Science.gov

Sample records for flow soil filter

  1. Ensemble kalman filtering to perform data assimilation with soil water content probes and pedotransfer functions in modeling water flow in variably saturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data from modern soil water contents probes can be used for data assimilation in soil water flow modeling, i.e. continual correction of the flow model performance based on observations. The ensemble Kalman filter appears to be an appropriate method for that. The method requires estimates of the unce...

  2. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  3. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water.

    PubMed

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott; Bester, Kai

    2009-11-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS), 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTB-1,4-BQ), 1,1-biphenyl-3,3-dimethyl (1,1-BP-3,3-DM) and dibenzyl (DB) have been included in this study. The chemical characteristics of these compounds ranged from the hydrophilic (pK(OW) 2.6) to the lipophilic (pK(OW) 5) properties. For the elimination studies, synthetic waste water spiked to 3000 ng L(-1) with the selected compounds was used. Elimination rates with low hydraulic load (61 L m(-2)d(-1), water retention time: 2d) were higher than 96%. During a storm water simulation experiment (hydraulic load: 255 L m(-2), water retention time: <1h), the elimination rates of the most analytes decreased to 79-96%. The elimination performance of the hydrophilic compound NBBS declined to 21%. Balancing studies including the soil of the filter system revealed that degradation or transformation were both relevant elimination mechanism. PMID:19828173

  4. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater.

    PubMed

    Zhang, Yi; Cheng, Yan; Yang, Chunping; Luo, Wei; Zeng, Guangming; Lu, Li

    2015-10-01

    In order to improve nitrogen removal for rural wastewater, a novel two-stage hybrid system, consisting of a vertical flow trickling filter (VFTF) and a horizontal flow multi-soil-layering (HFMSL) bioreactor was developed. The performance of the apparatus was observed under various carbon-nitrogen ratios and water spraying frequencies separately. The maximum removal efficiency of total nitrogen (TN) for the hybrid system was 92.8% while the removal rates of CODCr, ammonium (NH4(+)-N), and total phosphorus (TP) were 94.1%, 96.1%, 92.0% respectively, and the corresponding effluent concentrations were 3.61, 21.20, 1.91, and 0.33 mg L(-1). The horizontal flow mode for MSL led the system to denitrifying satisfactorily as it ensured relatively long hydraulic retention time (HRT), ideal anoxic condition and adequate organic substrates supply. Also, higher water spraying frequency benefited intermittent feeding system for pollutants removal. Shock loading test indicated that the hybrid system could operate well even at hydraulic shock loadings. PMID:26151854

  5. Compact bypass-flow filter

    NASA Technical Reports Server (NTRS)

    Swift, W. G.; Ulanovsky, J. M.

    1979-01-01

    Annular filter consisting of stacked rings separates particulates from bypass fluid passing through it in radial direction without slowing down main flow across unimpeded flow of fluid through its center. Applications include fluidized bed reactors, equipment for catalyst operations, and water purification.

  6. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  7. Landfill leachate clogging of geotextile (and soil) filters

    SciTech Connect

    Koerner, R.M.; Koerner, G.R.

    1991-07-01

    The primary leachate collection system of most solid waste landfills contains a filter layer which has historically been a granular soil. Recently, however, various types of geotextile filters have been used to replace the natural soil filters. A project using six different landfill leachates and aimed at investigating the functioning of different geotextile filters is the focus of this 36 month long study. The initial 12 months, referred to as Phase 1, investigated flow rates in various filters under aerobic conditions at six different landfill sites using the site-specific leachates. The study inadvertently found that the overlying granular soil clogged as much as the geotextile filter that was located downstream. The effects of different types and styles of geotextiles was generally masked by the upstream soil clogging. An important finding in this task was the biodegradation of the geotextiles was not evidenced and was concluded to be a non-issue. The subsequent 24 months of study, referred to as Phase 2(a), led to the development of a vastly improved flow rate monitoring device. In a separate task, referred to as Phase 2(b) and conducted simultaneously with Phase 2(a), biocide treated geosynthetics were utilized at the two sites with the most aggressive leachates. While the biocides may have been effective in killing microorganisms, the remnants were as troublesome as the viable bacteria in creating subsequent clogging.

  8. Angle only tracking with particle flow filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2011-09-01

    We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.

  9. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  10. Temporal filters for isolating steady photospheric flows

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A variety of temporal filters are tested on artificial data with 60 and 75 s sampling intervals to determine their accuracy in separating the nearly-steady photospheric flows from the p-mode oscillations in Doppler velocity data. Longer temporal averages are better at reducing the residual signal due to p-modes but they introduce additional errors from the rotation of the supergranule pattern across the solar disk. Unweighted filters (boxcar averages) leave residual rms errors of about 6 m/s from the p-modes after 60 min of averaging. Weighted filters, with nearly Gaussian shapes, leave similar residual errors after only 20 min of averaging and introduce smaller errors from the rotation of the supergranule pattern. The best filters found are weighted filters that use data separated by 150 or 120 s so that the p-modes are sampled at opposite phases.

  11. A Filtering Method For Gravitationally Stratified Flows

    SciTech Connect

    Gatti-Bono, Caroline; Colella, Phillip

    2005-04-25

    Gravity waves arise in gravitationally stratified compressible flows at low Mach and Froude numbers. These waves can have a negligible influence on the overall dynamics of the fluid but, for numerical methods where the acoustic waves are treated implicitly, they impose a significant restriction on the time step. A way to alleviate this restriction is to filter out the modes corresponding to the fastest gravity waves so that a larger time step can be used. This paper presents a filtering strategy of the fully compressible equations based on normal mode analysis that is used throughout the simulation to compute the fast dynamics and that is able to damp only fast gravity modes.

  12. Spin selective filtering of polariton condensate flow

    SciTech Connect

    Gao, T.; Antón, C.; Martín, M. D.; Liew, T. C. H.; Hatzopoulos, Z.; Viña, L.; Eldridge, P. S.; Savvidis, P. G.

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  13. Cross flow filter development for advanced fossil power generation

    SciTech Connect

    Lippert, T.E.; Alvin, M.A.; Bachovchin, D.M.; Haldipur, G.B.; Newby, R.A.; Smeltzer, E.E. )

    1990-01-01

    The porous ceramic cross flow filter has been under development at Westinghouse in conjunction with the U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) for advanced fossil power generation. The ceramic cross flow filter is capable of high temperature operation, and is basically an absolute filter on ash. The cross flow filter can be operated at high flow capacity, while simultaneously exhibiting relatively low pressure drop flow characteristics. This paper describes the cross flow filter development at Westinghouse, and reviews the results of many in-house and field test programs. Testing has included operation of the filter in subpilot pressurized fluidized-bed combustion and coal gasification applications. Testing is also being conducted at Westinghouse to evaluate filter characteristics over long-term operation (3,000 hours) utilizing dedicated test facilities.

  14. Fuel-flow filter for internal combustion engine, adaptable for use with a by-pass filter

    SciTech Connect

    Schmidt, R.

    1987-06-16

    This patent describes a filter apparatus for an internal combustion engine to replace a spin-on, full-flow oil filter threadably connected to an oil filter bushing. The engine has an oil system with an oil pump, an oil pan, and an oil cap at a low pressure side of the oil system. The apparatus comprises: a full-flow filter to be connected to the oil filter bushing to permit oil within the oil system to flow into the full-flow filter. The full-flow filter is of such density and filtering capacity that the oil flows from the oil pump through the full-flow filter with a minimum pressure drop; adapter means to permit use of the full-flow filter either with or without a by-pass filter. The adapter means is a nut located at the forward end of the full-flow filter opposite the oil filter bushing and extending outwardly. The nut defines an area that can be either left intact, permitting all of the oil flow outward from the full-flow filter after filtering, or punctured, permitting most of the oil to flow outward from the full-flow filter after filtering. A small portion of the oil to flows outward therefrom prior to filtering. The nut is within a specific range of depth and circumference so as to provide a means for controlling the size of the hole. The nut is inwardly threaded.

  15. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  16. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  17. SSDA code to apply data assimilation in soil water flow modeling: Documentation and user manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water flow models are based on simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Data assimilation (DA) with the ensemble Kalman filter (EnKF) corrects modeling results based on measured s...

  18. Modeling Flow Past a Tilted Vena Cava Filter

    SciTech Connect

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  19. Impact of pore fluid composition changes on soil filter clogging

    SciTech Connect

    Reddi, L.N.; Bonala, M.V.S.

    1997-12-31

    Current design criteria for soil filters in geotechnical engineering are based on mechanical principles of straining alone without any physico-chemical considerations. Transport and deposition of colloid-size particles in the subsurface are influenced by pore fluid composition. It is essential to design filters in contaminated environment, such as those for leachate collection systems, with due considerations of the pore fluid composition. In this paper, the impact of changes in pore fluid composition on sod filter clogging is assessed with the help of a mathematical model. The role of pore fluid composition in soil filter clogging is studied by evaluating its effect on the erodibility of base soils, size of the migrating particles, and on the likelihood of particle deposition. The results suggest that pore fluid composition influences the deposition to the extent it can cause significant changes in pore clogging. In the cases where particles are generated from base soils, filter clogging increased at low salt concentrations but was limited by reduced erodibilities at high salt concentrations.

  20. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  1. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  2. Particle flow for nonlinear filters with log-homotopy

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2008-04-01

    We describe a new nonlinear filter that is vastly superior to the classic particle filter. In particular, the computational complexity of the new filter is many orders of magnitude less than the classic particle filter with optimal estimation accuracy for problems with dimension greater than 2 or 3. We consider nonlinear estimation problems with dimensions varying from 1 to 20 that are smooth and fully coupled (i.e. dense not sparse). The new filter implements Bayes' rule using particle flow rather than with a pointwise multiplication of two functions; this avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to derive the ODE that describes particle flow. This paper was written for normal engineers, who do not have homotopy for breakfast.

  3. Granular flow in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Hsiau, S.S.; Smid, J.; Tsai, H.H.; Kuo, J.T.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Drofan Impingo panel with transparent front and rear walls, the velocity fields of filter granules without gas cross flow were observed. The PE beads with diameter of 6 mm were used as filter granules. The filter bed was filled with beads continuously and circulated until the granular flows inside the panel reached the steady state condition. In the moving granular bed, there is a central fast flowing core of filter granules surrounded by large quasi-stagnant zones located close to the louver walls. The existence of quasi-stagnant zones may result in the dust plugging problems. The velocity fields of filter granules are plotted for three different louver geometries.

  4. SITE TECHNOLOGY CAPSULE: FILTER FLOW TECHNOLOGY, INC. - COLLOID POLISHING FILTER METHOD

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Coloid Polishing Filter Method (CPFM) was demonstrated at the U.S Department of Energy's (DOE) Rock Flats Plant (RFP) as part of the U.S. Environmental Protection Agency's (EPA) Superfund and Innovative Technology Evaluation (SITE) program. ...

  5. Optimal Filter Estimation for Lucas-Kanade Optical Flow

    PubMed Central

    Sharmin, Nusrat; Brad, Remus

    2012-01-01

    Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

  6. Sulfamethazine sorption to vegetative filter strip and row crop soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotic (VA) presence in the environment, often associated with land application of manure, has generated significant interest in VA fate and transport in soil. However, few studies have focused on land management practices, such as vegetative filter strips, that might mitigate VA loss...

  7. A stochastic filtering technique for fluid flow velocity fields tracking.

    PubMed

    Cuzol, Anne; Mémin, Etienne

    2009-07-01

    In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Itô diffusion process coming from a stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world sequences. PMID:19443925

  8. Critical velocity of superfluid helium flow in narrow pore filters

    NASA Astrophysics Data System (ADS)

    Hofmann, A.

    1990-05-01

    The flow rates of superfluid helium passing through a spongelike plug made from a stack of high-porosity cellulose-nitrate membrane filters were measured, comparing three grades of filters: 10, 50, and 200 nm. The critical flow rate was analyzed from the onset of nonzero difference in the chemical potential across the plug. The flow, driven by activating a heater, was measured with an acoustic flowmeter. It is shown that the critical flow rate increases with decreasing filtration grade and that the upper limit of the superfluid flow velocity can be predicted from the quoted filtration grade of the filter and from a shape factor derived from elementary geometric conditions of densely packed spheres. This model yields correct temperature dependence of the critical velocity.

  9. Reverse gas-flow bag filter

    SciTech Connect

    Noddin, E.L.

    1981-01-13

    A description is given of a bag filter having a self-sealing cuff at the upper open end thereof, a bottom support at the closed end to tension the bag and prevent flapping and a plurality of spaced anticollapse rings each of which encircles an annular outer surface of the bag to which it is attached between the ends of the bag to prevent bag collapse.

  10. Direction of fluid flow and the properties of fibrous filters

    SciTech Connect

    Pich, J.; Spurny, K.

    1991-01-01

    The influence of the fluid flow direction (downflow and upflow) on the filtration properties of filters that have a fibrous structure is investigated. It is concluded that selectivity of these filters (dependence of the filter efficiency on the particle size) in the case of upflow is changed - in comparison with the case of downflow - in three ways: the position of the minimum of this dependence is shifted to larger particle sizes, and the whole selectivity is decreased and simultaneously deformed. Corresponding equations for this shift and changes are derived and analyzed. Theoretical predictions are compared with available experimental data. In all cases qualitative agreement and in some cases quantitative agreement is found.

  11. Electrically heated particulate filter with zoned exhaust flow control

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  12. Development of a monolithic ceramic cross flow filter

    SciTech Connect

    Larsen, D.A.

    1995-12-01

    High-temperature, high-pressure particulate control is required to protect turbine equipment and to meet environmental stack emissions standards in coal-fueled power systems. Ceramic cross flow filters have high surface area per unit volume for removing particulates from these hot gas streams. A one-piece monolithic ceramic cross flow filter is needed. Mullite bonded, porous, permeable alumina ceramics were made on a lab scale with the Blasch injection forming process. Permeability and other initial targeted property requirements were achieved: >200 cd (<1 iwg/fpm), room temperature modulus of rupture >1000 psi, particle size 100/200 mesh, pore size 20 microns. It is concluded that it is feasible to use the proprietary Blasch process to form cross flow filters.

  13. Cross flow filter for AEPSC: TIDD slipstream HGCU project preliminary design package for Westinghouse cross flow filter system

    SciTech Connect

    Haldipur, G.B.; Lippert, T.E.

    1989-06-16

    The Westinghouse ceramic cross-flow filter element is constructed of multiple layers of thin, porous ceramic plates that contain ribs to form gas flow channels. Consecutive layers of the ceramic plates are oriented such that the channels of alternating plates are at an angle of 90 degrees ( cross flow'') to each other. The current size of a ceramic cross flow filter element is 12 in. {times} 12 in. {times} 14 in. Both sides of the short channels (4 in.) are exposed to the particle-laden coal gas. One end of the long (12 in.) channels is sealed while the other end of the long channel is mounted to the clean gas plenum. The particle-laden coal gas flows through the roof and floor'' of the porous ceramic plates that comprise the short, dirty side'' channels. The gas flows through the porous plates to the long, clean side'' channels. The gas flows through the porous plates to the long, clean side'' channels and finally to the clean gas plenum. The dust cake on the dirty side'' channels is periodically removed by applying a high-pressure reverse pulse of dry, clean gas through the clean gas plenum. For the TIDD plant filter slipstream, air will be utilized for filter cleaning.

  14. Cross flow filter for AEPSC: TIDD slipstream HGCU project preliminary design package for Westinghouse cross flow filter system. Final submittal

    SciTech Connect

    Haldipur, G.B.; Lippert, T.E.

    1989-06-16

    The Westinghouse ceramic cross-flow filter element is constructed of multiple layers of thin, porous ceramic plates that contain ribs to form gas flow channels. Consecutive layers of the ceramic plates are oriented such that the channels of alternating plates are at an angle of 90 degrees (``cross flow``) to each other. The current size of a ceramic cross flow filter element is 12 in. {times} 12 in. {times} 14 in. Both sides of the short channels (4 in.) are exposed to the particle-laden coal gas. One end of the long (12 in.) channels is sealed while the other end of the long channel is mounted to the clean gas plenum. The particle-laden coal gas flows through the ``roof and floor`` of the porous ceramic plates that comprise the short, ``dirty side`` channels. The gas flows through the porous plates to the long, ``clean side`` channels. The gas flows through the porous plates to the long, ``clean side`` channels and finally to the clean gas plenum. The dust cake on the ``dirty side`` channels is periodically removed by applying a high-pressure reverse pulse of dry, clean gas through the clean gas plenum. For the TIDD plant filter slipstream, air will be utilized for filter cleaning.

  15. Assessment of existing roadside swales with engineered filter soil: II. Treatment efficiency and in situ mobilization in soil columns.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Jensen, Marina B; Magid, Jakob

    2012-01-01

    Use of roadside infiltration systems using engineered filter soil for optimized treatment has been common practice in Germany for decades, but little documentation is available regarding their long-term treatment performance. Here we present the results of laboratory leaching experiments with intact soil columns (15 cm i.d., 25-30 cm length) collected from two German roadside infiltration swales constructed in 1997. The columns were irrigated with synthetic solutions of unpolluted or polluted (dissolved heavy metals and fine suspended solids) road runoff, as well as a soluble nonreactive tracer (bromide) and a dye (brilliant blue). The experiments were performed at two irrigation rates corresponding to catchment rainfall intensities of approximately 5.1 and 34 mm/h. The bromide curves indicated that preferential flow was more pronounced at high irrigation rates, which was supported by the flow patterns revealed in the dye tracing experiment. Nonetheless, the soils seemed to be capable of retaining most of the dissolved heavy metals from the polluted road runoff at both low and high irrigation rates, except for Cr, which appears to pass through the soil as chromate. Fluorescent microspheres (diameter = 5 μm) used as surrogates for fine suspended solids were efficiently retained by the soils (>99%). However, despite promising treatment abilities, internal mobilization of heavy metals and P from the soil was observed, resulting in potentially critical effluent concentrations of Cu, Zn, and Pb. This is mainly ascribed to high concentrations of in situ mobilized dissolved organic carbon (DOC). Suggestions are provided for possible improvements and further research to minimize DOC mobilization in engineered filter soils. PMID:23128754

  16. Assessment of two-filter technique for correlating actinium-227 concentrations in soils

    SciTech Connect

    Fraizer, W.K.; Patch, K.D.; Reynolds, B.A.

    1980-02-01

    Concentrations of actinium-227 in soil samples from waste-disposal sites for uranium procession plants were successfully correlated with radon-219 measurements obtained by the two-filter technique, thus avoiding time-consuming and difficult radiochemical analyses. A flow-through sampling device and procedure were developed which determined actinium levels with a precision of 2 pCi/g +- 50%. Theoretical relations for the production of radon from actinium, the decay of radon, and the decay and diffusion of radon daughters in the two-filter apparatus were formulated. Measurements indicated that the emanation fraction for radon-219 was about 15%. Sampling filters collected radon daughters with a 93% efficiency while radon could be scrubbed from air samples by use of an activated-charcoal canister.

  17. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  18. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  19. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    PubMed

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. PMID:26775157

  20. Imaging flow cytometer using computation and spatially coded filter

    NASA Astrophysics Data System (ADS)

    Han, Yuanyuan; Lo, Yu-Hwa

    2016-03-01

    Flow cytometry analyzes multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Flow cytometers measure fluorescence and light scattering from which information about the biological and physical properties of individual cells are obtained. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a specially designed spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using photomultiplier tube (PMT) detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. In fact our approach can be applied to retrofit traditional flow cytometers to become imaging flow cytometers at a minimum cost. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second.

  1. On the structural limitations of recursive digital filters for base flow estimation

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Costelloe, Justin F.; Peterson, Tim J.; Western, Andrew W.

    2016-06-01

    Recursive digital filters (RDFs) are widely used for estimating base flow from streamflow hydrographs, and various forms of RDFs have been developed based on different physical models. Numerical experiments have been used to objectively evaluate their performance, but they have not been sufficiently comprehensive to assess a wide range of RDFs. This paper extends these studies to understand the limitations of a generalized RDF method as a pathway for future field calibration. Two formalisms are presented to generalize most existing RDFs, allowing systematic tuning of their complexity. The RDFs with variable complexity are evaluated collectively in a synthetic setting, using modeled daily base flow produced by Li et al. (2014) from a range of synthetic catchments simulated with HydroGeoSphere. Our evaluation reveals that there are optimal RDF complexities in reproducing base flow simulations but shows that there is an inherent physical inconsistency within the RDF construction. Even under the idealized setting where true base flow data are available to calibrate the RDFs, there is persistent disagreement between true and estimated base flow over catchments with small base flow components, low saturated hydraulic conductivity of the soil and larger surface runoff. The simplest explanation is that low base flow "signal" in the streamflow data is hard to distinguish, although more complex RDFs can improve upon the simpler Eckhardt filter at these catchments.

  2. Bioconversion of petroleum hydrocarbons in soil using apple filter cake

    PubMed Central

    Medaura, M. Cecilia; Ércoli, Eduardo C.

    2008-01-01

    The aim of this study was to investigate the feasibility of using apple filter cake, a fruit-processing waste to enhance the bioremediation of petroleum contaminated soil. A rotating barrel system was used to study the bioconversion of the xenobiotic compound by natural occurring microbial population. The soil had been accidentally polluted with a total petroleum hydrocarbon concentration of 41,000 ppm. Although this global value was maintained during the process, microbial intervention was evidenced through transformation of the petroleum fractions. Thus, fractions that represent a risk for the environment (GRO, Gasoline Range Organics i.e., C6 to C10–12; DRO, Diesel Range Organics i.e., C8–12 to C24–26 and RRO, Residual Range Organics i.e., C25 to C35) were significantly reduced, from 2.95% to 1.39%. On the contrary, heavier weight fraction from C35 plus other organics increased in value from 1.15% to 3.00%. The noticeable diminution of low molecular weight hydrocarbons content and hence environmental risk by the process plus the improvement of the physical characteristics of the soil, are promising results with regard to future application at large scale. PMID:24031241

  3. Activated soil filters for removal of biocides from contaminated run-off and waste-waters.

    PubMed

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael; Janzen, Niklas; Niederstrasser, Bernd; Scheytt, Traugott

    2011-11-01

    Building facades can be equipped with biocides to prevent formation of algal, fungal and bacterial films. Thus run-off waters may contain these highly active compounds. In this study, the removal of several groups of biocides from contaminated waters by means of an activated soil filter was studied. A technical scale activated vertical soil filter (biofilter) with different layers (peat, sand and gravel), was planted with reed (Phragmites australis) and used to study the removal rates and fate of hydrophilic to moderate hydrophobic (log K(ow) 1.8-4.4) biocides and biocide metabolites such as: Terbutryn, Cybutryn (Irgarol® 1051), Descyclopropyl-Cybutryn (Cybutryn and Terbutryn metabolite), Isoproturon, Diuron, and its metabolite Diuron-desmonomethyl, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone and Iodocarbamate (Iodocarb). Three experiments were performed: the first one (36 d) under low flow conditions (61 L m(-2) d(-1)) reached removal rates between 82% and 100%. The second one was performed to study high flow conditions: During this experiment, water was added as a pulse to the filter system with a hydraulic load of 255 L m(-2) within 5 min (retention time <1 h). During this experiment the removal rates of the compounds decreased drastically. For five compounds (Cybutryn, Descyclopropyl-Cybutryn, Diuron, Isoproturon, and Iodocarb) the removal dropped temporarily below 60%, while it was always above 70% for the others (Terbutryn, Benzo-isothiazolinone, n-Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone). However, this removal is a considerable improvement compared to direct discharge into surface waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer was responsible for most of the removal, the sand and gravel layers also contributed significantly for some compounds. All compounds are rather removed by

  4. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-01

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. PMID:26601628

  5. Thermal/chemical stability of ceramic cross flow filter materials

    SciTech Connect

    Alvin, M.A.; Bahovchin, D.M.; Lippert, T.E.; Tressler, R.E.; McNerney, K.B.

    1992-01-01

    Westinghouse has undertaken a two phase program to determine possible long-term, high temperature influence that advanced coal-based power system environments may have on the stability of the ceramic cross flow filter elements. During the past year, we have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. The alumina/mullite cross flow liter material that has consistently been used throughout the flow-through gas phase alkali testing segment of this program, consists of mullite rods or needles that are embedded within an amorphous phase which contains corundum (Al[sub 2]O[sub 3]) and anorthite (CaAl[sub 2]Si[sub 2]O[sub 8]). Due to the rapid cooling rate that was used to produce the alumina/mullite filter disc material from high fire, the matrix consists of 59.6 wt% mullite, 30.5 wt% amorphous, 5.1 wt% anorthite, and 4.8 wt% alumina. The relatively low, as-fabricated, hot strength of this material (841[plus minus]259 psi at 870[degrees]C) is a direct result of the high amorphous content which softens at temperatures of 870[degrees]C. Load versus deflection curves as a function of temperature indicate that this material is relatively brittle up to temperatures of 600[degrees]C. Both a loss of strength, as well as plastic deformation of the matrix occurs at [approximately]700[degrees]C. If cross flow filters are manufactured from an alumina/mullite matrix that contains an [approximately]30.5 wt% amorphous content, we suspect that the plastic nature of the glass phase could potentially serve as a substrate for fines collection during initial filter operation at 700[degrees]C. Similarly the plastic nature could potentially cause deformation of the liter under load.

  6. Thermal/chemical stability of ceramic cross flow filter materials

    SciTech Connect

    Alvin, M.A.; Bahovchin, D.M.; Lippert, T.E.; Tressler, R.E.; McNerney, K.B.

    1992-11-01

    Westinghouse has undertaken a two phase program to determine possible long-term, high temperature influence that advanced coal-based power system environments may have on the stability of the ceramic cross flow filter elements. During the past year, we have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. The alumina/mullite cross flow liter material that has consistently been used throughout the flow-through gas phase alkali testing segment of this program, consists of mullite rods or needles that are embedded within an amorphous phase which contains corundum (Al{sub 2}O{sub 3}) and anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}). Due to the rapid cooling rate that was used to produce the alumina/mullite filter disc material from high fire, the matrix consists of 59.6 wt% mullite, 30.5 wt% amorphous, 5.1 wt% anorthite, and 4.8 wt% alumina. The relatively low, as-fabricated, hot strength of this material (841{plus_minus}259 psi at 870{degrees}C) is a direct result of the high amorphous content which softens at temperatures of 870{degrees}C. Load versus deflection curves as a function of temperature indicate that this material is relatively brittle up to temperatures of 600{degrees}C. Both a loss of strength, as well as plastic deformation of the matrix occurs at {approximately}700{degrees}C. If cross flow filters are manufactured from an alumina/mullite matrix that contains an {approximately}30.5 wt% amorphous content, we suspect that the plastic nature of the glass phase could potentially serve as a substrate for fines collection during initial filter operation at 700{degrees}C. Similarly the plastic nature could potentially cause deformation of the liter under load.

  7. Critical velocity of superfluid helium flow in fine pore filters

    NASA Astrophysics Data System (ADS)

    Hofmann, A.

    1990-03-01

    Membrane filters with porosities of more than 70 pct have been proven to be useful for the fabrication of thermomechanical pumps (fountain effect pumps) with mass fluxes up to 1.7 g/sq cm at about 0.25 bar head of pressure. Different pumps made of 14 mm thick stacks of commercially available Sartorius cellulose nitrate membranes with filtration grades of 200, 50 and 10 nm have been investigated at various temperatures between 1.6 K at the inlet and 2.1 K at the outlet. By analysis of pressure and temperature measurements, it is shown that the chemical potential difference between inlet and outlet is zero up to critical flow rates very close to the peak flow and that it increases steeply when the critical flow is exceeded.

  8. Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions

    NASA Astrophysics Data System (ADS)

    Fairbairn, D.; Barbu, A. L.; Mahfouf, J.-F.; Calvet, J.-C.; Gelati, E.

    2015-12-01

    Two data assimilation (DA) methods are compared for their ability to produce an accurate soil moisture analysis using the Météo-France land surface model: (i) SEKF, a simplified extended Kalman filter, which uses a climatological background-error covariance, and (ii) EnSRF, the ensemble square root filter, which uses an ensemble background-error covariance and approximates random rainfall errors stochastically. In situ soil moisture observations at 5 cm depth are assimilated into the surface layer and 30 cm deep observations are used to evaluate the root-zone analysis on 12 sites in south-western France (SMOSMANIA network). These sites differ in terms of climate and soil texture. The two methods perform similarly and improve on the open loop. Both methods suffer from incorrect linear assumptions which are particularly degrading to the analysis during water-stressed conditions: the EnSRF by a dry bias and the SEKF by an over-sensitivity of the model Jacobian between the surface and the root-zone layers. These problems are less severe for the sites with wetter climates. A simple bias correction technique is tested on the EnSRF. Although this reduces the bias, it modifies the soil moisture fluxes and suppresses the ensemble spread, which degrades the analysis performance. However, the EnSRF flow-dependent background-error covariance evidently captures seasonal variability in the soil moisture errors and should exploit planned improvements in the model physics. Synthetic twin experiments demonstrate that when there is only a random component in the precipitation forcing errors, the correct stochastic representation of these errors enables the EnSRF to perform better than the SEKF. It might therefore be possible for the EnSRF to perform better than the SEKF with real data, if the rainfall uncertainty was accurately captured. However, the simple rainfall error model is not advantageous in our real experiments. More realistic rainfall error models are suggested.

  9. Wastewater renovation using constructed soil filter (CSF): a novel approach.

    PubMed

    Nemade, P D; Kadam, A M; Shankar, H S

    2009-10-30

    Constructed soil filter (CSF) also known as Soil Biotechnology (SBT) is a process for water renovation which makes use of formulated media with culture of soil macro- and microorganisms. CSF combines sedimentation, infiltration and biodegradation processes to remove oxidizable organics and inorganics of wastewater in a single facility. Operating experience shows hydraulic loading in the range of 0.05-0.25 m(3)/m(2) h and organic loading up to 200-680 g/m(2) d. The results show increase in dissolved oxygen levels, COD removal (from 352 mg/l to 20 mg/l); BOD removal (from 211 mg/l to 7.0 mg/l); suspended solids removal (from 293 mg/l to 16 mg/l); turbidity reduction (from 145 NTU to 5.3 NTU); iron (from 5 mg/l to 0.3 mg/l); arsenic (from 500 microg/l to 10 microg/l); total coliform and fecal coliform removal (from 145 x 10(5) to 55 CFU/100 mL and 150 x 10(8) to 110 CFU/100 mL respectively), with desired pathogen levels as per WHO standards, i.e. < or =10(3) CFU/100 mL. CSF reveals advantages such as low HRT (0.5-2.0 h), low energy requirement (0.04 kWh/m(3)), no pre-treatment, high dissolved oxygen levels in the effluent, no biosludge production, no mechanical aeration and no odor, fish compatible water quality and evergreen ambience. PMID:19501460

  10. Flow Characteristics of Pulse Cleaning System in Ceramic Filter

    SciTech Connect

    Zhongli, J.; Peng, S.; Chen, H.; Shi, M.

    2002-09-19

    The rigid ceramic filters have been recognized to be a most promising kind of equipment for the gas-solid separation and the cleaning of hot gases due to their unique properties and higher separation efficiency for larger than 5 {micro}m particles, which will well meet downstream system component protection and environmental standards. They have potential for increased efficiency in advanced coal-fired power generation systems like pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) process, and petrochemical process such as fluid catalyst cracking (FCC) Process. In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning systems has crucial effects on the long-term structural durability and reliability of the entire design. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for the industrial applications, the transient flow characteristics of the rigid ceramic candle filter during the whole pulse cleaning process should be completely analyzed.

  11. Boosting target tracking using particle filter with flow control

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Chan, Moses W.

    2013-05-01

    Target detection and tracking with passive infrared (IR) sensors can be challenging due to significant degradation and corruption of target signature by atmospheric transmission and clutter effects. This paper summarizes our efforts in phenomenology modeling of boosting targets with IR sensors, and developing algorithms for tracking targets in the presence of background clutter. On the phenomenology modeling side, the clutter images are generated using a high fidelity end-to-end simulation testbed. It models atmospheric transmission, structured clutter and solar reflections to create realistic background images. The dynamics and intensity of a boosting target are modeled and injected onto the background scene. Pixel level images are then generated with respect to the sensor characteristics. On the tracking analysis side, a particle filter for tracking targets in a sequence of clutter images is developed. The particle filter is augmented with a mechanism to control particle flow. Specifically, velocity feedback is used to constrain and control the particles. The performance of the developed "adaptive" particle filter is verified with tracking of a boosting target in the presence of clutter and occlusion.

  12. Tracking low SNR targets using particle filter with flow control

    NASA Astrophysics Data System (ADS)

    Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.

    2014-06-01

    In this work we study the problem of detecting and tracking challenging targets that exhibit low signal-to-noise ratios (SNR). We have developed a particle filter-based track-before-detect (TBD) algorithm for tracking such dim targets. The approach incorporates the most recent state estimates to control the particle flow accounting for target dynamics. The flow control enables accumulation of signal information over time to compensate for target motion. The performance of this approach is evaluated using a sensitivity analysis based on varying target speed and SNR values. This analysis was conducted using high-fidelity sensor and target modeling in realistic scenarios. Our results show that the proposed TBD algorithm is capable of tracking targets in cluttered images with SNR values much less than one.

  13. Replacement of fluid-filter elements without interruption of flow

    NASA Technical Reports Server (NTRS)

    Kotler, R. A.; Ward, J. B.

    1969-01-01

    Gatling-type filter assembly, preloaded with several filter elements enables filter replacement without breaking into the operative fluid system. When the filter element becomes contaminated, a unit inner subassembly is rotated 60 degrees to position a clean filter in the line.

  14. Microbial characteristics and nitrogen transformation in planted soil filter for domestic wastewater treatment.

    PubMed

    Nurk, Kaspar; Truu, Jaak; Truu, Marika; Mander, Ulo

    2005-01-01

    We studied an experimental horizontal subsurface-flow planted sand filter in Kodijärve, Estonia. We measured the microbial biomass, nitrogen immobilization, potential nitrification, soil respiration, multiple carbon source utilization patterns of the microbial consortia of the soil samples, the carbon, nitrogen, and phosphorus content of the soil samples, the water quality and physicochemical indicators in water sampling wells as well as emissions of CO2, N2, NO2, and CH4 from the two beds (the dry bed and the wet bed) in the wetland. The potential nitrification of the upper layer of the dry bed could not be attributed primarily to autotrophic nitrification, or the nitrifying bacteria in this layer could be facultative heterotrophs, whereas autotrophic nitrification is predominant in the upper layer of the wet bed. It also was found that changing aeration conditions in the lower layer of the dry bed have resulted in a lower diversity of the microbial community and led to a relative depletion of easily degradable soil carbon resources. PMID:15921276

  15. Particle filter based on thermophoretic deposition from natural convection flow

    SciTech Connect

    Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )

    1994-04-01

    We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.

  16. Survey monitoring results on the reduction of micropollutants, bacteria, bacteriophages and TSS in retention soil filters.

    PubMed

    Tondera, Katharina; Koenen, Stefan; Pinnekamp, Johannes

    2013-01-01

    A main source of surface water pollution in Western Europe stems from combined sewer overflow. One of the few technologies available to reduce this pollution is the retention soil filter. In this research project, we evaluated the cleaning efficiency of retention soil filters measuring the concentration ratio of standard wastewater parameters and bacteria according to factors limiting efficiency, such as long dry phases or phases of long-lasting retention. Furthermore, we conducted an initial investigation on how well retention soil filters reduce certain micropollutants on large-scale plants. There was little precipitation during the 1-year sampling phase, which led to fewer samples than expected. Nevertheless, we could verify how efficiently retention soil filters clean total suspended solids. Our results show that retention soil filters are not only able to eliminate bacteria, but also to retain some of the micropollutants investigated here. As the filters were able to reduce diclofenac, bisphenol A and metoprolol by a median rate of almost 75%, we think that further investigations should be made into the reduction processes in the filter. At this point, a higher accuracy in the results could be achieved by conducting bench-scale experiments. PMID:24037150

  17. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    SciTech Connect

    Kuo, J.T.; Smid, J.; Hsiau, S.S.; Tsai, S.S.; Chou, C.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zones history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.

  18. JSC Mars-1 Soil Moisture Characteristic and Soil Freezing Characteristic Curves for Modeling Bulk Vapor Flow and Soil Freezing

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; Sizemore, H. G.

    2008-03-01

    A new JSC Mars-1 particle size distribution is used to establish soil moisture characteristic and soil freezing characteristic curves that are needed for modeling bulk (Darcy) vapor flow and soil freezing in the variably saturated subsurface of Mars.

  19. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    PubMed

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only. PMID:19501963

  20. Data assimilation with soil water content sensors and pedotransfer functions in soil water flow modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water flow models are based on a set of simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Soil water content monitoring data can be used to reduce the errors in models. Data assimilation (...

  1. Applying well flow adapted filtering to transient pumping tests

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Attinger, Sabine

    2014-05-01

    Transient pumping tests are often used to estimate porous medium characteristics like hydraulic conductivity and storativity. The interpretation of pumping test drawdowns is based on methods which are normally developed under the assumption of homogeneous porous media. However aquifer heterogeneity strongly impacts on well flow pattern, in particular in the vicinity of the pumping well. The purpose of this work is to present a method to interpret drawdowns of transient pumping tests in heterogeneous porous media. With this method we are able to describe the effects that statistical quantities like variance and correlation length have on pumping test drawdowns. Furthermore it allows inferring on the statistical parameters of aquifer heterogeneity from drawdown data by invers estimation, which is not possible using methods for homogeneous media like Theis' solution. The method is based on a representative description of hydraulic conductivity for radial flow regimes. It is derived from a well flow adapted filtering procedure (Coarse Graining), where the heterogeneity of hydraulic conductivity is assumed to be log-normal distributed with a Gaussian correlation structure. applying the up scaled hydraulic conductivity to the groundwater flow equation results in a hydraulic head which depends on the statistical parameters of the porous medium. It describes the drawdown of a transient pumping test in heterogeneous media. We used an ensemble of transient pumping test simulations to verify the up scaled drawdown solution. We generated transient pumping tests in heterogeneous media for various values of the statistical parameters variance and correlation length and evaluated their impact on the drawdown behavior as well as on the temporal evolution. We further examined the impact of several aspects like the location of an observation well or the local conductivity at the pumping well on the drawdown behavior. This work can be understood as an expansion of the work of Zech et

  2. Assimilating Remotely Sensed Surface Soil Moisture into SWAT using Ensemble Kalman Filter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a 1-D Ensemble Kalman Filter has been used to update the soil moisture states of the Soil and Water Assessment Tool (SWAT) model. Experiments were conducted for the Cobb Creek Watershed in southeastern Oklahoma for 2006-2008. Assimilation of in situ data proved limited success in the ...

  3. A Graphical Filter/Flow Representation of Boolean Queries: A Prototype Implementation and Evaluation.

    ERIC Educational Resources Information Center

    Young, Degi; Shneiderman, Ben

    1993-01-01

    Literature showing the disadvantages of Boolean logic in online searching is reviewed, and research comparing the Filter/Flow visual interface (i.e., a graphical representation of Boolean operators) with a text-only interface is described. A significant difference in the total number of correct queries is reported that favored Filter/Flow. (16…

  4. Steerable filters as a tool to determine the orientation of fibers in flowing suspensions

    NASA Astrophysics Data System (ADS)

    Carlsson, Allan; Lundell, Fredrik; Söderberg, L. Daniel

    2008-11-01

    Fiber suspension flows are found in industrial applications such as paper manufacturing and polymer processing. In order to experimentally study fiber motions in such suspensions it is essential to be able to determine the position and orientation of fibers as a function of time. One method to extract this information from captured images is to use image filtering. The image filtering is based on computing convolutions of the images with a filter matrix that resembles a fiber. Steerable filters represent a class of filters where an arbitrary orientation of the filter can be obtained from a linear combination of a limited set of basis filters. Since the basis filters are not orientation dependent this makes it possible to eliminate the orientation dependency from the convolutions. Here a specific steerable filter is evaluated for functionality of finding the position and orientation of fibers in a flowing suspension. Through application of the filter on artificially generated test images with known fiber orientation it is possible to show that the error is less than 1 degree. A good agreement is also found when comparing the orientation distribution with a robust, but computationally more expensive, method on a real flow case where fibers are suspended in a shear flow.

  5. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    SciTech Connect

    Singer, M A; Henshaw, W D; Wang, S L

    2008-02-04

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating

  6. Evaluation of a Filter-Based Model for Computations of Cavitating Flows

    NASA Astrophysics Data System (ADS)

    Huang, Biao; Wang, Guo-Yu

    2011-02-01

    To identify ways to improve the predictive capability of the current RANS-based cavitating turbulent closure, a filter-based model (FBM) is introduced by considering sub-filter stresses. The sub-filter stress is constructed directly by using the filter size and the conventional turbulence closure. The model is evaluated in steady cavitating flow over a blunt body revolution and unsteady cavitating flow around a Clark-Y hydrofoil respectively. Compared with the experimental data, those results indicate that FBM can be used to improve the predictive capability considerably.

  7. Indicator to predict the movement of phosphorus from soil to subsurface flow.

    PubMed

    McDowell, Richard; Sharpley, Andrew; Withers, Paul

    2002-04-01

    The movement of phosphorus (P) in subsurface flow can contribute to losses from agricultural land. This study aims to identify a soil P threshold above which P loss is likely to accelerate as a function of soil and management type. Lysimeters (25 cm i.d. by 30 cm deep) were taken of four soils from agricultural watersheds in Pennsylvania and New York. The soils had a range of Mehlich-3 extractable P (7-517 mg of P kg(-1)) in surface soil (0-7.5 cm for grassland and 0-23 cm for cultivated/arable) and reactive P, filtered <0.45 microm (RP(<0.45 microm) in subsurface flow (0.007-1.53 mg of P L(-1)). The loss of P from lysimeters increased greatly when Mehlich-3 extractable P was in excess of a mean concentration of 280 mg kg(-1), the degree of saturation of P sorption sites exceeded 38%, and the corrected P sorption strength (corrected for desorption) derived from the monolayer Langmuir equation was less than 0.07 L of P mg(-1). Of these variables, P sorption strength was most consistently related to RP(<0.45 microm) in subsurface flow across a range of soil managements. Use of the corrected Langmuir sorption strength parameter to estimate subsurface flow RP(<0.45 microm) derived from four U.S. soils was tested on four soils of different physiochemical characteristics (one calcareous) from the U.K. The U.K. soils showed similar concentration trends to the U.S. soils, with elevated RP(<0.45 microm) below a sorption strength of 0.07 L of P mg(-1). We propose that the P sorption strength derived from the monolayer Langmuir equation may be used to estimate the potential for P loss in subsurface flow, when simpler environmental tests such as P saturation derived from acid ammonium oxalate extraction are unclear or unsuitable. PMID:11999058

  8. Using a bias aware Ensemble Kalman Filter to predict soil moisture in a layered field

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Neuweiler, Insa; Wollschläger, Ute

    2014-05-01

    When modeling and predicting flow in the unsaturated zone, one problem are the strong heterogeneities in the system that occur on all scales and have in principle to be accounted for in the flow model. In general, however, our knowledge of subsurface structure often is poor and the internal structure of the model may be subject to strong simplifications. When modeling flow, models may have an inherent modeling error. In this work, we consider external bias corrections to account for unresolved subsurface structure within an Ensemble Kalman Filter (EnKF) state and parameter estimation process. We assimilate and predict local spatially distributed data from a heterogeneous soil using a homogeneous flow model. We apply the data assimilation scheme to a set of TDR observations taken over a long series in a layered plot (published in Wollschlaeger et al, 2009). Different assimilation and prediction intervals are tested as well as different parameter models. It is shown that the homogeneous model itself cannot be used to make prediction with the EnKF. When the bias corrections are introduced, however, the result clearly improves and the resulting model can be used to make reasonable predictions of local water content. It is also shown that in the proposed assimilation setup, the commonly used van Genuchten parameter model does not result in a better performance than the much simpler Russo-Gardner model, hence suggesting that the simpler model should be used for the assimilation. It will also be demonstrated that models that include the layering explicitly, might not lead to improved predictions, if the heterogeneous structure is not implemented correctly. Literature: Wollschlaeger, U., T. Pfaff and K. Roth (2009). Field-scale apparent hydraulic parameterisation obtained from TDR time series and inverse modelling, Hydrol. Earth. Sci., 13, 1953-1966.

  9. Hydrocyclone/Filter for Concentrating Biomarkers from Soil

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian; Obenhuber, Donald

    2008-01-01

    The hydrocyclone-filtration extractor (HFE), now undergoing development, is a simple, robust apparatus for processing large amounts of soil to extract trace amounts of microorganisms, soluble organic compounds, and other biomarkers from soil and to concentrate the extracts in amounts sufficient to enable such traditional assays as cell culturing, deoxyribonucleic acid (DNA) analysis, and isotope analysis. Originally intended for incorporation into a suite of instruments for detecting signs of life on Mars, the HFE could also be used on Earth for similar purposes, including detecting trace amounts of biomarkers or chemical wastes in soils.

  10. Data Assimilation for Vadose Zone Flow Modeling Using the Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.; Zha, Y.; Xue, L.

    2015-12-01

    The natural system is open and complex and the hydraulic parameters needed for describing flow and transport in the vadose zone are often poorly known, making it prone to multiple interpretations, mathematical descriptions and uncertainty. Quite often a reasonable "handle" on a sites flow characteristics can be gained only through direct observation of the flow processes itself, determination of the spatial- and probability distributions of material properties combined with computationally expensive inversions of the Richards equation. In groundwater systems, the ensemble Kalman filter (EnKF) has proven to be an effective alternative to model inversions by assimilating observations directly into an ensemble of groundwater models from which time and/or space-variable variable probabilistic quantities of the flow process can be derived. Application of EnKF to Richards equation-type unsaturated flow problems, however, is more challenging than in groundwater systems because the relation of state and model parameters is strongly nonlinear. In addition, the type of functional dependence of moisture content and hydraulic conductivity on matric potential leads to high-dimensional (in the parameter space) problems even under conditions where closed-form expressions of these models such as van Genuchten-Mualem formulations are used. In this study, we updated soil water retention parameters and hydraulic conductivity together and used Restart EnKF, which rerun the nonlinear model from the initial time to obtain the updated state variables, in synthetic cases to explore the factors that may influence estimation results, including the initial estimate, the ensemble size, the observation error, and the assimilation interval. We embedded the EnKF into the Bayesian model averaging framework to enhance the model reliability and reduce predictive uncertainties. This approach is evaluated from a 15 m deep semi-arid highly heterogeneous and anisotropic vadose zone site at the

  11. Activated soil filters (bio filters) for the elimination of xenobiotics (micro-pollutants) from storm- and waste waters.

    PubMed

    Bester, Kai; Schäfer, Daniel

    2009-06-01

    A technical scale (0.12 m3) activated soil filter (bio filter) has been used to eliminate diverse xenobiotics (organic micro-pollutants) such as organophosphate flame retardants, and -plasticisers, musk fragrances, DEHP, benzothiazoles and triclosan from water. Model experiments to treat combined sewer overflow, storm water and a post treatment of waste water were performed in controlled laboratory experiments. The indicator compounds were typical for waste water. Diverse chemical compound groups and a wide spectrum from the lipophilic (pKow=5.9) to the hydrophilic (pKow=2.6) were included. The system consisted of a layer with high organic content (with vegetation to prevent clogging), a sand filter and a gravel drainage layer. The organic layer was spiked with activated sludge to enhance biomass and biodegradation potential. Usually the elimination rates varied from 64% to 99%, with only one compound reaching as little as 17%. For a technical suitability assessment it was calculated how long these filters would be stable in eliminating organic compounds from water. The estimated operating times for such systems was found to be about 100 years for a stack height of 2 m a year in regard to most compounds in this study. PMID:19371921

  12. Fractal Analysis of Laplacian Pyramidal Filters Applied to Segmentation of Soil Images

    PubMed Central

    de Castro, J.; Méndez, A.; Tarquis, A. M.

    2014-01-01

    The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957

  13. Fractal analysis of laplacian pyramidal filters applied to segmentation of soil images.

    PubMed

    de Castro, J; Ballesteros, F; Méndez, A; Tarquis, A M

    2014-01-01

    The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957

  14. Flow-through rates and evaluation of solids separation of compost filter socks versus silt fence in sediment control applications.

    PubMed

    Keener, Harold M; Faucette, Britt; Klingman, Michael H

    2007-01-01

    Soil loss rates from construction sites can be 1000 times the average of natural soil erosion rates and 20 times that from agricultural lands. Silt fence (SF) is the current industry standard used to control sediment originating from construction activities. Silt fences are designed to act as miniature detention ponds. Research has indicated that SF sediment filtering efficiency is related to its ability to detain and pond water, not necessarily the filtration ability of the fabric. Design capacity and spacing is based on flow-through rate and design height. In addition, increased detention of runoff and pressure from ponding may increase the likelihood of overtopping or failure of SF in field application. Testing was conducted on compost silt socks (SS) and SF to determine sediment filtering efficiency, flow-through rate, ponding depth, overtopping point, design height, and design capacity. Results indicate flow-through rate changes with time, as does ponding depth, due to the accumulation of solids on/in the sediment filters. Changes in depth with time were a linear function of flow rate after 10 min of flow, up to the time the sediment filter is overtopped. Predicting the capacity of SF and SS to handle runoff without the filter being overtopped requires consideration of both runoff rate and length of runoff time. Data show SS half the heights of SF were less likely to overtop than SF when sediment-laden runoff water flow rates are less than 1.03 L(-1) s(-1) m(-1) (5 gpm/ft, gal per minute per lineal foot). Ponded depth behind a 61.0-cm (24 in) SF increased more rapidly than behind a 30.5-cm diam. (12 in) SS, and at the end of the thirty minutes, the depth behind the SF was 75% greater than that behind the SS. Removal of solids by the SF and the SS were not shown to be statistically different. Results were used to create a Microsoft Excel-based interactive design tool to assist engineers and erosion and sediment control planners on how to specify compost SS

  15. Design and Initial Development of Monolithic Cross-Flow Ceramic Hot-Gas Filters

    SciTech Connect

    Barra, C.; Limaye, S.; Stinton, D.P.; Vaubert, V.M.

    1999-06-06

    Advanced, coal-fueled, power generation systems utilizing pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) technologies are currently being developed for high-efficiency, low emissions, and low-cost power generation. In spite of the advantages of these promising technologies, the severe operating environment often leads to material degradation and loss of performance in the barrier filters used for particle entrapment. To address this problem, LoTEC Inc., and Oak Ridge National Laboratory are jointly designing and developing a monolithic cross-flow ceramic hot-gas filter. The filter concept involves a truly monolithic cross-flow design that is resistant to delamination, can be easily fabricated, and offers flexibility of geometry and material make-up. During Phase I of the program, a thermo-mechanical analysis was performed to determine how a cross-flow filter would respond both thermally and mechanically to a series of thermal and mechanical loads. The cross-flow filter mold was designed accordingly, and the materials selection was narrowed down to Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}P{sub 6}O{sub 24} (CS-50) and 2Al{sub 2}O{sub 3}-3SiO{sub 2} (mullite). A fabrication process was developed using gelcasting technology and monolithic cross-flow filters were fabricated. The program focuses on obtaining optimum filter permeability and testing the corrosion resistance of the candidate materials.

  16. High efficiency, down flow air filter sealing and support system

    SciTech Connect

    Mattison, A.H.

    1986-07-15

    An assembly of high efficiency air filter units through which essentially all air entering a clean space below the units must pass to remove particulate matter down to sub-micron size from the air, the assembly comprising: (a) a plurality of air filter units each having a filter core of pleated media sealed in air-tight engagement on four sides to a surrounding, box-like, rigid frame, having side and end members; (b) means for supporting the filter units adjacent the upper surfaces thereof from structure above the space with adjacent units having the side and end members thereof providing adjoining vertical surfaces in closely spaced relation with the lower surfaces of the units in essentially the same horizontal plane to form at least a portion of the top of the space; and (c) a caulking material filling all spaces between the adjoining vertical surfaces of adjacent filter units, effectively sealing the spaces and providing the sole means preventing passage of air around the units.

  17. An adaptive ensemble Kalman filter for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a 19-year twin experiment for the Red-Arkansas river basin we assimilate synthetic surface soil moisture retrievals into the NASA Catchment land surface model. We demonstrate how poorly specified model and observation error parameters affect the quality of the assimilation products. In particul...

  18. Assessment of existing roadside swales with engineered filter soil: I. Characterization and lifetime expectancy.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Régent, Yoann; Sommer, Harald; Magid, Jakob; Jensen, Marina B

    2012-01-01

    Roadside infiltration swales with well-defined soil mixtures (filter soil) for the enhancement of both infiltration and treatment of stormwater runoff from roads and parking areas have been common practice in Germany for approximately two decades. Although the systems have proven hydraulically effective, their treatment efficiency and thus lifetime expectancies are not sufficiently documented. The lack of documentation restricts the implementation of new such systems in Germany as well as other countries. This study provides an assessment of eight roadside infiltration swales with filter soil from different locations in Germany that have been operational for 6 to16 yr. The swales were assessed with respect to visual appearance, infiltration rate, soil pH, and soil texture, as well as soil concentration of organic matter, heavy metals (Cd, Cr, Cu, Pb, Zn), and phosphorus. Visually, the swales appeared highly variable with respect to soil color and textural layering as well as composition of plants and soil-dwelling organisms. Three swales still comply with the German design criteria for infiltration rate (10 m/s), while the remaining swales have lower, yet acceptable, infiltration rates around 10 m/s. Six of the eight studied soils have heavy metal concentrations exceeding the limit value for unpolluted soil. Provided that the systems are able to continuously retain existing and incoming pollutants, our analysis indicates that the soils can remain operational for another 13 to 136 yr if the German limit values for unrestricted usage in open construction works are applied. However, no official guidelines exist for acceptable soil quality in existing infiltration facilities. PMID:23128753

  19. Analysis of nitrogen removal processes in a subsurface flow carbonate sand filter treating municipal wastewater.

    PubMed

    Kløve, Bjørn; Søvik, Anne-Kristine; Holtan-Hartwig, Liv

    2005-01-01

    Controlled experiments were carried out in a mesoscale subsurface flow sand filter treating municipal wastewater from a single household. The system consisted of a 50 cm high vertical flow column (pre-filter) with unsaturated flow and a 3 m long horizontal subsurface flow unit (main filter) with saturated flow. Fluxes of nitrogen and carbon were analyzed in 4 different operating conditions (low and high loading, with and without the prefilter unit). Water samples were taken from the inlet, the outlet and within the sand filter at different depths and locations and analysed for water quality (Tot N, NO3-N, NH4-N, TOC, DOC, CODcr, BOD5, SS, pH, and EC) and dissolved gas content (N2O, CH4, and CO2). Emissions of N2O, CH4, and CO2 were measured with the closed-chamber technique adjacent to water quality sampling points. The results show that prefiltering in a vertical, unsaturated flow column changed the incoming ammonium to nitrate during low loading. During high loading part of the ammonium nitrified in the pre-filter was lost by denitrification. Within the horizontal main filter there were two pathways for the incoming nitrate: denitrification and dissimilatory nitrate reduction to ammonium (DNRA). PMID:15921289

  20. Assessment of intermittently loaded woodchip and sand filters to treat dairy soiled water.

    PubMed

    Murnane, J G; Brennan, R B; Healy, M G; Fenton, O

    2016-10-15

    Land application of dairy soiled water (DSW) is expensive relative to its nutrient replacement value. The use of aerobic filters is an effective alternative method of treatment and potentially allows the final effluent to be reused on the farm. Knowledge gaps exist concerning the optimal design and operation of filters for the treatment of DSW. To address this, 18 laboratory-scale filters, with depths of either 0.6 m or 1 m, were intermittently loaded with DSW over periods of up to 220 days to evaluate the impacts of depth (0.6 m versus 1 m), organic loading rates (OLRs) (50 versus 155 g COD m(-2) d(-1)), and media type (woodchip versus sand) on organic, nutrient and suspended solids (SS) removals. The study found that media depth was important in contaminant removal in woodchip filters. Reductions of 78% chemical oxygen demand (COD), 95% SS, 85% total nitrogen (TN), 82% ammonium-nitrogen (NH4N), 50% total phosphorus (TP), and 54% dissolved reactive phosphorus (DRP) were measured in 1 m deep woodchip filters, which was greater than the reductions in 0.6 m deep woodchip filters. Woodchip filters also performed optimally when loaded at a high OLR (155 g COD m(-2) d(-1)), although the removal mechanism was primarily physical (i.e. straining) as opposed to biological. When operated at the same OLR and when of the same depth, the sand filters had better COD removals (96%) than woodchip (74%), but there was no significant difference between them in the removal of SS and NH4N. However, the likelihood of clogging makes sand filters less desirable than woodchip filters. Using the optimal designs of both configurations, the filter area required per cow for a woodchip filter is more than four times less than for a sand filter. Therefore, this study found that woodchip filters are more economically and environmentally effective in the treatment of DSW than sand filters, and optimal performance may be achieved using woodchip filters with a depth of at least 1

  1. Performance Evaluation of Axial Flow AG-1 FC and Prototype FM (High Strength) HEPA Filters - 13123

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Wilson, John A.; Waggoner, Charles A.

    2013-07-01

    High efficiency particulate air (HEPA) filters are routinely used in DOE nuclear containment activities. The Nuclear Air Cleaning Handbook (NACH) stipulates that air cleaning devices and equipment used in DOE nuclear applications must meet the American Society of Mechanical Engineers (ASME) Code on Nuclear Air and Gas Treatment (AG-1) standard. This testing activity evaluates two different axial flow HEPA filters, those from AG-1 Sections FC and FM. Section FM is under development and has not yet been added to AG-1 due to a lack of qualification data available for these filters. Section FC filters are axial flow units that utilize a fibrous glass filtering medium. The section FM filters utilize a similar fibrous glass medium, but also have scrim backing. The scrim-backed filters have demonstrated the ability to endure pressure impulses capable of completely destroying FC filters. The testing activities presented herein will examine the total lifetime loading for both FC and FM filters under ambient conditions and at elevated conditions of temperature and relative humidity. Results will include loading curves, penetration curves, and testing condition parameters. These testing activities have been developed through collaborations with representatives from the National Nuclear Security Administration (NNSA), DOE Office of Environmental Management (DOE-EM), New Mexico State University, and Mississippi State University. (authors)

  2. Molecular filter-based diagnostics in high speed flows

    NASA Technical Reports Server (NTRS)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  3. Mass flow of a volatile organic liquid mixture in soils

    SciTech Connect

    Gerstl, Z.; Galin, Ts.; Yaron, B.

    1994-05-01

    The flow of kerosene, a volatile organic liquid mixture (VOLM), was studied in loam and clay soils and in a medium sand. The kerosene residual capacity and conductivity were determined for all three media at different initial moisture contents and with kerosene of different compositions. The kerosene conductivity of the soil was found to be strongly influenced by the soil texture and initial moisture content as well as by the kerosene composition. The kerosene conductivity of the sand was two orders of magnitude greater than that of the soils and was unaffected by initial moisture contents as high as field capacity. The kerosene conductivity of the loam soil was similar in oven dry and air dry soils, but increased significantly in soils at 70% and fun field capacity due to the Yuster effect. In the clay soil the kerosene conductivity of the air dry sod was four times that of the oven dry sod and increased somewhat in the soil at 70% field capacity. No kerosene flow was observed in the oven dry soil at full field capacity. The differences in kerosene conductivity in these soils and the effect of moisture content were attributed to the different pore-sin distributions of the soil& Changes in the composition of the kerosene due to volatilization of the light fractions resulted in increased viscosity of the residual kerosene. This increased viscosity affected the fluid properties of kerosene, which resulted in decreased kerosene conductivity in the sand and the soils. 29 refs., 4 figs., 4 tabs.

  4. Using Tracer Experiments To Study Phosphorus Transfer From Soil To Overland Flow

    NASA Astrophysics Data System (ADS)

    Vollmer, T.; Stamm, C.; Schaerer, M.; Sinaj, S.; Frossard, E.; Fluehler, H.

    Diffuse phosphorus (P) losses from agricultural land contribute to the eutrophication of surface water bodies in Switzerland. Grassland soils in areas of high animal stock densities are often prone to high P losses due to over-fertilization and a strong accumu- lation of P in the topsoil. In order to understand the effects of management practices and remediation measures on P transfer into runoff water at a small scale it is impor- tant to localize the sources of this phosphorus within the soil profile and to describe the water flows within the topsoil­overland flow system. We are studying the effects of remediation measures on P availability in the soil and on P concentrations in overland flow in a field experiment. We are using tracer exper- iments to examine the mixing behavior of water applied with a sprinkling device onto the soil surface with pre-event soil water and to trace the contribution of those two water sources to overland flow. Two plots were pre-irrigated with a solution of KBr in order to label the soil solu- tion. After a few days of equilibration, two fluorescent dyes were applied to different areas of the plots at a constant rate of 40 mm h-1. Surface runoff was analyzed for tracer concentrations. Small soil monoliths (0.35 * 0.25 *0.20 m3) were excavated and the tracer distribution within the blocks was mapped using a digital camera, optical filters, and tracer specific excitation light source. This tracing technique allowed for independent mapping of the distribution of two simultaneously applied tracers. The experiments demonstrated heterogenous infiltration of the dyes, negligible lat- eral translocation of the dyes within the soil, minimal transfer of the pre-applied Br- into overland flow, early breakthrough of the dye tracers in overland flow which was independent of the tracers sorption properties and a recovery of the dyes that corre- sponded to the runoff ratio. In all, the experiments indicate a very restricted interac- tion between

  5. [Effect of fly ash-filtered mud mixture on soil properties and radish yield and quality].

    PubMed

    Xing, S; Zhao, Z; Zhou, B; Wu, X

    2001-02-01

    Based on pot culture experiment, the effect of fly ash-filtered mud mixture on soil biochemical properties, radish yield and its quality, and heavy metal accumulation in both soil and radish was examined. The mixture was made by mixing fly ash and filtered mud in proportion 1:1(w/w) and adding small amount of inorganic fertilizer. Its Cd, Pb, Cr, As and Hg contents were much lower than those requested by state control criteria. After applying this mixture in a definite amount, no significant accumulation of heavy metals was found in both soil and radish, the pollution index of heavy metals was < 1, the quantities of soil bacteria increased notably, and the activities of soil urease, phosphates and cellulosase also raised significantly. The application of the mixture promoted radish growth and its development and metabolism. The reducing sugar and vitamin C in radish also increased markedly. The results indicated that the use of adequate amounts of the mixture did not cause any obvious heavy metal pollution in both soil and radish, but could improve soil fertility, and raise radish yield and its quality remarkably. PMID:11813414

  6. Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-08-01

    Assimilation of satellite soil moisture and streamflow data into a distributed hydrologic model has received increasing attention over the past few years. This study provides a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. Performance is assessed over the Salt River Watershed in Arizona, which is one of the watersheds without anthropogenic effects in Model Parameter Estimation Experiment (MOPEX). A total of five data assimilation (DA) scenarios are designed and the effects of the locations of streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture and streamflow are assessed. In addition, a geostatistical model is introduced to overcome the significantly biased satellite soil moisture and also discontinuity issue. The results indicate that: (1) solely assimilating outlet streamflow can lead to biased soil moisture estimation; (2) when the study area can only be partially covered by the satellite data, the geostatistical approach can estimate the soil moisture for those uncovered grid cells; (3) joint assimilation of streamflow and soil moisture from geostatistical modeling can further improve the surface soil moisture prediction. This study recommends that the geostatistical model is a helpful tool to aid the remote sensing technique and the hydrologic DA study.

  7. A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Liu, Di; Lü, Haishen; Fu, Xiaolei; Xiang, Long; Zhu, Yonghua

    2012-12-01

    SummaryHybrid data assimilation (DA) is greatly used in recent hydrology and water resources research. In this study, one newly introduced technique, the ensemble particle filter (EnPF), formed by coupling ensemble Kalman filter (EnKF) with particle filter (PF), is applied for a multi-layer soil moisture prediction in the Meilin watershed based on the support vector machines (SVMs). The data used in this paper includes six-layer soil moisture: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm and 300 cm and five meteorological parameters: soil temperature at 5 cm and 20 cm, air temperature, relative humidity and solar radiation in the study area. In order to investigate this EnPF approach, another two filters, EnKF and PF are applied as another two data assimilation methods to conduct a comparison. In addition, the SVM model simulated data without updating with data assimilation technique is discussed as well to evaluate the data assimilation technique. Two experimental cases are explored here, one with 200 initial training ensemble members in the SVM training phase while the other with 1000 initial training ensemble members. Three main findings are obtained in this study: (1) the SVMs machine is a statistically sound and robust model for soil moisture prediction in both the surface and root zone layers, and the larger the initial training data ensemble, the more effective the operator derived; (2) data assimilation technique does improve the performance of SVM modeling; (3) EnPF outweighs the performance of other two filters as well as the SVM model; Moreover, the ability of EnPF and PF is not positively related to the resampling ensemble size, when the resampling size exceeds a certain amount, the performance of EnPF and PF would be degraded. Because the EnPF still performs well than EnKF, it can be used as a powerful data assimilation tool in the soil moisture prediction.

  8. Characterization of filter cake ash and applications for soil stabilization

    SciTech Connect

    McManis, K.L.; Nataraj, M.

    1997-12-31

    Recycled applications were investigated for an ash produced from the incineration of diatomaceous earth filter cake used in the manufacture of additives for petroleum products. A complete chemical and physical characterization of the ash was conducted. It includes lumps which are the result of gypsum cementation. The ash produces light-weight products and exhibits pozzolanic characteristics. Mixtures of the ash with sand and other stabilizing agents were investigated for road base and subbase applications. Strength and durability tests and a microanalysis were conducted to identify the stabilization products produced. The testing program for this study indicates that the ash holds promise as a light-weight fine aggregate for use as an earth fill material.

  9. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  10. Electroosmotic flow behaviour of metal contaminated expansive soil.

    PubMed

    Sivapullaiah, P V; Prakash, B S Nagendra

    2007-05-17

    It is important to study the flow behaviour through soil during electrokinetic extraction of contaminants to understand their removal mechanism. The flow through the expansive soil containing montmorillonite is monitored during laboratory electrokinetic extraction of heavy metal contaminants. The permeability of soil, which increases due to the presence of contaminants, is further enhanced during electrokinetic extraction of contaminants due to osmotic permeability. The variations in flow rates through the soil while the extracting fluid is changed to dilute acetic acid (used to control the increase of pH) and EDTA solution (used to desorb the metal ions from soil) are studied. The trends of removal of contaminants vis-a-vis the changes in the flow through the soil during different phases of electrokinetic extraction are established. Chromium ions are removed by flushing of water through the soil and increased osmotic flow is beneficial. Removal of iron ions is enhanced by induced osmotic flow and desorption of ions by electrokinetic processes. PMID:17276001

  11. Modeling Flow Past a TrapEase Inferior Vena Cava Filter

    NASA Astrophysics Data System (ADS)

    Singer, Michael; Henshaw, William; Wang, Stephen

    2008-11-01

    This study uses three-dimensional computational fluid dynamics to evaluate the efficacy of the TrapEase inferior vena cava (IVC) filter. Hemodynamics of the unoccluded and partially occluded filter are examined, and the clinical implications are assessed. The IVC, which is the primary vein that drains the legs, is modeled as a straight pipe, and a geometrically accurate model of the filter is constructed using computer aided design. Blood is modeled as a homogeneous, incompressible, Newtonian fluid, and the method of overset grids is used to solve the Navier-Stokes equations. Results are corroborated with in-vitro studies. Flow around the unoccluded filter demonstrates minimal disruption, but spherical clots in the downstream trapping position lead to regions of stagnant and recirculating flow that may promote further clotting. The volume of stagnant flow and the peak wall shear stress increase with clot volume. For clots trapped in the upstream trapping position, flow is disrupted along the cava wall downstream of the clot and within the filter. The shape and location of trapped clots also effect the peak wall shear stress and may impact the efficacy of the filter.

  12. Paddy soil cracks: characteristics and their impact on preferential flow

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongbin; Peng, Xinhua

    2015-04-01

    Paddy soils with harrowing and puddling easily crack under alternate flooding and drying cycles (AFD). These cracks in paddy field may become pathways of preferential flow, improving water infiltration and increasing the pollution risk of groundwater. The objectives of this study were to investigate the 2D and 3D characteristics of soil cracks in paddy fields; and to determine their impacts on preferential flow. Two paddy fields, one cultivated for 20 years (YPF) and the other cultivated for more than 100 years (OPF), were subjected to either alternate flooding and drying (AFD) or continuous flooding (CF) during rice growing season. After the harvest of late rice crop, soil surface cracks were recorded using digital camera; and 3D structure of soil cracks was scanned by computed tomography (CT). The characteristics of 2D and 3D soil cracks were quantified with the aid of image analysis. The influence of soil cracks on preferential flow was characterized by tension infiltrometer, dye tracer and ion breakthrough curve. Our main results in this study were summed up as follows: under AFD condition, for the 2D soil cracks, the YPF presented 10 fold more cracks in quantity but these cracks were finer and more complicated as compared to those generated in the OPF. The results of CT scanning showed that the presence of soil cracks under the AFD increased average macropore length but decreased the number of macropores significantly, and it also changed macropore size distribution and macropore area density distribution with soil depth. The 3D structures of soil cracks were complicated but can be quantified using CT. The depth of soil cracks in young paddy field (7.58 cm) was smaller than that in old paddy field (9.34 cm), but soil cracks in both fields did not reach the plough pan (about 15 cm). Soil cracks significantly increased soil hydraulic conductivity. They serviced as pathways for preferential flow only in plow layer, as evidenced by a large dyed area above plough

  13. Regional Evapotranspiration Estimation by Using Wireless Sap Flow and Soil Moisture Measurement Systems

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Yu, P.; Yang, T.; Davis, T. W.; Liang, X.; Tseng, C.; Cheng, C.

    2011-12-01

    consumption. WSN is the best way for collecting sap flow and soil moisture data in this study. Since the data were collected through the radio in the field, there may have some noise randomly. The weighted least-squares method was used to filter the raw data. Through collecting the observation data by WSN and transferring them into regional scale, we could get regional evapotranspiration.

  14. Simulation of unsteady flow and soil erosion in irrigation furrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion in irrigation furrows significantly impacts the efficiency of irrigation,infiltration and fertilization. This study developed a one-dimensional numerical model to simulate unsteady flow and the resultant soil erosion and sediment transport in irrigation furrows. The model solves a revis...

  15. Simulation of unsteady flow and soil erosion in irrigation furrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion in irrigation furrows significantly impacts the efficiency of irrigation, infiltration and fertilization. This study developed a numerical model to simulate unsteady flow and the resultant soil erosion and sediment transport in irrigation furrows. The model solves a revised version of t...

  16. Modelling susceptibility of grassland soil to macropore flow

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah

    2015-06-01

    Investigating preferential flow, including macropore flow, is crucial to predicting and preventing point sources of contamination in soil, for example in the vicinity of pumping wells. With a view to advancing groundwater protection, this study aimed (i) to quantify the strength of macropore flow in four representative natural grassland soils on the Swiss plateau, and (ii) to define the parameters that significantly control macropore flow in grassland soil. For each soil type we selected three measurement points on which three successive irrigation experiments were carried out, resulting in a total of 36 irrigations. The strength of macropore flow, parameterized as the cumulated water volume flowing from macropores at a depth of 1 m in response to an irrigation of 60 mm h-1 intensity and 1 h duration, was simulated using the dual-permeability MACRO model. The model calibration was based on the key soil parameters and fine measurements of water content at different depths. Modelling results indicate high performance of macropore flow in all investigated soil types except in gleysols. The volume of water that flowed from macropores and was hence expected to reach groundwater varied between 81% and 94% in brown soils, 59% and 67% in para-brown soils, 43% and 56% in acid brown soils, and 22% and 35% in gleysols. These results show that spreading pesticides and herbicides in pumping well protection zones poses a high risk of contamination and must be strictly prohibited. We also found that organic carbon content was not correlated with the strength of macropore flow, probably due to its very weak variation in our study, while saturated water content showed a negative correlation with macropore flow. The correlation between saturated hydraulic conductivity (Ks) and macropore flow was negative as well, but weak. Macropore flow appears to be controlled by the interaction between the bulk density of the uppermost topsoil layer (0-0.10 m) and the macroporosity of the soil

  17. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows

    NASA Technical Reports Server (NTRS)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang

    2009-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  18. Performance of grass barriers and filter strips under interrill and concentrated flow.

    PubMed

    Blanco-Canqui, Humberto; Gantzer, Clark J; Anderson, S H

    2006-01-01

    Effectiveness of grass barriers and vegetative filter strips (FS) for reducing transport of sediment and nutrients in runoff may depend on runoff flow conditions. We assessed the performance of (1) switchgrass (Panicum virgatum L.) barriers (0.7 m) planted above fescue (Festuca arundinacea Schreb.) filter strips under interrill (B-FS) and concentrated flow (CF-B-FS), and (2) fescue alone under interrill (FS) and concentrated flow (CF-FS) for reducing runoff, sediment, nitrogen (N), and phosphorus (P) loss from fallow plots on a Mexico silt loam. We compared exclusively the performance of barriers and filter strips separately under interrill and concentrated flow. Runoff and sediment were sampled at 1 m above and at 0.7, 4, and 8 m below the downslope edge of the sediment source area. Filter strips under interrill flow reduced 80% and those under concentrated flow reduced 72% of sediment at 0.7 m (P < 0.01). With the addition of supplemental runoff simulating runoff from a larger sediment source area, FS reduced 80%, but CF-FS reduced only 60% of sediment. The FS reduced organic N and NO(3)-N by an additional 50% (P < 0.01) more than CF-FS at 0.7 m. Although the effectiveness of both treatments increased with increasing width, CF-FS removed less sediment than FS alone at 8 m (P < 0.04). In contrast, barriers above filter strips under interrill and concentrated flow were equally effective at 8 m; decreasing runoff by 34%, sediment by 99%, and nutrients by 70%. Thus, barriers combined with FS can be an effective alternative to FS alone for sites where concentrated flows may occur. PMID:17071864

  19. Evaluation of N95 filtering facepiece respirator efficiency with cyclic and constant flows.

    PubMed

    Bahloul, Ali; Mahdavi, Alireza; Haghighat, Fariborz; Ostiguy, Claude

    2014-01-01

    An increasing demand for protecting workers against harmful inhalable ultrafine particles (UFPs), by means of filtering facepiece respirators (FFRs), necessitates assessing the efficiency of FFRs. This article evaluates the penetration of particles, mostly in the ultrafine range, through one model of N95 FFRs exposed to cyclic and constant flows, simulating breathing for moderate to heavy work loads. The generated particles were poly-dispersed NaCl, within the range of 10-205.4 nm. The tests were performed for several cyclic flows, with mean inhalation flows (MIFs) ranging from 42 to 360 L/min, and constant flows with the same range. The measurements were based on filter penetration and did not consider particle leakage. With the penetrations recorded for the selected constant and cyclic flows, the worst-case scenario penetrations at the most penetrating particle size (MPPS) were obtained. The MPPS penetrations measured with the cyclic and constant flows equivalent to minute volume, MIF and peak inhalation flow (PIF) of the cyclic flows were then compared. It was indicated that the constant flows equivalent to the minute volume or PIF of the cyclic flow could not accurately represent the penetration of the corresponding cyclic flow: the constant flow equal to the minute volume of the cyclic flow significantly underestimated the MPPS penetration of the corresponding cyclic flow, while the constant flow equal to the PIF of the cyclic flow overestimated it. On the other hand, for the constant flow equal to the MIF of the cyclic flow, the MPPS penetrations were almost equal for both the constant and cyclic flows, for the lower flow rates (42 to 170 L/min). For higher flow rates (230 to 360 L/min), however, the MPPS penetration was exceeded under the constant flows, compared with the corresponding cyclic flows. It was therefore concluded that the constant flow equal to the MIF of the cyclic flow could better predict the results of corresponding cyclic flow, since it

  20. Soil pipe flow tracer experiments: 1. Connectivity and transport characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distributio...

  1. File-Based Data Flow in the CMS Filter Farm

    SciTech Connect

    Andre, J.M.; et al.

    2015-12-23

    During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.

  2. File-based data flow in the CMS Filter Farm

    NASA Astrophysics Data System (ADS)

    Andre, J.-M.; Andronidis, A.; Bawej, T.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.

    2015-12-01

    During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.

  3. Accumulation of metals in the soil of an overland flow wastewater treatment system.

    PubMed

    Stefanutti, Ronaldo; Packer, Ana Paula; Filho, Bruno Coraucci; Mattiazzo, Maria Emilia; de Figueiredo, Roberto F

    2002-12-01

    Accumulation of Co, Cu, Cr, Mo, Ni, Pb and Zn was evaluated in a soil profile of an overland flow system used for the post-treatment of urban wastewater. A pilot version of the overland flow system received urban wastewater from five up-flow anaerobic filters filled with bamboo (Bambusa tuldoides) rings. The anaerobic effluent was applied as feed over 18 months at rates varying from 7 to 28 L min(-1), to a vegetated slope length covered with Tifton 85 (Cynodon) sp. grass. Soil and plant samples were collected in triplicate from the top to the bottom of the slope. In addition, the soils were sampled at the depths 0-20 and 20-40 cm. The metal concentrations found in the overall system were compared to those obtained in a control area located at the beginning of the slope onto which nothing was applied. A month of monitoring the urban wastewater of Limeira City (São Paulo State, Brazil) showed a drastic change in metals concentration due to the irregular discharge of industrial waste. This irregular discharge introduces Cr, Cu, Ni, Pb and Zn into the system used to treat domestic wastewater. The mass balance indicates the accumulation of metals in the soil and the translocation to the plants; also that they could be evapotranspirated, percolated and discharged. PMID:12509052

  4. Performance of Improved High-Order Filter Schemes for Turbulent Flows with Shocks

    NASA Technical Reports Server (NTRS)

    Kotov, Dmitry Vladimirovich; Yee, Helen M C.

    2013-01-01

    The performance of the filter scheme with improved dissipation control ? has been demonstrated for different flow types. The scheme with local ? is shown to obtain more accurate results than its counterparts with global or constant ?. At the same time no additional tuning is needed to achieve high accuracy of the method when using the local ? technique. However, further improvement of the method might be needed for even more complex and/or extreme flows.

  5. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions

  6. CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh.

    PubMed

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda R; Medronho, Ricardo A

    2009-11-01

    In the present work Computational Fluid Dynamics (CFD) was used to study the flow field and particle dynamics in an internal spin-filter (SF) bioreactor system. Evidence of a radial exchange flow through the filter mesh was detected, with a magnitude up to 130-fold higher than the perfusion flow, thus significantly contributing to radial drag. The exchange flow magnitude was significantly influenced by the filter rotation rate, but not by the perfusion flow, within the ranges evaluated. Previous reports had only given indirect evidences of this exchange flow phenomenon in spin-filters, but the current simulations were able to quantify and explain it. Flow pattern inside the spin-filter bioreactor resembled a typical Taylor-Couette flow, with vortices being formed in the annular gap and eventually penetrating the internal volume of the filter, thus being the probable reason for the significant exchange flow observed. The simulations also showed that cells become depleted in the vicinity of the mesh due to lateral particle migration. Cell concentration near the filter was approximately 50% of the bulk concentration, explaining why cell separation achieved in SFs is not solely due to size exclusion. The results presented indicate the power of CFD techniques to study and better understand spin-filter systems, aiming at the establishment of effective design, operation and scale-up criteria. PMID:19998058

  7. Radial Flow Fludized Filter Finds Niche as a Pretreatment System for Surface Water in Small Communities

    EPA Science Inventory

    An emerging technology called radial flow fluidized filter (R3f) has been developed as a low cost simplistic filtration technology for small communities of less than 10,000 people. Fouling is a major impediment to the sustainability of membrane technology particularly for small ...

  8. Wastewater reuse in on-site wastewater treatment: bacteria and virus movement in unsaturated flow through sand filter.

    PubMed

    Sélas, B; Lakel, A; Andres, Y; Le Cloirec, P

    2003-01-01

    In on-site wastewater treatment plants, effluents are pre-treated by septic tank and treated by soil infiltration or sand filtration systems, with unsaturated flow conditions. These systems remove efficiently carbon, nitrogen and suspended solids. But for microbial pollution, the treatment efficiency depends on the hydrodynamic behaviour and filtering media characteristics. Contamination of superficial water and groundwater due to pathogenic viruses and pathogenic bacteria is responsible for many diseases. The objective of this study is to approach the mechanisms and operating conditions to control bacteria and virus release in the environment. Experiments were carried out on reactors of different length packed with sand. Hydraulic load of 90 cm x d(-1) with a pulse periodic flow was used. The influence of chemical composition of the solution on the treatment efficiency has also been studied. For the first time, the residence time distribution (RTD) has been studied using a conservative tracer (KI), to determine the main hydrodynamic parameters. For the second time, the RTD with bacterial and viral tracers (E. coli, bacteriophage MS2) was applied, with the aim to define microbial behaviour in filtering media, including adsorption and filtration phenomena. This work allowed us to determine retardation factors according to the hydraulic loads and chemical composition. PMID:12578174

  9. Modeling soil detachment capacity by rill flow using hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Wang, Zhanli; Shen, Nan; Chen, Hao

    2016-04-01

    The relationship between soil detachment capacity (Dc) by rill flow and hydraulic parameters (e.g., flow velocity, shear stress, unit stream power, stream power, and unit energy) at low flow rates is investigated to establish an accurate experimental model. Experiments are conducted using a 4 × 0.1 m rill hydraulic flume with a constant artificial roughness on the flume bed. The flow rates range from 0.22 × 10-3 m2 s-1 to 0.67 × 10-3 m2 s-1, and the slope gradients vary from 15.8% to 38.4%. Regression analysis indicates that the Dc by rill flow can be predicted using the linear equations of flow velocity, stream power, unit stream power, and unit energy. Dc by rill flow that is fitted to shear stress can be predicted with a power function equation. Predictions based on flow velocity, unit energy, and stream power are powerful, but those based on shear stress, especially on unit stream power, are relatively poor. The prediction based on flow velocity provides the best estimates of Dc by rill flow because of the simplicity and availability of its measurements. Owing to error in measuring flow velocity at low flow rates, the predictive abilities of Dc by rill flow using all hydraulic parameters are relatively lower in this study compared with the results of previous research. The measuring accuracy of experiments for flow velocity should be improved in future research.

  10. A particle filter to reconstruct a free-surface flow from a depth camera

    NASA Astrophysics Data System (ADS)

    Combés, Benoit; Heitz, Dominique; Guibert, Anthony; Mémin, Etienne

    2015-10-01

    We investigate the combined use of a kinect depth sensor and of a stochastic data assimilation (DA) method to recover free-surface flows. More specifically, we use a weighted ensemble Kalman filter method to reconstruct the complete state of free-surface flows from a sequence of depth images only. This particle filter accounts for model and observations errors. This DA scheme is enhanced with the use of two observations instead of one classically. We evaluate the developed approach on two numerical test cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more realistic flow. The robustness of the method to depth data errors and also to initial and inflow conditions is considered. We illustrate the interest of using two observations instead of one observation into the correction step, especially for unknown inflow boundary conditions. Then, the performance of the Kinect sensor in capturing the temporal sequences of depth observations is investigated. Finally, the efficiency of the algorithm is qualified for a wave in a real rectangular flat bottomed tank. It is shown that for basic initial conditions, the particle filter rapidly and remarkably reconstructs the velocity and height of the free surface flow based on noisy measurements of the elevation alone.

  11. Non-equilibrium water flow in multimodal soil porous system

    NASA Astrophysics Data System (ADS)

    Kodesova, R.; Nikodem, A.; Jirku, V.

    2009-04-01

    Soil hydraulic properties of various horizons of Haplic Luvisol were studied under the laboratory and field conditions. Multistep outflow experiments were performed in the laboratory, and tension disk and Guelph permeameter tests were carried out in the field. The dual-permeability flow model in HYDRUS-1D and HYDRUS-2D were used to estimate the soil hydraulic parameters of matrix and macropore domains from the laboratory and field transient flow data via numerical inversion. First, the laboratory experimental data were analyzed to obtain soil hydraulic properties of the one-dimensional (small column) dual-permeability system. Parameters obtained for the matrix domains were then used to analyze field transient flow data of both permeameters tests to estimate parameters of macropore domains in the radially symmetric dual-permeability system. Results showed impact of various pore fractions (gravitational and large capillary pores) and multimodality of soil porous system, which were previously documented by Kodesova et al. (2008) in the micromorphological images, on preferential flow occurrence in structured soils. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic grant No. 526/08/0434, and the Ministry of Education, Youth and Sports grant No. MSM 6046070901.

  12. Revisiting Atmospheric Lead in NYC - Comparison of Archived Air Filters to Urban Park Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Chillrud, S. N.; Ross, J. M.; Yan, B.; Bopp, R.

    2015-12-01

    Urban lake sediments have the potential to be used for reconstructing history of aerosols, providing data before the start of urban air quality monitoring. In a previous study, the similarity between radionuclide and excess Pb inventories (57 g/m^2) in Central Park Lake (CPL) sediments and those same parameters in Central Park soils (CPS) was interpreted to indicate that urban lake sediment cores from CPL represent deposition of atmospheric aerosols over the history of the park, which was constructed in the 1860s. Furthermore, metal ratios and metal chronologies indicated that incineration was the major source of Pb to the NYC atmosphere over the 20th century. In this report, we compare the lake chronologies for metals to a set of archived air filters collected by the Department of Energy's Environmental Measurement Lab (EML). These weekly filters of total suspended particulates (TSP) were collected by a high volume sampler located in lower Manhattan for radionuclides as part of the program focused on documenting radioactive fallout from nuclear weapons testing. Metal concentrations measured in subsamples of the EML filters collected between the 1970s to 1990s showed Pb decreasing more slowly than the records of Pb added to gasoline. Metal ratios in the filters were similar to the ratios measured in CPL sediments; the Pb to Sn ratios were roughly 20:1 and the Pb to Zn ratios were in close to 1. The similarity of the ratios provides additional solid support that the CP Lake sediment cores reflect atmospheric inputs. The enrichment of Pb in the large aerosol particle fraction (TSP), relative to fine PM2.5 fraction, demonstrates that the resuspended NYC soils and their historical contaminant burden, are the primary, current source of Pb to NYC air.

  13. Methods and theory for analysis of flow of white cell subpopulations through micropore filters.

    PubMed

    Nash, G B; Jones, J G; Mikita, J; Dormandy, J A

    1988-10-01

    Methods have been developed for analysing the resistance of WBC to flow, by measuring their transit rates through 5 and 8 microns pore filters at constant pressure. Unfractionated WBC and separated subpopulations have been compared. For either pore size, lymphocytes exhibited least resistance to flow, followed by granulocytes, with monocytes being most resistant. A theoretical model, which represents WBC suspensions as made up of three particle types (a relatively fast and a relatively slow population, plus a pore blocking population) adequately describes the data for flow rate versus volume filtered. For 5 microns pores, this theory indicates that a majority of WBC have transit times approximately less than 0.5 s. Unfractionated and mixed mononuclear samples contained a proportion of particles with transit times an order of magnitude longer, whereas, for granulocytes, no slow flowing population was evident. Removal of monocytes by plating out, reduced the proportion of the slow particles in the mononuclear preparation. Unique values for transit times could not be determined for 8 microns pores, but it could be concluded that the great majority of WBC made a very quick transit, with the flow becoming dominated by a small number of much more resistant cells. Simple flow parameters (initial relative flow rate and slow particle resistance) are described which characterize these two populations. Both 5 and 8 microns pore data indicated that few cells became permanently trapped within pores. PMID:3191028

  14. The role of pressure drop and flow redistribution on modeling mercury control using sorbent injection in baghouse filters

    SciTech Connect

    Joseph R.V. Flora; Richard A. Hargis; William J. O'Dowd; Andrew Karash; Henry W. Pennline; Radisav D. Vidic

    2006-03-15

    A mathematical model based on simple cake filtration theory was coupled to a previously developed two-stage mathematical model for mercury (Hg) removal from coal combustion using powdered activated carbon injection upstream of a baghouse filter. Values of the average permeability of the filter cake and the filter resistance extracted from the model were 4.4 x 10{sup -13}m{sup 2} and 2.5 x 10{sup -4}m{sup -1}, respectively. The flow is redistributed during partial cleaning of the filter, with flows higher across the newly cleaned filter section. The calculated average Hg removal efficiency from the baghouse is lower because of the high mass flux of Hg exiting the filter in the newly cleaned section. The model shows that calculated average Hg removal is affected by permeability, filter resistance, fraction of the baghouse cleaned, and cleaning interval. 17 refs., 8 figs., 2 tabs.

  15. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter.

    PubMed

    Lohwacharin, J; Takizawa, S; Punyapalakul, P

    2015-10-01

    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns. PMID:26057475

  16. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system. PMID:25112029

  17. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

  18. Scalar-Filtered Mass-Density-Function Simulation of Swirling Reacting Flows on Unstructured Grids

    SciTech Connect

    Ansari, N.; Pisciuneri, P. H.; Strakey, P. A.; Givi, P.

    2012-11-01

    The scalar-filtered mass-density-function methodology is employed for large-eddy simulation of two swirl-stabilized nonpremixed flames. These are low-swirl (SM1) and high-swirl (SMA2) Sydney methane flames, both of which have been the subject of detailed laboratory measurements. Combustion chemistry is modeled via a flamelet model for the low-swirl flame, and a detailed finite-rate kinetics model for the high-swirl flame. The scalar-filtered mass-density-function is simulated by a Lagrangian Monte Carlo method on a domain discretized by unstructured grids. The simulated results are assessed via comparison with experimental data and show very good agreement. This demonstrates the capability of scalar-filtered mass-density-function for large-eddy simulation of complex flows and warrants future applications of the methodology for large-eddy simulation of practical combustor configurations.

  19. A Fast Network Flow Model is used in conjunction with Measurements of Filter Permeability to calculate the Performance of Hot Gas Filters

    SciTech Connect

    VanOsdol, J.G.; Chiang, T-K.

    2002-09-19

    Two different technologies that are being considered for generating electric power on a large scale by burning coal are Pressurized Fluid Bed Combustion (PFBC) systems and Integrated Gasification and Combined Cycle (IGCC) systems. Particulate emission regulations that have been proposed for future systems may require that these systems be fitted with large scale Hot Gas Clean-Up (HGCU) filtration systems that would remove the fine particulate matter from the hot gas streams that are generated by PFBC and IGCC systems. These hot gas filtration systems are geometrically and aerodynamically complex. They typically are constructed with large arrays of ceramic candle filter elements (CFE). The successful design of these systems require an accurate assessment of the rate at which mechanical energy of the gas flow is dissipated as it passes through the filter containment vessel and the individual candle filter elements that make up the system. Because the filtration medium is typically made of a porous ceramic material having open pore sizes that are much smaller than the dimensions of the containment vessel, the filtration medium is usually considered to be a permeable medium that follows Darcy's law. The permeability constant that is measured in the lab is considered to be a function of the filtration medium only and is usually assumed to apply equally to all the filters in the vessel as if the flow were divided evenly among all the filter elements. In general, the flow of gas through each individual CFE will depend not only on the geometrical characteristics of the filtration medium, but also on the local mean flows in the filter containment vessel that a particular filter element sees. The flow inside the CFE core, through the system manifolds, and inside the containment vessel itself will be coupled to the flow in the filter medium by various Reynolds number effects. For any given filter containment vessel, since the mean flows are different in different locations

  20. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  1. On the appropriate filtering of PIV measurements of turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Atkinson, Callum; Buchmann, Nicolas A.; Amili, Omid; Soria, Julio

    2014-01-01

    The three-dimensional spatial filtering and measurement noise associated with experimental planar and three-dimensional (3D) particle image velocimetry (PIV) measurements is investigated using a combination of direct numerical simulations (DNS) and experimental databases. Spatial filtering velocity fields from a DNS of a zero-pressure-gradient turbulent boundary layer (TBL) at resolutions typical of PIV experiments are shown to underestimate Reynolds stresses by as much as 50 %. Comparison of experimental PIV measurement of a turbulent channel flow and 3D tomographic PIV measurements of a TBL with higher-resolution simulations and hot-wire anemometry measurements show that in real experiments, measurement noise acts to offset this effect. This is shown to produce measurements that appear to provide a good estimate of the turbulent fluctuations in the flow, when in reality the flow is spatially under-resolved and partially contaminated by noise. Means of identifying this noise are demonstrated using the one-dimensional (1D) velocity power spectra and the 1D transfer function between the power spectra of the unfiltered velocity field and the power spectra calculated from the filtered experimental measurement. This 1D transfer function differs from the commonly used sinc transfer function of PIV owing to the integrated effect of filtering in multiple directions. Failure to incorporate this difference is shown to overestimate the maximum resolved wave number in the 3D spectra of the planar PIV by close to 10 %, while conversely underestimating the maximum resolved wave number in the 3D PIV by 50 %. Appropriate spatial filtering of the experimental data is shown to remove the noise-dominated small-scale fluctuations and bring the data inline with that which should be obtained for a noiseless PIV measurement at the corresponding spatial resolution.

  2. Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland.

    PubMed

    Vohla, Christina; Põldvere, Elar; Noorvee, Alar; Kuusemets, Valdo; Mander, Ulo

    2005-01-01

    During the study period from 1997 to 2002 the purification efficiency of phosphorus in the horizontal subsurface flow (HSSF) constructed wetland (CW) in Kodijärve, has been quite high (63-95%). However, slowly increasing trend in outlet P concentrations and decreasing annual P removal rate are obviously the indicators that show possible saturation processes in filter media. To search for potential filter media with high phosphorus sorption capacity, sorption characteristics and particle size distribution of several local sands, gravels, glauconite-sandstone, LWA, and calcareous waste products from oil-shale industry were investigated. The average P sorption capacity for best materials (crashed ash block, oil, shale fly ash and the sediment from oil shale ash plateau) was higher than 96% and estimated design capacity was around 4-5 g P kg(-1). According to results, sediment from oil shale ash plateau was considered as perspective filter media for P retention. In Summer 2002 experimental sedimentation filter, filled with the sediment from oil shale ash plateau, was installed in the outlet from the Kodijärve HSSF CW. According to preliminary results the average P removal in the sedimentation filter was 52%. PMID:15921280

  3. Influence of soil pH in vegetative filter strips for reducing soluble nutrient transport.

    PubMed

    Rahmana, Atikur; Rahmana, Shafiqur; Cihacek, Larry

    2014-08-01

    Low efficacy of vegetative filter strips (VFS) in reducing soluble nutrients has been reported in research articles. Solubility of phosphorus and nitrogen compounds is largely affected by pH of soil. Changing soil pH may result in a decrease in soluble nutrient transportation through VFS. This study was conducted to evaluate the effect of pH levels of VFS soil on soluble nutrient transport reduction from manure-borne runoff. Soil (loamy sand texture; bulk density 1.3 g cm-3) was treated with calcium carbonate to change pH at different pH treatment levels (5.5-6.5, 6.5-7.5, and 7.5-8.5), soil was packed into galvanized metal boxes, and tall fescue grasses were established in the boxes to simulate VFS. Boxes were placed in an open environment, tilted to a 3.0% slope, and 44.0 L manure-amended water was applied through the VFS by a pump at a rate of 1.45 L min-1. Water samples were collected at the inlet and outlet as well as from the leachate. Samples were analysed for ortho-phosphorus, ammonium nitrogen, nitrate nitrogen, and potassium. Highest transport reductions in ortho-phosphorus (42.4%) and potassium (20.5%) were observed at pH range 7.5-8.5. Ammonium nitrogen transport reduction was the highest at pH level of 6.5-7.5 and was 26.1%. Surface transport reduction in nitrate nitrogen was 100%, but leachate had the highest concentration of nitrate nitrogen. Mass transport reduction also suggested that higher pH in the VFS soil are effective in reducing some soluble nutrients transport. PMID:24956766

  4. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  5. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter. PMID:7942509

  6. Echo motion imaging with adaptive clutter filter for assessment of cardiac blood flow

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-07-01

    Visualization of the vortex blood flow in the cardiac chamber is a potential diagnostic tool for the evaluation of cardiac function. In the present study, a method for automatic selection of the desirable cutoff frequency of a moving target indicator filter, namely, a clutter filter, was proposed in order to visualize complex blood flows by the ultrahigh-frame-rate imaging of echoes from blood particles while suppressing clutter echoes. In this method, the cutoff frequency was adaptively changed as a function of the velocity of the heart wall (clutter source) in each frame. The feasibility of the proposed method was examined through the measurement of a healthy volunteer using parallel receive beamforming with a single transmission of a non-steered diverging beam. Using the moving target indicator filter as above with the cutoff frequency determined by the proposed method, the vortex-like blood flow in the cardiac chamber was visualized as movements of echoes from blood particles at a very high frame rate of 6024 Hz while suppressing clutter echoes.

  7. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Reponen, Tiina; McKay, Roy; Shukla, Rakesh; Haruta, Hiroki; Sekar, Padmini; Grinshpun, Sergey A

    2010-01-01

    The aim of this study was to investigate respirator filter and faceseal penetration of particles representing bacterial and fungal spore size ranges (0.7-4 mum). First, field experiments were conducted to determine workplace protection factors (WPFs) for a typical N95 filtering facepiece respirator (FFR). These data (average WPF = 515) were then used to position the FFR on a manikin to simulate realistic donning conditions for laboratory experiments. Filter penetration was also measured after the FFR was fully sealed on the manikin face. This value was deducted from the total penetration (obtained from tests with the partially sealed FFR) to determine the faceseal penetration. All manikin experiments were repeated using three sinusoidal breathing flow patterns corresponding to mean inspiratory flow rates of 15, 30, and 85 l min(-1). The faceseal penetration varied from 0.1 to 1.1% and decreased with increasing particle size (P < 0.001) and breathing rate (P < 0.001). The fractions of aerosols penetrating through the faceseal leakage varied from 0.66 to 0.94. In conclusion, even for a well-fitting FFR respirator, most particle penetration occurs through faceseal leakage, which varies with breathing flow rate and particle size. PMID:19700488

  8. Quantitative relationships between soil macropore characteristics and preferential flow and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative relationships between soil structure, especially macropore characteristics, and soil hydraulic properties are essential to improving our ability to predict flow and transport in structured soils. The objectives of this study were to quantitatively relate macropore characteristics to sat...

  9. Real-Time Flood Forecasting System Using Channel Flow Routing Model with Updating by Particle Filter

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Chikamori, H.; Nagai, A.

    2008-12-01

    A real-time flood forecasting system using channel flow routing model was developed for runoff forecasting at water gauged and ungaged points along river channels. The system is based on a flood runoff model composed of upstream part models, tributary part models and downstream part models. The upstream part models and tributary part models are lumped rainfall-runoff models, and the downstream part models consist of a lumped rainfall-runoff model for hillslopes adjacent to a river channel and a kinematic flow routing model for a river channel. The flow forecast of this model is updated by Particle filtering of the downstream part model as well as by the extended Kalman filtering of the upstream part model and the tributary part models. The Particle filtering is a simple and powerful updating algorithm for non-linear and non-gaussian system, so that it can be easily applied to the downstream part model without complicated linearization. The presented flood runoff model has an advantage in simlecity of updating procedure to the grid-based distributed models, which is because of less number of state variables. This system was applied to the Gono-kawa River Basin in Japan, and flood forecasting accuracy of the system with both Particle filtering and extended Kalman filtering and that of the system with only extended Kalman filtering were compared. In this study, water gauging stations in the objective basin were divided into two types of stations, that is, reference stations and verification stations. Reference stations ware regarded as ordinary water gauging stations and observed data at these stations are used for calibration and updating of the model. Verification stations ware considered as ungaged or arbitrary points and observed data at these stations are used not for calibration nor updating but for only evaluation of forecasting accuracy. The result confirms that Particle filtering of the downstream part model improves forecasting accuracy of runoff at

  10. A novel method for estimating the track-soil parameters based on Kalman and improved strong tracking filters.

    PubMed

    Yao, Yu; Cheng, Kai; Zhou, Zhi-Jie; Zhang, Bang-Cheng; Dong, Chao; Zheng, Sen

    2015-11-01

    A tracked vehicle has been widely used in exploring unknown environments and military fields. In current methods for suiting soil conditions, soil parameters need to be given and the traction performance cannot always be satisfied on soft soil. To solve the problem, it is essential to estimate track-soil parameters in real-time. Therefore, a detailed mathematical model is proposed for the first time. Furthermore, a novel algorithm which is composed of Kalman filter (KF) and improved strong tracking filter (STF) is developed for online track-soil estimation and named as KF-ISTF. By this method, the KF is used to estimate slip parameters, and the ISTF is used to estimate motion states. Then the key soil parameters can be estimated by using a suitable soil model. The experimental results show that equipped with the estimation algorithm, the proposed model can be used to estimate the track-soil parameters, and make the traction performance satisfied with soil conditions. PMID:26476477

  11. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    SciTech Connect

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  12. Stability of uniform vertical flow through a close porous filter in the presence of solute immobilization.

    PubMed

    Maryshev, Boris S; Lyubimova, Tatyana P

    2016-06-01

    In the present paper we consider slow filtration of a mixture through a close porous filter. The heavy solute penetrates slowly into the porous filter due to the external vertical filtration flow and diffusion. This process is accompanied by the formation of the domain with heavy fluid near the upper boundary of the filter. The developed stratification, at which the heavy fluid is located above the light fluid, is unstable. When the mass of the heavy fluid exceeds the critical value, one can observe the onset of the Rayleigh-Taylor instability. Due to the above peculiarities we can distinguish between two regimes of vertical filtration: 1) homogeneous seepage and 2) convective filtration. When considering the filtration process it is necessary to take into account the diffusion accompanied by the immobilization effect (or sorption) of the solute. The immobilization is described by the linear MIM (mobile/immobile media) model. It has been shown that the immobilization slows down the process of forming the unstable stratification. The purpose of the paper is to find the stability conditions for homogeneous vertical seepage of he solute into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps are plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation of the full nonlinear equations. PMID:27349555

  13. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    NASA Astrophysics Data System (ADS)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a sufficiently large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos expansion (PCE) to represent and propagate the uncertainties in parameters and states. However, PCKF suffers from the so-called "curse of dimensionality". Its computational cost increases drastically with the increasing number of parameters and system nonlinearity. Furthermore, PCKF may fail to provide accurate estimations due to the joint updating scheme for strongly nonlinear models. Motivated by recent developments in uncertainty quantification and EnKF, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected at each assimilation step; the "restart" scheme is utilized to eliminate the inconsistency between updated model parameters and states variables. The performance of RAPCKF is systematically tested with numerical cases of unsaturated flow models. It is shown that the adaptive approach and restart scheme can significantly improve the performance of PCKF. Moreover, RAPCKF has been demonstrated to be more efficient than EnKF with the same computational cost.

  14. Volterra Filter Forecasting Method Based on Chaotic Time Serried and its Application to Fire Smoke Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoying; Ma, Xiaoqian; Wang, Hairong

    2007-06-01

    Smoke movement was the main factor of the development and expanding of fire hazard and personnel casualty. Uncertain character of exotic environment and interior condition that effected smoke flow resulted that. It was difficult to establish suitable model to simulate smoke flow. Firstly, this paper has analysis the characteristic of smoke movement. And maximal Lyapunov exponent of smoke movement basic variable (temperature, velocity and differential pressure)has been obtained. Positive maximal Lyapunov exponent of temperature has proved that smoke movement was chaotic. Negative maximal Lyapunov exponent of velocity was probably because that time interval of data was too big and part information has been loss. Then, the smoke flow character was recovered by real monitor data on the basis of Takens theorem and topological transformation. In order to do that, the delay time and embedding dimension of reconstructed phase has been got by the method of auto-correlation function and false neighbors respectively. Based on the mentioned above, reconstructed phase was obtained in delay coordinate. Points in reconstructed phase presented system evolution tendency and Volterra filter was established in reconstructed phase points. Finally, smoke flow parameter was forecast by a third-order Volterra filter. And the result has been caparisoned with experimental data. According the data from Multi-story building fire experiment, the delay time of temperature, differential pressure and velocity was respectively 8, 9 and 9, the embedding dimension of the three variable parameter were 3. The prediction has showed that third-order Volterra filter had intensive nonlinear approximate capacity, three variables relative errors of prediction were all small than 0.05.

  15. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier, Volume 2

    SciTech Connect

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01

    This final report describes work conducted on the development of the ceramic cross flow filter for high temperature gas cleaning. This work was conducted from October 1984 through December 1988. Volume 1 provides an overall discussion of the program results. Volume 2 consists of Appendices that are referenced in Volume 1. Electricity costs, flow diagrams of the gasifier, and a model which describes the cleaning of the filter is included.

  16. Results from Evaluation of Representative ASME AG-1 Section FK Radial Flow Dimple Pleated HEPA Filters Under Elevated Conditions - 12002

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Rickert, Jaime G.; Waggoner, Charles A.

    2012-07-01

    The American Society of Mechanical Engineers (ASME) has recently added Section FK establishing requirements for radial flow HEPA filters to the Code on Nuclear Air and Gas Treatment (AG-1). Section FK filters are expected to be a major element in the HEPA filtration systems across the US Department of Energy (DOE) complex. Radial flow filters have been used in Europe for some time, however a limited amount of performance evaluation data exists with respect to these new AG-1 Section FK units. In consultation with a technical working group, the Institute for Clean Energy Technology (ICET) at Mississippi State University (MSU)has evaluated a series of representative AG-1 Section FK dimple pleated radial flow HEPA filters. The effects of elevated relative humidity and temperature conditions on these filters are particularly concerning. Results from the evaluation of Section FK filters under ambient conditions have been presented at the 2011 waste management conference. Additions to the previous test stand to enable high temperature and high humidity testing, a review of the equipment used, the steps taken to characterize the new additions, and the filter test results are presented in this study. Test filters were evaluated at a volumetric flow rate of 56.6 m{sup 3}/min (2000 cfm) and were challenged under ambient conditions with Alumina, Al(OH){sub 3}, until reaching a differential pressure of 1 kPa (4 in. w.c.), at which time the filters were tested, unchallenged with aerosol, at 54 deg. C (130 deg. F) for approximately 1 hour. At the end of that hour water was sprayed near the heat source to maximize vaporization exposing the filter to an elevated relative humidity up to 95%. Collected data include differential pressure, temperature, relative humidity, and volumetric flow rate versus time. (authors)

  17. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image. PMID:24211911

  18. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    PubMed Central

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-il; Bom, Hee-Seung

    2014-01-01

    Objective(s): In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. Results: In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (P<0.001 for both readers). However, no significant difference of IQ was found between FBP and various numbers of iteration in OSEM (P=0.923 and 0.855 for readers 1 and 2, respectively). SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Conclusion: Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation. PMID:27408866

  19. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  20. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  1. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  2. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  3. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    PubMed

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. PMID:25798868

  4. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow

    NASA Astrophysics Data System (ADS)

    Ji, Xinye; Shen, Chaopeng; Riley, William J.

    2015-12-01

    Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.

  5. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation restoration probably has great effects on the process of soil detachment. This study was conducted to investigate the effects of near soil surface characteristics on soil detachment by overland flow in a 7-year naturally restored grassland. Four treatments were designed to characterize th...

  6. Finite-Element Analysis of Multiphase Immiscible Flow Through Soils

    NASA Astrophysics Data System (ADS)

    Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.

    1987-04-01

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.

  7. Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering.

    PubMed

    Fraanje, Rufus; Rice, Justin; Verhaegen, Michel; Doelman, Niek

    2010-11-01

    Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wavefront sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of error budgeting and algorithm performance, the evaluation of an accurate estimate of the optimal performance of a particular adaptive optics configuration is important. However, due to the large number of grid points, high sampling rates, and the non-rationality of the turbulence power spectral density, the computational complexity of the optimal predictor is huge. This paper shows how a structure in the frozen flow propagation can be exploited to obtain a state-space innovation model with a particular sparsity structure. This sparsity structure enables one to efficiently compute a structured Kalman filter. By simulation it is shown that the performance can be improved and the computational complexity can be reduced in comparison with auto-regressive predictors of low order. PMID:21045884

  8. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (LandesSoil Quality Monitoring Network to evaluate the communities’ composition turnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to

  9. Simulating nitrate leaching under winter wheat grown on a structured clay soil considering bypass flow

    NASA Astrophysics Data System (ADS)

    Ragab, R.; Coopers, D. M.; Harris, G. L.; Catt, J. A.

    1996-07-01

    Nitrate leaching from drained plots of structured clay soil under winter wheat is simulated for one growing season using the SOILN model. Results are compared with field measurements from two replicate plots. Soil water movement is simulated both with and without a bypass flow component using the SOIL model. Flow to field drains and soil water content in the root zone are simulated better when bypass flow is included. The results emphasise the importance of considering bypass flow in modelling leaching from structured clay soils. Simulations of nitrate leaching using the SOILN model show that the model captures the main features of the cumulative loss of nitrate over the year.

  10. Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows

    SciTech Connect

    Coelho, P.J.

    2009-05-15

    An analysis of the relevance of turbulence-radiation interaction in the numerical simulation of turbulent reactive flows is presented. A semi-causal stochastic model was used to generate a time-series of turbulent scalar fluctuations along optical paths of Sandia flame D, a widely studied piloted turbulent jet nonpremixed flame. The radiative transfer equation was integrated along these paths for every realization using a grid resolution typical of a direct numerical simulation. The correlated k-distribution method was employed to compute the radiative properties of the medium. The results were used to determine the ensemble average, as well as the extreme values, of quantities that indicate the importance of the turbulence-radiation interaction. Several approximate methods are then proposed to solve the filtered radiative transfer equation in the framework of large eddy simulations. The proposed methods are applicable along with combustion models that either assume the filtered probability density function of a conserved scalar or solve a transport equation for a joint scalar or joint scalar/velocity filtered density function. It is concluded that the errors resulting from neglecting the turbulence-radiation interaction in large eddy simulations are much lower than those found in Reynolds-averaged Navier-Stokes calculations. The optically thin fluctuation approximation may be extended to large eddy simulations yielding predictions in excellent agreement with the reference solution. If the turbulence-radiation interaction is accounted for using this approximation, the average relative error of the filtered total radiation intensity is generally below 0.3% for the studied flame. (author)

  11. Stem-root flow effect on soil-atmosphere interactions and uncertainty assessments

    NASA Astrophysics Data System (ADS)

    Kuo, Tzu-Hsien; Chen, Jen-Ping; Xue, Yongkang

    2016-04-01

    Rainfall that reaches the soil surface can rapidly move into deeper layers in the form of bulk flow through the stem-root flow mechanism. This study developed the stem-root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land-atmospheric interactions. The SSiB model was tested in a single-column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem-root flow generally caused a decrease in soil moisture in the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in substantial changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem-root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem-root flow substantially affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could be either positive or negative depending on the relative changes in the soil moisture of the top soil vs. deeper soil layers due to stem-root flow and soil moisture diffusion processes.

  12. Ephemeral Gully Erosion by Preferential Flow Through a Discontinuous Soil-Pipe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lateral flow through soil pipes has been postulated to facilitate the development of ephemeral gullies, yet these soil pipes are buried and thereby made discontinuous when gullies are filled-in. The objective was to determine the effect of flow through discontinuous soil-pipes on ephemeral gully ero...

  13. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  14. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  15. Coupling of stochastic moment equations and Ensemble Kalman Filter for groundwater flow data assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Panzeri, M.; Riva, M.; Neuman, S. P.

    2013-12-01

    We embed stochastic groundwater flow moment equations (MEs) in the Ensemble Kalman Filter (EnKF) in a way that obviates the need for Monte Carlo (MC) simulation. The MEs yield approximate conditional ensemble means and covariances of hydraulic heads and fluxes in randomly heterogeneous media. Embedding these in EnKF allows updating of conductivity and head predictors as new data become available without the need for MC. The approach is well suited for cases in which real-time measurements allow sequential (as opposed to simultaneous) updating of flow parameters. We discuss and compare the accuracies and computational efficiencies of our newly proposed ME-based EnKF approach and the traditional MC-based EnKF approach for the case of a pumping well in a two-dimensional randomly heterogeneous aquifer. We analyze a number of settings and investigate the impact on parameters estimates of (a) the number of head measurements assimilated, (b) the error variance associated with head and log conductivity measurements and (c) the initial hydraulic head field. We demonstrate the computational feasibility and accuracy of our methodology and show that hydraulic conductivity estimates are more sensitive to early than to later head values, improving with increased assimilation frequency at early time. Our approach mitigates issues of filter inbreeding and spurious covariances often plaguing standard EnKF.

  16. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system

    PubMed Central

    Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.

    2011-01-01

    Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950

  17. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support.

    PubMed

    Colin, X; Farinet, J-L; Rojas, O; Alazard, D

    2007-05-01

    Small-scale sour starch agroindustry in Colombia suffer from absence of water treatment. Although starch processing plants produce diluted wastewater, it is a source of pollution and cause environmental problems to the nearby rural population. A laboratory scale anaerobic horizontal flow filter packed with bamboo pieces was evaluated for the treatment of cassava starch extraction wastewater. The wastewater used in the experimentation was the draining water of the starch sedimentation basin. The reactor was operated for 6 months. It was inoculated with a semi-granular sludge from an anaerobic UASB reactor of a slaughterhouse. Maximum organic loading rate (OLR) applied was 11.8g COD/L d without dilution of the wastewater. At steady state and maximum OLR applied, 87% of the COD was removed and a gas productivity of 3.7L/L d was achieved. The average biogas yield was 0.36L/g COD removed. Methane content in the biogas was in the range of 69-81%. The total suspended solids (TSS) removed were 67%. The relative high lactic acid content did not negatively influence the performance of the reactor. No perturbation due to cyanide (3-5mg/L) was observed during the reactor operation. The results obtained indicated that the anaerobic horizontal flow filter could be used efficiently for the treatment of wastewater from Colombian starch processing small-scale agroindustry. PMID:16973355

  18. Runoff generation and flow paths on an inclined cultivated soil

    NASA Astrophysics Data System (ADS)

    Zumr, David; Strouhal, Luděk; Kavka, Petr

    2015-04-01

    The hydrology of cultivated catchments has its specific features due to the temporary variable topsoil properties and a sharp divide between topsoil and compacted subsoil. Under various conditions (actual topsoil physical properties, initial soil saturation, rainfall characteristics, surface roughness or vegetation stage) the prevailing runoff mechanisms may vary from surface runoff to subsurface runoff or deep percolation. To investigate the runoff generation and flow pathways and to quantify the runoff components on an inclined cultivated field under various rainfall and field conditions we conducted plot scale rainfall simulations. The experiments were done on the experimental plots Bykovice in Central Bohemia (Czech Republic), where the soil is classified as Cambisol with a clear divide between the topsoil and compacted subsoil at a depth of approximately 14 cm. We used a mobile rainfall simulator (designed at the CTU in Prague) equipped with four solenoid-controlled nozzles positioned 2.65 m above the soil. An inclined experimental plot (8 x 2 m, 9% slope) was successively exposed to uniform simulated rainfall with intensity ranging from 23 to 64 mm h-1 and duration ranging from 1 h to 2.5 h. These simulated rainfall parameters were selected to represent intensive rainfall events observed in the study locality, to generate surface runoff and to initiate soil erosion. The dynamics of surface and shallow subsurface runoff and the soil water regime at three soil depths were monitored. Various initial soil moisture conditions, and vegetation stages; from cultivated fallow to stubble, delimited the simulations. Variable proportions of both monitored runoff components were observed in relation to rainfall intensity and duration, ranging from zero surface runoff to a distinct dominance of surface runoff. Both components reacted very dynamically to the precipitation: shallow subsurface runoff was formed first under all tested conditions on the given soil profile. Even

  19. Improving soil moisture profile reconstruction from ground-penetrating radar data: a maximum likelihood ensemble filter approach

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Vanclooster, M.; Lambot, S.

    2013-07-01

    The vertical profile of shallow unsaturated zone soil moisture plays a key role in many hydro-meteorological and agricultural applications. We propose a closed-loop data assimilation procedure based on the maximum likelihood ensemble filter algorithm to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. A hydrodynamic model is used to propagate the system state in time and a radar electromagnetic model and petrophysical relationships to link the state variable with the observation data, which enables us to directly assimilate the GPR data. Instead of using the surface soil moisture only, the approach allows to use the information of the whole soil moisture profile for the assimilation. We validated our approach through a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR data was performed to solve the problem of unknown initial conditions. The numerical soil moisture profiles generated by the Hydrus-1D model were used by the GPR model to produce the "observed" GPR data. The results show that the soil moisture profile obtained by assimilating the GPR data is much better than that of an open-loop forecast. Compared to the loamy sand and silt, the updated soil moisture profile of the clay soil converges to the true state much more slowly. Decreasing the update interval from 60 down to 10 h only slightly improves the effectiveness of the GPR data assimilation for the loamy sand but significantly for the clay soil. The proposed approach appears to be promising to improve real-time prediction of the soil moisture profiles as well as to provide effective estimates of the unsaturated hydraulic properties at the field scale from time-lapse GPR measurements.

  20. Improving soil moisture profile prediction from ground-penetrating radar data: a maximum likelihood ensemble filter approach

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Vanclooster, M.; Lambot, S.

    2013-02-01

    The vertical profile of root zone soil moisture plays a key role in many hydro-meteorological and agricultural applications. We propose a closed-loop data assimilation procedure based on the maximum likelihood ensemble filter algorithm to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR) data. A hydrodynamic model is used to propagate the system state in time and a radar electromagnetic model to link the state variable with the observation data, which enables us to directly assimilate the GPR data. Instead of using the surface soil moisture only, the approach allows to use the information of the whole soil moisture profile for the assimilation. We validated our approach by a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR data was performed to solve the problem of unknown initial conditions. The numerical soil moisture profiles generated by the Hydrus-1D model were used by the GPR model to produce the "observed" GPR data. The results show that the soil moisture profile obtained by assimilating the GPR data is much better than that of an open-loop forecast. Compared to the loamy sand and silt, the updated soil moisture profile of the clay soil converges to the true state much more slowly. Increasing update interval from 5 to 50 h only slightly improves the effectiveness of the GPR data assimilation for the loamy sand but significantly for the clay soil. The proposed approach appears to be promising to improve real-time prediction of the soil moisture profiles as well as to provide effective estimates of the unsaturated hydraulic properties at the field scale from time-lapse GPR measurements.

  1. The effect of a vertical flow filter bed on a hybrid constructed wetland system.

    PubMed

    Noorvee, A; Põldvere, E; Mander, U

    2005-01-01

    Data from 18 sampling wells in Kodijärve horizontal subsurface flow (HSSF) constructed wetland (CW) (South Estonia) is presented and differences in purification efficiencies inside the HSSF CW are calculated. Temporarily anaerobic conditions in the Kodijärve HSSF system did not allow efficient removal of BOD7, NH4-N, Ntot and Ptot. In 2002 a vertical subsurface flow filter was constructed to enhance aeration. The design of the system was based simply on the oxygen demand of the wastewater and on the aeration potential of vertical flow wetlands. The vertical flow system has shown satisfactory results. The purification efficiency of BOD7 in the Kodijärve CW has improved significantly and there has been a slight increase in purification efficiencies of NH4-N and Ntot. On the ohther hand, the removal efficiency of Ptot has decreased significantly. Although, the mass loading rates have increased, mass removal rates of all four parameters have improved significantly. Nevertheless, optimization of the constructed wetland system is essential in order to meet effluent standards during wintertime. PMID:16042252

  2. Flow Cell Sampling Technique: A new approach to analyze physical soil and particle surface properties of undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Krueger, Jiem; Leue, Martin; Heinze, Stefanie; Bachmann, Jörg

    2016-04-01

    During unsaturated water conditions, water flow occurs in the soil mainly by water film flow and depends on moisture content and pore surface properties. More attention is attributed to coatings enclosing soil particles and thus may affect wetting properties as well as hydraulic soil functions. Particle coatings are most likely responsible for many adsorption processes and are expected to favor local heterogeneous microstructure with enhanced biological activity. Many of the effects described cannot be detected on the basis of conventional soil column experiments, which were usually made to study soil hydraulic processes or surface - soil solution exchange processes. The general objective of this study was to develop a new field sampling method to unravel heterogeneous flow processes on small scales in an undisturbed soil under controlled lab conditions. This will be done by using modified flow cells (Plexiglas). Beside the measurements within a flow cell as breakthrough curves, the developed technique has several additional advantages in contrast to common columns or existing flow chamber/cell designs. The direct modification from the sampling frame to the flow cell provides the advantage to combine several analyses. The new technique enables to cut up to 5 thin undisturbed soil slices (quasi-replicates) down to 10 and/or 5 mm. Relative large particles, for instance, may limit this sampling method. The large observation area of up to 150 cm2 allows the characterization of particle surface properties in a high spatial resolution within an undisturbed soil sample. This sampling technique, as shown in our study, has the opportunity to link soil wetting hydraulic and several particle surface properties to spatial soil heterogeneities. This was shown with tracer experiments, small-scale contact angle measurements and analyses of the spatial distribution of functional groups of soil organic matter via DRIFT mapping.

  3. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  4. Spatio-temporal soil moisture distribution and subsurface water flow in the Shale Hills Catchment

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Lin, H.; Zhu, Q.

    2006-12-01

    Systematic and dynamic soil moisture monitoring is needed to characterize areal soil moisture distribution and model subsurface water flow at various scales. Further understanding of soil-water interactions is the key to explore subsurface water flow and its pathways. Hydropedologic approaches integrating soils information with hydrological processes were used to investigate subsurface water flow (vertical and lateral) and possible flow pathways in the 7.9-ha Shale Hills Catchment in central Pennsylvania. Automatic monitoring systems were installed at seven sites using an array of soil matric potential probes (Campbell Scientific 229 and Decagon matric potential probes) and water content probes (Decagon ECH2O-5). These sites are distributed at different landforms (hilltop, hillslope, and valley floor), representing five soil series (Berks, Blairton, Ernest, Rushtown, Weikert). Probes were inserted at different soil depths as well as their interfaces. The positions of probe installation were designed based on site-specific soil morphology and soil properties from laboratory analysis (e.g., soil texture, bulk density, hydraulic conductivity, water retention). A rain gauge was also installed at each monitoring site. The results showed that different soil types, even different soil layers of the same soil type, displayed different hydrological behaviors. There were evidences that lateral flow contributes to the water flow in the Shale Hills Catchment.

  5. Soil pipe flow tracer experiments: 2. Application of a transient storage zone model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  6. Vegetative filter strips efficiency controlling soil loss and trapping herbicides in two olive orchards at the short-term

    NASA Astrophysics Data System (ADS)

    de Luna, Elena; Guzmán, Gema; Gómez, José A.

    2014-05-01

    The optimization of water use in a semi-arid climate is based on an optimal use of rainwater adopting management practices that prevent and/or control runoff. This is a key point for increasing the economic and environmental sustainability of agriculture due to the minimization of diffuse pollution associated to runoff and to sediment and chemical transport. One strategy is the establishment of vegetative filters strips that prevent pesticides (Stehle et al. 2011), herbicides (Vianello et al. 2005), fertilizers (Withers et al. 2009) and runoff-sediment (Campo-Bescós et al. 2013) from entering streams or surface water reservoirs. To evaluate the short-term risks associated with the use of herbicides a trial was designed in two olive groves located in Benacazón (Sevilla) and Cabra (Córdoba) both with an average steepness of 11%. Two different management systems were evaluated, bare soil and bare soil with vegetative filter strips. Pre-emergence herbicides were applied and analysed at the beginning of the trial by chromatography GC-MS and after each rainfall event both in soil and sediment. Runoff and soil losses were measured, as well. The results obtained from this study show that soil management practices such as, the use of vegetative filter strips results in a reduction of soil losses and runoff. This it is translated in the improvement of soil quality and a reduction of water pollution caused by the use of herbicides. This information will improve the understanding of insufficiently known aspects and it will help to increase the knowledge for a better implementation of sustainable management practices at a farm scale and at larger temporal scale. References: Campo-Bescós, M. A., Muñoz-Carpena, R., & Kiker, G. (2013) Influencia del suelo en la eficiencia de la implantación de filtros verdes en un distrito de riego por superficie en medio árido. En Estudios de la Zona no Saturada del Suelo, Vol. XI: 183-187. Stehle, S., Elsaesser, D., Gregoire, C., Imfeld

  7. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    NASA Astrophysics Data System (ADS)

    Dowding, Colin; Lawrence, Jonathan

    2010-04-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2. This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over ' n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  8. Subpilot scale gasifier evaluation of ceramic cross flow filter. Final report, February 1, 1988--December 31, 1992

    SciTech Connect

    Lippert, T.E.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.; Meyer, J.H.

    1993-08-01

    The operating characteristics, performance and durability of a hot gas cross flow filter system were evaluated at the Texaco 15 tpd, entrained-bed gasifier pilot plant facility that is located at their Montebello Research Facilities (MRL) in California. A candle filter unit was also tested for comparative purposes. A wide range of operating test conditions were experienced. This report summarizes the results of eleven different test runs that occurred from April 1989 through August 1992. Differences between filter operation on the entrained gasifier and prior experience on fluid bed combustion are discussed.

  9. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  10. Assimilation of Satellite Soil Moisture observation with the Particle Filter-Markov Chain Monte Carlo and Geostatistical Modeling

    NASA Astrophysics Data System (ADS)

    Moradkhani, Hamid; Yan, Hongxiang

    2016-04-01

    Soil moisture simulation and prediction are increasingly used to characterize agricultural droughts but the process suffers from data scarcity and quality. The satellite soil moisture observations could be used to improve model predictions with data assimilation. Remote sensing products, however, are typically discontinuous in spatial-temporal coverages; while simulated soil moisture products are potentially biased due to the errors in forcing data, parameters, and deficiencies of model physics. This study attempts to provide a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a fully distributed hydrologic model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. A geostatistical model is introduced to overcome the satellite soil moisture discontinuity issue where satellite data does not cover the whole study region or is significantly biased, and the dominant land cover is dense vegetation. The results indicate that joint assimilation of soil moisture and streamflow has minimal effect in improving the streamflow prediction, however, the surface soil moisture field is significantly improved. The combination of DA and geostatistical approach can further improve the surface soil moisture prediction.

  11. Inertial particle acceleration statistics in turbulence: Effects of filtering, biased sampling, and flow topology

    NASA Astrophysics Data System (ADS)

    Salazar, Juan P. L. C.; Collins, Lance R.

    2012-08-01

    In this study, we investigate the effect of "biased sampling," i.e., the clustering of inertial particles in regions of the flow with low vorticity, and "filtering," i.e., the tendency of inertial particles to attenuate the fluid velocity fluctuations, on the probability density function of inertial particle accelerations. In particular, we find that the concept of "biased filtering" introduced by Ayyalasomayajula et al. ["Modeling inertial particle acceleration statistics in isotropic turbulence," Phys. Fluids 20, 0945104 (2008), 10.1063/1.2976174], in which particles filter stronger acceleration events more than weaker ones, is relevant to the higher order moments of acceleration. Flow topology and its connection to acceleration is explored through invariants of the velocity-gradient, strain-rate, and rotation-rate tensors. A semi-quantitative analysis is performed where we assess the contribution of specific flow topologies to acceleration moments. Our findings show that the contributions of regions of high vorticity and low strain decrease significantly with Stokes number, a non-dimensional measure of particle inertia. The contribution from regions of low vorticity and high strain exhibits a peak at a Stokes number of approximately 0.2. Following the methodology of Ooi et al. ["A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence," J. Fluid Mech. 381, 141 (1999), 10.1017/S0022112098003681], we compute mean conditional trajectories in planes formed by pairs of tensor invariants in time. Among the interesting findings is the existence of a stable focus in the plane formed by the second invariants of the strain-rate and rotation-rate tensors. Contradicting the results of Ooi et al., we find a stable focus in the plane formed by the second and third invariants of the strain-rate tensor for fluid tracers. We confirm, at an even higher Reynolds number, the conjecture of Collins and Keswani ["Reynolds

  12. Soil flushing with EDTA solutions: A model for channeled flow

    SciTech Connect

    Garcia-Delgado, R.A.; Rodriguez-Maroto, J.M.; Gomez-Lahoz, C.; Vereda-Alonso, C.; Garcia-Herruzo, F.

    1998-04-01

    A 1-D model for the flushing of metal contaminated soils with extracting aqueous solutions is presented. Previous experimental results of the flushing of carbonatic soil contaminated with lead with EDTA solutions showed the formation of channels of preferential flow as well as substantial rebounds in effluent lead concentration after periods of no pumping, indicating an important kinetic limitation for lead removal. This limitation is associated with the presence of a stagnant aqueous phase in addition to the mobile aqueous phase running through the channels. The model assumes an initial homogeneous distribution of lead in the soil, mainly present as small spheres of a solid carbonate which must dissolve. If the spheres are far from the channels, after solution the lead must diffuse through the stagnant aqueous phase until it reaches the channels and is washed out of the column. The model is able to simulate the rebound curves as well as the effluent concentration during the course of the operation. The importance of the way the channels arise is established by sensitivity studies performed for different mechanisms of the solution circulation and the formation of channels. More experimental results are needed to discriminate which of the alternatives studied is operative.

  13. Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter.

    PubMed

    Christoffels, E; Mertens, F M; Kistemann, T; Schreiber, C

    2014-01-01

    A study has been conducted on a retention soil filter (RSF) to test its effectiveness in removing pharmaceutical residues and microorganisms from combined sewer overflows (CSOs). Efficient removal of solids, nutrients and heavy metals has already been proven. The possibility that organic micropollutants and microorganisms are also retained by the use of RSFs has been identified, but data are lacking. Results obtained in this study, in which testing for removal by a RSF of numerous micro-pollutant substances was performed, are most promising. The pharmaceuticals diclofenac and ibuprofen are presented in detail as examples of such micropollutants. Both showed a reduction in positive samples of more than 55% as well as a significant reduction in median and maximum concentrations. For microorganisms such as Escherichia coli, coliphages and Giardia lamblia (cysts), an average reduction in concentrations by three logarithmic steps (99.9%) was achieved. These results add to the evidence that using a RSF in the advanced treatment of wastewater from CSOs reduces the exposure of water-courses to pharmaceutical residues and microbial contamination. PMID:25401314

  14. Comparison Experiments of Different Model Error Schemes in Ensemble Kalman Filter Soil Moisture Assimilation

    NASA Astrophysics Data System (ADS)

    Nie, Suping; Zhu, Jiang; Luo, Yong

    2010-05-01

    The purpose of this study is to explore the performances of different model error scheme in soil moisture data assimilation. Based on the ensemble Kalman filter (EnKF) and the atmosphere-vegetation interaction model (AVIM), point-scale analysis results for three schemes, 1) covariance inflation (CI), 2) direct random disturbance (DRD), and 3) error source random disturbance (ESRD), are combined under conditions of different observational error estimations, different observation layers, and different observation intervals using a series of idealized experiments. The results shows that all these schemes obtain good assimilation results when the assumed observational error is an accurate statistical representation of the actual error used to perturb the original truth value, and the ESRD scheme has the least root mean square error (RMSE). Overestimation or underestimation of the observational errors can affect the assimilation results of CI and DRD schemes sensitively. The performances of these two schemes deteriorate obviously while the ESRD scheme keeps its capability well. When the observation layers or observation interval increase, the performances of both CI and DRD schemes decline evidently. But for the ESRD scheme, as it can assimilate multi-layer observations coordinately, the increased observations improve the assimilation results further. Moreover, as the ESRD scheme contains a certain amount of model error estimation functions in its assimilation process, it also has a good performance in assimilating sparse-time observations.

  15. Principles of Water Flow in Real-World Soils and Related Imbalances

    NASA Astrophysics Data System (ADS)

    Lin, H.

    2012-12-01

    Heterogeneities, structures, interfaces, roughness, and organisms in multiphase soil systems make the real-world soil deviated significantly from the continuum assumption. The first principle of water flow in porous media came to light in the 19th century, known as the Darcy's law, which was later modified by E. Buckingham to describe unsaturated water flow in soils. This principle is essentially a macroscopic view of steady-state water flux being linearly proportional to hydraulic gradient and hydraulic conductivity. The second principle was proposed by L.A. Richards in the 20th century, which describes the minimum pressure gradient needed to initiate water flow through the soil-air interface. This principle can be extended to provide a more cohesive explanation to a number of soil hydrologic phenomena related to various interfaces and microscopic features (such as hysteresis, hydrophobicity, and flow through layered soils). The third principle is emerging in the 21st century, where a combined macroscopic and microscopic view portrays mosaic-like complex flow regimes in heterogeneous soils in which imbalance seems to be common leading to widespread preferential flow. The dynamic interaction between preferential flow and matrix flow under changing conditions results in complex, evolving flow networks that are embedded in the matrix of land surface and subsurface. Quantification and integration of these flow principles can lead to improved prediction of water flow in real-world soils and landscapes.

  16. Stem-root flow effect on soil-atmosphere interactions and uncertainty assessments

    NASA Astrophysics Data System (ADS)

    Kuo, T.-H.; Chen, J.-P.; Xue, Y.

    2015-11-01

    Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem-root flow mechanism. This study develops the stem-root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land-atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem-root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem-root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem-root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem-root flow and soil moisture diffusion processes.

  17. Baleen wear reveals intraoral water flow patterns of mysticete filter feeding.

    PubMed

    Werth, Alexander J; Straley, Janice M; Shadwick, Robert E

    2016-04-01

    A survey of macroscopic and microscopic wear patterns in the baleen of eight whale species (Cetacea: Mysticeti) discloses structural, functional, and life history properties of this neomorphic keratinous tissue, including evidence of intraoral water flow patterns involved in filter feeding. All baleen demonstrates wear, particularly on its medial and ventral edges, as flat outer layers of cortical keratin erode to reveal horn tubes, also of keratin, which emerge as hair-like fringes. This study quantified five additional categories of specific wear: pitting of plates, scratching of plates, scuffing of fringes, shortening of fringes, and reorientation of fringes (including fringes directed between plates to the exterior of the mouth). Blue whale baleen showed the most pitting and sei whale baleen the most scratching; gray whale baleen had the most fringe wear. The location of worn baleen within the mouth suggests that direct contact with the tongue is not responsible for most wear, and that flowing water as well as abrasive prey or sediment carried by the flowing water likely causes pitting and scratching of plates as well as fringe fraying, scuffing, shortening, and reorientation. Baleen also has elevated vertical and horizontal ridges that are unrelated to wear; these are probably related to growth and may allow for age determination. PMID:26825852

  18. Flow Cytometric Assessment of Bacterial Abundance in Soils, Sediments and Sludge

    PubMed Central

    Frossard, Aline; Hammes, Frederik; Gessner, Mark O.

    2016-01-01

    Bacterial abundance is a fundamental measure in microbiology, but its assessment is often tedious, especially for soil, and sediment samples. To overcome this limitation, we adopted a time-efficient flow-cytometric (FCM) counting method involving cell detachment and separation from matrix particles by centrifugation in tubes receiving sample suspensions and Histodenz® solution. We used this approach to assess bacterial abundances in diverse soils (natural and agricultural), sediments (streams and lakes) and sludge from sand-filters in a drinking water treatment plant and compared the results to bacterial abundances determined by two established methods, epifluorescence microscopy (EM) and adenosine triphosphate (ATP) quantification. Cell abundances determined by FCM and EM correlated fairly well, although absolute cell abundances were generally lower when determined by FCM. FCM also showed significant relations with cell counts converted from ATP concentrations, although estimates derived from ATP determinations were typically higher, indicating the presence of ATP sources other than bacteria. Soil and sediment organic matter (OM) content influenced the goodness of fit between counts obtained with EM and FCM. In particular, bacterial abundance determined by FCM in samples containing less than 10% OM, such as stream sediment, was particularly well correlated with the cell counts assessed by EM. Overall, these results suggest that FCM following cell detachment and purification is a useful approach to increase sample throughput for determining bacterial abundances in soils, sediments and sludge. However, notable scatter and only partial concordance among the FCM and reference methods suggests that protocols require further improvement for assessments requiring high precision, especially when OM contents in samples are high. PMID:27379043

  19. Flow Cytometric Assessment of Bacterial Abundance in Soils, Sediments and Sludge.

    PubMed

    Frossard, Aline; Hammes, Frederik; Gessner, Mark O

    2016-01-01

    Bacterial abundance is a fundamental measure in microbiology, but its assessment is often tedious, especially for soil, and sediment samples. To overcome this limitation, we adopted a time-efficient flow-cytometric (FCM) counting method involving cell detachment and separation from matrix particles by centrifugation in tubes receiving sample suspensions and Histodenz(®) solution. We used this approach to assess bacterial abundances in diverse soils (natural and agricultural), sediments (streams and lakes) and sludge from sand-filters in a drinking water treatment plant and compared the results to bacterial abundances determined by two established methods, epifluorescence microscopy (EM) and adenosine triphosphate (ATP) quantification. Cell abundances determined by FCM and EM correlated fairly well, although absolute cell abundances were generally lower when determined by FCM. FCM also showed significant relations with cell counts converted from ATP concentrations, although estimates derived from ATP determinations were typically higher, indicating the presence of ATP sources other than bacteria. Soil and sediment organic matter (OM) content influenced the goodness of fit between counts obtained with EM and FCM. In particular, bacterial abundance determined by FCM in samples containing less than 10% OM, such as stream sediment, was particularly well correlated with the cell counts assessed by EM. Overall, these results suggest that FCM following cell detachment and purification is a useful approach to increase sample throughput for determining bacterial abundances in soils, sediments and sludge. However, notable scatter and only partial concordance among the FCM and reference methods suggests that protocols require further improvement for assessments requiring high precision, especially when OM contents in samples are high. PMID:27379043

  20. Filter feeders and plankton increase particle encounter rates through flow regime control.

    PubMed

    Humphries, Stuart

    2009-05-12

    Collisions between particles or between particles and other objects are fundamental to many processes that we take for granted. They drive the functioning of aquatic ecosystems, the onset of rain and snow precipitation, and the manufacture of pharmaceuticals, powders and crystals. Here, I show that the traditional assumption that viscosity dominates these situations leads to consistent and large-scale underestimation of encounter rates between particles and of deposition rates on surfaces. Numerical simulations reveal that the encounter rate is Reynolds number dependent and that encounter efficiencies are consistent with the sparse experimental data. This extension of aerosol theory has great implications for understanding of selection pressure on the physiology and ecology of organisms, for example filter feeders able to gather food at rates up to 5 times higher than expected. I provide evidence that filter feeders have been strongly selected to take advantage of this flow regime and show that both the predicted peak concentration and the steady-state concentrations of plankton during blooms are approximately 33% of that predicted by the current models of particle encounter. Many ecological and industrial processes may be operating at substantially greater rates than currently assumed. PMID:19416879

  1. Design of Jitter Compensation Algorithm for Robot Vision Based on Optical Flow and Kalman Filter

    PubMed Central

    Wang, B. R.; Jin, Y. L.; Shao, D. L.; Xu, Y.

    2014-01-01

    Image jitters occur in the video of the autonomous robot moving on bricks road, which will reduce robot operation precision based on vision. In order to compensate the image jitters, the affine transformation kinematics were established for obtaining the six image motion parameters. The feature point pair detecting method was designed based on Eigen-value of the feature windows gradient matrix, and the motion parameters equation was solved using the least square method and the matching point pairs got based on the optical flow. The condition number of coefficient matrix was proposed to quantificationally analyse the effect of matching errors on parameters solving errors. Kalman filter was adopted to smooth image motion parameters. Computing cases show that more point pairs are beneficial for getting more precise motion parameters. The integrated jitters compensation software was developed with feature points detecting in subwindow. And practical experiments were conducted on two mobile robots. Results show that the compensation costing time is less than frame sample time and Kalman filter is valid for robot vision jitters compensation. PMID:24600320

  2. Chemical cleaning of porous stainless steel cross-flow filter elements for nuclear waste applications

    SciTech Connect

    Billing, Justin M.; Daniel, Richard C.; Hallen, Richard T.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2011-05-10

    The Waste Treatment and Immobilization Plant (WTP) currently under construction for treatment of High-Level Waste (HLW) at the Hanford Site will rely on cross-flow ultrafiltration to provide solids-liquid separation as a core part of the treatment process. To optimize process throughput, periodic chemical cleaning of the porous stainless steel filter elements has been incorporated into the design of the plant. It is currently specified that chemical cleaning with nitric acid will occur after significant irreversible membrane fouling is observed. Irreversible fouling is defined as fouling that cannot be removed by backpulsing the filter. PNNL has investigated chemical cleaning processes as part of integrated tests with HLW simulants and with actual Hanford tank wastes. To quantify the effectiveness of chemical cleaning, the residual membrane resistance after cleaning was compared against the initial membrane resistance for each test in a series of long-term fouling tests. The impact of the small amount of residual resistance in these tests could not be separated from other parameters and the historical benchmark of >1 GPM/ft2 for clean water flux was determined to be an adequate metric for chemical cleaning. Using the results from these tests, a process optimization strategy is presented suggesting that for the simulant material under test, the value of chemical cleaning may be suspect. The period of enhanced filtration may not be enough to offset the down time required for chemical cleaning, without respect to the other associated costs.

  3. Design of jitter compensation algorithm for robot vision based on optical flow and Kalman filter.

    PubMed

    Wang, B R; Jin, Y L; Shao, D L; Xu, Y

    2014-01-01

    Image jitters occur in the video of the autonomous robot moving on bricks road, which will reduce robot operation precision based on vision. In order to compensate the image jitters, the affine transformation kinematics were established for obtaining the six image motion parameters. The feature point pair detecting method was designed based on Eigen-value of the feature windows gradient matrix, and the motion parameters equation was solved using the least square method and the matching point pairs got based on the optical flow. The condition number of coefficient matrix was proposed to quantificationally analyse the effect of matching errors on parameters solving errors. Kalman filter was adopted to smooth image motion parameters. Computing cases show that more point pairs are beneficial for getting more precise motion parameters. The integrated jitters compensation software was developed with feature points detecting in subwindow. And practical experiments were conducted on two mobile robots. Results show that the compensation costing time is less than frame sample time and Kalman filter is valid for robot vision jitters compensation. PMID:24600320

  4. Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting

    PubMed Central

    Ming-jun, Deng; Shi-ru, Qu

    2015-01-01

    Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258

  5. Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.

    PubMed

    Deng, Ming-jun; Qu, Shi-ru

    2015-01-01

    Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258

  6. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Kinzelbach, W.

    2008-09-01

    Real-time groundwater flow modeling with filter methods is interesting for dynamical groundwater flow systems, for which measurement data in real-time are available. The Ensemble Kalman Filter (EnKF) approach is used here to update states together with parameters by adopting an augmented state vector approach. The performance of EnKF is investigated in a synthetic study with a two-dimensional transient groundwater flow model where (1) only the recharge rate is spatiotemporally variable, (2) only transmissivity is spatially variable with σlnT2 = 1.0 or (3) with σlnT2 = 2.7, and (4) both recharge rate and transmissivity are uncertain (a combination of (1) and (3)). The performance of EnKF for simultaneous state and parameter estimation in saturated groundwater flow problems is investigated in dependence of the number of stochastic realizations, the updating frequency and updating intensity of log-transmissivity, the amount of measurements in space and time, and the method (iterative versus noniterative EnKF), among others. Satisfactory results were also obtained if both transmissivity and recharge rate were uncertain. However, it was found that filter inbreeding is much more severe if hydraulic heads and transmissivities are jointly updated than if only hydraulic heads are updated. The filter inbreeding problem was investigated in more detail and could be strongly reduced with help of a damping parameter, which limits the intensity of the perturbation of the log-transmissivity field. An additional reduction of filter inbreeding could be achieved by combining two measures: (1) inflating the elements of the predicted state covariance matrix on the basis of a comparison between the model uncertainty and the observed errors at the measurement points and (2) starting the flow simulations with a very large number of realizations and then sampling the desired number of realizations after one simulation time step by minimizing the differences between the local cpdfs (and

  7. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    NASA Astrophysics Data System (ADS)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  8. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  9. Phosphorus Speciation and Sorption Processes in Preferential flow paths and Soil Matrix in Forested Podzolic Till Soil

    NASA Astrophysics Data System (ADS)

    Saastamoinen, S.; Laine-Kaulio, H.; Klöve, B.

    2009-04-01

    The importance of preferential flow paths in nutrient leaching and subsurface transport has been identified in several studies mainly on agricultural soils. In forest soils research, decayed root channels, stone surfaces and other secondary soil structures have shown to affect unsaturated flow in glacial till soil. Until recently, the focus has been on nitrogen and carbon dynamics in the preferential flow paths. Preferential flow may also have a fundamental role in phosphorus (P) sorption processes and transport from forested till soils to surface waters. The main objectives of this study were to determine how preferential flow paths affect to P speciation, sorption and leaching in forested podzolic till soil. Field experiments were conducted in mixed coniferous forest, with soil type of glacial sandy till classified as Haplic Podzol. The first experiment was conducted in Ranua, Northern Finland. The preferential flow paths were identified by introducing Acid Blue 9 dye tracer to a 1 m2 study plot. The soil profile was vertically sliced and samples were collected from the stained preferential flow paths and unstained soil matrix. Ammonium-oxalate extracted trace elements and P, total and inorganic P, inorganic P fractions and organic P forms (31P-NMR spectroscopy) were analyzed from the samples. In the second experiment in Sotkamo, Eastern Finland, three 1 m2 study plots were selected from a forested hillslope: top, middle and bottom slope. The detection of preferential flow paths and the sampling procedure was identical to the first plot experiment. Samples were analyzed for ammonium-oxalate extracted trace elements and P. Also, the effect of reaction time, P concentration and temperature on the sorption process in preferential flow paths and soil matrix was studied by kinetic batch-type sorption experiments. Stone surfaces were the most dominant preferential flow paths and contained lower oxalate-extracted and total P concentrations than the soil matrix in all

  10. Application of Filtered Spherical Harmonics Radiation Transport to High-Speed Reactive Flow

    NASA Astrophysics Data System (ADS)

    Houim, Ryan; Oran, Elaine

    2015-11-01

    Radiative heat transfer is an important, but often neglected, process in high-speed reacting and multiphase flow applications. Some scenarios, such as dust explosions in coal mines, can have regions that are nearly transparent and other regions with high dust concentration that are optically thick. Most approximations to the radiative transfer equation (RTE) are not valid in both limits simultaneously. Issues also arise when solving approximations to the RTE that can often require the solution of elliptic equations. Many compressible hydrodynamic codes use explicit time-marching and block-structured adaptive-mesh-refinement algorithms. Adapting these codes to solve elliptic equations is not always straightforward. Recently, filtered spherical harmonics (FPN) approximations to the RTE have been developed. The FPN equations are hyperbolic and, as a result, can be solved using algorithms that are similar Godunov's method for compressible fluid flow. The FPN model is also valid in optically thick and thin situations provided that the order, N, is high enough. We show that the FPN equations are a promising alternative to traditional RTE approximations. Challenging test cases that involve both free-streaming and optically thick regions will be presented.

  11. Diurnal fluctuations of water and heat flows in a bare soil

    NASA Astrophysics Data System (ADS)

    Schelde, K.; Thomsen, A.; Heidmann, T.; SchjøNning, P.; Jansson, P.-E.

    1998-11-01

    The complexity of coupled transport of heat and moisture at the soil surface necessitates a combination of field and numerical experiments to evaluate the interactions between liquid and vapor phase flow. The near-surface moisture and temperature conditions of a bare soil were investigated experimentally and by using the SOIL model to assess the importance of water vapor flow. During a 1-month period in early fall, intensive measurements of water content, water tension, and temperature were made in a bare soil plot. Soil thermal conductivity, measured on soil cores extracted for laboratory analysis, was found to agree with estimates based on the Kersten equation. Simulated water content and soil temperature agreed well with observations. Modeled soil vapor flow was significant compared to liquid flow only during the initial dry days when the inclusion of vapor flow improved the predicted diurnal variation in water tension. Model predictions were sensitive to an accurate representation of the soil surface energy balance, including the consideration of steep gradients in tension near the soil surface, and to the enhancement of vapor flow.

  12. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations

  13. Soil detachment by overland flow under different vegetation restoration models in the loess plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use change has significant effects on soil properties and vegetation cover and thus probably affects soil detachment by overland flow. Few studies were conducted to evaluate the effect of restoration models on the soil detachment process in the Loess Plateau in the past decade during which a Gr...

  14. EFFECT OF CHEMICALS ON SOIL NITRIFYING POPULATIONS USING A CONTINUOUS-FLOW CULTURE TECHNIQUE

    EPA Science Inventory

    This study examines the effects of Roundup [N-(phosphonomethyl)glycine] and N-Serve[2-chloro-6-(trichloromethyl)pyridine] on nitrifying organisms in static batch, perfusion soil columns, and a new continuous-flow soil column system. he continuous-flow method is new to nitrificati...

  15. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    NASA Astrophysics Data System (ADS)

    Sinai, G.; Dirksen, C.

    2006-12-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes near the surface and in the soil bulk were studied by using dyes. Streamlines and streak lines and wetting fronts were visually studied and photographed through a vertical glass wall. Near wetting fronts the flow direction was always perpendicular to the fronts owing to dominant matrix potential gradients. Thus, during early wetting of dry sloping sand, the flow direction is directed upslope. Far above a wetting front the flow was vertical due to the dominance of gravity. Downslope flow was observed during decreasing rainfall and dry periods. The lateral movement was largest near the soil surface and decayed with soil depth. Unstable downslope lateral flow close to the soil surface was attributed to non-Darcian flow due to variable temporal and spatial raindrop distributions. The experiments verify the theory that predicts unsaturated downslope lateral flow in sloping soil due to rainfall dynamics only, without apparent soil texture difference or anisotropy. This phenomenon could have significant implications for hillside hydrology, desert agriculture, irrigation management, etc., as well as for the basic mechanisms of surface runoff and erosion.

  16. Particle Filter-based assimilation algorithms for improved estimation of root-zone soil moisture under dynamic vegetation conditions

    NASA Astrophysics Data System (ADS)

    Nagarajan, Karthik; Judge, Jasmeet; Graham, Wendy D.; Monsivais-Huertero, Alejandro

    2011-04-01

    In this study, we implement Particle Filter (PF)-based assimilation algorithms to improve root-zone soil moisture (RZSM) estimates from a coupled SVAT-vegetation model during a growing season of sweet corn in North Central Florida. The results from four different PF algorithms were compared with those from the Ensemble Kalman Filter (EnKF) when near-surface soil moisture was assimilated every 3 days using both synthetic and field observations. In the synthetic case, the PF algorithm with the best performance used residual resampling of the states and obtained resampled parameters from a uniform distribution and provided reductions of 76% in root mean square error (RMSE) over the openloop estimates. The EnKF provided the RZSM and parameter estimates that were closer to the truth than the PF with an 84% reduction in RMSE. When field observations were assimilated, the PF algorithm that maintained maximum parameter diversity offered the largest reduction of 16% in root mean square difference (RMSD) over the openloop estimates. Minimal differences were observed in the overall performance of the EnKF and PF using field observations since errors in model physics affected both the filters in a similar manner, with maximum reductions in RMSD compared to the openloop during the mid and reproductive stages.

  17. Hydraulics of flows over and through multi-layered soils on mild slopes

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ti; Hsieh, Ping-Cheng

    2015-04-01

    In early researches overland flow was only considered for the case of a single soil layer. However, there are multiple layers of soils in reality, so this work considers not only the surface flow but also the subsurface flow passing the parallel multi-layered soils with a mild slope. The flow field is divided into a homogenous water layer and permeable parallel multi-layered soils with infinite thickness. The water flow in the top layer is described by the Navier-Stokes equations, and the pore water flow inside each soil layer is governed by the Biot's theory of poroelasticity. Both water flows are considered as laminar flows. After the boundary-value problem is formulated, the solution can be theoretically derived by the method of separation of variables. Then, the velocity profiles and shear stress profiles are investigated. The variation among each interface is especially important and thus is also discussed. As a result, the bottom slope of each layer and the soil type influence the profiles of flow velocity and shear stress significantly. Because the soil layers are considered permeable, the flow velocity profiles are nonzero at the interfaces among the layers. For a constant slope, the subsurface flow velocity is mainly affected by the soil porosity, i.e. the soil type, and it is continuous at the interface of each layer. Moreover, the distribution of shear stress in the water layer appears to be linear and the maximum value occurs at the interface of the water-soil matrix. The shear stress distribution for a certain soil or inside each soil layer approaches to zero except near the interfaces of soil layers since the flow velocity is nearly constant. To sum up, this study successfully presents the solution of water flows over and through multi-layered soils on mild slopes by an analytical approach. While the multiple layers degenerate into a single one, the solution is exactly the same as the previous research. This validates the present results.

  18. Evaluation of the metabolic diversity of microbial communities in four different filter layers of a constructed wetland with vertical flow by Biolog analysis.

    PubMed

    Salomo, S; Münch, C; Röske, I

    2009-10-01

    The community-level substrate utilization test based on direct incubation of environmental samples in Biolog EcoPlates is a suitable and sensitive tool to characterize microbial communities. The aim of this study was to investigate the influence of plant roots and soil structure on the metabolic diversity of microorganisms in a constructed wetland with vertical flow. Sediment samples were taken from different filter depths representing specific filter layers. The color development representing the substrate utilization was measured with the samples over a period of 10 days. The average well color development (AWCD) for all carbon sources was calculated as an indicator of total activity and in order to compensate the influence of the inoculum's density on the color development in the plates. After transformation by dividing by the AWCD, the optical density data were analysed by principal component analysis (PCA). An analysis of the kinetic profile of the AWCD was carried out to increase the analytical power of the method. The corrected data have been successfully fit to the logistic growth equation. Three kinetic model parameters, the asymptote (K), the exponential rate of color change (p) and the time to the midpoint of the exponential portion of the curve (s), were used for statistical analysis of the physiological profile of the microbial community in the different filter layers of the constructed wetland. We found out that in the upper two horizons, which were rooted most densely, mainly easily degradable materials like specific carbohydrates were utilized, while in the lower layers, where only single roots occur, more biochemically inert compounds, e.g. 2-hydroxy benzoic acid, were utilized. Furthermore it could be shown that microorganisms in the surface layer benefited from the plant litter because they can utilize decay products of these. In the lower filter layers specialists took advantage because they had to cope with the biochemically inert materials and

  19. Optical flow based Kalman filter for body joint prediction and tracking using HOG-LBP matching

    NASA Astrophysics Data System (ADS)

    Nair, Binu M.; Kendricks, Kimberley D.; Asari, Vijayan K.; Tuttle, Ronald F.

    2014-03-01

    We propose a real-time novel framework for tracking specific joints in the human body on low resolution imagery using optical flow based Kalman tracker without the need of a depth sensor. Body joint tracking is necessary for a variety of surveillance based applications such as recognizing gait signatures of individuals, identifying the motion patterns associated with a particular action and the corresponding interactions with objects in the scene to classify a certain activity. The proposed framework consists of two stages; the initialization stage and the tracking stage. In the initialization stage, the joints to be tracked are either manually marked or automatically obtained from other joint detection algorithms in the first few frames within a window of interest and appropriate image descriptions of each joint are computed. We employ the use of a well-known image coding scheme known as the Local Binary Patterns (LBP) to represent the joint local region where this image coding removes the variance to non-uniform lighting conditions as well as enhances the underlying edges and corner. The image descriptions of the joint region would then include a histogram computed from the LBP-coded ROI and a HOG (Histogram of Oriented Gradients) descriptor to represent the edge information. Next the tracking stage can be divided into two phases: Optical flow based detection of joints in corresponding frames of the sequence and prediction /correction phases of Kalman tracker with respect to the joint coordinates. Lucas Kanade optical flow is used to locate the individual joints in consecutive frames of the video based on their location in the previous frame. But more often, mismatches can occur due to the rotation of the joint region and the rotation variance of the optical flow matching technique. The mismatch is then determined by comparing the joint region descriptors using Chi-squared metric between a pair of frames and depending on this statistic, either the prediction

  20. Penetration of fiber versus spherical particles through filter media and faceseal leakage of N95 filtering facepiece respirators with cyclic flow.

    PubMed

    Cho, Kyungmin Jacob; Turkevich, Leonid; Miller, Matthew; McKay, Roy; Grinshpun, Sergey A; Ha, KwonChul; Reponen, Tiina

    2013-01-01

    This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 μm and a median length of 4.9 μm (calculated aerodynamic diameter, d(ae) = 1.73 μm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 μm (PSI) and 1.54 μm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 μm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to

  1. Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils.

    PubMed

    Pickles, Brian J; Gorzelak, Monika A; Green, D Scott; Egger, Keith N; Massicotte, Hugues B

    2015-10-01

    Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir's natural distribution encompasses three of the five soils, whereas lodgepole pine's extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes. PMID:25694036

  2. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    SciTech Connect

    Benedek, K. , Inc., Cambridge, MA ); Flytzani-Stephanopoulos, M. )

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  3. Evaluation of probabilistic flow in two unsaturated soils

    NASA Astrophysics Data System (ADS)

    Boateng, Samuel

    2001-11-01

    A variably saturated flow model is coupled to a first-order reliability algorithm to simulate unsaturated flow in two soils. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Thus, each simulation constitutes an unsaturated probability flow event. Sensitivities of the uncertain variables are estimated for each event. The unsaturated hydraulic properties of a fine-textured soil and a coarse-textured soil are used. The properties are based on the van Genuchten model. The flow domain has a recharge surface, a seepage boundary along the bottom, and a no-flow boundary along the sides. The uncertain variables are saturated water content, residual water content, van Genuchten model parameters alpha (α) and n, and saturated hydraulic conductivity. The objective is to evaluate the significance of each uncertain variable to the probabilistic flow. Under wet conditions, saturated water content and residual water content are the most significant uncertain variables in the sand. For dry conditions in the sand, however, the van Genuchten model parameters α and n are the most significant. Model parameter n and saturated hydraulic conductivity are the most significant for the wet clay loam. Saturated water content is most significant for the dry clay loam. Résumé. Un modèle d'écoulement variable en milieu saturé est couplé à un algorithme d'exactitude de premier ordre pour simuler les écoulements en milieu non saturé dans deux sols. Les propriétés des sols non saturés sont considérés comme des variables incertaines avec des moyennes, des écarts-types et des distributions de probabilité marginale. Ainsi chaque simulation constitue un événement d'écoulement non saturé probable. La sensibilité des variables incertaines est estimée pour chaque événement. Les propriétés hydrauliques non saturées d'un sol à texture fine et d'un sol à texture grossière sont utilis

  4. Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow using Three-Dimensional Explicit Filtering

    NASA Technical Reports Server (NTRS)

    Gullbrand, Jessica

    2003-01-01

    In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM

  5. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01

    The ceramic cross-flow filter (CXF) system is a promising method to be used in advanced coal based power systems for high temperature, high pressure (HTHP) particle removal. Using a subpilot scale pressurized fluid-bed combustor (PFBC) at Argonne National Laboratory and various PFBC simulators, prior projects have indicated that CXF systems can be used in oxidizing environments at PFBC conditions. To extend the use of CXF systems, this project completed an economic analysis comparing the cost of various oxygen and air blown gasification systems with the CXF system incorporated, initiated the scaleup of the CXF element from development to commercial size, predicted the characteristics of gasifier dust cake, evaluated cleaning pulse characteristics in a large multielement simulation, upgraded pulse cleaning mathematical model, and completed additional testing of the CXF elements under gasification (reducing) and PFBC conditions. Coors Ceramic Company and GTE Products Corporation were integrally involved in this program through the development and fabrication of the CXF elements. 39 figs., 23 tabs.

  6. Hot gas cleanup using ceramic cross flow membrane filters. Final report

    SciTech Connect

    Ciliberti, D.F.; Smeltzer, E.E.; Alvin, M.A.; Keairns, D.L.; Bachovchin, D.M.

    1983-12-01

    The single unresolved technical issue in the commercialization of pressurized fluid-bed combustion (PPBC) for electric power production is the hot gas cleaning problem. In this technology, high-temperature and -pressure (HTHP), dust-laden flue gases from the combustor must be cleaned enough to reduce expansion turbine blade erosion to an economically acceptable level. Additionally, the level of particulate emission must be compatible with the New Source Performance Standards (NSPS) for environmental acceptability. The Department of Energy (DOE) has sponsored a wide range of research and development programs directed at the solution of this problem. These programs were divided into two classifications, one dealing with more advanced concepts where testing was to be done at relatively large scale and a second group of less advanced, novel concepts where the testing was to be carried out at a bench scale. The cross-flow ceramic membrane filter program described in this report is a member of the small-scale, novel concept group.

  7. Catchment travel time distributions and water flow in soils

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Beven, K. J.; Bertuzzo, E.; Nicotina, L.; Davies, J.; Fiori, A.; Russo, D.; Botter, G.

    2011-07-01

    Many details about the flow of water in soils in a hillslope are unknowable given current technologies. One way of learning about the bulk effects of water velocity distributions on hillslopes is through the use of tracers. However, this paper will demonstrate that the interpretation of tracer information needs to become more sophisticated. The paper reviews, and complements with mathematical arguments and specific examples, theory and practice of the distribution(s) of the times water particles injected through rainfall spend traveling through a catchment up to a control section (i.e., "catchment" travel times). The relevance of the work is perceived to lie in the importance of the characterization of travel time distributions as fundamental descriptors of catchment water storage, flow pathway heterogeneity, sources of water in a catchment, and the chemistry of water flows through the control section. The paper aims to correct some common misconceptions used in analyses of travel time distributions. In particular, it stresses the conceptual and practical differences between the travel time distribution conditional on a given injection time (needed for rainfall-runoff transformations) and that conditional on a given sampling time at the outlet (as provided by isotopic dating techniques or tracer measurements), jointly with the differences of both with the residence time distributions of water particles in storage within the catchment at any time. These differences are defined precisely here, either through the results of different models or theoretically by using an extension of a classic theorem of dynamic controls. Specifically, we address different model results to highlight the features of travel times seen from different assumptions, in this case, exact solutions to a lumped model and numerical solutions of the 3-D flow and transport equations in variably saturated, physically heterogeneous catchment domains. Our results stress the individual characters of the

  8. Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow

    NASA Astrophysics Data System (ADS)

    Kelleners, T.

    2015-12-01

    A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Both liquid water flow and water vapor flow are included. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from a high-elevation rangeland soil that is subject to significant soil freezing and a mountainous forest soil that is snow-covered for about 8 months of the year. Soil hydraulic parameters are mostly based on measurements and only vegetation parameters are fine-tuned to match measured and calculated soil water content, soil & snow temperature, and snow height. Modeling statistics for both systems show good performance for temperature, intermediate performance for snow height, and relatively low performance for soil water content, in accordance with earlier results with an older version of the model.

  9. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study

    NASA Astrophysics Data System (ADS)

    Fu, Z. Y.; Chen, H. S.; Zhang, W.; Xu, Q. X.; Wang, S.; Wang, K. L.

    2015-12-01

    Soil and epikarst co-evolve resulting in complex structures, but their coupled structural effects on hydrological processes are poorly understood in karst regions. This study examined the plot-scale subsurface flow characteristics from an integrated soil-epikarst system perspective in a humid subtropical cockpit karst region of Southwest China. A trench was excavated to the epikarst lower boundary for collecting individual subsurface flows in five sections with different soil thicknesses. Four field rainfall simulation experiments were carried out under different initial moisture conditions (dry and wet) and rainfall intensities (114 mm h- 1 (high) and 46 mm h- 1 (low) on average). The soil-epikarst system was characterized by shallow soil overlaying a highly irregular epikarst surface with a near-steady infiltration rate of about 35 mm h- 1. The subsurface flows occurred mainly along the soil-epikarst interface and were dominated by preferential flow. The subsurface flow hydrographs showed strong spatial variability and had high steady-state coefficients (0.52 and 0.36 for high and low rainfall intensity events). Irregular epikarst surface combining with high vertical drainage capacity resulted in high threshold rainfall depths for subsurface flows: 67 mm and 263 mm for initial wet and dry conditions, respectively. The above results evidenced that the irregular and permeable soil-epikarst interface was a crucial component of soil-epikarst architecture and consequently should be taken into account in the hydrological modeling for karst regions.

  10. Absence of Preferential Flow in the Percolating Waters of a Coniferous Forest Soil

    NASA Astrophysics Data System (ADS)

    Rawlins, B. G.; Baird, A. J.; Trudgill, S. T.; Hornung, M.

    1997-05-01

    Evidence for the functioning of macropores and the presence of preferential flow in forest soils is equivocal. This is partly because many workers use only one diagnostic technique to indicate whether or not macropore flow occurs. In this paper three lines of evidence are used to suggest that preferential flow does not occur in the percolating waters of a coniferous forest soil under the range of hydrological conditions that prevail in the field. To simulate field conditions, realistic rainfall intensities were used in conservative solute transport experiments on four undisturbed soil columns.A method is described in which breakthrough data can be used to calculate the percentage of antecedent water displaced from a soil column during frontal-type breakthrough experiments. Calculations based on this method using the experimental data show that as little as five percent of the antecedent water was immobile. The simple form of the functional advection-dispersion equation, based on a single value for linear velocity and the dispersion coefficient was fitted to two of the breakthrough curves with reasonable accuracy, further suggesting that preferential flow did not occur in the experiments. Finally, soil moisture characteristic curves were determined for replicate soil samples from the forest soil. The operational water contents of the columns during the breakthrough experiments were compared with the soil moisture characteristics and it was found that pores exerting pressure heads greater than -0·5 kPa did not appear to contribute to flow through the columns, again suggesting an absence of preferential flow.

  11. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  12. Improved design and optimization of subsurface flow constructed wetlands and sand filters

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Carranza-Díaz, O.; Rossi, L.; Barry, D. A.

    2010-05-01

    Subsurface flow constructed wetlands and sand filters are engineered systems capable of eliminating a wide range of pollutants from wastewater. These devices are easy to operate, flexible and have low maintenance costs. For these reasons, they are particularly suitable for small settlements and isolated farms and their use has substantially increased in the last 15 years. Furthermore, they are also becoming used as a tertiary - polishing - step in traditional treatment plants. Recent work observed that research is however still necessary to understand better the biogeochemical processes occurring in the porous substrate, their mutual interactions and feedbacks, and ultimately to identify the optimal conditions to degrade or remove from the wastewater both traditional and anthropogenic recalcitrant pollutants, such as hydrocarbons, pharmaceuticals, personal care products. Optimal pollutant elimination is achieved if the contact time between microbial biomass and the contaminated water is sufficiently long. The contact time depends on the hydraulic residence time distribution (HRTD) and is controlled by the hydrodynamic properties of the system. Previous reports noted that poor hydrodynamic behaviour is frequent, with water flowing mainly through preferential paths resulting in a broad HRTD. In such systems the flow rate must be decreased to allow a sufficient proportion of the wastewater to experience the minimum residence time. The pollutant removal efficiency can therefore be significantly reduced, potentially leading to the failure of the system. The aim of this work was to analyse the effect of the heterogeneous distribution of the hydraulic properties of the porous substrate on the HRTD and treatment efficiency, and to develop an improved design methodology to reduce the risk of system failure and to optimize existing systems showing poor hydrodynamics. Numerical modelling was used to evaluate the effect of substrate heterogeneity on the breakthrough curves of

  13. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  14. How to unravel relationships between soil structure and preferential flow in structured soils with fast tomography at the continuum scale?

    NASA Astrophysics Data System (ADS)

    Sammartino, S.; Lissy, A. S.; Bogner, C.; Cornu, S.

    2015-12-01

    The modeling of water flow in the vadose zone and the understanding of processes and mechanisms that control preferential flow is still a challenge for many environmental issues. Since a long time, tridimensional X-ray images have been used to characterize the structures of intact soil cores. Conversely, imaging of water dynamics in soil structures was scarcely developed except on quite small samples in the order of a few centimeters to a few millimeters. As soil structure is a key-controlling factor, the understanding of the complex relationships between the topology and morphology of the pore space on flow distribution and hydraulic properties cannot be undertaken on such small samples. Therefore, we recently proposed the visualization and characterization of flow processes at the core scale (soil volumes of dimensions above 10 cm) with 3D image sequences acquired in a X-ray medical scanner. Last generation of these scanners combining a helical acquisition mode to the multislice capability can now provide very short acquisition times in the order of few seconds for a decimeter column. The 3D image sequences acquired during simulated rainfall events within the scanner were processed and analyzed with new ad hoc tools. Results will focus on 1) the recognition of the functional part of the macropore network related to the flow distribution, 2) its comparison to the entire structure and 3) the estimation of the macroscopic surface exchange between the active macropore network and the soil matrix obtained during the recording of water infiltration.

  15. Scaling and pedotransfer in numerical simulations of flow and transport in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow and transport parameters of soils in numerical simulations need to be defined at the support scale of computational grid cells. Such support scale can substantially differ from the support scale in laboratory or field measurements of flow and transport parameters. The scale-dependence of flow a...

  16. Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling

    NASA Astrophysics Data System (ADS)

    Kim, Jonggun; Mohanty, Binayak P.

    2016-01-01

    Lateral surface/subsurface flow and their connectivity play a significant role in redistributing soil water, which has a direct effect on biological, chemical, and geomorphological processes in the root zone (~1 m). However, most of the land surface models neglect the horizontal exchanges of water at the grid or subgrid scales, focusing only on the vertical exchanges of water as one-dimensional process. To develop better hydrologic understanding and modeling capability in complex landscapes, in this study we added connectivity-based lateral subsurface flow algorithms in the Community Land Model. To demonstrate the impact of lateral flow and connectivity on soil water storage we designed three cases including the following: (1) with complex surface topography only, (2) with complex surface topography in upper soil layers and soil hydraulic properties with uniform anisotropy. and (3) with complex surface topography and soil hydraulic properties with spatially varying anisotropy. The connectivity was considered as an indicator for the variation of anisotropy in the case 3, which was created by wetness conditions or geophysical controls (e.g., soil type, normalized difference vegetation index, and topographic index). These cases were tested in two study sites (ER 5 field and ER-sub watershed in Oklahoma) comparing to the field (gravimetric and remote sensing) soil moisture observations. Through the analysis of spatial patterns and temporal dynamics of soil moisture predictions from the study cases, surface topography was found to be a crucial control in demonstrating the variation of near surface soil moisture, but not significantly affected the subsurface flow in deeper soil layers. In addition, we observed the best performance in case 3 representing that the lateral connectivity can contribute effectively to quantify the anisotropy and redistributing soil water in the root zone. Hence, the approach with connectivity-based lateral subsurface flow was able to better

  17. Investigation of flow and transport processes at the MADE site using ensemble Kalman filter

    USGS Publications Warehouse

    Liu, Gaisheng; Chen, Y.; Zhang, Dongxiao

    2008-01-01

    In this work the ensemble Kalman filter (EnKF) is applied to investigate the flow and transport processes at the macro-dispersion experiment (MADE) site in Columbus, MS. The EnKF is a sequential data assimilation approach that adjusts the unknown model parameter values based on the observed data with time. The classic advection-dispersion (AD) and the dual-domain mass transfer (DDMT) models are employed to analyze the tritium plume during the second MADE tracer experiment. The hydraulic conductivity (K), longitudinal dispersivity in the AD model, and mass transfer rate coefficient and mobile porosity ratio in the DDMT model, are estimated in this investigation. Because of its sequential feature, the EnKF allows for the temporal scaling of transport parameters during the tritium concentration analysis. Inverse simulation results indicate that for the AD model to reproduce the extensive spatial spreading of the tritium observed in the field, the K in the downgradient area needs to be increased significantly. The estimated K in the AD model becomes an order of magnitude higher than the in situ flowmeter measurements over a large portion of media. On the other hand, the DDMT model gives an estimation of K that is much more comparable with the flowmeter values. In addition, the simulated concentrations by the DDMT model show a better agreement with the observed values. The root mean square (RMS) between the observed and simulated tritium plumes is 0.77 for the AD model and 0.45 for the DDMT model at 328 days. Unlike the AD model, which gives inconsistent K estimates at different times, the DDMT model is able to invert the K values that consistently reproduce the observed tritium concentrations through all times. ?? 2008 Elsevier Ltd. All rights reserved.

  18. Snowmelt-driven macropore flow and soil saturation in a semiarid forest

    NASA Astrophysics Data System (ADS)

    Newman, Brent D.; Wilcox, Bradford P.; Graham, Robert C.

    2004-04-01

    Lateral subsurface flow is generally assumed to occur as a result of the development of a saturated zone above a low-permeability interface such as at the soil-bedrock contact, and it is often augmented by macropore flow. Our objective was to evaluate the development of lateral subsurface flow and soil saturation at a semiarid ponderosa pine forest in New Mexico with respect to the conceptual model of saturation building above the soil-bedrock contact. At this site, we have long-term observations of the water budget components, including lateral flow. A 1.5 m deep by 7 m long trench was constructed to observe lateral subsurface flow and development of saturation directly. Our observations are based on flow resulting from a melting snowdrift. The edge of the drift was about 7 m upslope from the trench. Lateral subsurface flow only occurred from root macropores in the Bt soil horizon. Saturation developed and grew outward from flowing root macropores, rather than growing upward from the soil-bedrock interface. This macropore-centred saturation resulted in a highly heterogeneous distribution of water content until enough macropores began flowing and individual macropore saturated zones grew large enough to coalesce and saturate large volumes of the soil. Our observations are based on one snowmelt event and a relatively short hillslope flow path, and thus do not represent a full range of hydrologic conditions. Nevertheless, the observed behaviour did not conform to the traditional model of soil-bedrock control of saturation and lateral flow.

  19. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  20. Coupled Water Flow and Heat Transport in Seasonally Frozen Soils with Snow Accumulation

    NASA Astrophysics Data System (ADS)

    kelleners, T.

    2013-12-01

    A numerical model is developed to calculate coupled water flow and heat transport in seasonally frozen soil and snow. Separate equations are used to describe both unsaturated and saturated soil water flow. The effect of dissolved ions on soil water freezing point depression is included by combining an expression for osmotic head with the Clapeyron equation and the van Genuchten soil water retention function. The coupled water flow and heat transport equations are solved using the Thomas algorithm and Picard iteration. Ice pressure is always assumed zero and frost heave is neglected. The new model is tested using data from an existing laboratory soil column freezing experiment and an ongoing field experiment in a high-elevation rangeland soil. A dimensionless impedance factor describing the effect of ice pore blocking on soil hydraulic conductivity is treated as a calibration parameter for both cases. Calculated values of total water content for the laboratory soil column freezing experiment compare well with measured values, especially during the early stages of the experiment, as is also found by others. Modeling statistics for the rangeland field experiment show varied performance for soil water content and excellent performance for soil temperature, in accordance with earlier results with an older version of the model.

  1. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    NASA Astrophysics Data System (ADS)

    Petersen, C. T.; Hansen, S.; Jensen, H. E.

    Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf). 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing) while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  2. Effects of soil stratigraphy on pore-water flow in a creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Kong, Jun; Li, Ling; Barry, D. A.

    2012-12-01

    SummaryIn coastal marshes, low-permeability mud is often found overlying high permeability sandy deposits. A recently developed 3D creek-marsh model was used to investigate the effects of soil stratigraphy (a mud layer overlying a sandy-loam layer) on pore-water flow in the marsh. Simulation results showed significant modifications of tide-induced pore-water flow due to the layered soil. The presence of the lower sandy-loam layer with a relatively high hydraulic conductivity not only increased the pore-water flow speed but also changed the flow direction, particularly in the upper mud layer where enhanced vertical flow dominated. Particle tracking revealed large changes in the overall pore-water circulation pattern, and associated particle travel path and time due to the influence of the soil stratigraphy. While the amount of water exchange between the marsh soil and tidal water increased, the residence time of particles in both soil layers was reduced. Sensitivity analysis showed the importance of soil compressibility, capillary rise and hydraulic conductivity contrast between the soil layers in modulating the effect of soil stratigraphy. In particular, the total net influx and efflux across the marsh surface (including the creek/channel bank and bed) increased proportionally with the square root of the lower layer's hydraulic conductivity. These results demonstrated the interplay of tides, marsh topography and soil stratigraphy in controlling the pore-water flow characteristics, which underpin solute transport and transformation as well as the aeration condition in the marsh soil.

  3. The preferential flow of soil: A widespread phenomenon in pedological perspectives

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghu; Zhang, Mingxiang; Niu, Jianzhi; Zheng, Haijin

    2016-06-01

    The article provides an overview of studies about the preferential flow phenomenon. This phenomenon is one of the types of the transportation of water solution through the soil profile by preferential channels (pathways) with a relatively high speed and with a slight change in the chemical composition of the solution. Interest in this phenomenon has risen sharply in the last two decades due to the observed fast transportation of contaminants from soil surface into groundwater level. On the basis of the literature data, the authors give the definition of this phenomenon, consider its types, degree, features, mechanisms, methods and models and research perspectives, in particular the interaction between preferential flow and soil matrix flow. The article considers the aspects of the movement of soil water carrying heavy metals and pesticides; hence, it concerns the protection of environment and people's health. It provides the thorough review of the studies on the preferential flow, and describes the research directions and their development.

  4. Contrasting effects of soil development on hydrological properties and flow paths

    NASA Astrophysics Data System (ADS)

    Lohse, Kathleen A.; Dietrich, William E.

    2005-12-01

    Runoff pathways strongly influence hydrologic and biogeochemical losses and landscape evolution. On an evolving landscape, soil development may alter hydrologic properties and thereby change through time the relative importance of various pathways. Here we report in situ soil water retention, unsaturated and saturated hydraulic conductivity, and flow path characteristics of a 300 year old Andisol and a 4.1 million year old Oxisol, located at the extreme ends of a soil substrate age gradient across the Hawaiian Islands. The two soils contrasted in depth and texture; the young soil was shallow and coarse textured, while the old soil was deep and highly weathered with a near-surface plinthite horizon overlying numerous clay-rich subsurface horizons. The young soil drained freely under modest suction, whereas subsurface clay horizons at the old site required significantly more suction to start to drain than the upper horizons. Similarly, saturated hydraulic conductivity (Ks) was high throughout the soil profile at the young site, whereas Ks was two to three orders of magnitude lower through the subsurface clay horizons than the upper ones at the old site. Irrigation experiments with deuterium tracer demonstrated that water was downward advecting at the young site, while water at the old site moved both laterally along the subsurface clay horizon contact and slowly downward through it. Rainfall frequency distributions indicated a high probability of rainfall events exceeding subsurface Ks values in old soil. In Hawaii the addition of dust influences the time evolution of soil, but the tendency for subsoil clay accumulation in older soils leading to alteration in hydrologic flow paths has been proposed in other environments. Our findings together suggest that as soils develop with time, subsurface horizon Ks values decline, impeding rates of vertical water flow but also increasing the importance of shallow subsurface lateral flow.

  5. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  6. Effect of Soil Stratification on the Development and Migration of Headcuts in Upland Concentrated Flows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to examine the effect of vertical stratification in soil erodibility on the development and migration of steady-state headcut scour holes in upland concentrated flows typical of agricultural fields. Packed soil beds with a pre-formed step were subjected to identical simul...

  7. A boundary-layer solution for flow at the soil-root interface.

    PubMed

    Severino, Gerardo; Tartakovsky, Daniel M

    2015-06-01

    Transpiration, a process by which plants extract water from soil and transmit it to the atmosphere, is a vital (yet least quantified) component of the hydrological cycle. We propose a root-scale model of water uptake, which is based on first principles, i.e. employs the generally accepted Richards equation to describe water flow in partially saturated porous media (both in a root and the ambient soil) and makes no assumptions about the kinematic structure of flow in a root-soil continuum. Using the Gardner (exponential) constitutive relation to represent the relative hydraulic conductivities in the Richards equations and treating the root as a cylinder, we use a matched asymptotic expansion technique to derive approximate solutions for transpiration rate and the size of a plant capture zone. These solutions are valid for roots whose size is larger than the macroscopic capillary length of a host soil. For given hydraulic properties, the perturbation parameter used in our analysis relates a root's size to the macroscopic capillary length of the ambient soil. This parameter determines the width of a boundary layer surrounding the soil-root interface, within which flow is strictly horizontal (perpendicular to the root). Our analysis provides a theoretical justification for the standard root-scale cylindrical flow model of plant transpiration that imposes a number of kinematic constraints on water flow in a root-soil continuum. PMID:25008964

  8. Intensity transform and Wiener filter in measurement of blood flow in arteriography

    NASA Astrophysics Data System (ADS)

    Nunes, Polyana F.; Franco, Marcelo L. N.; Filho, João. B. D.; Patrocínio, Ana C.

    2015-03-01

    Using the arteriography examination, it is possible to check anomalies in blood vessels and diseases such as stroke, stenosis, bleeding and especially in the diagnosis of Encephalic Death in comatose individuals. Encephalic death can be diagnosed only when there is complete interruption of all brain functions, and hence the blood stream. During the examination, there may be some interference on the sensors, such as environmental factors, poor maintenance of equipment, patient movement, among other interference, which can directly affect the noise produced in angiography images. Then, we need to use digital image processing techniques to minimize this noise and improve the pixel count. Therefore, this paper proposes to use median filter and enhancement techniques for transformation of intensity using the sigmoid function together with the Wiener filter so you can get less noisy images. It's been realized two filtering techniques to remove the noise of images, one with the median filter and the other with the Wiener filter along the sigmoid function. For 14 tests quantified, including 7 Encephalic Death and 7 other cases, the technique that achieved a most satisfactory number of pixels quantified, also presenting a lesser amount of noise, is the Wiener filter sigmoid function, and in this case used with 0.03 cuttof.

  9. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Ruiz-Sinoga, J. D.; Martínez-Murillo, J. F.; Lavee, H.

    2015-01-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCottem hydroabsorbent polymer (HP); and sewage sludge (RU). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha- 1. This research demonstrates the role played by the treatments in overland flow generation mechanism. On one hand, the high macroporosity of SM and PM, together with the fact that soil moisture increased with depth, explains weak overland flow and thus low sediment yield due to saturation conditions. Therefore, regarding overland flow and sediment yield, RU behaves similarly to SM and PM. On the other hand, when HP was applied, overland flow developed quickly with relatively high amounts. This, together with the decrease downward in soil moisture along the soil profile, proved that mechanisms of overland flow are of the Hortonian type.

  10. Soil erosion on upland areas by rainfall and overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion in agricultural watersheds is a systemic problem that has plagued mankind ever since the practice of agriculture began some 9,000 years ago. It is a worldwide problem, the severity of which varies from location to location depending on weather, soil type, topography, cropping practices,...

  11. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Liu, Di; Mishra, Ashok K.; Yu, Zhongbo

    2016-07-01

    This paper examines the combination of support vector machines (SVM) and the dual ensemble Kalman filter (EnKF) technique to estimate root zone soil moisture at different soil layers up to 100 cm depth. Multiple experiments are conducted in a data rich environment to construct and validate the SVM model and to explore the effectiveness and robustness of the EnKF technique. It was observed that the performance of SVM relies more on the initial length of training set than other factors (e.g., cost function, regularization parameter, and kernel parameters). The dual EnKF technique proved to be efficient to improve SVM with observed data either at each time step or at a flexible time steps. The EnKF technique can reach its maximum efficiency when the updating ensemble size approaches a certain threshold. It was observed that the SVM model performance for the multi-layer soil moisture estimation can be influenced by the rainfall magnitude (e.g., dry and wet spells).

  12. Comparative toxicity in earthworms Eisenia fetida and Lumbricus terrestris exposed to cadmium nitrate using artificial soil and filter paper protocols

    SciTech Connect

    Fitzpatrick, L.C.; Goven, A.J.; Muratti-Ortiz, J.F.

    1996-07-01

    Earthworms are ideal soil organisms for use in terrestrial ecotoxicology. As such, several earthworm protocols have been developed for testing toxic potential of chemicals and contaminated soils. Of these, the 48-h filter paper contact (FP) and the 14-d artificial soil exposure (AS) protocols, using mortality (LC50) as the toxic endpoint and Eisenia fetida as the test species, have received the most attention, with the latter being adopted by both OECD and EEC in Europe and the Environmental Protection Agency (USEPA) in the United States. Although the FP technique, adopted by EEC, provides for inexpensive reproducible toxicity screening for chemicals (i.e. establishing relative toxicities), it has been criticized for lacking the ecotoxicological relevance of the AS protocol. Choice of earthworm species for laboratory testing also has been controversial. The manure worm, E. fetida, is criticized for not being sufficiently sensitive to chemicals or representative of {open_quotes}typical{close_quotes} earthworms. Lumbricus terrestris and Apporectodea caliginosa have been suggested as more sensitive and ecologically relevant earthworms by Dean-Ross and Martin, respectively. This paper compares the AS and FP protocols in assessing toxicity of cadminum to L. terrestris and E. fetida using LC50s and LC50s. 19 refs., 2 tabs.

  13. Transport and survival of bacterial and viral tracers through submerged-flow constructed wetland and sand-filter system.

    PubMed

    Vega, Everardo; Lesikar, Bruce; Pillai, Suresh D

    2003-08-01

    Untreated or improperly treated wastewater has often been cited as the primary contamination source of groundwater. The use of decentralized wastewater treatment systems has applicability around the world since it obviates the need for extensive infrastructure development and expenditures. The use of a submerged flow constructed wetland (CW) and a sand filter to remove bacterial and viral pathogens from wastewater streams was evaluated in this study Salmonella sp. and a bacteriophages tracer were used in conjunction with the conservative bromide tracer to understand the fate and transport of these organisms in these treatment systems. Viral breakthrough numbers in the sand filter and CW were similar with a Spearman Rank correlation of 0.8 (P<0.05). In the CW, the virus exhibited almost a 3-log reduction, while in the sand filter, the viruses exhibited a 2-log reduction. The bacterial tracers, however, did not exhibit similar reductions. Low numbers of bacteria and viruses were still detectable in the effluent streams suggesting that disinfection of the effluent is critical. The survival of the tracer bacteria and viruses was as expected dependent on the biotic and abiotic conditions existing within the wastewater. The results suggest that the microbial removal characteristics of decentralized wastewater treatment systems can vary and depend on factors such as adsorption, desorption and inactivation which in turn depend on the design specifics such as filter media characteristics and local climatic conditions. PMID:12676500

  14. Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils.

    PubMed

    Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng

    2016-07-01

    Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils. PMID:27072664

  15. Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Hendricks Franssen, H. J.; Gómez-Hernández, J. J.

    2011-07-01

    The normal-score ensemble Kalman filter (NS-EnKF) is tested on a synthetic aquifer characterized by the presence of channels with a bimodal distribution of its hydraulic conductivities. Fourteen scenarios are analyzed which differ among them in one or various of the following aspects: the prior random function model, the boundary conditions of the flow problem, the number of piezometers used in the assimilation process, or the use of covariance localization in the implementation of the Kalman filter. The performance of the NS-EnKF is evaluated through the ensemble mean and variance maps, the connectivity patterns of the individual conductivity realizations and the degree of reproduction of the piezometric heads. The results show that (i) the localized NS-EnKF can identify correctly the channels when a large number of conditioning piezometers are used even when an erroneous prior random function model is used, (ii) localization plays an important role to prevent filter inbreeding and results in a better logconductivity characterization, and (iii) the NS-EnKF works equally well under very different flow configurations.

  16. Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Li, L.; Zhou, H.; Hendricks Franssen, H. J.; Gómez-Hernández, J. J.

    2012-02-01

    The normal-score ensemble Kalman filter (NS-EnKF) is tested on a synthetic aquifer characterized by the presence of channels with a bimodal distribution of its hydraulic conductivities. This is a clear example of an aquifer that cannot be characterized by a multiGaussian distribution. Fourteen scenarios are analyzed which differ among them in one or various of the following aspects: the prior random function model, the boundary conditions of the flow problem, the number of piezometers used in the assimilation process, or the use of covariance localization in the implementation of the Kalman filter. The performance of the NS-EnKF is evaluated through the ensemble mean and variance maps, the connectivity patterns of the individual conductivity realizations and the degree of reproduction of the piezometric heads. The results show that (i) the localized NS-EnKF can characterize the non-multiGaussian underlying hydraulic distribution even when an erroneous prior random function model is used, (ii) localization plays an important role to prevent filter inbreeding and results in a better logconductivity characterization, and (iii) the NS-EnKF works equally well under very different flow configurations.

  17. Water flow in soil and plants: the importance of good contacts

    NASA Astrophysics Data System (ADS)

    Carminati, A.

    2009-04-01

    Water flow in unsaturated porous media is controlled by the continuity of the liquid phase through the pore system. In many cases, the pore system is composed of regions with different material properties separated by interfaces containing macro-pores or gaps that are easily drained. When these gaps are drained the continuity of the liquid flow path may break, with a consequent decrease in the conductivity of the medium. We present two examples demonstrating the controlling role of interfaces on water flow. The first example describes an aggregated soil. Due to the aggregate roughness, the inter-aggregate contacts contain macro-pores which are rapidly drained. The hydraulic behavior of contacts varies from highly conductive when water fills the contact to a bottle-neck to flow as water pressure drops and contact asperities rapidly drained. The conductivity of the system is determined by the water-filled contact area between aggregates, rather then by the average volumetric water content. The second example refers to the contacts between soil and roots. By means of X-ray tomography we showed that during periods of drought, roots shrink and may lose contact with the soil, with a consequent reduction in water uptake. When the soil is irrigated again, roots swell partially refilling the gaps. Opening and closing of gaps may help plant to optimize water use, to prevent water loss when soil dries, and to restore the soil-root continuity after irrigation. Additionally, soil-root continuity is improved by root exudates and root hairs, which make the soil-root interface a complex and dynamic biomaterial with specific and unique properties. These two examples show that interfaces between heterogeneous media can have a big impact on water flow in porous media and demonstrate that volumetric averaging for predicting transport properties can lead to wrong results. An approach based on flow cross sections and interfacial properties may be the way to a deeper understanding and

  18. Andic soil features and debris flows in Italy. New perspective towards prediction

    NASA Astrophysics Data System (ADS)

    Scognamiglio, Solange; Calcaterra, Domenico; Iamarino, Michela; Langella, Giuliano; Orefice, Nadia; Vingiani, Simona; Terribile, Fabio

    2016-04-01

    Debris flows are dangerous hazards causing fatalities and damage. Previous works have demonstrated that the materials involved by debris flows in Campania (southern Italy) are soils classified as Andosols. These soils have peculiar chemical and physical properties which make them fertile but also vulnerable to landslide. In Italy, andic soil properties are found both in volcanic and non-volcanic mountain ecosystems (VME and NVME). Here, we focused on the assessment of the main chemical and physical properties of the soils in the detachment areas of eight debris flows occurred in NVME of Italy in the last 70 years. Such landslides were selected by consulting the official Italian geodatabase (IFFI Project). Andic properties (by means of ammonium oxalate extractable Fe, Si and Al forms for the calculation of Alo+1/2Feo) were also evaluated and a comparison with soils of VME was performed to assess possible common features. Landslide source areas were characterised by slope gradient ranging from 25° to 50° and lithological heterogeneity of the bedrock. The soils showed similar, i.e. all were very deep, had a moderately thick topsoil with a high organic carbon (OC) content decreasing regularly with depth. The cation exchange capacity trend was generally consistent with the OC and the pH varied from extremely to slightly acid, but increased with depth. Furthermore, the soils had high water retention values both at saturation (0.63 to 0.78 cm3 cm‑3) and in the dryer part of the water retention curve, and displayed a prevalent loamy texture. Such properties denote the chemical and physical fertility of the investigated ecosystems. The values of Alo+1/2Feoindicated that the soils had vitric or andic features and can be classified as Andosols. The comparison between NVME soils and those of VME showed similar depth, thickness of soil horizons, and family texture, whereas soil pH, degree of development of andic properties and allophane content were higher for VME soils

  19. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  20. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Fu, Xiaolei; Luo, Lifeng; Lü, Haishen; Ju, Qin; Liu, Di; Kalin, Dresden A.; Huang, Dui; Yang, Chuanguo; Zhao, Lili

    2014-08-01

    Soil temperature plays an important role in hydrology, agriculture, and meteorology. In order to improve the accuracy of soil temperature simulation, a soil temperature data assimilation system was developed based on the Ensemble Particle Filter (EnPF) and the Common Land Model (CLM), and then applied in the Walnut Gulch Experimental Watershed (WGEW) in Arizona, United States. Surface soil temperature in situ observations and Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (MODIS LST) data were assimilated into the system. In this study, four different assimilation experiments were conducted: (1) assimilating in situ observations of instantaneous surface soil temperature each hour, (2) assimilating in situ observations of instantaneous surface soil temperature once per day, (3) assimilating verified MODIS LST once per day, and (4) assimilating original MODIS LST once per day. These four experiments reflect a transition from high-quality and more frequent in situ observations to lower quality and less frequent remote sensing data in the data assimilation system. The results from these four experiments show that the assimilated results are better than the simulated results without assimilation at all layers except the bottom layer, while the superiority gradually diminishes as the quality and frequency of the observations decrease. This demonstrates that remote sensing data can be assimilated using the ensemble particle filter in poorly gauged catchments to obtain highly accurate soil variables (e.g., soil moisture, soil temperature). Meanwhile, the results also demonstrate that the ensemble particle filter is effective in assimilating soil temperature observations to improve simulations, but the performance of the data assimilation method is affected by the frequency of assimilation and the quality of the input data.

  1. The role of fragipan soils properties for hillslope subsurface flow dynamics

    NASA Astrophysics Data System (ADS)

    Dahlke, Helen; Easton, Zachary; Brown, Larry; Steenhuis, Tammo

    2010-05-01

    In watersheds characterized by fragipan, soils runoff generation is traditionally assumed to be dominated by shallow subsurface flow perched by a nearly impenetrable, low-conductive, subsurface soil horizon. However, several irrigation studies have indicated that fragipan soils can conduct subsurface flow vertically in considerable amounts resulting from differences in fragipan properties (e.g., prism diameter, interprism cracks, etc). These fragipan properties remain difficult to measure at the hillslope and watershed scales and consequently are inadequately accounted for in hydrological models. In the present study, a geophysical survey using ground penetrating radar of a 0.5 ha hillslope in central New York, USA has shown that spatial variability of the continuity and depth of fragipan soils is more influential on subsurface flow pathways than the physical characteristics of the fragipan itself. The geophysical survey revealed that the depth to fragipan varied between 0.3 and 0.8 m, resulting in water table and subsurface flow dynamics similar to the ‘fill and spill hypothesis'. The survey also indicated that the fragipan is interrupted by a higher conductive glacial sand lens that facilitates percolation of subsurface flow beneath the fragipan. The effect of the spatial variability of fragipan soils on subsurface flow pathways and flux was examined in further detail by installation of a 1.5 m wide, 1.5 m deep and 12.5 m long trench at the base of the 125 m long hillslope. The trench was installed in a variable source area (VSA) that forms at the base of the hillslope. The trench was instrumented with a surface flow collector measuring runoff from the upper 5 cm of the soil, and two collector drains installed at the soil-fragipan interface in 0.4 m depth and at the base of the trench (1.5 m depth). In addition, water levels were recorded at 5-min intervals in a 10 m x 10 m grid at the upslope contributing area of the trench. Soils in the study site are

  2. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  3. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    [1] Laboratory and numerical studies were conducted to investigate the transport and fate of Escherichia coli D21g and coliphage f174 in saturated soils with preferential flow under different solution ionic strength (IS'='1, 5, 20, and 100 mM) conditions. Preferential flow systems were created by em...

  4. Coupled simulation of surface runoff and soil water flow using multi-objective parameter estimation

    NASA Astrophysics Data System (ADS)

    Köhne, John Maximilian; Wöhling, Thomas; Pot, Valérie; Benoit, Pierre; Leguédois, Sophie; Le Bissonnais, Yves; Šimůnek, Jirka

    2011-06-01

    SummaryA comprehensive description of water flow in environmental and agricultural systems requires an account of both surface and subsurface pathways. We present a new model which combines a 1D overland flow model and the 2D subsurface flow HYDRUS-2D model, and uses the multi-objective global search method AMALGAM for inverse parameter estimation. Furthermore, we present data from bench-scale flow experiments which were conducted with two 5-m long replicate soil channels. While rainfall was applied, surface runoff was recorded at the downstream end of the soil channel, subsurface drainage waters were sampled at three positions equally spaced along the channels, and pressure heads were recorded at five depths. The experimental observations were used to evaluate the performance of our modeling system. The complexity of the modeling approach was increased in three steps. First, only runoff and total drainage were simulated, then drainage flows from individual compartments were additionally evaluated, and finally a surface crust and immobile soil water were also considered. The results showed that a good match between measured and observed surface runoff and total drainage does not guarantee accurate representation of the flow process. An inspection of the Pareto results of different multiobjective calibration runs revealed a significant trade-off between individual objectives, showing that no single solution existed to match spatial variability in the flow. In spite of the observed crust formation, its consideration in the more complex model structure did not significantly improve the fit between the model and measurements. Accounting for immobile water regions only slightly improved the fit for one of the two replicate soil channels. Discrepancies between relatively complex model simulations and seemingly simple soil channel experiments suggest the presence of additional unknowns, such as heterogeneity of the soil hydraulic properties. Nevertheless, with its

  5. Analysing flow patterns in degraded peat soils using TiO2 dye

    NASA Astrophysics Data System (ADS)

    Liu, Haojie; Lennartz, Bernd

    2014-05-01

    Dye tracing is a valuable method for studying the flow patterns in soils. However, limited information is available on water flow and solute transport pathways in dark colored peat soils because the frequently used Brilliant Blue FCF dye does not visibly stain the soil. In this study, we were aiming at testing the suitability of Titanium dioxide (TiO2) as a dye tracer for dark peat soils. The objectives were to quantify the physical properties of different degraded peat soils and visualize the flow patterns. Soil samples were collected from two low-lying fen sites, where the top soil was highly degraded, while lower horizons were less decomposed. Dye tracer experiments were conducted at both sites by applying a TiO2 suspension (10 g/l) with a pulse of 40 mm. Soil profiles were prepared for photo documentation the following day. It was found that the physical and hydraulic properties of peat were significantly influenced by the degree of peat decomposition and degradation. Higher decomposed and degraded peat soils had a higher bulk density, lower organic matter content and lower porosity. Moreover, higher decomposition and degradation resulted in a lower saturated hydraulic conductivity as long as investigated samples originated from the same site. In addition, degraded peat soils showed less anisotropy than un-degraded peat. It turned out that TiO2 is a suitable dye tracer to visualize the flow paths in peat soils. Although dye patterns differed within the same plot and between different plots, most of the flow patterns indicated a preferential flow situation. The distribution of TiO2 in the soil profile, as analyzed from 5 by 5 cm grid cells, compared to the distribution of bromide, which was applied along with the dye confirming the suitability of the dye tracer. Un-decomposed plant structures, such as wood branches and leaves, were identified as the major preferential flow path in un-degraded peat. For degraded peat, bio-pores, such as root and earthworm

  6. Pressure-Velocity-Scalar Filtered Mass Density Function for Large Eddy Simulation of Compressible Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Givi, Peyman; Nik, Mehdi B.; Pope, Stephen B.

    2015-11-01

    A new model is developed which accounts for the effects of subgrid scale pressure in the context of the filtered density function (FDF) formulation. This results in a pressure-velocity-scalar filtered mass density function (PVS-FMDF), which is suitable for large eddy simulation of compressible turbulence. Following its mathematical definition, an exact transport equation is derived for the PVS-FMDF. This equation is modeled in a probabilistic manner by a system of stochastic differential equations (SDEs). The consistency and the predictive capability of the model are established by conducting LES of a three-dimensional compressible mixing layer, and comparison with direct numerical simulation (DNS) data.

  7. The moving boundary approach to modeling gravity-driven stable and unstable flow in soils

    NASA Astrophysics Data System (ADS)

    Brindt, Naaran; Wallach, Rony

    2016-04-01

    Many field and laboratory studies in the last 40 years have found that water flow in homogeneous soil profiles may occur in preferential flow pathways rather than in a laterally uniform wetting front, as expected from classical soil physics theory and expressed by the Richards equation. The water-content distribution within such gravity-driven fingers was found to be nonmonotonic due to water accumulation behind a sharp wetting front (denoted as saturation overshoot). The unstable flow was first related to soil coarseness. However, its appearance in water-repellent soils led the authors to hypothesize that gravity-driven unstable flow formation is triggered by a non-zero contact angle between water and soil particles. Despite its widespread occurrence, a macroscopic-type model describing the nonmonotonic water distribution and sharp wetting front is still lacking. The moving boundary approach, which divides the flow domain into two well-defined subdomains with a sharp change in fluid saturation between them, is suggested to replace the classical approach of solving the Richards equation for the entire flow domain. The upper subdomain consists of water and air, whose relationship varies with space and time following the imposed boundary condition at the soil surface as calculated by the Richards equation. The lower subdomain also consists of water and air, but their relationship remains constant following the predetermined initial condition. The moving boundary between the two subdomains is the sharp wetting front, whose location is part of the solution. As such, the problem is inherently nonlinear. The wetting front's movement is controlled by the dynamic water-entry pressure of the soil, which depends on soil wettability and the front's propagation rate. A lower soil wettability, which hinders the spontaneous invasion of dry pores and increases the water-entry pressure, induces a sharp wetting front and water accumulation behind it. The wetting front starts to

  8. ASCAT soil moisture data assimilation through the Ensemble Kalman Filter for improving streamflow simulation in Mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2016-04-01

    Assimilation of Surface Soil Moisture (SSM) observations obtained from remote sensing techniques have been shown to improve streamflow prediction at different time scales of hydrological modeling. Different sensors and methods have been tested for their application in SSM estimation, especially in the microwave region of the electromagnetic spectrum. The available observation devices include passive microwave sensors such as the Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard the Aqua satellite and the Soil Moisture and Ocean Salinity (SMOS) mission. On the other hand, active microwave systems include Scatterometers (SCAT) onboard the European Remote Sensing satellites (ERS-1/2) and the Advanced Scatterometer (ASCAT) onboard MetOp-A satellite. Data assimilation (DA) include different techniques that have been applied in hydrology and other fields for decades. These techniques include, among others, Kalman Filtering (KF), Variational Assimilation or Particle Filtering. From the initial KF method, different techniques were developed to suit its application to different systems. The Ensemble Kalman Filter (EnKF), extensively applied in hydrological modeling improvement, shows its capability to deal with nonlinear model dynamics without linearizing model equations, as its main advantage. The objective of this study was to investigate whether data assimilation of SSM ASCAT observations, through the EnKF method, could improve streamflow simulation of mediterranean catchments with TOPLATS hydrological complex model. The DA technique was programmed in FORTRAN, and applied to hourly simulations of TOPLATS catchment model. TOPLATS (TOPMODEL-based Land-Atmosphere Transfer Scheme) was applied on its lumped version for two mediterranean catchments of similar size, located in northern Spain (Arga, 741 km2) and central Italy (Nestore, 720 km2). The model performs a separated computation of energy and water balances. In those balances, the soil

  9. Preferential flow in connected soil structures and the principle of "maximum energy dissipation": A thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2009-04-01

    "There is preferential flow at all scales"? This was a key message in a talk on ?Idle thoughts on a unifying theory of catchment hydrology? given by Bloeschl (2006). In this context ?preferential flow? was used to address rapid water flow along spatially connected flow paths of minimum flow resistance. Preferential flow seems in fact rather the rule than the exception. It occurs locally in non capillary macropores, at the hillslope scale in surface rills or through subsurface pipes. Rapid flow in connected biopores or sometimes shrinkage cracks is today accepted to play a key role for transport of agrochemicals in cohesive soils. The spatial distribution of worm burrows in the landscape may, furthermore, exert crucial control on rainfall runoff response and sediment yields at the hillslope and catchment scales. However, even if the population of connected biopores/macropores is known in soil we struggle in predicting onset, timing and strength of preferential flow events. Preferential flow is an intermittent, threshold phenomenon. Onset and intensity seems to be determined by the strength of the rainfall forcing and the wetness state of the soil. Furthermore, burrows of deep digging aenecic earthworms can ? even when being abandoned ? persist over decades as suggested by accumulation of clay particles or even radio nuclides. Thus, these structures ?survive? severe rainfall and subsurface flow events and still remain functional in the hydrological system. Why is it sometimes ?favourable? to take flow paths of minimum flow resistance and sometimes not? Why do these flow paths/ structures persist such a long time? Following Kleidon and Schimansky (2008) we suggest that a thermodynamic perspective ? looking at soil water flow as dissipative process in an open, non equilibrium thermodynamic system ? may help unrevealing these questions. However, we suggest a complementary perspective on soil water flow focusing rather on entropy production but on dissipation of

  10. The potential of 2D Kalman filtering for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...

  11. Divergent habitat filtering of root and soil fungal communities in temperate beech forests.

    PubMed

    Goldmann, Kezia; Schröter, Kristina; Pena, Rodica; Schöning, Ingo; Schrumpf, Marion; Buscot, François; Polle, Andrea; Wubet, Tesfaye

    2016-01-01

    Distance decay, the general reduction in similarity of community composition with increasing geographical distance, is known as predictor of spatial variation and distribution patterns of organisms. However, changes in fungal communities along environmental gradients are little known. Here we show that distance decays of soil-inhabiting and root-associated fungal assemblages differ, and identify explanatory environmental variables. High-throughput sequencing analysis of fungal communities of beech-dominated forests at three study sites across Germany shows that root-associated fungi are recruited from the soil fungal community. However, distance decay is substantially weaker in the root-associated than in the soil community. Variance partitioning of factors contributing to the observed distance decay patterns support the hypothesis that host trees stabilize the composition of root-associated fungi communities, relative to soil communities. Thus, they not only have selective impacts on associated communities, but also buffer effects of changes in microclimatic and environmental variables that directly influence fungal community composition. PMID:27511465

  12. Divergent habitat filtering of root and soil fungal communities in temperate beech forests

    PubMed Central

    Goldmann, Kezia; Schröter, Kristina; Pena, Rodica; Schöning, Ingo; Schrumpf, Marion; Buscot, François; Polle, Andrea; Wubet, Tesfaye

    2016-01-01

    Distance decay, the general reduction in similarity of community composition with increasing geographical distance, is known as predictor of spatial variation and distribution patterns of organisms. However, changes in fungal communities along environmental gradients are little known. Here we show that distance decays of soil-inhabiting and root-associated fungal assemblages differ, and identify explanatory environmental variables. High-throughput sequencing analysis of fungal communities of beech-dominated forests at three study sites across Germany shows that root-associated fungi are recruited from the soil fungal community. However, distance decay is substantially weaker in the root-associated than in the soil community. Variance partitioning of factors contributing to the observed distance decay patterns support the hypothesis that host trees stabilize the composition of root-associated fungi communities, relative to soil communities. Thus, they not only have selective impacts on associated communities, but also buffer effects of changes in microclimatic and environmental variables that directly influence fungal community composition. PMID:27511465

  13. Interception of Vapor Flow near Soil Surface for Water Conservation and Drought Alleviation

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wang, Y.; Gao, Z.; Hishida, K.; Zhang, Y.

    2015-12-01

    Liquid and vapor flow of water in soil and the eventual vaporization of all waters near the soil surface are mechanisms controlling the near-surface evaporation. Interception and prevention of the vapor form of flow is critical for soil water conservation and drought alleviation in the arid and semiarid regions. Researches are conducted to quantify the amount of near-surface vapor flow in the semi-arid Loess Plateau of China and the central California of USA. Quantitative leaf water absorption and desorption functions were derived and tested based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of a plant is characterized by the plant's water retention curves. Field studies are conducted to measure the dynamic water movements from the soil surface to ten meters below the surface in an attempt to quantify the maximum depths of water extraction due to different vegetation types and mulching measures at the surface. Results show that condensation is usually formed on soil surface membranes during the daily hours when the temperature gradients are inverted toward the soil surface. The soil temperature becomes stable at 13 Degree Celsius below the 4-meter depth in the Loess Plateau of China thus vapor flow is not likely deriving from deeper layers. However, the liquid flow may move in and out depending on water potential gradients and hydraulic conductivity of the layers. The near-surface vapor flow can be effectively intercepted by various mulching measures including gravel-and-sand cover, plant residue and plastic membranes. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  14. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model

    NASA Astrophysics Data System (ADS)

    Xiong, Binyu; Zhao, Jiyun; Wei, Zhongbao; Skyllas-Kazacos, Maria

    2014-09-01

    State of charge (SOC) estimation is a key issue for battery management since an accurate estimation method can ensure safe operation and prevent the over-charge/discharge of a battery. Traditionally, open circuit voltage (OCV) method is utilized to estimate the stack SOC and one open flow cell is needed in each battery stack [1,2]. In this paper, an alternative method, extended Kalman filter (EKF) method, is proposed for SOC estimation for VRBs. By measuring the stack terminal voltages and applied currents, SOC can be predicted with a state estimator instead of an additional open circuit flow cell. To implement EKF estimator, an electrical model is required for battery analysis. A thermal-dependent electrical circuit model is proposed to describe the charge/discharge characteristics of the VRB. Two scenarios are tested for the robustness of the EKF. For the lab testing scenarios, the filtered stack voltage tracks the experimental data despite the model errors. For the online operation, the simulated temperature rise is observed and the maximum SOC error is within 5.5%. It is concluded that EKF method is capable of accurately predicting SOC using stack terminal voltages and applied currents in the absence of an open flow cell for OCV measurement.

  15. Soil volume estimation in debris flow areas using lidar data in the 2014 Hiroshima, Japan rainstorm

    NASA Astrophysics Data System (ADS)

    Miura, H.

    2015-10-01

    Debris flows triggered by the rainstorm in Hiroshima, Japan on August 20th, 2014 produced extensive damage to the built-up areas in the northern part of Hiroshima city. In order to consider various emergency response activities and early-stage recovery planning, it is important to evaluate the distribution of the soil volumes in the debris flow areas immediately after the disaster. In this study, automated nonlinear mapping technique is applied to light detection and ranging (LiDAR)-derived digital elevation models (DEMs) observed before and after the disaster to quickly and accurately correct geometric locational errors of the data. The soil volumes generated from the debris flows are estimated by subtracting the pre- and post-event DEMs. The geomorphologic characteristics in the debris flow areas are discussed from the distribution of the estimated soil volumes.

  16. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  17. Uncertainty Evaluation of Coliform Bacteria Removal from Vegetated Filter Strip under Overland Flow Condition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetated filter strips (VFS) have become an important component of water quality improvement by reducing sediment and nutrients transport to surface water. This management practice is also beneficial for controlling manure-borne pathogen transport to surface water. The objective of this work was to...

  18. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter (BAF).

    PubMed

    Fu, L Y; Wu, C Y; Zhou, Y X; Zuo, J E; Ding, Y

    2016-01-01

    In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography-mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86-6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent. PMID:27120658

  19. Experimental support and estimate of the accuracy of the water flow model in structured soils

    NASA Astrophysics Data System (ADS)

    Nikulina, M.

    2003-04-01

    The set of models of water flow and solute transport was developed. It takes into account spatial and time variability of soil properties and a complex structure of a soil pore space. However, its limited by physically justified methods of experimental definition of parameters. The important stage of the work with the models is checking their adequacy to described processes. It is possible only at a presence of the qualitative experi-mental data received under conditions, reproduced by model. According to this, the aim of the work is the support of methods of experimental maintenance of water flow models with taking into account of structure of soil porosity and evaluation of conditions of application of mathematical models of a dif-ferent level. The field experiments were conducted in Suzdal (Russia, Vladimirskaja oblast), in June and July 1997. The soil cover of this region has high complexity, in which grey forest soils are dominant. Genetic horizons of the grey forest soils are well structured, this causes the presence in soil profile the macropores. The field investigation consisted of three big parts: (1) the morphological research of the genetic horizons of the grey forest soil; (2) investigation of the soil filtration properties by the tube with a constant head and vacuum-infiltrometer methods; (3) study of water movement at different intensity of the irrigation. Experiments were conducted on three sets called <А>, <В > and <С>. The plots had 1m x 1m a size and were equipped with the hole for measurement of soil water content by the neutron hygrometer and by the tensiometers. In labo-ratory conditions the following properties of soil were determined: density of soil, texture, porosity of the aggregates, shrinkage characteristics of soil fraction in diameter of 3-5 mm. For the simulation the model "MACRO" (Jarvis et al, 1991) was used in the work. Adequacy of the model descriptions of the field data were estimated by visual comparison of measured and

  20. Patterns and Processes in Southwestern shrublands and grasslands: role of vegetation, soil- geomorphology, and overland flow

    NASA Astrophysics Data System (ADS)

    Bedford, D. R.; Small, E. E.; E, T. G.

    2007-12-01

    Pattern of variable soil properties have been linked to vegetation as well as soil-landform characteristics and processes. It has been long hypothesized that patterns of infiltration and overland flow play key roles in arid and semi-arid region ecohydrology. Specifically, the process of redistribution of water and sediments have been linked to vegetation related feedbacks that enable persistence of vegetation in water limited environments. Yet, the processes of redistribution, such as through runoff and surface ponding, have been poorly described or documented. We have documented that the spatial pattern of soil properties is dependant on the vegetation pattern as well as the type of, and in some cases location within a, landform. These patterns are likely due to feedbacks between vegetation and the surface processes that affect soil properties and therefore water availability. In this paper, we present observations and numerical simulation that show how patterns of overland flow and infiltration are affected by vegetation-topography related patterns of soil properties. We have developed a numerical model that works on 10 cm grid cells that can inform on the processes of infiltration and overland flow over continuously varying soil properties. We use this model to show how the patterns of soil properties affect runoff, as well as the conditions under which redistribution via runon and ponding can occur. Furthermore, we show using data from a central New Mexico grassland and shrubland, and an eastern Mojave Desert shrubland how climatic differences can affect the patterns of infiltration and runoff.

  1. Flow pathways of bromide and Brilliant Blue FCF tracers in caliche soils

    NASA Astrophysics Data System (ADS)

    Nobles, M. M.; Wilding, L. P.; Lin, H. S.

    2010-10-01

    Land use of caliche soils in limestone regions of Texas is increasingly shifting from traditional ranchland to residential and industrial development. However, little information is available on water flow and solute transport through soils of these landscapes, or their potential suitability for wastewater disposal and bioremediation. This study determined the impacts of landscape position on soil hydrologic functions by using Brilliant Blue FCF and Br - tracers to characterize flow pathways through soils of stepped terrains. Aqueous tracer solution was applied to surface (and in some cases subsurface) horizons of selected riser, tread, floodplain, and upland summit sites. Brilliant Blue FCF and Br - pathways were analyzed based on vertical sections excavated through each application site. While Brilliant Blue FCF demonstrated preferential flow along macropores, Br - moved through soil matrix primarily in piston flow pattern. In most cases, Br - was less retarded and moved to greater vertical and horizontal distances than Brilliant Blue FCF. Cemented Bk, Bkm, C, Cr, Crk, and R horizons acted as aquitards, resulting in considerable horizontal transport of both tracers beyond the direct infiltration zone. Significant volumes of limestone rock clasts, together with soil, were involved in solute transport and thus contributed to the soil's ability to serve as bioremediation and moisture storage media. High limestone gravel content and rapid solute transport through subsurface horizons to aquitards in deep riser soils indicate that they may serve as hydrological recharge sites with potential for ephemeral water tables, increased water storage and greater bioremediation potential. Shallow tread sites may be capable of producing seasonal saturation above restrictive horizons and increased surface runoff, becoming local hydrological discharge sites. This could conceivably lead to surface water contamination; however, these locales are hydrologically buffered by recharge

  2. Soil moisture assimilation using a modified ensemble transform Kalman filter with water balance constraint

    NASA Astrophysics Data System (ADS)

    Wu, Guocan; Zheng, Xiaogu; Dan, Bo

    2016-04-01

    The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.

  3. Large-eddy simulation of boundary layer flow on a non-uniform grid using explicit filtering and reconstruction

    NASA Astrophysics Data System (ADS)

    Goodfriend, Lauren; Katopodes Chow, Fotini; Vanella, Marcos; Balaras, Elias

    2013-11-01

    Many realistic flows, such as the urban boundary layer, are too expensive to simulate directly. Large-eddy simulation (LES) and adaptive mesh refinement (AMR) reduce the computational cost of turbulence modeling by restricting resolved length scales, but combining these techniques generates additional errors. The grid refinement interfaces in AMR grids can reflect resolved energy and create interpolation errors. This study investigates the use of explicit filtering and reconstruction to mitigate grid interface errors in LES of a pressure gradient forced boundary layer. The domain is split in the streamwise direction into two equally sized structured grids, one fine and one coarse, with periodic boundaries in the streamwise and spanwise directions. This simple test case allows observation of the effects of the grid interfaces. Explicit filtering is found to reduce accumulation of resolved energy at the fine-to-coarse interface and improve the shape of coherent structures, compared to basic LES. Reconstruction of the subfilter velocity is shown to further the improvements of explicit filtering. These results inform the use of LES on block-structured non-uniform grids, such as nested grids in local atmospheric models or on more complex Cartesian AMR grids.

  4. Hillslope-scale soil moisture estimation with the ensemble Kalman Filter and a process ecohydrology model: Evaluation of anticipated microwave observations

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Entekhabi, D.; Bras, R. L.

    2008-12-01

    Accurate knowledge of soil moisture at hillslope scales (e.g., 10's to 100's of meters) is critical to advancing hydrological applications such as irrigation scheduling, landslide prediction, wildfire fuel load assessment, and flood forecasting. Planned soil moisture remote sensing platforms, such as the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautic and Space Agency's Soil Moisture Active-Passive (SMAP) missions, will provide global observation of soil moisture in the lower microwave region at frequent revisit intervals (2-3 days) and are partly targeted at improving soil moisture knowledge for applications. It is well recognized, however, that the data products provided by these missions are too coarse in spatial resolution to capture hillslope-scale variation in soil moisture. Process ecohydrology models are capable of simulating soil moisture at the spatial scales required, but suffer from uncertainties in the input data, model parameters and structure. Through a set of synthetic experiments, we assess the degree to which data assimilation through the ensemble Kalman Filter can be used to fuse simulated L-band microwave brightness and radar backscatter observations to uncertain hillslope-scale soil moisture estimates derived from a process ecohydrology model. We demonstrate that in a semiarid environment, assimilation of successive observations gradually improves the forecast soil moisture distribution, both in the near surface and the entire soil profile. Representing the role of topography in controlling moisture redistribution, a measurement equation system that accounts for topographic impacts on observing geometry, and adequate characterization of uncertainty in soil hydraulic and thermal properties are critical to the success of a hillslope-scale soil moisture data assimilation system. While this work suggests data assimilation is potentially useful for improving knowledge of soil moisture at hillslope scales

  5. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Simunek, J.; Nimmo, J.R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.

  6. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    SciTech Connect

    Svanda, Michal

    2013-09-20

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-{omega} filtering procedures-ridge filtering and phase-speed filtering-commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top {approx}5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules.

  7. Variations in soil detachment rates after wildfire as a function of soil depth, flow properties, and root properties

    USGS Publications Warehouse

    Moody, John A.; Nyman, Peter

    2013-01-01

    Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became

  8. Changes in Flow and Transport Patterns in Fen Peat as a Result of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Liu, Haojie; Janssen, Manon; Lennartz, Bernd

    2016-04-01

    The preferential movement of water and transport of substances play an important role in soils and are not yet fully understood especially in degraded peat soils. In this study, we aimed at deducing changes in flow and transport patterns in the course of soil degradation as resulting from peat drainage, using titanium dioxide (TiO2) as a dye tracer. The dye tracer experiments were conducted on columns of eight types of differently degraded peat soils from three sites taken both in vertical and horizontal directions. The titanium dioxide suspension (average particle size of 0.3 μm; 10 g l‑1) was applied in a pulse of 40 mm to each soil core. Twenty-four hours after the application of the tracer, cross sections of the soil cores were prepared for photo documentation. In addition, the saturated hydraulic conductivity (Ks) was determined. Preferential flow occurred in all investigated peat types. From the stained soil structural elements, we concluded that undecomposed plant remains are the major preferential flow pathways in less degraded peat. For more strongly degraded peat, bio-pores, such as root and earthworm channels, operated as the major transport domain. Results show that Ks and the effective pore network in less degraded peat soils are anisotropic. With increasing peat degradation, the Ks and cross section of effective pore network decreased. The results also indicate a strong positive relationship between Ks and number of macropores as well as pore continuity. Hence, we conclude that changes in flow and transport pathways as well as Ks with an increasing peat degradation are due to the disintegration of the peat forming plant material and decrement of number and continuity of macropores after drainage.

  9. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    SciTech Connect

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-05-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment.

  10. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  11. The Experiment and Simulation for Water Movement of Preferential Flow in Soil

    NASA Astrophysics Data System (ADS)

    Lu, Xiaohui; Li, Qilong

    A large number of lab and field experiments have showed preferential flow is a ubiquitous phenomenon. Through analysis on the field dye experiment, precipitation and infliltration data in the Experimental Station in Zhengzhou and percolation test data in lab and field experiment, the paper analyze the characterization of preferential flow by a method of statistical analysis and discuss the form mechanism together with influencing factor in soil. The results show the field dye experiment of silt loam in Zhumadian, precipitation and infliltration data and the percolation test in the Experimental Station have showed the opore caused by the root and wormhole greatly develops in the upper soil layer, tortuose and decreases with the depth. However, the cranny caused by dry shrinkage comparatively develops in the deep soil layer, the opore has good connectivity, and therefore preferential flow easily occurs in silt loam than sand silt in Kaifeng.

  12. Simulating Water Flow and Heat Transfer in Arid Soil Using Weighing Lysimeter Data

    NASA Astrophysics Data System (ADS)

    Dijkema, Jelle; Koonce, Jeremy; Ghezzehei, Teamrat; Berli, Markus; van der Ploeg, Martine; (Rien) van Genuchten, Martinus

    2015-04-01

    Deserts cover about one third of the Earth's land surface. Rather little though is known about the physics of desert soils and their implications for the ecology and hydrology of arid environments. The recently constructed weighing lysimeters located in Boulder City, Nevada, were designed to improve our understanding of the physical processes and properties of arid soils at the meter scale. In this study, we developed a HYDRUS-1D model to simulate water infiltration, hydraulic redistribution, and heat transfer for one of the lysimeters. HYDRUS-1D solves the coupled equations for water flow and heat transfer in variably saturated soil. Soil hydraulic and thermal properties were initialized based on prior knowledge and characterizations of the lysimeter soil. Soil hydraulic and thermal parameters were further refined by inverse simulation using a subset of the soil water content, water potential and temperature measurements at various depths. The model was validated using a separate portion of the soil moisture and temperature data set that was not used for calibration. The calibrated model provides a tool to virtually test future experiments in the lysimeters such as changes in the irrigation regime or the incorporation of plants. The model will also help to assess the impact of the placement of physical structures (such as solar panels) on the water and heat balance of desert soils.

  13. Characterization of soil organic matter composition at intact preferential flow path surfaces

    NASA Astrophysics Data System (ADS)

    Leue, M.; Gerke, H. H.; Ellerbrock, R. H.

    2012-04-01

    In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to surfaces of preferential flow paths. Surfaces of flow paths that are formed by cracks, decayed root channels or worm burrows are often covered by clay-organic coatings (i.e., cutanes), in which the outermost layer is mainly organic matter (OM). The composition of OM finally controls wettability, sorption, and transfer properties. However, the in-situ local distribution of OM properties along such surfaces is largely unknown to date because experimental techniques to study the relatively thin and vulnerable coatings at intact structure surfaces were not available. The objective of this study was to analyze the local mm-scale distribution and composition of SOM at preferential flow paths. The Fourier transformed infrared spectroscopy in diffuse reflectance mode (DRIFT) was used to determine spectral information of the intact structural surfaces (cracks and biopores). With the DRIFT-mapping technique, potential flow path types, such as earthworm burrows, root channels, and cracks of structured subsoil horizons were analyzed in 1 mm steps along transects of 15 up to 65 mm length. The distribution of OM composition was characterized by evaluating the ratios of the absorption band intensities of the alkyl- (C-H-) and carbonyl (C=O-) functional groups (CH/CO), which represent a measure of the potential wettability of the OM of the surface. Samples of different soil types (Luvisol, Regosol, Stagnosol, Cambisol), of different geological provenance (till, loess, mudstone, limestone), and of different land use (arable, forest) were analyzed. The CH/CO-ratio was generally higher for earthworm burrows and root channels as compared to crack surfaces and the soil matrix. Differences between flow path types could be observed with respect to soil type, parent material, and land use. The local distribution of the OM properties may affect sorption and mass

  14. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    González Paloma, Hueso; Juan Francisco, Martinez-Murillo; Damian, Ruiz-Sinoga Jose; Hanoch, Lavee

    2015-04-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. This research demonstrates the role played by the treatments in overland flow generation mechanism (runoff, overland flow and soil moisture along the soil profile). The general overland flow characteristics showed that in the C plots the average overland flow was 8.0 ± 22.0 l per event, and the HP plots produced a similar mean value (8.1 ± 20.1 l). The average overland flow per event was significantly less for soil amended with SM, PM or RU (2.7 ± 8.3 l; 1.3 ± 3.5 l and 2.2 ± 5.9 l, respectively). There was a similar trend with respect to the maximum overland flow. The mean sediment yield per event was relatively high in the C and HP plots (8.6 ± 27.8 kg and 14.8 ± 43.4 kg, respectively), while significantly lower values were registered in the SM, PM and RU plots (0.4 ± 1.0 kg; 0.2 ± 0.3 kg and 0.2 ± 0.3 kg, respectively). Very similar trends were found for the maximum sediment yield. Regarding to the soil moisture values, there was a difference in the trends between the C and HP plots and the SM, PM and RU plots. In the C and HP plots the general trend was for a decrease in soil moisture downward through the soil profile, while in the SM, PM and RU plots the soil moisture remained relatively constant or increased, except for the RU treatment in which the soil moisture

  15. Preferential Water Flow in a Frozen Soil - a Two-Domain Model Approach

    NASA Astrophysics Data System (ADS)

    Stähli, Manfred; Jansson, Per-Erik; Lundin, Lars-Christer

    1996-10-01

    Earlier modelling studies have shown the difficulty of accurately simulating snowmelt infiltration into frozen soil using the hydraulic model approach. Comparison of model outputs and field measurements have inferred the occurrence of rapid flow even during periods when the soil is still partly frozen. A one-dimensional, physically based soil water and heat model (SOIL) has been complemented with a new two-domain approach option to simulate preferential flow through frozen layers. The ice is assumed to be first formed at the largest water filled pore upon freezing. Infiltrating water may be conducted rapidly through previously air-filled pores which are not occupied by ice. A minor fraction of water is slowly transferred within the liquid water domain, which is absorbed by the solid particles. A model validation with field measurements at a location in the middle-east of Sweden indicated that the two-domain approach was suitable for improving the prediction of drainage during snowmelting. In particular, the correlation between simulated and observed onset of drainage in spring was improved. The validation also showed that the effect of the high flow domain was highly sensitive to the degree of saturation in the topsoil during freezing, as well as to the hydraulic properties at the lower frost boundary regulating the upward water flow to the frozen soil and ice formation.

  16. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  17. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  18. Effects of soil aggregates on debris-flow mobilization: Results from ring-shear experiments

    USGS Publications Warehouse

    Iverson, Neal R.; Mann, Janet E.; Iverson, Richard M.

    2010-01-01

    Rates and styles of landslide motion are sensitive to pore-water pressure changes caused by changes in soil porosity accompanying shear deformation. Soil may either contract or dilate upon shearing, depending upon whether its initial porosity is greater or less, respectively, than a critical-state porosity attained after sufficiently high strain. We observed complications in this behavior, however, during rate-controlled (0.02 m s−1) ring-shear experiments conducted on naturally aggregated dense loamy sand at low confining stresses (10.6 and 40 kPa). The aggregated soil first dilated and then contracted to porosities less than initial values, whereas the same soil with its aggregates destroyed monotonically dilated. We infer that aggregates persisted initially during shear and caused dilation before their eventual breakdown enabled net contraction. An implication of this contraction, demonstrated in experiments in which initial soil porosity was varied, is that the value of porosity distinguishing initially contractive from dilative behavior can be significantly larger than the critical-state porosity, which develops only after disaggregation ceases at high strains. In addition, post-dilative contraction may produce excess pore pressures, thereby reducing frictional strength and facilitating debris-flow mobilization. We infer that results of triaxial tests, which generally produce strains at least a factor of ∼ 4 smaller than those we observed at the inception of post-dilative contraction, do not allow soil contraction to be ruled out as a mechanism for debris-flow mobilization in dense soils containing aggregates.

  19. How microtopography and soil morphology can help decipher flow paths and processes in headwater catchments

    NASA Astrophysics Data System (ADS)

    Gannon, J. P.; McGuire, K. J.; Bailey, S.

    2012-12-01

    Headwater catchments dominate the drainage basins of larger rivers and determine the water quality of downstream water bodies. In these catchments, hydrology strongly influences soil development and soil chemistry, thereby determining stream water quality. This study aims to explain spatial and temporal variations of flow paths and fine scale variations in hydrologic regimes at the headwater catchment scale utilizing a hydropedological approach. Hydropedologic units (HPUs), defined by differing soil morphological characteristics provide a framework for describing the function of different soil types in a catchment. Preliminary analysis and field observations also indicate that HPU locations will be predictable based on surface microtopography calculated from a 1-meter, LiDAR (Light Detection and Range) derived digital elevation model. We show that water table data from 50 wells distributed throughout the catchment confirms HPUs are indicative of specific hydrologic flow regimes, including threshold behavior, consistent with predictions based on soil morphology alone. This study focuses on three intensive study sites representative of typical soil morphological development in a small catchment. Furthering the water table analysis, measures of saturated and unsaturated hydrologic regimes, surface topographic characteristics, subsurface characteristics, and soil morphology were compared for the three intensive sites in an effort to quantify the effect of surface microtopography on the proposed hydropedologic system. Preliminary analysis shows matric potential gradients develop laterally down slope at site locations hypothesized to be indicative of lateral podsolization based on site topography and soil morphology. These results are in agreement with our findings describing threshold behavior in water table development at the same sites. The results of this study suggest a hydropedological approach may be a useful tool for describing catchment runoff response as well

  20. Evaluating experimental design for soil-plant model selection using a Bootstrap Filter and Bayesian model averaging

    NASA Astrophysics Data System (ADS)

    Wöhling, T.; Schöniger, A.; Geiges, A.; Nowak, W.; Gayler, S.

    2013-12-01

    The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), we analyze the changes in posterior model weights and posterior model choice uncertainty when more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. Using a Bootstrap Filter (BF), the models were then conditioned on field measurements of soil moisture, matric potential, leaf-area index, and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at a field site at the Swabian Alb in Southwestern Germany. Following our new method, we derived model weights when using all data or different subsets thereof. We discuss to which degree the posterior mean outperforms the prior mean and all

  1. Characterizing soil preferential flow using iodine--starch staining experiments and the active region model

    SciTech Connect

    Sheng, Feng; Wang, Kang; Zhang, Renduo; Liu, Hui-Hai

    2009-03-01

    Thirteen iodine-starch staining experiments with different boundary conditions and measurement scales were conducted at two sites to study preferential flow processes in natural unsaturated soils. Digital imaging analyses were implemented to obtain the corresponding preferential flow patterns. The test results are used to evaluate a recently proposed active region model in terms of its usefulness and robustness for characterizing unsaturated flow processes at field scale. Test results provide useful insights into flow patterns in unsaturated soils. They show that flow pattern depends on the top boundary condition. As the total infiltrating-water depth increased form 20 mm to 80 mm for the 100 x 100 cm{sup 2} plots, the corresponding flow pattern changed from few preferential flow paths associated with a relatively small degree of stained coverage and a small infiltration depth, to a pattern characterized by a higher stained coverage and a larger infiltration depth, and to (finally) a relatively homogeneous flow pattern with few unstained area and a much larger infiltration depth. Test results also show that the preferential flow pattern became generally more heterogeneous and complex for a larger measurement scale (or size of infiltration plot). These observations support the general idea behind the active region model that preferential flow pattern in unsaturated soils are dynamic and depend on water flow conditions. Further analyses of the test results indicate that the active-region model is able to capture the major features of the observed flow pattern at the scale of interest, and the determined parameter values do not significantly depend on the test conditions (initial water content and total amount of infiltrating water) for a given test site. This supports the validity of the active region model that considers that parameter to be a property of the corresponding unsaturated soil. Results also show that some intrinsic relation seems to exist between active

  2. Modeling of Water Flow Processes in the Soil-Plant-Atmosphere System: The Soil-Tree-Atmosphere Continuum Model

    NASA Astrophysics Data System (ADS)

    Massoud, E. C.; Vrugt, J. A.

    2015-12-01

    Trees and forests play a key role in controlling the water and energy balance at the land-air surface. This study reports on the calibration of an integrated soil-tree-atmosphere continuum (STAC) model using Bayesian inference with the DREAM algorithm and temporal observations of soil moisture content, matric head, sap flux, and leaf water potential from the King's River Experimental Watershed (KREW) in the southern Sierra Nevada mountain range in California. Water flow through the coupled system is described using the Richards' equation with both the soil and tree modeled as a porous medium with nonlinear soil and tree water relationships. Most of the model parameters appear to be reasonably well defined by calibration against the observed data. The posterior mean simulation reproduces the observed soil and tree data quite accurately, but a systematic mismatch is observed between early afternoon measured and simulated sap fluxes. We will show how this points to a structural error in the STAC-model and suggest and test an alternative hypothesis for root water uptake that alleviates this problem.

  3. Spatial variation in microbial controls on soil organic matter turnover relative to preferential flow paths

    NASA Astrophysics Data System (ADS)

    Masue-Slowey, Y.; Dhiman, K.; McMurdie, P. J.; Fendorf, S.; Chadwick, O.

    2012-12-01

    Soil is one of the largest dynamic stocks of C on earth. Within soils, nearly 70% of total soil organic C resides below 30 cm depth, and subsurface C typically has much longer turnover time (i.e. thousands of years) than near-surface C. Currently, predicting CO2 emission from subsurface soils is difficult as little is known about the stability and bioavailability of subsurface C. Physical structure (architecture) is a critical feature dictating the flow of solutes and gas within soils. Owing to the contrast in advective-dominated transport along preferential flow paths in comparison to diffusive-dominated transport within the soil matrix, O2 gradients develop, and, as a consequence, a diversity of anaerobic metabolisms emerge even in seemingly aerated soil. Currently, we lack a detailed understanding of how soil physical structure influences chemical environments, which in turn control microbial processing of C. Here we examine soil C stabilization mechanisms within subsurface soils that maintain their native structure and test whether metabolic constraints impact net soil carbon turnover time. Our study site, Pu'u Eke forest on Kohala Mountain, Hawaii receives 3 m of rain annually and exhibits heterogeneity in flow paths due to the shrink-swell properties of hydrated short-range ordered minerals. Carbon becomes progressively older (more depleted in 14C) as a function of distance from the flow path regardless of sampling depth within the B horizons. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy as well as Fourier transform inferred (FTIR) spectroscopy show no significant difference in C chemistry orthogonal to the flow paths. Even as C becomes older toward the interior of peds (soil matrix), the permanganate oxidizable fraction increases slightly. Mineralogy, inclusive of poorly crystalline Fe and Al oxide abundance, also does not vary significantly as a function of the distance from flow paths based on X-ray absorption spectroscopy (XAS), X

  4. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  5. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1984-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  6. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1986-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  7. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  8. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-05-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  9. Soil morphology of a debris flow chronosequence in a coniferous forest, southern California, USA

    USGS Publications Warehouse

    Turk, J.K.; Goforth, B.R.; Graham, R.C.; Kendrick, K.J.

    2008-01-01

    Soils on a series of debris flow deposits, ranging from < 1 to 244??years old, were described and sampled in order to investigate the early stages of soil development. The parent material at the site is debris flow regolith, composed mainly of gneiss, the soil moisture regime is xeric, and the vegetation is mixed coniferous forest. Ages of the deposits were assessed using dendrochronology. Morphologic trends in the organic horizons included a thickening of the humus form over time, along with the development of Fm and Hr horizons. The humus forms underwent a progression from Mormodors (20??years old), to Hemimors (26-101??years old), and finally Lignomors (163??years old) and Resimors (184-244??years old). Changes in physical properties of the uppermost mineral horizons as a function of increasing age included a decrease in the volume of coarse fragments, a linear decrease in bulk density, and a darkening and reddening of the soil color. No significant soil development took place in the subsoil during the time span of this chronosequence. The soils described were classified as Typic Xerofluvents and Typic Xerorthents (Regosols and Leptosols). Buried A horizons were observed in many of the soils. Where the A horizons could be linked to dendrochronology to assess the age of the buried surface, we found that the properties of the buried A horizons do not serve as a good indicator of the age of the surface. This study suggests rapid development of the humus form profile (organic horizons and A horizon) following debris flow deposition and rapid degradation of these horizons when the debris flow surface is buried. ?? 2008 Elsevier B.V.

  10. Modelling field-data of preferential flow in paddy soil induced by earthworm burrows.

    PubMed

    Sander, Till; Gerke, Horst H

    2009-02-16

    Dye tracer studies revealed that earthworm burrows in the compacted plough pan of a Chinese paddy rice field can serve as preferential flow paths. It is, however, unclear whether the observed bypass of the compacted soil horizon might be explained by differences in hydraulic properties between the plough pan, the worm burrows with a surrounding denser drilosphere and the un-compacted subsoil, or by lower-permeable macropore walls. The objective is to separately analyse effects of the individual flow domains and to identify possible limiting factors (bottlenecks) in the flow system for better soil drainage management. Hydraulic properties are inversely estimated from in situ measurements of pressure heads and evaporation by using HYDRUS_1D code. Field data of 2D pressure head progression after dye tracer infiltration in the vicinity of worm burrows are simulated using HYDRUS_2D. The axisymmetric 2D flow model considers a highly permeable cylindrical macropore region in the centre of the flow domain, assuming Darcy's law is valid. The match between simulated and measured pressure head fields improved after including a lower-permeable drilosphere pore domain. Scenario simulations show that the inflow into the 'bypass-flow' domain are reduced by the homogenized topsoil (i.e., after puddling) and limited if the macropore domain is relatively shallow. The results suggest that basic structural features may in this concept be considered as one possibility to describe observed preferential flow patterns. The separate consideration of soil structural effects may help developing and improving management strategies for manipulation of preferential flow in soils of paddy fields. PMID:19064301

  11. Manifestation of Preferential Flow and Nitrate Transport in Central European Soils on Acid Crystalline Rocks

    NASA Astrophysics Data System (ADS)

    Dolezal, F.; Cislerova, M.; Vogel, T.; Zavadil, J.; Vacek, J.; Kvitek, T.; Prazak, P.; Nechvatal, M.; Bayer, T.

    2006-12-01

    Large areas of Central Europe are occupied by highlands and peneplains of medium altitudes, built by acid crystalline rocks. The soils overlying them are typically of medium textures. They are neither markedly water- repellent nor greatly swelling and shrinking. These landscapes are characterized by high vulnerability of water bodies, both surface and subsurface. The existing methodologies of vulnerability assessment regard the heavier among these soils as little vulnerable to diffuse pollution, while in reality they may be virtually equally vulnerable, because of the short-circuiting effect of preferential flow and transport. Our experiment site was Valeèov (49° 38' 40" N, 14° 30' 25" E, 461 m a.s.l.) in the Bohemo-Moravian highland, with average annual precipitation 660 mm and average annual air temperature 7.2 ° C. The field trials, starting from 2001, were focused on growing potato under different conditions. Soil moisture content was measured by Theta- probe capacitance sensors, soil water suction by Watermark sensors and tensiometers. Nitrate leaching was monitored by soil solution sampling with ceramic suction cups and zero-tension lysimeters. The hydraulic conductivity of the soil was measured on small cores and by suction and pressure infiltrometers. The following preferential flow manifestations are analyzed and quantified: a) the spatial variability of soil moisture content and suction after rainstorms, b) the spatial and temporal variability of soil's hydraulic conductivity and its dependence on soil moisture content, c) the spatial variability of percolation volumes in parallel lysimeters, d) the variability of nitrate concentrations in the lysimeter leachate, e) the apparent absence of correlation between leachate volumes and leachate concentrations in lysimeters, f) the lower mean and higher variance of leachate concentrations in lysimeters, in comparison with those in suction cups.

  12. Scaling up preferential flow in unsaturated undulating terrain due to anisotropic soil hydraulic conductivity and other potential mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preferential flow occurs over a range of spatial scales, where flow along certain paths may be much greater than the mean flow rate and orders of magnitude greater than along the lowest flow paths. At hillslope scales, fine-scaling soil layers may be oriented with the ground surface slope due to dep...

  13. Effect of the Entrapped air on Water Flow in Heterogeneous Soil: Experimental Set- up

    NASA Astrophysics Data System (ADS)

    Snehota, M.; Sobotkova, M.; Cislerova, M.

    2008-12-01

    Temporal variations of steady state water flow rates were observed in laboratory infiltration experiments done on a sample of compacted sand and on an undisturbed soil sample (Eutric Cambisol). These variations are found to be in relation with entrapped air content. Infiltration-outflow experiments consisted of a series of ponded infiltration runs with seepage face boundary condition at the lower end of columns. The amount of the entrapped was derived from continuous weighing of the sample. The initial water contents were different for each run, which led to different amount of the air trapped in the soil during the first stages of infiltrations. The results of the experiments done on undisturbed soil showed that the flux rates and water contents varied during quasi-steady state. This finding contradicts the standard theory. The fluctuations of the water content during the steady state flow can be ascribed to the variations in volume of the entrapped air. Similarly, shape of the bromide breakthrough curve, which were performed simultaneously during the quasi-steady state varied for undisturbed soil. The same behaviour was not observed in the sample of homogeneous sand. Computer tomography was used to characterize the structure of the undisturbed soil sample with focus on potential preferential flow pathways, which are likely to host the entrapped air. To formulate more general conclusions, an extended series of infiltration outflow and bromide breakthrough experiments is in progress. This research has been supported by research project GACR 103/08/1552 and MSMT CEZ MSM 6840770002.

  14. Scaling preferential flow processes in agricultural soils affected by tillage and trafficking at the field scale

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves

    2016-04-01

    There is an accumulation of experimental evidences that agricultural soils, at least the top horizons affected by tillage practices, are not homogeneous and present a structure that is strongly dependent on farming practices like tillage and trafficking. Soil tillage and trafficking can create compacted zones in the soil with hydraulic properties and porosity which are different from those of the non-compacted zones. This spatial variability can strongly influence transport processes and initiate preferential flow. Two or three dimensional models can be used to account for spatial variability created by agricultural practices, but such models need a detailed assessment of spatial heterogeneity which can be rather impractical to provide. This logically raises the question whether and how one dimensional model may be designed and used to account for the within-field spatial variability in soil structure created by agricultural practices. Preferential flow (dual-permeability) modelling performed with HYDRUS-1D will be confronted to classical modelling based on the Richards and convection-dispersion equations using HYDRUS-2D taking into account the various soil heterogeneities created by agricultural practices. Our goal is to derive one set of equivalent 1D soil hydraulic parameters from 2D simulations which accounts for soil heterogeneities created by agricultural operations. A field experiment was carried out in two phases: infiltration and redistribution on a plot by uniform sprinkle irrigation with water or bromide solution. Prior to the field experiment the soil structure of the tilled layer was determined along the face of a large trench perpendicular to the tillage direction (0.7 m depth and 3.1 m wide). Thirty TDR probes and tensiometers were installed in different soil structural zones (Δ compacted soil and Γ macroporous soil) which ensured soil water monitoring throughout the experiment. A map of bromide was constructed from small core samples (4 cm diam

  15. A field study of unstable preferential flow during soil water redistribution

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Wu, Laosheng; Harter, Thomas; Lu, Jianhang; Jury, William A.

    2003-04-01

    Reversal of the matric potential gradient during redistribution of soil water following infiltration has been hypothesized as a cause of preferential flow by inducing a fluid instability at the leading edge of the wetting front. In this paper, we present results of 17 field experiments carried out to quantify the effects of redistribution on preferential flow in nonstructured soils. The experiments were performed in three field soils (Superstition sand, Delhi sand, and Hanford sandy loam) under saturating and nonsaturating water application rates. Water flow patterns were monitored at various times during redistribution with photography using anionic dyes and by intensive core sampling of bromide added during infiltration. The soil surface was either tilled or undisturbed, exposed or covered with a plastic membrane, and the top 20-cm fine layer was either left in place or removed in various treatments. The infiltration water containing tracers was applied continuously and uniformly to the surface of a 2 × 1.2 m2 field plot using a moving spray system. After the soil received 8 to 20 cm of water, a trench was dug adjacent to the plot and vertical soil profiles were exposed at different times and positions to visualize the redistribution process. Some profiles were intensively sampled by soil coring along the trench face and analyzed for water content and bromide concentration to quantify the redistribution of water in the wetted zones. The observed two- and three-dimensional distribution of the water tracers clearly indicated the development of unstable flow during redistribution in two of the three soil types studied but not in the coarsest-textured Superstition sand. Symptoms of instability included irregularly shaped fingers that tended to become narrower toward their tips, isolated patches, and highly concentrated areas of the tracers indicating signs of converging and intermittent flow. The measured tortuosity of the wetting front was near 1.0 at the end of

  16. Field Use of Soil Moisture Sensors to Study Water Flow Patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated soil water content data are helpful to understand water flow in closed-depression landscapes, with gentle slopes and shallow water table depths. Non-automated neutron probe data are useful for extending analysis to broader spatial areas. The purpose of this study is to show how closed-depr...

  17. Using passive capillary lysimeter water flux measurements to improve flow predictions in variably saturated soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive capillary lysimeters (PCLs) are uniquely suited for measuring water fluxes in variably-saturated soils. The objective of this work was to compare PCL flux measurements with simulated fluxes obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...

  18. Relationships between basic soils-engineering equations and basic ground-water flow equations

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  19. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  20. A Lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Young, Iain M.

    2016-07-01

    The Lattice Boltzmann (LB) method is an established prominent model for simulating water flow at pore scale in saturated porous media. However, its application in unsaturated soil is less satisfactory because of the difficulties associated with most two-phase LB models in simulating immiscible fluids, such as water and air, which have contrasting densities and viscosities. While progress has been made in developing LB models for fluids with high density ratio, they are still prone to numerical instability and cannot accurately describe the interfacial friction on water-air interface in unsaturated media. Considering that one important application of the LB model in porous materials is to calculate their hydraulic properties when flow is at steady state, we develop a simple LB model to simulate steady water flow at pore scale in unsaturated soils. The method consists of two steps. The first one is to determine water distribution within the soil structure using a morphological model; once the water distribution is known, its interfaces with air are fixed. The second step is to use a single-phase LB model to simulate water flow by treating the water-air interfaces as free-flow boundaries where the shear resistance of air to water flow is assumed to be negligible. We propose a method to solve such free-flow boundaries, and validate the model against analytical solutions of flows of water film over non-slip walls in both two and three dimensions. We then apply the model to calculate water retention and hydraulic properties of a medium acquired using X-ray computed tomography at resolution of 6 μm. The model is quasi-static, similar to the porous network model, but is an improvement as it directly simulates water flow in the pore geometries acquired by tomography without making any further simplifications.

  1. Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach

    PubMed Central

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion. PMID:26308839

  2. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and

  3. Identification of effective flow processes and properties from virtual soils using inverse modelling

    NASA Astrophysics Data System (ADS)

    Schelle, H.; Iden, S. C.; Schlüter, S.; Vogel, H.-J.; Durner, W.

    2012-04-01

    Simulation of water flow and solute transport in unsaturated soils requires accurate knowledge of soil hydraulic properties. This study aims at developing strategies for deriving the flow and transport parameters for effective models at the scale of an agricultural field. Although hydraulic properties can be estimated from field observations under atmospheric boundary conditions by inverse modeling, the spatial heterogeneity of soil hydraulic properties within a field is known to strongly influence both local observations and the average behavior of the system. To assess the impact of individual or combined structural components on the water dynamics within the system, the interdisciplinary research group INVEST performs water flow simulations in complex two- and three-dimensional virtual realities, representing cultivated soils with spatial heterogeneity on multiple scales. Numerical simulations with a high spatiotemporal resolution yield synthetic datasets of internal state variables and fluxes. These data mimic measurements which could be recorded by typical instruments in a field soil. The simulated datasets are used to analyze the influence of the soil structures on the variability of measured data and to develop and test parameter estimation procedures. The central questions being addressed in this contribution are: (i) How big is the lateral variability of the measured data? (ii) How can within-field structures be related to the effective model parameters that are needed to predict average water dynamics at the field scale? (iii) How do the estimated hydraulic properties depend on measurement type and location? And (iv) what is the impact of the variability of the estimated effective hydraulic properties on the assessment of the soil water budget? To answer these questions we evaluate different data sets in terms of information content and usefulness for identifying suitable effective models and effective model parameters. The simulations show that a general

  4. EFFECT OF CAPILLARITY AND SOIL STRUCTURE ON FLOW IN LOW PERMEABILITY SATURATED SOILS AT DISPOSAL FACILITIES

    EPA Science Inventory

    Permit applications may be received which propose to place hazardous waste land disposal facilities in a saturated zone of low permeability (low-K) soils. This report addresses only movement of the leachate after release from the facility and does not consider those factors relat...

  5. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  6. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  7. Transport of bromide measured by soil coring, suction plates, and lysimeters under transient flow conditions.

    NASA Astrophysics Data System (ADS)

    Kasteel, R.; Pütz, Th.; Vereecken, H.

    2003-04-01

    Lysimeter studies are one step within the registration procedure of pesticides. Flow and transport in these free-draining lysimeters do not reflect the field situation mainly because of the occurence of a zone of local saturation at the lower boundary (seepage face). The objective of this study is to evaluate the impact of flow and transport behaviour of bromide detected with different measuring devices (lysimeters, suction plates, and soil coring) by comparing experimental results with numerical simulations in heterogeneous flow domains. We applied bromide as a small pulse to the bare soil surface (Orthic Luvisol) of the three devices and the displacement of bromide was regurlarly sampled for three years under natural wheather conditions. Based on the mean breakthrough curves we observe experimentally that lysimeters have a lower effective pore-water velocity and exhibit more solute spreading resulting in a larger dispersivity than the suction plates. This can be ascribed to the artefact of the lower boundary. We performed numerical transport simulations in 2-D heterogeneous flow fields (scaling approach) choosing appropriate boundary conditions for the various devices. The simulations allow to follow the temporal evolution of flow and transport processes in the various devices and to gain additional process understanding. We conclude that the model is essentially capable to reproduce the main experimental findings only if we account for the spatial correlation structure of the hydraulic properties, i.e. soil heterogeneity.

  8. Macropore Flow in Soil Columns: Investigations with Computer Tomography and Lattice Boltzmann Simulations

    NASA Astrophysics Data System (ADS)

    Schaap, M. G.; Tuller, M.; Guber, A.; Martin, M. A.; Martinez, F. S.; Pachepsky, Y.

    2007-12-01

    Soil structure greatly affects the ability of soil to transmit and to retain water, chemicals, and colloidal particles that can carry contaminants or be contaminants themselves, e.g. pathogenic microorganisms. No theory or empirical relationships have been developed to date to quantitatively relate parameters of soil structure and parameters of the contaminant transport in soils. The absence of theoretical advances in this area seriously hampers the ability to address issues of public concern, e.g. spread of contaminants introduced in the environment by agricultural activities. Recently, computer tomography of soils has become available to generate detailed images of soil pore space with high resolution and density. Successful applications of computer tomography in medical and material sciences show the great potential of this technique to create an exhaustive characterization of soil structure heterogeneity. In this presentation we investigate saturated flow through twelve undisturbed macroporous soil columns (7.62- cm sample diameter and 18-cm length) with lattice Boltzmann simulations. Saturated flow was measured for the complete columns, as well as on 2 cm sections for selected columns. Computed X-Ray tomography was performed on each of the columns, using the 420 kV X-ray source of a HYTEC FlashCT high-speed industrial CT scanner. The resolution was 116 microns per voxel, yielding a final tomography image of 656x656x1482 (~ 6.3 10E8) voxels. X-Ray CT observations typically provide "gray-scale" representations of the imaged object that must be segmented to yield discrete pore and particle geometry. Many segmentation algorithms are available, each yielding different final pore geometries thus potentially creating uncertainties in subsequent flow analyses. Lattice Boltzmann (LB) simulations will be presented only for some of the columns as the simulations are extremely computationally intensive (each simulation requires ~ 60 GB of computer RAM at the observed

  9. A field study of the effects of soil structure and irrigation method on preferential flow of pesticides in unsaturated soil

    NASA Astrophysics Data System (ADS)

    Ghodrati, Masoud; Jury, William A.

    1992-10-01

    A large number of field plot experiments were performed to characterize the downward flow of three pesticides (atrazine, napropamide and prometryn) and a water tracer (chloride) under various soil water regimes and soil surface conditions. Each experiment consisted of the uniform application of a 0.4-cm pulse of a solution containing a mixture of the four chemicals to the surface of a 1.5 × 1.5-m plot. The plot was then irrigated with 12 cm of water and soil samples were collected and analyzed to a depth of 150 cm. In all, 64 different plots were employed to study individual as well as interactive effects of such variables as irrigation method (continuous or intermittent sprinkling or ponding), pesticide formulation method (technical grade dissolved in water, wettable powder, or emulsifiable concentrate), and tillage (undisturbed or tilled and repacked surface layer) on pesticide transport. While all three pesticides were expected to be retained in the top 10-20 cm, there was considerable movement below this zone. When averaged over all the treatments, 18.8% of the recovered mass of atrazine, 9.4% of the prometryn and 16.4% of the napropamide were found between 30- and 150cm depth. Moreover, all pesticides were highly mobile in the surface 30 cm regardless of their adsorption coefficient. There were occureences of extreme mobility or "preferential flow" of pesticide under every experimental condition except where the pesticides were applied in wettable powder form to plots which had their surface tilled and repacked. This finding implies that there may be fine preferential flow pathways through which solution may move but particulates may not.

  10. Inflow rates and interrupted flow effects on concentrated flow erosion and intake rate in two soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface irrigation is the most widely used irrigation practice world wide, but its water use efficiency is low. Interrupted supply of water to furrows may reduce intake rate (IR) upstream and improve irrigation efficiency in many soils, but has an insignificant effect in others. Similarly, intermitt...

  11. Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow

    SciTech Connect

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

    2012-08-31

    One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

  12. Overland Flow Generation and Soil Hydraulic Properties in Two Catchments in Central Panama

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Elsenbeer, H.; Stallard, R.

    2003-12-01

    Land management decisions in the Panama Canal watershed directly impact the hydrological functioning of the canal itself. Knowledge of the hydrological conditions in the forested portions of the watershed provides a baseline comparison for future land use changes. We chose to work on two streams on Barro Colorado Island that are representative of large regions of the watershed. These two streams respond differently to the same storm events: Conrad Trail Stream exhibits a fairly subdued and delayed response and Lutz Creek stream is flashier. In order to understand these differences, we investigated the soil saturated hydraulic conductivity (Ks) of the two catchments and studied the frequency of overland flow generation. The Ks measurements in dominant geologies in Lutz Creek as well as in Conrad Trail Stream are great enough at shallow depths (median Ks = 29.7, 65.6 and 38.3 mm/hr) that Hortonian overland flow is rare, but a marked decrease in Ks in Lutz Creek catchment at 30 cm (to 1.4 and 5.8 mm/hr) indicates that a perched water table leading to saturated overland flow is the likely runoff mechanism in Lutz Creek. In Conrad, Ks does not decrease as markedly with soil depth, and a perched water table would form at about 60 cm below the surface (median Ks = 0.7 mm/hr). Therefore, more water is able to infiltrate into the soil in Conrad Trail Stream and saturated overland flow is less common. Overland flow was generated much more frequently in Lutz Creek than in Conrad Trail Stream, with lower thresholds of storm magnitude, duration, antecedent wetness and intensity required to generate overland flow. We also quantified the importance of microtopographic features such as concentrated flow lines and the results have implications for experimental design at other field sites. The Lutz Creek and Conrad Trail stream information will provide a useful baseline for land management decisions.

  13. Comparison of EnKF and Particle Filter-based Assimilation Algorithms for Improved Estimation of Root-Zone Soil Moisture under Dynamic Vegetation Conditions

    NASA Astrophysics Data System (ADS)

    Nagarajan, K.; Monsivais-Huertero, A.; Judge, J.; Graham, W. D.

    2009-12-01

    Accurate knowledge of root-zone soil moisture (RZSM) is crucial in hydrology, micrometeorology, and agricultural research for estimating energy and moisture fluxes at the land surface. Coupled Soil Vegetation Atmosphere Transfer (SVAT) vegetation models are used to simulate these fluxes at the land surface and in the root zone over the growing season. However, these coupled models exhibit large uncertainties in RZSM estimates due to accumulation of errors in model formulation, computation, initialization, and forcings and due to unresolved heterogeneities in model parameters. Such uncertainties can be reduced by assimilating in situ or remotely sensed observations of soil moisture. In this study, two widely used assimilation algorithms namely, the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) are compared to improve estimates of RZSM from a coupled SVAT-vegetation model during a growing season of sweet corn in North Central Florida. The two algorithms are used to assimilate both synthetic and field measurements of soil moisture from the MicroWEX-2 experiment at various spatio-temporal frequencies. Differences in the RZSM estimates between the two algorithms are evaluated for various update scenarios and forcing uncertainties. The impacts of several resampling strategies in PF on RZSM estimates are also investigated.

  14. Hydrological Properties and Flow Paths Change with 4.1 Million Years of Soil Development in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Dietrich, W. E.

    2002-12-01

    A well-characterized chronosequence of soils in the Hawaiian archipeligo provides an excellent opportunity to examine the effects of time on hydrological properties and flow paths in a humid tropical environment. Detailed hydrological studies were conducted at the extreme ends of a chronosequence of soils in the Hawaiian Islands as a part of a larger study evaluating hydrologic losses of nitrogen (N) under elevated N supply. Specifically, we determined in-situ soil-water retention, soil hydraulic conductivity, and flow path characteristics on a 300 year old Andisol and 4.1 million year old Oxisol both supporting native montane tropical forest. We found that surface and subsurface soils drained rapidly at the young site but observed significant differences between surface and subsurface soil-water retention and hydraulic conductivity characteristics at the old site. An artificial rainfall experiment with deuterium isotope tracer showed that water was dominantly downward advecting at the young site. At the old site, water moved fast as by-pass flow through the near-surface soils to an impeding subsurface clay layer and then moved both laterally along the clay contact and slowly downward as piston flow. Across the soil age gradient, soil anisotropy and the probability of lateral flow increased as saturated hydraulic conductivity in subsurface soils declined. Findings from this study demonstrate that soil development with time can have a profound effect on the rate and direction of water flow which have important implications for the rate and trajectory of soil and ecosystem formation, nutrient cycling and storm runoff mechanisms.

  15. Monitoring Preferential Flow Processes in a Forest Soil with TDR and ERT

    NASA Astrophysics Data System (ADS)

    Oberdoerster, C.; Vanderborght, J.; Kemna, A.; Vereecken, H.

    2009-04-01

    A tracer experiment was performed at a forest site with a structured soil. An area of 6 m x 8 m was sprinkled with a calcium chloride solution for 24 hours at an irrigation rate of 4 mm per hour. This solute pulse was subsequently leached out for 40 days using the same irrigation rate. The tracer movement in the soil profile was monitored using horizontally installed time-domain reflectometry (TDR) probes and electrical resistivity tomography (ERT) measurements down to a depth of 3 m. The ERT installation consisted of twelve boreholes equipped with sixteen electrodes each. The tracer breakthrough curves that were observed deeper in the soil profile by both TDR and ERT clearly indicated signs of preferential flow with an early arrival of the peak concentration and a long tail of the breakthrough curve. The comparison between ERT and TDR showed that ERT underestimated the TDR derived bulk electrical conductivity and this deviation could not be explained completely by different sample locations and spatial variability of the soil properties. Therefore, differences between TDR and ERT are assumed to be caused by regularization effects induced by the geophysical inversion. Nevertheless, the courses of the breakthrough curves that were observed with the two methods were very similar. This indicates that preferential flow through a small part of the pore volume can be observed with ERT. Although the method cannot resolve the tracer movement at the scale of the individual preferential flow paths, it offers the possibility to image spatial distribution of the preferential flow path density and the velocity within the flow paths.

  16. Scaling and Pedotransfer in Numerical Simulations of Flow and Transport in Soils

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Yakirevich, A.; Guber, A.; Gish, T.; Cady, R.; Nicholson, T. J.

    2013-12-01

    Flow and transport parameters in numerical simulations need to be defined at the support volume of computational cells. This volume can be substantially larger than the support volume in laboratory of field measurements of those parameters. Parameter estimates obtained from measured values with pedotransfer functions are also defined at the measurement rather than simulation cell support scale. The scale dependence of flow and transport parameters essentially precludes the direct use of measured or pedotransfer estimated parameter values in numerical simulations. The hypothesis of this work was that a support volume-based scaling law could be introduced that could convert pedotransfer-estimated saturated hydraulic conductivity values into values to be used over grid cells for finite element-based simulations of water flow and tracer transport in variable saturated soils. A four month-long experiment was conducted at the USDA-ARS experimental site where tracer was applied with a pulse of irrigation water and its transport in groundwater and variably saturated shallow soils was monitored in three rows of wells on daily basis. The complementary weather data collection and runoff volume measurements were performed. The HYDRUS-3D software was used to set and calibrate the Richards model for flow simulations and the convective-dispersive equation for transport simulations. Saturated hydraulic conductivity values were estimated with class pedotransfer functions derived from the USDA database containing results of about 1000 measurements in soils of different textures and bulk density. A power law scaling law for the saturated hydraulic conductivity was derived from literature data and was applied at the OPE3 site. Using the scaled saturated hydraulic conductivity values resulted in the accuracy of simulations that was similar to the accuracy of the calibrated model results. Scaling of pedotransfer-estimated saturated hydraulic conductivities can provide reasonable

  17. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    SciTech Connect

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role of hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable

  18. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE PAGESBeta

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for

  19. Earthworm populations in septic system filter fields and potential effects on wastewater renovation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastewater renovation in septic-system filter fields can be affected by preferential flow through soil macropores. Earthworm burrows may contribute to this concern by penetrating the infiltrative surface of soil-treatment trenches. Additionally, the moist, nutrient-rich environment surrounding tre...

  20. Stream function of a perched water table in a sloping gradually layered soil: effect of the soil anisotropy on the flow patterns

    NASA Astrophysics Data System (ADS)

    Barontini, S.; Peli, M.; Ranzi, R.

    2012-04-01

    Perched water tables in the upper soil layers are an important landslides triggering mechanism and the knowledge of their properties is relevant in view of slope stability analyses. During long lasting infiltration processes at low rate, after the imbibition transitories vanished, an important role on the formation of a perched water table is played by the profile of the hydraulic conductivity at saturation Ks. In this paper, as a part of a wider theoretical investigation which aims at describing the effect of gradually decreasing Ks with depth on the steady soil-water flow, the flow field taking place within a perched water table lying on a sloping capillary barrier is described and the corresponding Lagrange stream function is presented. The investigated soil is considered a priori anisotropic. At the bottom of the domain, for the sake of continuity of the total hydraulic head, saturation conditions are assumed. The analytical solution of the flow field was derived with the hypothesis of uniform flow along the slope. The flow patterns revealed that the water infiltrating at the upper surface of the perched water table rapidly leaks toward the underlying soil. The length of the paths is sensitive to the decrease of the conductivity at saturation and it increases with the soil anisotropy. Anyway it still remains limited so that, if the slope is long enough, the uniform flow hypothesis can be considered a reliable approximation of the water flow within a long central branch of the slope.

  1. Corrosion resistant filter unit

    SciTech Connect

    Gentry, J.M.

    1992-02-18

    This patent describes a fluid filter assembly adapted for the filtration of corrosive fluid to be injected into a well bore at pressure levels which may exceed 10,000 pounds per square. It comprises: a frame assembly for the mounting of a portion of the fluid filter assembly therein, the frame assembly; filter pods, the plurality of filter pods forming at least two banks of filter pods, each bank having at least two filter pods therein, each bank of the filter pods being supported by one or more the supports of the plurality of supports secured to selected struts of the frame assembly; an inlet manifold to direct the corrosive fluid to the plurality of filter pods, the inlet manifold being interconnected to the banks of filter pods formed by the filter pods whereby flow of the corrosive fluid can be directed to each bank of the filter pods; an outlet manifold to direct the corrosive fluid from the filter pods, the outlet manifold being interconnected to the banks of filter pods formed by the filter pods; a first valve means to control the flow of the corrosive fluid between banks of filter pods formed by the filter pods whereby the flow of the corrosive fluid can be selectively directed to each bank of the filter pods; a second valve means to selectively control the flow of the corrosive fluid between the inlet manifold and the outlet manifold; and union means for interconnecting the filter pods, inlet manifold and outlet manifold, each of the union means including mechanical connection means and internal seal means for isolating the corrosive fluids from the mechanical connection means.

  2. Preferential Flow Paths Allow Deposition of Mobile Organic Carbon Deep into Soil B Horizons

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chadwick, O.; Kramer, M. G.

    2009-12-01

    Most of our understanding of soil carbon (C) dynamics derives from the top 10 to 20 cm, although globally the majority of the bulk soil C pool is found below those depths. Mineral associated C in deep soil is more stable than that held in surface horizons, and its long-term persistence may contribute to sequestration of anthropogenic C. Carbon can enter deep soil horizons in multiple ways: through biologically-mediated or abiotic physical mixing, illuviation, root inputs, or through a physical disturbance that would cause the burial of an originally shallow organic horizon. In this study, we investigated the role of dissolved organic matter (DOM) in the transport and stabilization of soil C in tropical rainforest volcanic soils, where high rainfall, a highly productive forest, and dominance of highly reactive, non-crystalline minerals contribute to large soil C stocks at depth with long mean residence times. DOM plays an important role in many biological and chemical processes in soils, including nutrient transfer within and across ecosystems. Carbon storage in these soils is linked to movement of both DOC and particulate organic C along infiltration pathways. Climate and soil mineralogical properties create the right conditions for C to be pumped from the organic horizons where microbial activity is highest, to deep mineral horizons, where the potential for stabilization is greatest. High rainfall preserves hydrated short-range order minerals that are subject to strong shrinkage during occasional drought periods. The resulting cracks in subsurface B horizons become pathways for DOM complexed with Fe and Al moving in soil solution during subsequent wet periods. Preferential flow of these organically rich solutes and/or colloids moves C to depth where C, Fe and Al are preferentially deposited on near-vertical crack surfaces and along near-horizonal flow surfaces at horizon boundaries. Long-term deposition forms discontinuous Fe- and OM-cemented lamella that serve to

  3. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    SciTech Connect

    Rockhold, M L

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration.

  4. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  5. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    NASA Astrophysics Data System (ADS)

    Jakubaszek, Anita; Wojciech, Magdalena

    2014-06-01

    The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow) construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  6. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    SciTech Connect

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

  7. A dual-permeability approach to preferential water flow and solute transport in shrinking soils

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; dragonetti, giovanna; Comegna, Alessandro; Gerke, Horst H.; Basile, Angelo

    2016-04-01

    The pore systems in most natural soils is dynamically changing due to alternating swelling and shrinkage processes, which induces changes in pore volume and pore size distribution including deformations in pore geometry. This is a serious difficulty for modeling flow and transport in dual permeability approaches, as it will also require that the geometrical deformation of both the soil matrix and the fracture porous systems be taken into account, as well as the dynamics of soil hydraulic properties in response to the domain deformations. This study follows up a previous work by the same authors extending the classical rigid (RGD) approach formerly proposed by Gerke and van Genuchten, to account for shrinking effects (SHR) in modeling water flow and solute transport in dual-permeability porous media. In this study we considered three SHR scenarios, assuming that aggregate shrinkage may change either: (i) the hydraulic properties of the two pore domains, (ii) their relative fractions, and (iii) both, hydraulic properties and fractions of the two domains. The objective was to compare simulation results obtained under the RGD and the SHR assumptions to illustrate the impact of matrix volume changes on water storage, water fluxes and solute concentrations during: 1) An infiltration process bringing an initially dry soil to saturation, 2) A drainage process starting from an initially saturated soil. For an infiltration process, the simulated wetting front and the solute concentration propagation velocity, as well as the water fluxes, water and solute exchange rates, for the three SHR scenarios significantly deviated from the RGD. By contrast, relatively similar water content profiles evolved under all scenarios during drying. Overall, compared to the RGD approach, the effect of changing the hydraulic properties and the weight of the two domains according to the shrinkage behavior of the soil aggregates induced a much more rapid response in terms of water fluxes and

  8. High resolution modelling of soil moisture patterns with ParFlow-CLM: Comparison with sensor network data

    NASA Astrophysics Data System (ADS)

    Gebler, Sebastian; Hendricks-Franssen, Harrie-Jan; Kollet, Stefan; Qu, Wei; Vereecken, Harry

    2015-04-01

    Soil hydrological processes play an important role for heat, water and matter exchanges in the soil-vegetation-atmosphere continuum. The prediction of the spatial and temporal variability of soil moisture and discharge and evaporative fluxes with land surface models on small scales and at high resolutions is still a challenge. This work focuses on the comparison of soil moisture measured by a sensor network (179 sensors installed in an area of size 31 ha) and modelled with a variably saturated groundwater model (ParFlow) coupled to a land surface model (Common Land Model (CLM, version 2.0)) using different levels of model complexity and spatial resolution. ParFlow simulates variably saturated flow fully coupled with overland flow on large scales and at high spatial resolutions. The Common Land Model (CLM) is embedded as a module in ParFlow, the soil column of CLM is replaced by ParFlow to improve the representation of lateral subsurface flow, groundwater and overland flow. In this study, we investigated the impact of different parameterization schemes of a ParFlow-CLM model set-up for a managed 31 ha grassland TERENO head-water catchment in the Eifel (Germany). Therefore, model runs with 1 x 1 m and 10 x 10 m lateral resolution, 0.05 m vertical resolution, and different complexity levels regarding subsurface soil hydraulic parameters are conducted. For each model complexity level (completely homogeneous; homogeneous parameters for different soil horizons; different parameters for each soil unit and soil horizon; heterogeneous stochastic realisations), we vary saturated hydraulic conductivity and porosity on the basis of measurements. The model performance is then evaluated using data of the SoilNet wireless sensor network, discharge measurements, and evapotranspiration data recorded by lysimeters and eddy covariance stations. The majority of simulations capture the temporal variable soil moisture at an acceptable level. However, spatial variability of soil water

  9. Soil organic phosphorus flows to water via critical and non-critical hydrological source areas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Surridge, Ben; Haygarth, Phil

    2015-04-01

    Soil organic phosphorus flows to water via critical and non-critical hydrological source areas Ying Wang, Ben W.J. Surridge, Philip M. Haygarth Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK Critical source areas (CSAs) are zones in the landscape where easily connected hydrology coincides with a phosphorus (P) sources in the soil. The P export risks in CSAs are hypothesised to be higher compared with non-critical source areas (Non-CSAs) and specifically that the magnitudes of P forms in CSA areas were higher than Non-CSAs. Past research on CSAs has often neglected forms of organic P, such as DNA and phospholipids which are among the most potentially biodegradable organic P compounds. The objectives of this study were i) to quantify the magnitude of organic P compounds in agricultural soils and specifically determine whether these magnitudes differed significantly between CSAs and Non-CSAs; ii) determine the variation of P magnitude between and within individual fields; iii) identify the P delivery concentrations in soil solution after raining events in CSAs. The study focussed on soils collected from the Morland sub-catchment of the River Eden catchment in Cumbria, northern England. CSA and Non-CSA pairs were identified using the SCIMAP modelling and field assessment providing five CSA - Non-CSA pairs in total. The results showed that there are significant differences in the total P (TP) concentrations, the proportions of DNA-P, WETP (water extractable total P), WERP (water extractable reactive P) and WEUP (water extractable unreactive P) between CSA and Non-CSA. We also found that the concentrations of all the P forms showed distribution variation between fields or even within the same field. Liable organic P such as DNA-P and PLD-P was presented considerable proportions of total P in soil, especially DNA-P which had a good correlation with TP. DNA-P in the ten areas accounted for a considerable proportion of soil TP (4.9 to 16.6%). Given the

  10. Compartmental modeling of PAH transport in soil column experiments under variably-saturated flow conditions

    NASA Astrophysics Data System (ADS)

    Sartori, F.; Sericano, J. L.; Wade, T. L.; Mohanty, B. P.

    2012-12-01

    Knowledge about the mobilization of polycyclic aromatic hydrocarbons (PAH) from PAH-laden soils or sediments is important to understand their bioavailability, and ultimately assess the environmental risk of PAH transport from surface soils into the groundwater. The transport and kinetics of three PAH from a spiked soil layer (2-3 cm soil depth), Phenanthrene-d10 (1900 ng/g), Naphthalene-d8 (1500 ng/g), and Pyrene-d10 (1800 ng/g), were investigated by performing a series of 8 rainfall events during 25 days in two large, replicate soil columns (length: 35 cm; diameter: 14.5 cm; 1 Pore Volume [PV]=2.29 L) under variably-saturated flow conditions. The water-methanol displacing solutions were at volumetric fractions of 0.3 and 0.6 during day 1 (E1) through E8 and E12-E22, respectively. Soil matric potential (h) was monitored at 5-cm and 20-cm depth and volumetric water content (θ) at 12.5-cm and 27.5-cm depth. Soil solution was sampled at 5 cm- (n=46) and 27.5-cm depth (n=46), and the effluent at the bottom of the column (n=163). HYDRUS-1D was used for inverse modeling of h and θ data and to predict θ at specific times and soil depth increments. First-order kinetics, compartmental models describing the transfer of PAH from the soil compartment to the soil solution compartment (desorption) and vice versa (sorption), were used to estimate mass transfer rates (φs, sorption; φd, desorption; φe, elimination), PAH mass in each compartment, and partition coefficients (Kd). Phenanthrene breakthrough curve could be interpreted through a two-parameter, two-compartment model corresponding to the common two-site sorption model, whose parameter estimates (and 95% confidence intervals) were φd=2.72 (2.31, 3.19) PV-1 and φe=4.67 (3.82, 5.7 ) PV-1. Naphthalene breakthrough curve followed a simple one-compartment elimination model, φe=2.0 (1.9, 2.1) PV-1, and that of Pyrene a three-parameter, two-compartment model, φs=0.0454 (0.00853, 0.0603) PV-1, φd=0.165 (0.0319, 0.855) PV

  11. Preferential flow in heterogeneous, forest-reclaimed lignitic mine soil. III. 1- and 2-dimensional modelling

    NASA Astrophysics Data System (ADS)

    Buczko, U.; Gerke, H. H.; Hangen, E.; Hüttl, R. F.

    2003-04-01

    Water balances of forest sites are often estimated using 1-dimensional numerical models and tensiometer data from different depths. The magnitude of groundwater recharge calculated in such a way in most cases cannot be verified experimentally. In heterogeneous soils, water flows are spatially highly variable. The objective of this contribution is to compare the flow and deep percolation within a reclaimed mine soil which was calculated with a 1D numerical model, with seepage water collected, spatially-resolved, in-situ. Further, it is aimed at improving the methodology for calculating water balances and element budgets on heterogeneous mine soils, using 2D models with spatial variability. At the study site “Bärenbrück” near Cottbus, a lignitic mine soil afforested in 1982 with Pinus nigra, the components of the water balance were simulated with a 1D numerical model (SOIL/COUP) for a period from May 1995 to September 2001, using meteorological data and measured water tensions in soil depths 15, 60, and 100 cm. At the same site, soil water percolates were extracted continually in-situ at a soil depth of 110 cm from June 2000 until September 2001 within the framework of a cell-lysimeter study. 2D simulations were performed with the numerical model HYDRUS-2D, using evapotranspiration data obtained with the 1D-model. In the balance period between 4/96 and 3/99, the simulated deep percolation ranges between 30.4 and 35.2 mm per year, whereas during the dryer years 6/1999 5/2000 and 6/2000 5/2001 it amounts to 6.6 mm and 1.5 mm, respectively. The average deep percolation based on the in-situ suction plate data during the same period was 11 mm for the period 6/1999 5/2000 and 24.3 mm for 6/2000 5/2001, although spatially highly variable. Consequently, for the period 6/2000 5/2001, groundwater recharge based on measured in-situ data is by one order of magnitude higher than those simulated with the 1D model. The 2D numerical simulations are used to explain this

  12. Experimental and modeling study of unsaturated solute flow in soils: from classical to discrete approaches

    NASA Astrophysics Data System (ADS)

    Gerke, K.

    2012-04-01

    Most dye staining experiments in natural soils result in highly heterogeneous flow patterns which are usually explained with presence of preferential flow paths or different kinds of flow instabilities. It is quite logic that soil structure is one of the main factors affecting infiltrations regimes, however the degree of flow stochasticity is not studied enough. In this contribution a substantial amount of large scale (2-4 m lateral excavations) field experiment data is considered (including forested hillslopes and agricultural fields) with special attention to sprinkling of two different staining substances with different dyeing mechanisms (common dye is visible both in adsorbed and in solution states; fluorescent dye - only in solution). The latter method allows an estimation of the flow stability (stochasticity). Most staining field experiments are supported by undisturbed sample collections (laboratory measurements for hydraulic conductivity, water retention curves, X-ray microtomography scans, grain size distributions, etc.). Preliminary results strongly support the evidence of stability of flow under similar precipitation and moisture conditions. Infiltration also correlated with soil structure and microproperties. Numerical modeling using classical approach (single-porosity coupled Richard's and advection-dispersion equations, random hydraulic properties based on log-normal experimentally obtained distribution) fails to describe experimentally obtained staining patterns. Multi-porosity models may provide better tools to account for different soil heterogeneities, but their parameters can not be obtained experimentally. Small scale solutions using pore-network or lattice-Botzmann methods based on microtomography scans are accurate, but computationally expensive (volumes around tens of cm3). Based on field observations a simple cellular automata approach to model staining patterns is developed and tested on experimental data. Our results are much better then

  13. Modeling Water Flow and Bromide Transport in a Two-Scale-Structured Lignitic Mine Soil

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2008-12-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Barenbrucker Hohe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction- cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was proposed with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  14. Cross-flow, filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Seventh quarterly technical progress report

    SciTech Connect

    Benedek, K.; Flytzani-Stephanopoulos, M.

    1992-01-01

    This report describes work performed on a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act as a particle filter, an SO {sub 2} sorbent, and a NO {sub x} reduction catalyst. One critical element of the R&D program is the development of mixed metal oxide materials that serve as combined SO {sub 2} sorbents and NO {sub x} reduction catalysts. In this seventh quarterly progress report, we summarize the performance characteristics of three promising sorbent/catalyst materials tested in powder form.

  15. Investigation of the flow-field in the upper respiratory system when wearing N95 filtering facepiece respirator.

    PubMed

    Zhang, Xiaotie; Li, Hui; Shen, Shengnan; Cai, Mang

    2016-05-01

    This article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway. PMID:26653154

  16. Field-scale application of Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

    NASA Astrophysics Data System (ADS)

    Panzeri, Marco; Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2014-05-01

    The ensemble Kalman filter (EnKF) enables one to assimilate newly available data in transient groundwater and other temporal earth system models through real-time Bayesian updating of system states (e.g., hydraulic heads) and parameters (e.g., hydraulic conductivities). It has become common to treat spatially varying hydraulic conductivities as autocorrelated random fields conditioned on measured conductivities and/or heads. Doing so renders the corresponding groundwater flow equations stochastic. Assimilating data in such equations via traditional EnKF entails computationally intensive Monte Carlo (MC) simulation. We have previously illustrated a methodology to circumvent the need for MC. Our methodology is grounded on (1) an approximate direct solution of nonlocal (integrodifferential) equations that govern the space-time evolution of conditional ensemble means (statistical expectations) and covariances of hydraulic heads and fluxes and (2) the embedding of these moments in EnKF. This provides sequential updates of conductivity and head estimates throughout the space-time domain of interest, does not suffer from inbreeding issues and, as an additional benefit, obviates the need for computationally intensive batch inverse solution of the moment equations as we have been doing previously. We compare the performance of our new EnKF approach based on stochastic moment equation and of the traditional Monte Carlo approach. We do so for a field scale scenario involving a sequence of pumping tests performed in a heterogeneous alluvial test site located near the city of Tuebingen, Germany.

  17. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  18. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  19. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution. PMID:27441855

  20. Neutron radiography and modelling of water flow and D2O transport in soil and plants

    NASA Astrophysics Data System (ADS)

    Zare, Mohsen; Carminati, Andrea; Kröner, Eva

    2014-05-01

    Our understanding of soil and plant water relations is currently limited by the lack of experimental methods to measure the water fluxes in soil and plants. Our study aimed to develop a new non-destructive method to measure the local fluxes of water into roots of plants growing in soil. We injected deuterated water (D2O) near the roots of lupines growing in sandy soils, and we used neutron radiography to image the transport of D2O through the root system. The experiments were performed during day, when plants were transpiring, and at night, when transpiration was reduced. The radiographs showed that: 1) the radial transport of D2O from soil and roots depended similarly from diffusion and convection; and 2) the axial transport of D2O along the root xylem was largely dominated by convection. To determine the convective fluxes from the radiographs, we simulated the D2O transport in soils and roots. A dual porosity model was used to describe the apoplastic and symplastic pathways of water across the root tissue. Other features as the endodermis and the xylem were also included in the model. The D2O transport was modelled solving a convection-diffusion numerical model in soil and plants. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that at night the convective fluxes were negligible. Inverse modelling of the experiment at day gave the profile of water fluxes into the roots, as well as the ration between the apoplastic and symplastic flow. For 24 day-old lupine grown in a sandy soil with uniform water content, our modelling results showed that root water uptake was higher at the proximal parts of the roots near soil surface and it decreased toward the distal parts. The results indicated the water crossed the root cortex mainly through the apoplastic pathway. The method allows the quantification of the root properties and the regions of root water uptake along root systems growing in

  1. Neutron radiography to visualize and quantify water flow in soil and plants

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Moradi, A. B.; Vogel, H.; Kim, Y.; Carminati, A.

    2011-12-01

    Water uptake by plants is controlled by the complex interactions between soil and roots. Although water transport from soil towards roots is fundamental in both soil and plant sciences, there are only a few studies measuring dynamics and locations of water uptake along root systems. The lack of experimental data is largely due to the technical problem of measuring water fluxes in soil and roots in living plants growing in soils. This study aims at developing a non-destructive method to quantitatively monitor water flow in the rhizosphere and into roots of different age and location along the root system. We used neutron radiography to trace deuterium oxide (D2O) distribution in soil and into the roots. D2O has similar physical and chemical properties to normal water (H2O) but it has a much lower neutron attenuation coefficient compared to normal water, which makes it well visible in neutron radiography. We grew lupins in 30 x 15 x 1 cm containers, which were filled with a sandy soil. The soil in the containers was divided into compartments by layers of coarse sand acting as capillary barriers to hydraulically disconnect the compartments. 16 days after planting, we locally injected D2O in selected compartments. We used time-series neutron radiography to image the D2O redistribution after injection. The experiments were repeated at different locations of the root system, during day, when plant transpiration was at its maximum, and at night, when transpiration decreased to its minimum. The results showed significant decrease of neutron attenuation inside the roots after D2O injection . This was explained by D2O entering the roots. D2O concentration inside the roots increased exponentially over time. The half time of D2O increment (the half time of what?) was approximately 4 minutes during day, and 8 minutes at night. During day, we observed that D2O moved several centimeters along the roots crossing the capillary barriers. This quick flow along roots was negligible

  2. Soil-borne mobile colloids as influenced by water flow and organic carbon

    SciTech Connect

    Kaplan, D.I.; Bertsch, P.M.; Adriano, D.C.; Miller, W.P. |

    1993-06-01

    Paucity of understanding mechanisms relevant to the generation of subsurface mobile colloids is a major limitation to our current knowledge of colloid-facilitated contaminant transport. To evaluate the roles of natural organic materials and pore water velocity on mobile colloid generation, colloids generated from 14-m{sup 3} lysimeters containing reconstructed soil profiles were collected and characterized. Colloids generated during low flow rates were 1030% less abundant, contained at least 65% more iron oxides and gibbsite, were 80% smaller, and had 40% greater electrophoretic mobility than colloids generated during higher flow rates. Quartz, kaolinite, and hydroxy-interlayered vermiculite were enriched by at least 32% in colloids generated during faster flow rates. Mobile colloid surface charge was greatly enhanced by organic carbon (OC) coatings. Concentrations of OC associated with mobile colloids were higher than or equal to the OC concentrations existing in the bulk soils from which the mobile colloids were derived. The profound effects of pore water flow rate and OC on mobile colloid generation introduces complexity to this potentially critical, yet poorly understood, component of subsurface contaminant transport. 41 refs., 8 figs., 1 tab.

  3. Effects of pulsed and oscillatory flow on water vapor removal from a laboratory soil column. Final report, November 1993

    SciTech Connect

    Morrow, K.E.

    1993-05-01

    Subsurface contamination by volatile organic contaminants (VOC`s) in the vadose zone and groundwater is primarily due to leaking underground storage tanks and industrial spills. Soil vapor extraction is a technique that is being used successfully to remove VOC`s from the subsurface. A flow of air is established through the soil to remove the vapor phase component of the contaminant. Soil vapor extraction will initially remove high levels of contaminant that is already present in the macropores. The concentration will start to decline as the removal from the soil matrix becomes limited by diffusion of contaminant from regions away from the air flow paths. This study examines potential methods of overcoming the diffusion limitation by adding an oscillatory component to the steady air flow and by pulsed flow, which involves turning air flow on and off at predetermined intervals. The study considered only the removal of water from the soil to try to establish general vapor behavior in the soil under the imposed conditions. Based on a statistical analysis, both the oscillatory and pulsed flow showed an improved water removal rate over the steady state flow. The effect of oscillatory flow was only examined at higher frequencies. The literature indicates that oscillations at lower frequencies may be more effective. Pulsed flow showed the most efficient removal of water compared to steady state conditions. The pulsed flow was most efficient because rather than reducing the diffusion limitation, the system would shut down and wait for diffusion to occur. This optimizes energy consumption, but does not reduce treatment time. The oscillatory flow actually reduced the diffusion limitation within the column which could result in a shorter treatment time.

  4. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities

    PubMed Central

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.

    2013-01-01

    Soil and crop management practices have been found to modify soil structure and alter macropore densities. An ability to accurately determine soil hydraulic parameters and their variation with changes in macropore density is crucial for assessing potential contamination from agricultural chemicals. This study investigates the consequences of using consistent matrix and macropore parameters in simulating preferential flow and bromide transport in soil columns with different macropore densities (no macropore, single macropore, and multiple macropores). As used herein, the term“macropore density” is intended to refer to the number of macropores per unit area. A comparison between continuum-scale models including single-porosity model (SPM), mobile-immobile model (MIM), and dual-permeability model (DPM) that employed these parameters is also conducted. Domain-specific parameters are obtained from inverse modeling of homogeneous (no macropore) and central macropore columns in a deterministic framework and are validated using forward modeling of both low-density (3 macropores) and high-density (19 macropores) multiple-macropore columns. Results indicate that these inversely modeled parameters are successful in describing preferential flow but not tracer transport in both multiple-macropore columns. We believe that lateral exchange between matrix and macropore domains needs better accounting to efficiently simulate preferential transport in the case of dense, closely spaced macropores. Increasing model complexity from SPM to MIM to DPM also improved predictions of preferential flow in the multiple-macropore columns but not in the single-macropore column. This suggests that the use of a more complex model with resolved domain-specific parameters is recommended with an increase in macropore density to generate forecasts with higher accuracy. PMID:24511165

  5. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  6. Spatial Mapping of Flow-Induced Molecular Alignment in a Noncrystalline Biopolymer Fluid Using Double Quantum Filtered (DQF) (23)Na MRI.

    PubMed

    Pavlovskaya, Galina E; Meersmann, Thomas

    2014-08-01

    Flow-induced molecular alignment was observed experimentally in a non-liquid-crystalline bioplymeric fluid during developed tubular flow. The fluid was comprised of rigid rods of the polysaccharide xanthan and exhibited shear-thinning behavior. Without a requirement for optical transparency or the need for an added tracer, (23)Na magic angle (MA) double quantum filtered (DQF) magnetic resonance imaging (MRI) enabled the mapping of the anisotropic molecular arrangement under flow conditions. A regional net molecular alignment was found in areas of high shear values in the vicinity of the tube wall. Furthermore, the xanthan molecules resumed random orientations after the cessation of flow. The observed flow-induced molecular alignment was correlated with the rheological properties of the fluid. The work demonstrates the ability of (23)Na MA DQF magnetic resonance to provide a valuable molecular-mechanical link. PMID:26277955

  7. Use of a novel new irrigation system to observe and model water vapor flow through dry soils

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M.

    2013-12-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapor flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapor pressure of the surrounding air, thus temperature or solute gradients can drive vapor flows. However, in extremely dry soils where water is retained by adsorption rather than capillarity, vapor flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapor pressure in the soil, and hence small differences in water content can initiate vapor pressure gradients. In many field conditions this effect may be negligible compared to vapor flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapor phase. Experiments using this system therefore provide a rare opportunity to observe vapor flows initiating from a subsurface source without significant injection of heat. A model was developed to simulate water flow through the soil in liquid and vapor phase. In this model it was assumed that the two phases were in equilibrium. The equilibrium relationship was defined by a new mathematical expression that was developed to fit experimental data collected to characterize the sorption isotherm of three soils (sand, saline sand and top soil). The osmotic potential of the saline sand was defined as a function of water content using a continuous mathematical expression. The model was then calibrated to fit the data from laboratory experiments, in which the vapor flow into and out of the soil were quantified. The model successfully reproduced experimental observations of the total water flux, relative humidity and water content distribution in three soil types. This suggests that the model, including the proposed

  8. ARRANGEMENT FOR REPLACING FILTERS

    DOEpatents

    Blomgren, R.A.; Bohlin, N.J.C.

    1957-08-27

    An improved filtered air exhaust system which may be continually operated during the replacement of the filters without the escape of unfiltered air is described. This is accomplished by hermetically sealing the box like filter containers in a rectangular tunnel with neoprene covered sponge rubber sealing rings coated with a silicone impregnated pneumatic grease. The tunnel through which the filters are pushed is normal to the exhaust air duct. A number of unused filters are in line behind the filters in use, and are moved by a hydraulic ram so that a fresh filter is positioned in the air duct. The used filter is pushed into a waiting receptacle and is suitably disposed. This device permits a rapid and safe replacement of a radiation contaminated filter without interruption to the normal flow of exhaust air.

  9. After the lava flow: The importance of external soil sources for plant colonization of recent lava flows in the central Oregon Cascades, USA

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia I.; Cashman, Katharine V.; Roering, Joshua J.

    2013-11-01

    Effusive volcanic eruptions repave landscapes rapidly with lava flows, resetting broad areas of the underlying landscape and ecosystem. The unique physical properties of lava pose interesting challenges for ecologic recovery, as lava is dense, sterile, and generally inhospitable towards life. In this study we examine two sites of recent volcanism in the central Oregon Cascades, notable for the juxtaposition of barren exposed lava and mature forests on lava flows of the same or roughly the same age. We use a combination of LiDAR analyses, field observations, and soil characterization to examine soil and vegetation at these two sites, and find that the presence of an external sediment or soil source, particularly flood-borne deposits or syn- or post-eruptive tephra, greatly facilitates plant establishment, growth, and survival. The nature of the external sources of sediment or soil dictates the geographic extent of forests on these young lava flows: flood-borne deposits cover localized regions near river channels, while tephra can cover large regions. In general, our results suggest that external sources of soil provide a substrate for plants to grow in along with key nutrients and sufficient moisture retention. We conclude that external sources of soil source are key for the initial recovery following an effusive volcanic disturbance, in particular in temperate climates. Thus, unrelated geomorphic processes, such as past glaciations that provide local sources of mobile sediments, or concurrent volcanic processes, such as tephra production, dictate the presence or absence of forests on young lava flows.

  10. Interactions between Seagrass Complexity, Hydrodynamic Flow and Biomixing Alter Food Availability for Associated Filter-Feeding Organisms

    PubMed Central

    González-Ortiz, Vanessa; Egea, Luis G.; Jiménez-Ramos, Rocio; Moreno-Marín, Francisco; Pérez-Lloréns, José L.; Bouma, Tjeed J.; Brun, Fernando G.

    2014-01-01

    Seagrass shoots interact with hydrodynamic forces and thereby a positively or negatively influence the survival of associated species. The modification of these forces indirectly alters the physical transport and flux of edible particles within seagrass meadows, which will influence the growth and survivorship of associated filter-feeding organisms. The present work contributes to gaining insight into the mechanisms controlling the availability of resources for filter feeders inhabiting seagrass canopies, both from physical (influenced by seagrass density and patchiness) and biological (regulated by filter feeder density) perspectives. A factorial experiment was conducted in a large racetrack flume, which combined changes in hydrodynamic conditions, chlorophyll a concentration in the water and food intake rate (FIR) in a model active filter-feeding organism (the cockle). Results showed that seagrass density and patchiness modified both hydrodynamic forces and availability of resources for filter feeders. Chlorophyll a water content decreased to 50% of the initial value when densities of both seagrass shoots and cockles were high. Also, filter feeder density controlled resource availability within seagrass patches, depending on its spatial position within the racetrack flume. Under high density of filter-feeding organisms, chlorophyll a levels were lower between patches. This suggests that the pumping activity of cockles (i.e. biomixing) is an emergent key factor affecting both resource availability and FIR for filter feeders in dense canopies. Applying our results to natural conditions, we suggest the existence of a direct correlation between habitat complexity (i.e. shoot density and degree of patchiness) and filter feeders density. Fragmented and low-density patches seem to offer both greater protection from hydrodynamic forces and higher resource availability. In denser patches, however, resources are allocated mostly within the canopy, which would benefit

  11. Interactions between seagrass complexity, hydrodynamic flow and biomixing alter food availability for associated filter-feeding organisms.

    PubMed

    González-Ortiz, Vanessa; Egea, Luis G; Jiménez-Ramos, Rocio; Moreno-Marín, Francisco; Pérez-Lloréns, José L; Bouma, Tjeed J; Brun, Fernando G

    2014-01-01

    Seagrass shoots interact with hydrodynamic forces and thereby a positively or negatively influence the survival of associated species. The modification of these forces indirectly alters the physical transport and flux of edible particles within seagrass meadows, which will influence the growth and survivorship of associated filter-feeding organisms. The present work contributes to gaining insight into the mechanisms controlling the availability of resources for filter feeders inhabiting seagrass canopies, both from physical (influenced by seagrass density and patchiness) and biological (regulated by filter feeder density) perspectives. A factorial experiment was conducted in a large racetrack flume, which combined changes in hydrodynamic conditions, chlorophyll a concentration in the water and food intake rate (FIR) in a model active filter-feeding organism (the cockle). Results showed that seagrass density and patchiness modified both hydrodynamic forces and availability of resources for filter feeders. Chlorophyll a water content decreased to 50% of the initial value when densities of both seagrass shoots and cockles were high. Also, filter feeder density controlled resource availability within seagrass patches, depending on its spatial position within the racetrack flume. Under high density of filter-feeding organisms, chlorophyll a levels were lower between patches. This suggests that the pumping activity of cockles (i.e. biomixing) is an emergent key factor affecting both resource availability and FIR for filter feeders in dense canopies. Applying our results to natural conditions, we suggest the existence of a direct correlation between habitat complexity (i.e. shoot density and degree of patchiness) and filter feeders density. Fragmented and low-density patches seem to offer both greater protection from hydrodynamic forces and higher resource availability. In denser patches, however, resources are allocated mostly within the canopy, which would benefit

  12. UNSAT-H Version 2. 0: Unsaturated soil water and heat flow model

    SciTech Connect

    Fayer, M.J.; Jones, T.L.

    1990-04-01

    This report documents UNSAT-H Version 2.0, a model for calculating water and heat flow in unsaturated media. The documentation includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plant transpiration, and the code listing. Waste management practices at the Hanford Site have included disposal of low-level wastes by near-surface burial. Predicting the future long-term performance of any such burial site in terms of migration of contaminants requires a model capable of simulating water flow in the unsaturated soils above the buried waste. The model currently used to meet this need is UNSAT-H. This model was developed at Pacific Northwest Laboratory to assess water dynamics of near-surface, waste-disposal sites at the Hanford Site. The code is primarily used to predict deep drainage as a function of such environmental conditions as climate, soil type, and vegetation. UNSAT-H is also used to simulate the effects of various practices to enhance isolation of wastes. 66 refs., 29 figs., 7 tabs.

  13. A Unified Multi-Scale Model for Pore-Scale Flow Simulations in Soils

    SciTech Connect

    Yang, Xiaofan; Liu, Chongxuan; Shang, Jianying; Fang, Yilin; Bailey, Vanessa L.

    2014-01-30

    Pore-scale simulations have received increasing interest in subsurface sciences to provide mechanistic insights into the macroscopic phenomena of water flow and reactive transport processes. The application of the pore scale simulations to soils and sediments is, however, challenged because of the characterization limitation that often only allows partial resolution of pore structure and geometry. A significant proportion of the pore space in soils and sediments is below the spatial resolution, forming a mixed media of pore and porous domains. Here we reported a unified multi-scale model (UMSM) that can be used to simulate water flow and transport in mixed media of pore and porous domains under both saturated and unsaturated conditions. The approach modifies the classic Navier-Stokes equation by adding a Darcy term to describe fluid momentum and uses a generalized mass balance equation for saturated and unsaturated conditions. By properly defining physical parameters, the UMSM can be applied in both pore and porous domains. This paper describes the set of equations for the UMSM, a series of validation cases under saturated or unsaturated conditions, and a real soil case for the application of the approach.

  14. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).

    PubMed

    Brittain, S R; Cox, A G; Tomos, A D; Paterson, E; Siripinyanond, A; McLeod, C W

    2012-03-01

    Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied. PMID:22237634

  15. A novel flow-based procedure for automation of respirometric assays in soils.

    PubMed

    Silva, Claudineia R; Oliveira, Eliezer; Zagatto, Elias A G; Henriquez, Camelia

    2016-09-01

    A flow-based strategy involving a gas-diffusion sampling probe was proposed for evaluating the respiration rate in soils. The amount of CO2 collected after a pre-defined time interval was proportional to the free CO2 released by the soil ecosystem. The 500-mL incubation flasks typically used for soil respirometric assays were adapted and a special cover was designed for connecting a tubular gas diffusion membrane, a fan, and a septum for adding the CO2(g) standards required for calibration. The method relied on the pH-dependent absorbance variations resulting from the CO2 collection. A 1.3mmolL(-1) bromothymol blue solution (pH 7.0) acted as both acceptor and carrier streams. In order to widen the dynamical working range to 0.003-0.2mmol CO2, two analytical curves were obtained, each related to a different time interval for the CO2 collection. Kinetic curves related to CO2 release by the soil samples were straightforwardly attained. Repeatability and detection limit were estimated as 2.0% and 0.001mmol CO2 (n=10), and accuracy was assessed in relation to a recommended titrimetric procedure. PMID:27343572

  16. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. PMID:23644068

  17. The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures.

    PubMed

    Zehe, Erwin; Blume, Theresa; Blöschl, Günter

    2010-05-12

    Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy. PMID:20368256

  18. Using Data Assimilation Method Via an Ensemble Kalman Filter to Predict Adsorptive Solute Cr(Ⅵ) Transfer from Soil into Surface Runoff

    NASA Astrophysics Data System (ADS)

    Tong, J.

    2014-12-01

    With the development of modern agriculture, large amount of fertilizer and pesticide outflow from farming land causes great wastes and contributes to serious pollution of surface water and groundwater, which threatens ecological environment and human life. In this paper, laboratory experiments are conducted to simulate adsorbed Cr(VI) transfer from soil into runoff. A two-layer in-mixing analytical model is developed to to analyze laboratory experimental results. A data assimilation (DA) method via the ensemble Kalman filter (EnKF) is used to update parameters and improve predictions. In comparison with the observed data, DA results are much better than forward model predictions. Based on the used rainfall and relevant physical principles, the updated value of the incomplete mixing coefficient is about 7.4 times of the value of the incomplete mixing coefficient in experiment 1 and about 14.0 times in experiment 2, which indicates the loss of Cr(VI) in soil solute is mainly due to infiltration, rather than surface runoff. With the increase of soil adsorption ability and the mixing layer depth, the loss of soil solute will decrease. These results provide information for preventing and reducing the agricultural nonpoint source pollution.

  19. Influence of soil spatial variability on surface and subsurface flow at a vegetative buffer strip scale.

    NASA Astrophysics Data System (ADS)

    Gatel, Laura; Lauvernet, Claire; Carluer, Nadia; Paniconi, Claudio; Leblois, Etienne

    2015-04-01

    The objective of this study is to evaluate the influence of soil hydrodynamic characteristics variability on surface and subsurface flow at a vegetative buffer strip scale, using mecanistic modeling. Cathy (CATchment HYdrology, Camporese et al. 2010) is a research physically based model able to simulate coupled surface/subsurface flow. The evaluation of soil hydrodynamic characteristics variability is based essentially on saturated hydraulic conductivity because of its large spatial variability in the 3 dimensions and its important influence on flow pathways, as well as its high influence on the model output variables. After testing the model sensitivity to some input variables, to the boundary conditions and to the mesh definition, the work focuses on hydraulic conductivity parametrization. The study was first conducted with uniform (by horizons) conductivity domains based on field measurements. In a second step, heterogeneous fields were generated by a statistical tool which allows the user to choose the statistical law (in this case, lognormal or Gauss), the hydraulic conductivity auto-correlation length and the possibility to condition the fields with measured points. With all these different ways to represent spatial variability of hydraulic conductivity, model simulated surface and subsurface fluxes consistent with datasets from artificial run-off experiments on an French wineyard hillslope (Morcille catchment, Beaujolais, France). Model simulations are evaluated and compared to observations on several criteria : consistency, stability, interaction with water table, etc...

  20. SIMPLE MODEL OF ICE SEGREGATION USING AN ANALYTIC FUNCTION TO MODEL HEAT AND SOIL-WATER FLOW.

    USGS Publications Warehouse

    Hromadka, T.V., II; Guymon, G.L.

    1984-01-01

    This paper reports on the development of a simple two-dimensional model of coupled heat and soil-water flow in freezing or thawing soil. The model also estimates ice-segregation (frost-heave) evolution. Ice segregation in soil results from water drawn into a freezing zone by hydraulic gradients created by the freezing of soil-water. Thus, with a favorable balance between the rate of heat extraction and the rate of water transport to a freezing zone, segregated ice lenses may form.

  1. Investigation of Interactive Effects on Water Flow and Solute Transport in Sandy Loam Soil Using Time Domain Reflectometry

    PubMed Central

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding

  2. Subsurface Transport and Mobilization of Pathogenic Microbes and Microspheres: Effect of Microbe Size, Soil Physical Heterogeneity, and Intermittent Flow

    NASA Astrophysics Data System (ADS)

    Bulicek, M. C.; Metge, D. W.; Mohanty, S. K.; Harvey, R. W.; Ryan, J. N.

    2013-12-01

    Intermittent flows of rainwater frequently mobilize pathogenic microbes attached to subsurface soils, thereby causing groundwater contamination. The potential of intermittent rainfall to mobilize diverse pathogens (e.g., size, shape, taxa) remains understudied for heterogeneous soil systems. This study investigates the combined effects of microbe size and shape, intermittent flow, and soil physical heterogeneity on the transport, retention and mobilization of microbes through an intact, fractured shale saprolite core. Microbes, including MS-2 bacteriophage (~26 nm), Pseudomonas stutzeri bacteria (~1 μm), and Cryptosporidium parvum oocysts (3.6 μm), and 0.5 μm fluorescent microspheres (FMS), preceded by a bromide tracer, were applied to the core to obtain breakthrough. After breakthrough, the core was subjected to intermittent rainfalls to mobilize the attached microbes and FMS. Water samples were collected using 19 spatially-arranged outlet ports at the core base to resolve the effect of soil physical heterogeneity. Water infiltrated through only eight of 19 total sampling ports, which indicated water partially bypassed soil matrices and infiltrated through macropores. Bromide recovery was less than 100%, which indicated diffusion of bromide into the soil matrix. Macropores and the soil matrix dominated flow were characterized based on the cumulative bromide recovery within individual sampling ports. Thus, lower recovery was attributed to increased matrix diffusion and higher recovery indicated the presence of macropores. Intermittent flow mobilized previously sequestered microbes and FMS; however, mobilization varied with the size of microbes/FMS and sampling ports. Greater mobilization occurred through macropores compared to soil matrices. Mobilization of larger, spherical C. parvum oocysts was greater than that of the smaller, spherical MS-2 bacteriophage and the rod-shaped P. stutzeri bacteria during intermittent flow. This suggested shear forces mobilize

  3. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization.

    PubMed

    Almenglo, Fernando; Bezerra, Tercia; Lafuente, Javier; Gabriel, David; Ramírez, Martín; Cantero, Domingo

    2016-08-01

    Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height. Moreover, elemental sulfur was oxidized to sulfate when the feeding biogas was disconnected and the supply of nitrate (electron acceptor) was maintained. Removal of elemental sulfur was important to prevent clogging in the packed bed and, thereby, to increase the lifespan of the packed bed between maintenance episodes. The larger elemental sulfur removal rate during shutdowns was 59.1 gS m(-3) h(-1). Tag-encoded FLX amplicon pyrosequencing was used to study the diversity of bacteria under co-current flow pattern with liquid recirculation and counter-current mode with a single-pass flow of the liquid phase. The main desulfurizing bacteria were Sedimenticola while significant role of heterotrophic, opportunistic species was envisaged. Remarkable differences between communities were found when a single-pass flow of industrial water was fed to the biotrickling filter. PMID:27231880

  4. Influence of soil structure on unsaturated water flow including root uptake

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Anna; Neuweiler, Insa; van der Zee, Sjoerd; Helmig, Rainer

    2010-05-01

    The development of effective irrigation strategies is of great importance as the scarcity of water during extended dry periods in aride areas leads to limited water uptake by roots and thus to restricted growth and eventually to wilting of plants. To approach this goal a broad understanding of the factors which influence the distribution of the water potential and the interactions with root uptake is crucial. Soil structure is supposed to have a large impact on water flow especially under dry conditions when the variability of soil parameters is increased. For field applications, predictions of the water flow are needed for large scales where the scarcity of measurements leads to a high level of uncertainty about the detailed distribution of soil parameters. Thus stochastic methods in which heterogeneity of soil is described by a random parameter field are used. In this presentation, the interrelation of root uptake and heterogeneity is analyzed using numerical simulations. Random parameter fields with Gaussian and non-Gaussian dependence were parameterized according to the Las Cruces Trench Site dataset and used as input for the numerical model. Transpiration is considered in a macroscopic way as a sink term with a prescribed potential extraction rate at each node, determined by the density distribution of the plants and with restricted uptake due to unfavorable conditions as lack of water and oxygen (modeled according to the Feddes - Function). With this basic model, water flow in two dimensional random fields has been investigated under dry conditions. It was observed that dry spots - regions in which roots dry up to the wilting point form when the structure shows isolated high extreme values in conductivity. In these dry regions, roots take up a decreased amount of water such that the total potential demand is not met anymore. This seems rather unrealistic as sufficient water is available at other locations of the domain. Thus two other approaches are analyzed

  5. Lateral Preferential Flow in Soil Pipes on Hillslopes in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Steenhuis, T. S.; Dahlke, H. E.

    2006-12-01

    Lateral preferential flow has been shown to be a significant factor controlling the timing and volume of hillslope runoff. In addition, preferential flow, including pipeflow, can reduce the contact time of contaminants with the soil matrix and thus profoundly alter runoff chemistry. This study examines the importance of soil pipes on hydrologic response and runoff chemistry from a hillslope in the Catskill Mountains of New York State. The pipes examined are unique in location, depth, and flow characteristics from previously published studies in North America. The implications of pipeflow on hydrologic process understanding and land management in both agricultural and pristine watersheds in the Catskills are numerous. Therefore, chemical tracers and hydrometric techniques are used to determine the hydrologic response characteristics, contributing area, and nutrient transport capacity of the pipes and non-invasive geophysical methods are used to investigate the morphology of the pipes and their importance in landscape formation. This study was conducted on a hillslope in the Town Brook watershed in the Catskill Mountains. Soil pipes were initially identified by visual and auditory reconnaissance. Soil pipe locations and frequency were further defined using ground penetrating radar (GPR). Additional pipe characteristics were estimated using simple tracer studies (using dye and salt) and by measuring the size of particles ejected by the pipe. After identification, the hillslope was instrumented with equipment capable of measuring the hydrologic response of the pipe, including a weir and tipping buckets measuring pipe outflow, a network of piezometers and tensiometers, and automated rain gauge. Water quality measurements were collected using automated samplers and event-based grab samples at several locations: upslope surface water, soil moisture (using a cluster of lysimeters), rainfall, pipe outflow, and stream water at the outlet of the subcatchment. Mixing models

  6. Prehistoric Agriculture and Soil Fertility on Lava Flows in Northern Arizona, USA: Results from the San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Anderson, K. C.

    2013-12-01

    The San Francisco Volcanic Field in northern Arizona is home to ~600 cinder cones, the youngest of which is Sunset Crater (erupted ~AD 1100). This study documents trends in available phosphate and nitrate content with time, testing whether lowered soil pH from the addition of Sunset cinders increased soil fertility and became a factor in Anasazi agricultural success. Soil fertility is examined both before and after Sunset's eruption in soils of different ages that have developed from eolian deposition on top of lava flows. An increase in phosphate and nitrate levels following acidification would suggest that the presence of Sunset cinders brought the soils to the optimal pH for mobilization of these nutrients. The combined effects of the cinder layer retaining nutrients and water, wetter climates, and increases in phosphate and nitrate (both limiting nutrients for plant growth), would have contributed to Anasazi agricultural success after Sunset's eruption. Samples for this study were taken from eolian-derived soils of different ages atop lava flows in the San Francisco Volcanic Field. OSL data from these soils on Strawberry and SP Craters' lava flows yielded age estimates of ~12.3 ka (Strawberry) and ~32.7 ka (SP), on which a soil chronosequence was based. Results from the chronosequence supported these OSL ages, indicating that soils on the SP flow are older than those on the Strawberry flow. Field descriptions, Harden Development Indices, particle size analysis, and nutrient content analysis were used for this aspect of the project. An experimental acid wash method will be used to simulate the addition of Sunset's acidic cinders, and will yield data for phosphate and nitrate content after Sunset erupted. Preliminary results indicate that phosphate and nitrate accumulate in upper, eolian-derived horizons (Av, Bw) and in more deeply buried carbonate horizons (Bk). Higher concentrations of phosphate and nitrate were found in older (SP) soils than younger

  7. Water Filter

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  8. Physical modelling of rainfall-induced flow failures in loose granular soils

    NASA Astrophysics Data System (ADS)

    Take, W. A.; Beddoe, R. A.

    2015-09-01

    The tragic consequences of the March 2014 Oso landslide in Washington, USA were particularly high due to the mobility of the landslide debris. Confusingly, a landslide occurred at that exact same location a number of years earlier, but simply slumped into the river at the toe of the slope. Why did these two events differ so drastically in their mobility? Considerable questions remain regarding the conditions required to generate flow failures in loose soils. Geotechnical centrifuge testing, in combination with high-speed cameras and advanced image analysis has now provided the landslides research community with a powerful new tool to experimentally investigate the complex mechanics leading to high mobility landslides. This paper highlights recent advances in our understanding of the process of static liquefaction in loose granular soil slopes achieved through observations of highly-instrumented physical models. In particular, the paper summarises experimental results aimed to identify the point of initiation of the chain-reaction required to trigger liquefaction flow failures, to assess the effect of slope inclination on the likelihood of a flowslide being triggered, and to quantify the effect of antecedent groundwater levels on the distal reach of landslide debris with the objective of beginning to explain why neighbouring slopes can exhibit such a wide variation in landslide travel distance upon rainfall-triggering.

  9. A computer program for the simulation of heat and moisture flow in soils

    NASA Technical Reports Server (NTRS)

    Camillo, P.; Schmugge, T. J.

    1981-01-01

    A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.

  10. A soil moisture index as an auxiliary ANN input for stream flow forecasting

    NASA Astrophysics Data System (ADS)

    Anctil, François; Michel, Claude; Perrin, Charles; Andréassian, Vazken

    2004-01-01

    This study tests the short-term forecasting improvement afforded by the inclusion of low-frequency inputs to artificial neural network (ANN) rainfall-runoff models that are first optimized by using only fast response components, i.e. using stream flow and rainfall as inputs. Ten low-frequency ANN input candidates are considered: the potential evapotranspiration, the antecedent precipitation index (API i, i=7, 15, 30, 60, and 120 days) and a proposed soil moisture index time series (SMI A, for A=100, 200, 400 and 800 mm). As the ANNs considered are for use in real-time lead-time-L forecasting, forecast performance is expressed in terms of the persistence index, rather than the conventional Nash-Sutcliffe index. The API i are the non-decayed moving average precipitation series, while the SMI A are calculated through the soil moisture accounting reservoir of the lumped conceptual rainfall-runoff model GR4J. Results, based on daily data of the Serein and Leaf rivers, reveal that only the SMI A time series are useful for one-day-ahead stream flow forecasting, with both the potential evapotranspiration and the API itime series failing to improve the ANN performance.

  11. Predictability of soil moisture and river flows over France for the spring season

    NASA Astrophysics Data System (ADS)

    Singla, S.; Céron, J.-P.; Martin, E.; Regimbeau, F.; Déqué, M.; Habets, F.; Vidal, J.-P.

    2012-01-01

    Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960-2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 880 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifers. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Soil moisture and river flow skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.

  12. Multitracer Study of Flow to Tile Drains in Irrigated Macroporous Soil

    NASA Astrophysics Data System (ADS)

    Bishop, J. M.; Callaghan, M. V.; Cey, E.; Bentley, L. R.

    2010-12-01

    Multiple tracer experiments have been conducted to test the effectiveness of using irrigation along with a tile drain system for salt remediation in west central Alberta, Canada. The experiments were designed to characterize the shallow flow system as part of a salt flushing pilot study and to determine the role of macroporosity in groundwater flow and transport. Soils at the site are primarily silty glaciolacustrine material underlain by a relatively impermeable till layer at approximately 2.5 m below ground surface. A 20 m by 20 m infiltration test plot is underlain by two tile drains at 2 m depth that are separated by 10 m. The test plot contains a drip irrigation system and has been irrigated regularly in the summer months over the past three seasons (2008-2010). Two reportedly conservative tracers, 2,6-difluorobenzoic acid [2,6-DFBA] and pentafluorobenzoic acid [PFBA], have been used on the plot and the pre-existing soil salinity was also used as a tracer. In August of 2009 a 2,6-DFBA solution (865g/L) was applied to the surface of the plot. Irrigation of the study plot continued after tracer application on a schedule that averaged roughly 12mm/day, applied 3 days a week. During the 2010 field season, a PFBA solution (at 4.2 g/L) was injected into two separate monitoring wells. One monitoring well is situated 0.5 m directly above the north tile drain (in which samples were collected regularly). The other well is situated at 2 m depth in the center of the study plot and samples were collected from a down gradient well. Tracer concentrations in the subsurface were monitored through sampling of tile drain effluent and monitoring wells in and around the plot, in addition to soil core extractions taken at several locations within the test plot at the end of the 2009 field season. Initial breakthrough of the DFBA in the tile drains occurred 24 hours after application and remained in all subsequent water samples at concentrations of 2 to 6 mg/L. Results from the DFBA

  13. Influence of soil structure and root water uptake strategy on unsaturated flow in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Kuhlmann, A.; Neuweiler, I.; van der Zee, S. E. A. T. M.; Helmig, R.

    2012-02-01

    We analyze the combined effects of the spatial variability of soil hydraulic properties and the water uptake by plant roots on unsaturated water flow. For this analysis, we use a simplified macroscopic root water uptake model which is usually applied only for homogeneous or layered soil and therefore we also determine whether it is applicable for multidimensional heterogeneous media. Analytical solutions for mean and variance of pressure head (first-order second-moment approximations) in layered media and numerical solutions of two-dimensional (2-D) autocorrelated multi-Gaussian and non multi-Gaussian parameter fields are analyzed for steady state and transient flow conditions. For non-Gaussian topological features, that have little influence on the mean and the variance of the pressure field if root water uptake is ignored, we test whether the influence is significant if root water uptake is accounted for. The results reveal that, in field structures with large patches of coarse material, local regions with pressure head values at the wilting point develop; these are surrounded by wet material. Without a compensation mechanism for local stress, the global transpiration demand is not met if local wilting occurs. Various compensation mechanisms are tested that depend, respectively, on the saturation, the relative conductivity or a strategy where the deficit in the global uptake rate is equally distributed to unstressed locations. The strategies lead to a global actual transpiration rate at the potential value and attenuate the formation of locally wilted areas. Wilted regions can, however, still occur, and may be an artifact of the simplified model concept as root-soil interactions are neglected. Therefore simplified macroscopic models for root water uptake should be used with caution in heterogeneous media.

  14. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system.

    PubMed

    Poot, A; Gillissen, F; Koelmans, A A

    2007-08-01

    The acid volatile sulphide (AVS) and simultaneously extracted metals (SigmaSEM) method is increasingly used for risk assessment of toxic metals. In this study, we assessed spatial and temporal variations of AVS and SigmaSEM in river sediments and floodplain soils, addressing influence of flow regime and flooding. Slow-flowing sites contained high organic matter and clay content, leading to anoxic conditions, and subsequent AVS formation and binding of metals. Seasonality affected these processes through temperature and oxygen concentration, leading to increased levels of AVS in summer at slow-flowing sites (max. 37micromolg(-1)). In contrast, fast-flowing sites hardly contained AVS, so that seasonality had no influence on these sites. Floodplain soils showed an opposite AVS seasonality because of preferential inundation and concomitant AVS formation in winter (max. 3-30micromolg(-1)). We conclude that in dynamic river systems, flow velocity is the key to understanding variability of AVS and SigmaSEM. PMID:17418923

  15. Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering.

    PubMed

    Allison, Patton M; McManus, Thomas A; Sutton, Jeffrey A

    2016-03-15

    This Letter demonstrates the application of filtered Rayleigh scattering (FRS) for quantitative two-dimensional fuel vapor/air mixing measurements in an evaporating hydrocarbon fuel spray flow. Using the FRS approach, gas-phase measurements are made in the presence of liquid-phase droplets without interference. Effective suppression of the liquid-phase droplet scattering using FRS is enabled by the high spectral purity of the current Nd:YAG laser system. Simultaneous Mie-scattering imaging is used to visualize the droplet field and illustrate the droplet loading under which the FRS imaging is applied in the current spray flows. The initial quantification of the FRS imaging is based on calibration measurements from a flow cell of known fuel vapor/air mixtures, while future work targets the utilization of a Rayleigh-Brillouin spectral model for quantification of the FRS signals. PMID:26977637

  16. Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field-flow fractionation.

    PubMed

    Regelink, Inge C; Koopmans, Gerwin F; van der Salm, Caroline; Weng, Liping; van Riemsdijk, Willem H

    2013-01-01

    Phosphorus transport from agricultural land contributes to eutrophication of surface waters. Pipe drain and trench waters from a grassland field on a heavy clay soil in the Netherlands were sampled before and after manure application. Phosphorus speciation was analyzed by physicochemical P fractionation, and the colloidal P fraction in the dissolved fraction (<0.45 μm) was analyzed by asymmetric flow field-flow fractionation (AF4) coupled to high-resolution inductively coupled plasma-mass spectrometry and ultraviolet diode array detector. When no manure was applied for almost 7 mo, total P (TP) concentrations were low (<21 μmol L), and TP was almost evenly distributed among dissolved reactive P (DRP), dissolved unreactive P (DUP), and particulate P (PP). Total P concentrations increased by a factor of 60 and 4 when rainfall followed shortly after application of cattle slurry or its solid fraction, respectively. Under these conditions, DRP contributed 50% or more to TP. The P speciation within the DUP and PP fractions varied among the different sampling times. Phosphorus associated with dissolved organic matter, probably via cation bridging, comprised a small fraction of DUP at all sampling times. Colloidal P coeluted with clay particles when P application was withheld for almost 7 mo and after application of the solid cattle slurry fraction. At these sampling times, PP correlated well with particulate Fe, Al, and Si, indicating that P is associated with colloidal clay particles. After cattle slurry application, part of DUP was probably present as phospholipids. Physicochemical fractionation combined with AF4 analysis is a promising tool to unravel the speciation of colloidal P in environmental water samples. PMID:23673839

  17. Calibration of a one-dimensional water flow model for the evaluation of the reclamation success of saline soil substrates

    NASA Astrophysics Data System (ADS)

    Shaygan, Mandana; Baumgartl, Thomas; Arnold, Sven; Reading, Lucy; Fletcher, Andrew

    2015-04-01

    Highly saline-sodic soils restrict plant establishment. Salt affected soils may be reclaimed by leaching salts from a potential root zone. Soil amendments can be used as a reclamation technique to improve the soil pore system and hydraulic functions, which allows the downward transport of water under certain precipitation conditions. The objective of this study was to investigate salt movement within saline-sodic soil at a small scale in soil columns and assess the success of amendment strategies for reclamation of the soil. For the purpose of predicting the effect of typical rainfall scenarios on the reclamation of saline-sodic soils, a one-dimensional numerical water flow model (HYDRUS-1D) was tested and calibrated. The model was calibrated using data from laboratory column experiments. A saline-sodic soil was packed into 30 cm long columns (diameter 7cm) from a depth of 10 to 30 cm and then covered with the same soil, however amended with 40% (wt/wt) fine sand and 20% (wt/wt) wood chips, respectively. A column filled with the saline-sodic soil only to a depth of 30 cm was used as a control. The experiments were carried out by establishing an initial pressure head of -60 cm at the soil surface. Based on climate data from a location in south-west Queensland, rainfall scenarios with 50% and 1% probability of annual exceedance for this location were calculated and applied to the soil columns. The hydrological response in the columns was monitored by measuring the water potential using tensiometers installed in three depths (3, 11 and 25 cm) and knowledge of inflow and outflow of the columns. The simulation captured the observed trends in the results for the investigated columns and measured depths under heavy rainfall events as well as surface substrates exposed to small rainfall events, where the simulated and measured results were in very good agreement, with R2 values generally ranging between 0.92 and 0.98. The simulated results also provided a good description

  18. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    USGS Publications Warehouse

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  19. Experimental observations and modeling of ponding and overland flow in flat, permeable soil fields

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn; Bogaart, Patrick; van der Zee, Sjoerd

    2015-04-01

    In flat well-drained agricultural terrain, overland flow is a relatively rare phenomenon, yet still a potentially important driver of sediment and nutrient transport. Under these conditions, periods of intense rainfall, shallow groundwater dynamics and local combinations of meso- and microtopography control whether water in ponds will become connected to streams and ditches. Combining overland flow measurements at agricultural fields with a new modeling approach, we explored: (i) what rainfall conditions relate to overland flow and (ii) how does flow route connectivity develop for various types of runoff generation and meso/microtopography? For this purpose, we assessed overland flow at two field sites in flat, lowland catchments in the sandy part of the Netherlands and developed a dynamic model (FAST-runoff) to simulate redistribution of water over a heterogeneous surface with infiltration and soil water storage. Experimentally, it appeared that most overland flow occurred as saturation excess runoff during long wet periods, though infiltration excess runoff generation may have played a role during snowmelt periods that generated small amounts of runoff. For both fields, the contributing area during the saturation excess events was large and flow paths long, irrespective of the profoundly different microtopographies. We explored this behaviour with our FAST-Runoff model and found that under saturation excess conditions, mesotopographic features, such as natural depressions or those caused by tillage, gain importance at the expense of the spatial organization of microtopography. The surface topographies of our experimental fields were equal in terms of standard topographic analytical measures such as Curvature, Convergence Index, and Topographic Wetness Index. However, the fields could be distinguished when analysed with a quantitative indicator of flow for hydrological connectivity. Also, the fields had different dynamics related to the runoff generating mechanism

  20. Hydrogeochemistry of the Overland Flow in Soil at Agroecosystems in Eastern Amazon

    NASA Astrophysics Data System (ADS)

    Costa, C. F. G. D.; Figueiredo, R. O.; Oliveira, F. D. A.

    2014-12-01

    In the watershed of the Timboteua and Buiuna streams, northeast of Pará state, Amazon, it was characterized the overland flow dissolved material by some hydrogeochemical variables: electrical conductivity (EC), pH, chloride (Cl-), nitrate (NO3-), phosphate (PO43-), and sulfate (SO42-). In two small holder properties three overland flow experimental plots (1m2) were placed in each of the six evaluated ecosystems under similar biophysical conditions, totaling 18 plots. There was also installed three rainwater collectors and two rain gauges in a nearby area. In the rainy season were collected 234 samples of rainwater and overland flow. The evaluation of the measured variables promote the hydrogeochemical characterization of the overland flow at soil under chop-and-mulch and slash-and-burn practices in the different ecosystems found in the familiar agriculture of this watershed, in which it was identified some distinct hydrogeochemical characteristics of the overland flow. The lowest losses of NO3- (variation range = 0.07 to 2.57 μM) was found in agroecosystem - chop-and-mulch, this nutrient obtained higher values in agroecosystem - slash-and-burn (RQ). In agroecosystem (RQ) initially, there was a high value of PO43- (8.87 μM); EC (121 μS cm-1) and a subsequent sharp decline. Secondary successional forest (CP) of 20 years presented in overland flow pH 4.8 and EC 25 μS cm-1 (average 6 months), low loss of NO3- (0.2 μM) and PO43- (0.05 μM), and large range of variation of SO42- (0.7 to 21.5 μM). While Cl- and SO42- overland flow concentrations were affect by the rainfall variation, the increase of NO3- and PO43-concentrations were more related to the ecosystem management, with the first element responding to the presence of nitrogen-fixing species and the second responding to the burning practices. In summary: This study was efficient to characterize the hydrogeochemical of the overland flow and its relation to the altered ecosystems by Amazonian family farming.

  1. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.

    PubMed

    Zarebanadkouki, Mohsen; Kim, Yangmin X; Carminati, Andrea

    2013-09-01

    Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers. PMID:23692148

  2. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  3. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier. Fifth quarterly report, October 1, 1985--December 31, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  4. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier. Fourth quarterly report, July 1, 1985--September 30, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  5. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier. Second quarterly project report, January 1, 1985--March 31, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  6. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    PubMed Central

    Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U

    2014-01-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Key Points Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow PMID:25641996

  7. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    NASA Astrophysics Data System (ADS)

    Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U.

    2014-04-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands.

  8. Analysis of the Impact of Soil Heterogeneity on the Spatial Variation of Unsaturated Flow

    NASA Astrophysics Data System (ADS)

    Patterson, Matthew; Gimenez, Daniel; Kerry, Ruth; Goovaerts, Pierre

    2016-04-01

    Modelling infiltration into soils with deterministic models requires knowledge of the hydraulic properties of that soil. Informing a model with these properties is complex because of the spatial heterogeneity of hydraulic properties that naturally occurs in all soils . The objective of this work was to analyze the effects that contrasting synthetic heterogeneities have on spatial outflows using a three-dimensional numerical model. An undisturbed soil column of 32 cm diameter and 50 cm height was used in an outflow experiment in the laboratory, where outflow was collected from the bottom of the column in 145 spatially-varied outflow cells and the column was subjected to multiple inflow rates. After the completion of the experiment, 30 sub-cores of 8 cm diameter and 5 cm height were extracted from the column and used to measure hydraulic properties and texture through a combination of pressure plate extractor, automated evaporation method, and a dewpoint potentiometer. The spatial heterogeneity of the soil in the column was represented by a Local Indicator of Spatial Autocorrelation (LISA - Local Moran's I) clustering algorithm, which used both texture and Electrical Resistivity Tomography data to identify significant clusters of points with high (HH) and low (LL) values and values that were not part of a significant cluster (NS). Each cluster was also assigned a numerical index based on LISA. Effective hydraulic properties were assigned to the HH and LL clusters and NS points based on the location of the 30 sub-cores and their average hydraulic properties. Resistivity data were used with omni-directional variograms with ranges of 5 and 15 cm and a nugget of 0.25 to conditionally simulate 50 realizations of 3-D data based on each variogram. The LISA algorithm was then used to detect significant clusters in these data and classify them as HH, LL or NS. Importing the resulting 100 sets of synthetic clusters and their corresponding effective hydraulic properties into

  9. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an

  10. Bayesian inference of decomposition rate of soil organic carbon using a turnover model and a hybrid method of particle filter and MH algorithm

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Jomura, M.; Yonemura, S.; Iizumi, T.; Shirato, Y.; Yokozawa, M.

    2010-12-01

    The soils of terrestrial ecosystems accumulate large amounts of carbon and the response of soil organic carbon (SOC) to global warming is of great concern in projections of future carbon cycling. While many theoretical and experimental studies have suggested that the decomposition rates of soil organic matters depend upon the physical and chemical conditions, land managements and so on, there has not yet been consensus in the dependencies. Most of the soil carbon turnover models for describing the SOC dynamics do not assume the differences in decomposition rates. The purpose of this study is to evaluate the decomposition rates of SOC based on a soil carbon turnover model, RothC, which describes SOC dynamics dividing it into compartments with different decomposition rates. In this study, reflecting that decomposition rate could change with time due to the fertility management in arable land, we used time-dependent Bayesian inference methods to allow time-change variation of the parameters. Thus, we used a hybrid method of particle filtering methods and MH algorithm. We applied this method to datasets obtained from three long-term experiments on time changes in total SOC at five sites over the Japan mainland. For each dataset, three treatments were examined: no N applied, chemical fertilizer applied, and chemical fertilizer and farmyard manure applied. We estimated parameters on the temperature and water dependent functions as well as the intrinsic decomposition rate for each compartment of RothC and for each treatment. As a result, it was shown that the temperature dependencies tended to decreased with the decomposability of the compartment, i.e. lower temperature dependency for more recalcitrant compartment of the model. On the other hand, the water dependencies were not determined with the SOC turnover rates of the compartments. Additionally, the intrinsic decomposition rates tended to increase with time especially in no N applied treatment. This result reflects

  11. Importance of Preferential Flow and Soil Management in Vertical Transport of a Biocontrol Strain of Pseudomonas fluorescens in Structured Field Soil

    PubMed Central

    Natsch, A.; Keel, C.; Troxler, J.; Zala, M.; Von Albertini, N.; Defago, G.

    1996-01-01

    The large-scale release of wild-type or genetically modified bacteria into the environment for control of plant diseases or for bioremediation entails the potential risk of groundwater contamination by these microorganisms. For a model study on patterns of vertical transport of bacteria under field conditions, the biocontrol strain Pseudomonas fluorescens CHA0, marked with a spontaneous resistance to rifampin (CHA0-Rif), was applied to a grass-clover ley plot (rotation grassland) and a wheat plot. Immediately after bacterial application, heavy precipitation was simulated by sprinkling, over a period of 8 h, 40 mm of water containing the mobile tracer potassium bromide and the dye Brilliant Blue FCF to identify channels of preferential flow. One day later, a 150-cm-deep soil trench was dug and soil profiles were prepared. Soil samples were extracted at different depths of the profiles and analyzed for the number of CHA0-Rif cells and the concentration of bromide and Brilliant Blue FCF. Dye coverage in the soil profiles was estimated by image analysis. CHA0 was present at 10(sup8) CFU/g in the surface soil, and 10(sup6) to 10(sup7) CFU/g of CHA0 was detected along macropores between 10 and 150 cm deep. Similarly, the concentration of the tracer bromide along the macropores remained at the same level below 20 cm deep. Dye coverage in lower soil layers was higher in the ley than in the wheat plot. In nonstained parts of the profiles, the number of CHA0-Rif cells was substantially smaller and the bromide concentration was below the detection limit in most samples. We conclude that after heavy rainfall, released bacteria are rapidly transported in large numbers through the channels of preferential flow to deeper soil layers. Under these conditions, the transport of CHA0-Rif is similar to that of the conservative tracer bromide and is affected by cultural practice. PMID:16535221

  12. Stack filters

    NASA Astrophysics Data System (ADS)

    Wendt, P. D.; Coyle, E. J.; Gallagher, N. C., Jr.

    1986-08-01

    A large class of easily implemented nonlinear filters called stack filters are discussed which includes the rank order operators in addition to the compositions of morphological operators. Techniques similar to those used to determine the root signal behavior of median filters are employed to study the convergence properties of the filters, and necessary conditions for a stack filter to preserve monotone regions or edges in signals, and the output distribution of the filters, are obtained. Among the stack filters of window width three are found asymmetric median filters in which one removes only positive going edges, the other removes only negative going edges, while the median filter removes impulses of both signs.

  13. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    PubMed

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed. PMID:17234253

  14. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  15. Fractionation and characterization of natural organic matter from certain rivers and soils by free-flow electrophoresis

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Soluble river organic matter and soil fulvic acids from a variety of environments were compared by examining the free-flow electrophoretic fractionation curves of organic carbon, color, and polysaccharides. Significant amounts of virtually colorless organic material were found in both the soil and the river preparations. Polysaccharides comprised 20-75 percent of the colorless material in the soil fulvic acids but only 3.2-7.0 percent of the colorless material in the river preparations. A significant amount of polysaccharides was complexed with organic materials having negative charges. Amounts of polysaccharides were greater in the Fairbanks soil from Alaska than in the soils from North Carolina or Iowa, and they were greater in the Tahquamenon River in Michigan than in the two rivers in Florida; this suggests that polysaccharide degradation is slower in cooler environments. For all of the organic preparations which were fractionated, the intensity of the yellow color increased as the charge on the organic anion increased. Highly colored, negatively charged organic material was found to be present in greater amounts in the subsurface spodic soil horizon of the Lakewood and Fairbanks soils than in the surface mollic horizon of the Macksburg soil. Infrared spectroscopy and elemental analysis of four pooled fractions of the Fairbanks fulvic acid indicated increasing aromatic character with increasing negative charge. An increase in the carboxyl content with negative charge suggests the carboxyl group as the primary source of the negative charge.

  16. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-09-01

    The objective of this work was to study the competitive adsorption/desorption of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) on two acid soils. We used the stirred flow chamber technique to obtain experimental data on rapid kinetic processes affecting the retention/release of the antibiotics. Both adsorption and desorption were higher on soil 1 (which showed the highest carbon, clay and Al and Fe oxides content) than on soil 2. Moreover, hysteresis affected the adsorption/desorption processes. Experimental data were fitted to a pseudo-first order equation, resulting qamax (adsorption maximum) values that were higher for soil 1 than for soil 2, and indicating that CTC competed with TC more intensely than OTC in soil 1. Regarding soil 2, the values corresponding to the adsorption kinetics constants (ka) and desorption kinetics constants for fast sites (kd1), followed a trend inverse to qamax and qdmax respectively. In conclusion, competition affected adsorption/desorption kinetics for the three antibiotics assayed, and thus retention/release and subsequent transport processes in soil and water environments. PMID:25973861

  17. Determination of calcium, magnesium and strontium in soils by flow injection flame atomic absorption spectrometry.

    PubMed

    Arslan, Z; Tyson, J F

    1999-12-01

    Several procedures for the determination of Ca, Mg and Sr in soils have been compared on the basis of the accuracy of analysis of two NIST reference materials (Montana Soils SRM 2710 and SRM 2711). Samples were dissolved in a mixture of hydrofluoric and nitric acids in sealed vessels in a microwave oven and in teflon beakers on a hot plate. The digests obtained from both dissolution methods were evaporated to dryness in an attempt to remove silicon. Boric acid was added to prevent the precipitation of the lanthanum releasing agent (as lanthanum fluoride) and potassium was added as an ionization buffer. Determinations were made by flame atomic absorption spectrometry with both the nitrous oxide-acetylene flame and the air-acetylene flame, with calibration either by standard additions or against external standards matrix matched with respect to nitric acid, boric acid, lanthanum and potassium. The silicon remaining in the solution was also determined by external calibration. A single-line flow injection manifold was used to overcome any problems due to the presence of high dissolved solids. A volume of 300 mul was injected into a water carrier stream flowing at 8 ml min(-1). To determine Ca in the air-acetylene flame, it was necessary to remove silicon. Magnesium was determined in either flame without complete removal of the silicon, however, for the determination of Sr, it was necessary to remove the silicon and use the nitrous oxide-acetylene flame. The indicative value for Sr in SRM 2710 was too low: the value determined was 360+/-30 mug g(-1). PMID:18967785

  18. Partitioning of Infiltration into Macropore and Soil-Matrix Flow: Predictive Model Based on Mesoscale Heterogeneity of Infiltrability

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.

    2014-12-01

    A condition that initiates macropore flow at the land surface is the application of water faster than it can infiltrate into the soil matrix material. Sometimes this is taken to require ponding, but accumulated evidence shows preferential flow to be commonplace when wetness is less than saturation and when macropores are not completely filled. Examples include water flowing into shrinkage cracks or funneled into macropores by hydrophobic surface material. A more inclusive criterion is that macropore flow is generated when the water application rate exceeds the infiltrability of a small area associated with a macropore. A new model based on this criterion considers the representative elementary area (REA), as would be appropriate for measurement of field-scale infiltrability, to be divided into a mosaic of functional sub-areas (FSA). A single value of matrix infiltrability characterizes each FSA. The REA as a mosaic of FSAs is hydraulically represented by a characteristic distribution of infiltrabilities. During rainfall or irrigation, each FSA absorbs water into its soil matrix material up to the rate of its matrix infiltrability. Water applied in excess of this infiltrability is assumed to flow into a macropore within or adjacent to the FSA, becoming preferential flow. Especially if crusted or hydrophobic, an FSA can generate preferential flow even during low-intensity rainfall when other FSAs are absorbing all incident water into the matrix. The total flux of preferential flow at given depth is the sum of contributions from all FSAs. In this way the characteristic distribution of FSA infiltrabilities controls the field-scale partitioning of matrix and macropore flow as an emergent phenomenon. Illustrative case studies use field-measured data concerning water application rate and preferential flux. Results show this model can quantitatively represent observations of preferential flow occurring in relatively dry soils or at modest rainfall intensities.

  19. Filter construction and design.

    PubMed

    Jornitz, Maik W

    2006-01-01

    Sterilizing and pre-filters are manufactured in different formats and designs. The criteria for the specific designs are set by the application and the specifications of the filter user. The optimal filter unit or even system requires evaluation, such as flow rate, throughput, unspecific adsorption, steam sterilizability and chemical compatibility. These parameters are commonly tested within a qualification phase, which ensures that an optimal filter design and combination finds its use. If such design investigations are neglected it could be costly in the process scale. PMID:16570863

  20. Novel Backup Filter Device for Candle Filters

    SciTech Connect

    Bishop, B.; Goldsmith, R.; Dunham, G.; Henderson, A.

    2002-09-18

    The currently preferred means of particulate removal from process or combustion gas generated by advanced coal-based power production processes is filtration with candle filters. However, candle filters have not shown the requisite reliability to be commercially viable for hot gas clean up for either integrated gasifier combined cycle (IGCC) or pressurized fluid bed combustion (PFBC) processes. Even a single candle failure can lead to unacceptable ash breakthrough, which can result in (a) damage to highly sensitive and expensive downstream equipment, (b) unacceptably low system on-stream factor, and (c) unplanned outages. The U.S. Department of Energy (DOE) has recognized the need to have fail-safe devices installed within or downstream from candle filters. In addition to CeraMem, DOE has contracted with Siemens-Westinghouse, the Energy & Environmental Research Center (EERC) at the University of North Dakota, and the Southern Research Institute (SRI) to develop novel fail-safe devices. Siemens-Westinghouse is evaluating honeycomb-based filter devices on the clean-side of the candle filter that can operate up to 870 C. The EERC is developing a highly porous ceramic disk with a sticky yet temperature-stable coating that will trap dust in the event of filter failure. SRI is developing the Full-Flow Mechanical Safeguard Device that provides a positive seal for the candle filter. Operation of the SRI device is triggered by the higher-than-normal gas flow from a broken candle. The CeraMem approach is similar to that of Siemens-Westinghouse and involves the development of honeycomb-based filters that operate on the clean-side of a candle filter. The overall objective of this project is to fabricate and test silicon carbide-based honeycomb failsafe filters for protection of downstream equipment in advanced coal conversion processes. The fail-safe filter, installed directly downstream of a candle filter, should have the capability for stopping essentially all particulate

  1. System reliability analysis of granular filter for protection against piping in dams

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Sivakumar Babu, G. L.

    2015-09-01

    Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.

  2. Quantifying the impact of preferential flow on solute transport to tile drains in a sandy field soil

    NASA Astrophysics Data System (ADS)

    Larsson, M. H.; Jarvis, N. J.; Torstensson, G.; Kasteel, R.

    1999-02-01

    The objective of this study was to quantify the impact of preferential finger flow on solute leaching to tile drains and shallow groundwater in a water repellent sandy soil. Measurements of site hydrology and bromide movement were made during a six-month period following application in autumn 1994 to a 900 m 2 plot. A dye tracing study was also conducted and this confirmed the presence of finger flow in the water repellent topsoil. Water flow and bromide transport was simulated using a mobile-immobile concept, in which a fraction of the soil volume is assumed not to participate in transport. With calibration of 'difficult' parameters (e.g. the fractional mobile volume), and accounting for significant water inflows to the plot from the surroundings, there was a good agreement between simulated and observed hydrology and solute transport patterns at the site. Mass balance calculations showed that ca. 46% of the bromide application was lost to the tile drains in the winter period following application, while 16% was lost in shallow lateral groundwater flow. Comparisons between one- and two-domain simulations showed that preferential flow reduced soil water contents and increased drainflow in the early autumn, leading to a more rapid bromide transport to depth. Nevertheless, the impact of preferential finger flow on leaching was minor for the non-reactive tracer bromide in this experiment, presumably because it was applied to relatively wet soil. However, scenario simulations for autumn application of a short half-life pesticide showed more significant effects, with leaching increased by ca. 80% because of preferential flow (from 1.2% to 2.2% of the applied amount).

  3. Using a tank flow model with PEARL to measure the variation in pesticide persistence between anaerobic and aerobic soil conditions

    NASA Astrophysics Data System (ADS)

    Real, Joaquin; Seiterle-Winn, Natalie; Frances, Felix

    2013-04-01

    Pesticide leaching is very sensitive to the transformation rate (Boesten and Linden, 1991). The values of the transformation rates of the pesticides differ between aerobic and anaerobic soil conditions. The main objective is to determine if there is a significant variation in pesticide persistence between aerobic and anaerobic soil conditions. An auxiliary hydrological model is used with the PEARL model (Leistra et al, 2001). The auxiliary model determines the degree of saturation of the soil at each time step. The value of the degradation rate for a given pesticide in the PEARL model varies depending on the time periods with saturated or unsaturated soil conditions. The proposed auxiliary model has been conceptualized as a static tank flow model based on the actual evapotranspiration of the crop plants. It is based on the RIBAV model (Garcia-Arias et al. 2012) used for the modeling of riparian vegetation zonation. The tank represents a soil column which also includes the superficial root layer. The lower capacity limit of this tank is the permanent wilting moisture of the soil. The upper capacity limit represents the saturated condition of the soil. The tanks input flows are precipitation and irrigation. In contrast, output flows are the actual evapotranspiration and the discharge of the tank. The most relevant model parameters are the soil retention curves, the crop parameters (specially related to root depths and crop coefficients) and the daily meteorological data (such as precipitation and potential evapotranspiration). The main output of the auxiliary model is the relative soil moisture, which determines if the PEARL model should use the transformation rate value for aerobic or for anaerobic conditions. In order to prove the applicability of the model, it was tested with various pesticides, which cover a wide range of transformation rates. The results show that the auxiliary tank model is able to determine the partition of the pesticides degrading in both

  4. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  5. Simulating Diffusive and Preferential Water Flow in Soils with a Coupled Source-Responsive/Richards-Equation Model

    NASA Astrophysics Data System (ADS)

    Healy, R. W.

    2015-12-01

    Water movement through soils is often dominated by preferential flow processes such as fingering and macropore flow. Traditional models of flow in the unsaturated zone are based on the diffusion or Richards equation and assume that diffusive (surface-tension viscous) flow is the only flow process. These models are incapable of accurately simulating preferential flow. Several alternative approaches, including kinematic wave, transfer function, and water-content wave models, have been suggested for simulating water movement through preferential flow paths. The source-responsive model proposed by Nimmo (2010) and Nimmo and Mitchell (2013) is unique among such models in that water transfer from land surface to depth is controlled by the water-application rate at land surface. The source-responsive model has been coupled with a one-dimensional version of the Richards-equation based model of variably saturated flow, VS2DT. The new model, can simulate flow within the preferential (S) domain alone, within the diffuse (D) domain alone, or within both the S and D domains simultaneously. Water exchange between the two domains is treated as a first-order diffusive process, with the exchange coefficient being a function of soil-water content. The new model was used to simulate field and laboratory infiltration experiments described in the literature. Simulations were calibrated against measured soil water contents with the PEST parameter estimation package; values for hydraulic conductivity and 3 van Genuchten and 3 source-responsive parameters were optimized. Although exact matches between measured and simulated water contents were not obtained, the simulation results captured the salient characteristics of the published data sets, including features typical of preferential as well as diffusive flow. Results obtained from simulating flow simultaneously in both the S and D domain provided better matches to measured data than results obtained from simulating flow independently

  6. Exploring the link between soil permeability, overland flow generation and land use and its effect on water flow paths in the humid tropics

    NASA Astrophysics Data System (ADS)

    Hassler, S. K.; Ogden, F. L.; Elsenbeer, H.; Crouch, T. D.

    2011-12-01

    In some parts of the humid tropics, overland flow (OF) is a main driver of erosion and nutrient depletion of soils. Its occurrence on hillslopes is frequently estimated by examining permeability (Ks) changes with depth in relation to prevailing rainfall intensities: a pronounced decrease may result in surface saturation due to perched water tables, and hence in saturation-excess OF. The precise relationship between Ks characteristics, the resulting water flow paths and hence OF occurrence, however, is poorly documented, especially for sites undergoing a land cover change. We studied three sites in central Panama, a 5 year-old secondary forest, a 25 year-old secondary forest and an adjacent teak plantation. OF occurrence was monitored on five, four and two 30 x 30 m planar plots, respectively, and in flow lines. We determined permeability at the depths of 0-6 cm and 6-12 cm on undisturbed soil cores from these plots. We also estimated vegetation parameters and soil texture on the plots. Comparison of rainfall intensities, Ks values and OF occurrence showed differences between the sites and between plots and flow lines. Despite very low Ks values, less OF occurred on the 5 year-old forest plots than on the 25 year-old forest plots with higher Ks values. However, flow lines in the younger forest produced more OF than in the older forest. This suggests the generation of saturation-excess overland flow in the older forest and lateral subsurface flow towards the flow lines in the younger forest. Ks in the teak plantation was much more variable than in the forests. Especially at the lower sampling depth it included higher Ks values, likely permitting more vertical water movement compared to the forest sites. Accordingly, the OF response in the flow lines was less. We conclude that simple comparisons between rainfall intensities and Ks are not sufficient to estimate OF occurrence because local water flow paths might be affected by additional factors such as vegetation

  7. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    PubMed

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  8. Flow detachment of soils under different land uses in the Loess Plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use has a significant effect on soil properties, and therefore on soil erodibility. In many cases, land use controls soil erosion to a greater extent than does climate change or other system properties, yet only a few studies have quantified the effect of land use on soil detachment rates. This...

  9. The impact of soil crusts on overland flow and soil degradation processes in Souss valley, South Morocco

    NASA Astrophysics Data System (ADS)

    Giudici, Christiane; Peter, Klaus Daniel; Schneider, Raimund; Ries, Johannes B.; Aït Hssaïne, Ali

    2013-04-01

    The Moroccan Souss valley between High Atlas and Anti Atlas is one of the fastest growing agricultural regions in Morocco and affected by gully-erosion for 400 years. The transition from traditional farming system into agro-industrial used areas, mostly achieved by land levelling measures, has been raised gully-erosion since the 1960s. The substrate of the re-filled gullies erodes again during the rainfall period, so that old gully systems are resumed with even higher erosion dynamic. Consequently, plantations of citrus fruits, bananas or vegetables get dissected, thus causing high restoration costs and environmental harm. In arid and semi-arid zones, sealing and crusting are important degradation factors which can promote gully-erosion. Due to the sparse vegetation cover and the low soil organic matter content, soil surface is more vulnerable to raindrop impact during the rainfall period. Processes such as sealing and crusting as well as their consequences for environment are well documented in literature. Soil surface sealing reduces infiltration rates and consequently increases the runoff. The aim of this study was to determine the influence of existing soil crusts on runoff and soil degradation in the Souss valley in a two-month field experiment. It was hypothesized that soil crusts with different microstructure exist and may influence runoff and soil degradation in various way. In-situ rainfall simulations with a small portable rainfall simulator were conducted at different sites to determine runoff and soil loss rates on micro-plots with a size of 0.28 m². Levelled and un-levelled gully areas were investigated comparably. The rainfall intensity for each of the 30 minute simulations was 40 mm/h. Additionally, soil crusts were sampled before and after the rainfall simulation. Thin sections were used to analyse the micromorphological structure of each crust. The microscopic evaluation indicated a characteristic micromorphological structure for each soil crust

  10. Changes in Soil Chemistry and Agricultural Return Flow in an Integrated Seawater Agriculture System (ISAS) Demonstration in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Ning, Q.; Matiin, W. A.; Ahmad, F.

    2012-12-01

    Growing halophytes using Integrated Seawater Agriculture Systems (ISAS) offers a sustainable solution for the generation of biomass feedstock for carbon neutral biofuels - halophytes do not enter the foodchain and they do not compete with food-crops for natural resources. A field demonstration of ISAS in the coastal regions of Abu Dhabi, UAE, scheduled to start in 2013, will likely face a number of region-specific challenges not encountered in past demonstrations of ISAS at coastal locations in Mexico and Eritrea. The arid climate, unique soil chemistry (evaporite deposits, especially gypsum), and hypersaline coastal hydrogeology of Abu Dhabi will affect long-term halophyte agricultural productivity when Arabian Gulf seawater is applied to coastal soils as part of ISAS. Therefore, the changes in irrigation return flow quality and soil chemistry must be monitored closely over time to establish transient salt and water balances in order to assess the sustainability of ISAS in the region. As an initial phase of the ISAS demonstration project, numerical modeling of different seawater loadings onto coastal soils was conducted to estimate the chemical characteristics of soil and the irrigation return flow over time. These modeling results will be validated with field monitoring data upon completion of one year of ISAS operation. The results from this study could be used to (i) determine the optimal saline water loading that the soils at the ISAS site can tolerate, (ii) potential for sodicity of the soil with saline water application, (iii) impacts of land application of saline water on underlying coastal groundwater, and (iv) develop strategies to control soil water activities in favor of halophyte agricultural productivity.

  11. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  12. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  13. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  14. Structure formation and its consequences for soil strength, mass flow processes and carbon sequestration in unsaturated arable and forest soils

    NASA Astrophysics Data System (ADS)

    Horn, Rainer

    2014-05-01

    The aim of this lecture is to clarify the process of aggregate formation and the following effects on physical and chemical properties of structured soils both on a bulk soil scale, for single aggregates, as well as for homogenized material. Aggregate formation and aggregate strength depend on swelling and shrinkage processes and on biological activity and kinds of organic exudates as well as on the intensity, number and time of swelling and drying events. Such aggregates are denser than the bulk soil. The intra-aggregate pore distribution consists not only of finer pores but these are also more tortuous. Therefore, water fluxes in aggregated soils are mostly multidimensional and the corresponding water fluxes in the intra- aggregate pore system are much smaller. The aggregate formation also affects the aeration and the gaseous composition of in the intra- aggregate pore space. Depending on the kind and intensity of aggregation, the intra-aggregate pores can be completely anoxic, while the inter-aggregate pores are already completely aerated. The possibility to predict physical properties on these various scales depends on the rigidity of the pore system. In general this rigidity depends on the above-mentioned physical and chemical processes both with respect to intensity and frequency. The consequences of aggregate formation on soil strength can be quantified by frame shear as well as rheometrical tests.

  15. Ecohydrologic Investigations of Shallow Lateral Subsurface Flow in Tropical Soils using Time-Lapse Surface Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk

  16. LUGH an experimental facility for preferential flow-colloidal transport in heterogeneous unsaturated soil

    NASA Astrophysics Data System (ADS)

    Angulo-Jaramillo, R.; Bien, L.; Hehn, V.; Winiarski, T.

    2011-12-01

    Colloidal particles transport through vadose zone can contribute to fast transport of contaminants into groundwater. The objective is to study the preferential flow and transport of colloids in heterogeneous unsaturated soil subjected to high organic matter entry. A physically based model is developed based on a large laboratory lysimeter than usual laboratory column experiments. LUGH-Lysimeter for Unsaturated Groundwater Hydrodynamics- is used to embed a soil monolith (1.6 m3) made of different cross-bedded lithological types with contrasting hydraulic properties. The filling material is a carbonated graded sand and gravel from the fluvioglacial vadose zone of the east of Lyon (France). Materials are 3D arranged on contrasting textured lithofacies analogous to the sedimentary lithology of a fluvioglacial cross-bedded deposit. Tracer (Br 1E-2M) and colloid solutions were injected in a pulse mode using a rainfall simulator. Colloid solution is Chlamydomonas reinhardtii at 3.2E+6 units/mL concentration. These unicellular algae can be considered as spherical particles from 6 to 10 μm in diam. Their resistance and doubling time of cell growth are greater than the transfer time in the lysimeter. Algae moving into the porous medium do not immediately reproduce, and then the population size remains constant. During this period, called the lag phase (1 to 2 days), the cells are metabolically active and increase only in cell size. Tensiometers, TDR and electric resistivity enable measurements of the parameters related to flow, solute and colloid transfer. Eluted solutions are sampled by 15 separated fraction collectors, leading to independent breakthrough curves. Eluted colloid concentration is measured by spectrofluorometry. The model approach combines Richards equation, coupled to a convective-dispersive equation with a source/sink term for particle transport and mobilization. Macroscopic particle attachment/detachment from pores is assumed to follow first-order kinetics

  17. Modelling Water Flow, Heat Transport, Soil Freezing and Thawing, and Snow Processes in a Clayey, Subsurface Drained Agricultural Field

    NASA Astrophysics Data System (ADS)

    Warsta, L.; Turunen, M.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Karvonen, T.; Taskinen, A.

    2012-12-01

    Simulation of hydrological processes for the purposes of agricultural water management and protection in boreal environment requires description of winter time processes, including heat transport, soil freezing and thawing, and snow accumulation and melt. Finland is located north of the latitude of 60 degrees and has one third to one fourth of the total agricultural land area (2.3 milj. ha) on clay soils (> 30% of clay). Most of the clayey fields are subsurface drained to provide efficient drainage and to enable heavy machines to operate on the fields as soon as possible after the spring snowmelt. Generation of drainflow and surface runoff in cultivated fields leads to nutrient and sediment load, which forms the major share of the total load reaching surface waters at the national level. Water, suspended sediment, and soluble nutrients on clayey field surface are conveyed through the soil profile to the subsurface drains via macropore pathways as the clayey soil matrix is almost impermeable. The objective of the study was to develop the missing winter related processes into the FLUSH model, including soil heat transport, snow pack simulation and the effects of soil freezing and thawing on the soil hydraulic conductivity. FLUSH is an open source (MIT license), distributed, process-based model designed to simulate surface runoff and drainflow in clayey, subsurface drained agricultural fields. 2-D overland flow is described with the diffuse wave approximation of the Saint Venant equations and 3-D subsurface flow with a dual-permeability model. Both macropores and soil matrix are simulated with the Richards equation. Soil heat transport is described with a modified 3-D convection-diffusion equation. Runoff and groundwater data was available from different periods from January 1994 to April 1999 measured in a clayey, subsurface drained field section (3.6 ha) in southern Finland. Soil temperature data was collected in two locations (to a depth of 0.8 m) next to the

  18. The role of land use and soils in regulating water flow in small headwater catchments of the Andes

    NASA Astrophysics Data System (ADS)

    Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.

    2011-05-01

    Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.

  19. Preferential flow in fissured sediments in desert soils related to radioactive waste disposal

    SciTech Connect

    Scanlon, B.R.; Raney, J.A. . Bureau of Economic Geology)

    1992-01-01

    Unsaturated flow in fissured sediments in the Chihuahuan Desert of Texas was examined to determine if these features act as preferred pathways for water and solute transport. Fissures are surface features, or gulleys, that are underlain by fractures filled with sediment derived from surrounding areas. Hydraulic and chemical approaches were used to investigate unsaturated flow processes beneath and adjacent to fissures, and the results were compared with data from surrounding geomorphic systems such as arroyos, ephemeral streams, and interstreams. Typically, high water potentials in surficial sediments result from infiltration of recent precipitation. Below this surficial zone of high water potentials lies a zone of low water potentials that is much thinner beneath the fissure than in adjacent sediments or in sediments beneath ephemeral streams and interstreams. Maximum chloride concentrations in profiles in the near-surface fissured sediments were much lower than those measured in all other geomorphic systems. The corresponding moisture velocities in the fissured sediments ranged from 10 to 70 mm/yr. A tracer experiment demonstrated higher downward water and solute transport in the fracture fill beneath the fissure relative to adjacent sediments. Numerical simulations of the tracer experiment with the computer code TRACR3D reproduced the overall shape of the tracer plume. Sensitivity analyses demonstrated that the tracer plume is most sensitive to spatial variability in soil texture and the corresponding hydraulic parameters. The results from this study suggest that sediments in the fissured area act as preferred pathways in the shallow subsurface because surface runoff is concentrated in the fissures and because underlying fractures and cavities provide avenues for moisture and solute transport.

  20. Preferential flow in heterogeneous forest-reclaimed lignitic mine soil I. Cell-lysimeter and multiple-tracer study

    NASA Astrophysics Data System (ADS)

    Hangen, E.; Gerke, H. H.; Schaaf, W.; Hüttl, R. F.

    2003-04-01

    Flow and transport processes in forest-reclaimed lignitic mine soils are required to quantify water and element budgets, which are important for long-term predictions of restored ecosystem stability and development of mining area water quality. Soil water pressure head and solute concentration measurements using tensiometers and suction cups showed strong spatial heterogeneity possibly indicating preferential flow effects. Properties and spatial structures of the mostly sandy mine soils and transport processes, however, have not sufficiently been known for detailed assessments. The objective of this study was to quantitatively analyse flow paths and measure amount and spatial distribtion of leaching. Water and element fluxes were studied at a reclaimed mine spoil site, which was afforested in 1982 with Pinus nigra. At a 3.3 m2 plot, the total percolating water was collected in 110 cm soil depth by 45 squared suction cells of 27 cm edge length each. A multi-tracer solution containing deuterium, bromide, and terbuthylazine was applied evenly at the plot surface and imposed to natural infiltration. Leaching was measured for a period of about 2 years. One third of the cells never delivered any drainage water while few cells had large drainage rates which in one case even exceeded local infiltration rates. About 71 % of the drainage was through 9 % of the area. The spatial distribution of the leached bromide tracer did not always correspond with that of drainage. Relative concentrations of bromide and deuterium were similar. Terbuthylazine was observed only sporadically during the first drainage period and at relatively small concentrations just above the analytical detection limit. Leaching patterns of the sorptive herbicide indicate only relatively small nonequilibrium-type preferential flow. Sediment structures, water repellent regions, and tree root distributions seem to be important for funneling and flow path formation.

  1. A Non-local Model for Transient Moisture Flow in Unsaturated Soils Based on the Peridynamic Theory

    NASA Astrophysics Data System (ADS)

    Jabakhanji, R.; Mohtar, R. H.

    2012-12-01

    A non-local, gradient free, formulation of the porous media flow problem in unsaturated soils was derived. It parallels the peridynamic theory, a non-local reformulation of solid mechanics presented by Silling. In the proposed model, the evolution of the state of a material point is driven by pairwise interactions with other points across finite distances. Flow and changes in moisture are the result of these interactions. Instead of featuring local gradients, the proposed model expresses the flow as a functional integral of the hydraulic potential field. The absence of spatial gradients, undefined at or on discontinuities, makes the model a good candidate for flow simulations in fractured soils. It also lends itself to coupling with peridynamic mechanical models for simulating crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range of processes, such as infiltration, contaminant transport, slope stability and integrity of clay barriers. A description of the concept and an outline of the derivation and numerical implementation are presented. Simulation results of infiltration and drainage for 1D, single and two-layers soil columns, for three different soil types are also presented. The same simulations are repeated using HYDRUS-1D, a computer model using the classic local flow equation. We show that the proposed non-local formulation successfully reproduces the results from HYDRUS-1D. S.A. Silling, "Reformulation of Elasticity Theory for Discontinuities and Long-range Forces," Journal of the Mechanics and Physics of Solids 48, no. 1 (January 2000): 175-209. J. Simunek, M. Sejna, and M.T. Van Genuchten, "The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media," University of California, Riverside, Research Reports 240 (2005).

  2. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture

    PubMed Central

    Dodd, Ian C.; Egea, Gregorio; Davies, William J.

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. ‘Two root-one shoot’ grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Ψsoil) during PRD. Although Ψsoil of the irrigated pot determined the threshold Ψsoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Ψsoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Ψsoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed. PMID:18940933

  3. Soil Moisture Flow and Nitrate Movement Simulation through Deep and Heterogeneous Vadose Zone using Dual-porosity Approach

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Tomar, J.; Harter, T.

    2014-12-01

    We investigate nitrate movement from non-point sources in deep, heterogeneous vadose zones, using multi-dimensional variably saturated flow and transport simulations. We hypothesize that porous media heterogeneity causes saturation variability that leads to preferential flow systems such that a significant portion of the vadose zone does not significantly contribute to flow. We solve Richards' equation and the advection-dispersion equation to simulate soil moisture and nitrate transport regimes in plot-scale experiments conducted in the San Joaquin Valley, California. We compare equilibrium against non-equilibrium (dual-porosity) approaches. In the equilibrium approach we consider each soil layer to have unique hydraulic properties as a whole, while in the dual-porosity approach we assume that large fractions of the porous flow domain are immobile. However we consider exchange of water and solute between mobile and immobile zone using the appropriate mass transfer terms. The results indicate that flow and transport in a nearly 16 m deep stratified vadose zone comprised of eight layers of unconsolidated alluvium experiences highly non-uniform, localized preferential flow and transport patterns leading to accelerated nitrate transfer. The equilibrium approach largely under-predicted the leaching of nitrate to groundwater while the dual-porosity approach showed higher rates of nitrate leaching, consistent with field observations. The dual-porosity approach slightly over-predicted nitrogen storage in the vadose zone, which may be the result of limited matrix flow or denitrification not accounted for in the model. Results of this study may be helpful to better predict fertilizer and pesticide retention times in deep vadose zone, prior to recharge into the groundwater flow system. Keywords: Nitrate, Preferential flow, Heterogeneous vadose zone, Dual-porosity approach

  4. Data Assimilation in a Solar Dynamo Model Using Ensemble Kalman Filters: Sensitivity and Robustness in Reconstruction of Meridional Flow Speed

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Anderson, Jeffrey L.; Mitra, Dhrubaditya

    2016-09-01

    We implement an Ensemble Kalman Filter procedure using the Data Assimilation Research Testbed for assimilating “synthetic” meridional flow-speed data in a Babcock–Leighton-type flux-transport solar dynamo model. By performing several “observing system simulation experiments,” we reconstruct time variation in meridional flow speed and analyze sensitivity and robustness of reconstruction. Using 192 ensemble members including 10 observations, each with 4% error, we find that flow speed is reconstructed best if observations of near-surface poloidal fields from low latitudes and tachocline toroidal fields from midlatitudes are assimilated. If observations include a mixture of poloidal and toroidal fields from different latitude locations, reconstruction is reasonably good for ≤slant 40 % error in low-latitude data, even if observational error in polar region data becomes 200%, but deteriorates when observational error increases in low- and midlatitude data. Solar polar region observations are known to contain larger errors than those in low latitudes; our forward operator (a flux-transport dynamo model here) can sustain larger errors in polar region data, but is more sensitive to errors in low-latitude data. An optimal reconstruction is obtained if an assimilation interval of 15 days is used; 10- and 20-day assimilation intervals also give reasonably good results. Assimilation intervals \\lt 5 days do not produce faithful reconstructions of flow speed, because the system requires a minimum time to develop dynamics to respond to flow variations. Reconstruction also deteriorates if an assimilation interval \\gt 45 days is used, because the system’s inherent memory interferes with its short-term dynamics during a substantially long run without updating.

  5. Filtering separators having filter cleaning apparatus

    SciTech Connect

    Margraf, A.

    1984-08-28

    This invention relates to filtering separators of the kind having a housing which is subdivided by a partition, provided with parallel rows of holes or slots, into a dust-laden gas space for receiving filter elements positioned in parallel rows and being impinged upon by dust-laden gas from the outside towards the inside, and a clean gas space. In addition, the housing is provided with a chamber for cleansing the filter element surfaces of a row by counterflow action while covering at the same time the partition holes or slots leading to the adjacent rows of filter elements. The chamber is arranged for the supply of compressed air to at least one injector arranged to feed compressed air and secondary air to the row of filter elements to be cleansed. The chamber is also reciprocatingly displaceable along the partition in periodic and intermittent manner. According to the invention, a surface of the chamber facing towards the partition covers at least two of the rows of holes or slots of the partition, and the chamber is closed upon itself with respect to the clean gas space, and is connected to a compressed air reservoir via a distributor pipe and a control valve. At least one of the rows of holes or slots of the partition and the respective row of filter elements in flow communication therewith are in flow communication with the discharge side of at least one injector acted upon with compressed air. At least one other row of the rows of holes or slots of the partition and the respective row of filter elements is in flow communication with the suction side of the injector.

  6. Optimal flow rates and well locations for soil vapor extraction design

    NASA Astrophysics Data System (ADS)

    Sawyer, Charles S.; Kamakoti, Madhavi

    1998-07-01

    A mixed-integer programming model to determine the optimum number of wells, their locations and pumping rates for soil vapor extraction (SVE) is developed by coupling an air flow simulation model (AIR3D) to the GAMS optimization software. The model was tested for sensitivity of the vertical discretization of the domain, the number of potential well locations, the number of constraints, and the screen length of the wells. It was shown that these variables affected the optimal solution. It was also shown that the installation costs of the wells in the model influenced the optimal design. This was demonstrated by comparing the results of the mixed-integer programming model to a linear programming model in which the installation costs of the wells were neglected. The mixed-integer programming model could be useful in the design process in cases of short remediation times when the installation costs of wells could be significant. Numerous test cases with results are presented to demonstrate the applicability and usefulness of the model.

  7. Predictability of soil moisture and river flows over France for the spring season

    NASA Astrophysics Data System (ADS)

    Singla, S.; Céron, J.-P.; Martin, E.; Regimbeau, F.; Déqué, M.; Habets, F.; Vidal, J.-P.

    2011-08-01

    Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960-2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 800 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifer. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.

  8. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    EPA Science Inventory

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  9. An Inexpensive and Simple Method to Demonstrate Soil Water and Nutrient Flow

    ERIC Educational Resources Information Center

    Nichols, K. A.; Samson-Liebig, S.

    2011-01-01

    Soil quality, soil health, and soil sustainability are concepts that are being widely used but are difficult to define and illustrate, especially to a non-technical audience. The objectives of this manuscript were to develop simple and inexpensive methodologies to both qualitatively and quantitatively estimate water infiltration rates (IR),…

  10. Evaluating the Effects of Horizontal Spatial Discretization on Interflow in the Soil Zone Using the Richards and Groundwater Flow Equations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Niswonger, R. G.

    2011-12-01

    In many mountainous regions, a large proportion of streamflow originates as shallow subsurface storm flow (interflow) within the shallow soils of hillslopes. Infiltration can accumulate to form perched groundwater within the upper few meters of the soil horizon that drains to streams through both macropores and soil-matrix. Richards Equation has become a commonly used governing equation for simulating interflow in regional-scale models. Recent research has shown that optimal vertical discretization for Richards Equation near land surface and the water table is much smaller than the discretization typically used in basin-scale hydrologic models, yet little is known about optimal horizontal discretization or potential effects of horizontal discretization on interflow solutions. Most of the work related to the effects of discretization on the solution of Richards Equation has focused on the vertical infiltration problem. This study evaluates horizontal spatial discretization effects on interflow predictions using 1) a modified version of GSFLOW and 2) VS2DT. The modified GSFLOW couples Smith-Parlange 1-D infiltration equations with 3-D unconfined groundwater flow equation, whereas VS2DT uses Richards Equation to represent infiltration and variably saturated flow. Interflow solutions and breakthrough at the stream were compared using a model domain similar to Vauclin and others (1979) with horizontal grid resolutions ranging from 0.05-5m and vertical resolutions ranging between 0.05-1m, with horizontal flow path lengths of 25m to the stream. Variable horizontal spatial resolutions affected VS2DT interflow solutions (RMSE up to 0.12) and interflow breakthrough at the stream, whereas GSFLOW solutions were well correlated (RMSE <0.052). Interflow breakthrough was delayed by up to 10 days with increasing resolution in VS2DT, whereas GSFLOW breakthrough was consistently the same day. Results indicate that the solution of Richards Equation for soil-zone interflow is much

  11. Improvement in Accuracy of Ultrasonic Measurement of Transient Change in Viscoelasticity of Radial Arterial Wall Due to Flow-Mediated Dilation by Adaptive Low-Pass Filtering

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2012-07-01

    In our previous study, the stress-strain relationship of the radial arterial wall was measured and the viscoelasticity of the intima-media region was estimated from the stress-strain relationship. Furthermore, the transient change in viscoelasticity due to flow-mediated dilation (FMD) was estimated by the automated detection of wall boundaries. In the present study, the strain rate was adaptively filtered to improve the accuracy of viscoelasticity estimation by decreasing the high-frequency noise. Additionally, in a basic experiment, this method was validated using a silicone tube (simulating artery). In the basic experiment, the elasticity was estimated with a mean error of 1.2%. The elasticity measured at each beam position was highly reproducible among measurements, whereas there was a slight variation in measured elasticity among beams. Consequently, in in vivo measurements, the normalized mean square error (MSE) was clearly decreased. Additionally, the stress-strain relationship of the radial arterial wall was obtained and the viscoelasticity was estimated accurately. The inner small loop, which corresponds to the negative pressure wave caused by the closure of the aortic valve, can be observed using the adaptive low-pass filtering (LPF). Moreover, the transient changes in these parameters were similar to those in the previous study. These results show the potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  12. Evaluation of Radial Flow Fluidized Filter (R3F) Followed by Microfiltration and Ultrafiltration Systems in Calimesa, California

    EPA Science Inventory

    U.S. EPA coordinated a field study with South Mesa Water Utility to look for treatment alternatives for California State Project Water in the small community of Calimesa, California. EPA evaluated the performance of a system comprised of Radial Flow Fluidized Filtration (R3f) fo...

  13. Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO2

    NASA Astrophysics Data System (ADS)

    Ziegler, Susan E.; Billings, Sharon A.

    2011-03-01

    To assess how microbial processing of organic C inputs to forest soils may be influenced by elevated CO2 and altered N dynamics, we followed the fate of 13C-labeled substrates in soils from the Duke Free Air Carbon Enrichment site where differences in soil N status have been imposed by 7 years of N amendments. Heterotrophic respiration and δ13C of respired CO2-C and phospholipid fatty acids (PLFA) were measured to track activities of microbial groups and estimate a relative measure of substrate use efficiency (PLFA-based SUE). Results indicate an increased proportion of fungal and actinomycete activity in elevated CO2 soils, which varied with substrate. The negative effect of N on vanillin phenolic-C incorporation into actinomycete PLFA suggests legacies of fertilization can mitigate increased C flow into actinomycetes with elevated CO2. Further, the fourfold increase in PLFA-based SUE for vanillin phenolic-C in elevated CO2 soils that received N suggests future enhanced N limitation in elevated CO2 soils may promote enhanced respiratory loss relative to incorporation of some C-substrates into microbial biomass. These short-term incubations did not reveal greater loss of soil organic carbon via respiration or shifts in SUE with elevated CO2. However, observed relative increases in activity of actinomycetes and fungi with elevated CO2 and mitigation of this effect on actinomycetes with N amendments suggests that elevated CO2 and predicted N limitation may alter the fate of slow-turnover soil organic matter (SOM) in two competing ways. Investigations need to focus on how these microorganisms may increase slow-turnover substrate use while possibly enhancing the prevalence of microbial cell wall structures that can serve as precursors of stabilized SOM.

  14. Water Filters

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  15. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  16. Information geometric nonlinear filtering

    NASA Astrophysics Data System (ADS)

    Newton, Nigel J.

    2015-06-01

    This paper develops information geometric representations for nonlinear filters in continuous time. The posterior distribution associated with an abstract nonlinear filtering problem is shown to satisfy a stochastic differential equation on a Hilbert information manifold. This supports the Fisher metric as a pseudo-Riemannian metric. Flows of Shannon information are shown to be connected with the quadratic variation of the process of posterior distributions in this metric. Apart from providing a suitable setting in which to study such information-theoretic properties, the Hilbert manifold has an appropriate topology from the point of view of multi-objective filter approximations. A general class of finite-dimensional exponential filters is shown to fit within this framework, and an intrinsic evolution equation, involving Amari's -1-covariant derivative, is developed for such filters. Three example systems, one of infinite dimension, are developed in detail.

  17. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil

    PubMed Central

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth

    2016-01-01

    Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing 13C-biphenyl (unchlorinated analogue of PCBs) and/or 13C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community. PMID:26915282

  18. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth

    2016-02-01

    Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing 13C-biphenyl (unchlorinated analogue of PCBs) and/or 13C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.

  19. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil.

    PubMed

    Leewis, Mary-Cathrine; Uhlik, Ondrej; Leigh, Mary Beth

    2016-01-01

    Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing (13)C-biphenyl (unchlorinated analogue of PCBs) and/or (13)C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community. PMID:26915282

  20. Continuous-flow 13C-filtered 1H NMR spectroscopy of ethanol metabolism in rat liver perfusate.

    PubMed

    Albert, K; Sudmeier, J L; Anwer, M S; Bachovchin, W W

    1989-09-01

    Using a 188.5-microliters continuous-flow dual probe 1H[13C] spin-echo difference spectra of rat liver perfusate were acquired. The conversion of [1-13C]ethanol to [1-13C]-acetaldehyde was readily monitored as a function of time. In combination with 1-1 water nonexcitation and WALTZ 13C decoupling, this method proved to be superior in sensitivity and selectivity to direct 1H or 13C detection. PMID:2779419

  1. Enzyme entrapped nanoporous scaffolds formed through flow induced gelation in microfluidic filter device for sensitive biosensing of organophosphorus compounds

    SciTech Connect

    Lu, Donglai; Shao, Guocheng; Du, Dan; Wang, Jun; Wang, Limin; Wang, Wanjun; Lin, Yuehe

    2011-02-01

    A novel and versatile processing method was developed for the formation of gel scaffolds with in-situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow induced immobilziation technique opens up new pathways for designing simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site testing of a variety of toxic organophosphorus compounds.

  2. UNSAT-H Version 3.0:Unsaturated Soil Water and Heat Flow Model: Theory, User Manual, and Examples

    SciTech Connect

    Fayer, Michael J.

    2000-06-15

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow. The UNSAT-H model simulates liquid water flow using the Richards equation, water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an enhanced-capability update of UNSAT-H Version 2.0 (Fayer Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple year simulation capability, and general enhancements. This report includes eight example problems. The first four are verification tests of UNSAT-H capabilities. The second four example problems are demonstrations of real-world situations.

  3. UNSAT-H Version 3.0:Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    SciTech Connect

    Fayer, Michael J

    2000-06-15

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow. The UNSAT-H model simulates liquid water flow using the Richards equation, water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an enhanced-capability update of UNSAT-H Version 2.0 (Fayer Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple year simulation capability, and general enhancements. This report includes eight example problems. The first four are verification tests of UNSAT-H capabilities. The second four example problems are demonstrations of real-world situations.

  4. 2D dual permeability modeling of flow and transport in a two-scale structured lignitic mine soil

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2009-04-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Bärenbrücker Höhe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction-cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was used, with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  5. [Hyperspectral Detection Model for Soil Dispersion in Zhouqu Debris Flow Source Region].

    PubMed

    Wang, Qin-jun; Wei, Yong-ming; Chen, Yu; Chen, Jia-ge; Lin, Qi-zhong

    2016-02-01

    Sensitive band positions, models and the principles of soil dispersion detected by hyperspectral remote sensing were firstly discussed according to the results of soil dispersive hyperspectral remote sensing experiment. Results showed that, (1) signals and noises could be separated by Fourier transformation. A finely mineral identification system was developed to remove spectral noises and provide highly accurate data for establishing soil dispersive model; (2) Soil dispersive hyperspectral remote sensing model established by the multiple linear regression method was good at soil dispersion forecasting for the high correlation between sensitive bands and the soil dispersions. (3) According to mineral spectra, soil minerals and their absorbed irons were reflected by sensitive bands which revealed reasons causing soils to be dispersive. Sodium was the closest iron correlated with soil dispersion. The secondary was calcite, montmorillonite and illite. However, the correlation between soil dispersion and chlorite, kaolinite, PH value, quartz, potassium feldspar, plagioclase was weak. The main reason was probably that sodium was low in ionic valence, small ionic radius and strong hydration forces; calcite was high water soluble and illite was weak binding forces between two layers under high pH value. PMID:27209758

  6. A modified hood infiltrometer to estimate the soil hydraulic properties from the transient water flow measurements

    NASA Astrophysics Data System (ADS)

    Moret-Fernández, D.; González-Cebollada, C.; Latorre, B.; Pérez, V.

    2015-11-01

    In-situ measurements of soil hydraulic properties on covered soil surfaces (i.e. vegetated or residue covered surfaces) are of paramount importance in many agronomic or hydrological researches. These soil parameters are commonly estimated with the tension infiltrometry technique. This paper presents a portable and modified design of the hood infiltrometer (MHI) that, unlike to the original hood infiltrometer, allows estimating the soil hydraulic properties from the transient cumulative infiltration curve. The MHI consists of a water-supply reservoir attaches to a hat-shaped base placed on the soil surface. The base of the hat is closed by a system of sticks and a malleable material ring. To test the viability of this new design, the hydraulic conductivity (Ks) estimated with MHI in a loam soil using the multiple head approach was compared to the corresponding values calculated from the transient infiltration curve analysis. Next, the MHI was tested on three different soils at saturated conditions, and the sorptivity (S) and Ks estimated by the transient infiltration curve analysis were compared to the corresponding values obtained with a disc infiltrometer (DI). An additional field experiment was performed to compare the hydraulic properties measured with MHI on a bare soil and a soil covered with plants. Results demonstrated that this design allows hermetically closing the base of the hat without disturbing the soil surface. The Ks estimated with the multiple head approach was not statistically different (p = 0.61) to that obtained with the transient infiltration curve analysis. No significant differences between the Ks (p = 0.66) and S (p = 0.50) values estimated with DI and MHI were observed. The S values measured with MHI on the covered soil surface were significantly higher than that measured on the adjacent bare soil. These results indicate that MHI can be a viable alternative to estimate the hydraulic properties of covered soils from the measured transient

  7. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  8. The effect of filter cakes on filter medium resistance

    SciTech Connect

    Chase, G.G.; Arconti, J.; Kanel, J.

    1994-10-01

    The high resistance of a filter medium to fluid flow is a universal problem affecting many industries. The small thickness of the filter media makes local pressure and porosity measurements impractical. Analysis of the continuum equations and boundary conditions provide a basis for defining a relative medium resistance. Experiments are conducted on three particulate materials and on three different high flow rate filter media. The results show that the increase in medium resistance varies up to about four times the resistance of a clean filter medium with no cake present. The results also show that in most cases the relative resistance is dependent upon cake height.

  9. Aqueous Iron-Sulfide Clusters in Variably Saturated Soil Systems: Implications for Iron Cycling and Fluid Flow

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2008-12-01

    Iron and sulfur cycling is an important control on contaminant fate and transport, the availability of micronutrients and the physics of water flow. This study explores the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on linked biogeochemical and hydrological processes involving Fe and S cycling in the vadose zone using packed soil columns. Three laboratory soil columns were constructed: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. Water samples extracted by lysimeter were analyzed for reduced species (including total sulfide, Fe(II), and FeSaq) voltammetrically using a mercury drop electrode. In addition to other reduced species, aqueous FeS clusters (FeSaq) were observed in two of the columns, with the greatest concentrations of FeSaq occurring in close proximity to the soil interface in the layered column. To our knowledge, this is the first documentation of aqueous FeS clusters in partially saturated sediments. The aqueous nature of FeSaq allows it to be transported instead of precipitating and suggests that current conceptual models of iron-sulfur cycling may need to be adapted to account for an aqueous phase. The presence of iron-rich soil aggregates near the soil interface may indicate that FeS clusters played a critical role in the formation of soil aggregates that subsequently caused up to an order of magnitude decrease in hydraulic conductivity.

  10. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    NASA Astrophysics Data System (ADS)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

  11. Metallic Filters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Filtration technology originated in a mid 1960's NASA study. The results were distributed to the filter industry, an HR Textron responded, using the study as a departure for the development of 421 Filter Media. The HR system is composed of ultrafine steel fibers metallurgically bonded and compressed so that the pore structure is locked in place. The filters are used to filter polyesters, plastics, to remove hydrocarbon streams, etc. Several major companies use the product in chemical applications, pollution control, etc.

  12. FILTER TREATMENT

    DOEpatents

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  13. Integration of soil microbial processes in a reactive transport model for simulating effects of root-controlled water flow on carbon and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Espeleta, J. F.; Cardon, Z. G.; Mayer, K. U.; Rastetter, E. B.; Neumann, R. B.

    2013-12-01

    The rhizosphere is a hotbed of microbial activity in terrestrial ecosystems, and numerous models of rhizosphere dynamics have been focused in two main arenas: (1) water flow and nutrient transport around roots, and (2) carbon and nutrient exchanges between roots and microbes. However, coupling of microbial processes with physical flow (water and nutrients) in soils around plant roots is key to understanding how water, carbon and nutrient cycles interact at different scales. In order to explore how spatial distribution and timing of water flow directed by plant roots shapes rhizosphere biogeochemical function, we have developed a mechanistic model that combines a microbial food web with dynamic water flow and associated solute transport (advection, diffusion and cation exchange). We used the flexibility of a previously developed code, MIN3P (a multicomponent reactive transport model developed for variably saturated porous media) and incorporated microbial processes of carbon and nitrogen uptake, assimilation and secretion; microbial growth and death; exo-enzyme production; protozoal grazing, and soil organic matter decomposition within a soil matrix. We focused our attention at the mm-spatial scale, exploring the interaction of temporal oscillations in the magnitude and direction of water flow with soil C and N gradients. In this first modeling step, we prescribed dynamic soil water content representative of the transpiration stream (soil water loss) and hydraulic redistribution (soil water gain), as well as the flux of carbon into the soil. Although we are still in the process of building explicit root and plant behavior into the model, our preliminary results suggest that the diel pulsing of water out/into the soil can potentially change patterns of microbial C/N limitation and soil N availability. We are currently expanding our model to include the effect of plant root processes (uptake and exudation) and investigating the mechanisms explaining the interplay

  14. Quantification and modelling of water flow in rain-fed paddy fields in NE Thailand: Evidence of soil salinization under submerged conditions by artesian groundwater

    NASA Astrophysics Data System (ADS)

    Hammecker, Claude; Maeght, Jean-Luc; Grünberger, Olivier; Siltacho, Siwaporn; Srisruk, Kriengsak; Noble, Andrew

    2012-08-01

    SummaryWater flow and solute transport in soils forms an essential part in many groundwater hydrology studies. This is especially true for Northeast Thailand, where the agricultural land is affected by the soil salinity, which is a widespread and an increasing phenomenon affecting 25% of the agricultural land. Salinization appears as scattered discrete patches of 10-100 m2 in the lowlands, illustrated by white efflorescences during the dry season and bare soil during the cropping season. A field study was undertaken in farm plots to measure the water flow and solute transport within the soil surface and the vadose zone, both inside and outside a saline patch. The water flow was measured on the soil surface with lysimeters and infiltration rings, and was derived in the soil from the hydraulic gradients measured with tensiometers placed at different depths. The salt transport was evaluated with water traps also placed at different depths, where the soil water's electrical conductivity was measured throughout the rainy season. Field study results demonstrated that the accumulation of saline solutions in rain fed paddy fields, occurred mainly during the rainy season while the soil surface remained flooded. During this period the saline water table rose towards the soil surface independently of infiltration into the soil. It happened in specific places where the compacted soil layer, generally ubiquitous in the area at a depth of 40-50 cm, is interrupted. Therefore salinity appeareds in discret points as patches. Artesian upward flow already described in this area (Haworth et al., 1966; Williamson et al., 1989; Imaizumi et al., 2002) is most probably responsible for this water table rise, thereby affecting crop productivity. Numerical modelling of water flow using HYDRUS-3D further supported these results and showed that managing the depth of flooding within the plot can significantly reduce the outbreak of these saline plumes.

  15. Treatment of a sulfate-rich groundwater contaminated with perchloroethene in a hydroponic plant root mat filter and a horizontal subsurface flow constructed wetland at pilot-scale.

    PubMed

    Chen, Zhongbing; Kuschk, Peter; Paschke, Heidrun; Kästner, Matthias; Müller, Jochen A; Köser, Heinz

    2014-12-01

    A hydroponic plant root mat filter (HPRMF) was compared over 7months with a horizontal subsurface flow constructed wetland (HSSF CW) regarding the removal of perchloroethene (PCE) (about 2 mg L(-1)) from a sulfate- (850 mg L(-1)) and ammonia-rich (50 mg L(-1)) groundwater with a low TOC content. At a mean area specific inflow PCE load of 56 mg m(-2)d(-1), after 4m from inlet, the mean PCE removal during summer time reached 97% in the HPRMF and almost 100% in the HSSF CW. Within the first 2m in the HSSF CW metabolites like dichloroethenes, vinyl chloride and ethene accumulated, their concentrations decreased further along the flow path. Moreover, the tidal operation (a 7-d cycle) in the HSSFCW decreased the accumulation of PCE metabolites within the first 1m of the bed. The carcinogenic degradation metabolite vinyl chloride was not detected in the HPRMF. The smaller accumulation of the degradation metabolites in the HPRMF correlated with its higher redox potential. It can be concluded from this study that HPRMF appears an interesting alternative for special water treatment tasks and that tidal operation will show some positive effects on the removal of the accumulated PCE metabolites in HSSF CW. PMID:25025478

  16. Notes: Water Flow and Chemical Retardation in Soils: A Simple Effective Laboratory Demonstration.

    ERIC Educational Resources Information Center

    Bowman, R. S.; And Others

    1988-01-01

    Describes a laboratory demonstration that illustrates principles of miscible displacement and chemical retardation in soils. Discusses how the experimental apparatus can be constructed from readily available materials. (TW)

  17. Land-use change impacts on hydrologic soil properties and implications for overland-flow in a periurban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Steenhuis, Tammo S.; Walsh, Rory P. D.; Soares, Daniel; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    Global urbanization affects land-use, soil properties and runoff generation and has implications on flow connectivity in the landscape. Understanding how various forms of the urban mosaic affects the landscape functioning is still a challenge. The aim of our research is to: 1) understand spatio-temporal variability of soil hydrological properties of land-uses in a periurban Mediterranean environment and the impacts on runoff processes; 2) assess the impacts of urbanizing mosaic features of periurban areas on flow connectivity and streamflow response. The study is carried out in a Portuguese typical urbanizing environment, the Ribeira dos Covões (6 km2 catchment). In the last 50 years, the catchment has changed from being rural into urban. By 2009, although still dominated by forest (66%), the catchment urban areas (30%) exhibited a distinctive pattern involving sets of gardens and walls, with derelict land in between properties. The study combines field surveys and hydrological monitoring to assess spatio-temporal dynamics of land-use contributions to surface hydrology. Over a one year period, nine monitoring campaigns were carried out to assess the variability of water-repellency, soil moisture and water infiltration in different land-use categories. In 2010 fall, nine 8mx2m runoff plots were installed in the forest areas, as well as a continuous-recording network that includes three rain-gauges and nine water-level recorders. This network provides continuous data on hydrological response to rainfall at the catchment outlet and in eight sub-catchments. The results revealed high spatio-temporal variability in soil hydrological properties with significant differences between land-uses. In summer, soil hydrophobicity is widespread and most severe in forest areas, resulting in very low soil-matrix infiltration and thereby promoting Hortonian overland-flow. In wet periods, water-repellency almost vanished, with infiltration rates at forest sites increasing to12mm

  18. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2010-11-16

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  19. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  20. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.