Hartmann number) flattens the velocity profile in the channel.

  9. Flow visualization

    NASA Astrophysics Data System (ADS)

    Weinstein, Leonard M.

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  10. Flow visualization

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  11. Flow chamber

    DOEpatents

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  12. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  13. Swirl flows

    NASA Astrophysics Data System (ADS)

    Gupta, A. K.; Lilley, D. G.; Syred, N.

    Attention is given to the range of swirl phenomena occurring in both the atmosphere and man-made devices which may involve combustion-generated reacting flows. Experimental studies have established that swirl has large scale favorable effects on various aspects of flowfields, such as jet growth, entrainment and decay in inert flows and flame size, shape and stability in reacting flows. Mathematical modeling and numerical prediction for swirling flows combine experimental and theoretical combustion aerodynamics with sophisticated computational fluid dynamics to reduce development program costs and duration. Attention is given to practical combustor design in gas turbine engines, industrial furnaces, and waste incinerators, as well as to the effects of combustor swirl flow on the pollutant content of exhaust gases.

  14. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Hegna, C. C.

    2016-05-01

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  15. Turbulence modeling for separated flow

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1994-01-01

    Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.

  16. Effects of impact velocity on pressure-driven nanofluid

    NASA Astrophysics Data System (ADS)

    Liu, Hailong; Cao, Guoxin

    2013-09-01

    Using molecular dynamics simulations, we investigate the pressure-driven water infiltration behavior of carbon nanotubes (CNTs), in which water molecules can infiltrate into CNTs from outside upon an external impact load. According to the direction of impact mechanical wave, the infiltration procedure can be divided into the forward stage (stage I) and the reflected stage (stage II). At the forward stage of mechanical wave, the flow behavior strongly depends on the impact velocity but it is essentially not very sensitive to the tube radius. With a higher impact velocity, the water flow has a higher transport velocity, a lower density, a weaker CNT-water interaction, a higher potential energy, and a more disordered structure shown by a wider distribution of water dipole and OH bonds orientations. At the reflected stage, due to the impact pressure effect, the water structure is significantly changed, and the flow behavior is less sensitive to the impact velocity but more sensitive to the tube radius. After the reflected wave passed the water molecules inside CNTs, the water density and potential are significantly increased, which initiates a significant change for the water structure inside CNTs, especially for small size tubes. In a small tube like (10,10), a new water conformation is created in the reflected procedure, while there is no such new structure created in a larger tube like (20,20). Due to the different structures, the behavior of the pressure-driven water flow inside CNTs is significantly different than the steady flow.

  17. Enhanced fluid flow through nanoscale carbon pipes.

    PubMed

    Whitby, Max; Cagnon, Laurent; Thanou, Maya; Quirke, Nick

    2008-09-01

    Recent experimental and theoretical studies demonstrate that pressure driven flow of fluids through nanoscale ( d < 10 nm) carbon pores occurs 4 to 5 orders of magnitude faster than predicted by extrapolation from conventional theory. Here, we report experimental results for flow of water, ethanol, and decane through carbon nanopipes with larger inner diameters (43 +/- 3 nm) than previously investigated. We find enhanced transport up to 45 times theoretical predictions. In contrast to previous work, in our systems, decane flows faster than water. These nanopipes were composed of amorphous carbon deposited from ethylene vapor in alumina templates using a single step fabrication process. PMID:18680352

  18. Flow cytometry

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.

    1984-09-01

    Flow cytometry instrumentation developed from early efforts to count cells and particles in liquid suspension as they passed through a sensing device. Since the mid-1960's sophisticated instruments have been designed for analyzing cells based on various cytological, biochemical, and functional properties. These instruments have revolutionized automated cell analysis methods in that measurements are made at high speed, multiparameter data is correlated on each cell, statistical precision is high, and cells are separated in high purity from heterogeneous mixtures for identification and functional analysis. Advanced instruments capable of measuring cell volume, surface area, multicolor fluorescence, fluorescence polarization, light scatter within various angular regions, and axial light loss (extinction) at different wavelengths are being used in biomedical research for analyzing and sorting normal and abnormal cell populations. This article reviews the development of flow cytometers, the conceptual basis of flow measurements, and discusses some of the numerous applications of the technology in biology and medicine.

  19. FLOW GATING

    DOEpatents

    Poppelbaum, W.J.

    1962-12-01

    BS>This invention is a fast gating system for eiectronic flipflop circuits. Diodes connect the output of one circuit to the input of another, and the voltage supply for the receiving flip-flop has two alternate levels. When the supply is at its upper level, no current can flow through the diodes, but when the supply is at its lower level, current can flow to set the receiving flip- flop to the same state as that of the circuit to which it is connected. (AEC)

  20. Lubrication Flows.

    ERIC Educational Resources Information Center

    Papanastasiou, Tasos C.

    1989-01-01

    Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…

  1. Flow cytometer

    DOEpatents

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  2. Flow cytometer

    DOEpatents

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  3. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  4. Systolic flow

    SciTech Connect

    Tsay, J.C.; Yuan, S. )

    1990-03-01

    This paper presents a formal algebraic notation to express the global data interacting activities of a systolic array. The notation we use is the generating function. Using generating functions, we can describe the velocity and the moving path of a data stream at any time. Several generating functions can be grouped together to form a systolic flow which can aid the specification, design, and verification of a systolic array.

  5. Marangoni Effects on the Bubble Dynamics in a Pressure Driven Flow

    NASA Technical Reports Server (NTRS)

    Park, Chang-Won; Maruvada, S. R. K.

    1996-01-01

    The motion of air bubbles and water drops in a Hele-Shaw cell filled with a silicone oil has been studied experimentally and theoretically. By adding a predetermined amount of a surfactant to the water drops we attempted to investigate the surfactant influence systematically. While the motion of air bubbles was in reasonable agreement with the predictions of Taylor and Saffman, water drops behaved quite differently in that the translational velocities were smaller by an order of magnitude and their shapes were very unusual as observed previously by Kopf-Sill and Homsy. Assuming that the surrounding fluid wets the solid wall and the bubble (or the drop) surface is rigid due to the surfactant influence, we have estimated the translational velocity of an elliptic bubble. The calculated velocities were in good agreement with the observations indicating that the surfactant influence could retard the bubble motion significantly. The present study also indicates that the unusual bubble shapes are also due to the surfactant influence.

  6. Immiscible liquid-liquid pressure-driven flow in capillary tubes: Experimental results and numerical comparison

    NASA Astrophysics Data System (ADS)

    Soares, Edson J.; Thompson, Roney L.; Niero, Debora C.

    2015-08-01

    The immiscible displacement of one viscous liquid by another in a capillary tube is experimentally and numerically analyzed in the low inertia regime with negligible buoyancy effects. The dimensionless numbers that govern the problem are the capillary number Ca and the viscosity ratio of the displaced to the displacing fluids Nμ. In general, there are two output quantities of interest. One is associated to the relation between the front velocity, Ub, and the mean velocity of the displaced fluid, U ¯ 2 . The other is the layer thickness of the displaced fluid that remains attached to the wall. We compute these quantities as mass fractions in order to make them able to be compared. In this connection, the efficiency mass fraction, me, is defined as the complement of the mass fraction of the displaced fluid that leaves the tube while the displacing fluid crosses its length. The geometric mass fraction, mg, is defined as the fraction of the volume of the layer that remains attached to the wall. Because in gas-liquid displacement, these two quantities coincide, it is not uncommon in the literature to use mg as a measure of the displacement efficiency for liquid-liquid displacements. However, as is shown in the present paper, these two quantities have opposite tendencies when we increase the viscosity of the displacing fluid, making this distinction a crucial aspect of the problem. Results from a Galerkin finite element approach are also presented in order to make a comparison. Experimental and numerical results show that while the displacement efficiency decreases, the geometrical fraction increases when the viscosity ratio decreases. This fact leads to different decisions depending on the quantity to be optimized. The quantitative agreement between the numerical and experimental results was not completely achieved, especially for intermediate values of Ca. The reasons for that are still under investigation. The experiments conducted were able to achieve a wide range of Ca. We show that in the range 1 < Nμ < 2, wavy shape instabilities appear at the interface and that increasing capillary number the amplitude of those waves increases. A deeper investigation on the operation window where these instabilities occur is in order.

  7. Continental Lower-crustal Flow: Channel Flow and Laminar Flow

    NASA Astrophysics Data System (ADS)

    LI, Dewei

    Numerous geological, geophysical and geochemical investigations and finite element modeling indicate that crustal flow layers exist in the continental crust. Both channel flow model and laminar flow model have been created to explain the flow laws and flow mechanisms. As revealed by the channel flow model, a low-viscosity channel in middle to lower crust in orogen or plateau with thick crust and high elevation would flow outward from mountain root in response to lateral pressure gradient resulted from topographic loading or to denudation. However, according to the laminar flow model proposed based on investigation of the Qinghai-Tibet plateau, circulative movement of crustal lithologies with different rheological properties between basin and orogen would occur, under the driving forces resulted from dehydration and melting of subduction plate on active continental margin and from thermal energy related to upwelling and diapiring of intercontinental mantle plume or its gravitational interactions. Similarly, when driven by gravity, the softened or melted substances of the lower crust in a basin would flow laterally toward adjacent mountain root, which would result in a thinned basin crust and a thickened orogenic crust. Partially melted magma within the thickened orogenic lower crust would cause vertical movement of metamorphic rocks of lower to middle crust due to density inversion, and the vertical main stress induced by thermal underplating of lower crust would in turn lead to formation of metamorphic core complexes and low-angle detachment fault systems. Lateral spreading of uplifting mountain due to gravitation potential would result in thrust fault systems on the border between mountain and basin. Meanwhile, detritus produced synchronously by intense erosion of uplifting mountain would be transported and deposited along the marginal deep depression in the foreland basin dragged by lower crust flow. Channel flow is similar to laminar flow in a variety of aspects

  8. Lava Flows

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03658 Lava Flows

    These relatively young lava flows are part of Arsia Mons.

    Image information: VIS instrument. Latitude -22.5N, Longitude 242.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  10. Apparent Viscosity of Active Nematics in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  11. Unsteady flow motions in the supraglottal region during phonation

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Dai, Hu

    2008-11-01

    The highly unsteady flow motions in the larynx are not only responsible for producing the fundamental frequency tone in phonation, but also have a significant contribution to the broadband noise in the human voice. In this work, the laryngeal flow is modeled either as an incompressible pulsatile jet confined in a two-dimensional channel, or a pressure-driven flow modulated by a pair of viscoelastic vocal folds through the flow--structure interaction. The flow in the supraglottal region is found to be dominated by large-scale vortices whose unsteady motions significantly deflect the glottal jet. In the flow--structure interaction, a hybrid model based on the immersed-boundary method is developed to simulate the flow-induced vocal fold vibration, which involves a three-dimensional vocal fold prototype and a two-dimensional viscous flow. Both the flow behavior and the vibratory characteristics of the vocal folds will be presented.

  12. Environment Flow Assessment with Flow Regime Transition

    NASA Astrophysics Data System (ADS)

    Su, J.; Ho, C. C.; Chang, L. C.

    2015-12-01

    To avoid worsen river and estuarine ecosystems cause by overusing water resources, environmental flows conservation is applied to reduce the impact of river environment. Environmental flows refer to water provided within a river, wetland or coastal zone to sustain ecosystems and benefits to human wellbeing. Environment flow assessment is now widely accepted that a naturally variable flow regime, rather than just a minimum low flow. In this study, we propose four methods, experience method, Tenant method, hydraulic method and habitat method to assess the environmental flow of base flow, flush flow and overbank flow with different discharge, frequency and occurrence period. Dahan River has been chosen as a case to demonstrate the assessment mechanism. The alternatives impact analysis of environment and human water used provides a reference for stakeholders when holding an environmental flow consultative meeting.

  13. Flow distances on open flow networks

    NASA Astrophysics Data System (ADS)

    Guo, Liangzhu; Lou, Xiaodan; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

    2015-11-01

    An open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state mode of an open flow system. Energetic food webs, economic input-output networks, and international trade networks are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. An open flow network is different from a closed flow network because it considers the flows from or to the environment (the source and the sink). For instance, in energetic food webs, species obtain energy not only from other species but also from the environment (sunlight), and species also dissipate energy to the environment. Flow distances between any two nodes i and j are defined as the average number of transition steps of a random walker along the network from i to j. The conventional method for the calculation of the random walk distance on closed flow networks cannot be applied to open flow networks. Therefore, we derive novel explicit expressions for flow distances of open flow networks according to their underlying Markov matrix of the network in this paper. We apply flow distances to two types of empirical open flow networks, including energetic food webs and economic input-output networks. In energetic food webs, we visualize the trophic level of each species and compare flow distances with other distance metrics on the graph. In economic input-output networks, we rank sectors according to their average flow distances and cluster sectors into different industrial groups with strong connections. Other potential applications and mathematical properties are also discussed. To summarize, flow distance is a useful and powerful tool to study open flow systems.

  14. Flow direction determination of lava flows.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.; Rhodes, R. C.

    1972-01-01

    The flow direction technique, previously applied to ash-flow sheets, can be used to determine direction of movement and locate eruptive centers for lava flows. The method provides statistically stronger and more consistent flow direction data for lava than ash-flow tuff. The accuracy and reliability of the technique was established on the porphyritic basaltic andesite of Mount Taylor, New Mexico, which erupted from a known center, the Mount Taylor Amphitheater. The technique was then applied to volcanic units with unknown sources: the John Kerr Peak Quartz Latite and mid-Tertiary andesite flows in the Mogollon Mountains, both in southwestern New Mexico. The flow direction technique indicated flow patterns and suggested source areas for each rock unit. In the Mogollon Mountains flow direction measurements were supported by independent directional criteria such as dips of cross beds, stratigraphic thickening, facies changes, and megascopic textures.-

  15. Low volume flow meter

    DOEpatents

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  16. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  17. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  18. Relaminarization of fluid flows

    NASA Technical Reports Server (NTRS)

    Narasimha, R.; Sreenivasan, K. R.

    1979-01-01

    The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.

  19. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  20. Portable peak flow meters.

    PubMed

    McNaughton, J P

    1997-02-01

    There are several portable peak flow meters available. These instruments vary in construction and performance. Guidelines are recommended for minimum performance and testing of portable peak flow meters, with the aim of establishing a procedure for standardizing all peak flow meters. Future studies to clarify the usefulness of mechanical test apparatus and clinical trials of peak flow meters are also recommended. PMID:9098706

  1. Freshwater Flow Charts - 1995

    SciTech Connect

    Kaiper, G V

    2003-11-21

    This report covers the following: (1) Explanation of Charts Showing Freshwater Flow in 1995; (2) Estimated U.S. Freshwater Flow in 1995 (chart); (3) Estimated California Freshwater Flow in 1995 (chart); (4) Estimated New Mexico Freshwater Flow in 1995 (chart); and (5) Web locations and credits.

  2. Brain-Flow Writing.

    ERIC Educational Resources Information Center

    Peterson, Robert J.

    The brain-flow writing technique, which might also be called the "fast flow" technique, offers a particularly useful means of helping adults overcome writer's block. It also offers some bonuses in the form of enhanced creativity, improved thought-flow, and much faster writing output. There are six steps to brain-flow writing. In the first, or…

  3. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  4. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  5. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  6. Variation in polydispersity in pump- and pressure-driven micro-droplet generators

    NASA Astrophysics Data System (ADS)

    Zeng, Wen; Jacobi, Ian; Li, Songjing; Stone, Howard A.

    2015-11-01

    The polydispersity of droplets produced in a typical T-junction microfluidic channel under both syringe-pump-driven and pressure-driven flow configurations is measured quantitatively. Both flow systems exhibit high-frequency flow fluctuations that result in an intrinsic polydispersity due to the mechanism of droplet generation. In addition to this intrinsic polydispersity, the syringe-pump-driven device also exhibits low-frequency fluctuations due to mechanical oscillations of the pump, which overwhelm the high-frequency flow fluctuations and produce a signficantly heightened level of polydispersity. The quantitative difference in polydispersity between the two configurations and time-resolved measurements of individual droplet sizes are presented in order to enable the design of better flow control systems for droplet production.

  7. From connected pathway flow to ganglion dynamics

    NASA Astrophysics Data System (ADS)

    Rücker, M.; Berg, S.; Armstrong, R. T.; Georgiadis, A.; Ott, H.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Wolf, M.; Khan, F.; Enzmann, F.; Kersten, M.

    2015-05-01

    During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus oscillations caused by snap-off events trigger coalescence of adjacent clusters. The ganglion dynamics occurs at the length scale of oil clusters and thus represents an intermediate flow regime between pore and Darcy scale that is so far dismissed in most upscaling attempts.

  8. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  9. Unsteady flow volumes

    SciTech Connect

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  10. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.

    PubMed

    Sharma, Abhinav; Tiwari, Vijeet; Kumar, Vineet; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-10-01

    Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange. PMID:25044128

  11. Flow Instability and Flow Control Scaling Laws

    NASA Astrophysics Data System (ADS)

    van Ness, Daniel; Corke, Thomas; Morris, Scott

    2006-11-01

    A flow instability that is receptive to perturbations is present in the tip clearance leakage flow over the tip of a turbine blade. This instability was investigated through the introduction of active flow control in the viscous flow field. Control was implemented in the form of a dielectric barrier discharge created by a weakly-ionized plasma actuation arrangement. The experimental setup consisted of a low-speed linear turbine cascade made up of an array of nine Pratt & Whitney ``PakB'' turbine blades. This idealized cascade configuration was used to examine the tip clearance leakage flow that exists within the low pressure turbine stage of a gas-turbine engine. The center blade of the cascade array had a variable tip clearance up to five percent chord. Reynolds numbers based on axial blade chord varied from 10^4 to 10^5. Multi-port pressure probe measurements, as well as Stereo Particle Image Velocimetry were used to document the dependence of the instability on the frequency and amplitude of flow control perturbations. Scaling laws based on the variation of blade tip clearance height and inflow conditions were investigated. These results permitted an improved understanding of the mechanism of flow instability.

  12. Adjustable flow restrictor

    NASA Technical Reports Server (NTRS)

    Tufte, R. J.

    1970-01-01

    Flow-rate restrictor with sharp-edged threads generates turbulence in the fluid flow, providing greater pressure reduction than is possible with a smooth-walled device. It is less susceptible to clogging.

  13. Peak flow meter (image)

    MedlinePlus

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  14. Urination - difficulty with flow

    MedlinePlus

    ... at night? Has the force of your urine flow decreased? Do you have dribbling or leaking urine? ... conditions or surgeries that could affect your urine flow? What medicines do you take? Tests that may ...

  15. Handbook of flow visualization

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Jei

    The present conference flow visualization encompasses the fundamental principles of visualization, methods for visualizing different flow types, image processing and computer-assisted methods, and a number of practical applications of the methodologies for studying heat transfer, gas-turbine-disk cooling flows, indoor environments, building aerodynamics, and land vehicles. Specific issues addressed include fluid dynamics, the basics of heat and mass transfer, electrical discharges, liquid crystals, streaming birefringence, speckle photography, Schlieren methods, surface tracing, planar fluorescence imaging in gases, digital processing in interferograms, and ultrasonic image processing. Also addressed are computer-aided flow visualization, flow-field survey data, thermography, flow solutions with scalar variable presentation, and special applications including aerospace and wind-tunnel testing, internal flows, and explosive flows such as shock tubes and blast waves.

  16. Flow Control Effectiveness at High Speed Flows

    NASA Astrophysics Data System (ADS)

    Kontis, K.; Lada, C.

    2005-02-01

    The effects of two important flow control techniques, i.e. jet control and dimples, on the aerodynamic characteristics and performance of a number of body configurations have been studied experimentally. The dimple studies have been carried out in a transonic-supersonic wind tunnel and the jet studies in a hypersonic gun tunnel at a Mach number of 8.2. Air was used as the working gas. The tests employed schlieren photography and oil-flow to study the overall flow field. Quantitative studies have been made by pressure measurements.

  17. Lyotropics Under Extensional Flow

    NASA Astrophysics Data System (ADS)

    Idziak, Stefan H. J.; Welch, Sarah E.; Kisilak, Marsha; Mugford, Chas; Sirota, Eric B.

    2000-03-01

    X-ray diffraction has been used to study the effects of extensional flow on a soft, flexible lamellar membrane system comprised of sodium dodecyl sulfate (SDS), dodecane, pentanol and water. The intermembrane spacing is observed to decrease discontinuously as a function of the flow rate. A new x-ray extensional flow cell suitable for the study of any non-viscous fluid under extensional flow was developed for these measurements.

  18. Ultrasonic flow metering system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  19. Direct force wall shear measurements in pressure-driven three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Mcallister, J. E.; Tennant, M. H.; Pierce, F. J.

    1982-01-01

    Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.

  20. Flow reduction in microchannels coated with a polymer brush.

    PubMed

    Lanotte, Luca; Guido, Stefano; Misbah, Chaouqi; Peyla, Philippe; Bureau, Lionel

    2012-09-25

    We report on the design of microchannels made of glass capillary coated with polymer brushes elaborated by the so-called "grafting-from" technique. We present measurements of velocity profiles for pressure-driven flows of water in such "hairy" capillaries. We show that the flow reduction induced by the presence of the brush is unexpectedly greater than what could be anticipated from simple geometric arguments on the reduction of the effective capillary diameter or from predictions by models describing the brush layer as a poro-elastic boundary. PMID:22935030

  1. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  2. Integer Equal Flows

    SciTech Connect

    Meyers, C A; Schulz, A S

    2009-01-07

    The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R{sub 1}, ..., R{sub {ell}} must carry equal flow. We show this problem is effectively inapproximable, even if the cardinality of each set R{sub k} is two. When {ell} is fixed, it is solvable in polynomial time.

  3. Flow boiling in vertical down-flow

    SciTech Connect

    Dougherty, T.; Fighetti, C.; Reddy, G.; Yang, B.; Jafri, T. ); McAssey, E. ); Qureshi, Z. )

    1989-01-01

    An experimental program has been conducted to investigate the onset of Ledinegg instability in vertical down-flow. For three size uniformly heated test sections with L/D ratios from 100 to 150, the pressure drop under subcooled boiling conditions has been obtained for a wide range of operating parameters. The results are presented in non-dimensional forms which correlate the important variables and provide techniques for predicting the onset of flow instability. 3 refs.

  4. Flow boiling in vertical down-flow

    SciTech Connect

    Dougherty, T.; Fighetti, C.; Reddy, G.; Yang, B.; Jafri, T.; McAssey, E.; Qureshi, Z.

    1989-12-31

    An experimental program has been conducted to investigate the onset of Ledinegg instability in vertical down-flow. For three size uniformly heated test sections with L/D ratios from 100 to 150, the pressure drop under subcooled boiling conditions has been obtained for a wide range of operating parameters. The results are presented in non-dimensional forms which correlate the important variables and provide techniques for predicting the onset of flow instability. 3 refs.

  5. Flow quality measurements in compressible subsonic flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. Calvin; Johnson, Charles B.

    1987-01-01

    The purpose is to re-examine the heat transfer from a hot-wire probe in the compressible subsonic flow regime; describe the three-wire hot-wire probe calibration and data reduction techniques used to measure the velocity, density, and total temperature fluctuation; and present flow quality results obtained in the Langley 0.3 meter Transonic Cryogenic Wind Tunnel and in flight with the NASA JetStar from the same three-wire hot-wire probe.

  6. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  7. Modeling Pressure-Driven Transport of Proteins through a Nanochannel

    PubMed Central

    Carr, Rogan; Comer, Jeffrey; Ginsberg, Mark D.; Aksimentiev, Aleksei

    2012-01-01

    Reducing the size of a nanofluidic channel not only creates new opportunities for high-precision manipulation of biological macromolecules, but also makes the performance of the entire nanofluidic system more susceptible to undesirable interactions between the transported biomolecules and the walls of the channel. In this manuscript, we report molecular dynamics simulations of a pressure-driven flow through a silica nanochannel that characterized, with atomic resolution, adsorption of a model protein to its surface. Although the simulated adsorption of the proteins was found to be nonspecific, it had a dramatic effect on the rate of the protein transport. To determine the relative strength of the protein–silica interactions in different adsorbed states, we simulated flow-induced desorption of the proteins from the silica surface. Our analysis of the protein conformations in the adsorbed states did not reveal any simple dependence of the adsorption strength on the size and composition of the protein–silica contact, suggesting that the heterogeneity of the silica surface may be a important factor. PMID:22611338

  8. Flow cytometry apparatus

    SciTech Connect

    Pinkel, D.

    1991-01-29

    This paper describes an apparatus for orienting cells in a sheath fluid in a otometer/sorter. It comprises: flow chamber; means for flowing the sheath fluid through the flow chamber along a direction of flow; means for obstructing the flow of the sheath fluid in the flow chamber with a first dimension, which extends substantially across the flow chamber and is substantially perpendicular to the direction of flow and with a thickness perpendicular to the first dimension of the obstructing means wherein the sheath fluid flows around the thickness so that the sheath fluid converges in only one dimension at the downstream edge of the means for obstructing; and means for introducing the cells through the means for obstructing the flow to the region where the sheath fluid converges in only one dimension in the sheath fluid to orient the cells, with an aperture wherein as the cells pass from the means for introducing the cells to the region where the sheath fluid converges the cells pass through the aperture with a cross-sectional length substantially less than or equal to the thickness of the means for obstructing the flow.

  9. Gas flow control valve

    SciTech Connect

    Phlipot, J.R.; Pinkston, S.R.; Nurre, H.

    1988-02-09

    A compact gas flow control valve is described comprising a valve body having a first, rotor cavity-defining portion and a second cover portion covering the rotor cavity, at least one of the body portions including inlet means communicating with the rotor chamber for receiving gas under pressure for providing the gas to the rotor chamber, at least one of the body portions including outlet means for delivery of the gas by the flow control valve, a rotor within the rotor cavity, the rotor including a flat surface, a flow control plate carried by the rotor, the flow control plate covering and lying against the flat surface of the rotor, the rotor having ports opening through the rotor surface, the ports being of sufficiently large size as not to limit the flow of the gas therethrough. The flow control plate comprises a thin, flat metal disc provided with gas flow control orifices extending therethrough and spaced circumferentially around the disc and in registry with respective ones of the ports, the rotor being of substantially greater thickness than the disc, the gas flow control being of different sizes and passage means for providing communication between the outlet means and at least a selected one of the flow control plate origices, selector means for orienting the rotor to permit flow only through selected flow control plate orifices and a corresponding rotor port for delivery by the outlet means.

  10. Low flow fume hood

    DOEpatents

    Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  11. HPFTP flow diverter analysis

    NASA Technical Reports Server (NTRS)

    Spadley, L. W.

    1985-01-01

    A computational fluid flow analysis on the flow diverter system under consideration for the Space Shuttle main engine high pressure fuel turbopump (SSME HPFTP) is proposed. A three dimensional viscous flow environment is computed to optimize the geometric configuration and location of the flow diverter system. The analysis consists of a fully turbulent cold flow calculation by Navier-Stokes equations and a Baldwin-Lomax turbulence model. The equations are numerically by a finite difference/element procedure. The results will provide the steady and unsteady pressure field and thermal environment required to assess the usefulness of the flow diverter system in deflecting the cold flow away from the hot turbine components. A geometry optimization study determines the best diverter shape and location to avoid larger thermal gradients on the rotor/stator components.

  12. Gas flow through rotameters

    NASA Technical Reports Server (NTRS)

    Levin, H.; Escorza, M. M.

    1983-01-01

    Using data available for small rotameters that use spherical floats in gas flow, a linear relationship is derived. It is noted that the relationship provides a good fit for variable volumetric flow, density, and viscosity at constant flow height. With low Reynolds numbers (Re being less than 1), the product of the variable volumetric flow and the viscosity becomes constant; at high Reynolds numbers (Re being greater than 2000), the product of the variable volumetric flow and the square root of the density becomes constant. It is pointed out that the equation given here can be used to obtain an indirect calibration with any gas of known density and viscosity. The constancy of the product of the variable volumetric flow and viscosity at low variable volumetric flows is seen as suggesting the development of simple, inexpensive gas viscometers using rotameter technology.

  13. Flow separation detector

    NASA Technical Reports Server (NTRS)

    Mateer, G. C.; Brosh, A. (Inventor)

    1977-01-01

    An arrangement for sensing the fluid separation along a surface which employs a thermally insulating element having a continuous surface blending into and forming a part of the fluid flow surface is described. A sudden decrease in the temperature of the downstream sensor conductor and concomitant increase in the temperature of the upstream sensor conductor is an indication of the separation. When the temperatures are returned to the state achieved during normal flow, the indicator thereby indicates the normal, attached fluid flow. The conductors may be, for example, wires or thin films, and should be within the viscous sub-layer of the expected fluid flow. A single heater and several pairs of sensors and corresponding sensor conductors may be used to detect not only the fluid flow and the separation, but the direction of the fluid flow, over the fluid flow surface.

  14. How does a pressure-driven foam jam in a straight channel?

    NASA Astrophysics Data System (ADS)

    Tewari, Shubha; Menon, Karthik; Govindarajan, Rama

    2015-11-01

    A Newtonian fluid and a foam flow differently. We highlight this contrast in the pressure-driven flow of a foam through a straight channel. Unlike a Newtonian fluid, a foam in a straight channel does not flow below a threshold driving force. Just above this yield threshold, the flow is intermittent (stick-slip), and crosses over to smooth flow as the driving force is increased. We report on a numerical investigation of these different regimes using a modified version of Durian's bubble model with an added short-ranged attraction potential to account for the effects of disjoining pressures. The crossover from one regime to the other is characterized by an evolution of the flow velocity profile from plug-like to one where the shear layer is much broader. The mean rate of neighbour changes per bubble increases as flow moves towards the steady regime with a distribution that broadens with the strength of the driving. We show that the stick-slip and steady flow regimes can be distinguished by the spectrum of energy fluctuations during the flow. We also vary the strength of the attractive potential and highlight the effect this has on the different regimes.

  15. Channel flow of a tensorial shear-thinning Maxwell model: Lattice Boltzmann simulations.

    PubMed

    Papenkort, S; Voigtmann, Th

    2014-04-28

    We discuss pressure-driven channel flow for a model of shear-thinning glass-forming fluids, employing a modified lattice-Boltzmann (LB) simulation scheme. The model is motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions and captures a nonvanishing dynamical yield stress and the appearance of normal-stress differences and a flow-induced pressure contribution. The standard LB algorithm is extended to deal with tensorial, nonlinear constitutive equations of this class. The new LB scheme is tested in 2D pressure-driven channel flow and reproduces the analytical steady-state solution. The transient dynamics after startup and removal of the pressure gradient reproduce a finite stopping time for the cessation flow of yield-stress fluids in agreement with previous analytical estimates. PMID:24784287

  16. A unified scaling model for flow through a lattice of microfabricated posts.

    PubMed

    Srivastava, Nimisha; Din, Changsong; Judson, Andrew; MacDonald, Noel C; Meinhart, Carl D

    2010-05-01

    A scaling model is presented for low Reynolds number viscous flow within an array of microfabricated posts. Such posts are widely used in several lab-on-a-chip applications such as heat pipes, antibody arrays and biomolecule separation columns. Finite element simulations are used to develop a predictive model for pressure driven viscous flow through posts. The results indicate that the flow rate per unit width scales as approximately h1.17g1.33/d0.5 where h is the post height, d post diameter and g is the spacing between the posts. These results compare favorably to theoretical limits. The scaling is extended to capillary pressure driven viscous flows. This unified model is the first report of a scaling that incorporates both viscous and capillary forces in the microfabricated post geometry. The model is consistent with Washburn dynamics and was experimentally validated to within 8% using wetting on microfabricated silicon posts. PMID:20390133

  17. Forces on particles in microstreaming flows

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  18. 46 CFR 154.546 - Excess flow valve: Closing flow.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Excess flow valve: Closing flow. 154.546 Section 154.546... and Process Piping Systems § 154.546 Excess flow valve: Closing flow. (a) The rated closing flow of vapor or liquid cargo for an excess flow valve must be specially approved by the Commandant (CG-522)....

  19. 46 CFR 154.546 - Excess flow valve: Closing flow.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Excess flow valve: Closing flow. 154.546 Section 154.546... and Process Piping Systems § 154.546 Excess flow valve: Closing flow. (a) The rated closing flow of vapor or liquid cargo for an excess flow valve must be specially approved by the Commandant (CG-522)....

  20. 46 CFR 154.546 - Excess flow valve: Closing flow.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Excess flow valve: Closing flow. 154.546 Section 154.546... and Process Piping Systems § 154.546 Excess flow valve: Closing flow. (a) The rated closing flow of vapor or liquid cargo for an excess flow valve must be specially approved by the Commandant (CG-ENG)....

  1. 46 CFR 154.546 - Excess flow valve: Closing flow.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Excess flow valve: Closing flow. 154.546 Section 154.546... and Process Piping Systems § 154.546 Excess flow valve: Closing flow. (a) The rated closing flow of vapor or liquid cargo for an excess flow valve must be specially approved by the Commandant (CG-ENG)....

  2. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  3. Measurements in a pressure-driven and a shear-driven three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.; Mcallister, J. E.

    1982-01-01

    Results of mean velocity field, wall static pressure field and simultaneous, direct force measurements of the local wall shear stress magnitude and direction are reported for a pressure-driven and a shear-driven three-dimensional turbulent boundary layer. These data, particularly the direct force local wall shear data, were obtained to test the validity of several of the near-wall similarity models proposed in the literature for such flows.

  4. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  5. Do Ions Flow Freely Through Confined DNA?

    NASA Astrophysics Data System (ADS)

    Azad, Zubair; Riehn, Robert

    Double-stranded DNA in an aqueous solution is characterized by a strongly localized counter-ion cloud. Classical experiments have shown that the mobility of large DNA coils is independent of the number of basepairs, leading to an interpretation that the molecule can be understood as a collection of segments with constant mobility whose interactions are effectively screened from each other. This ``free-draining'' assumption posits that DNA and other electrolytes will not influence each other's mobility. In this talk, we call this assumption into question when the local concentration of DNA is increased beyond that of a self-avoiding random walk by nanoconfinement. We present translocation of DNA and fluorescent tracer ions under established chemical gradients, pressure-driven flow, and electrophoresis in nanochannels with cross sections that are 100 nm x 100 nm. We present evidence that interactions between the DNA and ionic tracers are a non-linear function of the applied fields.

  6. Two phase potential flow

    SciTech Connect

    Wallis, G.B.

    1991-06-01

    New results for the flow of a dispersion of particles in an inviscid irrotational flow are reported. Equations of motion for an isotropic assembly have been derived and applied to several example problems. Theorems have been derived relating the macroscopic (averaged) properties of flows composed of unit cells. The effective conductivity of a suspension has been obtained in new ways, using the method of images, and related to forces exerted by a fluid on particles when there is relative motion. 11 refs.

  7. Color Doppler flow imaging.

    PubMed

    Foley, W D; Erickson, S J

    1991-01-01

    The performance requirements and operational parameters of a color Doppler system are outlined. The ability of an operator to recognize normal and abnormal variations in physiologic flow and artifacts caused by noise and aliasing is emphasized. The use of color Doppler flow imaging is described for the vessels of the neck and extremities, upper abdomen and abdominal transplants, obstetrics and gynecology, dialysis fistulas, and testicular and penile flow imaging. PMID:1898567

  8. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  9. Microparticle Flow Sensor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  10. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  11. Oscillatory electrohydrodynamic gas flows

    SciTech Connect

    Lai, F.C.; McKinney, P.J.; Davidson, J.H.

    1995-09-01

    Prior numerical solutions of electrohydrodynamic flows in a positive-corona, wire-plate electrostatic precipitator are extended to reveal steady-periodic electrohydrodynamic flows. Previously, only steady solutions were reported. The present study includes results for flows with Reynolds numbers from 0 to 4,800 and with dimensionless electric number ranging from 0.06 to {infinity}. Results indicate that two regimes of low frequency oscillatory flow occur. The first regime is characterized by a single recirculating vortex that oscillates in strength between one and five Hertz. The second regime is characterized by two counter-rotating vortices that oscillate in strength at a frequency near one Hertz.

  12. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  13. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  14. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  15. Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.; Mcallister, J. E.

    1980-01-01

    Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.

  16. Stokes flow in a pipe with distributed regions of slip

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Stone, Howard A.

    2002-11-01

    Steady pressure-driven Stokes flow in a circular pipe is investigated analytically in the case where the pipe surface contains periodically distributed transverse regions of zero surface shear stress. One physical motivation for this problem is the recent experimental observation of nanobubbles on smooth hydrophobic surfaces (Ishida et al. (2000) Langmuir vol. 16, Tyrrell and Attard (2001) Phys. Rev. Lett. vol. 87) while a second motivation is the possible presence of bubbles trapped on rough surfaces. The bubbles may provide a zero shear stress boundary condition for the flow and modify considerably the friction generated by the solid boundary. In the spirit of experimental studies probing apparent slip at solid surfaces, the effective slip length of the resulting macroscopic flow is evaluated numerically and asymptotically as a function of the relative width of the no-slip and no-shear stress regions and their distribution along the pipe. Comparison of the model with experimental studies of pressure-driven flow in capillaries and microchannels is made and a possible interpretation of the results is offered which is consistent with a large number of nano-size and micron-size bubbles coating the solid surface. Finally, an explanation for the seemingly paradoxical behavior of the measured slip length increasing with system size reported by Watanabe et al. (1999) (J. Fluid Mech. vol. 381) is proposed and the possibility of a shear-dependent effective slip length is suggested.

  17. Flow rate measuring devices for gas flows

    NASA Astrophysics Data System (ADS)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  18. Confinement and flow of microscopic defects in layered liquids

    NASA Astrophysics Data System (ADS)

    Shojaei-Zadeh, Shahab

    The term layered liquid applies to a broad range of materials containing anisotropic molecules that arrange themselves in parallel stacks. Examples are concentrated surfactant solutions, block copolymers, bio-membranes, liquid crystalline polymers, and liquid crystals. Due to the solid-like nature of these materials, microscopic defects form when their parallel layer structure is disturbed by external forces, surface interactions, or geometrical confinement. Unlike in solid crystals, defects formed here can flow and we show that the presence of defects changes the flow characteristics of these materials. In this work, we first introduce three different methods for using surface treatments to control the size and ordering of a particular class of defects known as focal conics: within closed PDMS microchannels, on PDMS surfaces covered with nanoscale cracks, and within ordered microcavities formed in PDMS films. We then examine the flow behavior of these defects in microchannels, using both surface tension differences and pressure gradients to drive the flow. A microfluidic network is designed and developed to enable more precise control over the pressure driven flow. Driving flow within this microfluidic network enables simultaneous visualization of the defect texture evolution and measurement of the pressure gradient-flow rate relationship. Our measurements show that the flow properties of layered liquids under confinement are different from their bulk, possibly due to the interaction of defects with each other and with the flow itself.

  19. Hanford basalt flow mineralogy

    SciTech Connect

    Ames, L.L.

    1980-09-01

    Mineralogy of the core samples from five core wells was examined in some detail. The primary mineralogy study included an optical examination of polished mounts, photomicrographs, chemical analyses of feldspars, pyroxenes, metallic oxides and microcrystalline groundmasses and determination from the chemical analyses of the varieties of feldspars, pyroxenes and metallic oxides. From the primary mineralogy data, a firm understanding of the average Hanford basalt flow primary mineralogy emerged. The average primary feldspar was a laboradorite, the average pyroxene was an augite and the average metallic oxide was a solid solution of ilmenite and magnetite. Secondary mineralization consisted of vug filling and joint coating, chiefly with a nontronite-beidellite clay, several zeolites, quartz, calcite, and opal. Specific flow units also were examined to determine the possibility of using the mineralogy to trace flows between core wells. These included units of the Pomona, the Umatilla and a high chromium flow just below the Huntzinger. In the Umatilla, or high barium flow, the compositional variation of the feldspars was unique in range. The pyroxenes in the Pomona were relatively highly zoned and accumulated chromium. The high chromium flow contained chromium spinels that graded in chromium content into simple magnetites very low in chromium content. A study of the statistical relationships of flow unit chemical constituents showed that flow unit constituents could be roughly correlated between wells. The probable cause of the correlation was on-going physical-chemical changes in the source magma.

  20. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  1. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  2. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  3. Lava Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1996-01-01

    This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.

  4. Flow between contrarotating disks

    SciTech Connect

    Gan, X.; Kilic, M.; Owen, J.M.

    1995-04-01

    The paper describes a combined experimental and computational study of laminar and turbulent flow between contrarotating disks. Laminar computations produce Batchelor-type flow: radial outflow occurs in boundary layers on the disks and inflow is confined to a thin shear layer in the midplane; between the boundary layers and the shear layer, two contrarotating cores of fluid are formed. Turbulent computations (using a low-Reynolds-number {kappa}-{epsilon} turbulence model) and LDA measurements provide no evidence for Batchelor-type flow, even for rotational Reynolds numbers as low as 2.2 {times} 10{sup 4}. While separate boundary layers are formed on the disks, radial inflow occurs in a single interior core that extends between the two boundary layers; in the core, rotational effects are weak. Although the flow in the core was always found to be turbulent, the flow in the boundary layers could remain laminar for rotational Reynolds numbers up to 1.2 {times} 10{sup 5}. For the case of a superposed outflow, there is a source region in which the radial component of velocity is everywhere positive; radially outward of this region, the flow is similar to that described above. Although the turbulence model exhibited premature transition from laminar to turbulent flow in the boundary layers, agreement between the computed and measured radial and tangential components of velocity was mainly good over a wide range of nondimensional flow rates and rotational Reynolds numbers.

  5. AUTO-EXPANSIVE FLOW

    EPA Science Inventory

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  6. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  7. Flow and Education.

    ERIC Educational Resources Information Center

    Csikszentmihalyi, Mihaly

    1997-01-01

    Describes potential role of flow experiences in motivating students to learn. Discusses the characteristics of flow: goals are clear, feedback is immediate, skills match challenges, concentration is deep, problems are forgotten, control is possible, self-consciousness disappears, sense of time is altered, and experience becomes autotelic. Then…

  8. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)

  9. Growing with the Flows

    ERIC Educational Resources Information Center

    Durkin, Dorothy

    2010-01-01

    People live and work in an era of transformation and uncertainty; they know that things are changing, but they are not sure where they are headed. One of the key forces of change is the enormous flow of information that individuals and institutions consume and produce. Awareness of knowledge flow is essential, but so is the sense that neither…

  10. Traffic Flow Estimates.

    ERIC Educational Resources Information Center

    Hart, Vincent G.

    1981-01-01

    Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)

  11. Flow cytometry of sperm

    SciTech Connect

    Gledhill, B.L.

    1987-09-21

    This brief paper summarizes automated flow cytometric determination of sperm morphology and flow cytometry/sorting of sperm with application to sex preselection. In the latter context, mention is made of results of karyotypic determination of sex chromosome ratios in albumin-processed human sperm. 23 refs., 1 fig., 1 tab.

  12. Modeling blood flow heterogeneity.

    PubMed

    King, R B; Raymond, G M; Bassingthwaighte, J B

    1996-01-01

    It has been known for some time that regional blood flows within an organ are not uniform. Useful measures of heterogeneity of regional blood flows are the standard deviation and coefficient of variation or relative dispersion of the probability density function (PDF) of regional flows obtained from the regional concentrations of tracers that are deposited in proportion to blood flow. When a mathematical model is used to analyze dilution curves after tracer solute administration, for many solutes it is important to account for flow heterogeneity and the wide range of transit times through multiple pathways in parallel. Failure to do so leads to bias in the estimates of volumes of distribution and membrane conductances. Since in practice the number of paths used should be relatively small, the analysis is sensitive to the choice of the individual elements used to approximate the distribution of flows or transit times. Presented here is a method for modeling heterogeneous flow through an organ using a scheme that covers both the high flow and long transit time extremes of the flow distribution. With this method, numerical experiments are performed to determine the errors made in estimating parameters when flow heterogeneity is ignored, in both the absence and presence of noise. The magnitude of the errors in the estimates depends upon the system parameters, the amount of flow heterogeneity present, and whether the shape of the input function is known. In some cases, some parameters may be estimated to within 10% when heterogeneity is ignored (homogeneous model), but errors of 15-20% may result, even when the level of heterogeneity is modest. In repeated trials in the presence of 5% noise, the mean of the estimates was always closer to the true value with the heterogeneous model than when heterogeneity was ignored, but the distributions of the estimates from the homogeneous and heterogeneous models overlapped for some parameters when outflow dilution curves were

  13. Loaded magnetohydrodynamic flows in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Globus, Noemie; Levinson, Amir

    2013-10-01

    The effect of mass and energy loading on the efficiency at which energy can be extracted magnetically from a Kerr black hole is explored, using a semianalytic, ideal magnetohydrodynamics model that incorporates plasma injection on magnetic field lines. We find a critical load below which the specific energy of the plasma inflowing into the black hole is negative, and above which it is positive, and identify two types of flows with distinct properties; at subcritical loads a magnetic outflow is launched from the ergosphere, owing to extraction of the black hole spin energy, as originally proposed by Blandford and Znajek. At supercritical loads the structure of the flow depends on the details of the injection process. In cases where the injected plasma is relativistically hot, a pressure-driven, double transmagnetosonic flow is launched from a stagnation point located outside the ergosphere, between the inner and outer light cylinders. Some fraction of the energy deposited in the magnetosphere is then absorbed by the black hole and the rest emerges at infinity in the form of a relativistic outflow. When the injected plasma is cold an outflow may not form at all. We discuss the implications of our results to gamma ray bursts and active galactic nuclei.

  14. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  15. Turbulent multiphase flows

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1989-01-01

    Measurements and predictions of the structure of several multiphase flows are considered. The properties of dense sprays near the exits of pressure-atomizing injectors and of noncombusting and combusting dilute dispersed flows in round-jet configurations are addressed. It is found that the properties of dense sprays exhibit structure and mixing properties similar to variable-density single-phase flows at high Reynolds numbers within the atomization regime. The degree of development and turbulence levels at the injector exit have a surprisingly large effect on the structure and mixing properties of pressure-atomized sprays, particularly when the phase densities are large. Contemporary stochastic analysis of dilute multiphase flows provides encouraging predictions of turbulent dispersion for a wide variety of jetlike flows, particle-laden jets in gases and liquids, noncondensing and condensing bubbly jets, and nonevaporating, evaporating, and combusting sprays.

  16. Flows with tip leakage

    NASA Astrophysics Data System (ADS)

    Moore, John

    The flow development within the tip gap and the flow tip leakage, applying Navier-Stokes codes, are discussed. The loss production, the turbine inefficiency and the heat transfer to the blade tip, are considered. The measurements and calculations used demonstrate features of the flow, such as separation and reattachment on the blade tip, shock formation in the tip gap, and formation and dissipation of tip gap secondary kinetic energy. A procedure for calculating turbine blade tip temperatures is included. The results for a centrifugal compressor show the interaction of the tip leakage and passage flows. The radial blackflow near the shroud wall at low off-design flow rates is considered. The calculations demonstrate the potential use of a computational fluid dynamics code for predicting a centrifugal compressor map.

  17. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  18. Flow measuring structures

    NASA Astrophysics Data System (ADS)

    Boiten, W.

    1993-11-01

    The use of flow measuring structures is one of the various methods for the continuous measurement of discharges in open channels. In this report a brief summary of these methods is presented to get some insight in the selection of the most appropriate method. Then the distinct functions of water control structures are described. The flow measuring structures are classified according to international rules. The fields of application are dealt with and the definitions of weir flow are given. Much attention is paid to the aspects of how to select the most suitable flow measuring structure. The accuracy in the evaluation of the discharge has been related to the different error sources. A review of international standards on flow measuring structures concludes the report.

  19. Telescope enclosure flow visualization

    NASA Astrophysics Data System (ADS)

    Forbes, Fred F.; Wong, Woon-Yin; Baldwin, Jack; Siegmund, Walter A.; Limmongkol, Siriluk; Comfort, Charles H.

    1991-12-01

    Dome-induced thermal disturbances that degrade seeing can originate when temperature differences exist between the interior and exterior of a telescope enclosure. It is important to design enclosures which minimize the effect. One design aid is to model the enclosure and study the flow patterns in and around the model at various angles to the flow direction. We have used a water tunnel and models of spherical, octagonal, and rectangular enclosures to investigate the flow characteristics as a function of angle and venting configuration. In addition to a large video data-base, numerical results yield flushing times for all models and all venting arrangements. We have also investigated the comparative merits of passive venting as opposed to active forced flow circulation for the 4m telescope enclosure at the NOAO Cerro Tololo Interamerican Observatory at La Serena, Chile. Finally, the flow characteristics of a tracking half-shroud were studied as a possible shield for the enclosureless case.

  20. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  1. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  2. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  3. Lava flows are fractals

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.

  4. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  5. Flow-duration curves

    USGS Publications Warehouse

    Searcy, James Kincheon

    1959-01-01

    The flow-duration curve is a cumulative frequency curve that shows the percent of time specified discharges were equaled or exceeded during a given period. It combines in one curve the flow characteristics of a stream throughout the range of discharge, without regard to the sequence of occurrence. If the period upon which the curve is based represents the long-term flow of a stream, the curve may be used to predict the distribution of future flows for water- power, water-supply, and pollution studies. This report shows that differences in geology affect the low-flow ends of flow-duration curves of streams in adjacent basins. Thus, duration curves are useful in appraising the geologic characteristics of drainage basins. A method for adjusting flow-duration curves of short periods to represent long-term conditions is presented. The adjustment is made by correlating the records of a short-term station with those of a long-term station.

  6. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Vogel, J. M.

    1973-01-01

    Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

  7. Geophysical fluid flow experiment

    NASA Technical Reports Server (NTRS)

    Broome, B. G.; Fichtl, G.; Fowlis, W.

    1979-01-01

    The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.

  8. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  9. Aircraft Laminar Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1998-01-01

    Aircraft laminar flow control (LFC) from the 1930's through the 1990's is reviewed and the current status of the technology is assessed. Examples are provided to demonstrate the benefits of LFC for subsonic and supersonic aircraft. Early studies related to the laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. LFC concept studies in wind-tunnel and flight experiments are the major focus of the paper. LFC design tools are briefly outlined for completeness.

  10. Magnetic vortex filament flows

    SciTech Connect

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-08-15

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those.

  11. Shroud leakage flow discouragers

    DOEpatents

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  12. Initiation of slug flow

    SciTech Connect

    Hanratty, T.J.; Woods, B.D.

    1995-12-31

    The initiation of slug flow in a horizontal pipe can be predicted either by considering the stability of a slug or by considering the stability of a stratified flow. Measurements of the shedding rate of slugs are used to define necessary conditions for the existence of a slug. Recent results show that slugs develop from an unstable stratified flow through the evolution of small wavelength waves into large wavelength waves that have the possibility of growing to form a slug. The mechanism appears to be quite different for fluids with viscosities close to water than for fluids with large viscosities (20 centipoise).

  13. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  14. Flow stress of copper

    SciTech Connect

    Pedersen, O.B.

    1987-10-01

    The reverse microflow associated with the Bauschinger effect in copper strained into stage II is characterized experimentally and analyzed in terms of the theory of obstacle-controlled flow and established composite theory. The results are discussed in the light of observations by electron microscopy, deformation calorimetry and X-ray diffraction. It is suggested that the overall flow resistance arises from an interplay of two modes of obstacle controlled glide, none of which dominate the flow stress. One mode occurs inside regions of high local dislocation density (inclusions) where individual forest dislocations oppose glide on the primary slip system. The second mode is bowing of dislocations between the inclusions.

  15. Bypass Flow Study

    SciTech Connect

    Richard Schultz

    2011-09-01

    The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

  16. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P.; Toimil-Molares, M. E.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipe in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  17. Pressure-driven fast reaction and recovery of peptide receptor for an electronic nose application

    NASA Astrophysics Data System (ADS)

    Yoo, Yong Kyoung; Lee, Sang-Myung; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo; Hoon Lee, Jeong

    2014-02-01

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ˜30 Hz, compared to diffusion only (˜15 Hz for 15 h). Using a simple pressure-driven air flow of ˜50 sccm, we confirmed that a ratio of ˜70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.

  18. Pressure-driven fast reaction and recovery of peptide receptor for an electronic nose application

    SciTech Connect

    Yoo, Yong Kyoung; Lee, Sang-Myung; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo E-mail: jhlee@kw.ac.kr; Hoon Lee, Jeong E-mail: jhlee@kw.ac.kr

    2014-02-24

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared to diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.

  19. Flow visualization in long neck Helmholtz resonators with grazing flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1976-01-01

    Both oscillating and steady flows were applied to a single plexiglass resonator cavity with colored dyes injected in both the orifice and grazing flow field to record the motion of the fluid. For oscillatory flow, the instantaneous dye streamlines were similar for both the short and long-neck orifices. The orifice flow blockage appears to be independent of orifice length for a fixed amplitude of flow oscillation and magnitude of the grazing flow. The steady flow dye studies showed that the acoustic and steady flow resistances do not necessarily correspond for long neck orifices.

  20. Low pressure stagnation flow reactor with a flow barrier

    DOEpatents

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  1. Flow modifying device

    NASA Technical Reports Server (NTRS)

    Kelm, J. S.; Vickers, E. C.; Williams, J. J.; Taylor, J. R. (Inventor)

    1985-01-01

    A swirler for a gas turbine engine combustor is disclosed for simultaneously controlling combustor flow rate, swirl angle, residence time and fuel-air ratio to provide three regimes of operation. A first regime is provided in which fuel-air ratio is less than stoichiometric, NOx is produced at one level, and combustor flow rate is high. In a second regime, fuel-air ratio is nearly stoichiometric, NOx production is less than that of the first regime, and combustor flow rate is low. In a third regime, used for example at highoff, fuel-air ratio is greater than stoichiometric and the combustor flow rate is less than in either of the other regimes.

  2. Digital work-flow

    PubMed Central

    MARSANGO, V.; BOLLERO, R.; D’OVIDIO, N.; MIRANDA, M.; BOLLERO, P.; BARLATTANI, A.

    2014-01-01

    SUMMARY Objective. The project presents a clinical case in which the digital work-flow procedure was applied for a prosthetic rehabilitation in natural teeth and implants. Materials. Digital work-flow uses patient’s photo for the aesthetic’s planning, digital smile technology for the simulation of the final restoration and real time scanning to register the two arches. Than the scanning are sent to the laboratory that proceed with CAD-CAM production. Results. Digital work-flow offers the opportunities to easily speak with laboratory and patients, gives better clinical results and demonstrated to be a less invasiveness method for the patient. Conclusion. Intra-oral scanner, digital smile design, preview using digital wax-up, CAD-CAM production, are new predictable opportunities for prosthetic team. This work-flow, compared with traditional methods, is faster, more precise and predictable. PMID:25694797

  3. Cash Flow Planning.

    ERIC Educational Resources Information Center

    Littman, George W., III

    1979-01-01

    Proper cash flow planning allows a school business administrator to determine the availability of cash for operating expenses, the need for bank loans to cover these expenses, and the availability of idle cash for investment. (Author)

  4. RG flows and instantons

    SciTech Connect

    Gava, Edi

    2012-09-24

    In these two lectures I discuss RG flow solutions in (1,0) six dimensional supergravity involving SU(2) Yang-Mills instantons. in the conformally flat part of the 6D metric. The solutions interpolate between two (4,0) supersymmetric AdS{sub 3} Multiplication-Sign S{sup 3} backgrounds with different values of AdS{sub 3} and S{sup 3} radii and describe RG flows in the dual 2D SCFT. The flows described are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension 2 in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in type I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.

  5. Flow in data racks

    NASA Astrophysics Data System (ADS)

    Manoch, Lukáš; Matěcha, Jan; Novotný, Jan; Nožička, Jiří; Pohan, Petr

    2014-03-01

    This paper deals with the flow in data racks. The aim of this work is to find a new arrangement of elements regulating the flow in the data rack so that the aerodynamic losses and the recirculation zones were minimized. The main reason for solving this problem is to reduce the costs of data racks cooling. Another problem to be solved is a reverse flow in the servers, thus not cooled, occuring due to the underpressure in the recirculation zones. In order to solve the problem, the experimental and numerical model of 27U data rack fitted with 10 pieces of server models with a total input of 10 kW was created. Different configurations of layout of elements affecting the flow in the inlet area of the data rack were compared. Depending on the results achieved, design solutions for the improvement of existing solutions were adopted and verified by numerical simulations.

  6. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  7. Complex Flow Workshop Report

    SciTech Connect

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  8. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  9. Greenland Ice Flow

    NASA Video Gallery

    Greenland looks like a big pile of snow seen from space using a regular camera. But satellite radar interferometry helps us detect the motion of ice beneath the snow. Ice starts flowing from the fl...

  10. Visualising patient flow.

    PubMed

    Jensen, Andrew; Boyle, Justin; Khanna, Sankalp

    2012-01-01

    We describe the development of a method to distil routinely collected clinical data into patient flow information to aid hospital bed management. Using data from state-wide emergency department and inpatient clinical information systems, a user-friendly interface was developed to visualise patient flow conditions for a particular hospital. The historical snapshots employ a variable time scale, allowing flow to be visualised across a day, week, month or year. Flow information includes occupancy, arrival and departure rates, length-of-stay and access block observations, which can be filtered by age, departure status, diagnosis, elective status, triage category, and admission unit. The tool may be helpful in supporting hospital bed managers in their daily decision making. PMID:22797023

  11. Flow characteristics and methods of flow calculation of high-speed compressible flow through pipe orifices

    NASA Astrophysics Data System (ADS)

    Torizumi, Y.; Hirayama, N.; Maeda, T.

    1983-01-01

    Flow characteristics of a compressible gas flow through an orifice are investigated experimentally at pressure ratios below the regulation values of JIS and ASME. For practical mass flow measurements, a theoretical method of mass flow estimations is extended using one-dimensional flow theory and experimental data. Using the method, the accuracy of mass flow measurements with orifice meters is about + or 1% in the Reynolds number range of turbulent flows and also in supercritical flows. Tables of the product of flow coefficient and expansion factor are obtained by the method at various diameter ratios, pressure ratios, and specific heats.

  12. Optimal Flow Control Design

    NASA Technical Reports Server (NTRS)

    Allan, Brian; Owens, Lewis

    2010-01-01

    In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements

  13. Ozone flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1981-01-01

    Flow visualization techniques using ozone for tracing gas flows are proposed whereby ozone is detected through its strong absorption of ultraviolet light, which is easily made visible with fluorescent materials, or through its reaction with nitric oxide to form excited nitrogen dioxide, which in relaxing emits detectable light. It is shown that response speeds in the kHz range are possible with an ultraviolet detection system for initial ozone concentrations of about 1%.

  14. Ultrasonic colour flow imaging.

    PubMed

    Wells, P N

    1994-12-01

    Real-time ultrasonic colour flow imaging, which was first demonstrated to be feasible only about a decade ago, has come into widespread clinical use. Ultrasound is scattered by ensembles of red blood cells. The ultrasonic frequency that gives the best signal-to-noise ratio for backscattering from blood depends on the required penetration. The frequency of ultrasound backscattered from flowing blood is shifted by the Doppler effect. The direction of flow can be determined by phase quadrature detection, and range selectivity can be provided by pulse-echo time-delay measurements. The Doppler frequency spectrum can be determined by Fourier analysis. Early two- and three-dimensional flow-imaging systems used slow manual scanning; velocity colour coding was introduced. Real-time colour flow imaging first became feasible when autocorrelation detection was used to extract the Doppler signal. Time-domain processing, which is a broad-band technique, was also soon shown to be practicable, for analysing both radio-frequency pulse-echo wavetrains and two-dimensional image speckle. Frequency- and time-domain processing both require effective cancellation of stationary echoes. The time-domain approach seems to have advantages in relation to both aliasing and the effects of attenuation in overlying tissues. Colour-coding schemes that can be interpreted without the need to refer to keys have been adopted, for both velocity and flow disturbance. Colour coding according to signal power has also been reintroduced. Three-dimensional display has been demonstrated. In interpreting colour flow images, it is important to understand the functions of critical system controls and the origins of artifacts. Various strategies can be adopted to increase the image frame rate. The problems of performance measurement and safety need to be kept under review. There are numerous opportunities for further development of ultrasonic colour flow imaging, including improvements in system design, methods of

  15. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  16. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  17. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  18. Neurophysiology of pipe flow

    NASA Astrophysics Data System (ADS)

    Barkley, Dwight

    2014-11-01

    This work explores the connection between the transition to turbulence in pipe flow and the dynamics of excitable media, as exemplified by nerve cells. The primary goal is to leverage years of extensive analysis of neural systems to understand the dynamics of transitional turbulence. To demonstrate the predictive nature of the approach, model simulations will be presented for puffs in pipe flow for cases not previously studied experimentally.

  19. Go With the Flow

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under SBIR (Small Business Innovative Research) contracts with Lewis Research Center, Nektonics, Inc., developed coating process simulation tools, known as Nekton. This powerful simulation software is used specifically for the modeling and analysis of a wide range of coating flows including thin film coating analysis, polymer processing, and glass melt flows. Polaroid, Xerox, 3M, Dow Corning, Mead Paper, BASF, Mitsubishi, Chugai, and Dupont Imaging Systems are only a few of the companies that presently use Nekton.

  20. Holographic subsonic flow visualization.

    PubMed

    Reinheimer, C J; Wiswall, C E; Schmiege, R A; Harris, R J; Dueker, J E

    1970-09-01

    A pulsed ruby laser holographic interferometer was used to detect density gradients in the airflow around an airfoil at subsonic speeds in a low speed wind tunnel. These experiments proved that vibration of the optical components or object between exposures of the interferometric hologram does not destroy the detection of density gradients but actually can aid in the flow visualization. The density gradients determined from the fringe pattern analysis are consistent with the anticipated flow pattern. PMID:20094197

  1. Electrochemical flow capacitors

    DOEpatents

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  2. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  3. Magnetically stimulated fluid flow patterns

    SciTech Connect

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  4. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  5. Conjugate flow action functionals

    SciTech Connect

    Venturi, Daniele

    2013-11-15

    We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.

  6. Conjugate flow action functionals

    NASA Astrophysics Data System (ADS)

    Venturi, Daniele

    2013-11-01

    We present a new general framework to construct an action functional for a non-potential field theory. The key idea relies on representing the governing equations relative to a diffeomorphic flow of curvilinear coordinates which is assumed to be functionally dependent on the solution field. Such flow, which will be called the conjugate flow, evolves in space and time similarly to a physical fluid flow of classical mechanics and it can be selected in order to symmetrize the Gâteaux derivative of the field equations with respect to suitable local bilinear forms. This is equivalent to requiring that the governing equations of the field theory can be derived from a principle of stationary action on a Lie group manifold. By using a general operator framework, we obtain the determining equations of such manifold and the corresponding conjugate flow action functional. In particular, we study scalar and vector field theories governed by second-order nonlinear partial differential equations. The identification of transformation groups leaving the conjugate flow action functional invariant could lead to the discovery of new conservation laws in fluid dynamics and other disciplines.

  7. Flow between eccentric cylinders: a shear-extensional controllable flow

    NASA Astrophysics Data System (ADS)

    Tian, Guoqiang; Wang, Mengmeng; Wang, Xiaolin; Jin, Gang

    2016-05-01

    In this work the non-Newtonian fluid between eccentric cylinders is simulated with finite element method. The flow in the annular gap between the eccentric rotating cylinders was found to be a shear-extensional controllable flow. The influence of rotating speed, eccentricity as well as the radius ratio on the extensional flow in the vicinity of the minimum gap between the inner and outer cylinder was quantitatively investigated. It was found that both the strengths of shear flow and extensional flow could be adjusted by changing the rotating speed. In respect to extensional flow, it was also observed that the eccentricity and radius ratio exert significant influences on the ratio of extensional flow. And it should be noted that the ratio of extensional flow in the mix flow could be increased when increasing the eccentricity and the ratio of shear flow in the mix flow could be increased when increasing the radius ratio.

  8. Which Way Is the Flow?

    NASA Technical Reports Server (NTRS)

    Kao, David

    1999-01-01

    The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.

  9. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments. PMID:16286290

  10. Physics of Zonal Flows

    NASA Astrophysics Data System (ADS)

    Itoh, Kimitaka

    2005-10-01

    This talk describes an overview of zonal flow physics, covering the theory, simulation and experiment. The zonal flows are excited nonlinearly by drift wave fluctuations, and suppress the turbulence and transport, so as to realize a self-regulating state for turbulence and mesoscale structure. This recognition is the central of recent paradigm shift in plasma physics, i.e., the preceding linear, local and deterministic pictures of instability and transport have been taken over by the new nonlinear, nonlocal (in real and wavenumber spaces) and statistical pictures of them. The zonal flow phenomenon, i.e., the global axial vector fields are generated by the release of global free energy in scalar fields through exciting turbulence, is a typical example of the fundamental issues in modern physics. In this review, the progresses made by theory and simulations, such as the linear damping rate, nonlinear mechanisms for growth and saturation, law of energy partition between turbulence and flow, life time of zonal flow, and so on, are explained. The transport by drift wave fluctuations, which are dressed by zonal flows, is discussed. Then experimental observations and verifications, which have been piled up rapidly in basic plasma experiments and confinement research, are explained, highlighting the integration with theory and simulation. Generalization to include magnetic field (zonal field) is addressed, in the light of the study of dynamo. Zonal flows in both laboratory and planetary-solar circumstances are discussed as well. This presentation illustrates the fast evolution of the physics of turbulence and structure formation of plasmas in the nature and laboratory. In collaboration with S.-I. Itoh, P. H. Diamond, T. S. Hahm, A. Fujisawa, G. R. Tynan and M. Yagi.

  11. Hybrid continuum–molecular modelling of multiscale internal gas flows

    SciTech Connect

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-12-15

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case.

  12. Hybrid continuum-molecular modelling of multiscale internal gas flows

    NASA Astrophysics Data System (ADS)

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-12-01

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic-continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging-diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case.

  13. Flow: Statistics, visualization and informatics for flow cytometry

    PubMed Central

    Frelinger, Jacob; Kepler, Thomas B; Chan, Cliburn

    2008-01-01

    Flow is an open source software application for clinical and experimental researchers to perform exploratory data analysis, clustering and annotation of flow cytometric data. Flow is an extensible system that offers the ease of use commonly found in commercial flow cytometry software packages and the statistical power of academic packages like the R BioConductor project. PMID:18559108

  14. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1990-01-01

    Future aerospace propulsion concepts involve the combustion of liquid or gaseous fuels in a highly turbulent internal airstream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence-combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at LeRC to better understand chemical reacting flows with the long-term goal of establishing these reliable computer codes. Our approach to understand chemical reacting flows is to look at separate, more simple parts of this complex phenomenon as well as to study the full turbulent reacting flow process. As a result, we are engaged in research on the fluid mechanics associated with chemical reacting flows. We are also studying the chemistry of fuel-air combustion. Finally, we are investigating the phenomenon of turbulence-combustion interaction. Research, both experimental and analytical, is highlighted in each of these three major areas.

  15. Micromodel foam flow study

    SciTech Connect

    Chambers, K.T.; Radke, C.J.

    1990-10-01

    Foams are often utilized as part of enhanced oil recovery techniques. This report presents the results of a micromodel foam flow study. Micromodels are valuable tools in uncovering capillary phenomena responsible for lamellae generation and coalescence during foam flow in porous media. Among the mechanisms observed are snap-off, weeping-flow breakup, and lamella division and leave behind. Coalescence mechanisms include dynamic capillary-pressure-induced lamella drainage and gas diffusion. These phenomena are sensitive to the mode of injection, the local capillary environment, and the geometry of the pore structure. An important consideration in presenting a tractable model of foam flow behavior is the ability to identify the pore-level mechanisms having the greatest impact on foam texture. The predominant mechanisms will vary depending upon the application for foam as an enhanced oil recovery (EOR) fluid. Both simultaneous gas and surfactant injection and surfactant alternating with gas injection (SAG) have been used to create foam for mobility control in EOR projects. The model developed is based on simultaneous gas and surfactant injection during steady-state conditions into a Berea sandstone core. The lamellae generation and coalescence mechanisms included in this model are snap-off, lamella division, and dynamic capillary-pressure-induced lamella drainage. This simplified steady-state model serves as a foundation for developing more complete rate expressions and for extending the population balance to handle transient foam flow behavior. 70 refs., 30 figs.

  16. Flocking in Flow

    NASA Astrophysics Data System (ADS)

    Ouellette, Nicholas; Khurana, Nidhi

    2013-03-01

    Models of active, self-propelled particles with simple interaction rules have long been shown to produce large-scale emergent behavior reminiscent of collective animal motion seen in nature. Such model flocks can be shown to be robust against random noise terms added to the equations. But real animals, such as birds, fish, or insects, live in fluid environments, where the background flow field is nonzero and is often turbulent. In this case, the fluctuations experienced by the individuals in the aggregation are not random, but rather are correlated in space and time. We explore the impact of such spatiotemporally correlated perturbations on flocking by numerically simulating the behavior of a simple flocking model in a turbulent-like flow field produced by a kinematic simulation. The introduction of flow strongly changes the flock formation dynamics. Additionally, we find that under some conditions the background flow tends to break stable flocks into smaller units. We study these clusters, and discuss their relation to the underlying flow field.

  17. National Flow Cytometry Resource

    SciTech Connect

    Bell-Prince, C.; Dickson, J.A.; Jett, J.H.; Stevenson, A.P.; Sklar, L.A. )

    1993-01-01

    thee National Flow Cytometry and Sorting Resource (NFCR) was established in 1982 to develop advanced flow cytometric instrumentation and methodology, to provide facilities for using the fruits of the NFCR developments in collaborative projects and to disseminate the results to the cytometry community at large. Achievements of the NFCR for 1992 include: (1) preliminary studies of DNA inactivation in preparation for the development of an optical chromosome sorter; (2) modeling of real-time cytometry data using th ISML software package on a Cray supercomputer; (3) execution of proof-of-principle experiments on a phase sensitive flow cytometer in which cellular fluorescence lifetimes were determined; (4) continued development of the DiDAC data acquisition system to include bit mapped sorting and multi-laser capabilities; (5) development of new display modalities for flow cytometric data using the high level graphics language IDL; (6) development and testing of new approaches to clustering of multivariate data; (7) novel applications of Fourier transform flow cytometry to questions of cell activation and molecular structure.

  18. Arsia Mons Surface Flow

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Today's VIS image of lava flows south of Arsia Mons shows a broad, rough surfaced flow (brighter in image). The brighter flow splits at the bottom and then rejoins again, leaving a window of older flow visible. Note how the flows overlap at the bottom of the image.

    Image information: VIS instrument. Latitude -22.6, Longitude 239.7 East (120.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Chemical reacting flows

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Sockol, Peter M.

    1987-01-01

    Future aerospace propulsion concepts involve the combination of liquid or gaseous fuels in a highly turbulent internal air stream. Accurate predictive computer codes which can simulate the fluid mechanics, chemistry, and turbulence combustion interaction of these chemical reacting flows will be a new tool that is needed in the design of these future propulsion concepts. Experimental and code development research is being performed at Lewis to better understand chemical reacting flows with the long term goal of establishing these reliable computer codes. The approach to understanding chemical reacting flows is to look at separate simple parts of this complex phenomena as well as to study the full turbulent reacting flow process. As a result research on the fluid mechanics associated with chemical reacting flows was initiated. The chemistry of fuel-air combustion is also being studied. Finally, the phenomena of turbulence-combustion interaction is being investigated. This presentation will highlight research, both experimental and analytical, in each of these three major areas.

  20. Marte Vallis Platy Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-442, 4 August 2003

    The Marte Vallis system, located east of Cerberus and west of Amazonis Planitia, is known for its array of broken, platy flow features. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a close-up view of some of these plates; they appear to be like puzzle pieces that have been broken apart and moved away from each other. The Mars science community has been discussing these features for the past several years--either the flows in Marte Vallis are lava flows, or mud flows. In either case, the material was very fluid and had a thin crust on its surface. As the material continued to flow through the valley system, the crust broke up into smaller plates that were then rafted some distance down the valley. This picture is located near 6.9oN, 182.8oW. It is illuminated by sunlight from the left.

  1. Two-phase flow

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1986-01-01

    An experimental program to characterize the spray from candidate nozzles for icing-cloud simulation is discussed. One canidate nozzle, which is currently used for icing research, has been characterized for flow and drop size. The median-volume diameter (MVD) from this air-assist nozzle is compared with correlations in the literature. The new experimental spray facility is discussed, and the drop-size instruments are discussed in detail. Since there is no absolute standard for drop-size measurements and there are other limitations, such as drop -size range and velocity range, several instruments are used and results are compared. A two-phase model was developed at Pennsylvania State University. The model uses the k-epsilon model of turbulence in the continous phase. Three methods for treating the discrete phase are used: (1) a locally homogeneous flow (LHF) model, (2) a deterministic separated flow (DSF) model, and (3) a stochastic separated flow (SSF) model. In the LHF model both phases have the same velocity and temperature at each point. The DSF model provides interphase transport but ignores the effects of turbulent fluctuations. In the SSF model the drops interact with turbulent eddies whose properties are determined by the k-epsilon turbulence model. The two-phase flow model has been extended to include the effects of evaporation and combustion.

  2. Piezoelectric axial flow microvalve

    DOEpatents

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  3. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height. PMID:26871175

  4. Mechanics of blood flow.

    PubMed

    Skalak, R; Keller, S R; Secomb, T W

    1981-05-01

    The historical development of the mechanics of blood flow can be traced from ancient times, to Leonardo da Vinci and Leonhard Euler and up to the present times with increasing biological knowledge and mathematical analysis. In the last two decades, quantitative and numerical methods have steadily given more complete and precise understanding. In the arterial system wave propagation computations based on nonlinear one-dimensional modeling have given the best representation of pulse wave propagation. In the veins, the theory of unsteady flow in collapsible tubes has recently been extensively developed. In the last decade, progress has been made in describing the blood flow at junctions, through stenoses, in bends and in capillary blood vessels. The rheological behavior of individual red blood cells has been explored. A working model consists of an elastic membrane filled with viscous fluid. This model forms a basis for understanding the viscous and viscoelastic behavior of blood. PMID:7024641

  5. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  6. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  7. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  8. Hospital free cash flow.

    PubMed

    Kauer, R T; Silvers, J B

    1991-01-01

    Hospital managers may find it difficult to admit their investments have been suboptimal, but such investments often lead to poor returns and less future cash. Inappropriate use of free cash flow produces large transaction costs of exit. The relative efficiency of investor-owned and tax-exempt hospitals in the product market for hospital services is examined as the free cash flow theory is used to explore capital-market conditions of hospitals. Hypotheses concerning the current competitive conditions in the industry are set forth, and the implications of free cash flow for risk, capital-market efficiency, and the cost of capital to tax-exempt institution is compared to capital-market norms. PMID:1743965

  9. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  10. Electrocapturing flow cell

    DOEpatents

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  11. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  12. Workshop on hypersonic flow

    SciTech Connect

    Povinelli, L.A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  13. Arsia Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The lava flows from Arsia Mons are some of the youngest flows in the region. The region of flows south of the volcano have had little modification and appear very similar in appearance to Hawaiian lava flows. This VIS image shows typical flows for the region. The flows are long, fairly narrow, overlapping, and with various surface features and textures.

    Image information: VIS instrument. Latitude -19.5, Longitude 240.1 East (119.9 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Tomographic multiphase flow measurement.

    PubMed

    Sætre, C; Johansen, G A; Tjugum, S A

    2012-07-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (Corneliussen et al., 2005). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100 ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. PMID:22341954

  15. Interactive Flow in Exercise Pedagogy

    ERIC Educational Resources Information Center

    Lloyd, Rebecca; Smith, Stephen

    2006-01-01

    A phenomenology of the bodily experience of interactive flow adds to Csikszentmihalyi's flow theory. Whereas Csikszentmihalyi attended to teachers' and students' experiences of flow separately, this inquiry explores flow through three water-inspired layers of physical interaction between fitness professionals and their clients. Teaching fitness is…

  16. ANISOTROPIC FLOW AT RHIC.

    SciTech Connect

    TANG,A.H.

    2004-03-15

    We present the first measurement of directed flow (v{sub 1}) at the Relativistic Heavy Ion Collider (RHIC). v{sub 1} is found to be consistent with zero at pseudorapidities {eta} from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4 < |{eta}| < 4. The latter observation is similar to that from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. We studied the evolution of elliptic flow from p + p collisions through d + Au collision, and onto Au + Au collisions. Measurements of higher harmonics are presented and discussed.

  17. Spiral Flow Separator

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1993-01-01

    Proposed liquid-separating device relies on centrifugal force in liquid/liquid or liquid/solid mixture in spiral path. Operates in continuous flow at relatively high rates. Spiral tubes joined in sequence, with outlet tubes connected to joints. Cross-sectional areas of successive spiral tubes decreases by cross-sectional areas of outlet tubes. Centrifugal force pushes denser particles or liquids to outer edge of spiral, where removed from flow. Principle exploited to separate solids from wastewater, oil from fresh or salt water, or contaminants from salt water before evaporation. Also used to extract such valuable materials as precious metals from slurries.

  18. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-525, 26 October 2003

    This May 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows lava flows on the lower northern flanks of the large martian volcano, Olympus Mons. Located near 21.9oN, 132.9oW, the image features flows that moved down the north slope, toward the north/northeast (top/upper right). Sunlight illuminates this scene from the left/lower left; the picture covers an area about 3 km (1.9 mi) across.

  19. Flow in cyclic cosmology

    SciTech Connect

    Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2010-10-15

    In this paper, we use a known duality between expanding and contracting cosmologies to construct a dual of the inflationary flow hierarchy applicable to contracting cosmologies such as ekpyrotic and cyclic models. We show that the inflationary flow equations are invariant under the duality and therefore apply equally well to inflation or to cyclic cosmology. We construct a self-consistent small-parameter approximation dual to the slow-roll approximation in inflation, and calculate the power spectrum of perturbations in this limit. We also recover the matter-dominated contracting solution of Wands, and the recently proposed adiabatic ekpyrosis solution.

  20. Characterizing Branched Flow

    NASA Astrophysics Data System (ADS)

    Drury, Byron; Klales, Anna; Heller, Eric

    2014-03-01

    Branched flow appears in a variety of physical systems spanning length scales from microns to thousands of kilometers. For instance, it plays an important role in both electron transport in two dimensional electron gases and the propagation of tsunamis in the ocean. Branches have typically been identified with caustics in the theoretical literature, but concentrations of flux recognizable as branches can arise from other mechanisms. We propose a generalized definition of branching based on a local measure of the stability of trajectories. We analytically and numerically study the characteristics of Hamiltonian flow in phase space and characterize the relationship between branch formation and trajectory stability.

  1. Propeller flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.

    1982-01-01

    Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.

  2. Flow line sampler

    DOEpatents

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  3. IGS Data Flow

    NASA Technical Reports Server (NTRS)

    Noll, Carey

    2006-01-01

    The IGS analysis centers and user community in general need to be assured that the data centers archive a consistent set of files. Changes to the archives can occur because of the re-publishing of data, the transmission of historic data, and the resulting re-distribution (or lack thereof) of these data from data center to data center. To ensure the quality of the archives, a defined data flow and method of archive population needs to be established. This poster will diagram and review the current IGS data flow, discuss problems that have occurred, and provide recommendations for improvement.

  4. Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers

    NASA Technical Reports Server (NTRS)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1981-01-01

    Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.

  5. On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers

    NASA Technical Reports Server (NTRS)

    Pletcher, R. H.; Chen, K.-H.

    1993-01-01

    The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.

  6. Flow-induced channel formation in the cytoplasm of motile cells

    NASA Astrophysics Data System (ADS)

    Guy, Robert D.; Nakagaki, Toshiyuki; Wright, Grady B.

    2011-07-01

    A model is presented to explain the development of flow channels within the cytoplasm of the plasmodium of the giant amoeba Physarum polycephalum. The formation of channels is related to the development of a self-organizing tubular network in large cells. Experiments indicate that the flow of cytoplasm is involved in the development and organization of these networks, and the mathematical model proposed here is motivated by recent experiments involving the observation of development of flow channel in small cells. A model of pressure-driven flow through a polymer network is presented in which the rate of flow increases the rate of depolymerization. Numerical solutions and asymptotic analysis of the model in one spatial dimension show that under very general assumptions this model predicts the formation of channels in response to flow.

  7. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  8. Flow and Sedimentation of particulate suspensions in Fractures

    NASA Astrophysics Data System (ADS)

    Lo, Tak Shing; Koplik, Joel

    2011-03-01

    Suspended particles are commonly found in reservoir fluids. They alter the rheology of the flowing liquids and may obstruct transport by narrowing flow channels due to gravitational sedimentation. An understanding of the dynamics of particle transport and deposition is, therefore, important to many geological, enviromental and industrial processes. Realistic geological fractures usually have irregular surfaces with self-affine structures, and the surface roughness plays a crucial role in the flow and sedimentation processes. Recently, we have used the lattice Boltzmann method to study the combined effects of sedimentation and transport of particles suspended in a Newtonian fluid in a pressure-driven flow in self-affine channels, which is especially relevant to clogging phenomena where sediments may block fluid flows in narrow constrictions of the channels. The lattice Boltzmann method is flexible and particularly suitable for handling irregular geometry. Our work covers a broad range in Reynolds and buoyancy numbers, and in particle concentrations. In this talk, we focus on the transitions between the ``jammed'' and the ``flow'' states in fractures, and on the effects of nonuniform particle size distributions. Work supported by DOE and NERSC.

  9. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels.

    PubMed

    Bhattacharyya, A; Masliyah, J H; Yang, J

    2003-05-01

    This article addresses the problem of oscillating laminar electrokinetic liquid flow in an infinitely extended circular microchannel. Based on the Debye-Huckel approximation for low surface potential at the channel wall, a complex variable approach is used to obtain an analytical solution for the flow. The complex counterparts of the flow rate and the current are linearly dependent on the pressure gradient and the external electric field. This property is used to show that Onsager's principle of reciprocity continues to be valid (involving the complex quantities) for the stated problem. During oscillating pressure-driven flow, the electroviscous effect for a given value of the normalized reciprocal electrical double-layer (EDL) thickness is observed to attain a maximum at a certain normalized frequency. In general, an increasing normalized frequency results in a reduction of EDL effects, leading to (i). a volumetric flow rate in the case of streaming potential approaching that predicted by the theory without EDL effects, and (ii). a reduction in the volumetric flow rate in the case of electroosmosis. PMID:12725819

  10. Turbulent bubbly flow

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas H.; Luther, Stefan; Mazzitelli, Irene M.; Rensen, Judith M.; Toschi, Federico; Lohse, Detlef

    The effect of bubbles on fully developed turbulent flow is investigated numerically and experimentally, summarizing the results of our previous papers (Mazzitelli et al., 2003, Physics of Fluids15, L5. and Journal of Fluid Mechanics488, 283; Rensen, J. et al. 2005, Journal of Fluid Mechanics538, 153). On the numerical side, we simulate Navier Stokes turbulence with a Taylor Reynolds number of Re?˜60, a large large-scale forcing, and periodic boundary conditions. The point-like bubbles follow their Lagrangian paths and act as point forces on the flow. As a consequence, the spectral slope is less steep as compared to the Kolmogorov case. The slope decrease is identified as a lift force effect. On the experimental side, we do hot-film anemometry in a turbulent water channel with Re? ˜ 200 in which we have injected small bubbles up to a volume percentage of 3%. Here the challenge is to disentangle the bubble spikes from the hot-film velocity signal. To achieve this goal, we have developed a pattern recognition scheme. Furthermore, we injected microbubbles up to a volume percentage of 0.3%. Both in the counter flowing situation with small bubbles and in the co-flow situation with microbubbles, we obtain a less spectral slope, in agreement with the numerical result.

  11. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  12. Epiglottal Flow Physics

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew; Shinneeb, Abdul-Monsif

    2011-11-01

    PIV measurements have been made at three locations in the pharynx/larynx region in the ETA model, one along the central sagittal plane and two cross-sectional planes. The measurements were made at a flow rate of 9.04 l/min which corresponds approximately to 10 l/min in the prototype. The corresponding Reynolds number Re based on the inlet condition is 716. Two thousand images were acquired at each location at a framing rate of 2 Hz. The mean velocity fields were then calculated. In addition,the data was analysed by the proper orthogonal decomposition (POD) technique to expose vortical structures. Only few modes were used for the POD reconstruction which recovered about 60% of the turbulent kinetic energy. The results showed that the flow is characterised by regions of re-circulation, jet-like, and sink-like flows. In addition, the POD-reconstructed fields revealed some interesting features that occur in the human pharynx/larynx region near the epiglottis such as tearing and pairing processes, as well as the interaction between the flows induced by the structures. Funded by NSERC.

  13. The Flow of Chemists

    ERIC Educational Resources Information Center

    Education in Science, 1975

    1975-01-01

    Presents two notes regarding the article "The Flow of Chemists" published in the January issue of 'Education in Science' (61 page 21) related to declining numbers of chemistry students in higher education. Both writers suggest different syllabuses requiring less math and a better match of material to student ability and understanding. (EB)

  14. Flow cytometry apparatus

    DOEpatents

    Pinkel, Daniel

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  15. Infinitesimal Conical Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  16. Flow cytometry apparatus

    DOEpatents

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  17. Visualization of relaminarizing flows

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Narasimha, R.; Prabhu, A.

    1978-01-01

    The experiments described in the present paper provided conclusive evidence for the feasibility of achieving reverse transition by several different mechanisms. Turbulent-to-laminar transition in water was visualized by injection of purple and green dyes. Air flows were visualized by colored schlieren photography.

  18. Flow control using ferrofluids

    NASA Astrophysics Data System (ADS)

    Cornat, Francois; Beck, David; Jacobi, Ian; Stone, Howard

    2013-11-01

    A novel flow control technique is proposed which employs a ferrofluidic lubricant infused in a micro-patterned substrate as a ``morphing surface'' for control of wall-bounded flows. Traditionally, morphing surfaces produce dynamic changes in the curvature and roughness of solid substrates for active control of high Reynolds number flow features such as boundary layer separation and turbulent streaks. We show how these surface modifications can be achieved with a thin liquid layer in the presence of a normal magnetic field. By impregnating a chemically-treated, micro-patterned surface with a fluorinated ferrofluid, the fluid is maintained as a thin super-hydrophobic film and can be redistributed on the substrate by magnetic forces to dynamically reveal or conceal the underlying surface roughness. Moreover, the surface topography of the ferrofluid film itself can be modified to produce an enhanced roughness, beyond the scale of the underlying substrate pattern. Both types of ferrofluidic surface modifications are studied in micro- and macro- scale channels in order to assess the feasibility of flow modification at low to moderate Reynolds numbers.

  19. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  20. Wet solids flow enhancement

    SciTech Connect

    Caram, H.S.; Agrawal, D.K.; Foster, N.

    1997-07-01

    The objective was to visualize the flow of granular materials in the silo using Nuclear Magnetic Resonance. This was done by introducing traces. Mustard seeds and poppy seeds were used as trace particles. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128 by 128 to 256 by 256 pixels were generated for each image.

  1. Quaternions and ideal flows

    NASA Astrophysics Data System (ADS)

    Eshraghi, H.; Gibbon, J. D.

    2008-08-01

    After a review of some of the recent works by Holm and Gibbon on quaternions and their application to Lagrangian flows, particularly the incompressible Euler equations and the equations of ideal MHD, this paper investigates the compressible and relativistic Euler equations using these methods.

  2. Cell-flow technique.

    PubMed

    Hess, George P; Lewis, Ryan W; Chen, Yongli

    2014-10-01

    Various devices have been used to flow neurotransmitter solutions over cells containing receptors (e.g., ligand-gated ion channels) for whole-cell current recordings. With many of the devices, the orientation between the porthole of the flow device and the cell is not maintained absolutely constant. Orientation is critical for reproducibility in kinetic experiments. To be able to change the composition of the flowing solution during an experiment and still maintain a constant orientation, we use the cell-flow device described here. A peristaltic pump, a stainless steel U-tube, two different sizes of peristaltic tubing, and a solenoid valve are required to create a simple solution exchange system that can rapidly apply and remove solutions over the surface of a cell in tens of milliseconds. This system allows one to test multiple conditions on a cell containing the receptor of interest while constantly "washing" the cell with extracellular buffer solution between experimental applications. The use of the solenoid valve allows for the application of solutions to be precisely timed and controlled by a computer during electrophysiological current recording. PMID:25275111

  3. Flow cytometry: an introduction.

    PubMed

    Givan, Alice L

    2011-01-01

    A flow cytometer is an instrument that illuminates cells (or other particles) as they flow individually in front of a light source and then detects and correlates the signals from those cells that result from the illumination. In this chapter, each of the aspects of that definition will be described: the characteristics of cells suitable for flow cytometry, methods to illuminate cells, the use of fluidics to guide the cells individually past the illuminating beam, the types of signals emitted by the cells and the detection of those signals, the conversion of light signals to digital data, and the use of computers to correlate and analyze the data after they are stored in a data file. The final section of the chapter will discuss the use of a flow cytometer to sort cells. This chapter can be read as a brief, self-contained survey. It can also be read as a gateway with signposts into the field. Other chapters in this book will provide more details, more references, and even an intriguing view of the future of cytometry. PMID:21116976

  4. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  5. A heat flow calorimeter

    NASA Technical Reports Server (NTRS)

    Johnston, W. V.

    1973-01-01

    Reaction mechanism for nickel-cadmium cell is not known well enough to allow calculation of heat effects. Calorimeter can measure heat absorbed or evolved in cell, by determining amount of external heat that must be supplied to calorimeter to maintain constant flow isothermal heat sink.

  6. Enceladus' Enigmatic Heat Flow

    NASA Astrophysics Data System (ADS)

    Howett, C.; Spencer, J. R.; Spencer, D.; Verbiscer, A.; Hurford, T.; Segura, M.

    2013-12-01

    Accurate knowledge of Enceladus' heat flow is important because it provides a vital constraint on Enceladus' tidal dissipation mechanisms, orbital evolution, and the physical processes that generate the plumes. In 2011 we published an estimate of the current heat flow from Enceladus' active south polar terrain: 15.8 +/- 3.1 GW (Howett et al., 2011). This value was calculated by first estimating by modeling, and then removing, the passive component from 17 to 1000 micron observations made of the entire south polar terrain by Cassini's Composite Infrared Spectrometer (CIRS). The heat flow was then directly calculated from the residual, assumed endogenic, component. The derived heat flow of 15.8 GW was surprisingly high, about 10 times greater than that predicted by steady-state tidal heating (Meyer and Wisdom, 2007). CIRS has also returned high spatial resolution observations of Enceladus' active south polar terrain. Two separate observations are used: 9 to 16 micron observations taken over nearly the complete south polar terrain and a single 17 to 1000 micron scan over Damascus, Baghdad and Cairo. The shorter wavelength observations are only sensitive to high temperature emission (>70 K), and so longer wavelength observations are required (despite their limited spatial coverage) to estimate the low temperature emission from the stripes. Analysis of these higher resolution observations tells a different story of Enceladus' endogenic heat flow: the preliminary estimate of the heat flow from the active tiger stripes using these observations is 4.2 GW. An additional 0.5 GW must be added to this number to account for the latent heat release by the plumes (Ingersoll and Pankine 2009), giving a total preliminary estimate of 4.9 GW. The discrepancy in these two numbers is significant and we are currently investigating the cause. One possible reason is that there is significantly higher endogenic emission from the regions between the tiger stripes than we currently estimate

  7. Physics of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  8. Ultrasensitive flow cytometric analyses

    SciTech Connect

    Jett, J.H.; Cram, L.S.; Keller, R.A.; Martin, J.C.; Saunders, G.C.; Sklar, L.A.; Steinkamp, J.A.

    1993-01-01

    New techniques and approaches to cellular analysis being developed at the Los Alamos National Flow Cytometry Resource can be divided into those that improve sensitivity and those that move the technology into new areas by refining existing approaches. An example of the first category is a flow cytometric system capable of measuring the phase shift of fluorescence emitted by fluorophors bound to cells is being assembled. This phase sensitive cytometer is be capable of quantifying fluorescence life time on a cell-by-cell basis as well as using the phase sensitive detection to separate fluorescence emissions that overlap spectrally but have different lifetimes. A Fourier transform flow cytometer capable of measuring the fluorescence emission spectrum of individual labeled cells at rates approaching several hundred per second is also in the new technology category. The current implementation is capable of resolving the visible region of the spectrum into 8 bands. With this instrument, it is possible to resolve the contributions of fluorophors with overlapping emission spectra and to determine the emission spectra of dyes such as calcium concentration indicators that are sensitive to the physiological environment. Flow cytometric techniques have been refined to the point that it is possible to detect individual fluorescent molecules in solution as they flow past a laser beam. This capability has lead to a rapid DNA sequencing project. The goal of the project is to develop a technique that is capable of sequencing long strands of DNA (40,000 kb) at a rate of between 100 and 1,000 bases per second.

  9. Flow-induced deformation of poroelastic tissues and gels: a new perspective on equilibrium pressure-flow-thickness relations.

    PubMed

    Quinn, Thomas M

    2013-01-01

    Hydrostatic pressure-driven flows through soft tissues and gels cause deformations of the solid network to occur, due to drag from the flowing fluid. This phenomenon occurs in many contexts including physiological flows and infusions through soft tissues, in mechanically stimulated engineered tissues, and in direct permeation measurements of hydraulic permeability. Existing theoretical descriptions are satisfactory in particular cases, but none provide a description which is easy to generalize for the design and interpretation of permeation experiments involving a range of different boundary conditions and gel properties. Here a theoretical description of flow-induced permeation is developed using a relatively simple approximate constitutive law for strain-dependent permeability and an assumed constant elastic modulus, using dimensionless parameters which emerge naturally. Analytical solutions are obtained for relationships between fundamental variables, such as flow rate and pressure drop, which were not previously available. Guidelines are provided for assuring that direct measurements of hydraulic permeability are performed accurately, and suggestions emerge for alternative measurement protocols. Insights obtained may be applied to interpretation of flow-induced deformation and related phenomena in many contexts. PMID:23363220

  10. Effect of pulsatile swirling flow on stenosed arterial blood flow.

    PubMed

    Ha, Hojin; Lee, Sang Joon

    2014-09-01

    The existence of swirling flow phenomena is frequently observed in arterial vessels, but information on the fluid-dynamic roles of swirling flow is still lacking. In this study, the effects of pulsatile swirling inlet flows with various swirling intensities on the flow field in a stenosis model are experimentally investigated using a particle image velocimetry velocity field measurement technique. A pulsatile pump provides cyclic pulsating inlet flow and spiral inserts with two different helical pitches (10D and 10/3D) induce swirling flow in the stenosed channel. Results show that the pulsatile swirling flow has various beneficial effects by reducing the negative wall shear stress, the oscillatory shear index, and the flow reverse coefficient at the post-stenosis channel. Temporal variations of vorticity fields show that the short propagation length of the jet flow and the early breakout of turbulent flow are initiated as the swirling flow disturbs the symmetric development of the shear layer. In addition, the overall energy dissipation rate of the flow is suppressed by the swirling component of the flow. The results will be helpful for elucidating the hemodynamic characteristics of atherosclerosis and discovering better diagnostic procedures and clinical treatments. PMID:24984589

  11. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  12. Flows in Kasei

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows flow materials-on the east/right side of the image-that have come in among a suite of sharp ridges and grooves on the floor of the vast Kasei Valles system. The ridges and grooves are much older and are believed to be the result of a giant, catastrophic flood. The flows might have been mud or lava that ran part way down the ancient valley at a later date.

    Location near: 16.7oN, 76.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  13. An orographic flow diagramme

    NASA Astrophysics Data System (ADS)

    Opsanger Jonassen, Marius; Ólafsson, Haraldur; Ágústsson, Hálfdán

    2016-04-01

    Motivated by the need to relate some key features of atmospheric flow over mountains to the elevation of the inversion and wind speed, many numerical experiments are made in order to create a diagramme a la Vosper (2004). The simulations are carried out with the WRF model and stationary boundary-conditions. A neutral boundary-layer is capped by a 10K inversion, of which the height varies. The mountain is 1 km high and the incoming winds are 10,15 or 20 m/s. The surface has zo=0.1m. Vortices, vortex shedding, lee waves and hydraulic jump are detected and related to values of the height of the inversion and the Froude number. Cases of real flow are compared to the idealized results.

  14. Structural power flow measurement

    SciTech Connect

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  15. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  16. The Flow of Energy

    NASA Astrophysics Data System (ADS)

    Znidarsic, F.; Robertson, G. A.

    In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).

  17. Wet solids flow enhancemant

    SciTech Connect

    Caram, H.S.; Foster, N.; Wildman, D.J.

    1996-12-31

    WE used glass beads of different sizes as.a model system to study the flow enhancing properties of Octadecyltrichlorosilane (OTS). 0TS provides Si(CH{sub 2}){sub 17}CH{sub 3} groups that bind with the surface hydrox groups to make it hydrophobic. Experimental data showed, indeed, that surface hydrophobicity promotes the flow of wet granular materials. Mixtures of different percentage of silanized/unsilanized particles were prepared for tensile strength measurements. The tensile strength decreased as more silanized particles were added to the samples. The relationship between dimensionless tensile strength and void fraction followed the correlation found by Pierrat (1994). Contact angles were larger for the silanized particles, as compared with unsilanized ones.

  18. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  19. KSC's work flow assistant

    NASA Technical Reports Server (NTRS)

    Wilkinson, John; Johnson, Earl

    1991-01-01

    The work flow assistant (WFA) is an advanced technology project under the shuttle processing data management system (SPDMS) at Kennedy Space Center (KSC). It will be utilized for short range scheduling, controlling work flow on the floor, and providing near real-time status for all major space transportation systems (STS) work centers at KSC. It will increase personnel and STS safety and improve productivity through deeper active scheduling that includes tracking and correlation of STS and ground support equipment (GSE) configuration and work. It will also provide greater accessibility to this data. WFA defines a standards concept for scheduling data which permits both commercial off-the-shelf (COTS) scheduling tools and WFA developed applications to be reused. WFA will utilize industry standard languages and workstations to achieve a scalable, adaptable, and portable architecture which may be used at other sites.

  20. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.

    PubMed

    Satoh, T; Narazaki, G; Sugita, R; Kobayashi, H; Sugiura, S; Kanamori, T

    2016-06-21

    Here, we report a pneumatic pressure-driven microfluidic device capable of multi-throughput medium circulation culture. The circulation culture system has the following advantages for application in drug discovery: (i) simultaneous operation of multiple circulation units, (ii) use of a small amount of circulating medium (3.5 mL), (iii) pipette-friendly liquid handling, and (iv) a detachable interface with pneumatic pressure lines via sterile air-vent filters. The microfluidic device contains three independent circulation culture units, in which human umbilical vein endothelial cells (HUVECs) were cultured under physiological shear stress induced by circulation of the medium. Circulation of the medium in the three culture units was generated by programmed sequentially applied pressure from two pressure-control lines. HUVECs cultured in the microfluidic device were aligned under a one-way circulating flow with a shear stress of 10 dyn cm(-2); they exhibited a randomly ordered alignment under no shear stress and under reciprocating flow with a shear stress of 10 dyn cm(-2). We also observed 2.8- to 4.9-fold increases in expression of the mRNAs of endothelial nitric oxide synthase and thrombomodulin under one-way circulating flow with a shear stress of 10 dyn cm(-2) compared with conditions of no shear stress or reciprocating flow. PMID:27229626

  1. Tissue blood flow mapping

    NASA Astrophysics Data System (ADS)

    Nilsson, G. E.

    1997-01-01

    The operating principles of Laser Doppler Perfusion Imaging (LDPI) for visualization of the tissue blood perfusion are explained. Using this emerging technology skin perfusion has been investigated in healthy volunteers and in patients with various conditions that affect skin blood flow. LDPI is anticipated to be particularly useful in evaluation of peripheral circulation in diabetics, as an objective tool in irritancy patch testing, assessment of burnt skin and visualization of spot-wise hyperperfusion in breast skin in association with carcinoma.

  2. TEP process flow diagram

    SciTech Connect

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  3. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  4. Olympus Mons Flows

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Like drippings from a candle, these lava flows on the flank of Olympus Mons volcano demonstrate how it became the largest volcano in the solar system. Multiple flows from an unknowable number of eruptions have piled one on top of another until the mountain of lava reached a height of 27 km above the average Martian elevation. The change in texture seen in the bottom 1/3 of the image marks a break in slope from the flank of the volcano to the north (top) and the flat plain surrounding it. The direction of flows changes from roughly N-S to E-W, suggesting another source for the flows on the plain.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-437, 30 July 2003

    Olympus Mons is the largest volcano on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the lava flows on the middle south flank of the giant volcano. Illuminated from the lower right, this picture is located near 16.4oN, 135.5oW.

  6. Photoacoustic flow cytometry

    PubMed Central

    Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2016-01-01

    Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8 nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and

  7. Hypogenetic chaotic jerk flows

    NASA Astrophysics Data System (ADS)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-03-01

    Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications.

  8. Unsteady Turbopump Flow Simulations

    NASA Technical Reports Server (NTRS)

    Centin, Kiris C.; Kwak, Dochan

    2001-01-01

    The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.

  9. F-106 Flow Visualization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Convair F-106B Delta Dart: As the last piloted Convair F-106 anywhere, NASA 816 saw service at Langley researching storm hazards, experimenting with an Off-Surface flow visualization system and testing a vortex flap. The Delta Dart was not turned over for target drone duty as were the vast majority of F-106s, but retired to the Virginia Air & Space Center in Hampton, Virginia.

  10. Complex Flows by Nanohydrodynamics

    SciTech Connect

    Alley, E; Covello, P; Alder, B

    2004-03-01

    The study of complex flows by particle simulations is speeded up over molecular dynamics (MD) by more than two orders of magnitude by employing a stochastic collision dynamics method (DSMC) extended to high density (CBA). As a consequence, a picture generated on a single processor shows the typical features of the Rayleigh-Taylor instability and is in quantitative agreement with the experimentally found long time behavior.

  11. Transition Region Flows

    NASA Astrophysics Data System (ADS)

    Brekke, P.; Murdin, P.

    2000-11-01

    Ultraviolet emission lines emitted from the SOLAR TRANSITION REGION are often shifted from their expected rest wavelengths. Shifts of spectral lines are due to the so-called DOPPLER EFFECT, where the source of emission is moving either away from or towards the observer, causing a change in the apparent wavelength. The shifted emission lines are most often interpreted as a flow of plasma along ...

  12. Lava flows and domes

    SciTech Connect

    Fink, J. )

    1989-01-01

    This book discusses emplacement of silicic domes and mafic lava flows. The authors have utilized the combination of field, experimental and theoretical methods to constrain various characteristics of recently-emplaced lavas, including dimensions, growth rates, surface morphology, deformation styles, rheology, and volatile contents. Filed measurements from numerous volcanoes are presented. Focus is on data from Mount St. Helens. The value of such investigations is addressed.

  13. On rotational conical flow

    NASA Technical Reports Server (NTRS)

    Ferrari, Carlo

    1952-01-01

    Some general properties of isoenergetic rotational conical fields are determined. For such fields, provided the physical parameters of the fluid flow are known on a conical reference surface, it being understood that they satisfy certain imposed conditions, it is shown how to construct the hodographs in the various meridional semiplanes, as the envelope of either the tangents to the hodographs or of the osculatory circles.

  14. Transonic swirling nozzle flow

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Pawlas, Gary E.

    1991-01-01

    A numerical model of viscous transonic swirling flow in axisymmetric nozzles is developed. MacCormack's implicit Gauss-Seidel method is applied to the thin-layer Navier-Stokes equations in transformed coordinates. Numerical results are compared with experimental data to validate the method. The effect of swirl and viscosity on nozzle performance are demonstrated by examining wall pressures, Mach contours, and integral parameters.

  15. Arsia Mons Western Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Last week we looked at the flows to the south of Arsia Mons, this week we will examine the flows to the west of the volcano. In this VIS image the flows (at the bottom) have started to cover the ejecta surrounding the large crater.

    Image information: VIS instrument. Latitude -8.7, Longitude 220.2 East (139.8 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Arsia Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image of lava flows to the west of Arsia Mons looks very similar to the lava flows south of Arsia Mons. It is very likely that the flows were occurring at the same time(s) in both areas.

    Image information: VIS instrument. Latitude -2.9, Longitude 228.5 East (131.5 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  18. Convective heat flow probe

    DOEpatents

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  19. Conversational Flow Promotes Solidarity

    PubMed Central

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.

    2013-01-01

    Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683

  20. Vortex shedding flow meter performance at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1986-01-01

    In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.

  1. Virtual Flow Simulator

    Energy Science and Technology Software Center (ESTSC)

    2015-10-05

    Virtual Flow Simulator (VFS) is a state-of-the-art computational fluid mechanics (CFD) package that is capable of simulating multi-physics/multi-phase flows with the most advanced turbulence models (RANS, LES) over complex terrains. The flow solver is based on the Curvilinear Immersed Boundary (CURVIB) method to handle geometrically complex and moving domains. Different modules of the VFS package can provide different simulation capabilities for specific applications ranging from the fluid-structure interaction (FSI) of solid and deformable bodies, themore » two-phase free surface flow solver based on the level set method for ocean waves, sediment transport models in rivers and the large-scale models of wind farms based on actuator lines and surfaces. All numerical features of VFS package have been validated with known analytical and experimental data as reported in the related journal articles. VFS package is suitable for a broad range of engineering applications within different industries. VFS has been used in different projects with applications in wind and hydrokinetic energy, offshore and near-shore ocean studies, cardiovascular and biological flows, and natural streams and river morphodynamics. Over the last decade, the development of VFS has been supported and assisted with the help of various United States companies and federal agencies that are listed in the sponsor lists. In this version, VFS-Wind contains all the necessary modeling tools for wind energy applications, including land-based and offshore wind farms. VFS is highly scalable to run on either desktop computers or high performance clusters (up to 16,000 CPUs). This released version comes with a detailed user’s manual and a set of case studies designed to facilitate the learning of the various aspects of the code in a comprehensive manner. The included documentation and support material has been elaborated in a collaboration effort with Sandia National Labs under the contract DE-EE0005482

  2. Flows from Olympus Mons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 5 April 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected June 2, 2002 during early northern spring. The relative timing of volcanic flows from Olympus Mons and the formation of the structural feature can be deduced by which flows are cut by the fracture and which flows fill and cross the fracture.

    Image information: VIS instrument. Latitude 19.8, Longitude 233 East (127 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona

  3. Virtual Flow Simulator

    SciTech Connect

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios; Khosronejad, Ali; Le, Trung; Kang, Seokkoo; Gilmanov, Anvar; Ge, Liang; Borazjani, Iman

    2015-10-05

    Virtual Flow Simulator (VFS) is a state-of-the-art computational fluid mechanics (CFD) package that is capable of simulating multi-physics/multi-phase flows with the most advanced turbulence models (RANS, LES) over complex terrains. The flow solver is based on the Curvilinear Immersed Boundary (CURVIB) method to handle geometrically complex and moving domains. Different modules of the VFS package can provide different simulation capabilities for specific applications ranging from the fluid-structure interaction (FSI) of solid and deformable bodies, the two-phase free surface flow solver based on the level set method for ocean waves, sediment transport models in rivers and the large-scale models of wind farms based on actuator lines and surfaces. All numerical features of VFS package have been validated with known analytical and experimental data as reported in the related journal articles. VFS package is suitable for a broad range of engineering applications within different industries. VFS has been used in different projects with applications in wind and hydrokinetic energy, offshore and near-shore ocean studies, cardiovascular and biological flows, and natural streams and river morphodynamics. Over the last decade, the development of VFS has been supported and assisted with the help of various United States companies and federal agencies that are listed in the sponsor lists. In this version, VFS-Wind contains all the necessary modeling tools for wind energy applications, including land-based and offshore wind farms. VFS is highly scalable to run on either desktop computers or high performance clusters (up to 16,000 CPUs). This released version comes with a detailed user’s manual and a set of case studies designed to facilitate the learning of the various aspects of the code in a comprehensive manner. The included documentation and support material has been elaborated in a collaboration effort with Sandia National Labs under the contract DE-EE0005482. The VFS

  4. FAITH Water Channel Flow Visualization

    NASA Video Gallery

    Water channel flow visualization experiments are performed on a three dimensional model of a small hill. This experiment was part of a series of measurements of the complex fluid flow around the hi...

  5. Vortex generator for flow control

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor); Marner, Wilbur J. (Inventor); Rohatgi, Naresh K. (Inventor)

    1989-01-01

    Fluidics flow control of a multiphase supply using a cylindrical chamber is achieved by introducing the supply flow radially into the chamber. The supply flow exits through a port in the center at the chamber. A control fluid is then introduced tangentially about 90.degree. upstream from the supply port. A second control fluid port may be added about 90.degree. upstream from the first control fluid port, but preferably two sets of supply and control ports are added with like ports diametrically opposite each other. The control fluid flows against the circular wall of the control chamber, which introduces a vortex in the flow of the supply flow that decays into a spiral path to the exit port in the center of the chamber. The control flow rate may thus be used to control the spiral path, and therefore the supply flow rate through the exit port.

  6. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  7. Radial flow pulse jet mixer

    DOEpatents

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  8. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  9. Characteristics of Solar Meridional Flows

    NASA Astrophysics Data System (ADS)

    Basu, Sarbani; Antia, H. M.

    2011-01-01

    We have done a ring-diagram analysis of MDI full-disc data to determine the properties of solar meridional flow in the outer 2% of the Sun over the solar cycle 23. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find that the migrating pattern of the meridional flow matches those of the sunspot butterfly diagram and the zonal flows in the shallow layers. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. We also find that the dominant component of the meridional flows during solar maxima was much lower than that during the minima of solar cycles 23 and 24.

  10. Make peak flow a habit!

    MedlinePlus

    Checking your peak flow is one of the best ways to control your asthma and to keep it from getting worse. Asthma attacks ... Most times, they build slowly. Checking your peak flow can tell you if an attack is coming, ...

  11. Magnetohydrodynamic flow at microelectrodes

    NASA Astrophysics Data System (ADS)

    Ragsdale, Steven Ronald

    1998-12-01

    Voltammetric reduction of nitrobenzene (NB) at a 12.5 μm-radius Pt microdisk electrode in acetonitrile solutions containing 0.001/le x NB/le 0.999 is reported (x NB is the mole fraction of NB). The voltammetric response displays a reversible, sigmoidalshape wave, corresponding to the one-electron reduction of NB. The maximum limiting current occurs in solutions containing intermediate redox concentrations, x NB/le0.2. Voltammetric currents are analyzed using the Cullinan-Vignes model to describe the interdiffusion of the redox species and solvent. Mutual diffusivities are corrected for activity effects using isothermal liquid-vapor equilibrium data. Application of the activity-corrected diffusivities in the Cullinan- Vignes model yields reasonably accurate predictions of the dependence of the voltammetric current on solution composition. The influence of an external magnetic field (0-1 Tesla) on the voltammetric response of Pt and Au microdisk electrodes (0.1, 6.4, 12.5 and 25 μm radius) is described. Magnetohydrodynamic (MHD) flow within a microscopic volume element adjacent to the microdisk surface results from the magnetic force generated by the flux of electrogenerated ions through the magnetic field. An analytic expression is presented for the magnetic force generated during steady-state voltammetry at a hemispherical microelectrode immersed in a uniform magnetic field. The magnetic volume force, F/bf mag (N/m3), is shown to decrease as r-2 (where r is the distance from the center of the electrode). The dependence of F/bf mag on r-2 confines the MHD flow to small volumes very close to the electrode surface (e.g., ~2×10-9 L for a 12.5 μm-radius electrode). Scanning electrochemical microscopy (SECM) is used to map MHD flows at a 25 μm-radius Pt microdisk electrode during the one-electron reduction of NB. Unidirectional lateral flow is observed when the magnetic field is aligned parallel to the electrode surface; rotational or cyclotron flow is observed when

  12. Stochastically forced zonal flows

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kaushik

    This thesis investigates the dynamics of multiple zonal jets, that spontaneously emerge on the barotropic beta-plane, driven by a homogenous and rapidly decorrelating forcing and damped by bottom drag. Decomposing the barotropic vorticity equation into the zonal-mean and eddy equations, and neglecting the eddy-eddy interactions, defines the quasi-linear (QL) system. Numerical solution of the QL system shows zonal jets with length scales comparable to jets obtained by solving the nonlinear (NL) system. Starting with the QL system, one can construct a deterministic equation for the evolution of the two-point single-time correlation function of the vorticity, from which one can obtain the Reynolds stress that drives the zonal mean flow. This deterministic system has an exact nonlinear solution, which is a homogenous eddy field with no jets. When the forcing is also isotropic in space, we characterize the linear stability of this jetless solution by calculating the critical stability curve in the parameter space and successfully comparing this analytic result with numerical solutions of the QL system. But the critical drag required for the onset of NL zonostrophic instability is up to a factor of six smaller than that for QL zonostrophic instability. The constraint of isotropic forcing is then relaxed and spatially anisotropic forcing is used to drive the jets. Meridionally drifting jets are observed whenever the forcing breaks an additional symmetry that we refer to as mirror, or reflexional symmetry. The magnitude of drift speed in our results shows a strong variation with both mu and beta: while the drift speed decreases almost linearly with decreasing mu, it actually increases as beta decreases. Similar drifting jets are also observed in QL, with the same direction (i.e. northward or southward) and similar magnitude as NL jet-drift. Starting from the laminar solution, and assuming a mean-flow that varies slowly with reference to the scale of the eddies, we obtain

  13. Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding

    SciTech Connect

    McCready, M.J.; Uphold, D.D.; Gifford, K.A.

    1997-12-31

    Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.

  14. Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T -Junction Devices

    NASA Astrophysics Data System (ADS)

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E.; Lorenceau, Elise

    2015-05-01

    We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T -junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.

  15. Laser Doppler measurements of laminar and turbulent flow in a pipe bend

    NASA Technical Reports Server (NTRS)

    Enayet, M. M.; Gibson, M. M.; Taylor, A. M. K. P.; Yianneskis, M.

    1982-01-01

    The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations.

  16. COMPRESSIBLE FLOW, ENTRAINMENT, AND MEGAPLUME

    EPA Science Inventory

    It is generally believed that low Mach number, i.e., low-velocity, flow may be assumed to be incompressible flow. Under steady-state conditions, an exact equation of continuity may then be used to show that such flow is non-divergent. However, a rigorous, compressible fluid-dynam...

  17. Bellows flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.

    1983-01-01

    The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.

  18. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  19. Extracting energy from natural flow

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.; Wilhold, G. A.

    1980-01-01

    Three concepts for extracting energy from wind, waterflow, and tides utilize flow instability to generate usable energy. Proposed converters respond to vortex excitation motion, galloping or plunging motion, and flutter. Fluid-flow instability is more efficient in developing lift than is direct flow.

  20. Fluorescent Particles For Flow Testing

    NASA Technical Reports Server (NTRS)

    Bonnell, Jeremy L.; Stern, Susan M.; Torkelson, Jan R.

    1995-01-01

    Small alumina spheres coated with fluorescent dye used in flow testing of transparent plastic model of check valve. Entrained fluroescent particles make flows visible. After completion of flow test, particles remaining in valve easily detectable and removed for measurement of their sizes.

  1. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  2. Buoyancy driven flow in counter flow heat exchangers

    NASA Astrophysics Data System (ADS)

    Olsson, C. O.

    2012-11-01

    The temperature distribution, the buoyancy head and the flow rate have been studied in a counter flow heat exchanger having buoyancy driven flow on at least one side. The assumptions made for heat flux distribution are varied and the resulting effects on the flow rate and fluid temperatures are studied. A network model is used to simulate the temperature distribution and oil flow rates in an oil-filled power transformer cooled by radiators. It is found that for operating conditions normally found for mineral oil the counter flow assumptions for heat flux distribution gives approximately the same results as assuming uniform heat flux. When a more viscous oil type is used or the radiators are placed lower than normal relative to the heat generating parts, the counter flow assumptions give more reliable results.

  3. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  4. Suspension flow: do particles act as mixers?

    PubMed

    Boschan, A; Aguirre, M A; Gauthier, G

    2015-05-01

    Recently, Roht et al. [J. Contam. Hydrol., 2013, 145, 10-16] observed that the presence of suspended non-Brownian macroscopic particles decreased the dispersivity of a passive solute, for a pressure-driven flow in a narrow parallel-plate channel at low Reynolds numbers. This result contradicts the idea that the streamline distortion caused by the random diffusive motion of the particles increases the dispersion and mixing of the solute. Therefore, to estimate the influence of this motion on the dispersivity of the solute, and investigate the origin of the reported decrease, we experimentally studied the probability density function (pdf) of the particle velocities, and spatio-temporal correlations, in the same experimental configuration. We observed that, as the mean suspension velocity exceeds a critical value, the pdf of the streamwise velocity of the particles markedly changes from a symmetric distribution to an asymmetric one strongly skewed to high velocities and with a peak of the most probable velocity close to the maximum velocity. The latter observations and the analysis of the suspension microstructure indicate that the observed decrease in the dispersivity of the solute is due to particle migration to the mid-plane of the channel, and consequent flattening of the velocity profile. Moreover, we estimated the contribution of particle diffusive motion to the solute dispersivity to be three orders of magnitude smaller than the reported decrease, and thus negligible. Solute dispersion is then much more affected by how particles modify the flow velocity profile across the channel than by their random diffusive motion. PMID:25809584

  5. Tailoring of electron flow current in magnetically insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Martin, J. P.; Savage, M. E.; Pointon, T. D.; Gilmore, M. A.

    2009-03-01

    It is desirable to optimize (minimizing both the inductance and electron flow) the magnetically insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is understandable from basic efficiency arguments. The goal of low electron flow results from two observations: (1) flowing electrons generally do not deliver energy to (or even reach) most loads, and thus constitute a loss mechanism; (2) energetic electrons deposited in a small area can cause anode damage and anode plasma formation. Low inductance and low electron flow are competing goals; an optimized system requires a balance of the two. While magnetically insulated systems are generally forgiving, there are times when optimization is crucial. For example, in large pulsed-power drivers used to energize high energy density physics loads, the electron flow as a fraction of total current is small, but that flow often reaches the anode in relatively small regions. If the anode temperature becomes high enough to desorb gas, the resulting plasma initiates a gap closure process that can impact system performance. Magnetic-pressure driven (z pinches and material equation of state) loads behave like a fixed inductor for much of the drive pulse. It is clear that neither fixed gap nor constant-impedance transmission lines are optimal for driving inductive loads. This work shows a technique for developing the optimal impedance profile for the magnetically insulated section of a high-current driver. Particle-in-cell calculations are used to validate the impedance profiles developed in a radial disk magnetically insulated transmission line geometry. The input parameters are the spacing and location of the minimum gap, the effective load inductance, and the desired electron flow profile. The radial electron flow profiles from these simulations are in good agreement with theoretical predictions when driven at relatively high voltage (i.e., V≥2MV).

  6. Incompressible Flows Free Surfaces

    Energy Science and Technology Software Center (ESTSC)

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  7. Fluidic flow control

    SciTech Connect

    Tippetts, J.R.

    1987-01-01

    Liquid and gaseous product streams are the lifeblood of many industries. Safe, reliable fluid handling is of the utmost importance. Here, no-moving-part fluidic systems have unique advantages which are now clear in such diverse fields as flood control, nuclear plant and ventilation. This book stems from these applications which typically use vortex diodes, amplifiers, jet-pump-like elements and special junctions to control aggressive fluid flows. Both fluid-mechanics and network theory are combined to give the theoretical background.

  8. Continuous flow photochemistry.

    PubMed

    Gilmore, Kerry; Seeberger, Peter H

    2014-06-01

    Due to the narrow width of tubing/reactors used, photochemistry performed in micro- and mesoflow systems is significantly more efficient than when performed in batch due to the Beer-Lambert Law. Owing to the constant removal of product and facility of flow chemical scalability, the degree of degradation observed is generally decreased and the productivity of photochemical processes is increased. In this Personal Account, we describe a wide range of photochemical transformations we have examined using both visible and UV light, covering cyclizations, intermolecular couplings, radical polymerizations, as well as singlet oxygen oxygenations. PMID:24890908

  9. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 6 April 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This images was collected Aug. 14, 2003 during northern fall. The top of this image shows late stage volcanic flows coming down the side of Olympus Mons and flowing over the cliff-like margin of the volcano.

    Image information: VIS instrument. Latitude 13.9, Longitude 228.5 East (131.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is

  10. Plug Flow Reactor Simulator

    SciTech Connect

    Larson, Richard S.

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position, and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.

  11. Wind Streaks Among Flows

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark wind streaks formed by removal of a thin veneer of bright dust covering small craters and lava flow surfacesnorthwest of Olympus Mons near 28.4oN, 129.8oW. Streak orientations indicate that the responsible winds blew from the east/southeast (right/lower right) toward the west/northwest (left/upper left). The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates thescene from the lower left.

  12. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Hugo S. Caram; Natalie Foster

    1997-03-31

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids.

  13. Combustion in supersonic flow

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1985-01-01

    A workshop on combustion in supersonic flow was held in conjunction with the 21st JANNAF Combustion Meeting at Laurel, Maryland on October 3 to 4 1984. The objective of the workshop was to establish the level of current understanding of supersonic combustion. The workshop was attended by approximately fifty representatives from government laboratories, engine companies, and universities. Twenty different speakers made presentations in their area of expertise during the first day of the workshop. On the second day, the presentations were discussed, deficiencies in the current understanding defined, and a list of recommended programs generated to address these deficiencies. The agenda for the workshop is given.

  14. Bondi flow revisited

    NASA Astrophysics Data System (ADS)

    Datta, Satadal

    2016-08-01

    Newtonian spherically symmetric transonic accretion is studied by including the mass of the accreting matter, while considering the growth of the accretor itself to be negligibly small. A novel iterative method is introduced to accomplish that task. It is demonstrated that the inclusion of the mass of the fluid changes the critical properties of the flow as well as the topological phase portraits of the stationary integral solution. The changes are small in the framework of this methodology. It is shown that to get large changes one has to develop a new method.

  15. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (ESTSC)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  16. Flow in journalistic telework.

    PubMed

    Manssour, Ana Beatriz Benites

    2003-02-01

    Since the 1980s, the strengthening and dissemination of telework has motivated studies to verify its advantages and disadvantages to enterprises and workers, specially focusing on economy, quality, and productivity performances. This paper developed from a master's thesis research which analyzed the subjective impact of telework concerning workers' personal satisfaction, their perception about suffering and pleasure when developing their work activities and social interrelationships, and, particularly, the influence it could have in their maximum experiences, the flow. Considering that the press media represents a historical telework, it was chosen as the research focus, selecting columnists from a large newspaper, located in the Brazilian south region. PMID:12650561

  17. Viscous flow calculations in turbomachinery

    NASA Astrophysics Data System (ADS)

    Moore, J.; Moore, J. G.

    The development of the computer program is reviewed which has been written to include many, but not all, of the physical processes occurring in centrifugal impellers. The program has been developed to calculate flows with progressively more complex physics and in progressively more complex geometries. Three flows in particular are described: these are flows in the rotating channel of Moore, the 90 deg accelerating elbow of Stanitz, and the centrifugal compressor of Eckardt. All three flows are steady and subsonic, and all three exhibit only small influences due to reverse flow and upstream viscous transport.

  18. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1992-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  19. Dual-Flow-Rate Valve

    NASA Technical Reports Server (NTRS)

    Allbritain, R. H.

    1986-01-01

    Flow-control device precisely adjusted for two rates. Heart of twoposition valve is sliding poppet. At far-right position, poppet allows low flow. At far-left position, allows high flow. Valve supplies high-pressure gas at either of two preselected flow rates. Valve adjustable between 0.12 and 1.2 lb/s (0.054 and 0.54 kg/s) of hydrogen at 3,300 lb/in.2 (23 MN/m2) and 80 degrees F (27 degrees C). Two flow rates preadjusted between these limits in increments of 0.01 lb/s (0.0045 kg/s).

  20. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  1. Potential flow in engine valves

    NASA Technical Reports Server (NTRS)

    Eck, Bruno

    1925-01-01

    The extensive applicability of the hydrodynamic theory to the problems of engine construction is clearly shown in the following attempt to determine by exact methods the nature of the flow in valves under variously restricted conditions. Observation shows that two principal kinds of flow occur in simple flat-seated valves. For small valve lifts, the flow is along the horizontal wall and is therefore deflected 90 degrees, but for greater valve lifts the flow separates and forms a free stream, whose angle of deflection naturally increases with increasing lift. Both these kinds of flow can, in fact, be theoretically explained

  2. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  3. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  4. Ultrasonic flow nozzle cleaning apparatus

    SciTech Connect

    Fridsma, D.E.; Silvestri, G.J. Jr.; Twerdochlib, M.

    1992-06-23

    This patent describes an ultrasonic cleaning apparatus for a venturi flow measuring nozzle mounted in a pipe of a steam power plant and having an inlet, venturi throat, and an outlet, the pipe and nozzle having fluid flowing therethrough, the cleaning occurring while the fluid is flowing. It comprises first ultrasonic transducer means mounted to connect to the inside of the pipe, disposed adjacent the inlet of the venturi flow nozzle and the means being in direct contact with the fluid flowing through the pipe for transmitting ultrasonic waves directly into and thereby exciting the fluid flowing through the venturi flow nozzle; and control means coupled to the first ultrasonic transducer means for activating the first ultrasonic transducer means.

  5. Ground vortex flow field investigation

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  6. Transient flow of highly concentrated suspensions investigated using the ultrasound velocity profiler pressure difference method

    NASA Astrophysics Data System (ADS)

    Ouriev (Ur'ev), Boris; Windhab, Erich

    2003-11-01

    In the present work, the transient pressure driven shear flow of highly concentrated suspensions was investigated. The authors applied a novel Doppler-based ultrasound velocity profiler (Met-Flow SA)-pressure difference (UVP-PD) methodology (Ouriev B 2000 PhD Thesis Zurich ISBN: 3-905609-11-8, Ouriev B and Windhab E 2002 J. Exp. Fluids 32 204-11), for the investigation of concentrated suspensions in steady and transient flows. Model suspensions with two different solid phase concentrations and fluid matrixes were analysed in shear steady flow at different volumetric flow rates. Transient flow was initiated by abrupt flow interruption. Simultaneous recording of the pressure gradient (Windhab E 1986 Thesis VDI) and real time flow velocity profiles enables analyses of transient rheological flow properties. Both velocity and rheological information were simultaneously measured on-line and evaluated off-line. The rheological characteristics of the suspensions in transient flow are compared with those in steady flow and conclusions are drawn.

  7. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  8. Experimental research of the couette flow with cross flow

    NASA Astrophysics Data System (ADS)

    Nobis, Matthias; Stücke, Peter; Schmidt, Marcus

    2012-04-01

    When a solid cylinder is rotating inside a hollow cylinder, a characteristic fluid flow occurs inside the gap between the two cylinders, caused by the adhesion of the fluid at the walls. This flow problem is widely known as the Couette-flow. If an additional flow entrances through a radial located feedhole at the outer hollow cylinder, there is an interaction between the cross flow and the Couette-flow. In result there are complex three dimensional flow structures in the gap at the area around the feedhole. These arising flow structures are closely related with the technical important flow inside the gap of hydrodynamic lubricated journal bearings. When the flow conditions inside the bearing gap are well explored and appreciated, it will be possible to give suggestions for constructive details like the design, the location and the dimension of the feedhole for longer lifecycles or an even more efficiently running. In this paper the test rig of the bearing model will be presented. Moreover some representative results from researches with a Laser-Doppler-Velocimeter (LDV) in comparison with the output of three dimensional numerical simulations will be illustrated.

  9. Ellipsoidal cell flow system

    DOEpatents

    Salzman, Gary C.; Mullaney, Paul F.

    1976-01-01

    The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

  10. Annular flow diverter valve

    DOEpatents

    Rider, Robert L.

    1980-01-01

    A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

  11. Fluid flow monitoring device

    DOEpatents

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  12. Fluid flow monitoring device

    DOEpatents

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  13. Olympus Mons Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03633 Olympus Mons Flows

    This image shows the massive Olympus Mons flows at the basal escarpment.

    Image information: VIS instrument. Latitude 14.9S, Longitude 229.1E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Arsia Mons Overlapping Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows overlapping flows with different suface textures. In the middle of the image there is a round, darker feature -- a small volcano. To the left of the volcano a graben cuts across the lava flows.

    Image information: VIS instrument. Latitude -18.5, Longitude 244.5 East (115.5 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Swirl flow turbulence modeling

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Jackson, T. W.; Lilley, D. G.

    1984-01-01

    Confined turbulent swirling flow data obtained from a single hot-wire using a six-orientation technique are analyzed numerically. The effects of swirl strength and the presence of a strong contraction nozzle further downstream on deduced parameters is also presented and discussed for the case of chamber-to-inlet diameter ratio D/d = 2. Three swirl strengths are considered with inlet swirl vane angles of 0, 45 and 70 deg. A strong contraction nozzle with an area ratio of 4 is located two chamber-diameters downstream of the inlet to the flowfield. It is found that both the swirl strength and the contraction have strong effects on the turbulence parameters. Generally, the most dramatic effect of increase of swirl strength is the considerable increase in values of all the parameters considered, (rx-viscosity, kinetic energy of turbulence, length scales, and degree of nonisotropy). The presence of a strong contraction nozzle tends to increase the turbulence parameter values in regions of acceleration and to reduce them in deceleration regions. Based on similarity of viscosity and length scale profiles, a C sub mu formulation is deduced which is shown to improve the predictive capability of the standard k-epsilon turbulence model in swirling recirculating flows.

  16. Internal Surface Water Flows

    USGS Publications Warehouse

    Murray, Mitchell H.

    1999-01-01

    Introduction The South Florida Ecosystem Restoration Program is an intergovernmental effort to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making.The U.S. Geological Survey (USGS) provides scientitic information as part of the South Florida Ecosystem Restoration Program. The USGS began its own project, called the South Florida Ecosystem Project in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. Historical changes in water-management practices to accommodate a large and rapidly growing urban population along the Atlantic coast, as well as intensive agricultural activities, have resulted in a highly managed hydrologic system with canals, levees, and pumping stations. These structures have altered the hydology of the Everglades ecosystem on both coastal and interior lands. Surface-water flows in a direction south of Lake Okeechobee have been regulated by an extensive canal network, begun in the 1940's, to provide for drainage, flood control, saltwater intrusion control, agricultural requirements, and various environmental needs. Much of the development and subsequent monitoring of canal and river discharge south of Lake Okeechobee has traditionally emphasized the eastern coastal areas of Florida. Recently, more emphasis has been placed on providing a more accurate water budget for internal canal flows.

  17. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  18. Prediction of Geophysical Flow Mobility

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Piersanti, A.

    2014-12-01

    The prediction of the mobility of geophysical flows to assess their hazards is one of the main research goals in the earth sciences. Our laboratory experiments and numerical simulations are carried out to understand the effects of grain size and flow volume on the mobility of the centre of mass of dry granular flows of angular rock fragments that have pyroclastic flows and rock avalanches as counterpart in nature. We focus on the centre of mass because it provides information about the intrinsic ability of a flow to dissipate more or less energy as a function of its own features. We show that the grain size and flow volume effects can be expressed by a linear relationship between scaling parameters where the finer the grain size or the smaller the flow volume, the more mobile the centre of mass of the granular flow. The grain size effect is the result of the decrease of particle agitation per unit of flow mass, and thus, the decrease of energy dissipation per unit of travel distance, as grain size decreases. In this sense, flows with different grain sizes are like cars with engines with different fuel efficiencies. The volume effect is the result of the fact that the deposit accretes backward during its formation on a slope change (either gradual or abrupt). We adopt for the numerical simulations a 3D discrete element modeling which confirms the grain size and flow volume effects shown by the laboratory experiments. This confirmation is obtained without prior fine tuning of the parameter values to get the desired output. The numerical simulations reveal also that the larger the initial compaction of the granular mass before release, the more mobile the flow. This behaviour must be taken into account to prevent misinterpretation of laboratory and field data. Discrete element modeling predicts the correct effects of grain size and flow volume because it takes into consideration particle interactions that are responsible for the energy dissipated by the flows.

  19. UZ Flow Models and Submodels

    SciTech Connect

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  20. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  1. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.

  2. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    SciTech Connect

    Szalmas, L.

    2014-12-09

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  3. [Numerical methods for multi-fluid flows]. Final progress report

    SciTech Connect

    Pozrikidis, C.

    1998-07-21

    The central objective of this research has been to develop efficient numerical methods for computing multi-fluid flows with large interfacial deformations, and apply these methods to study the rheology of suspensions of deformable particles with viscous and non-Newtonian interfacial behavior. The mathematical formulation employs boundary-integral, immersed-boundary, and related numerical methods. Particles of interest include liquid drops with constant surface tension and capsules whose interfaces exhibit viscoelastic and incompressible characteristics. In one family of problems, the author has considered the shear-driven and pressure-driven flow of a suspension of two-dimensional liquid drops with ordered and random structure. In a second series of investigations, the author carried out dynamic simulations of two-dimensional, unbounded, doubly-periodic shear flows with random structure. Another family of problems addresses the deformation of three-dimensional capsules whose interfaces exhibit isotropic surface tension, viscous, elastic, or incompressible behavior, in simple shear flow. The numerical results extend previous asymptotic theories for small deformations and illuminate the mechanism of membrane rupture.

  4. Radioisotopic flow scanning for portal blood flow and portal hypertension

    SciTech Connect

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-08-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed.

  5. Potential flow and forces for incompressible viscous flow

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Cheng

    1992-06-01

    Forces on a finite body in an incompressible viscous flow are shown to be contributed by a potential flow and fluid elements of nonzero vorticity in a revealing formulation. The present study indicates that the potential flow pay also a geometric role in determining the contribution of the fluid elements. Consideration is given to a solid body moving through a fluid, fluid accelerating past a solid body and a solid body which oscillates in a uniform stream. The effects of induced-mass and inertial forces appear naturally in the formulation and are separated from the contribution due to the surface vorticity and that due to the vorticity within the flow. Physical significance of the present analysis for vortical flows about a finite body is illustrated by examples, e.g., flow past a circular cylinder or an ellipsoid of revolution.

  6. FlowSim/FlowRisk: A code system for studying risk associated with material process flows

    SciTech Connect

    Kaufman, A.M.

    1993-10-01

    The need to study and assess life-cycle risks of Pu release by nuclear warheads during peace time lead to the development of a code suite which could model day to day operations involving nuclear weapons and calculate the associated risk involved in these proceedings. The life-cycle study called LIONSHARE is described in Reference 1. The code that models the flow is called FlowSim. The code that evaluates the associated risk is called FlowRisk. We shall concentrate here on the methodology used by FlowSim in modeling material flows. FlowRisk, mainly a postprocessor of FlowSim runs, will be dealt with in less detail.

  7. Exact correspondence between Renyi entropy flows and physical flows

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.; Nazarov, Yuli V.

    2015-05-01

    We present a universal relation between the flow of a Renyi entropy and the full counting statistics of energy transfers. We prove the exact relation for a flow to a system in thermal equilibrium that is weakly coupled to an arbitrary time-dependent and nonequilibrium system. The exact correspondence, given by this relation, provides a simple protocol to quantify the flows of Shannon and Renyi entropies from the measurements of energy transfer statistics.

  8. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  9. Low flows and flow duration of Tennessee streams through 1981

    USGS Publications Warehouse

    Bingham, R.H.

    1985-01-01

    Estimates of low-flow characteristics and flow duration for the period of record at continuous-record streamflow gages are essential in hydrologic studies and water-resources management. This report provides estimates of low flow for 1, 3, 7, 14, 30, 60, and 90 consecutive days for recurrence intervals of 2, 5, 10 , and 20 years for continuous-record streamflow gages in Tennessee. These estimates were used in correlation methods to estimate low flow at partial-record streamflow sites for 1, 3, and 7 consecutive days for a recurrence interval of 10 years; and 3 consecutive days for a recurrence interval of 20 years. (USGS)

  10. Flow rate limitation in open capillary channel flows.

    PubMed

    Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E

    2006-09-01

    This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed. PMID:17124140

  11. Mean Curvature Flow in a Ricci Flow Background

    NASA Astrophysics Data System (ADS)

    Lott, John

    2012-07-01

    Following work of Ecker (Comm Anal Geom 15:1025-1061, 2007), we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-with-boundary. We compute its variational properties and its time derivative under Perelman's modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton's differential Harnack expression for the mean curvature flow in Euclidean space. We also derive the evolution equations for the second fundamental form and the mean curvature, under a mean curvature flow in a Ricci flow background. In the case of a gradient Ricci soliton background, we discuss mean curvature solitons and Huisken monotonicity.

  12. Universal Behavior in Granular Flows and Traffic Flows

    NASA Astrophysics Data System (ADS)

    Hayakawa, H.; Nakanishi, K.

    We review the current understanding on universal behavior in granular flows through a vertical pipe and traffic flows. We carry out weakly nonlinear analysis of a model for traffic flows based on the technique of soliton perturbations, and determine the selected propagating velocity, the amplitude, the width of interfaces connecting between jam phase and non-jam phase. From the direct simulation of the model, we have confirmed the validity of our theoretical analysis. We also introduce a model for granular pipe flow supplemented by the white noise, which reproduces P(f)˜ f-4/3, where P(f) is the power spectrum in the frequency f.

  13. Preserving Flow Variability in Watershed Model Calibrations

    EPA Science Inventory

    Background/Question/Methods Although watershed modeling flow calibration techniques often emphasize a specific flow mode, ecological conditions that depend on flow-ecology relationships often emphasize a range of flow conditions. We used informal likelihood methods to investig...

  14. Flow Analysis: A Novel Approach For Classification.

    PubMed

    Vakh, Christina; Falkova, Marina; Timofeeva, Irina; Moskvin, Alexey; Moskvin, Leonid; Bulatov, Andrey

    2016-09-01

    We suggest a novel approach for classification of flow analysis methods according to the conditions under which the mass transfer processes and chemical reactions take place in the flow mode: dispersion-convection flow methods and forced-convection flow methods. The first group includes continuous flow analysis, flow injection analysis, all injection analysis, sequential injection analysis, sequential injection chromatography, cross injection analysis, multi-commutated flow analysis, multi-syringe flow injection analysis, multi-pumping flow systems, loop flow analysis, and simultaneous injection effective mixing flow analysis. The second group includes segmented flow analysis, zone fluidics, flow batch analysis, sequential injection analysis with a mixing chamber, stepwise injection analysis, and multi-commutated stepwise injection analysis. The offered classification allows systematizing a large number of flow analysis methods. Recent developments and applications of dispersion-convection flow methods and forced-convection flow methods are presented. PMID:26364745

  15. Transonic conical flow

    NASA Technical Reports Server (NTRS)

    Agopian, K. G.

    1974-01-01

    The problem of inviscid, steady transonic conical flow, formulated in terms of the small disturbance theory, is studied. The small disturbance equation and similarity rules are presented, and a boundary value problem is formulated for the case of a supersonic freestream Mach number. The equation for the perturbation potential is solved numerically using an elliptic finite difference system. The difference equations are solved with a point relaxation algorithm that is also capable of capturing the shock wave during the iteration procedure by using the boundary conditions at the shock. Numerical calculations, for shock location, pressure distribution and drag coefficient, are presented for a family of nonlifting conical wings. The theory of slender wings is also presented and analytical results for pressure and drag coefficients are obtained.

  16. Olympus Mons Lava Flows

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 05 April 2002) Olympus Mons stands 26 km above the surrounding plains, which is three times taller than Mt. Everest, and is the tallest volcano in the solar system. Olympus Mons is also wider (585 km) than the state of Arizona. Although these are impressive dimensions an astronaut would find walking these slopes easy, as they are typically only 2 to 5 degrees. This image contains numerous lava flows, leveed lava channels, a discontinuous sinuous rille (thought to be a collapsed lava tube) and lava plains. Close examination of the sinuous rille reveals that portions of the roof of the lava tube have not completely collapsed. All of these features can be seen in basaltic (iron and magnesium rich black rock) volcanic regions on Earth like Hawaii and Iceland. Impact craters are scarce, indicating a relatively young age (several hundred million years old) for these surfaces.

  17. Flows on Olympus Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-396, 19 June 2003

    Olympus Mons is the largest volcano in the Solar System. While it is considerably taller than Mount Everest, its slopes tend to be 1o to 5o over most of the volcano. With such low slopes, one would not really 'climb' to the summit of Olympus Mons, one would instead hike. This very high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view of the middle western flank of Olympus Mons shows, however, that it would not be an easy place to hike. The surface is rugged, with many overlapping lava flow structures, all of which are mantled by a thick blanket of dust and wind-scoured sediment. This image is near 19.9oN, 135.5oW, and illuminated from the lower left.

  18. Expedition automated flow fluorometer

    NASA Astrophysics Data System (ADS)

    Krikun, V. A.; Salyuk, P. A.

    2015-11-01

    This paper describes an apparatus and operation of automated flow-through dual-channel fluorometer for studying the fluorescence of dissolved organic matter, and the fluorescence of phytoplankton cells with open and closed reaction centers in sea areas with oligotrophic and eutrophic water type. The step-by step excitation by two semiconductor lasers or two light-emitting diodes is realized in the current device. The excitation wavelengths are 405nm and 532nm in the default configuration. Excitation radiation of each light source can be changed with different durations, intensities and repetition rate. Registration of the fluorescence signal carried out by two photo-multipliers with different optical filters of 580-600 nm and 680-700 nm band pass diapasons. The configuration of excitation sources and spectral diapasons of registered radiation can be changed due to decided tasks.

  19. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  20. Turbulent flow through screens

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1984-01-01

    A detailed experimental investigation has been carried out on the effects of different types of screens on turbulent flow, in particular turbulent boundary layers. The effect of a screen on a turbulent boundary layer is to give it a 'new lease of life'. The boundary layer turbulence is reorganized and the thickness reduced, thus making it less susceptible to separation. The aerodynamic properties of plastic screens are found to differ significantly from those of the conventional metal screens, evidently because of differences in the weaving properties. The 'overshoot' in mean velocity profile near the boudnary layer edge is shown to be a result of the effect of screen inclination on pressure drop coefficient. A more accurate formulation for the deflection coefficient of a screen is also proposed.

  1. Lateral Flow Immunoassay.

    PubMed

    Ching, Kathryn H

    2015-01-01

    Lateral flow immunoassays (LFIAs) are a staple in the field of rapid diagnostics. These small handheld devices require no specialized training or equipment to operate, and generate a result within minutes of sample application. They are an ideal format for many types of home test kits, for emergency responders and for food manufacturers and producers looking for a quick evaluation of a given sample. LFIAs rely on high quality monoclonal antibodies that recognize the analyte of interest. As monoclonal antibody technology becomes more accessible to smaller laboratories, there has been increased interest in developing LFIA prototypes for potential commercial manufacture. In this chapter, the basics of designing and building an LFIA prototype are described. PMID:26160571

  2. Flow-control restrictor

    SciTech Connect

    Bradley, A.H.; Knowles, S.M.; Pilon, F.J.

    1990-01-30

    This patent describes a flow control restrictor characterized by its low operational noise level. It comprises: an elongated body having a longitudinal axis, a first end surface, a nose region adjacent the first end surface, a peripheral spider region having a radius, a second end surface and an axial bore intersecting the first and second end surfaces. The first end surface being substantially planar and substantially perpendicular to the axis. The nose region including a cylindrical nose surface having a radius and a convex transition surface constituting the intersection of the first end surface and the nose surface having a radius. The transition surface comprising a segment of a sphere having its center upon the longitudinal axis and a radius greater than a radius of the nose surface.

  3. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  4. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  5. Eroding Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Today's image illustrates how radically the wind can affect the surface of Mars. The lava flows in this region have been covered by fine materials, and eroded by the sand blasting action of the wind. In this region the winds are blowing to the west, eroding the lava surface to form small east/west ridges and bumps. Given enough time the winds will change the appearance of the surface to such a large extent that all flow features will be erased.

    Image information: VIS instrument. Latitude -11.7, Longitude 220 East (140 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Experimental research of gas flows through isothermal and non-isothermal membranes

    NASA Astrophysics Data System (ADS)

    Nikolskiy, Yu. V.; Friedlander, O. G.

    2012-11-01

    In specialized test bench and in vacuum aerodynamic facilities VAT-2M TsAGI three types of a gas flows with observed kinetic effects were researched. Firstly, the flow through the membrane with uniform temperature was investigated. The dependence of flow rate through membranes on pressure drop across it was measured at various values of permeability. The experimental data at various flow regimes in the pores were compared with numerical data. The comparison gives the opportunity to associate the model perforated membrane with definite diameter of perforation channels and with definite permeability to each porous membrane with intricate pores. Flow rate through real and model membranes are the same ones for two limit regimes: the free-molecular regime and the Stokes ones. For experimental research of a gas flows induced by temperature difference across membrane the method of creation such temperature difference (uniform on membrane surface) was used. In this method thermoelectric effect is utilized. The dependence of thermo-transpiration flow rate and thermo-molecular pressure difference across non-isothermal membrane (for zero flow rate) on gas pressure were measured. The comparison of results of direct and indirect measurements of the velocity of thermo-transpiration was carried out. In the second case the flow rate of thermal transpiration was calculated by the experimental results on thermo-molecular pressure difference across non-isothermal membrane and the results of measurement of pressure driven flow through isothermal membrane.

  7. Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kian Meng; Han, Jongyoon

    2013-03-01

    We consider electroconvective fluid flows initiated by ion concentration polarization (ICP) under pressure-driven shear flow, a scenario often found in many electrochemical devices and systems. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of ICP under shear flow: a unidirectional vortex structure, its height selection, and vortex advection. Determined by both the external pressure gradient and the electric body force, the dimensionless height of the sheared electroconvective vortex is shown to scale as (ϕ2/UHP)1/3, which is a clear departure from the previous diffusion-drift model prediction. To the best of our knowledge, this is the first microscopic characterization of ion concentration polarization under shear flow, and it firmly establishes electroconvection as the mechanism for an overlimiting current in realistic, large-area ion exchange membrane systems such as electrodialysis. The new scaling law has significant implications on the optimization of electrodialysis and other electrochemical systems.

  8. Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices.

    PubMed

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kian Meng; Han, Jongyoon

    2013-03-15

    We consider electroconvective fluid flows initiated by ion concentration polarization (ICP) under pressure-driven shear flow, a scenario often found in many electrochemical devices and systems. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of ICP under shear flow: a unidirectional vortex structure, its height selection, and vortex advection. Determined by both the external pressure gradient and the electric body force, the dimensionless height of the sheared electroconvective vortex is shown to scale as (ϕ(2)/U(HP))(1/3), which is a clear departure from the previous diffusion-drift model prediction. To the best of our knowledge, this is the first microscopic characterization of ion concentration polarization under shear flow, and it firmly establishes electroconvection as the mechanism for an overlimiting current in realistic, large-area ion exchange membrane systems such as electrodialysis. The new scaling law has significant implications on the optimization of electrodialysis and other electrochemical systems. PMID:25166542

  9. Oscillation dynamics of embolic microspheres in flows with red blood cell suspensions

    NASA Astrophysics Data System (ADS)

    Das, Tamal; Carugo, Dario; Zhang, Xunli; Chakraborty, Suman

    2012-12-01

    Dynamic nature of particle motion in blood flow is an important determinant of embolization based cancer therapy. Yet, the manner in which the presence of high volume fraction of red blood cells influences the particle dynamics remains unknown. Here, by investigating the motions of embolic microspheres in pressure-driven flows of red blood cell suspensions through capillaries, we illustrate unique oscillatory trends in particle trajectories, which are not observable in Newtonian fluid flows. Our investigation reveals that such oscillatory behavior essentially manifests when three simultaneous conditions, namely, the Reynolds number beyond a threshold limit, degree of confinement beyond a critical limit, and high hematocrit level, are fulfilled simultaneously. Given that these conditions are extremely relevant to fluid dynamics of blood or polymer flow, the observations reported here bear significant implications on embolization based cancer treatment as well as for complex multiphase fluidics involving particles.

  10. Flow development through interturbine diffusers

    SciTech Connect

    Dominy, R.G.; Kirkham, D.A.; Smith, A.D.

    1998-04-01

    Interturbine diffusers offer the potential advantage of reducing the flow coefficient in the following stages, leading to increased efficiency. The flows associated with these ducts differ from those in simple annular diffusers both as a consequence of their high-curvature S-shaped geometry and of the presence of wakes created by the upstream turbine. Experimental data and numerical simulations clearly reveal the generation of significant secondary flows as the flow develops through the diffuser in the presence of cross-passage pressure gradients. The further influence of inlet swirl is also demonstrated. Data from experimental measurements with and without an upstream turbine are discussed and computational simulations are shown not only to give a good prediction of the flow development within the diffuser but also to demonstrate the importance of modeling the fully three-dimensional nature of the flow.

  11. Shear Instabilities in Granular Flows

    NASA Astrophysics Data System (ADS)

    Shinbrot, Troy

    2003-03-01

    Unstable waves have long been studied in fluid shear layers. These waves affect transport in the atmosphere and oceans as well as slipstream stability behind ships, planes, and heat transfer devices. Corresponding instabilities in granular flows have not previously been documented, despite the importance of these flows in geophysical and industrial systems. We report here that breaking waves can form at the interface between two streams of identical grains downstream of a splitter plate. These waves appear abruptly in flow down an inclined plane as either shear rate or angle of incline is changed, and we analyze a granular flow model that qualitatively agrees with our experimental data. The waves appear from the model to be a manifestation of a competition between shear and extensional strains in the flowing granular bed, and we propose a dimensionless group to govern the transition between steady and wavy flows.

  12. Shear instabilities in granular flows

    NASA Astrophysics Data System (ADS)

    Goldfarb, David J.; Glasser, Benjamin J.; Shinbrot, Troy

    2002-01-01

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows.

  13. Shear instabilities in granular flows.

    PubMed

    Goldfarb, David J; Glasser, Benjamin J; Shinbrot, Troy

    2002-01-17

    Unstable waves have been long studied in fluid shear layers. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented, despite the importance of these flows in geophysical and industrial systems. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows. PMID:11797003

  14. Two-dimensional separated flows

    NASA Astrophysics Data System (ADS)

    Gersten, K.

    The state of the art of asymptotic theory is discussed with respect to incompressible two-dimensional separated flows. As an example, the flow over an indented flat plate is considered for two cases: a small separation bubble within the lower part of the boundary layer, and the 'catastrophic' separation of the whole boundary layer with a large recirculating eddy. Separation means failure of Prandtl's boundary layer theory, and alternate theories are required. An example of this is shown in the calculation of circulation in the dent according to triple-deck theory. The free-streamline theory approach is used to examine the indented flat plate and the flow past a circular cylinder. Attention is also given to flow control by continuous injection, combined forced and free convection, unsteady laminar flows, and laminar flows.

  15. Lattice splitting under intermittent flows

    NASA Astrophysics Data System (ADS)

    Schläpfer, Markus; Trantopoulos, Konstantinos

    2010-05-01

    We study the splitting of regular square lattices subject to stochastic intermittent flows. Various flow patterns are produced by different groupings of the nodes, based on their random alternation between two possible states. The resulting flows on the lattices decrease with the number of groups according to a power law. By Monte Carlo simulations we reveal how the time span until the occurrence of a splitting depends on the flow patterns. Increasing the flow fluctuation frequency shortens this time span, which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuation frequency but slightly decreases with the link capacities. Our findings carry important implications for real-world networks, such as electric power grids with a large share of renewable intermittent energy sources.

  16. Lattice splitting under intermittent flows.

    PubMed

    Schläpfer, Markus; Trantopoulos, Konstantinos

    2010-05-01

    We study the splitting of regular square lattices subject to stochastic intermittent flows. Various flow patterns are produced by different groupings of the nodes, based on their random alternation between two possible states. The resulting flows on the lattices decrease with the number of groups according to a power law. By Monte Carlo simulations we reveal how the time span until the occurrence of a splitting depends on the flow patterns. Increasing the flow fluctuation frequency shortens this time span, which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuation frequency but slightly decreases with the link capacities. Our findings carry important implications for real-world networks, such as electric power grids with a large share of renewable intermittent energy sources. PMID:20866296

  17. Magnetic heat pump flow director

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  18. Active combustion flow modulation valve

    DOEpatents

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  19. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  20. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  1. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper.

    PubMed

    Glavan, Ana C; Martinez, Ramses V; Maxwell, E Jane; Subramaniam, Anand Bala; Nunes, Rui M D; Soh, Siowling; Whitesides, George M

    2013-08-01

    This paper describes the fabrication of pressure-driven, open-channel microfluidic systems with lateral dimensions of 45-300 microns carved in omniphobic paper using a craft-cutting tool. Vapor phase silanization with a fluorinated alkyltrichlorosilane renders paper omniphobic, but preserves its high gas permeability and mechanical properties. When sealed with tape, the carved channels form conduits capable of guiding liquid transport in the low-Reynolds number regime (i.e. laminar flow). These devices are compatible with complex fluids such as droplets of water in oil. The combination of omniphobic paper and a craft cutter enables the development of new types of valves and switches, such as "fold valves" and "porous switches," which provide new methods to control fluid flow. PMID:23719764

  2. Confined vortices in flow machinery

    NASA Astrophysics Data System (ADS)

    Escudier, Marcel

    After noting such basic aspects of vortex flows as the concepts of supercritical and subcritical flow and vortex breakdown, swirling flow behavior in various practical devices is discussed. The devices in question encompass swirl-stabilized combustion in industrial combustion chambers, fluidic vortex amplifiers that may be used as large scale valves, turbomachine outlets that can efficiently divert axial throughflow in a tangential direction, 'cyclone' separators, turbine draft tube surge phenomena, and the Ranque-Hilsch refrigeration tube.

  3. Surface-Streamline Flow Visualization

    NASA Technical Reports Server (NTRS)

    Langston, L.; Boyle, M.

    1985-01-01

    Matrix of ink dots covers matte surface of polyester drafting film. Film placed against wind-tunnel wall. Layer of methyl salicylate (oil of wintergreen) sprayed over dotted area. Ink dot streaklines show several characteristics of flow, including primary saddle point of separations, primary horseshoe vortex and smaller vortex at cylinder/ endwall junction. Surface streamline flow visualization technique suitable for use in low-speed windtunnels or other low-speed gas flows.

  4. Unified approach for incompressible flows

    NASA Technical Reports Server (NTRS)

    Chang, Tyne-Hsien

    1995-01-01

    A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.

  5. Unified approach for incompressible flows

    NASA Technical Reports Server (NTRS)

    Chang, Tyne-Hsien

    1993-01-01

    An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.

  6. Centrifuge modelling of granular flows

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  7. Optic flow and autonomous navigation.

    PubMed

    Campani, M; Giachetti, A; Torre, V

    1995-01-01

    Many animals, especially insects, compute and use optic flow to control their motion direction and to avoid obstacles. Recent advances in computer vision have shown that an adequate optic flow can be computed from image sequences. Therefore studying whether artificial systems, such as robots, can use optic flow for similar purposes is of particular interest. Experiments are reviewed that suggest the possible use of optic flow for the navigation of a robot moving in indoor and outdoor environments. The optic flow is used to detect and localise obstacles in indoor scenes, such as corridors, offices, and laboratories. These routines are based on the computation of a reduced optic flow. The robot is usually able to avoid large obstacles such as a chair or a person. The avoidance performances of the proposed algorithm critically depend on the optomotor reaction of the robot. The optic flow can be used to understand the ego-motion in outdoor scenes, that is, to obtain information on the absolute velocity of the moving vehicle and to detect the presence of other moving objects. A critical step is the correction of the optic flow for shocks and vibrations present during image acquisition. The results obtained suggest that optic flow can be successfully used by biological and artificial systems to control their navigation. Moreover, both systems require fast and accurate optomotor reactions and need to compensate for the instability of the viewed world. PMID:7617428

  8. Basic studies of baroclinic flows

    NASA Technical Reports Server (NTRS)

    Miller, Tim L.; Chou, S.-H.; Leslie, Fred W.; Lu, H.-I.; Butler, K. A.

    1991-01-01

    Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM.

  9. Numerical simulation of transitional flow

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat

    1986-01-01

    The applicability of active control of transition by periodic suction-blowing is investigated via direct simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three-dimensional amplitudes, a two-dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three-dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.

  10. Flow visualization using moving textures

    SciTech Connect

    Max, N.; Becker, B.

    1995-04-01

    An intuitive way to visualize a flow is to watch particles or textures move in the flow. In this paper, the authors show how texture mapping hardware can produce near-real-time texture motion, using a polygon grid, and one fixed texture. However, the authors make no attempt to indicate the flow direction in a still frame. As discussed here, any anisotropic stretching comes from the velocity gradient, not the velocity itself. The basic idea is to advect the texture by the flow field. In a cited paper, they gave an indication of the wind velocity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a climate simulation. This was slow, because the 3D texture was rendered in software, and because advecting the texture was difficult for time-varying flows. In this paper, they replace the 3D textures by 2D texture maps compatible with hardware rendering, and give techniques for handling time-varying flows more efficiently. The next section gives their technique for the case of 2D steady flows, and the following one discusses the problems of texture distortion. Then they discuss the problems with extending method to time-varying flows, and two solutions. Next they develop compositing methods for visualizing 3D flows. The final section gives their results and conclusions.

  11. Turbulence in slurry pipe flow

    SciTech Connect

    Gore, R.A. ); Crowe, C.T. . Dept. of Mechanical and Materials Engineering)

    1990-01-01

    The present state of knowledge of liquid-solid flows (slurries) is far behind than that for single phase flows. Very few geometries have been examined with a slurry and only with a limited variation of system parameters i.e. fluid viscosity, particle diameter, etc. This paper presents the first part of a study which examines the effects of the addition of a solid to the flow through a confined coaxial jet. Presented here will be the initial conditions for the jet which correspond to fully developed pipe flow. 6 refs., 9 figs.

  12. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  13. Precipitated silica as flow regulator.

    PubMed

    Müller, Anne-Kathrin; Ruppel, Joanna; Drexel, Claus-Peter; Zimmermann, Ingfried

    2008-08-01

    Flow regulators are added to solid pharmaceutical formulations to improve the flow properties of the powder mixtures. The primary particles of the flow regulators exist in the form of huge agglomerates which are broken down into smaller aggregates during the blending process. These smaller aggregates adsorb at the surface of the solid's grains and thus diminish attractive Van-der-Waals-forces by increasing the roughness of the host's surface. In most cases amorphous silica is used as flow additive but material properties like particle size or bond strength influence the desagglomeration tendency of the agglomerates and thus the flow regulating potency of each silica. For some silica types we will show that the differences in their flow regulating potency are due to the rate and extent by which they are able to cover the surface of the host particles. Binary powder mixtures consisting of a pharmaceutical excipient and an added flow regulator were blended in a Turbula mixer for a defined period of time. As pharmaceutical excipient corn starch was used. The flow regulators were represented by a selection of amorphous silicon dioxide types like a commercial fumed silica and various types of SIPERNAT precipitated silica provided by Evonik-Degussa GmbH, Hanau, Germany. Flowability parameters of the mixtures were characterized by means of a tensile strength tester. The reduction of tensile strength with the blending time can be correlated with an increase in fragmentation of the flow regulator. PMID:18595668

  14. Flight experiences with laminar flow

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1986-01-01

    A review of natural laminar flow (NLF) flight experiences over the period from the 1930's to the present has been given to provide information on the achievability and maintainability of NLF in typical airplane operating environments. Significant effects of loss of laminar flow on airplane performance have been observed for several airplanes, indicating the importance of providing information on these changes to laminar flow airplane operators. Significant changes in airplane stability and control and maximum lift were observed in flight experiments with the loss of laminar flow. However, these effects can be avoided by proper selection of airfoils. Conservative laminar flow airfoil designs should be employed which do not experience significant loss of lift (caused by flow separation) upon the loss of laminar flow. Mechanisms have been observed for the effects of insect accumulation, flight through clouds and precipitation, and propeller slipstreams on laminar flow behavior. Fixed transition testing, in addition to free transition testing, is recommended as a new standard procedure for airplanes with surfaces designed to support laminar flow.

  15. Simple models for embayment flows

    NASA Astrophysics Data System (ADS)

    Gibson, F.; Dalziel, S.

    2003-04-01

    The flow structure in an embayment with a mean external flow has been investigated. The embayment is a relatively quiescent environment separated from the external mean flow by a mixing layer, in a manner analogous to the ventilation of a street canyon in an urban environment. This study aims to improve our knowledge of the exchange between the embayment and the external flow, which is an important mechanism for the transport and dispersion of substances such as nutrients, sediments, heat and pollutants. Understanding of flow in an embayment is therefore vital to the explanation and preservation of its ecology. In an experimental study, a model rectangular embayment was placed in a recirculating flume tank. The aspect ratio and bathymetry of the embayment was varied and the effect on the flow and mixing layer recorded. A neutrally buoyant tracer was added to the flow at various locations to visualise the eddies and the mixing layer. Field experiments in a coastal embayment used an accoustic Doppler current profiler to measure the flow velocities. These measurements demonstrate the existance of a gyre within the bay and support a shear-driven cavity model. In parallel with the experiments and fieldwork, a hierarchy of computer models was used to gain further understanding of the flow. Results from these models are presented alongside the experimental measurements.

  16. Efficiency of osmotic pipe flows

    NASA Astrophysics Data System (ADS)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Hélix-Nielsen, Claus; Berg-Sørensen, Kirstine; Bohr, Tomas

    2013-05-01

    We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c*, and tube length L, and map out the dependence of the flow rate gain γ=Qout/Q*-1 on these parameters. A theoretical analysis based on (1) the known velocity field for slow flow in cylindrical porous tubes and (2) a parabolic concentration profile allows us to compute analytically how the flow gain depends on the relative magnitude of radial diffusion and advection as well as the ratio of the osmotic velocity to pumping velocity, in very good agreement with experiments and with no adjustable parameters. Our analysis provides criteria that are useful for optimizing osmotic flow processes in, e.g., water purification devices.

  17. UZ Flow Models and Submodels

    SciTech Connect

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  18. Modeling Size Polydisperse Granular Flows

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  19. Ferrofluid flow for TOUGH2

    SciTech Connect

    Oldenburg, Curtis; Moridis, George

    1998-03-24

    We have developed EOS7M, a ferrofluid flow and transport module for TOUGH2. EOS7M calculates the magnetic forces on ferrofluid caused by an external magnetic field and allows simulation of flow and advective transport of ferrofluid-water mixtures through porous media. Such flow problems are strongly coupled and well suited to the TOUGH2 framework. Preliminary applications of EOS7M to some simple pressure and flow problems for which experiments were carried out in the lab show good qualitative agreement with the laboratory results.

  20. In-Flow Acoustic Sensor

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S. (Inventor)

    1995-01-01

    An acoustic sensor for measuring acoustic waves contained in fluid flow flowing over the sensor is introduced. The acoustic sensor reduces any unwanted self-noise associated with the flowing fluid by providing a nose cone having proper aerodynamic properties and by positioning the diaphragm of a microphone of the sensor at a location where any unwanted noise is at a relatively low level. The nose cone has a rounded, blunt or even sharp tip neither of which creates any major disturbances in the flowing fluid which it intercepts.

  1. Reconsidering Television Program Flows, or Whose Flow Is It Anyway?

    ERIC Educational Resources Information Center

    White, Mimi

    1995-01-01

    Argues that media flow research needs to be reconceptualized differently from notions of one-way flows that serve coherent national interests, and whose asymmetries can be measured statistically and unambiguously. Argues that global circulation is now complex and contradictory, and that new culturally-based models and methods are needed for…

  2. Experimental Flow Characterization of a Flow Diverting Device

    NASA Astrophysics Data System (ADS)

    Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.

  3. Flow simulation and analysis of high-power flow batteries

    NASA Astrophysics Data System (ADS)

    Knudsen, E.; Albertus, P.; Cho, K. T.; Weber, A. Z.; Kojic, A.

    2015-12-01

    The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm2 to 400 cm2, are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation.

  4. Frictional flow characteristics of microconvective flow for variable fluid properties

    NASA Astrophysics Data System (ADS)

    Kumar, Rajan; Mahulikar, Shripad P.

    2015-12-01

    The present work investigates the frictional flow characteristics of water flowing through a circular microchannel with variable fluid properties. The computational analysis reveals the importance of physical mechanisms due to variations in thermophysical fluid properties such as viscosity μ(T), thermal conductivity k(T) and density ρ(T) and also their contribution in the characteristics of frictional flow. Various combinations of thermophysical fluid properties have been used to find their effects on fluid friction. It is observed that the fluid friction attains the maximum value in the vicinity of the inlet and diminishes along the flow. The main reasons are attributed to this, (1) near the inlet, there is a flow undevelopment (the reverse process of flow development) due to μ(T) variation. (2) The viscosity of the water decreases with increasing temperature, which reduces fluid friction along the flow. It is noted that the skin friction coefficient (cf) reduces with increasing fluid mean velocity for a same value of constant wall heat flux ({q}{{w}}\\prime\\prime ). In the vicinity of the inlet, the deviation of Poiseuille number (Po) from 64 (constant properties solution) is also investigated in this paper. Additionally, the relationship between Reynolds number (Re) and cf, Po and Re have been proposed for different combinations of thermophysical fluid properties. This investigation also shows that the effect of fluid property variations on pressure drop is highly significant for microconvective water flow.

  5. Internal flows and force matrices in axial flow inducers

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Abhijit

    1994-01-01

    Axial flow inducers such as those used in high speed rocket engine turbopumps are subject to complex internal flows and fluid-induced lateral and rotordynamic forces. An investigation of these internal flows was conducted using boundary layer flow visualization on the blades, hub and housing of unshrouded and shrouded inducers. Results showed that the blade boundary layer flows have strong radial components at off-design conditions and remain attached to the blade surface at all flow coefficients tested. The origin of upstream swirling backflow was found to be at the discharge plane of the inducer. In addition, flow reversal was observed at the suction side blade tip near the leading edge in a shrouded inducer. Re-entry of the hub boundary layer flow, a downstream backflow, into the blade passage area was observed at flow coefficients below design. For unshrouded inducers the radially outward flow near the blade tip mixed with the leakage flow to form the upstream backflow. The lateral and rotordynamic forces acting on an inducer due to an imposed whirl motion was also investigated at various flow coefficients. It was found that the rotordynamic force data at various whirl frequency ratios does not allow a normal quadratic fit; consequently the conventional inertial, stiffness and damping coefficients cannot be obtained and a definite whirl ratio describing the instability region does not result. Application of an actuator disk theory proved to be inaccurate in estimating the rotordynamic tangential force in a non-whirling inducer. The effect of upstream and downstream flow distortions on the rotordynamic and lateral forces on an inducer were studied. It was found that at flow coefficients below design, large lateral forces occurred in the presence of a downstream asymmetry. Results of inlet distortion experiments show that a strong inlet shear causes a significant increase in the lateral force. Cavitation was found to have important consequences for fluid

  6. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  7. Effect of flow fluctuations and nonflow on elliptic flow methods

    SciTech Connect

    Ollitrault, Jean-Yves; Poskanzer, Arthur M.; Voloshin, Sergei A.

    2009-04-16

    We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_2,PP elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_2,RP in the reaction plane. Thus, the 20percent spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.

  8. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. PMID:24166772

  9. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  10. Behavior interrelationships in annular flow

    NASA Astrophysics Data System (ADS)

    Schubring, Duwayne

    Two-phase gas-liquid flow occurs in many types of industrial boiling and condensing heat transfer equipment, including the reactor cores of boiling water nuclear reactors (BWRs) and the steam generators of pressurized water reactors (PWRs). In annular flow, the liquid phase often travels as both a thin film around the wall (containing disturbance waves and base film) and as entrained droplets in the central gas core. Gas bubbles are also often entrained into this film. Annular flow displays several quantifiable flow behaviors, including pressure loss, disturbance waves, and film thickness, along with micro-scale velocity profiles and fluctuations in the liquid film. The conventional approach to annular flow closely links film thickness and pressure loss, but relies on an assumed film velocity profile and does not consider disturbance waves explicitly. The present work seeks to explore a more complete range of behaviors in both horizontal and vertical flow to explore the relationships among them and thereby improve modeling of annular flow. Several of these investigations employ quantitative visualization. Modern optics and computing (in the form of non-trivial data reduction codes) are applied to the study of two-phase flow to process images of a physical experiment to quantify behavior information. Quantitative visualization allows for rapid acquisition of a large volume of flow behavior data, which allows for analysis of the flow behaviors themselves and how they relate to one another and to global modeling. By integrating behavior data from these quantitative visualizations and other conventional experimental investigations, a new two-region (base film and disturbance wave) model is proposed that can be implemented given only flow rates, external geometry, and fluid properties.

  11. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  12. US energy flow, 1981

    NASA Astrophysics Data System (ADS)

    Briggs, C. K.; Borg, I. Y.

    1982-10-01

    Flow diagrams to describe the US energy situation are given. In 1981 the energy consumption was 73 quads (or 73 times 10 to the 15th power Btu). Use was down from 75 quads in 1980. Oil continues to dominate the picture as it comprises 45% of the total energy used. Net oil use (exclusive of oil purchased for the Strategic Petroleum Reserve and Exports) fell 8%; oil imports declined 14%. In contrast to oil, use of natural gas and coal remained at 1980 levels. Decreased use of residual oils, principally for electric power generating, account for much of the drop in oil use. Increased use of coal and nuclear energy for power generation almost compensated for the decrease in use of oil in that end use. Transmitted power remained at 1980 levels. The remainder of the drop in energy usage is attributed to price driven conservation, increased efficiencies in end use and the recession that prevailed during most of the year. The share of the energy drop attributable to the recession is estimated by various analysts to be on the order of 40 to 50%.

  13. Split flow gasifier

    SciTech Connect

    Halow, J.S.

    1991-12-31

    A-moving bed coal gasifier for the production of tar-free, low ammonia fuel gas is described. The gasifier employs a combustion zone in a free-aboard area above the moving bed to burn coal fines to provide hot combustion gases for pyrolyzing and gasifying coal particulates in the moving bed to form fuel gas as the hot gases move co-currently with the downwardly moving coal particulates. The fuel gas contains entrained tars and ammonia compounds which contact hot char and ash in the moving bed and are cracked so that the fuel gas removed from the gasifier at a midpoint off-take is essentially tar-free and of low ammonia content. Concurrently with this gasification reaction, steam and an oxidant are introduced into a region below the moving bed to flow countercurrently to the downwardly moving bed to contact and react with carbon remaining in the char to create additional fuel gas which is also extracted from the gasifier at the mid-point off-take.

  14. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  15. A polyoxometalate flow battery

    SciTech Connect

    Pratt, Harry D.; Hudak, Nicholas S.; Fang, Xikui; Anderson, Travis M.

    2013-08-01

    A redox flow battery utilizing two, three-electron polyoxometalate redox couples (SiVV3WVI9O407–/SiVIV3WVI9O4010- and SiVIV3WVI9O4010-/SiVIV3WV3WVI6O4013-) was investigated for use in stationary storage in either aqueous or non-aqueous conditions. The aqueous battery had coulombic efficiencies greater than 95% with relatively low capacity fading over 100 cycles. Infrared studies showed there was no decomposition of the compound under these conditions. The non-aqueous analog had a higher operating voltage but at the expense of coulombic efficiency. The spontaneous formation of these clusters by self-assembly facilitates recovery of the battery after being subjected to reversed polarity. Polyoxometalates offer a new approach to stationary storage materials because they are capable of undergoing multi-electron reactions and are stable over a wide range of pH values and temperatures.

  16. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  17. Intelligent Flow Friction Estimation

    PubMed Central

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  18. Intelligent Flow Friction Estimation.

    PubMed

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  19. Stochastic power flow modeling

    SciTech Connect

    Not Available

    1980-06-01

    The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  20. Full Multigrid Flow Solver

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris

    2005-01-01

    FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.

  1. Viscous vortex flows

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Chamberlain, J. P.; Liu, C. H.; Hartwich, Peter-Michael

    1986-01-01

    Several computational studies are currently being pursued that focus on various aspects of representing the entire lifetime of the viscous trailing vortex wakes generated by an aircraft. The formulation and subsequent near-wing development of the leading-edge vortices formed by a delta wing are being calculated at modest Reynolds numbers using a three-dimensional, time-dependent Navier-Stokes code. Another computational code was developed to focus on the roll-up, trajectory, and mutual interaction of trailing vortices further downstream from the wing using a two-dimensional, time-dependent, Navier-Stokes algorithm. To investigate the effect of a cross-wind ground shear flow on the drift and decay of the far-field trailing vortices, a code was developed that employs Euler equations along with matched asymptotic solutions for the decaying vortex filaments. And finally, to simulate the conditions far down stream after the onset of the Crow instability in the vortex wake, a full three-dimensional, time-dependent Navier-Stokes code was developed to study the behavior of interacting vortex rings.

  2. Laminar Flow Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  3. Surface Erosion and Flow

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 April 2003

    The mottled surface texture and flow features observed in this THEMIS image suggest materials may be, or have been, mixed with ice. There is also evidence in some areas for infilling of sediments as crater rims and ridges appear covered.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 45.3, Longitude 48.8 East (311.2 West). 19 meter/pixel resolution.

  4. Biomimetic Flow Control

    NASA Technical Reports Server (NTRS)

    Anders, John B.

    2000-01-01

    Biologic flight has undoubtedly intrigued man for thousands of years, yet it has been only the last 100 years or so that any serious challenge has been mounted to the pre-eminence of birds. Although present-day large-scale aircraft are now clearly able to fly higher, faster and farther than any bird or insect, it is obvious that these biological creatures have a mastery of low Reynolds number, unsteady flows that is unrivaled by man-made systems. This paper suggests that biological flight should be examined for mechanisms that may apply to engineered flight systems, especially in the emerging field of small-scale, uninhabited aerial vehicles (UAV). This paper discusses the kinematics and aerodynamics of bird and insect flight, including some aspects of unsteady aerodynamics. The dynamics of flapping wing flight is briefly examined, including gait selection, flapping frequency and amplitude selection, as well as wing planform and angle-of-attack dynamics. Unsteady aerodynamic mechanisms as practiced by small birds and insects are reviewed. Drag reduction morphologies of birds and marine animals are discussed and fruitful areas of research are suggested.

  5. Wicking flow through microchannels

    NASA Astrophysics Data System (ADS)

    Mehrabian, Hadi; Gao, Peng; Feng, James J.

    2011-12-01

    We report numerical simulations of wicking through micropores of two types of geometries, axisymmetric tubes with contractions and expansions of the cross section, and two-dimensional planar channels with a Y-shaped bifurcation. The aim is to gain a detailed understanding of the interfacial dynamics in these geometries, with an emphasis on the motion of the three-phase contact line. We adopt a diffuse-interface formalism and use Cahn-Hilliard diffusion to model the moving contact line. The Stokes and Cahn-Hilliard equations are solved by finite elements with adaptive meshing. The results show that the liquid meniscus undergoes complex deformation during its passage through contraction and expansion. Pinning of the interface at protruding corners limits the angle of expansion into which wicking is allowed. For sufficiently strong contractions, the interface negotiates the concave corners, thanks to its diffusive nature. Capillary competition between branches downstream of a Y-shaped bifurcation may result in arrest of wicking in the wider branch. Spatial variation of wettability in one branch may lead to flow reversal in the other.

  6. Compressible flow in fluidic oscillators

    NASA Astrophysics Data System (ADS)

    Graff, Emilio; Hirsch, Damian; Gharib, Mory

    2013-11-01

    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.

  7. Continuous-Flow Centrifugal Separator

    NASA Technical Reports Server (NTRS)

    Waldron, Robert D.

    1988-01-01

    Apparatus combines principles of centrifugal and cyclone separators to control movement of solid or liquid particles suspended in flowing gas. Spinning disk contains radial channels, width varys as function of distance from center. Gas flows from outer ring around disk toward center. Particles in gas collected at periphery, center or both.

  8. TV News Flow Studies Revisited.

    ERIC Educational Resources Information Center

    Hjarvard, Stig

    1995-01-01

    Compares different theoretical approaches to the study of international news. Finds many comparative studies of the foreign news output of national broadcasters and few studies analyzing the actual flow of television news between actors at the wholesale level and the flow between wholesale and retail level. Suggests a better framework for the…

  9. Hydration rind dates rhyolite flows.

    PubMed

    Friedman, I

    1968-02-23

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago. PMID:17768978

  10. Hydration rind dates rhyolite flows

    USGS Publications Warehouse

    Friedman, I.

    1968-01-01

    Hydration of obsidian has been used to date rhyolite flows, containing obsidian or porphyritic glass, at Glass Mountain (Medicine Lake Highlands) and Mono Lake, California. The method is simple and rapid and can be used to date flows that erupted between 200 and approximately 200,000 years ago.

  11. Polygonal instability of Marangoni flows

    NASA Astrophysics Data System (ADS)

    Roché, Matthieu; Labousse, Matthieu; El Hadj Maiga, Baba; Nya, Loïc; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud

    2015-11-01

    The transport of pepper grains floating at the surface of a bowl of water after the release of a drop of dishwashing liquid is a classical experiment to demonstrate the Marangoni effect, i.e. the flow of a liquid layer induced by interfacial tension gradients at its surface. In this case, the interfacial tension gradient results from a surfactant interfacial concentration gradient. Recently, we showed that continuous injection of an aqueous solution of hydrosoluble surfactants at the surface of a cm-thick pure water layer induced finite-size Marangoni flows surrounded by a region characterized by the presence of several pairs of interfacial vortices arranged along the the vertices of polygons. During this talk, I will show that we can understand the flow structure induced by these Marangoni flows, in particular their tendency to have polygonal shapes. I will describe how flow features such as the number of interfacial vortices or bulk recirculation flows depend on flow geometry. Finally, I will compare these results to a model that explains similar polygonal instabilities in other flows such as the hydraulic jump.

  12. Groundwater hydrology--coastal flow

    USGS Publications Warehouse

    Sanford, Ward E.

    2010-01-01

    How groundwater flow varies when long-term external conditions change is little documented. Geochemical evidence shows that sea-level rise at the end of the last glacial period led to a shift in the flow patterns of coastal groundwater beneath Florida.

  13. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  14. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  15. Integrated flow field (IFF) structure

    NASA Technical Reports Server (NTRS)

    Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)

    2012-01-01

    The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.

  16. Group Flow and Group Genius

    ERIC Educational Resources Information Center

    Sawyer, Keith

    2015-01-01

    Keith Sawyer views the spontaneous collaboration of group creativity and improvisation actions as "group flow," which organizations can use to function at optimum levels. Sawyer establishes ideal conditions for group flow: group goals, close listening, complete concentration, being in control, blending egos, equal participation, knowing…

  17. Compact bypass-flow filter

    NASA Technical Reports Server (NTRS)

    Swift, W. G.; Ulanovsky, J. M.

    1979-01-01

    Annular filter consisting of stacked rings separates particulates from bypass fluid passing through it in radial direction without slowing down main flow across unimpeded flow of fluid through its center. Applications include fluidized bed reactors, equipment for catalyst operations, and water purification.

  18. Measuring sap flow in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sap flow measurements provide a powerful tool for quantifying plant water use and monitoring qualitative physiological responses of plants to environmental conditions. As such, sap flow methods are widely employed to invesitgate the agronomic, ecological and hydrological outcomes of plant growth. T...

  19. Programming fluid flow with microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Masaeli, Mahdokht; di Carlo, Dino

    2011-11-01

    Flow control and fluid interface manipulation in microfluidic platforms are of great importance in a variety of applications. Current approaches to manipulate fluids generally rely on complex designs, difficult-to-fabricate 3D platforms or use of active methods. Here we show that in the presence of simple cylindrical obstacles (i.e. pillars) in a microchannel, at moderate to high flow rates, streamlines tend to turn and stretch in a manner that, unlike intuition for Stokes flow, does not precisely reverse after passing the pillar. The asymmetric flow behavior up- and down-stream of the pillar due to fluid inertia manifests itself as a total deformation of the topology of streamlines that effectively creates a net secondary flow which resembles the recirculating Dean flow in curving channels. Confocal images were taken to investigate the secondary flow for a variety of microstructure settings. We also developed a numerical technique to map the fluid motion in the channel which is utilized to characterize the secondary flow as well as to engineer the fluid patterns within the channel. This passive method creates the possibility of exceptional control of the 3D structure of the fluid within a microfluidic platform which can significantly advance applications requiring fluid interface control (e.g. optofluidics), ultrafast mixing and solution control around cells.

  20. Redox Flow Batteries, a Review

    SciTech Connect

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  1. Flow properties of concentrated suspensions

    NASA Technical Reports Server (NTRS)

    Hattori, K.; Izumi, K.

    1984-01-01

    The viscosity and flow behavior of a concentrated suspension, with special emphasis on fresh concrete containing a superplasticizer, is analyzed according to Newton's law of viscosity. The authors interpreted Newton's law in a new way, and explain non-Newton flow from Newton's law. The outline of this new theory is given. Viscosity of suspensions, and the effect of dispersants are analyzed.

  2. Modeling of Turbulent Swirling Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.

    1997-01-01

    Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.

  3. Estimation of ecological high flow

    NASA Astrophysics Data System (ADS)

    Lin, Jen-Yang; Chen, Yen-Chang; Hsienshao Tsao, Eric

    2006-02-01

    Floods can destroy fish habitat. During a flood a fish has to seek shelters (refuges) to survive. It is necessary to know the maximum discharge that the fish can sustain against the strong current. Ecological and hydraulic engineers can simulate the flow condition of high flow for designing the refuge when restoring and enhancing the rivers are needed. Based on the average ratio of the mean and maximum velocities invariant with time, discharge and water level, this paper tries to introduce the concept of ecological high flow. The mean-maximum velocity ratio can be used to estimate the mean velocity of the river. If the maximum velocity of the cross section is replaced by the maximum sustained swimming speeds of fish, the mean velocity of ecological high flow can be calculated with the constant ratio. The cross-sectional area can be estimated by the gage height. Then the ecological high flow can be estimated as the product of mean velocity of ecological high flow multiplied by the cross-sectional area. The available data of the upstream of the Dacha River where is the habitat of the Formosan landlocked salmon were used to illustrate the estimation of the ecological high flow. Any restoration project at Sonmou that try to improve the stream habitat can use the ecological high flow to design the hydraulic structure at suitable location to offer refuges for the Formosan landlocked salmon that is an endangered species in Taiwan

  4. Potential flow through channel constriction.

    USGS Publications Warehouse

    Lee, J.K.

    1984-01-01

    Potential flow through an eccentric, normal constriction of zero thickness in an infinitely long, straight channel of constant width and unit depth is studied by use of a Schwarz-Christoffel transformation. The transformation is integrated by a direct approach. Parametric equations for streamlines are obtained and used to compute an average streamline length for a potential-flow field. -from ASCE Publications Information

  5. Apparatus for measuring fluid flow

    DOEpatents

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  6. Apparatus for measuring fluid flow

    DOEpatents

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  7. Reduced Order Modeling Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Helenbrook, B. T.

    2010-01-01

    The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models

  8. Numerical methods for turbulent flow

    NASA Astrophysics Data System (ADS)

    Turner, James C., Jr.

    1988-09-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  9. Traffic flow theory and characteristics

    SciTech Connect

    Hauer, E.; Pagitsas, E.; Shin, B.T.; Maze, T.H.; Hurley, J.W. Jr.

    1981-01-01

    Estimation of turning flows from automatic counts; a probabilistic model of gap acceptance behavior; sensitivity of fuel-consumption and delay values from traffic simulation; traffic data acquisition from small-format photography; decentralized control of congested street networks; improved estimation of traffic flow for real-time control; Maxband, a program for setting signals on arteries and triangular networks are discussed.

  10. Debris Flows and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  11. Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Powell, Robert; Jenkins, Thomas

    1998-11-01

    Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow. Robert L. Powell, Thomas P. Jenkins Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616 Using laser Doppler velocimetry, we have measured the axial velocity profiles for steady, pressure driven, laminar flow of water in a circular tube. The flow was established in a one inch diameter seamless glass tube. The entry length prior to the measuring section was over one hundred diameters. Reynolds numbers in the range 500-2000 were used. Under conditions where the temperature difference between the fluid and the surroundings differed by as little as 0.2C, we found significant asymmetries in the velocity profiles. This asymmetry was most pronounced in the vertical plane. Varying the temperature difference moved the velocity maximum either above or below the centerline depending upon whether the fluid was warmer or cooler than the room. These results compare well to existing calculations. Using the available theory and our experiments it is possible to identify parameter ranges where non-ideal conditions(not parabolic velocity profiles) will be found. Supported by the EMSP Program of DOE.

  12. Characterization of Blood Flow in Capillaries by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Xing, Zhongwen

    2011-03-01

    We presents a numerical investigation of the axisymmetric, pressure driven motion of single file erythrocyte (i.e., red blood cell) suspensions flowing in capillaries of diameter 8- 11 μ m. The governing Navier-Stokes equations are discretized using the operator splitting technique and solved by the finite element method. The study takes consideration the particulate nature of the blood. The red blood cell (RBC) is modeled as a closed membrane filled with a Newtonian fluid which has the same viscosity as the surrounding plasma. The cell membrane is described by a spring model so that the deformability of the cells can be considered. An immersed boundary method is also developed for dealing with the cell/fluid interaction in the flow. Our study successfully recreates several important in vivo hemodynamic and hemorheological properties of microscopic blood flow, such as parachute shape of the cells, blunt velocity profile, and the Fahraeus effect, and they have been shown to have strong dependence on cell deformability, hematocrit and vessel size.

  13. Steady flow through porous media

    SciTech Connect

    Greenkorn, R.A.

    1981-07-01

    The movement of materials through porous media is of interest in many disciplines: in chemical engineering - adsorption, chromatography, filtration, flow in packed columns, ion exchange, reactor-engineering; in petroleum engineering - displacement of oil with gas, water and miscible solvents including surface-active agent solutions and description of reservoirs; in hydrology - movement of trace pollutants in water systems, recovery of water for drinking and irrigation, saltwater encroachment into freshwater reservoirs; in soil physics - movement of water, nutrients, and pollutants into plants; and in biophysics. This work reviews the fundamentals of steady flow through porous media. It discusses the pseudotransport coefficients permeability, capillary pressure, and dispersion and relates these coefficients to the geometry of porous media. It discusses single-fluid flow, multifluid immiscible flow, and multifluid miscible flow including the effects of heterogeneity, nonuniformity, and anisotropy of media. 104 references.

  14. Supersonic Laminar Flow Control Research

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Wiberg, Clark G.

    1996-01-01

    The objective of this research is to understand supersonic laminar flow stability, transition and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of distributed heating and cooling as an active boundary layer control technique will be studied. The primary tasks of the research apply to the NASA/Ames PoC and LFSWT's nozzle design with laminar flow control and are listed as follows: Predictions of supersonic laminar boundary layer stability and transition; Effects of wall heating and cooling on supersonic laminar flow control on a flat plate; Performance evaluation of the PoC and LFSWT nozzle designs with wall heating and cooling applied at different locations and various lengths; Effects of a conducted-vs-pulse wall temperature distribution for the LFSWT; and Application of wall heating and/or cooling to laminar boundary layer and flow separation control of airfoils and investigation of related active control techniques.

  15. Mixing enhancement using axial flow

    NASA Technical Reports Server (NTRS)

    Papamoschou, Dimitri (Inventor)

    2003-01-01

    A method and an apparatus for enhancing fluid mixing. The method comprises the following: (a) configuring a duct to have an effective outer wall, an effective inner wall, a cross-sectional shape, a first cross-sectional area and an exit area, the first cross-sectional area and the exit area being different in size; (b) generating a first flow at the first cross-sectional area, the first flow having a total pressure and a speed equal to or greater than a local speed of sound; and (c) generating a positive streamwise pressure gradient in a second flow in proximity of the exit area. The second flow results from the first flow. Fluid mixing is enhanced downstream from the duct exit area.

  16. Wind tunnel flow generation section

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E. (Inventor)

    1974-01-01

    A flow generation section for a wind tunnel test facility is described which provides a uniform flow for the wind tunnel test section over a range of different flow velocities. The throat of the flow generation section includes a pair of opposed boundary walls which are porous to the flowing medium in order to provide an increase of velocity by expansion. A plenum chamber is associated with the exterior side of each of such porous walls to separate the same from ambient pressure. A suction manifold is connected by suction lines with each one of the chambers. Valves are positioned in each of the lines to enable the suction manifold to be independently varied.

  17. Vertical flow chemical detection portal

    DOEpatents

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  18. Vertical flow chemical detection portal

    DOEpatents

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  19. Sub-Grid Modeling of Electrokinetic Effects in Micro Flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    2005-01-01

    Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this

  20. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  1. The Effect of Flow Pulsations on Coriolis Mass Flow Meters

    NASA Astrophysics Data System (ADS)

    Cheesewright, R.; Clark, C.

    1998-11-01

    It has been reported that the accuracy of Coriolis mass flow meters can be adversely affected by the presence of pulsations (at particular frequencies) in the flow. A full analysis of the transient performance of a commercial Coriolis meter is only possible using finite element techniques. However, this is a transient, nonlinear problem in which the space and time variables are not (strictly) separable and the finite element techniques for tackling such problems make it desirable to have an analytical solution for a simplified meter, against which the finite element solution can be compared. This paper reports such a solution. The solution will also provide guidance for experiments. Existing analytical solutions for the performance of Coriolis meters in steady flow (a complex eigenvalue problem) are not easily extended to the transient flow case. The paper thus begins with the presentation of an alternative solution for steady flow through a simple, straight tube, Coriolis meter and it is notable that this solution gives a simple analytical expression for the experimentally observed small change in the resonant frequency of the meter, with flow rate, as well as an analytical expression for the meter sensitivity. The analysis is extended to the transient case, using classical, forced vibration, modal decomposition techniques. The solution shows that, unlike the steady flow case where the detector signals contain components at the drive frequency and the second mode frequency (Coriolis frequency), for pulsatile flow the detector signals will in general contain components involving at least four frequencies. It is demonstrated that the meter error depends on the algorithm used to estimate the phase difference from the detector signals. The particular flow pulsation frequencies which could possibly lead to large meter errors are identified.

  2. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    NASA Astrophysics Data System (ADS)

    Lucas, Dan; Kerswell, Rich R.

    2015-04-01

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2π]2 torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, "Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow," J. Fluid Mech. 722, 554-595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida ["Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst," J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  3. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results

  4. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    SciTech Connect

    Lucas, Dan Kerswell, Rich R.

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2π]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, “Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow,” J. Fluid Mech. 722, 554–595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [“Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst,” J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  5. Flow Rate Measurements Using Flow-Induced Pipe Vibration

    SciTech Connect

    R. P. Evans; Jonathan D. Blotter; Alan G. Stephens

    2004-03-01

    This paper focuses on the possibility of a non-intrusive, low cost, flow rate measurement technique. The technique is based on signal noise from an accelerometer attached to the surface of the pipe. The signal noise is defined as the standard deviation of the frequency averaged time series signal. Experimental results are presented that indicate a nearly quadratic relationship between the signal noise and mass flow rate in the pipe. It is also shown that the signal noise - flow rate relationship is dependant on the pipe material and diameter.

  6. Subsonic Flows through S-Ducts with Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method

  7. Hysteresis in Pressure-Driven DNA Denaturation

    PubMed Central

    Hernández-Lemus, Enrique; Nicasio-Collazo, Luz Adriana; Castañeda-Priego, Ramón

    2012-01-01

    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue. PMID:22496765

  8. Lava flows and volcanic landforms

    NASA Astrophysics Data System (ADS)

    Tarquini, Simone

    2016-04-01

    Lava flows constitute a large portion of the edifice of basaltic volcanoes. The substantial difference existing between the emplacement dynamics of different basaltic lava flows suggests a relation between the dominant flow dynamic and the overall shape of the ensuing volcano. Starting from the seminal works of Walker (1971, 1973) it is proposed that the rate of heat dissipation per unit volume of lava can be the founding principium at the roots of the emplacement dynamics of lava flows. Within the general framework of the thermodynamics of irreversible processes, a conceptual model is presented, in which the dynamic of lava flows can evolve in a linear or in a nonlinear regime on the basis of the constraint active on the system: a low constraint promotes a linear dynamic (i.e. fluctuations are damped), a high constraint a nonlinear one (i.e. fluctuations are enhanced). Two cases are considered as end-members for a linear and a nonlinear dynamic in lava flows: the typical "Hawaiian" sheet flow and the classic "Etnean" channelized flow (respectively). In lava flows, the active constraint is directly proportional to the slope of the topography and to the thermal conductivity and thermal capacity of the surrounding environment, and is inversely proportional to the lava viscosity and to the supply rate. The constraint indicates the distance from the equilibrium conditions of the system, and determines the rate of heat dissipation per unit volume. In subaerial flows, the heat dissipated during the emplacement is well approximated by the heat lost through radiation, which can be retrieved through remote-sensing techniques and can be used to correlate dynamic and dissipation. The model presented recombines previously unrelated concepts regarding the dynamics and the thermal regimes observed in different lava flows, providing a global consistent picture. References Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579-590 Walker GPL (1973

  9. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  10. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  11. Cerebrospinal fluid flow in adults.

    PubMed

    Bradley, William G; Haughton, Victor; Mardal, Kent-Andre

    2016-01-01

    This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia. PMID:27432684

  12. Two-Photon Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  13. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  14. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  15. Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James

    2005-01-01

    Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.

  16. Plasma sheet flow damping by oscillatory flow braking

    NASA Astrophysics Data System (ADS)

    Panov, Evgeny V.; Leontyeva, Olga S.; Baumjohann, Wolfgang; Nakamura, Rumi; Amm, Olaf; Angelopoulos, Vassilis; Glassmeier, Karl-Heinz; Kubyshkina, Marina V.; Petrukovich, Anatoli A.; Sergeev, Victor A.; Weygand, James M.

    2015-04-01

    Using simultaneous observations in the near-Earth plasma sheet by five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes, conjugate ground all-sky camera observations from Canada, and magnetometer networks over North America, we show that auroral bulge dynamics is modulated by a recently discovered process known as oscillatory flow braking, which occurs at about 10 Earth radii down the Earth's magnetotail. In oscillatory flow breaking, plasma sheet flows oscillating with different periods at various distances collide, producing pressure forces that exert shear stresses on the magnetic field, transiently amplifying the vertical magnetic field component. Sporadic fast relief of these stresses through significant particle precipitations causes damping of plasma sheet fast flows.

  17. A stochastic index flow model of flow duration curves

    NASA Astrophysics Data System (ADS)

    Castellarin, Attilio; Vogel, Richard M.; Brath, Armando

    2004-03-01

    Annual flow duration curves (AFDCs) are used increasingly because unlike traditional period of record flow duration curves (FDCs), they provide confidence intervals for the median AFDC, they enable one to assign return periods to individual AFDCs, and they offer opportunities for developing a generalized stochastic model of daily streamflow. Previous stochastic models of FDCs and AFDCs were unable to reproduce the variance of AFDCs. We introduce an index flow approach to modeling the relationship between an FDC and AFDCs of daily streamflow series, which is able to reproduce the FDC, as well as the mean, median, and variance of the AFDCs without resorting to assumptions regarding the seasonal or persistence structure of daily streamflow series. Our approach offers additional opportunities for the regionalization of flow duration curves and for the generation of time series of daily streamflows at ungauged sites. Our approach is tested on three river basins in eastern central Italy.

  18. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    SciTech Connect

    HALVERSON, NANCY

    2004-09-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  19. Visualization of entry flow separation for oscillating flow in tubes

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang; Simon, Terence W.

    1992-01-01

    Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.

  20. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (ESTSC)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less