Science.gov

Sample records for flow wide-area surveillance

  1. Traffic Flow Wide-Area Surveillance system

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  2. Traffic flow wide-area surveillance system definition

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L.; Moynihan, P.I.

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  3. Concept definition of traffic flow wide-area surveillance

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.

    1994-07-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret large spatial projections of data originating from multiple sensor suites. The intent of the Wide-Area Surveillance (WAS) Project is to build upon this concept and define the operational specifications and characteristics of a Traffic Flow Wide-Area Surveillance (TFWAS) system in terms of traffic management and control. In doing so, the functional capabilities of a TFWAS will be mapped onto an operational profile that is consistent with the Federal Highway Administration`s Intelligent Vehicle Highway System. This document provides the underlying foundation of this work by offering a concept definition for the TFWAS system. It concentrates on answering the question: ``What is the system?`` In doing so, the report develops a hierarchy of specialized definitions.

  4. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  5. Orbit efficiency for persistent wide area ground surveillance

    NASA Astrophysics Data System (ADS)

    SantaPietro, John J.

    2011-05-01

    A typical airborne ground surveillance radar is a multimode system with a ground moving target indicator (GMTI) mode for surveillance and tracking of moving ground targets and synthetic aperture radar (SAR) modes for imaging of terrain features and stationary ground targets. One of the key features of the GMTI mode is the ability to perform wide area surveillance (WAS) of a substantial ground area, and in addition to provide persistent surveillance of a pre-specified ground area over a long period of time. The accomplishment of this task requires careful optimization of radar parameters and careful planning of the platform orbits so as to minimize the time spent turning the aircraft and repositioning the radar. This paper defines the notion of surveillance orbit efficiency which, for constant speed flight, is simply the percentage of time spent on the straight legs of a race track orbit. It then examines the orbit efficiency for each of three cases depending on the assumed radar azimuth field of view (FOV). This paper is a modified version of work described in a MITRE Technical Report for the US Army.

  6. Design considerations for intrusion detection wide-area surveillance radars for perimeters and borders

    NASA Astrophysics Data System (ADS)

    Butler, Walker

    2009-05-01

    Ground Surveillance Radars (GSRs) can build a virtual wall around facilities or on a border. They provide operators and agents with much more time to assess, prioritize and apprehend intruders than a traditional fence system. The extra response time is one of the important features of the wide area surveillance concept, along with added benefits for both the operators and the response teams. These are described in detail in the paper. But all GSRs are not alike. There are two primary GSR technologies - Frequency Modulated Continuous Wave (FMCW) and Pulse Doppler. Most pulse Doppler radars are derivatives of legacy military battlefield radar technology being applied for wide area surveillance, while a new generation of FMCW radar technology has been developed for this new type of surveillance, applied to high value site security, airports, military bases, ports and borders. The purpose of this paper is to explore the benefits of each type of radar for the wide area application.

  7. Multi-modal target detection for autonomous wide area search and surveillance

    NASA Astrophysics Data System (ADS)

    Breckon, Toby P.; Gaszczak, Anna; Han, Jiwan; Eichner, Marcin L.; Barnes, Stuart E.

    2013-10-01

    Generalised wide are search and surveillance is a common-place tasking for multi-sensory equipped autonomous systems. Here we present on a key supporting topic to this task - the automatic interpretation, fusion and detected target reporting from multi-modal sensor information received from multiple autonomous platforms deployed for wide-area environment search. We detail the realization of a real-time methodology for the automated detection of people and vehicles using combined visible-band (EO), thermal-band (IR) and radar sensing from a deployed network of multiple autonomous platforms (ground and aerial). This facilities real-time target detection, reported with varying levels of confidence, using information from both multiple sensors and multiple sensor platforms to provide environment-wide situational awareness. A range of automatic classification approaches are proposed, driven by underlying machine learning techniques, that facilitate the automatic detection of either target type with cross-modal target confirmation. Extended results are presented that show both the detection of people and vehicles under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance evaluation is presented at an episodic level with individual classifiers optimized for maximal each object of interest (vehicle/person) detection over a given search path/pattern of the environment, across all sensors and modalities, rather than on a per sensor sample basis. Episodic target detection, evaluated over a number of wide-area environment search and reporting tasks, generally exceeds 90%+ for the targets considered here.

  8. Ground Testing of Prototype Hardware and Processing Algorithms for a Wide Area Space Surveillance System (WASSS)

    NASA Astrophysics Data System (ADS)

    Goldstein, N.; Dressler, R. A.; Richtsmeier, S. S.; McLean, J.; Dao, P. D.; Murray-Krezan, J.; Fulcoly, D. O.

    2013-09-01

    Recent ground testing of a wide area camera system and automated star removal algorithms has demonstrated the potential to detect, quantify, and track deep space objects using small aperture cameras and on-board processors. The camera system, which was originally developed for a space-based Wide Area Space Surveillance System (WASSS), operates in a fixed-stare mode, continuously monitoring a wide swath of space and differentiating celestial objects from satellites based on differential motion across the field of view. It would have greatest utility in a LEO orbit to provide automated and continuous monitoring of deep space with high refresh rates, and with particular emphasis on the GEO belt and GEO transfer space. Continuous monitoring allows a concept of change detection and custody maintenance not possible with existing sensors. The detection approach is equally applicable to Earth-based sensor systems. A distributed system of such sensors, either Earth-based, or space-based, could provide automated, persistent night-time monitoring of all of deep space. The continuous monitoring provides a daily record of the light curves of all GEO objects above a certain brightness within the field of view. The daily updates of satellite light curves offers a means to identify specific satellites, to note changes in orientation and operational mode, and to queue other SSA assets for higher resolution queries. The data processing approach may also be applied to larger-aperture, higher resolution camera systems to extend the sensitivity towards dimmer objects. In order to demonstrate the utility of the WASSS system and data processing, a ground based field test was conducted in October 2012. We report here the results of the observations made at Magdalena Ridge Observatory using the prototype WASSS camera, which has a 4×60° field-of-view , <0.05° resolution, a 2.8 cm2 aperture, and the ability to view within 4° of the sun. A single camera pointed at the GEO belt provided a

  9. 76 FR 71928 - Defense Federal Acquisition Regulation Supplement; Updates to Wide Area WorkFlow (DFARS Case 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Regulation Supplement; Updates to Wide Area WorkFlow (DFARS Case 2011-D027) AGENCY: Defense Acquisition... payment requests and receiving reports through Wide Area WorkFlow (WAWF) and TRICARE Encounter Data System..., such as responses to natural disasters or national or civil emergencies, when access to Wide Area...

  10. Wide area coverage radar imaging satellite for earth applications. [surveillance and mapping of ice on Great Lakes

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Ramler, J. R.

    1974-01-01

    A preliminary study was made of a radar imaging satellite for earth applications. A side-looking synthetic-aperture radar was considered and the feasibility of obtaining a wide area coverage to reduce the time required to image a given area was investigated. Two basic approaches were examined; low altitude sun-synchronous orbits using a multibeam/multifrequency radar system and equatorial orbits up to near-synchronous altitude using a single beam system. Surveillance and mapping of ice on the Great Lakes was used as a typical application to focus the study effort.

  11. Intensity and resolution enhancement of local regions for object detection and tracking in wide area surveillance

    NASA Astrophysics Data System (ADS)

    Krieger, Evan; Asari, Vijayan K.; Arigela, Saibabu; Aspiras, Theus

    2015-05-01

    Object tracking in wide area motion imagery is a complex problem that consists of object detection and target tracking over time. This challenge can be solved by human analysts who naturally have the ability to keep track of an object in a scene. A computer vision solution for object tracking has the potential to be a much faster and efficient solution. However, a computer vision solution faces certain challenges that do not affect a human analyst. To overcome these challenges, a tracking process is proposed that is inspired by the known advantages of a human analyst. First, the focus of a human analyst is emulated by doing processing only the local object search area. Second, it is proposed that an intensity enhancement process should be done on the local area to allow features to be detected in poor lighting conditions. This simulates the ability of the human eye to discern objects in complex lighting conditions. Third, it is proposed that the spatial resolution of the local search area is increased to extract better features and provide more accurate feature matching. A quantitative evaluation is performed to show tracking improvement using the proposed method. The three databases, each grayscale sequences that were obtained from aircrafts, used for these evaluations include the Columbus Large Image Format database, the Large Area Image Recorder database, and the Sussex database.

  12. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  13. 77 FR 38731 - Defense Federal Acquisition Regulation Supplement: Updates to Wide Area WorkFlow (DFARS Case 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... INFORMATION: I. Background DoD published a proposed rule at 76 FR 71928 on November 21, 2011, to update DFARS... Acquisition Regulation Supplement: Updates to Wide Area WorkFlow (DFARS Case 2011-D027) AGENCY: Defense... Area WorkFlow (WAWF) and TRICARE Encounter Data System (TEDS). WAWF, which electronically...

  14. Real time wide area radiation surveillance system (REWARD) based on 3d silicon and (CD,ZN)Te for neutron and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Disch, C.

    2014-09-01

    Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.

  15. Wide area continuous offender monitoring

    SciTech Connect

    Hoshen, J.; Drake, G.; Spencer, D.

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  16. Towards a real-time wide area motion imagery system

    NASA Astrophysics Data System (ADS)

    Young, R. I.; Foulkes, S. B.

    2015-10-01

    It is becoming increasingly important in both the defence and security domains to conduct persistent wide area surveillance (PWAS) of large populations of targets. Wide Area Motion Imagery (WAMI) is a key technique for achieving this wide area surveillance. The recent development of multi-million pixel sensors has provided sensors with wide field of view replete with sufficient resolution for detection and tracking of objects of interest to be achieved across these extended areas of interest. WAMI sensors simultaneously provide high spatial and temporal resolutions, giving extreme pixel counts over large geographical areas. The high temporal resolution is required to enable effective tracking of targets. The provision of wide area coverage with high frame rates generates data deluge issues; these are especially profound if the sensor is mounted on an airborne platform, with finite data-link bandwidth and processing power that is constrained by size, weight and power (SWAP) limitations. These issues manifest themselves either as bottlenecks in the transmission of the imagery off-board or as latency in the time taken to analyse the data due to limited computational processing power.

  17. Wide area restoration following biological contamination

    NASA Astrophysics Data System (ADS)

    Yang, Lynn; Hibbard, Wilthea; Edwards, Donna; Franco, David; Fruetel, Julie; Tucker, Mark; Einfeld, Wayne; Knowlton, Robert; Brown, Gary; Brockmann, John; Greenwalt, Robert; Miles, Robin; Raber, Ellen; Carlsen, Tina; Krauter, Paula; Dillon, Michael; MacQueen, Don; Intrepido, Tony; Hoppes, Bill; Wilson, Wendy; Mancieri, Sav

    2008-04-01

    Current understanding of how to restore a wide area that has been contaminated following a large biological attack is limited. The Department of Homeland Security and Department of Defense are executing a four-year collaborative program named the Interagency Biological Restoration Demonstration (IBRD) program. This program is aimed at developing technologies, methods, plans and policies necessary to restore a wide area, including military installations and critical infrastructures, in the event of a large outdoor aerosol release of anthrax. The IBRD program partner pilot city is the Seattle Urban Area to include Fort Lewis, WA and McChord Air Force Base. A front-end systems analysis was conducted as part of IBRD, to: 1) assess existing technologies and processes for wide area restoration; from this, 2) develop an "as-is" decision framework for wide area restoration; and 3) identify and prioritize capability gaps. Qualitative assessments and quantitative analyses, including sensitivity, timeline and case study analyses, were conducted to evaluate existing processes and rank capability gaps. This paper describes the approach and results from this front-end systems analysis.

  18. Surveillance of hemodialysis vascular access with ultrasound vector flow imaging

    NASA Astrophysics Data System (ADS)

    Brandt, Andreas H.; Olesen, Jacob B.; Hansen, Kristoffer L.; Rix, Marianne; Jensen, Jørgen A.; Nielsen, Michael B.

    2015-03-01

    The aim of this study was prospectively to monitor the volume flow in patients with arteriovenous fistula (AVF) with the angle independent ultrasound technique Vector Flow Imaging (VFI). Volume flow values were compared with Ultrasound dilution technique (UDT). Hemodialysis patients need a well-functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has proven to be more precise, when performing single repeated instantaneous measurements. Three patients with AVF were monitored with UDT and VFI monthly for five months. A commercial ultrasound scanner with a 9 MHz linear array transducer with integrated VFI was used to obtain data. UDT values were obtained with Transonic HD03 Flow-QC Hemodialysis Monitor. Three independent measurements at each scan session were obtained with UDT and VFI each month. Average deviation of volume flow between UDT and VFI was 25.7 % (Cl: 16.7% to 34.7%) (p= 0.73). The standard deviation for all patients, calculated from the mean variance of each individual scan sessions, was 199.8 ml/min for UDT and 47.6 ml/min for VFI (p = 0.002). VFI volume flow values were not significantly different from the corresponding estimates obtained using UDT, and VFI measurements were more precise than UDT. The study indicates that VFI can be used for surveillance of volume flow.

  19. Wide Area and Distributed Hydrogen Sensors

    SciTech Connect

    Zalosh, Robert G.; Barilo, Nick F.

    2009-09-18

    Recent advances in optical sensors show promise for the development of new wide area monitoring and distributed optical network hydrogen detection systems. Optical hydrogen sensing technologies reviewed here are: 1) open path Raman scattering systems, 2) back scattering from chemically treated solid polymer matrix optical fiber sensor cladding; and 3) shlieren and shearing interferometry imaging. Ultrasonic sensors for hydrogen release detection are also reviewed. The development status of these technologies and their demonstrated results in sensor path length, low hydrogen concentration detection ability, and response times are described and compared to the corresponding status of hydrogen spot sensor network technologies.

  20. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  1. Wide-area continuous offender monitoring

    NASA Astrophysics Data System (ADS)

    Hoshen, Joseph; Drake, George; Spencer, Debra D.

    1997-02-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first- generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender's home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  2. Wide Area Security Region Final Report

    SciTech Connect

    Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

    2010-03-31

    This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed

  3. Uniformity measurement of wide area reference sources for beta emitters.

    PubMed

    Ohshiro, Masahiro; Shiina, Takuya; Yamada, Takahiro

    2016-03-01

    When conducting uniformity measurements of a wide area reference source with a detector having a window of a size similar to that of a gridded individual portion area on the source, it is important to carefully consider neighbor effects on measuring emission rates of the individual target portion resulting from the gap between the source and detector window. Optimization of the uniformity measurement conditions was studied for beta-emitting wide area reference sources in this study. A measurement system consisting of a PR-gas (Ar: 90%+CH4: 10%) flow type windowed proportional counter and a motorized XY stage was installed. This system is adapted to the uniformity measurement of two different types of (36)Cl sources made by different manufacturers. Uniformity measurement of a 100mm×100mm source divided into 16 portions of 6.25cm(2) (25mm squared) each could be conducted using our system under the present conditions with a neighbor effect of around 15% or less. The measurement results by use of this system were also compared with those using the imaging plate technique. PMID:26701654

  4. A federated model for scheduling in wide-area systems

    SciTech Connect

    Weissman, J.B.; Grimshaw, A.S.

    1996-12-31

    In this paper a model for scheduling in wide-area systems is described. The model is federated and utilizes a collection of local site schedulers that control the use of their resources. The wide-area scheduler consults the local site schedulers to obtain candidate machine schedules. A set of issues and challenges inherent to wide-area scheduling are also described and the proposed model is shown to address many of these problems. A distributed algorithm for wide-area scheduling is presented and relies upon information made available about the resource needs of user jobs. The wide-area scheduler will be implemented in Legion, a wide-area computing system developed at the University of Virginia.

  5. 47 CFR 54.518 - Support for wide area networks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Schools and Libraries § 54.518 Support for wide area networks. To the extent that schools, libraries or consortia that include an eligible school or library build or purchase a wide area network to provide telecommunications services, the cost of...

  6. 47 CFR 54.518 - Support for wide area networks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Schools and Libraries § 54.518 Support for wide area networks. To the extent that schools, libraries or consortia that include an eligible school or library build or purchase a wide area network to provide telecommunications services, the cost of...

  7. 47 CFR 54.518 - Support for wide area networks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Support for wide area networks. 54.518 Section 54.518 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Schools and Libraries § 54.518 Support for wide area networks. To the extent that...

  8. 47 CFR 54.518 - Support for wide area networks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Support for wide area networks. 54.518 Section 54.518 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Universal Service Support for Schools and Libraries § 54.518 Support for wide area networks. To the extent that...

  9. 47 CFR 54.518 - Support for wide area networks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Support for wide area networks. 54.518 Section... area networks. To the extent that schools, libraries or consortia that include an eligible school or library build or purchase a wide area network to provide telecommunications services, the cost of...

  10. Wide Area Thermal Processing of Light Emitting Materials

    SciTech Connect

    Duty, Chad E; Joshi, Pooran C; Jellison Jr, Gerald Earle; Angelini, Joseph Attilio; Sabau, Adrian S

    2011-10-01

    Laboratory laser materials synthesis of wide bandgap materials has been successfully used to create white light emitting materials (LEMs). This technology development has progressed to the exploration on design and construction of apparatus for wide area doping and phase transformation of wide bandgap material substrates. The objective of this proposal is to develop concepts for wide area doping and phase transformation based on AppliCote Associates, LLC laser technology and ORNL high density pulsed plasma arc technology.

  11. Designing application software in wide area network settings

    NASA Technical Reports Server (NTRS)

    Makpangou, Mesaac; Birman, Ken

    1990-01-01

    Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described.

  12. Robust background subtraction for automated detection and tracking of targets in wide area motion imagery

    NASA Astrophysics Data System (ADS)

    Kent, Phil; Maskell, Simon; Payne, Oliver; Richardson, Sean; Scarff, Larry

    2012-10-01

    Performing persistent surveillance of large populations of targets is increasingly important in both the defence and security domains. In response to this, Wide Area Motion Imagery (WAMI) sensors with Wide FoVs are growing in popularity. Such WAMI sensors simultaneously provide high spatial and temporal resolutions, giving extreme pixel counts over large geographical areas. The ensuing data rates are such that either very bandwidth data links are required (e.g. for human interpretation) or close-to-sensor automation is required to down-select salient information. For the latter case, we use an iterative quad-tree optical-flow algorithm to efficiently estimate the parameters of a perspective deformation of the background. We then use a robust estimator to simultaneously detect foreground pixels and infer the parameters of each background pixel in the current image. The resulting detections are referenced to the coordinates of the first frame and passed to a multi-target tracker. The multi-target tracker uses a Kalman filter per target and a Global Nearest Neighbour approach to multi-target data association, thereby including statistical models for missed detections and false alarms. We use spatial data structures to ensure that the tracker can scale to analysing thousands of targets. We demonstrate that real-time processing (on modest hardware) is feasible on an unclassified WAMI infra-red dataset consisting of 4096 by 4096 pixels at 1Hz simulating data taken from a Wide FoV sensor on a UAV. With low latency and despite intermittent obscuration and false alarms, we demonstrate persistent tracking of all but one (low-contrast) vehicular target, with no false tracks.

  13. Benefits of wide-area intrusion detection systems using FMCW radar

    NASA Astrophysics Data System (ADS)

    Butler, Walker; Poitevin, Pierre; Bjornholt, John

    2008-04-01

    The history of perimeter protection is based on building fences. That basic concept evolved into detecting activity along fences using a variety of sensors. Today a wide variety of fiber and wire-based sensors are available to mount on a fence, and many different types of IR, radar, optical, seismic and acoustic sensors to place along the fence line. Generally some camera support is provided, with the cameras programmed to point to pre-set locations along the fence. A more robust perimeter protection would consist of wide area sensors with the capability to look out beyond the fence to detect potential intrusion and track intruders. In looking beyond the perimeter, wide area sensors can provide precious time to plan and initiate the appropriate response. In addition, because they sweep a 360-degree circle, the sensors can provide continued tracking of the intrusion, greatly enhancing the effectiveness and safety of the response team. The new wide-area concept consists of using modern radar technology for wide area detection of objects which are moving, and then using the precise location information from the radar to point a camera for assessment. Without having to continually stare at a bank of video monitors, the operator is presented with the location, direction of travel and identification and number of potential intruders, all in a matter of seconds. This paper presents the features of this new wide area system, followed by an overview of radar technology. It closes with a discussion on the benefits of the FMCW topology over Pulse Doppler in security and surveillance applications.

  14. Economic Impacts of a Wide Area Release of Anthrax

    SciTech Connect

    Judd, Kathleen S.; Olson, Jarrod; Stein, Steven L.; Lesperance, Ann M.

    2009-05-29

    This analysis explores economic impacts that might result from a wide-area release of anthrax. The intent is not to provide a quantitative analysis of such a disaster, but to: 1. Define the general categories of economic impacts that the region should be concerned about; and, 2. Explore what types of private sector businesses or industries, if any, may have the greatest impact on speeding the economic recovery of the region.

  15. Wide-area situation awareness in electric power grid

    SciTech Connect

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  16. Overview of the I-way : wide area visual supercomputing.

    SciTech Connect

    DeFanti, T. A.; Foster, I.; Papka, M. E.; Stevens, R.; Kuhfuss, T.; Univ. of Illinois at Chicago

    1996-01-01

    This paper discusses the I-WAY project and provides an overview of the papers in this issue of IJSA. The I-WAY is an experimental environment for building distributed virtual reality applications and for exploring issues of distributed wide area resource management and scheduling. The goal of the I-WAY project is to enable researchers use multiple internetworked supercomputers and advanced visualization systems to conduct very large-scale computations. By connecting a dozen ATM testbeds, seventeen supercomputer centers, five virtual reality research sites, and over sixty applications groups, the I-WAY project has created an extremely diverse wide area environment for exploring advanced applications. This environment has provided a glimpse of the future for advanced scientific and engineering computing. 1 A Model for Distributed Collaborative Computing The I-WAY, or Information Wide Area Year, was a year-long effort to link existing national testbeds based on ATM (asynchronous transfer mode) to interconnect supercomputer centers, virtual reality (VR) research locations, and applications development sites. The I-WAY was successfully demonstrated at Supercomputing '95 and included over sixty distributed supercomputing applications that used a variety of supercomputing resources and VR display.

  17. Wide-area traffic: The failure of Poisson modeling

    SciTech Connect

    Paxson, V.; Floyd, S.

    1994-08-01

    Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. The authors evaluate 21 wide-area traces, investigating a number of wide-area TCP arrival processes (session and connection arrivals, FTPDATA connection arrivals within FTP sessions, and TELNET packet arrivals) to determine the error introduced by modeling them using Poisson processes. The authors find that user-initiated TCP session arrivals, such as remote-login and file-transfer, are well-modeled as Poisson processes with fixed hourly rates, but that other connection arrivals deviate considerably from Poisson; that modeling TELNET packet interarrivals as exponential grievously underestimates the burstiness of TELNET traffic, but using the empirical Tcplib[DJCME92] interarrivals preserves burstiness over many time scales; and that FTPDATA connection arrivals within FTP sessions come bunched into ``connection bursts``, the largest of which are so large that they completely dominate FTPDATA traffic. Finally, they offer some preliminary results regarding how the findings relate to the possible self-similarity of wide-area traffic.

  18. Wide-area situation awareness in electric power grid

    NASA Astrophysics Data System (ADS)

    Greitzer, Frank L.

    2010-04-01

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  19. Simulation studies of a wide area health care network.

    PubMed Central

    McDaniel, J. G.

    1994-01-01

    There is an increasing number of efforts to install wide area health care networks. Some of these networks are being built to support several applications over a wide user base consisting primarily of medical practices, hospitals, pharmacies, medical laboratories, payors, and suppliers. Although on-line, multi-media telecommunication is desirable for some purposes such as cardiac monitoring, store-and-forward messaging is adequate for many common, high-volume applications. Laboratory test results and payment claims, for example, can be distributed using electronic messaging networks. Several network prototypes have been constructed to determine the technical problems and to assess the effectiveness of electronic messaging in wide area health care networks. Our project, Health Link, developed prototype software that was able to use the public switched telephone network to exchange messages automatically, reliably and securely. The network could be configured to accommodate the many different traffic patterns and cost constraints of its users. Discrete event simulations were performed on several network models. Canonical star and mesh networks, that were composed of nodes operating at steady state under equal loads, were modeled. Both topologies were found to support the throughput of a generic wide area health care network. The mean message delivery time of the mesh network was found to be less than that of the star network. Further simulations were conducted for a realistic large-scale health care network consisting of 1,553 doctors, 26 hospitals, four medical labs, one provincial lab and one insurer. Two network topologies were investigated: one using predominantly peer-to-peer communication, the other using client-server communication.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7949966

  20. Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment

    SciTech Connect

    Mark D. McKay; Matthew O. Anderson

    2011-08-01

    Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly

  1. A benchmark for vehicle detection on wide area motion imagery

    NASA Astrophysics Data System (ADS)

    Catrambone, Joseph; Amzovski, Ismail; Liang, Pengpeng; Blasch, Erik; Sheaff, Carolyn; Wang, Zhonghai; Chen, Genshe; Ling, Haibin

    2015-05-01

    Wide area motion imagery (WAMI) has been attracting an increased amount of research attention due to its large spatial and temporal coverage. An important application includes moving target analysis, where vehicle detection is often one of the first steps before advanced activity analysis. While there exist many vehicle detection algorithms, a thorough evaluation of them on WAMI data still remains a challenge mainly due to the lack of an appropriate benchmark data set. In this paper, we address a research need by presenting a new benchmark for wide area motion imagery vehicle detection data. The WAMI benchmark is based on the recently available Wright-Patterson Air Force Base (WPAFB09) dataset and the Temple Resolved Uncertainty Target History (TRUTH) associated target annotation. Trajectory annotations were provided in the original release of the WPAFB09 dataset, but detailed vehicle annotations were not available with the dataset. In addition, annotations of static vehicles, e.g., in parking lots, are also not identified in the original release. Addressing these issues, we re-annotated the whole dataset with detailed information for each vehicle, including not only a target's location, but also its pose and size. The annotated WAMI data set should be useful to community for a common benchmark to compare WAMI detection, tracking, and identification methods.

  2. Wide-area littoral discreet observation: success at the tactical edge

    NASA Astrophysics Data System (ADS)

    Toth, Susan; Hughes, William; Ladas, Andrew

    2012-06-01

    In June 2011, the United States Army Research Laboratory (ARL) participated in Empire Challenge 2011 (EC-11). EC-11 was United States Joint Forces Command's (USJFCOM) annual live, joint and coalition intelligence, surveillance and reconnaissance (ISR) interoperability demonstration under the sponsorship of the Under Secretary of Defense for Intelligence (USD/I). EC-11 consisted of a series of ISR interoperability events, using a combination of modeling & simulation, laboratory and live-fly events. Wide-area Littoral Discreet Observation (WALDO) was ARL's maritime/littoral capability. WALDO met a USD(I) directive that EC-11 have a maritime component and WALDO was the primary player in the maritime scenario conducted at Camp Lejeune, North Carolina. The WALDO effort demonstrated the utility of a networked layered sensor array deployed in a maritime littoral environment, focusing on maritime surveillance targeting counter-drug, counter-piracy and suspect activity in a littoral or riverine environment. In addition to an embedded analytical capability, the sensor array and control infrastructure consisted of the Oriole acoustic sensor, iScout unattended ground sensor (UGS), OmniSense UGS, the Compact Radar and the Universal Distributed Management System (UDMS), which included the Proxy Skyraider, an optionally manned aircraft mounting both wide and narrow FOV EO/IR imaging sensors. The capability seeded a littoral area with riverine and unattended sensors in order to demonstrate the utility of a Wide Area Sensor (WAS) capability in a littoral environment focused on maritime surveillance activities. The sensors provided a cue for WAS placement/orbit. A narrow field of view sensor would be used to focus on more discreet activities within the WAS footprint. Additionally, the capability experimented with novel WAS orbits to determine if there are more optimal orbits for WAS collection in a littoral environment. The demonstration objectives for WALDO at EC-11 were

  3. An automated analysis of wide area motion imagery for moving subject detection

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave

    2015-05-01

    Automated analysis of wide area motion imagery (WAMI) can significantly reduce the effort required for converting data into reliable decisions. We register consecutive WAMI frames and use false-color frame comparisons to enhance the visual detection of possible subjects in the imagery. The large number of WAMI detections produces the need for a prioritization of detections for further inspection. We create a priority queue of detections for automated revisit with smaller field-ofview assets based on the locations of the movers as well as the probability of the detection. This automated queue works within an operator's preset prioritizations but also allows the flexibility to dynamically respond to new events as well as incorporating additional information into the surveillance tasking.

  4. Wide-area video exploitation (WAVE) joint data management (JDM) for layered sensing

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.; Seetharaman, Guna; Russell, Stephen

    2011-06-01

    Emerging technologies of high performance computing facilitate increased data collection for wide area sensing; however, joint data management concepts of operations (CONOPs) are important to fully realize system-level performance. Joint data management (JDM) includes the hardware (e.g. sensors/targets), software (e.g. processing/algorithms), entities (e.g. service-based collections), and operations (scenario-based environments) of data exchange that enable persistent surveillance in the context of a layered sensing or data-to-decision (D2D) information fusion enterprise. Key attributes of an information fusion enterprise system require pragmatic assessment of data and information management, distributed communications, knowledge representation as well as a sensor mix, algorithm choice, life-cycle data management, and human-systems interaction. In this paper, we explore the various issues surrounding Wide-Area Video Exploitation (WAVE) in a layered-sensing environment to include improvements in Joint Data Management such as (1) data collection, construction, and transformation, (2) feature generation, extraction and selection, and (3) information evaluation, presentation, and dissemination. Throughout the paper, we seek to describe the current technology, research directions, and metrics that instantiate a realizable JDM product. We develop the methods for joint data management for structured and unstructured WAVE data in the context of decision making. Discerning accurate track and identification target information from WAVE JDM provides a moving intelligence (MOVINT) capability.

  5. Mine field detection algorithm utilizing data from an ultrawideband wide-area surveillance radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam H.; Kappra, Karl A.; Wong, David C.; Kapoor, Ravinder; Sichina, Jeffrey

    1998-09-01

    The Army Research Laboratory (ARL), as part of its mission- funded applied research program, has been evaluating the utility of a low-frequency, ultra-wideband (UWB) imaging radar to detect obscured targets such as vehicles concealed by foliage and objects buried underground. This paper concentrates on a specific area of great interest to the Army: the reliable detection of surface and buried mines. Measurement programs conducted at Yuma Proving Ground and elsewhere have yielded a significant and unique database of extremely wideband and (in many cases) fully polarimetric data. We will review recent findings from ARL's modeling, phenomenology and detection efforts. We also included a discussion of an end-to-end detection strategy that has been trained and tested against a significant data set. Performance assessments are included that detail detection rates versus false alarm levels.

  6. WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)

    NASA Astrophysics Data System (ADS)

    Stellman, Christopher M.; Olchowski, Frederick M.; Michalowicz, Joseph V.

    2001-10-01

    In recent years the Optical Sciences Division, Naval Research Laboratory (NRL) has been involved in the development of real-time hyperspectral detection, cueing, target location, and target designation capabilities. Under the Dark HORSE program it was demonstrated that a hyperspectral sensor could be used for the autonomous, real- time detection of airborne and military ground targets. This work has culminated in WAR HORSE, an autonomous real-time visible hyperspectral target detection system that has been configured for us on a Predator Unmanned Air Vehicle (UAV). The sensor system provides Predator with the ability to detect manmade objects in areas of natural background. The system consists of a visible hyperspectral imaging sensor, a real-time signal processor, a high-resolution visible line scan camera, an interface and control software application, and a data storage medium. The system is coupled to an on- board GPS/INS to provide target geo-location information and relevant data is transmitted to a ground station using line- of-sight down-link capabilities. The presented paper will provide an overview of the WAR HORSE sensor system hardware components and their integration aboard a Predator UAV. In addition, the results of a recently completed demonstration aboard the Predator UAV will be provided. This demonstration represents the first autonomous real-time hyperspectral target detection system to flown aboard a Predator UAV.

  7. Wide-area ATM networking for large-scale MPPs

    SciTech Connect

    Papadopoulos, P.M.; Geist, G.A. II

    1997-04-01

    This paper presents early experiences with using high-speed ATM interfaces to connect multiple Intel Paragons on both local and wide area networks. The testbed includes the 1024 and 512 node Paragons running the OSF operating system at Oak Ridge National Laboratory and the 1840 node Paragon running the Puma operating system at Sandia National Laboratories. The experimental OC-12 (622 Mbits/sec) interfaces are built by GigaNet and provide a proprietary API for sending AAL-5 encapsulated packets. PVM is used as the massaging infrastructure and significant modifications have been made to use the GigaNet API, operate in the Puma environment, and attain acceptable performance over local networks. These modifications are described along with a discussion of roadblocks to networking MPPs with high-performance interfaces. Our early prototype utilizes approximately 25 percent of an OC-12 circuit and 80 percent of an OC-3 circuit in send plus acknowledgment ping-pong tests.

  8. Development of autonomous magnetometer rotorcraft for wide area assessment

    SciTech Connect

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  9. Development of wide area environment accelerator operation and diagnostics method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Akito; Furukawa, Kazuro

    2015-08-01

    Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.

  10. SAR interferometry for DEM generation: wide-area error assessment

    NASA Astrophysics Data System (ADS)

    Carrasco, Daniel; Broquetas, Antoni; Pena, Ramon; Arbiol, Roman; Castillo, Manuel; Pala, Vincenc

    1998-11-01

    The present work consists on the generation of a DEM using ERS satellites interferometric data over a wide area (50 X 50 Km) with an error study using a high accuracy reference DEM, focusing on the atmosphere induced errors. The area is heterogeneous with flat and rough topography ranging from sea level up to 1200 m in the inland ranges. The ERS image has a 100 X 100 Km2 area and has been divided in four quarters to ease the processing. The phase unwrapping algorithm, which is a combination of region growing and least squares techniques, worked out successfully the rough topography areas. One quarter of the full scene was geocoded over a local datum ellipsoid to a UTM grid. The resulting DEM was compared to a reference one provided by the Institut Cartografic de Catalunya. Two types of atmospheric error or artifacts were found: a set of very localized spots, up to one phase cycle, which generated ghost hills up to 100, and a slow trend effect which added up to 50 m to some areas in the image. Besides of the atmospheric errors, the quality of the DEM was assessed. The quantitative error study was carried out locally at several areas with different topography.

  11. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  12. Wide area augmentation of the Global Positioning System

    SciTech Connect

    Enge, P.; Walter, T.; Pullen, S.; Kee, C.; Chao, Y.C.; Tsai, Y.J.

    1996-08-01

    The Wide Area Augmentation System (WAAS) is being deployed by the Federal Aviation Administration (FAA) to augment the Global Positioning System (GPS). The WAAS will aid GPS with the following three services. First, it will broadcast spread-spectrum ranging signals from communication satellites. The airborne WAAS receiver will add these new ranging signals to the GPS constellation of measurements. By so doing, the augmented position fix will be less sensitive to the failure of individual system components, thus improving time availability and continuity of service. Second, the WAAS will use a nationwide ground network to monitor the health of all satellites over the airspace and flag situations which threaten flight safety. This data will be modulated on to the WAAS ranging signals and broadcast to the users, thereby guaranteeing the integrity of the airborne position fix. Third, the WAAS will use the ground network to develop corrections for the errors which currently limit the accuracy of unaugmented GPS. This data will also be included on the WAAS broadcast and will improve position accuracy from approximately 100 m to 8 m. When complete, the augmented system will provide an accurate position fix from satellites to an unlimited number of aircraft across the nation. It will be the primary navigation system for aircraft in oceanic routes, enroute over domestic airspace, in crowded metropolitan airspaces, and on airport approach.

  13. Highball: A high speed, reserved-access, wide area network

    NASA Technical Reports Server (NTRS)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  14. Regular Topologies for Gigabit Wide-Area Networks. Volume 1

    NASA Technical Reports Server (NTRS)

    Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul

    1994-01-01

    In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source

  15. Environmental surveillance of viruses by tangential flow filtration and metagenomic reconstruction.

    PubMed

    Furtak, Vyacheslav; Roivainen, Merja; Mirochnichenko, Olga; Zagorodnyaya, Tatiana; Laassri, Majid; Zaidic, Sohail Z; Rehman, Lubna; Alam, Muhammad M; Chizhikov, Vladimir; Chumakov, Konstantin

    2016-04-14

    An approach is proposed for environmental surveillance of poliovirus by concentrating sewage samples with tangential flow filtration (TFF) followed by deep sequencing of viral RNA. Subsequent to testing the method with samples from Finland, samples from Pakistan, a country endemic for poliovirus, were investigated. Genomic sequencing was either performed directly, for unbiased identification of viruses regardless of their ability to grow in cell cultures, or after virus enrichment by cell culture or immunoprecipitation. Bioinformatics enabled separation and determination of individual consensus sequences. Overall, deep sequencing of the entire viral population identified polioviruses, non-polio enteroviruses, and other viruses. In Pakistani sewage samples, adeno-associated virus, unable to replicate autonomously in cell cultures, was the most abundant human virus. The presence of recombinants of wild polioviruses of serotype 1 (WPV1) was also inferred, whereby currently circulating WPV1 of south-Asian (SOAS) lineage comprised two sub-lineages depending on their non-capsid region origin. Complete genome analyses additionally identified point mutants and intertypic recombinants between attenuated Sabin strains in the Pakistani samples, and in one Finnish sample. The approach could allow rapid environmental surveillance of viruses causing human infections. It creates a permanent digital repository of the entire virome potentially useful for retrospective screening of future discovered viruses. PMID:27105043

  16. Wide-Area Persistent Airborne Video: Architecture and Challenges

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Rao, Raghuveer M.; Seetharaman, Guna

    The need for persistent video covering large geospatial areas using embedded camera networks and stand-off sensors has increased over the past decade. The availability of inexpensive, compact, light-weight, energy-efficient, high resolution optical sensors and associated digital image processing hardware has led to a new class of airborne surveillance platforms. Traditional tradeoffs posed between lens size and resolution, that is the numerical aperture of the system, can now be mitigated using an array of cameras mounted in a specific geometry. This fundamental advancement enables new imaging systems to cover very large fields of view at high resolution, albeit with spatially varying point spread functions. Airborne imaging systems capable of acquiring 88 megapixels per frame, over a wide field-of-view of 160 degrees or more at low frame rates of several hertz along with color sampling have been built using an optical array with up to eight cameras. These platforms fitted with accurate orientation sensors circle above an area of interest at constant altitude, adjusting steadily the orientation of the camera array fixed around a narrow area of interest, ideally locked to a point on the ground. The resulting image sequence maintains a persistent observation of an extended geographical area depending on the altitude of the platform and the configuration of the camera array. Suitably geo-registering and stabilizing these very large format videos provide a virtual nadir view of the region being monitored enabling a new class of urban scale activity analysis applications. The sensor geometry, processing challenges and scene interpretation complexities are highlighted.

  17. The surveillant assemblage.

    PubMed

    Haggerty, K D; Ericson, R V

    2000-12-01

    George Orwell's 'Big Brother' and Michel Foucault's 'panopticon' have dominated discussion of contemporary developments in surveillance. While such metaphors draw our attention to important attributes of surveillance, they also miss some recent dynamics in its operation. The work of Gilles Deleuze and Felix Guattari is used to analyse the convergence of once discrete surveillance systems. The resultant 'surveillant assemblage' operates by abstracting human bodies from their territorial settings, and separating them into a series of discrete flows. These flows are then reassembled in different locations as discrete and virtual 'data doubles'. The surveillant assemblage transforms the purposes of surveillance and the hierarchies of surveillance, as well as the institution of privacy. PMID:11140886

  18. Association Analysis of System Failure in Wide Area Backup Protection System

    NASA Astrophysics Data System (ADS)

    Zhang, Yagang; Sun, Yi

    2015-12-01

    Wide area backup protection algorithm based on fault component identification is the heart of the whole wide area backup protection system, its validity and reliability is a problem which needs to be first considered in the engineering practice applications of wide area backup protection system. Wide are backup protection algorithm mainly use two kinds of wide area information to realize protection criterion, one is electrical quantity information, such as voltage, current, etc. Another one is protection action and circuit breaker information. The wide area backup protection algorithm based on electrical quantity information is mainly utilizing the significant change of electrical quantity to search fault component, and the primary means include current differential method of wide area multi-measuring points, the comparison method of calculation and measurement, the multiple statistics method. In this paper, a novel and effective association analysis of system failure in wide area backup protection system will be discussed carefully, and the analytical results are successful and reliable.

  19. Standards for efficient employment of wide-area motion imagery (WAMI) sensors

    NASA Astrophysics Data System (ADS)

    Randall, L. Scott; Maenner, Paul F.

    2013-05-01

    Airborne Wide Area Motion Imagery (WAMI) sensors provide the opportunity for continuous high-resolution surveillance of geographic areas covering tens of square kilometers. This is both a blessing and a curse. Data volumes from "gigapixel-class" WAMI sensors are orders of magnitude greater than for traditional "megapixel-class" video sensors. The amount of data greatly exceeds the capacities of downlinks to ground stations, and even if this were not true, the geographic coverage is too large for effective human monitoring. Although collected motion imagery is recorded on the platform, typically only small "windows" of the full field of view are transmitted to the ground; the full set of collected data can be retrieved from the recording device only after the mission has concluded. Thus, the WAMI environment presents several difficulties: (1) data is too massive for downlink; (2) human operator selection and control of the video windows may not be effective; (3) post-mission storage and dissemination may be limited by inefficient file formats; and (4) unique system implementation characteristics may thwart exploitation by available analysis tools. To address these issues, the National Geospatial-Intelligence Agency's Motion Imagery Standards Board (MISB) is developing relevant standard data exchange formats: (1) moving target indicator (MTI) and tracking metadata to support tipping and cueing of WAMI windows using "watch boxes" and "trip wires"; (2) control channel commands for positioning the windows within the full WAMI field of view; and (3) a full-field-of-view spatiotemporal tiled file format for efficient storage, retrieval, and dissemination. The authors previously provided an overview of this suite of standards. This paper describes the latest progress, with specific concentration on a detailed description of the spatiotemporal tiled file format.

  20. A Novel Wide-Area Backup Protection Based on Fault Component Current Distribution and Improved Evidence Theory

    PubMed Central

    Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun

    2014-01-01

    In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance. PMID:25050399

  1. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    PubMed Central

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384

  2. Robust vehicle detection under various environments to realize road traffic flow surveillance using an infrared thermal camera.

    PubMed

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384

  3. 48 CFR 252.232-7006 - Wide Area WorkFlow Payment Instructions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... timesheets) in support of each payment request. (5) WAWF email notifications. The Contractor shall enter the email address identified below in the “Send Additional Email Notifications” field of WAWF once a document is submitted in the system. (Contracting Officer: Insert applicable email addresses or...

  4. 48 CFR 252.232-7006 - Wide Area WorkFlow Payment Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... timesheets) in support of each payment request. (5) WAWF email notifications. The Contractor shall enter the email address identified below in the “Send Additional Email Notifications” field of WAWF once a document is submitted in the system. (Contracting Officer: Insert applicable email addresses or...

  5. Mine detection performance in different soil conditions using data from an ultrawideband wide-area surveillance radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam H.; Kappra, Karl A.; Wong, David C.; Ressler, Marc A.; Sichina, Jeffrey

    1999-08-01

    The US Army Research Laboratory (ARL), as part of customer and mission-funded applied research programs, has been evaluating the use of low-frequency, ultra-wideband imaging radar to detect fields of buried mines. An instrumentation- grade measurement system has been designed and implemented by ARL. Four data collection campaigns in support of ground- penetrating radar objectives have led to the establishment of a significant and unique database of radar imagery. We are using these data to develop mine-detection algorithms that can aid an operator in separating mines from background clutter. This paper reviews recent findings and result from ARL's modeling, phenomenology, and algorithm development efforts. At SPIE '98, we reported on the performance of a physics-based mine-detection algorithm using data collected at Yuma Proving Ground (YPG) in January 1996. Subsequent measurements were made using the ARL BoomSAR at YPG in October 1997, January 1998, and June 1998. Most of the mines from the January 1996 experiment were still in place during the 1997/1998 experiments. Additional mines and unexploded ordnance were added to the YPG test after the January 1996 experiment. This paper discusses the difference in soil conditions from these data collections and the impact that may have on a mine's radar cross section (RCS) and detection performance. Detection results for M20 mines under different soil conditions will be shown. The detection algorithm invokes phenomenologically sound feature that exploit the expected mine RCS, texture, frequency dependent scattering, and model-based image correlation. Performance assessments, in terms of receiver operating characteristics, detail the detection capabilities at various false alarm rates. Finally, new imagery will be presented that shows the positive contrast of low metal content above dielectric background.

  6. Wide-Area Networking in K-12 Education: Issues Shaping Implementation and Use.

    ERIC Educational Resources Information Center

    Eurich-Fulcer, Rebecca; Schofield, Janet Ward

    1995-01-01

    Identifies issues on the use of computer networks in K-12, business, and university environments, and reviews elements that play a major role in shaping wide-area networking use in elementary and secondary education. Discussion includes the technical and logistical elements, issues related to user attitudes and characteristics, and social and…

  7. Library Applications of a Wide Area Network: Promoting JANET to UK Academic Libraries.

    ERIC Educational Resources Information Center

    MacColl, John A.

    1990-01-01

    Describes Project Jupiter, which was developed to promote the United Kingdom's Joint Academic Network (JANET) to its member libraries. Library uses of JANET are described, including online catalogs, commercial services, and electronic mail; the convergence of local area networks (LANs) and wide area networks (WANs) is discussed; and future…

  8. MAP Fault Localization Based on Wide Area Synchronous Phasor Measurement Information

    NASA Astrophysics Data System (ADS)

    Zhang, Yagang; Wang, Zengping

    2015-02-01

    In the research of complicated electrical engineering, the emergence of phasor measurement units (PMU) is a landmark event. The establishment and application of wide area measurement system (WAMS) in power system has made widespread and profound influence on the safe and stable operation of complicated power system. In this paper, taking full advantage of wide area synchronous phasor measurement information provided by PMUs, we have carried out precise fault localization based on the principles of maximum posteriori probability (MAP). Large numbers of simulation experiments have confirmed that the results of MAP fault localization are accurate and reliable. Even if there are interferences from white Gaussian stochastic noise, the results from MAP classification are also identical to the actual real situation.

  9. MSAT wide-area fleet management: End-user requirements and applications

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister

    1995-01-01

    MSAT (Mobile SATellite) Services will become a reality in North America in 1995. MSAT will provide wide-area voice, data and fax services to land, marine and aeronautical mobile users anywhere in North America including 200 nautical miles off the coasts and into the Arctic waters. MSAT will also convey GPS position information from mobiles to dispatch centers. One broad application of MSAT is Wide Area Fleet Management (WAFM). This paper defines WAFM, outlines end-user requirements and identifies potential applications of MSAT WAFM. The paper draws from information obtained in several preMSAT WAFM field trials in land, marine and aeronautical mobile environments. The paper concludes with an outline of the potential benefits of MSAT WAFM.

  10. Wide-area Gigabit networking: Los Alamos HIPPI-SONET Gateway

    SciTech Connect

    St. John, W.B.; DuBois, D.H.

    1995-05-01

    This paper describes a HIPPI-SONET Gateway which has been designed by members of the Computer Network Engineering Group at Los Alamos National Laboratory. The Gateway has been used in the CASA Gigabit Testbed at Caltech, Los Alamos National Laboratory, and the San Diego Supercomputer Center to provide communications between the sites. This paper will also make some qualitative statements as to lessons learned during the deployment and maintenance of this wide area network. We report record throughput for transmission of data across a wide area network. We have sustained data rates using the TCP/IP protocol of 550 Mbits/second and the rate of 792 Mbits/second for raw HIPPI data transfer over the 2,000 kilometers from the San Diego Supercomputer Center to the Los Alamos National Laboratory.

  11. Systems for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2011-09-01

    The requirements for a persistent wide-area surveillance system are discussed in the context of evolving military operations. Significant emphasis has been placed on the development of new sensing technologies to meet the challenges posed by asymmetric threats. Within the UK, the Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS DTC) has supported the research and development of new capabilities including radio-frequency (RF) and electro-optic (EO) systems, as well as work on sensor exploitation, with a goal of developing solutions for enhancing situational awareness. This activity has been supported by field trials to determine the efficacy of competing technologies in relation to realistic threat scenarios.

  12. Field and long-term demonstration of a wide area quantum key distribution network.

    PubMed

    Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu

    2014-09-01

    A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes. PMID:25321550

  13. The Wide-area Energy Management System Phase 2 Final Report

    SciTech Connect

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  14. DISTANT EARLY WARNING SYSTEM for Tsunamis - A wide-area and multi-hazard approach

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Lendholt, Matthias; Wächter, Joachim

    2010-05-01

    system and to extend the CCUI with hazard specific functionality. The presentation covers the DEWS project, the system architecture and the CCUI in conjunction with details of information logistics. The DEWS Wide Area Centre connecting national centres to allow the international communication and warning exchange is presented also. REFERENCES: [1] DEWS, www.dews-online.org [2] OGC, www.opengeospatial.org [3] SWE, www.opengeospatial.org/projects/groups/sensorweb [4] Eclipse RCP, www.eclipse.org/home/categories/rcp.php [5] uDig, udig.refractions.net [6] WMS, www.opengeospatial.org/standards/wms [7] WFS, www.opengeospatial.org/standards/wfs [8] WPS, www.opengeospatial.org/standards/wps [9] OASIS, www.oasis-open.org [10] CAP, www.oasis-open.org/specs/#capv1.1 [11] EDXL-DE, www.oasis-open.org/specs/#edxlde-v1.0 [12] SOAP, www.w3.org/TR/soap [13] GITEWS (German Indonesian Tsunami Early Warning System) is a project of the German Federal Government to aid the recon¬struction of the tsunami-prone Indian Ocean region, www.gitews.org [14] The Tsunami Service Bus is the GITEWS sensor system integration platform offering standardised services for the detection and monitoring of tsunamis

  15. Integration of the White Sands Complex into a Wide Area Network

    NASA Technical Reports Server (NTRS)

    Boucher, Phillip Larry; Horan, Sheila, B.

    1996-01-01

    The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.

  16. MPWide: a light-weight library for efficient message passing over wide area networks

    NASA Astrophysics Data System (ADS)

    Groen, D.; Rieder, S.; Portegies Zwart, S.

    2013-12-01

    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation.

  17. ONT High Gain Initiative WRAP (Wide Area Rapid Acoustic Prediction) computational performance section

    SciTech Connect

    McGraw, J.R.; Hedstrom, G.; De Groot, T.

    1990-10-02

    LLNL received a contract during March 1990 to perform three tasks for ONT. This letter report covers Task I which concerned a supercomputing effort in a program termed the High Gain Initiative, which is an anti-submarine (ASW) project that requires substantial computational and signal processing expertise. The core of the computational aspects at the present time is a code called WRAP (Wide Area Rapid Acoustic Prediction). LLNL's objective was to study the WRAP model and determine the feasibility and limits of its optimization. At the present time, the WRAP code runs on a single processor VAX computer.

  18. A framework for activity detection in wide-area motion imagery

    NASA Astrophysics Data System (ADS)

    Porter, Reid; Ruggiero, Christy; Morrison, John D.

    2009-05-01

    As wide-area persistent imaging systems become cost effective, increasingly large areas of the earth can be imaged at relatively high frame rates. Efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and for data mining. Significant progress in image stabilization, moving object detection and tracking, are allowing automated systems to generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, tracking performance at this scale is unreliable, and average track length is much smaller than the average vehicle route. These are limiting factors for applications that depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper, we propose and evaluate a framework for wide-area motion imagery (WAMI) exploitation that minimizes the dependence on track identity. In its current form, this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

  19. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO2 exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10-6 for 445 nm illumination.

  20. Evaluating the role of gigabit speed wide-area networks in remote medical treatment

    NASA Astrophysics Data System (ADS)

    Tohme, Walid G.; Rodgers, James E.; Mun, Seong K.; Freedman, Matthew T.; Hansen, Mark; Cook, Jay F.; Popescu, George; Yun, David Y.; Garcia, Hong-Mei C.

    1995-05-01

    This paper assesses the utility of gigabit speed wide-area networks such as the ACTS (Advanced Communication Technology Satellite) in enabling the delivery of medical expertise and service to remote regions, providing radiation treatment planning with access to supercomputers, and conducting workload redistribution. The first part of this multi- institutional effort between the University of Hawaii, Georgetown University Medical Center (GUMC) and the Ohio Supercomputer Center (OSC) uses a T1-VSAT (very small aperture terminal) for transmitting teleradiology images. The second part of the project uses high data rate (HDR) communications through the ACTS satellite at OC-3 transmission speeds (155 Mbps). This allows 3-D volume rendering of radiation therapy planning images between GUMC and OSC as well as the transmission of high-volume teleradiology loads between Tripler Army Medical Center (TAMC) and GUMC. It is shown that while the bandwidth required to perform 3D interactive radiation treatment planning is around 300 Mbps, OC-3 rates can be adequate. Another important application is workload redistribution either for hospitals that need to reroute a certain percentage of their workload to other institutions of the same magnitude but with different subspecialties or for peak workload leveling. This paper shows that gigabit speed wide area networks such as the ACTS-HDR network are required in order to achieve effective remote treatment planning as well as high volume teleradiology for workload redistribution.

  1. A framework for activity detection in wide-area motion imagery

    SciTech Connect

    Porter, Reid B; Ruggiero, Christy E; Morrison, Jack D

    2009-01-01

    Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

  2. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  3. Standoff detection of bioaerosols over wide area using a newly developed sensor combining a cloud mapper and a spectrometric LIF lidar

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Simard, Jean-Robert; Roy, Gilles; Lahaie, Pierre; Nadeau, Denis; Mathieu, Pierre

    2013-10-01

    A standoff sensor called BioSense was developed to demonstrate the capacity to map, track and classify bioaerosol clouds from a distant range and over wide area. The concept of the system is based on a two steps dynamic surveillance: 1) cloud detection using an infrared (IR) scanning cloud mapper and 2) cloud classification based on a staring ultraviolet (UV) Laser Induced Fluorescence (LIF) interrogation. The system can be operated either in an automatic surveillance mode or using manual intervention. The automatic surveillance operation includes several steps: mission planning, sensor deployment, background monitoring, surveillance, cloud detection, classification and finally alarm generation based on the classification result. One of the main challenges is the classification step which relies on a spectrally resolved UV LIF signature library. The construction of this library relies currently on in-chamber releases of various materials that are simultaneously characterized with the standoff sensor and referenced with point sensors such as Aerodynamic Particle Sizer® (APS). The system was tested at three different locations in order to evaluate its capacity to operate in diverse types of surroundings and various environmental conditions. The system showed generally good performances even though the troubleshooting of the system was not completed before initiating the Test and Evaluation (T&E) process. The standoff system performances appeared to be highly dependent on the type of challenges, on the climatic conditions and on the period of day. The real-time results combined with the experience acquired during the 2012 T & E allowed to identify future ameliorations and investigation avenues.

  4. Evaluation of replacement protocols and modifications to TCP to enhance ASC Wide Area Network performance.

    SciTech Connect

    Romero, Randy L. Jr.

    2004-09-01

    Historically, TCP/IP has been the protocol suite used to transfer data throughout the Advanced Simulation and Computing (ASC) community. However, TCP was developed many years ago for an environment very different from the ASC Wide Area Network (WAN) of today. There have been numerous publications that hint of better performance if modifications were made to the TCP algorithms or a different protocol was used to transfer data across a high bandwidth, high delay WAN. Since Sandia National Laboratories wants to maximize the ASC WAN performance to support the Thor's Hammer supercomputer, there is strong interest in evaluating modifications to the TCP protocol and in evaluating alternatives to TCP, such as SCTP, to determine if they provide improved performance. Therefore, the goal of this project is to test, evaluate, compare, and report protocol technologies that enhance the performance of the ASC WAN.

  5. TCP/IP optimization over wide area networks: implications for teleradiology.

    PubMed

    Langer, Steve G; French, Todd; Segovis, Colin

    2011-04-01

    Radiology examinations are large. The advent of fast volume imaging is making that statement truer every year. PACS are based on the assumption of fast local networking and just-in-time image pull to the desktop. On the other hand, teleradiology has been developed on a push model to accommodate the challenges of moderate bandwidth, high-latency wide area networks (WANs). Our group faced the challenging task of creating a PACS environment that felt local, while pulling images across a 3,000-mile roundtrip WAN link. Initial tests showed WAN performance lagging local area network (LAN) performance by a factor of 30 times. A 16-month journey of explorations pulled the WAN value down to only 1.5 times slower than the LAN. PMID:20544373

  6. An introduction to Wide Area Augmentation System and its predicted performance

    NASA Astrophysics Data System (ADS)

    El-Arini, M. Bakry; Poor, Walter; Lejeune, Roland; Conker, Robert; Fernow, James; Markin, Kelly

    2001-09-01

    The Federal Aviation Administration is developing a Wide Area Augmentation System (WAAS) to GPS that will broadcast clock, ephemeris, and ionospheric corrections. Aviation user equipment will apply the corrections to GPS measurements and also convert error bounds into the position domain. Flight operations can be conducted using WAAS guidance only when the horizontal, and in some cases also the vertical, position error bound is less than a threshold that depends on the phase of flight. The expected fraction of time that a given flight operation can be conducted is termed its availability. Geomagnetic storms sometimes are accompanied by large spatial and temporal gradients in ionospheric delay that result in an increase in ionospheric and position error bounds, which reduces availability. The paper estimates availability of precision approach operations under various scenarios.

  7. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.

    PubMed

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-01-01

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439

  8. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    PubMed Central

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-01-01

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439

  9. TRANSPORT PLANNING MODEL FOR WIDE AREA RECYCLING SYSTEM OF INDUSTRIAL WASTE PLASTIC

    NASA Astrophysics Data System (ADS)

    Arai, Yasuhiro; Kawamura, Hisashi; Koizumi, Akira; Mogi, Satoshi

    To date, the majority of industrial waste plastic generated in an urban city has been processed into landfill. However, it is now necessary to actively utilize that plastic as a useful resource to create a recycling society with a low environment influence. In order to construct a reasonable recycling system, it is necessary to address the "transportation problem," which means determining how much industrial waste plastic is to be transported to what location. With the goal of eliminating landfill processing, this study considers a transport planning model for industrial waste plastic applying linear programming. The results of running optimized calculations under given scenarios clarified not only the possibilities for recycle processing in the Metropolitan area, but also the validity of wide area recycling system.

  10. High-speed wide area, data intensive computing: A Ten Year Retrospective

    SciTech Connect

    Johnston, William E.

    1998-05-01

    Modern scientific computing involves organizing, moving, visualizing, and analyzing massive amounts of data from around the world, as well as employing large-scale computation. The distributed systems that solve large-scale problems will always involve aggregating and scheduling many resources. Data must be located and staged, cache and network capacity must be available at the same time as computing capacity, etc. Every aspect of such a system is dynamic: locating and scheduling resources, adapting running application systems to availability and congestion in the middleware and infrastructure, responding to human interaction, etc. The technologies, the middleware services, and the architectures that are used to build useful high-speed, wide area distributed systems, constitute the field of data intensive computing. This paper explores some of the history and future directions of that field.

  11. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    NASA Astrophysics Data System (ADS)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  12. Analysis of the congestion effects of link failures in wide area networks

    NASA Astrophysics Data System (ADS)

    Tipper, David; Hammond, Joseph L.; Sharma, Sandeep; Khetan, Archana; Balakrishnan, Krishnan; Menon, Sunil

    1994-01-01

    In this paper, we present the results of a study to determine the effects of link failures on the performance of a network in terms of the occurrence of congestion due to traffic restoration after a failure. The network studied is a virtual circuit based packet switched wide area network. A generic queueing framework is developed to study the effect of failures and the subsequent traffic restoration on network performance. In general, the congestion resulting after a failure is a transient phenomenon. Hence, a numerical methods based nonstationary queueing analysis is conducted in order to quantify the effects of failures in terms of the transient behavior of queue lengths and packet loss probabilities. A bounding relationship is developed whereby a network node can determine whether or not congestion will occur as the result of traffic restoration after a failure.

  13. Wide-area Power System Oscillation Damping using Model Predictive Control Technique

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek Hassan; Abdel-Rahim, Abdel-Moamen Mohammed; Hassan, Ahmed Abd-Eltawwab; Hiyama, Takashi

    This paper presents a new approach to deal with the problem of robust tuning of power system stabilizer (PSS) and automatic voltage regulator (AVR) in multi-machine power systems. The proposed method is based on a model predictive control (MPC) technique, for improvement stability of the wide-area power system with multiple generators and distribution systems including dispersed generations. The proposed method provides better damping of power system oscillations under small and large disturbances even with the inclusion of local PSSs. The effectiveness of the proposed approach is demonstrated through a two areas, four machines power system. A performance comparison between the proposed controller and some of other controllers is carried out confirming the superiority of the proposed technique. It has also been observed that the proposed algorithm can be successfully applied to larger multiarea power systems and do not suffer with computational difficulties. The proposed algorithm carried out using MATLAB/SIMULINK software package.

  14. Generation and control of wide area, homogenous atmospheric pressure discharges for industrial coating applications.

    NASA Astrophysics Data System (ADS)

    Hynes, Alan; Walter, Castagna; Carr, Kieran; O'Shea, Sean; Herbert, Tony

    2004-09-01

    Dow Corning Plasma Solutions use diffuse atmospheric pressure plasma technology combined with a unique precursor delivery system for a new coatings approach: Atmospheric Pressure Plasma Liquid Deposition. Operating at atmospheric pressure and ambient temperature this process allows the use of a wide range of liquid precursors delivering high chemical functionality onto flexible substrates. Patented APPLD equipment enables plasma deposition onto wide area substrates up to 1.6m width in true reel-to-reel conditions at industrial line speeds up to 30m/min. Substrates can be either electrically insulating or conducting. Recent engineering developments addressing issues in electrode design, liquid delivery and gas retention and distribution, have significantly enhanced the stability and homogeneity of the plasma chemistry and coating performance. The process is controlled through monitoring and control of key plasma chemistry and process parameters. The process hardware and process control package will be described in detail with particular emphasis on plasma chemistry and process control tools.

  15. The High Performance and Wide Area Analysis and Mining of Scientific & Engineering Data

    SciTech Connect

    Grossman, R.

    2002-12-01

    This final report summarizes our accomplishments and findings and includes recent publications occurring in the final period of this award. One of our research goals was to develop algorithms and services for remote data analysis and distributed data mining which scaled from the commodity internet to high performance networks. When we began the project there was no effective mechanisms to achieve high end to end performance for data intensive applications over wide area, high bandwidth networks. For this reason, we developed algorithms and services for Layers 2,3, and 4 in the simple data web application stack below. We describe our research accomplishments for each of these layers in turn: Layer 4--Data Web Applications; Layer 3--Data Web Services; Layer 2--Network Protocol Services; Layer 1--IP.

  16. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network

    NASA Astrophysics Data System (ADS)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  17. SURVEILLANCE REPORTS

    EPA Science Inventory

    Surveillance reports are designed to provide useful data to researchers, planners, policymakers, and other professionals interested in alcohol abuse and its associated illnesses and mortality. Other surveillance report topics include apparent per capita consumption of alcoholic b...

  18. Teleconsultation via a wide area network in real time and by electronic mail

    NASA Astrophysics Data System (ADS)

    Jiang, Zhimei; Chao, John T.; Chao, Woodrew; Chang, Kevin; Ho, Bruce K. T.

    1995-05-01

    A teleradiology system is severely limited in bandwidth compared to a departmental PACS. Therefore it must depend on innovative tools to allow efficient communication between the subspecialty radiologist and the referring physician at a remote site. Real time teleconsultation allows two parties to converse while viewing identical images and performing same image processing functions on them. By using an efficient protocol, the framing information for synchronizing the cursor, image layout and image processing functions can be transmitted with subsecond delay over a narrow bandwidth wide area network. For situations involving large time zone differences, an asynchronous communication using electronic mail may be appropriate. In this case, the synchronization of cursor motion and voice is preserved by the time-stamps in electronic mail messages. Multimedia capabilities including digitized voice, report formatting and electronic mailing must be integrated into a single application software that is easy to use by radiologists participating in the consultation session. Real time interaction can be implemented easily using standard modem connections. The protocol ensures that only key information for synchronization is sent to the other station in order to achieve the high speed required. Electronic mail and report formatting capabilities are integrated by using off-the-shelf multimedia software libraries. The system we are developing is on the Windows NT environment using Microsoft Foundation Classes. The same idea is applicable to the UNIX system as well. This paper shows that the real time and asynchronous teleconsultation can be achieved using standard computer hardware, software, and software development tools.

  19. The wide area retrievals of temperature in life space from multi-data set fusion

    NASA Astrophysics Data System (ADS)

    Han, D. Y.

    2014-05-01

    Heat wave is one of the phenomena stemmed from abnormal climate caused by climate change. This phenomenon which occurs strongly and frequently worldwide has been threatening the heath-vulnerable classes in the urban and suburb area. To reduce the damage from the heat wave, the current research attempts to perform data assimilation between highresolution images and ground observation data based on middle infra-red satellite imagery. We use an integrated approach involving compilation of both spatial and non-spatial data from government agencies and institutions, application of spatial and temporal analyses using remote sensing data. The near real-time temperature retrievals of selected areas are performed and analyzed using thermal data from COMS, Landsat, and in-situ data. And, the computational complexity and storage were discussed. Seven major land-use categories (Built-up, Road, Agriculture (green house, paddy fields, and dry fields), Field of construction work, Vegetation (forests), Wasteland and Water bodies) frequently are used in Korea. The four land-uses were selected as the most strongly areas affected by heat waves according to the survey of National Emergency Management Agency. In the future, we will estimate the precise wide area temperature of life space and promote the application of the heat/health watch/warning system.

  20. Efficient feature extraction from wide-area motion imagery by MapReduce in Hadoop

    NASA Astrophysics Data System (ADS)

    Cheng, Erkang; Ma, Liya; Blaisse, Adam; Blasch, Erik; Sheaff, Carolyn; Chen, Genshe; Wu, Jie; Ling, Haibin

    2014-06-01

    Wide-Area Motion Imagery (WAMI) feature extraction is important for applications such as target tracking, traffic management and accident discovery. With the increasing amount of WAMI collections and feature extraction from the data, a scalable framework is needed to handle the large amount of information. Cloud computing is one of the approaches recently applied in large scale or big data. In this paper, MapReduce in Hadoop is investigated for large scale feature extraction tasks for WAMI. Specifically, a large dataset of WAMI images is divided into several splits. Each split has a small subset of WAMI images. The feature extractions of WAMI images in each split are distributed to slave nodes in the Hadoop system. Feature extraction of each image is performed individually in the assigned slave node. Finally, the feature extraction results are sent to the Hadoop File System (HDFS) to aggregate the feature information over the collected imagery. Experiments of feature extraction with and without MapReduce are conducted to illustrate the effectiveness of our proposed Cloud-Enabled WAMI Exploitation (CAWE) approach.

  1. Fast Scene Recognition and Camera Relocalisation for Wide Area Augmented Reality Systems

    PubMed Central

    Guan, Tao; Duan, Liya; Chen, Yongjian; Yu, Junqing

    2010-01-01

    This paper focuses on online scene learning and fast camera relocalisation which are two key problems currently limiting the performance of wide area augmented reality systems. Firstly, we propose to use adaptive random trees to deal with the online scene learning problem. The algorithm can provide more accurate recognition rates than traditional methods, especially with large scale workspaces. Secondly, we use the enhanced PROSAC algorithm to obtain a fast camera relocalisation method. Compared with traditional algorithms, our method can significantly reduce the computation complexity, which facilitates to a large degree the process of online camera relocalisation. Finally, we implement our algorithms in a multithreaded manner by using a parallel-computing scheme. Camera tracking, scene mapping, scene learning and relocalisation are separated into four threads by using multi-CPU hardware architecture. While providing real-time tracking performance, the resulting system also possesses the ability to track multiple maps simultaneously. Some experiments have been conducted to demonstrate the validity of our methods. PMID:22219700

  2. Fast scene recognition and camera relocalisation for wide area augmented reality systems.

    PubMed

    Guan, Tao; Duan, Liya; Chen, Yongjian; Yu, Junqing

    2010-01-01

    This paper focuses on online scene learning and fast camera relocalisation which are two key problems currently limiting the performance of wide area augmented reality systems. Firstly, we propose to use adaptive random trees to deal with the online scene learning problem. The algorithm can provide more accurate recognition rates than traditional methods, especially with large scale workspaces. Secondly, we use the enhanced PROSAC algorithm to obtain a fast camera relocalisation method. Compared with traditional algorithms, our method can significantly reduce the computation complexity, which facilitates to a large degree the process of online camera relocalisation. Finally, we implement our algorithms in a multithreaded manner by using a parallel-computing scheme. Camera tracking, scene mapping, scene learning and relocalisation are separated into four threads by using multi-CPU hardware architecture. While providing real-time tracking performance, the resulting system also possesses the ability to track multiple maps simultaneously. Some experiments have been conducted to demonstrate the validity of our methods. PMID:22219700

  3. Blanket illumination vs scanned-mosaicking imaging schemes for wide-area photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Barber, Quinn; Harrison, Tyler; Zemp, Roger J.

    2015-03-01

    We compare scanned-mosaicking and blanket illumination schemes for wide-field photoacoustic tomography with potential applications to breast imaging. For each illumination, a locally high-SNR image patch is reconstructed then mosaicked with image patches from other illuminations. Because the beam is not diffused over the entire area, the fluence of the beam can be maximized, therefore maximizing the signal generated. Moreover, the imaging can potentially still be done fast enough within a breath-hold. A Monte Carlo simulation as a function of beam-spot size and depth is performed to quantify this signal gain. We experimentally test both schemes using a 256-element Imasonic ring array on a tissue-mimicking phantom. We were able to verify the simulated signal gain of 2.9x under 0.5 cm of tissue with the experimental data, and measured the signal gain decrease expected when imaging deeper into the tissue. We also measured the effectiveness of averaging the diffused beam versus the scanned-mosaicking approach, and observed that for the same scan times and limited laser power output, scanned-mosaicking was able to produce a higher SNR than the blanket illumination approach. We have shown that this technique will allow wide-area PAT to utilize the maximum SNR available from any system while minimizing the number of acquisitions to reach this SNR.

  4. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  5. Wide-Area Mapping of 155 Micron Continuum Emission from the Orion Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Arimura, Seikoh; Shibai, Hiroshi; Teshima, Takafumi; Nakagawa, Takao; Narita, Masanao; Makiuti, Shin'itirou; Doi, Yasuo; Verma, Ram Prakash; Ghosh, Swarna Kanti; Rengarajan, Thinnian Naganathan; Tanaka, Makoto; Okuda, Haruyuki

    2004-02-01

    We present the results of a wide-area mapping of the far-infrared continuum emission toward the Orion complex by using a Japanese balloon-borne telescope. The 155-μm continuum emission was detected over a region of 1.5 deg2 around the KL nebula with 3‧ resolution similar to that of the IRAS 100-μm map. Assuming a single-temperature model of the thermal equilibrium dust, maps of the temperature and the optical thickness were derived from the 155-μm intensity and the IRAS 100-μm intensity. The derived dust temperature is 5-15K lower and the derived dust optical depth is 5-300 times larger than those derived from the IRAS 60 and 100-μm intensities due to the significant contribution of the statistically heated very small grains to the IRAS 60-μm intensity. The optical-thickness distribution shows a filamentary dust ridge that has a 1°.5 extent in the north-south direction and well resembles the Integral-Shaped Filament (ISF) molecular gas distribution. The gas-to-dust ratio derived from the CO molecular gas distribution along the ISF is in the range 30-200, which may be interpreted as being an effect of CO depletion due to the photodissociation and/or the freezing on dust grains.

  6. The Wide-Area X-ray Survey in the Legacy Stripe 82 Field

    NASA Astrophysics Data System (ADS)

    LaMassa, S.; Urry, M.; Cappelluti, N.; Comastri, A.; Glikman, E.; Richards, G.; B"ohringer, H.

    2016-06-01

    We are carrying out a wide-area X-ray survey in the Sloan Digital Sky Survey Stripe 82 field to uncover how luminous, obscured AGN evolve over cosmic time and the role they play in galaxy evolution. Stripe 82 is a legacy field with a high level of spectroscopic completeness and rich multi-wavelength coverage from the ultraviolet to far-infrared, including Spitzer and Herschel imaging. Our Stripe 82X survey currently reaches 31 deg^{2}, with ˜6200 X-ray point sources detected at ≥5σ level. I will review the characteristics of this survey, on-going programs to target obscured AGN candidates, and how we can use the lessons learned from the synergistic multi-wavelength coverage to develop strategic plans for future surveys and missions. Finally, I will comment on how extending the Stripe 82X survey area to 100 deg^{2} will provide unprecedented insight into the high-L (Lx > 10^{45} erg/s), high-z (z > 2) AGN population.

  7. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  8. Design considerations for wide-area distribution of digital x-ray images

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Berman, Lewis E.; Thoma, George R.

    1993-09-01

    The increasing backbone speeds of Wide Area Networks, along with the growing numbers of users of these networks, have created an opportunity for the development of remotely accessible and highly data-intensive digital libraries. The National Library of Medicine is building a prototype system for the storage of several thousand digital x-ray images, while providing remote access to these images across the Internet. This paper discusses the design factors analyzed for this system, and presents performance statistics collected. The design factors considered include: network protocol selection, endpoint tuning of protocol, image compression, and application data handling. Research toward application data handling includes plans to stage groups of images from an optical archive to memory for the efficient transmission of large numbers of images. To maximize image data transmission speed, experimental protocols are being studied as alternatives to TCP/IP. TCP overhead processing is being researched, and approaches to tuning TCP performance for transmission of large image files are being analyzed. To minimize the storage capacity required and to decrease transmission time, lossy compression techniques are being considered. Research is proceeding toward the selection of a compression technique and optimum compression ratio consistent with the image quality required to produce standardized readings.

  9. Using wide area differential GPS to improve total system error for precision flight operations

    NASA Astrophysics Data System (ADS)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  10. Discrete-event simulation of a wide-area health care network.

    PubMed Central

    McDaniel, J G

    1995-01-01

    OBJECTIVE: Predict the behavior and estimate the telecommunication cost of a wide-area message store-and-forward network for health care providers that uses the telephone system. DESIGN: A tool with which to perform large-scale discrete-event simulations was developed. Network models for star and mesh topologies were constructed to analyze the differences in performances and telecommunication costs. The distribution of nodes in the network models approximates the distribution of physicians, hospitals, medical labs, and insurers in the Province of Saskatchewan, Canada. Modeling parameters were based on measurements taken from a prototype telephone network and a survey conducted at two medical clinics. Simulation studies were conducted for both topologies. RESULTS: For either topology, the telecommunication cost of a network in Saskatchewan is projected to be less than $100 (Canadian) per month per node. The estimated telecommunication cost of the star topology is approximately half that of the mesh. Simulations predict that a mean end-to-end message delivery time of two hours or less is achievable at this cost. A doubling of the data volume results in an increase of less than 50% in the mean end-to-end message transfer time. CONCLUSION: The simulation models provided an estimate of network performance and telecommunication cost in a specific Canadian province. At the expected operating point, network performance appeared to be relatively insensitive to increases in data volume. Similar results might be anticipated in other rural states and provinces in North America where a telephone-based network is desired. PMID:7583646

  11. Fully polarimetric passive W-band millimeter wave imager for wide area search

    NASA Astrophysics Data System (ADS)

    Tedeschi, Jonathan; Bernacki, Bruce; Sheen, Dave; Kelly, Jim; McMakin, Doug

    2013-09-01

    We describe the design and phenomenology imaging results of a fully polarimetric W-band millimeter wave (MMW) radiometer developed by Pacific Northwest National Laboratory for wide-area search. Operating from 92-94 GHz, the W-band radiometer employs a Dicke switching heterodyne design isolating the horizontal and vertical mm-wave components with 40 dB of polarization isolation. Design results are presented for both infinite conjugate off-axis parabolic and finite conjugate off-axis elliptical fore-optics using optical ray tracing and diffraction calculations. The received linear polarizations are down-converted to a microwave frequency band and recombined in a phase-shifting network to produce all six orthogonal polarization states of light simultaneously, which are used to calculate the Stokes parameters for display and analysis. The resulting system performance produces a heterodyne receiver noise equivalent delta temperature (NEDT) of less than 150m Kelvin. The radiometer provides novel imaging capability by producing all four of the Stokes parameters of light, which are used to create imagery based on the polarization states associated with unique scattering geometries and their interaction with the down welling MMW energy. The polarization states can be exploited in such a way that man-made objects can be located and highlighted in a cluttered scene using methods such as image comparison, color encoding of Stokes parameters, multivariate image analysis, and image fusion with visible and infrared imagery. We also present initial results using a differential imaging approach used to highlight polarization features and reduce common-mode noise. Persistent monitoring of a scene using the polarimetric passive mm-wave technique shows great promise for anomaly detection caused by human activity.

  12. Internet-based wide area measurement applications in deregulated power systems

    NASA Astrophysics Data System (ADS)

    Khatib, Abdel-Rahman Amin

    Since the deregulation of power systems was started in 1989 in the UK, many countries have been motivated to undergo deregulation. The United State started deregulation in the energy sector in California back in 1996. Since that time many other states have also started the deregulation procedures in different utilities. Most of the deregulation market in the United States now is in the wholesale market area, however, the retail market is still undergoing changes. Deregulation has many impacts on power system network operation and control. The number of power transactions among the utilities has increased and many Independent Power Producers (IPPs) now have a rich market for competition especially in the green power market. The Federal Energy Regulatory Commission (FERC) called upon utilities to develop the Regional Transmission Organization (RTO). The RTO is a step toward the national transmission grid. RTO is an independent entity that will operate the transmission system in a large region. The main goal of forming RTOs is to increase the operation efficiency of the power network under the impact of the deregulated market. The objective of this work is to study Internet based Wide Area Information Sharing (WAIS) applications in the deregulated power system. The study is the first step toward building a national transmission grid picture using information sharing among utilities. Two main topics are covered as applications for the WAIS in the deregulated power system, state estimation and Total Transfer Capability (TTC) calculations. As a first step for building this national transmission grid picture, WAIS and the level of information sharing of the state estimation calculations have been discussed. WAIS impacts to the TTC calculations are also covered. A new technique to update the TTC using on line measurements based on WAIS created by sharing state estimation is presented.

  13. Positional accuracy of the Wide Area Augmentation System in consumer-grade GPS units

    NASA Astrophysics Data System (ADS)

    Arnold, Lisa L.; Zandbergen, Paul A.

    2011-07-01

    Global Positioning System devices are increasingly being used for data collection in many fields. Consumer-grade GPS units without differential correction have a published horizontal positional accuracy of approximately 10-15 m (average positional accuracy). An attractive option for differential correction for these GPS units is the Wide Area Augmentation System (WAAS). Most consumer-grade GPS units on the market are WAAS capable. According to the Federal Aviation Authority (FAA), the WAAS broadcast message provides integrity information about the GPS signal as well as accuracy improvements, which are reported to improve accuracy to 3-5 m. Limited empirical evidence has been published on the accuracy of WAAS-enabled GPS compared to autonomous GPS. An empirical study was conducted comparing the horizontal and vertical accuracy of WAAS-corrected GPS and autonomous GPS under ideal conditions using consumer-grade receivers. Data were collected for 30-min time spans over accurately surveyed control points. Metrics of median, 68th and 95th percentile, Root Mean Squared Error (RMSE), and average positional accuracy in the horizontal and vertical dimensions were computed and statistically compared. No statistically significant difference was found between WAAS and autonomous position fixes when using two different consumer-grade units. When using WAAS, a third unit type exhibited a statistically significant improvement in positional accuracy. Analysis of data collected for a 27-h time span indicates that while WAAS is altering the estimated position of a point compared to an autonomous position estimate, WAAS augmentation actually appears to decrease the positional accuracy.

  14. Vehicle tracking in wide area motion imagery from an airborne platform

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; van Huis, Jasper R.; Eendebak, Pieter T.; Baan, Jan

    2015-10-01

    Airborne platforms, such as UAV's, with Wide Area Motion Imagery (WAMI) sensors can cover multiple square kilometers and produce large amounts of video data. Analyzing all data for information need purposes becomes increasingly labor-intensive for an image analyst. Furthermore, the capacity of the datalink in operational areas may be inadequate to transfer all data to the ground station. Automatic detection and tracking of people and vehicles enables to send only the most relevant footage to the ground station and assists the image analysts in effective data searches. In this paper, we propose a method for detecting and tracking vehicles in high-resolution WAMI images from a moving airborne platform. For the vehicle detection we use a cascaded set of classifiers, using an Adaboost training algorithm on Haar features. This detector works on individual images and therefore does not depend on image motion stabilization. For the vehicle tracking we use a local template matching algorithm. This approach has two advantages. In the first place, it does not depend on image motion stabilization and it counters the inaccuracy of the GPS data that is embedded in the video data. In the second place, it can find matches when the vehicle detector would miss a certain detection. This results in long tracks even when the imagery is of low frame-rate. In order to minimize false detections, we also integrate height information from a 3D reconstruction that is created from the same images. By using the locations of buildings and roads, we are able to filter out false detections and increase the performance of the tracker. In this paper we show that the vehicle tracks can also be used to detect more complex events, such as traffic jams and fast moving vehicles. This enables the image analyst to do a faster and more effective search of the data.

  15. Fully Polarimetric Passive W-band Millimeter Wave Imager for Wide Area Search

    SciTech Connect

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Sheen, David M.; Kelly, James F.; McMakin, Douglas L.

    2013-09-27

    We describe the design and phenomenology imaging results of a fully polarimetric W-band millimeter wave (MMW) radiometer developed by Pacific Northwest National Laboratory for wide-area search. Operating from 92 - 94 GHz, the W-band radiometer employs a Dicke switching heterodyne design isolating the horizontal and vertical mm-wave components with 40 dB of polarization isolation. Design results are presented for both infinite conjugate off-axis parabolic and finite conjugate off-axis elliptical fore-optics using optical ray tracing and diffraction calculations. The received linear polarizations are down-converted to a microwave frequency band and recombined in a phase-shifting network to produce all six orthogonal polarization states of light simultaneously, which are used to calculate the Stokes parameters for display and analysis. The resulting system performance produces a heterodyne receiver noise equivalent delta temperature (NEDT) of less than 150m Kelvin. The radiometer provides novel imaging capability by producing all four of the Stokes parameters of light, which are used to create imagery based on the polarization states associated with unique scattering geometries and their interaction with the down welling MMW energy. The polarization states can be exploited in such a way that man-made objects can be located and highlighted in a cluttered scene using methods such as image comparison, color encoding of Stokes parameters, multivariate image analysis, and image fusion with visible and infrared imagery. We also present initial results using a differential imaging approach used to highlight polarization features and reduce common-mode noise. Persistent monitoring of a scene using the polarimetric passive mm-wave technique shows great promise for anomaly detection caused by human activity.

  16. Representative environments for reduced estimation time of wide area acoustic performance

    NASA Astrophysics Data System (ADS)

    Fabre, Josette Paquin

    Advances in ocean modeling (Barron et al., 2006) have improved such that ocean forecasts and even ensembles ( e.g., Coelho et al., 2009) representing ocean uncertainty are becoming more widely available. This facilitates nowcasts (current time ocean fields/analyses) and forecasts (predicted ocean fields) of acoustic propagation conditions in the ocean which can greatly improve the planning of acoustic experiments. Modeling of acoustic transmission loss (TL) provides information about how the environment impacts acoustic performance for various systems and system configurations of interest. It is, however, very time consuming to compute acoustic propagation to and from many potential source and receiver locations for multiple locations on an area-wide grid for multiple analysis/forecast times, ensembles and scenarios of interest. Currently, to make such wide area predictions, an area is gridded and acoustic predictions for multiple directions (or radials) at each grid point for a single time period or ensemble, are computed to estimate performance on the grid. This grid generally does not consider the environment and can neglect important environmental acoustic features or can over-compute in areas of environmental acoustic isotropy. This effort develops two methods to pre-examine the area and time frame in terms of the environmental acoustics in order to prescribe an environmentally optimized computational grid that takes advantage of environmental-acoustic similarities and differences to characterize an area, time frame and ensemble with fewer acoustic model predictions and thus less computation time. Such improvement allows for a more thorough characterization of the time frame and area of interest. The first method is based on critical factors in the environment that typically indicate acoustic response, and the second method is based on a more robust full waveguide mode-based description of the environment. Results are shown for the critical factors method and

  17. The Impact of Ionospheric Storms on the Wide Area Augmentation System (WAAS)

    NASA Astrophysics Data System (ADS)

    Walter, T.

    2004-12-01

    In 2003, the FAA commissioned the Wide Area Augmentation System (WAAS). This new navigation system is capable of guiding aircraft to within a few hundred feet of the ground. Although the system accuracy is typically better than 2 m (95% in the vertical direction), there exist rare fault modes that can create errors more than ten times as large. Because these rare faults may be unobservable, the system availability is limited to times when they can be guaranteed to be small. The dominant source of these errors is the ionosphere. The WAAS ground segment consists of 25 dual-frequency reference stations that sample the ionosphere at discrete locations throughout the service volume. The users, however, only have access to a single frequency and cannot estimate the ionosphere directly. The ionospheric delay that they experience must be estimated from the ground station measurements. More importantly, the uncertainty from each estimate must be rigidly bounded as these corrections are part of a safety-of-life system. In addition, the users may be anywhere within the service volume; WAAS needs to protect all possible ray paths based on its discrete samples. The vast majority of the time Total Electron Content (TEC) ionospheric delays are smoothly varying functions of time and space. Given even just a few measurements, the surrounding ionosphere can be predicted accurately for tens of minutes. Unfortunately, this is not always the case. During the last solar peak, several major storms were observed that created highly localized disturbances in the ionosphere. These disturbances are not easily modeled by the low bit rate message format used to communicate to the users. Even worse, they may not be sampled at all by the ground stations. Thus, during such storms users may suffer very large correction errors. WAAS therefore includes three protection factors against this threat: a storm detector, and spatial and temporal threat models. The storm detector is an internal consistency

  18. Wide-area decontamination in an urban environment after radiological dispersion: A review and perspectives.

    PubMed

    Kaminski, Michael D; Lee, Sang Don; Magnuson, Matthew

    2016-03-15

    Nuclear or radiological terrorism in the form of uncontrolled radioactive contamination presents a unique challenge in the field of nuclear decontamination. Potential targets require an immediate decontamination response, or mitigation plan to limit the social and economic impact. To date, experience with urban decontamination of building materials - specifically hard, porous, external surfaces - is limited to nuclear weapon fallout and nuclear reactor accidents. Methods are lacking for performing wide-area decontamination in an urban environment so that in all release scenarios the area may be re-occupied without evaluation and/or restriction. Also lacking is experience in developing mitigation strategies, that is, methods of mitigating contamination and its resultant radiation dose in key areas during the immediate aftermath of an event and after lifesaving operations. To date, the tremendous strategy development effort primarily by the European community has focused on the recovery phase, which extends years beyond the release event. In this review, we summarize the methods and data collected over the past 70 years in the field of hard, external surface decontamination of radionuclide contaminations, with emphasis on methods suitable for response to radiological dispersal devices and their potentially unique physico-chemical characteristics. This review concludes that although a tremendous amount of work has been completed primarily by the European Community (EU) and the United Kingdom (UK), the few studies existing on each technique permit only very preliminary estimates of decontamination factors for various building materials and methods and extrapolation of those values for use in environments outside the EU and UK. This data shortage prevents us from developing an effective and detailed mitigation response plan and remediation effort. Perhaps most importantly, while the data available does include valuable information on the practical aspects of performing

  19. Hierarchical graphical models for simultaneous tracking and recognition in wide-area scenes.

    PubMed

    Nayak, Nandita M; Zhu, Yingying; Chowdhury, Amit K Roy

    2015-07-01

    We present a unified framework to track multiple people, as well localize, and label their activities, in complex long-duration video sequences. To do this, we focus on two aspects: 1) the influence of tracks on the activities performed by the corresponding actors and 2) the structural relationships across activities. We propose a two-level hierarchical graphical model, which learns the relationship between tracks, relationship between tracks, and their corresponding activity segments, as well as the spatiotemporal relationships across activity segments. Such contextual relationships between tracks and activity segments are exploited at both the levels in the hierarchy for increased robustness. An L1-regularized structure learning approach is proposed for this purpose. While it is well known that availability of the labels and locations of activities can help in determining tracks more accurately and vice-versa, most current approaches have dealt with these problems separately. Inspired by research in the area of biological vision, we propose a bidirectional approach that integrates both bottom-up and top-down processing, i.e., bottom-up recognition of activities using computed tracks and top-down computation of tracks using the obtained recognition. We demonstrate our results on the recent and publicly available UCLA and VIRAT data sets consisting of realistic indoor and outdoor surveillance sequences. PMID:25700452

  20. Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs

    NASA Astrophysics Data System (ADS)

    Parraga, N.

    2002-01-01

    Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite

  1. A Statewide Private Microwave Wide Area Network for Real-time Natural Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Williams, M. C.; Kent, G.; Smith, K. D.; Plank, G.; Slater, D.; Torrisi, J.; Presser, R.; Straley, K.

    2013-12-01

    The Nevada Seismological Laboratory (NSL) at the University of Nevada, Reno, operates the Nevada Seismic Network, a collection of ground motion instruments installed throughout Nevada and California, for the purposes of detecting, locating, and notifying the public of earthquakes in the state. To perform these tasks effectively, NSL has designed and built a statewide wireless microwave wide-area network (WAN) in order to receive ground motion data in near real-time. This network consists of radio access points, backhauls, and backbone communication sites transmitting time-series, images, and datalogger diagnostics to our data center servers in Reno. This privately managed communication network greatly reduces the dependence on third-party infrastructure (e.g. commercial cellular networks), and is vital for emergency management response and system uptime. Any individual seismograph or data collection device is networked through a wireless point-to-multipoint connection to a remote access point (AP) using a low-cost radio/routerboard combination. Additional point-to-point connections from AP's to radio backhauls and/or mountaintop backbone sites allow the Data Center in Reno to communicate with and receive data directly from each datalogger. Dataloggers, radios, and routers can be configured using tablets on-site, or via desktop computers at the Data Center. Redundant mountaintop links can be added to the network and facilitate the re-routing of data (similar to a meshed network) in the event of a faulty, failing, or noisy communication site. All routers, radios, and servers, including those at the Data Center, have redundant power and can operate independently in the event of a grid power or public Internet outage. A managed server room at the Data Center processes earthquake data for notifications and acts as a data source for remote users. Consisting of about 500 hosts, and spanning hundreds of miles, this WAN provides network operators access to each router and

  2. The Integration of Voice, Data and Video Services via a Wide Area Network: Technical and Organizational Issues.

    ERIC Educational Resources Information Center

    Baltzer, Jan A.

    1991-01-01

    Maricopa Community College District (Arizona) connects multiple facilities with a digital voice, data, and video wide area network. The network has been achieved through a conscious strategy of managing change and leveraging vendor partnerships. Organizational structure has also evolved, creating new job functions and need for retraining and staff…

  3. Wide-Area Soil Moisture Estimation Using the Propagation of Lightning Generated Low-Frequency Electromagnetic Signals 1977

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface moisture measurements are central to our understanding of the earth’s water system, and are needed to produce accurate model-based weather/climate predictions. Currently, there exists no in-situ network capable of estimating wide-area soil moisture. In this paper, we explore an alterna...

  4. Sensor and algorithm performance of the WAR HORSE hyperspectral sensor during the 2001 Camp Navajo wide-area collect

    NASA Astrophysics Data System (ADS)

    Olchowski, Frederick M.; Hazel, Geoffrey G.; Stellman, Christopher M.

    2002-08-01

    The following paper describes a recent data collection exercise in which the WAR HORSE visible-near-infrared hyperspectral sensor was employed in the collection of wide- area hyperspectral data sets. Two anomaly detection algorithms, Subspace RX (SSRX) ans Gaussian Spectral Clustering (GSC), were used on the data and their performance is discussed.

  5. Estimating wide-area evapotranspiration at multiple scales using optical vegetation index methods

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E.; Jarchow, C.; Barreto-munoz, A.; Didan, K.; Nouri, H.; Anderson, S.; Doody, T.

    2015-12-01

    We provide three examples of remotely sensed evapotranspiration (ET) from our research using optical methods at different spatial scales and applied to (i) urban landscapes, (ii) riparian vegetation in Mexico in response to river flows, and (iii) riparian vegetation in Australia in response to different flood frequencies. In the first example, we will compare ground methods for estimating ET by horticultural plants with scaled estimates of ET using both WV2 NDVI imagery and MODIS EVI which were used to determine water requirements of urban gardens in Adelaide, South Australia. In the second example, we will present the impacts of a 2014 environmental flow, released to the Colorado River delta in Mexico, on vegetation greenness and estimated ET using Landsat and MODIS data. Lastly, we will show the results for scaling sap flow transpiration of Red Gum (Eucalyptus camaldulensis) and associated vegetation along the Murrumbidgee River (a tributary of the River Murray) to MODIS-based estimates of evapotranspiration in the wider riparian reaches along the river. These three applications range in spatial scales from a few hectares for urban gardens, to several thousand hectares for the riparian ecosystem in Mexico, to a regional scale of a hundred thousand hectares for the Red Gum forest in Australia. Remote sensing methods can produce accurate estimates of ET across wide temporal and spatial scales, limited mainly by the accuracy of the ground methods by which they are calibrated and validated.

  6. Poliomyelitis surveillance.

    PubMed

    1998-04-01

    Attention to the 4 poliomyelitis surveillance indicators approved by the International Commission for the Certification of Poliomyelitis Eradication (ICCPE) in 1994, has deteriorated since the Americas were declared free from wild poliovirus. The indicators are designed to measure the performance of health services and the sensitivity of the surveillance system to detect wild poliovirus circulating in the community. Sensitivity is the most important characteristic of the poliomyelitis surveillance system and it is measured by the rate of acute flaccid paralysis (AFP) per 100,000 under age 15 years. As of March 21, 1998, the AFP rate reached its lowest level yet in the Americas, with only Bolivia, Chile, and Honduras presenting an acceptable rate (the analysis does not include the US and Canada). The other countries in the Caribbean region and Latin America had rates under 1 AFP case per 100,000 children under age 15. It follows that only 6% of children under age 15 in the region are currently protected by a sensitive AFP surveillance system. Poliovirus may therefore be circulating silently in the region. Renewed attention must be given to the AFP surveillance indicators. PMID:12321498

  7. MPI on the I-WAY: a wide-area, multimethod implementation of the message passing interface

    SciTech Connect

    Foster, I.; Geisler, J.; Tuecke, S.

    1996-12-31

    High-speed wide-area networks enable innovative applications that integrate geographically distributed computing, database, graphics, and networking resources. The Message Passing Interface (MPI) can be used as a portable, high-performance programming model for such systems. However, the wide-area environment introduces challenging problems for the MPI implementor, because of the heterogeneity of both the underlying physical infrastructure and the authentication and software environment at different sites. In this article, we describe an MPI implementation that incorporates solutions to these problems. This implementation, which was developed for the I-WAY distributed-computing experiment, was constructed by layering MPICH on the Nexus multithreaded runtime system. Nexus provides automatic configuration mechanisms that can be used to select and configure authentication, process creation, and communication mechanisms in heterogeneous systems.

  8. Extended result reading window in lateral flow tests detecting exposure to Onchocerca volvulus: a new technology to improve epidemiological surveillance tools.

    PubMed

    Golden, Allison; Steel, Cathy; Yokobe, Lindsay; Jackson, Emily; Barney, Rebecca; Kubofcik, Joseph; Peck, Roger; Unnasch, Thomas R; Nutman, Thomas B; de los Santos, Tala; Domingo, Gonzalo J

    2013-01-01

    Onchocerciasis is a neglected tropical disease caused by infection with the parasite Onchocerca volvulus (Ov). An estimated 180 million people are at risk for Ov infection, and 37 million people are infected, mostly in Africa. A lateral flow-based assay to detect human IgG4 antibodies to the Ov-specific antigen Ov-16 was developed as a rapid tool to detect exposure to Ov. The test, when performed on 449 sera specimens from patients with microfiladermia and Ov-negative patients, has a sensitivity of 89.1% (95% confidence interval: 86.2%-92.0%), and specificity of 97% (95% confidence interval: 95.4%-98.6%). Because the intended use of the test is for surveillance, it is highly desirable to have a stable, long-lasting result. An extended read window is thus desirable for a high-volume, busy workflow and facilitates post-surveillance quality assurance. The main restriction on achieving an extended read window for this assay was the erythrocyte lysis that can alter the signal-to-noise ratio, especially in those with low IgG4 levels (weak positives). We describe a test housing that incorporates a user-independent feature driven by assay fluid and an expanding wick that detaches the blood separation membrane from the nitrocellulose used in the assay, but before hemolysis occurs. We demonstrated material functionality at extreme operational conditions (37°C, 80% relative humidity) and a read window of a minimum of 70 days. The fluid-driven assay device performs equally as well with whole blood as with plasma, as demonstrated with 100 spiked clinical specimens (with a correlation coefficient of 0.96). We show a novel, inexpensive, and simple approach to actuating the detachment of the blood separation membrane from the nitrocellulose test with no impact on the performance characteristics of the test. PMID:23935960

  9. Modeling the dynamics of backyard chicken flows in traditional trade networks in Thailand: implications for surveillance and control of avian influenza.

    PubMed

    Wiratsudakul, Anuwat; Paul, Mathilde Cécile; Bicout, Dominique Joseph; Tiensin, Thanawat; Triampo, Wannapong; Chalvet-Monfray, Karine

    2014-06-01

    In Southeast Asia, traditional poultry marketing chains have been threatened by epidemics caused by the highly pathogenic avian influenza H5N1 (HPAI H5N1) virus. In Thailand, the trade of live backyard chickens is based on the activities of traders buying chickens from villages and supplying urban markets with chicken meat. This study aims to quantify the flows of chickens traded during a 1-year period in a province of Thailand. A compartmental stochastic dynamic model was constructed to illustrate trade flows of live chickens from villages to slaughterhouses. Live poultry movements present important temporal variations with increased activities during the 15 days preceding the Chinese New Year and, to a lesser extent, other festivals (Qingming Festival, Thai New Year, Hungry Ghost Festival, and International New Year). The average distance of poultry movements ranges from 4 to 25 km, defining a spatial scale for the risk of avian influenza that spread through traditional poultry marketing chains. Some characteristics of traditional poultry networks in Thailand, such as overlapping chicken supply zones, may facilitate disease diffusion over longer distances through combined expansion and relocation processes. This information may be of use in tailoring avian influenza and other emerging infectious poultry disease surveillance and control programs provided that the cost-effectiveness of such scenarios is also evaluated in further studies. PMID:24668078

  10. High-performance image deinterlacing using optical flow and artifact post-processing on GPU/CPU for surveillance and reconnaissance tasks

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2016-05-01

    The necessity to process interlaced images in surveillance, reconnaissance, or further computer vision areas should be a topic of the past. But, for different reasons, it is not. So, there are situations in practice, in which interlaced images have to be processed. Since a lot of algorithms strongly degrade when working with such images directly, a usual method is to double or interpolate image lines in order to discard one of the two enclosed image frames. This is efficient but leads to weak results, in which half of the original information is lost. Alternatively, a lot of valuable computation time has to be spent to solve the highly complex motion compensation task in order to improve the results significantly. In this paper, an efficient algorithm is presented to solve this dilemma. First, the algorithm solves the complex 2-D mapping problem using the best state-of-theart optical flow method that could be found for this purpose. But, of course, for different physical reasons there are regions which cannot properly be handled by optical flow by itself. Therefore, an efficient post-processing method detects and removes remaining artifacts afterwards, which is the main contribution of this paper. This method is based on color interpolation incorporating local image structure. The presented results document the overall performance of the approach with respect to obtained image quality and calculation time. The method is easy to implement and offers a valuable pre-processing for a lot of computer vision tasks.

  11. [Influenza surveillance].

    PubMed

    Bednarska, Karolina; Hallmann-Szelińska, Ewelina; Kondratiuk, Katarzyna; Brydak, Lidia B

    2016-01-01

    Influenza surveillance was established in 1947. From this moment WHO (World Health Organization) has been coordinating international cooperation, with a goal of monitoring influenza virus activity, effective diagnostic of the circulating viruses and informing society about epidemics or pandemics, as well as about emergence of new subtypes of influenza virus type A. Influenza surveillance is an important task, because it enables people to prepare themselves for battle with the virus that is constantly mutating, what leads to circulation of new and often more virulent strains of influenza in human population. As vaccination is the most effective method of fighting the virus, one of the major tasks of GISRS is developing an optimal antigenic composition of the vaccine for the current epidemic season. European Influenza Surveillance Network (EISN) has also developed over the years. EISN is running integrated epidemiological and virological influenza surveillance, to provide appropriate data to public health experts in member countries, to enable them undertaking relevant activities based on the current information about influenza activity. In close cooperation with GISRS and EISN are National Influenza Centres--national institutions designated by the Ministry of Health in each country. PMID:27117107

  12. Wide area sensor network

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren

    2006-05-01

    The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the system include each node being assigned a health-effect based risk factor. By connecting the nodes on a particular measured isopleth one can define the plume accurately. Radon counts will be provided and used to calculate the alpha counts. The radiological data collected will also be of value under routine conditions, in the absence of a radiological threat, to provide a detailed map of radiation background in the urban environment and complement predictive models of radiation transport. The data can be transferred to the National Atmospheric Release Advisory Center (NARAC) to augment its predictive model, thereby increasing its fidelity. Initially, as a proof of concept, a few nodes will be built for the purpose of demonstrating the concept.

  13. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  14. Building 2D wide-area site models from single- and multipass single-polarization SAR data

    NASA Astrophysics Data System (ADS)

    Kuttikkad, Shyam; Chellappa, Rama; Novak, Leslie M.

    1996-06-01

    Wide area site models are useful for delineating regions of interest and assisting in tasks like monitoring and change detection. They are also useful in registering a newly acquired image to an existing one of the same site, or to a map. This paper presents an algorithm for building a 2D wide area site model from high resolution, single polarization synthetic aperture radar (SAR) data. A three stage algorithm, involving detection of bright pixels, statistical segmentation of the data into homogeneous regions, and labeling/validation of segmentation results, is used for this task. Constant false alarm rate (CFAR) detectors are used for detecting bright pixels. Under assumptions of a suitable model for the statistical distribution of single polarization intensity or complex data, maximum likelihood labeling is used for initial segmentation. Knowledge of the acquisition parameters and other geometric cues are used to refine the initial segmentation and to extract man-made objects like buildings, and their shadows, as well as roads, from these images. When data from multiple passes of the same site is available, site models yield feature points which can be used to register the different images. In case complete information regarding the radar location, heading, and depression angle are available, the multiple views can be registered prior to site model construction, leading to improved performance. Site models are also useful for SAR data compression, where possible targets, man-made objects, and their neighborhoods are compressed losslessly and the background regions are compressed using lossy schemes.

  15. The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system

    SciTech Connect

    Mittelstadt, W.A.; Hauer, J.F.; Krause, P.E.; Wilson, R.E.; Overholt, P.N.; Rizy, D.T.

    1995-12-31

    In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

  16. Evaluation of a long-endurance-surveillance remotely-piloted vehicle with and without laminar flow control

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Price, J. E.; Quartero, C. B.; Washburn, S. F.

    1979-01-01

    Two aircraft were evaluated, using a derated TF34-GE-100 turbofan engine one with laminar flow control (LFC) and one without. The mission of the remotely piloted vehicles (RPV) is one of high-altitude loiter at maximum endurance. With the LFC system maximum mission time increased by 6.7 percent, L/D in the loiter phase improved 14.2 percent, and the minimum parasite drag of the wing was reduced by 65 percent resulting in a 37 percent reduction for the total airplane. Except for the minimum parasite drag of the wing, the preceding benefits include the offsetting effects of weight increase, suction power requirements, and drag of the wing-mounted suction pods. In a supplementary study using a scaled-down, rather than derated, version of the engine, on the LFC configuration, a 17.6 percent increase in mission time over the airplane without LFC and an incremental time increase of 10.2 percent over the LFC airplane with derated engine were attained. This improvement was due principally to reductions in both weight and drag of the scaled engine.

  17. A GIS-assisted approach to wide-area wind resource assessment and site selection for the state of Colorado

    SciTech Connect

    Brower, M.C.; Hurley, P.; Simon, R.

    1996-12-31

    This paper describes the methodology and results of a wide-area wind resource assessment and site selection in Colorado. This was the first phase in a three-part assessment and monitoring program conducted for the State of Colorado Office of Energy Conservation and several collaborating utilities. The objective of this phase was to identify up to 20 candidate sites for evaluation and possible long-term monitoring. This was accomplished using a geographic information system (GIS), which takes into account such factors as topography, existing wind resource data, locations of transmission lines, land cover, and land use. The resulting list of sites recommended for evaluation in Phase 2 of the study includes locations throughout Colorado, but most are in the eastern plains. The GIS wind siting model may be modified and updated in the future as additional information becomes available. 3 figs., 1 tab.

  18. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    PubMed

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  19. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment

    PubMed Central

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2013-01-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  20. Sandia`s network for Supercomputer `96: Linking supercomputers in a wide area Asynchronous Transfer Mode (ATM) network

    SciTech Connect

    Pratt, T.J.; Martinez, L.G.; Vahle, M.O.

    1997-04-01

    The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At Supercomputing 96, for the first time, Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory combined their Supercomputing 96 activities within a single research booth under the ASO banner. Sandia provided the network design and coordinated the networking activities within the booth. At Supercomputing 96, Sandia elected: to demonstrate wide area network connected Massively Parallel Processors, to demonstrate the functionality and capability of Sandia`s new edge architecture, to demonstrate inter-continental collaboration tools, and to demonstrate ATM video capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia`s overall strategies in ATM networking.

  1. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    NASA Astrophysics Data System (ADS)

    Giuntini, L.; Massi, M.; Calusi, S.; Castelli, L.; Carraresi, L.; Fedi, M. E.; Gelli, N.; Liccioli, L.; Mandò, P. A.; Mazzinghi, A.; Palla, L.; Romano, F. P.; Ruberto, C.; Taccetti, F.

    2015-04-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm2), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported.

  2. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system

    SciTech Connect

    Mittelstadt, W.A.; Krause, P.E.; Wilson, R.E.; Overholt, P.N.; Sobajic, D.J.; Hauer, J.F.; Rizy, D.T.

    1996-07-01

    In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

  3. Off-axis sparse aperture imaging using phase optimization techniques for application in wide-area imaging systems.

    PubMed

    Mahalanobis, Abhijit; Neifeld, Mark; Bhagavatula, Vijaya Kumar; Haberfelde, Thomas; Brady, David

    2009-10-01

    Sparse apertures find imaging applications in diverse fields such as astronomy and medicine. We are motivated by the design of a wide-area imaging system where sparse apertures can be used to construct novel and efficient optical designs. Specifically, we investigate the use of sparse apertures for off-axis imaging at infrared wavelengths while combating the effects of chromaticity to preserve resolution. In principle, several such sparse apertures can be interleaved within a common aperture to simultaneously image in multiple directions. This can ultimately lead to the design of wide-area imaging systems that require considerably less optical and electronic hardware. The resolution achievable using a sparse aperture is the same as that of a fully open aperture. In the case of off-axis imaging, however, the point spread function (PSF) introduces a blur due to chromaticity that degrades the resolution of the system. Of course, the blur can be eliminated by imaging at a single wavelength. However the signal-to-noise ratio (SNR) is poor, which ultimately degrades image quality. To improve SNR, it is necessary to widen the band of wavelengths, which of course degrades resolution due to chromaticity. Hence there is a fundamental trade between the SNR and the resolution as a function of bandwidth. We show that by using a combination of microprisms and phase optimized micropistons it is possible to reduce the chromatic blur over a band of wavelengths and improve the PSF considerably to restore the resolution of the image. The concepts are validated by means of simulations and verified with experimental data to demonstrate the advantages of phase optimized micropistons in off-axis sparse aperture imaging systems. PMID:19798359

  4. Hughes aircraft's architectural design of the federal aviation administration wide-area augmentation system: An international system

    NASA Astrophysics Data System (ADS)

    Ceva, Juan

    Hughes Aircraft is currently developing under contract with the Federal Aviation Administration (FAA) a GPS-based navigation system that is intended to become the primary navigational aid for commercial aviation during all phases of flight—from enroute through Category I precision approach. This innovative system, named the Wide-Area Augmentation System (WAAS), will make use of a network of reference stations distributed throughout the U.S. National Airspace System. These reference stations will collect GPS measurements and send them to master stations. The master stations will process the data to provide correctional information for each GPS satellite. This information will include as separate components the GPS ephemeris errors, satellite clock bias and ionospheric estimation data. The corrections will be sent to the users by means of a Geosynchronous Earth Orbit (GEO) satellite using a specific signal and data format. WAAS is first expected to provide supplemental radio navigation, and eventually to become the primary system of navigation. The system will add the following features to the current GPS system: a GEO ranging function that will improve availability and reliability; differential GPS corrections that will improve accuracy; and integrity monitoring that will provide and enhance safety. To meet the requirements associated with a primary navigation system, WAAS should be able to provide fault-free position fix with a time availability of 0.999 for Category I approaches, and 0.99999 for domestic enroute, terminal and nonprecision approach phases of flight. This paper presents the improvements that this augmentation system offers to stand-alone GPS in order to become the primary navigational system in the U.S. The paper also covers the features that make this wide-area system a naturally expandable system worldwide that will allow the integration of future local-area differential systems across the world.

  5. Information surveillance

    NASA Astrophysics Data System (ADS)

    Seiders, Barbara; McQuerry, Dennis; Ferryman, Thomas A.; Whitney, Paul D.; Rybka, Anthony

    2002-07-01

    Biological weapons are within reach of individuals, small groups, terrorist organizations, as well as nations. With pervasive integration of civilian and military populations worldwide, the ill winds of biological warfare stand to affect military troops and civilians alike. A variety of technologies are emerging - such as pathogen detection devices, streaming internet characterization tools, information exploitation techniques, automated feature extraction, and ubiquitous wireless communication - that can help. These technologies, if taken together within an integrated analytical framework, could make possible the monitoring of diverse parameters that may indicate a change in the state of health of a given population - either the emergence of a naturally occurring disease or the outbreak of a disease as a result of hostile intent. This presentation will discuss the application of new information surveillance tools and technologies as they apply to health and disease monitoring, particularly within the context of potential terrorist or hostile nation use of biological warfare. Although discussed within the specific context of health surveillance, the tools and processes described here are generally applicable within other domains of subject matter expertise.

  6. Information surveillance

    SciTech Connect

    Seiders, Barbara AB; McQuerry, Dennis L.; Ferryman, Thomas A.; Whitney, Paul D.; Rybka, Anthony J.

    2002-07-15

    Biological weapons are within reach of individuals, small groups, terrorist organizations, as well as nations. With pervasive integration of civilian and military populations worldwide, the ill winds of biological warfare stand to affect military troops and civilians alike. A variety of technologies are emerging - such as pathogen detection devices, streaming internet characterization tools, information exploitation techniques, automated feature extraction, and ubiquitous wireless communication - that can help. These technologies, if taken together within an integrated analytical framework, could make possible the monitoring of diverse parameters that may indicate a change in the state of health of a given population - either the emergence of a naturally occurring disease or the outbreak of a disease as a result of hostile intent. This presentation will discuss the application of new information surveillance tools and technologies as they apply to health and disease monitoring, particularly within the context of potential terrorist or hostile nation use of biological warfare. Although discussed within the specific context of health surveillance, the tools and processes described here are generally applicable within other domains of subject matter expertise.

  7. PSI Wide Area Product (WAP) for measuring Ground Surface Displacements at regional level for multi-hazards studies

    NASA Astrophysics Data System (ADS)

    Duro, Javier; Iglesias, Rubén; Blanco, Pablo; Albiol, David; Koudogbo, Fifamè

    2015-04-01

    The Wide Area Product (WAP) is a new interferometric product developed to provide measurement over large regions. Persistent Scatterers Interferometry (PSI) has largely proved their robust and precise performance in measuring ground surface deformation in different application domains. In this context, however, the accurate displacement estimation over large-scale areas (more than 10.000 km2) characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. The main reason for that is the inclusion of low quality and more distant persistent scatterers in order to bridge low-quality areas, such as water bodies, crop areas and forested regions. This fact yields to spatial propagation errors on PSI integration process, poor estimation and compensation of the Atmospheric Phase Screen (APS) and the difficult to face residual long-wavelength phase patterns originated by orbit state vectors inaccuracies. Research work for generating a Wide Area Product of ground motion in preparation for the Sentinel-1 mission has been conducted in the last stages of Terrafirma as well as in other research programs. These developments propose technological updates for keeping the precision over large scale PSI analysis. Some of the updates are based on the use of external information, like meteorological models, and the employment of GNSS data for an improved calibration of large measurements. Usually, covering wide regions implies the processing over areas with a land use which is chiefly focused on livestock, horticulture, urbanization and forest. This represents an important challenge for providing continuous InSAR measurements and the application of advanced phase filtering strategies to enhance the coherence. The advanced PSI processing has been performed out over several areas, allowing a large scale analysis of tectonic patterns, and motion caused by multi-hazards as volcanic, landslide and

  8. Long-term and wide-area subsidence pattern from time series of Envisat Asar Data in Konya Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Ustun, Aydin

    2016-04-01

    Konya Basin as a sub-part of Konya Closed Basin is dominated by the Neogene and Quaternary sediments that are largely fluvial and lacustrine characteristic. The wide plains cultivated over the last 10000 years are the remnants of the Pluvial lake basin during wet and humid climate environment after the last glacial period. With the form of isolated depression-block, the geomorphological landscape has been mainly driven by the neotectonic activity of striking normal fault systems of the region. Konya that has doubled in size over the last two and half decades is both expanding into the agricultural areas and increasing its building expansion in the city center. The level observations recorded at the monitoring stations indicate that groundwater resources have been exploited permanently or seasonally in some parts where water demand exceeds supply. In this study, a long-term and wide area subsidence pattern in Konya Basin has been analyzed by stacking the deformation interferograms for time series. The study area that covers approximately 7500 km squared was investigated through a large number of the raw images of Asar sensor onboard Envisat from December 2002 to October 2010. Almost a hundred SAR scenes imaged over three tracks in both ascending and descending modes have been used to create a set of 127 differential interferograms using GMTSAR processing system. A continuous deformation map on the basinwide scale has been produced by combining the stacked interferograms. The average contour map shows that the DInSAR detected line of sight subsidence (or uplift) rates vary between 0.6 and -3.3 cm/yr throughout 8 years. The subsidence pattern significantly is correlated with the land and groundwater use within the basin and it states that the anthropogenic effect is much greater than the identified geological and hydrogeological processes.

  9. PIGC™ - A low cost fugitive emissions and methane detection system using advanced gas filter correlation techniques for local and wide area monitoring

    NASA Astrophysics Data System (ADS)

    Lachance, R. L.; Gordley, L. L.; Marshall, B. T.; Fisher, J.; Paxton, G.; Gubeli, J. F.

    2015-12-01

    Currently there is no efficient and affordable way to monitor gas releases over small to large areas. We have demonstrated the ability to accurately measure key greenhouse and pollutant gasses with low cost solar observations using the breakthrough sensor technology called the "Pupil Imaging Gas Correlation", PIGC™, which provides size and complexity reduction while providing exceptional resolution and coverage for various gas sensing applications. It is a practical implementation of the well-known Gas Filter Correlation Radiometry (GFCR) technique used for the HALOE and MOPITT satellite instruments that were flown on successful NASA missions in the early 2000s. This strong space heritage brings performance and reliability to the ground instrument design. A methane (CH4) abundance sensitivity of 0.5% or better of ambient column with uncooled microbolometers has been demonstrated with 1 second direct solar observations. These under $10 k sensors can be deployed in precisely balanced autonomous grids to monitor the flow of chosen gasses, and infer their source locations. Measureable gases include CH4, 13CO2, N2O, NO, NH3, CO, H2S, HCN, HCl, HF, HDO and others. A single instrument operates in a dual operation mode, at no additional cost, for continuous (real-time 24/7) local area perimeter monitoring for the detection of leaks for safety & security needs, looking at an artificial light source (for example a simple 60 W light bulb placed 100 m away), while simultaneously allowing solar observation for quasi-continuous wide area total atmospheric column scanning (3-D) for environmental monitoring (fixed and mobile configurations). The second mode of operation continuously quantifies the concentration and flux of specific gases over different ground locations, determined the amount of targeted gas being released from the area or getting into the area from outside locations, allowing better tracking of plumes and identification of sources. This paper reviews the

  10. Wide-area estimates of stand structure and water use of tamarix spp. on the lower colorado river: Implications for restoration and water management projects

    USGS Publications Warehouse

    Nagler, P.L.; Glenn, E.P.; Didan, K.; Osterberg, J.; Jordan, F.; Cunningham, J.

    2008-01-01

    Tamarix spp. removal has been proposed to salvage water and allow native vegetation to recolonize western U.S. riparian corridors. We conducted wide-area studies on the Lower Colorado River to answer some of the scientific questions about Tamarix water use and the consequences of removal, combining ground surveys with remote sensing methods. Tamarix stands had moderate rates of evapotranspiration (ET), based on remote sensing estimates, averaging 1.1 m/yr, similar to rates determined for other locations on the river and other rivers. Leaf area index values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. At three Tamarix sites in the Cibola National Wildlife Refuge, groundwater salinity at the site nearest to the river (200 m) was relatively low (circa 2,250 mg/L) and was within 3 m of the surface. However, 750 and 1,500 m from the river, the groundwater salinity was 5,000-10,000 mg/L due to removal of water by the Tamarix stands. Despite the high groundwater salinity, the sites away from the river did not have saline surface soils. Only 1% of the mean annual river flow is lost to Tamarix ET on the Lower Colorado River in the United States, and the opportunities for water salvage through Tamarix removal are constrained by its modest ET rates. A possible alternative to Tamarix removal is to intersperse native plants among the stands to improve the habitat value of the riparian zone. ?? 2008 Society for Ecological Restoration International.

  11. Public participation in radiological surveillance.

    PubMed

    Hanf, R W; Schreckhise, R G; Patton, G W; Poston, T M; Jaquish, R E

    1997-10-01

    In 1989, Pacific Northwest National Laboratory developed a program, for the U.S. Department of Energy, to involve local citizens in environmental surveillance at the Hanford Site. The Community-Operated Environmental Surveillance Program was patterned after similar community-involvement efforts at the Nevada Test Site and the Three Mile Island nuclear facility. Its purpose is to increase the flow of information to the public, thereby enhancing the public's awareness and understanding of surveillance activities. The program consists of two components: radiological air monitoring at nine offsite locations and agricultural product sampling at selected locations near the site. At each air-monitoring station, two local school teachers collect air particulate samples and operate equipment to monitor ambient radiation levels. Atmospheric tritium samples (as water vapor) are also collected at some locations. Four of the air-monitoring stations include large, colorful informational displays for public viewing. These displays provide details on station equipment, sample types, and sampling purposes. Instruments in the displays also monitor, record, and show real-time ambient radiation readings (measured with a pressurized ionization chamber) and meteorological conditions. Agricultural products, grown primarily by middle-school-aged students, are obtained from areas downwind of the site. Following analysis of these samples, environmental surveillance staff visit the schools to discuss the results with the students and their teachers. The data collected by these air and agricultural sampling efforts are summarized with other routinely collected sitewide surveillance data and reported annually in the Hanford Site environmental report. PMID:9314235

  12. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images

    NASA Astrophysics Data System (ADS)

    Fytsilis, Anastasios L.; Prokos, Anthony; Koutroumbas, Konstantinos D.; Michail, Dimitrios; Kontoes, Charalambos C.

    2016-09-01

    In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation.

  13. A STUDY ON EMERGENCYWATER DELIVERY IN WIDE-AREA EARTHQUAKE DISASTER - A CASE STUDY OF THE GREAT EAST JAPAN EARTHQUAKE DISASTER -

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yoji; Kuwata, Yasuko

    The Great East Japan earthquake disaster caused water outage to 2. 25 million customers in all the eastern part of Japan. It was so-called "wide-area earthquake disaster". Japanwater supply authorities have improved disaster assistant system after the lessons learned from the Kobe earthquake. This study focuses on the emergency response capacity on water delivery in such a wide-area earthquake disaster reviewing the activity in assisting and assisted municipalities during the latest earthquake. The total of 355 water trucks dispatched is thought to be the maximum from the availablemunicipalities. It is turned out that the objective amount of 3 litters per person by the water delivery cannot be reached in the wide-area earthquake disaster.

  14. General Medical Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on the General Medical Surveillance Program at LeRC is presented. The purpose of the General Medical Surveillance Program at LeRC is outlined, and the specifics of the program are discussed.

  15. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system. PMID:18206349

  16. Kestrel: force protection and Intelligence, Surveillance, and Reconnaissance (ISR) persistent surveillance on aerostats

    NASA Astrophysics Data System (ADS)

    Luber, David R.; Marion, John E.; Fields, David

    2012-05-01

    Logos Technologies has developed and fielded the Kestrel system, an aerostat-based, wide area persistent surveillance system dedicated to force protection and ISR mission execution operating over forward operating bases. Its development included novel imaging and stabilization capability for day/night operations on military aerostat systems. The Kestrel system's contribution is a substantial enhancement to aerostat-based, force protection systems which to date have relied on narrow field of view ball gimbal sensors to identify targets of interest. This inefficient mechanism to conduct wide area field of view surveillance is greatly enhanced by Kestrel's ability to maintain a constant motion imagery stare of the entire forward operating base (FOB) area. The Kestrel airborne sensor enables 360° coverage out to extended ranges which covers a city sized area at moderate resolution, while cueing a narrow field of view sensor to provide high resolution imagery of targets of interest. The ground station exploitation system enables operators to autonomously monitor multiple regions of interest in real time, and allows for backtracking through the recorded imagery, while continuing to monitor ongoing activity. Backtracking capability allows operators to detect threat networks, their CONOPS, and locations of interest. Kestrel's unique advancement has already been utilized successfully in OEF operations.

  17. Enhanced Chemical Incident Response Plan (ECIRP). Appendix F, remediation analysis with Decision Support Tools (DSTs) for wide-area chemical hazards.

    SciTech Connect

    Hassig, Nancy L.; Pulsipher, Brent A.; Foltz, Greg W.; Hoette, Trisha Marie

    2011-07-01

    The Defense Threat Reduction Agency (DTRA) commissioned an assessment of the Consequence Management (CM) plans in place on military bases for response to a chemical attack. The effectiveness of the CM plans for recovering from chemical incidents was modeled using a multiple Decision Support Tools (DSTs). First, a scenario was developed based on an aerial dispersion of a chemical agent over a wide-area of land. The extent of contamination was modeled with the Hazard Prediction and Assessment Capability (HPAC) tool. Subsequently, the Analyzer for Wide Area Restoration Effectiveness (AWARE) tool was used to estimate the cost and time demands for remediation based on input of contamination maps, sampling and decontamination resources, strategies, rates and costs. The sampling strategies incorporated in the calculation were designed using the Visual Sample Plan (VSP) tool. Based on a gaps assessment and the DST remediation analysis, an Enhanced Chemical Incident Response Plan (ECIRP) was developed.

  18. A new particle-induced X-ray emission set-up for laterally resolved analysis over wide areas

    NASA Astrophysics Data System (ADS)

    Hanf, D.; Buchriegler, J.; Renno, A. D.; Merchel, S.; Munnik, F.; Ziegenrücker, R.; Scharf, O.; Nowak, S. H.; von Borany, J.

    2016-06-01

    The recently installed and unique PIXE (particle-induced X-ray emission) set-up at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is mainly dedicated to applications for a detailed overview of elemental composition over large sample areas within a short time even at trace level. The so-called High-Speed-PIXE (HS-PIXE), a combination of a pnCCD-based pixel-detector with polycapillary X-ray optics, offers simultaneous imaging of sample areas up to 12 × 12 mm2 with a lateral resolution better than 100 μm. Each of the 264 × 264 individual pixels detects X-ray photons in an energy range from 2 keV to 20 keV with an energy resolution of 152 eV (@Mn-Kα). A high precision sample manipulator offers the inspection of areas up to 250 × 250 mm2. During first experiments the determined resolution is (76 ± 23) μm using a sample of well-known sharp-edged chromium patterns. Trace element analysis has been performed using a geological sample, a tin ore, with an average Ta-concentration below 0.1 at.%. Fine-zoned structures became visible in the Ta-Lα intensity map within only 45 min. The High-Speed-PIXE closes a gap in the analytical process flow chain especially for geoanalytical characterisations. It is a unique and fast detection system to identify areas of interest in comparably short time at large-area scale for further analysis.

  19. A new X-ray-transparent flow-through reaction cell for a μ-CT-based concomitant surveillance of the reaction progress of hydrothermal mineral-fluid interactions

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Hansen, Christian; Bach, Wolfgang

    2016-04-01

    A new flow-through reaction cell consisting of an X-ray-transparent semicrystalline thermoplastic has been developed for percolation experiments. Core holder, tubing and all confining parts are constructed using PEEK (polyetheretherketone) to allow concomitant surveillance of the reaction progress by X-ray microtomography (μ-CT). With this cell setup, corrosive or oversaturated fluids can be forced through rock cores (up to ∅ 19 mm) or powders at pressures up to 100 bar and temperatures up to 200 °C. The reaction progress of the experiment can be monitored without dismantling the sample from the core holder. The combination of this flow-through reaction cell setup with a laboratory X-ray μ-CT system facilitates on-demand monitoring of the reaction progress of (long-term) hydrothermal experiments in the own laboratory, keeping interruption times as short as possible. To demonstrate both the suitability of the cell construction material for X-ray imaging purposes and the experimental performance of the flow-through system, we report the virtually non-existent bias of the PEEK cell setup with distinctive X-ray observations (e.g., differing states of pore fillings: air vs. fluid; detection of delicate fabric elements: filigree zeolite crystals overgrowing weathered muscovite), and the monitoring of the gypsum/anhydrite transition as a case study of a 4-D fabric evolution.

  20. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. PMID:25744760

  1. Demonstration of a Novel Synchrophasor-based Situational Awareness System: Wide Area Power System Visualization, On-line Event Replay and Early Warning of Grid Problems

    SciTech Connect

    Rosso, A.

    2012-12-31

    Since the large North Eastern power system blackout on August 14, 2003, U.S. electric utilities have spent lot of effort on preventing power system cascading outages. Two of the main causes of the August 14, 2003 blackout were inadequate situational awareness and inadequate operator training In addition to the enhancements of the infrastructure of the interconnected power systems, more research and development of advanced power system applications are required for improving the wide-area security monitoring, operation and planning in order to prevent large- scale cascading outages of interconnected power systems. It is critically important for improving the wide-area situation awareness of the operators or operational engineers and regional reliability coordinators of large interconnected systems. With the installation of large number of phasor measurement units (PMU) and the related communication infrastructure, it will be possible to improve the operators’ situation awareness and to quickly identify the sequence of events during a large system disturbance for the post-event analysis using the real-time or historical synchrophasor data. The purpose of this project was to develop and demonstrate a novel synchrophasor-based comprehensive situational awareness system for control centers of power transmission systems. The developed system named WASA (Wide Area Situation Awareness) is intended to improve situational awareness at control centers of the power system operators and regional reliability coordinators. It consists of following main software modules: • Wide-area visualizations of real-time frequency, voltage, and phase angle measurements and their contour displays for security monitoring. • Online detection and location of a major event (location, time, size, and type, such as generator or line outage). • Near-real-time event replay (in seconds) after a major event occurs. • Early warning of potential wide-area stability problems. The system has been

  2. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  3. Soil and vegetation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  4. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  5. Asbestos Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on asbestos is presented including the different types and the important medical distinctions between those different types. The four diseases associated with asbestos exposure are discussed: mesothelioma, lung cancer, asbestosis, and benign pleural disorders. The purpose of the LeRC Asbestos Surveillance Program is outlined, and the specifics of the Medical Surveillance Program for Asbestos Monitoring at LeRC are discussed.

  6. Lead Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.

  7. PathPics: an image-based instructional program used in the pathology and histology curriculum and transmitted over a wide area network.

    PubMed Central

    Hoffman, H. M.; Irwin, A. E.; Ligon, R. G.

    1992-01-01

    PathPics is an image review and tutorial program developed at the University of California, San Diego (UCSD) School of Medicine as an adjunct to the preclinical Pathology and Histology curriculum. It incorporates faculty expertise and provides a framework for self-paced study of this visually-oriented material. The program is served over our wide area network and runs on color-capable Macintosh computers. PathPics was added to the curriculum in January, 1992, and has been enthusiastically received by the students. Images Figure 1 PMID:1482986

  8. Robust Behavior Recognition in Intelligent Surveillance Environments.

    PubMed

    Batchuluun, Ganbayar; Kim, Yeong Gon; Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2016-01-01

    Intelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative. Due to the usage during both daytime and nighttime, and the limitation of requiring an additional NIR illuminator (which should illuminate a wide area over a great distance) for NIR cameras during the nighttime, a dual system of visible light and thermal cameras is used in our research, and we propose a new behavior recognition in intelligent surveillance environments. Twelve datasets were compiled by collecting data in various environments, and they were used to obtain experimental results. The recognition accuracy of our method was found to be 97.6%, thereby confirming the ability of our method to outperform previous methods. PMID:27376288

  9. Robust Behavior Recognition in Intelligent Surveillance Environments

    PubMed Central

    Batchuluun, Ganbayar; Kim, Yeong Gon; Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2016-01-01

    Intelligent surveillance systems have been studied by many researchers. These systems should be operated in both daytime and nighttime, but objects are invisible in images captured by visible light camera during the night. Therefore, near infrared (NIR) cameras, thermal cameras (based on medium-wavelength infrared (MWIR), and long-wavelength infrared (LWIR) light) have been considered for usage during the nighttime as an alternative. Due to the usage during both daytime and nighttime, and the limitation of requiring an additional NIR illuminator (which should illuminate a wide area over a great distance) for NIR cameras during the nighttime, a dual system of visible light and thermal cameras is used in our research, and we propose a new behavior recognition in intelligent surveillance environments. Twelve datasets were compiled by collecting data in various environments, and they were used to obtain experimental results. The recognition accuracy of our method was found to be 97.6%, thereby confirming the ability of our method to outperform previous methods. PMID:27376288

  10. Unattended optical surveillance equipment

    NASA Astrophysics Data System (ADS)

    Mangan, D. L.; Johnson, C. S.; Schneider, S. L.

    In many security situations, it is necessary to utilize unattended optical surveillance systems. Sandia National Laboratories has developed three optical surveillance systems which operate in the unattended surveillance mode. The first of these systems is known as the Modular Integrated Video System (MIVS). The MIVS is a microprocessor controlled video system which records scenes at selectable intervals. Each scene consists of six to ten frames recorded on a 8 mm videotape. A MIVS video recorder has the capacity to record approximately 26,000 scenes. Scenes can be recorded at intervals ranging from 1 to 99 minutes between recordings. The unit has been designed for permanent installation with facility power. The camera can be located up to 30 m from the recording module with the authentication technology protecting the cable connecting the camera to the recording unit. The Portable Surveillance unit (PSU) is a second system which has been designed for unattended operation. The PSU is designed for situations where quick set up of an optical surveillance device is required. The PSU operates in a manner similar to the MIVS and can be operated off of facility power for long time periods, or from an internal battery pack for short term surveillance applications. The Video Surveillance Unit (VSU) provides similar capabilities for permanent rack mounted installations. This paper describes the MIVS, the PSU, and the VSU, and discusses potential applications for the system. Equipment for reviewing the videotapes produced by the systems is also described.

  11. Circuits of Surveillance

    PubMed Central

    Williams, Robin; Johnson, Paul

    2005-01-01

    This paper examines the increasing police use of DNA profiling and databasing as a developing instrumentality of modern state surveillance. It briefly notes previously published work on a variety of surveillance technologies and their role in the governance of social action and social order. It then argues that there are important differences amongst the ways in which several such technologies construct and use identificatory artefacts, their orientations to human subjectivity, and their role in the governmentality of citizens and others. The paper then describes the novel and powerful form of bio-surveillance offered by DNA profiling and illustrates this by reference to an ongoing empirical study of the police uses of the UK National DNA Database for the investigation of crime. It is argued that DNA profiling and databasing enable the construction of a ‘closed circuit’ of surveillance of a defined population. PMID:16467920

  12. IMPROVING WATERBORNE DISEASE SURVEILLANCE

    EPA Science Inventory

    Public health surveillance has played a key role in controlling the spread of communicable disease and identifying the need for specific publich health practices, such as the filteration and chlorination of drinking water supplies. However, the characteristics of waterborne ou...

  13. DIALYSIS SURVEILLANCE NETWORK

    EPA Science Inventory

    A voluntary national surveillance system monitoring bloodstream and vascular infections. This is a yearly survey, done in collaboration with the Centers for Medicare and Medicaid Services (CMS) that collects data on infection control practices, and the frequency of certain dialys...

  14. [Umbilical Absent and Reverse End-Diastolic Flow Velocity Waveforms Already Present Prior to Viability do not Exclude Long-Term Foetal Surveillance: A Report of Two Cases].

    PubMed

    Müller, T; Wirbelauer, J; Frauenschuh, I; Frambach, T; Zollner, U; Dietl, J

    2015-04-01

    The finding of absent or reverse end-diastolic flow velocities (AREDV) in the umbilical artery already prior to viability corresponds to the most severe end of the clinical spectrum of placental insufficiency. However, there is little or no experience or published literature with regard to perinatal outcome. We report 2 cases in which structurally and chromosomally normal foetuses showed severe early onset retardation but were continuing to grow. These gestations could be prolonged by 62 and 64 days, respectively. Perinatal outcome was good in both following Caesarean section at 32+3 and 31+5 gestational weeks respectively. PMID:25901870

  15. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  16. Surveillance Metrics Sensitivity Study

    SciTech Connect

    Bierbaum, R; Hamada, M; Robertson, A

    2011-11-01

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  17. Surveillance metrics sensitivity study.

    SciTech Connect

    Hamada, Michael S.; Bierbaum, Rene Lynn; Robertson, Alix A.

    2011-09-01

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  18. Surveillance of antibiotic resistance

    PubMed Central

    Johnson, Alan P.

    2015-01-01

    Surveillance involves the collection and analysis of data for the detection and monitoring of threats to public health. Surveillance should also inform as to the epidemiology of the threat and its burden in the population. A further key component of surveillance is the timely feedback of data to stakeholders with a view to generating action aimed at reducing or preventing the public health threat being monitored. Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility test results undertaken by microbiology laboratories on bacteria isolated from clinical samples sent for investigation. Correlation of these data with demographic and clinical data for the patient populations from whom the pathogens were isolated gives insight into the underlying epidemiology and facilitates the formulation of rational interventions aimed at reducing the burden of resistance. This article describes a range of surveillance activities that have been undertaken in the UK over a number of years, together with current interventions being implemented. These activities are not only of national importance but form part of the international response to the global threat posed by antibiotic resistance. PMID:25918439

  19. [Worker's Health Surveillance

    PubMed

    Machado

    1997-01-01

    This paper is part of a broader discussion on the need for more in-depth study of workers' health surveillance practices, which are most often developed empirically, without well-defined theoretical or technical foundations. The paper presents a concept of surveillance in workers' health as a fulcrum for actions in the relationship between the work process and health. It emphasizes the exposure-based perspective involved in the epidemiological approach. Risk situations and effects are placed in spatial and technological context. The model provides an interdisciplinary approach with a technological, social, and epidemiological basis in a three-dimensional structure. A matrix for planning actions in workers' health surveillance is also presented, focusing on the connections between effects, risks, territory, and activities. PMID:10886936

  20. Global health surveillance.

    PubMed

    St Louis, Michael

    2012-07-27

    Awareness of the importance of global health surveillance increased in the latter part of the 20th century with the global emergence of human immunodeficiency virus and novel strains of influenza. In the first decade of the 21st century, several events further highlighted global shared interests in and vulnerability to infectious diseases. Bioterrorist use of anthrax spores in 2001 raised awareness of the value of public health surveillance for national security. The epidemic of severe acute respiratory syndrome (SARS) in 2003, re-emergence of a panzootic of avian influenza A H5N1 in 2005, and the sudden emergence of pandemic H1N1 in North America in 2009 all highlighted the importance of shared global responsibility for surveillance and disease control. In particular, in 2003, SARS precipitated changes in awareness of the world's collective economic vulnerability to epidemic shocks. PMID:22832992

  1. Viral surveillance and discovery

    PubMed Central

    Lipkin, Walter Ian; Firth, Cadhla

    2014-01-01

    The field of virus discovery has burgeoned with the advent of high throughput sequencing platforms and bioinformatics programs that enable rapid identification and molecular characterization of known and novel agents, investments in global microbial surveillance that include wildlife and domestic animals as well as humans, and recognition that viruses may be implicated in chronic as well as acute diseases. Here we review methods for viral surveillance and discovery, strategies and pitfalls in linking discoveries to disease, and identify opportunities for improvements in sequencing instrumentation and analysis, the use of social media and medical informatics that will further advance clinical medicine and public health. PMID:23602435

  2. On R-W1 as A Diagnostic to Discover Obscured Active Galactic Nuclei in Wide-area X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Civano, Francesca; Brusa, Marcella; Stern, Daniel; Glikman, Eilat; Gallagher, Sarah; Urry, C. Meg; Cales, Sabrina; Cappelluti, Nico; Cardamone, Carolin; Comastri, Andrea; Farrah, Duncan; Greene, Jenny E.; Komossa, S.; Merloni, Andrea; Mroczkowski, Tony; Natarajan, Priyamvada; Richards, Gordon; Salvato, Mara; Schawinski, Kevin; Treister, Ezequiel

    2016-02-01

    Capitalizing on the all-sky coverage of WISE and the 35% and 50% sky coverage from Sloan Digital Sky Survey and Pan-STARRS, respectively, we explore the efficacy of mR (optical) - {m}3.4μ {{m}} (mid-infrared), hereafter R-W1, as a color diagnostic to identify obscured supermassive black hole accretion in wide-area X-ray surveys. We use the ˜16.5 deg2 Stripe 82 X-ray survey data as a test bed to compare R-W1 with R - K, an oft-used obscured active galactic nucleus (AGN) selection criterion, and examine where different classes of objects lie in this parameter space. Most stars follow a well-defined path in R - K versus R-W1 space. We demonstrate that optically normal galaxies hosting X-ray AGNs at redshifts 0.5\\lt z\\lt 1 can be recovered with an R-W1\\gt 4 color cut, while they typically are not selected as AGNs based on their W1-W2 colors. Additionally, different observed X-ray luminosity bins favor different regions in R-W1 parameter space: moderate-luminosity AGNs (1043 erg {{{s}}}-1\\lt {L}0.5-10{keV}\\lt {10}44 erg s-1) tend to have red colors, while the highest-luminosity AGNs ({L}0.5-10{keV}\\gt {10}45 erg s-1) have bluer colors; higher spectroscopic completeness of the Stripe 82X sample is needed to determine whether this is a selection effect or an intrinsic property. Finally, we parameterize X-ray obscuration of Stripe 82X AGNs by calculating their hardness ratios (HRs) and find no clear trends between HR and optical reddening. Our results will help inform best-effort practices in following up obscured AGN candidates in current and future wide-area, shallow X-ray surveys, including the all-sky eROSITA mission.

  3. Youth Risk Behavior Surveillance System

    MedlinePlus

    ... What's this? Submit Button Youth Risk Behavior Surveillance System (YRBSS) Recommend on Facebook Tweet Share Compartir New ... Minority Data Released! The Youth Risk Behavior Surveillance System (YRBSS) monitors six types of health-risk behaviors ...

  4. GONOCOCCAL SURVEILLANCE ISOLATE PROJECT (GSIP)

    EPA Science Inventory

    The Gonococcal Isolate Surveillance Project (GISP) is a collaborative project to monitor antimicrobial resistance in Neisseria gonorrhoeae in the United States. The database is a sentinel surveillance system of 26 clinics for sexually transmitted diseases (STDs) and 5 regional la...

  5. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  6. Wide-Area Energy Storage and Management system to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas

    SciTech Connect

    Makarov, Yuri V.; Yang, Bo; DeSteese, John G.; Lu, Shuai; Miller, Carl H.; Nyeng, Preben; Ma, Jian; Hammerstrom, Donald J.; Vishwanathan, Vilanyur V.

    2008-06-30

    The entire project addresses the issue of mitigating additional intermittency and fast ramps that occur at higher penetration of intermittent resources, including wind genera-tion, in the Bonneville Power Administration (BPA) and the California Independent Sys-tem Operator (California ISO) control areas. The proposed Wide Area Energy Storage and Management System (WAEMS) will address the additional regulation requirement through the energy exchange between the participating control areas and through the use of energy storage and other generation resources. For the BPA and California ISO control centers, the new regulation service will look no different comparing with the traditional regulation resources. The proposed project will benefit the regulation service in these service areas, regardless of the actual degree of penetration of the intermittent resources in the regions. The project develops principles, algorithms, market integration rules, functional de-sign and technical specifications for the WAEMS system. The project is sponsored by BPA and supported in kind by California ISO, Beacon Power Corporation, and the Cali-fornia Energy Commission (CEC).

  7. Measurement of air dose rates over a wide area around the Fukushima Dai-ichi Nuclear Power Plant through a series of car-borne surveys.

    PubMed

    Andoh, Masaki; Nakahara, Yukio; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Takahashi, Fumiaki; Mikami, Satoshi; Kinouchi, Nobuyuki; Sato, Tetsuro; Tanigaki, Minoru; Takamiya, Koichi; Sato, Nobuhiro; Okumura, Ryo; Uchihori, Yukio; Saito, Kimiaki

    2015-01-01

    A series of car-borne surveys using the Kyoto University RAdiation MApping (KURAMA) and KURAMA-II survey systems has been conducted over a wide area in eastern Japan since June 2011 to evaluate the distribution of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant and to evaluate the time-dependent trend of decrease in air dose rates. An automated data processing system for the KURAMA-II system was established, which enabled rapid analysis of large amounts of data obtained using about 100 KURAMA-II units. The initial data used for evaluating the migration status of radioactive cesium were obtained in the first survey, followed by other car-borne surveys conducted over more extensive and wider measurement ranges. By comparing the measured air dose rates obtained in each survey (until December 2012), the decreasing trend of air dose rates measured through car-borne surveys was found to be more pronounced than those expected on the basis of the physical decay of radioactive cesium and of the air dose rates measured using NaI (Tl) survey meters in the areas surrounding the roadways. In addition, it was found that the extent of decrease in air dose rates depended on land use, wherein it decreased faster for land used as building sites than for forested areas. PMID:24951121

  8. Using PACS and wavelet-based image compression in a wide-area network to support radiation therapy imaging applications for satellite hospitals

    NASA Astrophysics Data System (ADS)

    Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles

    1999-07-01

    An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.

  9. Diagnostics and surveillance methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection and diagnosis of influenza A virus (IAV) infection in animals requires a laboratory test since disease from IAV presents no pathognomonic signs. Diagnosis and surveillance of animal influenza focuses on the detection of virus or type specific antibodies. Whether one targets the virus or ...

  10. TUBERCULOSIS SURVEILLANCE REPORTS

    EPA Science Inventory

    The TB Surveillance Reports contain tabular and graphic information about reported TB cases collected from 59 reporting areas (the 50 states, the District of Columbia, New York City, U.S. dependencies and possessions, and independent nations in free association with the United St...

  11. Mortar launched surveillance system

    NASA Astrophysics Data System (ADS)

    Lewis, Carl E.; Carlton, Lindley A.

    2001-02-01

    Accurate Automation Corporation has completed the conceptual design of a mortar launched air vehicle system to perform close range or over-the-horizon surveillance missions. Law enforcement and military units require an organic capability to obtain real time intelligence information of time critical targets. Our design will permit law enforcement to detect, classify, locate and track these time critical targets. The surveillance system is a simple, unmanned fixed-winged aircraft deployed via a conventional mortar tube. The aircraft's flight surfaces are deployed following mortar launch to permit maximum range and time over target. The aircraft and sensor system are field retrievable. The aircraft can be configured with an engine to permit extended time over target or range. The aircraft has an integrated surveillance sensor system; a programmable CMOS sensor array. The integrated RF transmitted to capable of down- linking real-time video over line-of-sight distances exceeding 10 kilometers. The major benefit of the modular design is the ability to provide surveillance or tracking quickly at a low cost. Vehicle operational radius and sensor field coverage as well as design trade results of vehicle range and endurance performance and payload capacity at operational range are presented for various mortar configurations.

  12. Environmental surveillance master sampling schedule

    SciTech Connect

    Bisping, L.E.

    1996-02-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the US Department of Energy (DOE). This document contains the planned 1996 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project.

  13. A Population Health Surveillance Theory

    PubMed Central

    Bigras-Poulin, Michel; Michel, Pascal; Ravel, André

    2012-01-01

    OBJECTIVES Despite its extensive use, the term "Surveillance" often takes on various meanings in the scientific literature pertinent to public health and animal health. A critical appraisal of this literature also reveals ambiguities relating to the scope and necessary structural components underpinning the surveillance process. The authors hypothesized that these inconsistencies translate to real or perceived deficiencies in the conceptual framework of population health surveillance. This paper presents a population health surveillance theory framed upon an explicit conceptual system relative to health surveillance performed in human and animal populations. METHODS The population health surveillance theory reflects the authors' system of thinking and was based on a creative process. RESULTS Population health surveillance includes two broad components: one relating to the human organization (which includes expertise and the administrative program), and one relating to the system per se (which includes elements of design and method) and which can be viewed as a process. The population health surveillance process is made of five sequential interrelated steps: 1) a trigger or need, 2) problem formulation, 3) surveillance planning, 4) surveillance implementation, and 5) information communication and audit. CONCLUSIONS The population health surveillance theory provides a systematic way of understanding, organizing and evaluating the population health surveillance process. PMID:23251837

  14. Surface-water surveillance

    SciTech Connect

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  15. Postmarket surveillance. Final rule.

    PubMed

    2002-06-01

    The Food and Drug Administration (FDA) is implementing the postmarket surveillance (PS) provisions of the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Food and Drug Administration Modernization Act of 1997 (FDAMA). The purpose of this rule is to provide for the collection of useful data about devices that can reveal unforeseen adverse events or other information necessary to protect the public health. PMID:12053947

  16. Small animal disease surveillance.

    PubMed

    Sánchez-Vizcaíno, Fernando; Jones, Philip H; Menacere, Tarek; Heayns, Bethaney; Wardeh, Maya; Newman, Jenny; Radford, Alan D; Dawson, Susan; Gaskell, Rosalind; Noble, Peter J M; Everitt, Sally; Day, Michael J; McConnell, Katie

    2015-12-12

    This is the first UK small animal disease surveillance report from SAVSNET. Future reports will expand to other syndromes and diseases. As data are collected for longer, the estimates of changes in disease burden will become more refined, allowing more targeted local and perhaps national interventions. Anonymised data can be accessed for research purposes by contacting the authors. SAVSNET welcomes feedback on this report. PMID:26667432

  17. Supportive housing and surveillance.

    PubMed

    Boyd, Jade; Cunningham, David; Anderson, Solanna; Kerr, Thomas

    2016-08-01

    Urban centres in the US, Britain and Canada have responded to identified visible 'social problems' such addiction, mental health and homelessness by providing some supportive housing for the urban poor and marginalized. While some critics have questioned what supportive housing specifically entails in terms of the built environment, what remains under explored, though a growing area of concern, is the relationship between surveillance and supportive housing for urban residents identified as having addiction and mental health problems - a gap addressed in this paper. Drawing upon qualitative ethnographic observational data we examine some of the measures of control and coercion that are encroaching into social housing primarily established for poor and marginalized people with addiction and mental health problems in the urban centre of Vancouver, Canada. We witnessed three modes of regulation and control, that vary widely, among the residencies observed: physical surveillance technologies; site-specific modes of coercion; police presence and staff surveillance, which all together impact the everyday lives of residents living in low-income and supportive housing. We argue that supportive housing has the potential to provide its intended commitment - safe and secure affordable housing. However, owing to an (over)emphasis on 'security', the supportive housing we observed were also sites of social control. PMID:27453148

  18. Active surveillance for prostate cancer.

    PubMed

    Romero-Otero, Javier; García-Gómez, Borja; Duarte-Ojeda, José M; Rodríguez-Antolín, Alfredo; Vilaseca, Antoni; Carlsson, Sigrid V; Touijer, Karim A

    2016-03-01

    It is worth distinguishing between the two strategies of expectant management for prostate cancer. Watchful waiting entails administering non-curative androgen deprivation therapy to patients on development of symptomatic progression, whereas active surveillance entails delivering curative treatment on signs of disease progression. The objectives of the two management strategies and the patients enrolled in either are different: (i) to review the role of active surveillance as a management strategy for patients with low-risk prostate cancer; and (ii) review the benefits and pitfalls of active surveillance. We carried out a systematic review of active surveillance for prostate cancer in the literature using the National Center for Biotechnology Information's electronic database, PubMed. We carried out a search in English using the terms: active surveillance, prostate cancer, watchful waiting and conservative management. Selected studies were required to have a comprehensive description of the demographic and disease characteristics of the patients at the time of diagnosis, inclusion criteria for surveillance, and a protocol for the patients' follow up. Review articles were included, but not multiple papers from the same datasets. Active surveillance appears to reduce overtreatment in patients with low-risk prostate cancer without compromising cancer-specific survival at 10 years. Therefore, active surveillance is an option for select patients who want to avoid the side-effects inherent to the different types of immediate treatment. However, inclusion criteria for active surveillance and the most appropriate method of monitoring patients on active surveillance have not yet been standardized. PMID:26621054

  19. THE ALFALFA H I ABSORPTION PILOT SURVEY: A WIDE-AREA BLIND DAMPED Ly{alpha} SYSTEM SURVEY OF THE LOCAL UNIVERSE

    SciTech Connect

    Darling, Jeremy; Macdonald, Erin P.; Haynes, Martha P.; Giovanelli, Riccardo E-mail: e.macdonald@physics.gla.ac.uk E-mail: riccardo@astro.cornell.edu

    2011-11-20

    We present the results of a pilot survey for neutral hydrogen (H I) 21 cm absorption in the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFALFA) Survey. This project is a wide-area 'blind' search for H I absorption in the local universe, spanning -650 km s{sup -1} < cz < 17, 500 km s{sup -1} and covering 517.0 deg{sup 2} (7% of the full ALFALFA survey). The survey is sensitive to H I absorption lines stronger than 7.7 mJy (8983 radio sources) and is 90% complete for lines stronger than 11.0 mJy (7296 sources). The total redshift interval sensitive to all damped Ly{alpha} (DLA) systems (N{sub H{sub i}}{>=}2 Multiplication-Sign 10{sup 20} cm{sup -2}) is {Delta}z = 7.0 (129 objects, assuming T{sub s} = 100 K and covering fraction unity); for super-DLAs (N{sub H{sub i}}{>=}2 Multiplication-Sign 10{sup 21} cm{sup -2}) it is {Delta}z = 128.2 (2353 objects). We re-detect the intrinsic H I absorption line in UGC 6081 but detect no intervening absorption line systems. We compute a 95% confidence upper limit on the column density frequency distribution function f(N{sub H{sub i}},X) spanning four orders of magnitude in column density, 10{sup 19} (T{sub s} /100 K) (1/f) cm{sup -2}

  20. Domestic violence surveillance system:a model

    PubMed Central

    Espinosa, Rafael; Gutiérrez, María Isabel; Mena-Muñoz, Jorge Humberto; Córdoba, Patricia

    2010-01-01

    Objective To develop a domestic violence surveillance system. Material and Methods The strategies included implementation of a standard digitalized reporting and analysis system along with advocacy with community decision makers, strengthening inter-institutional attention networks, consultation for constructing internal flow charts, sensitizing and training network teams in charge of providing health care in cases of domestic violence and supporting improved public policy prevention initiatives. Results A total of 6 893 cases were observed using 2004 and 2005 surveillance system data. The system reports that 80% of the affected were women, followed by 36% children under 14 years. The identified aggressors were mainly females' partners. The system was useful for improving victim services. Conclusions Findings indicate that significant gains were made in facilitating the attention and treatment of victims of domestic violence, improving the procedural response process and enhancing the quality of information provided to policy-making bodies. PMID:18373003

  1. A space-fed phased array for surveillance from space

    NASA Astrophysics Data System (ADS)

    Hightower, Charles H.; Wong, Sam H.; Perkons, Alfred R.; Igwe, Christian I.

    1991-05-01

    A space-fed radar antenna called a venetian blind is proposed for all-weather wide-area surveillance from space. Radar requirements for tasked and untasked operation are discussed, and the process of selecting the venetian blind concept, which can support both, is described. In its untasked form (essentially a space-fed passive lens), it achieves off-axis squint angles of many beamwidths with negligible performance degradation. It is inherently insensitive to mechanical distortion and is a first step in the evolution to the more complex tasked system antenna. The antenna lens consists of easily manufactured slats with microstrip dipole radiating elements and matching networks on a dielectric substrate. Phase control is achieved with low-loss delay lines in the passive lens or active transmit/receive modules if electronic scan is desired.

  2. Environmental surveillance master sampling schedule

    SciTech Connect

    Bisping, L.E.

    1993-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). Samples are routinely collected and analyzed to determine the quality of air, surface water, ground water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. This document contains the planned schedule for routine sample collection for the Surface Environmental Surveillance Project (SESP) and Drinking Water Project, and Ground-Water Surveillance Project.

  3. Wallops Ship Surveillance System

    NASA Technical Reports Server (NTRS)

    Smith, Donna C.

    2011-01-01

    Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

  4. Boston Collaborative Drug Surveillance Program

    Cancer.gov

    The Boston Collaborative Drug Surveillance Program started in 1966 and conducted epidemiologic research to quantify the potential adverse effects of prescription drugs, utilizing in-hospital monitoring.

  5. GSFC Supplier Surveillance

    NASA Technical Reports Server (NTRS)

    Kelly, Michael P.

    2011-01-01

    Topics covered include: Develop Program/Project Quality Assurance Surveillance Plans The work activities performed by the developer and/or his suppliers are subject to evaluation and audit by government-designated representatives. CSO supports project by selecting on-site supplier representative s by one of several methods: (1) a Defense Contract Management Agency (DCMA) person via a Letter Of Delegation (LOD), (2) an independent assurance contractor (IAC) via a contract Audits, Assessments, and Assurance (A3) Contract Code 300 Mission Assurance Support Contract (MASC)

  6. BioSense/SR-BioSpectra demonstrations of wide area/early warning for bioaerosol threats: program description and early test and evaluation results

    NASA Astrophysics Data System (ADS)

    Simard, Jean-Robert; Buteau, Sylvie; Lahaie, Pierre; Mathieu, Pierre; Roy, Gilles; Nadeau, Denis; McFee, John; Ho, Jim; Rowsell, Susan; Ho, Nicolas; Babin, François; Cantin, Daniel; Healey, Dave; Robinson, Jennifer; Wood, Scott; Hsu, Jack

    2011-11-01

    Threats associated with bioaerosol weapons have been around for several decades and have been mostly associated with terrorist activities or rogue nations. Up to the turn of the millennium, defence concepts against such menaces relied mainly on point or in-situ detection technologies. Over the last 10 years, significant efforts have been deployed by multiple countries to supplement the limited spatial coverage of a network of one or more point bio-detectors using lidar technology. The addition of such technology makes it possible to detect within seconds suspect aerosol clouds over area of several tens of square kilometers and track their trajectories. These additional capabilities are paramount in directing presumptive ID missions, mapping hazardous areas, establishing efficient counter-measures and supporting subsequent forensic investigations. In order to develop such capabilities, Defence Research and Development Canada (DRDC) and the Chemical, Biological, Radiological-Nuclear, and Explosives Research and Technology Initiative (CRTI) have supported two major demonstrations based on spectrally resolved Laser Induced Fluorescence (LIF) lidar: BioSense, aimed at defence military missions in wide open spaces, and SR-BioSpectra, aimed at surveillance of enclosed or semienclosed wide spaces common to defence and public security missions. This article first reviews briefly the modeling behind these demonstration concepts. Second, the lidar-adapted and the benchtop bioaerosol LIF chambers (BSL1), developed to challenge the constructed detection systems and to accelerate the population of the library of spectral LIF properties of bioaerosols and interferents of interest, will be described. Next, the most recent test and evaluation (T&E) results obtained with SR-BioSpectra and BioSense are reported. Finally, a brief discussion stating the way ahead for a complete defence suite is provided.

  7. Sonoma Persistent Surveillance System

    SciTech Connect

    Pennington, D M

    2006-03-24

    Sonoma offers the first cost-effective, broad-area, high-resolution, real-time motion imagery system for surveillance applications. Sonoma is unique in its ability to provide continuous, real-time video imagery of an area the size of a small city with resolutions sufficient to track 8,000 moving objects in the field of view. At higher resolutions and over smaller areas, Sonoma can even track the movement of individual people. The visual impact of the data available from Sonoma is already causing a paradigm shift in the architecture and operation of other surveillance systems. Sonoma is expected to cost just one-tenth the price of comparably sized sensor systems. Cameras mounted on an airborne platform constantly monitor an area, feeding data to the ground for real-time analysis. Sonoma was designed to provide real-time data for actionable intelligence in situations such as monitoring traffic, special events, border security, and harbors. If a Sonoma system had been available in the aftermath of the Katrina and Rita hurricanes, emergency responders would have had real-time information on roads, water levels, and traffic conditions, perhaps saving many lives.

  8. Intelligent route surveillance

    NASA Astrophysics Data System (ADS)

    Schoemaker, Robin; Sandbrink, Rody; van Voorthuijsen, Graeme

    2009-05-01

    Intelligence on abnormal and suspicious behaviour along roads in operational domains is extremely valuable for countering the IED (Improvised Explosive Device) threat. Local sensor networks at strategic spots can gather data for continuous monitoring of daily vehicle activity. Unattended intelligent ground sensor networks use simple sensing nodes, e.g. seismic, magnetic, radar, or acoustic, or combinations of these in one housing. The nodes deliver rudimentary data at any time to be processed with software that filters out the required information. At TNO (Netherlands Organisation for Applied Scientific Research) research has started on how to equip a sensor network with data analysis software to determine whether behaviour is suspicious or not. Furthermore, the nodes should be expendable, if necessary, and be small in size such that they are hard to detect by adversaries. The network should be self-configuring and self-sustaining and should be reliable, efficient, and effective during operational tasks - especially route surveillance - as well as robust in time and space. If data from these networks are combined with data from other remote sensing devices (e.g. UAVs (Unmanned Aerial Vehicles)/aerostats), an even more accurate assessment of the tactical situation is possible. This paper shall focus on the concepts of operation towards a working intelligent route surveillance (IRS) research demonstrator network for monitoring suspicious behaviour in IED sensitive domains.

  9. Sexually Transmitted Diseases Surveillance, 2012: Gonorrhea

    MedlinePlus

    ... and 44.1% among women. Gonococcal Isolate Surveillance Project Antimicrobial resistance remains an important consideration in the ... 4–9 In 1986, the Gonococcal Isolate Surveillance Project (GISP), a national sentinel surveillance system, was established ...

  10. NATIONAL ELECTRONIC DISEASE SURVEILLANCE SYSTEM (NEDSS)

    EPA Science Inventory

    The National Electronic Disease Surveillance System (NEDSS) project is a public health initiative to provide a standard-based, integrated approach to disease surveillance and to connect public health surveillance to the burgeoning clinical information systems infrastructure. NEDS...

  11. DEFENSE MEDICAL SURVEILLANCE MONTHLY REPORT (MSMR)

    EPA Science Inventory

    The Medical Surveillance Monthly Report (MSMR) is the Army Medical Surveillance Activity's (AMSA) principal vehicle for disseminating medical surveillance information of broad interest. It routinely publishes summaries of notifiable diseases, trends of illnesses of special survei...

  12. PEDIATRIC NUTRITION SURVEILLANCE SYSTEM (PEDNSS)

    EPA Science Inventory

    The Pediatric Nutrition Surveillance System (PedNSS) is a program-based surveillance system designed to monitor the growth, anemia, and breast-feeding status of low-income U.S. children who participate in federally funded maternal and child health nutritional programs. The system...

  13. BORDER INFECTIOUS DISEASES SURVEILLANCE PROJECT

    EPA Science Inventory

    In 1997, the Centers for Disease Control and Prevention, the Mexican Secretariat of Health, and border health officials began the development of the Border Infectious Disease Surveillance (BIDS) project, a surveillance system for infectious diseases along the U.S.-Mexico border. ...

  14. PREGNANCY NUTRITION SURVEILLANCE SYSTEM (PNSS)

    EPA Science Inventory

    The Pregnancy Nutrition Surveillance System (PNSS) is a program based surveillance system developed in order to assist health professionals in achieving of the goals of identifying and reducing pregnancy-related health risks that contribute to adverse pregnancy outcomes. Its purp...

  15. Equine Disease Surveillance: Quarterly Summary.

    PubMed

    2016-01-23

    West Nile virus in Europe and the USA. Evidence that the spread of vesicular stomatitis in the USA is beginning to slow. Summary of UK surveillance testing, July to September 2015 These are among matters discussed in the most recent quarterly equine disease surveillance report, prepared by Defra, the Animal Health Trust and the British Equine Veterinary Association. PMID:26795859

  16. Equine disease surveillance: quarterly summary.

    PubMed

    2016-07-30

    National and international disease outbreaksAfrican horse sickness in South AfricaRising EHV-1 abortion cases in the UKSummary of surveillance testing, January to March 2016 These are among matters discussed in the most recent quarterly equine disease surveillance report, prepared by Defra, the Animal Health Trust and the British Equine Veterinary Association. PMID:27474057

  17. Strategy for conducting environmental surveillance of groundwater to comply with DOE orders

    SciTech Connect

    Forstrom, J.M.

    1990-12-01

    This document defines the strategy for conducting environmental surveillance of groundwater quality at Department of Energy (DOE) installations as it will be implemented by Martin Marietta Energy Systems, Inc. The primary objectives of defining this generic strategy prior to developing site-specific plans are to: clearly differentiate between effluent monitoring and environmental surveillance as they apply to groundwater, describe the principles and concepts of groundwater flow that must be considered when establishing a groundwater surveillance program, and provide for a consistent approach to developing plant-specific groundwater surveillance plans. 18 refs., 5 figs., 3 tabs.

  18. [Entomological surveillance in Mauritius].

    PubMed

    Gopaul, R

    1995-01-01

    The entomological surveillance is an essential link in the fight against malaria in Mauritius. Because of the large number of malaria-infected travellers in Mauritius and the presence of the vector Anopheles arabiensis, the risk of local transmission is very real. The medical entomology division together with the malaria control unit and the health appointees exert a rigorous entomological surveillance of malaria. Field agents make entomological investigations of pilot villages and around the harbor and airport, where there have been cases of malaria, in addition to a few randomly chosen regions. All of the inhabited regions are accessible because of a good highway infrastructure, which enables a complete coverage for the entomological prospectives. Entomological controls are also conducted in the airplanes and the ships. All of the captured mosquitos and the harvested larva are transferred to a laboratory for identification, dissection or sensibility tests, etc. The larva of A. arabiensis have not yet developed resistance to Temephos and the adults are still sensitive to DDT. Thus, the larval habitats are treated with Temephos and DDT is sprayed in the residences where there have been native cases of malaria. The entomology division studies the ecology and the evolution of the larval habitats, as well as the impact of the anti-larval fight on the anophelene density. In addition to the chemical fight, a biological control is being tried with larva-eating fish such as Lebistes and Tilapia. In general, the anophelene density in Mauritius is low, but after the big summer rains, especially during a period of cyclones, there is a considerable increase of larval habitats and consequently a higher number of A. arabiensis. Therefore during this season, it is necessary to make an even more rigorous entomological surveillance. A. arabiensis has a strong exophile tendency even if it is endophage and exophage. This mosquito is zoophile, mostly towards cattle, and the

  19. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  20. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded

  1. A system for testing distributed information fusion applications for maritime surveillance

    NASA Astrophysics Data System (ADS)

    Wehn, Hans; Happe, Jens; Guitouni, Adel; Valin, Pierre; Bossé, Éloi

    2008-03-01

    A PRECARN partnership project, called CanCoastWatch (CCW), is bringing together a team of researchers from industry, government, and academia for creating an advanced simulation test bed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation. The test bed allows experimenting with higher-level distributed information fusion, dynamic resource management and configuration management given multiple constraints on the resources and their communications networks. The test bed provides general services that are useful for testing many fusion applications. This includes a multi-layer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop.

  2. Surgical wound infection surveillance.

    PubMed

    Lee, J T

    2003-12-01

    Measuring the frequency of a defined outcome flaw for a series of patients undergoing operative procedures generates information for performance evaluation. Such data influence decisions to improve care if used responsibly. Wound infection (WI), bacterial invasion of the incision, is the most common infectious complication of surgical care and WI prevention has value because the complication affects economic, patient satisfaction, and patient functional status outcomes. WI frequency, one kind of surgical outcome flaw rate, is traditionally used to judge one aspect of surgical care quality. At the author's institution, global WI surveillance was conducted without interruption for 20 years. Results for 85,260 consecutive inpatient operations performed during the period showed that secular changes in infection rates occurred but were not necessarily caused by surgical care quality decrements. PMID:14750065

  3. Secure surveillance videotapes

    SciTech Connect

    Resnik, W.M.; Kadner, S.P.; Olsen, R.; Chitumbo, K.; Pepper, S.

    1995-12-31

    With assistance from the US Program for Technical Assistance to IAEA Safeguards (POTAS), Aquila Technologies Group developed the Tamper-Resistant Analog Media (TRAM-1000) system to provide standard VHS surveillance video tapes with an enhanced tamper-indicating capability. This project represents further implementation of the partnership approach in facilities including light water reactors with MOX facilities. These facilities use Uniplex Digiquad system video tapes. The partnership approach ensures that one organization can exchange the tapes in a machine without the presence of the other, without losing continuity of information. The TRAM-1000 system development project was accomplished in two stages. In the first stage of the project, the original system delivered to the IAEA, consists of three parts: (1) the tamper detection unit, (2) a specially augmented VHS video tape, and (3) an HP-95 reader. The tamper detection unit houses a VACOSS active fiber-optic seal and an electronic identification tag (E-TAG) reader. In the second stage of the project, the original TRAM-1000 was modified to its current design based on agency input. After delivery of the original TRAM-1000 system to the IAEA, it was reviewed by inspectors. The inspectors felt that the initial system`s tape storage/transport method could be simplified. Rather than threading the fiber through the tape spindles, the inspectors suggested that the tape be placed in a bag capable of being sealed. Also, a more flexible fiber-optic cable was recommended. As a result of these suggestions, Aquila developed a tamper-proof bag specifically for holding a surveillance video tape and sealable with a VACOSS fiber optical seal.

  4. Drug approval and surveillance.

    PubMed

    Potts, M

    1980-01-01

    This article argues that current regulations governing the licensing of drugs, particularly in the U.S., need to be changed and replaced by a system of provisional or conditional licensing and increased postmarketing surveillance of drug use. In terms of research and development of new forms of contraception, this proposal would have great impact. It is believed that the U.S./Food and Drug Administration (FDA) requirements--animal experiments and Phase 1 and 2 clinical trials--not only put an unacceptable financial burden on any institution attempting to develop new contraceptives, but do not demonstrably contribute to the reduction of risks. The author questions whether even if oral contraceptives introduced prior to new U.S./FDA regulations had been subject to these current regulations that convincing evidence would have been found to alert anyone to the now-known rare adverse effects, such as risk of thromboembolism. It is pointed out that these sorts of rare risks were uncovered by continuous screening processes which are not now a part of the FDA drug regulation requirements. The author also questions the politics of "conpulsory safety," such as might be legislated for regulated car safety belt use. Citing a partnership already established between government and private industry in high-risk/low cost ventures in the aerospace industry, the author sees no reason why such a relationship could not evolve in the pharmaceutical industry. In Britain, proposals have been made to establish a fund to compensate patients adversely affected by drugs which pharmaceutical companies would reimburse if proved negligent; such a fund may work in the U.S. under new regulations which stress postmarketing surveillance. PMID:6110574

  5. [Proposal to establish an environmental contaminants surveillance system in Colombia].

    PubMed

    Huertas, Jancy Andrea

    2015-08-01

    Environmental pollution is a growing problem that negatively impacts health with social and economic high costs. In this sense, coordinated surveillance of conditions, risks, exposures and health effects related to pollution is a useful tool to guide decision-making processes. The objective of this essay was to describe a surveillance system for environmental contaminants in Colombia and its design background. Using the technical guidelines proposed by the Pan American Health Organization, a literature review was conducted to identify the key elements to be included in such surveillance system and to establish which of these elements were already present in the Colombian context. Moreover, these findings were compared with successful experiences in Latin America. The surveillance system includes five components: Epidemiological, environmental and biological surveillance, clinical monitoring and recommendations to guide policies or interventions. The key factors for a successful surveillance system are: interdisciplinary and inter-sector work, clear definition of functions, activities, data sources and information flow. The implementation of the system will be efficient if the structures and tools existing in each country are taken into account. The most important stakeholders are inter-sector public health and environmental commissions and government institutions working in research and surveillance issues related to health, sanitation, environment, drugs and food regulation and control. In conclusion, Colombia has the technical resources and a normative framework to design and implement the surveillance system. However, stakeholders´ coordination is essential to ensure the efficacy of the system so it may guide the implementation of cost-effective actions in environmental health. PMID:26535737

  6. The Development of Surveillance Systems.

    PubMed

    Henderson, D A

    2016-03-01

    Surveillance systems in public health practice have increased in number and sophistication with advances in data collection, analysis, and communication. When the Communicable Disease Center (now the Centers for Disease Control and Prevention) was founded some 70 years ago, surveillance referred to the close observation of individuals with suspected smallpox, plague, or cholera. Alexander Langmuir, head of the Epidemiology Branch, redefined surveillance as the epidemiology-based critical factor in infectious disease control. I joined Langmuir as assistant chief in 1955 and was appointed chief of the Surveillance Section in 1961. In this paper, I describe Langmuir's redefinition of surveillance. Langmuir asserted that its proper use in public health meant the systematic reporting of infectious diseases, the analysis and epidemiologic interpretation of data, and both prompt and widespread dissemination of results. I outline the Communicable Disease Center's first surveillance systems for malaria, poliomyelitis, and influenza. I also discuss the role of surveillance in the global smallpox eradication program, emphasizing that the establishment of systematic reporting systems and prompt action based on results were critical factors of the program. PMID:26928219

  7. The Surveyor Mobile Surveillance System

    SciTech Connect

    Not Available

    1986-07-01

    This paper reports that KLM Technologies, Inc. delivered the Surveyor Mobile Surveillance System to Niagara Mohawk Power Corporation (NMPC) in May 1986 for a long-term test and evaluation program at the Nine Mile Point Nuclear Plant. NMPC is leasing the Surveyor, and KLM personnel will be providing training and support during the test and evaluation program, which will cover various surveillance, inspection, and possible light maintenance tasks in high radiation and contamination areas of the plant. Prior to delivery to NMPC, the surveyor was demonstrated at Detroit Edison Company's Fermi II Nuclear Plant where it was judged to be rugged, compact, and easy to use for surveillance and inspection tasks.

  8. DEFENSE MEDICAL SURVEILLANCE SYSTEM (DMSS)

    EPA Science Inventory

    AMSA operates the Defense Medical Surveillance System (DMSS), an executive information system whose database contains up-to-date and historical data on diseases and medical events (e.g., hospitalizations, ambulatory visits, reportable diseases, HIV tests, acute respiratory diseas...

  9. Concern, but not with surveillance.

    PubMed

    Ivinson, A J

    2000-01-01

    According to Brian Ward, vaccines are probably the most efficacious and cost-effective medical interventions ever invented. He notes that surveillance of vaccine-related adverse events is important, and resources should be made available for monitoring vaccine safety at a time of increasing vaccine activity. However, in an environment of limited resources, there is a dispute over the level of resources devoted to vaccine surveillance versus vaccine deployment. In an examination of the balance of risk versus benefit, several arguments are given. Nevertheless, no tangible evidence supports the claim that the increased use of new vaccines will be more trouble than it is worth. Ward offers a more worthy argument against the use of vaccines aimed at maintaining productivity rather than securing personal health and well-being. Overall, the author upholds the importance of good vaccine surveillance but opposes the notion of shifting resources from vaccine development to vaccine surveillance. PMID:10743292

  10. SEXUALLY TRANSMITTED DISEASES SURVEILLANCE SYSTEM

    EPA Science Inventory

    The Sexually Transmitted Disease Surveillance System presents statistics and trends for sexually transmitted diseases (STDs). Data demonstrate details which provide information about STD morbidity in the United States, STD prevalence with subgroups and populations which are the f...

  11. Collaborative space surveillance

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Fang; Pham, Khanh D.

    2009-05-01

    This paper presents a space-based, space-surveillance study wherein the goal is to demonstrate the feasibility and scalability of the modeling and simulation of a distributed multi-agent multiple satellites tracking and prediction system. A flexible and modular system architecture that enables collaborative and efficient teaming among distributed agents is delineated. Hierarchical objective methodology is deployed to align the mission objectives with the diverse agents' capabilities and resources. A set of satellite platform and sensor configuration/models is considered. Detailed mathematical models of the satellite orbits including the mutual visibility function are simulated for combinations of GEO and LEO orbits. An Unscented Kalman Filter (UKF)/Distributed Unscented Information Filter (DUIF) for high-accuracy orbital determination and tracking is demonstrated to show that the LEO orbit estimation from the GEO satellite with only angle measurements based on UKF is an excellent approach. Simulation studies show that the rate of filter convergence depends on sample time period, initial error, process error, measurement errors as well as the relative geometry of the LEO and GEO satellite orbits.

  12. Hallam environmental radiation surveillance

    SciTech Connect

    Not Available

    1988-01-01

    An environmental surveillance report is presented for decommissioned Hallam power plant. Statistical analysis shows that the spring data mean is significantly greater than the fall data mean for all water sources. The spring variation is also significantly greater than the fall variation. The water sources demonstrate homogeneity for spring and fall sub-surface sources. Surface water has significantly more radiation than sub-surface water. This may be attributed to increased tritium content in surface water due to atmospheric leaching. Finally, the surface water samples are in close proximity to Sheldon Station, a coal fired plant, and increased coal particulate matter may be increasing the environmental radioactivity. A linear regression model suggests spring readings are decreasing and fall readings significantly increasing from 1975 to 1987. The spring recharge water probably contains natural and man-made radioactivity leached from the atmosphere, as well as natural radioactivity leached from the soil and rocks. The lower mean and less variance for the fall data may better characterize the aquifer. 7 figs.

  13. Breast cancer surveillance.

    PubMed

    Rachetta, Eleonora; Osano, Silvia; Astegiano, Francesco; Martincich, Laura

    2016-10-01

    Since several studies have demonstrated the inadequate diagnostic performance of mammography in high risk women, over the past two decades, different breast imaging tests have been evaluated as additional diagnostic methods to mammography, and the most relevant ones are the techniques that do not imply the use of X-rays, considering the young age of these patients and the higher radio-sensitivity. Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has risen growing interest not only because of the absence of use of X-rays, but also because it provides morpho-functional features, which may depict biological characteristics of breast tissues, including invasive and in situ cancers. Different multicenter non-randomized prospective studies aimed to evaluate breast DCE-MRI as an integral part of surveillance programs, agreed about the evidence that in high risk women screening with DCE-MRI is more effective than either mammography and/or ultrasound. Moreover, this modality leads to the identifications of cancers at a more favorable stage, allowing a real advantage in terms of tumor size and nodal involvement. The medical community is evaluating to suggest DCE-MRI alone as screening modality in high-risk women, as it was reported that in these cases the sensitivity of MRI plus conventional imaging was not significantly higher than that of MRI alone. Breast MRI is now recommended as part of screening program for high risk women by both European and American guidelines. PMID:26924173

  14. Public Health Disease Surveillance Networks.

    PubMed

    Morse, Stephen S

    2014-02-01

    Zoonotic infections are important sources of human disease; most known emerging infections are zoonotic (e.g., HIV, Ebola virus, severe acute respiratory syndrome, Nipah virus, and enteropathogenic Escherichia coli) and originated as natural infections of other species that acquired opportunities to come in contact with humans. There are also serious infectious diseases classically considered zoonotic, such as influenza, rabies, bubonic plague, brucellosis, and leptospirosis. More recently, it has been recognized that wildlife constitutes a particularly important source of novel zoonoses. With all this microbial movement, surveillance is considered the first line of public health defense. The zoonotic origin of many human and livestock infections argues strongly for the synergistic value of a One Health approach, which provides the capability to identify pathogens crossing into new species and could provide earlier warning of potential epidemics. This article discusses public health surveillance and major recent surveillance initiatives and reviews progress toward implementing a One Health surveillance framework. Networks discussed include global intergovernmental organizations and recent combined efforts of these organizations; Web-based nongovernmental systems (e.g., ProMED, the Program for Monitoring Emerging Diseases); and networks of bilateral or multilateral government programs (e.g., the CDC's Global Disease Detection [GDD] platform; the U.S. Department of Defense's Global Emerging Infections Surveillance and Response System [GEIS]; regional and subregional networks; and the U.S. Agency for International Development's Emerging Pandemic Threats [EPT] program and its surveillance component, PREDICT). Syndromic surveillance also has potential to complement existing systems. New technologies are enabling revolutionary capabilities for global surveillance, but in addition to serious technical needs, both sustainability and data-sharing mechanisms remain

  15. Surface Environmental Surveillance Procedures Manual

    SciTech Connect

    RW Hanf; TM Poston

    2000-09-20

    Environmental surveillance data are used in assessing the impact of current and past site operations on human health and the environment, demonstrating compliance with applicable local, state, and federal environmental regulations, and verifying the adequacy of containment and effluent controls. SESP sampling schedules are reviewed, revised, and published each calendar year in the Hanford Site Environmental Surveillance Master Sampling Schedule. Environmental samples are collected by SESP staff in accordance with the approved sample collection procedures documented in this manual.

  16. Occupational Surveillance for Spaceflight Exposures

    NASA Technical Reports Server (NTRS)

    Tarver, William J.

    2010-01-01

    This slide presentation reviews the importance of longterm occupational health surveillance of astronauts after exposure to the possible hazards of spaceflight. Because there is not much information about long term effects of spaceflight on human health, it is important to identify some of the possible results of exposure to the many possible factors that can influence longterm health impacts. This surveillance also allows for NASA to meet the obligation to care for the astronauts for their lifetime.

  17. Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS)

    NASA Astrophysics Data System (ADS)

    Leininger, Brian; Edwards, Jonathan; Antoniades, John; Chester, David; Haas, Dan; Liu, Eric; Stevens, Mark; Gershfield, Charlie; Braun, Mike; Targove, James D.; Wein, Steve; Brewer, Paul; Madden, Donald G.; Shafique, Khurram Hassan

    2008-04-01

    Finding, tracking and monitoring events and activities of interest on a continuous basis remains one of our highest Intelligence Surveillance and Reconnaissance (ISR) requirements. Unmanned Aerial Systems (UAS) serve as one of the warfighter's primary and most responsive means for surveillance and gathering intelligence information and are becoming vital assets in military operations. This is demonstrated by their significant use in Afghanistan during Operation Enduring Freedom and in Iraq as part of Operation Iraqi Freedom. Lessons learned from these operations indicate that UAVs provide critical capabilities for enhancing situational awareness, intelligence gathering and force protection for our military forces. Current UAS high resolution electro-optics offers a small high resolution field of view (FOV). This narrow FOV is a limiting factor on the utility of the EO system. The UAS that are available offer persistence; however, the effectiveness of the EO system is limited by the sensors and available processing. DARPA is addressing this developing the next generation of persistent, very wide area surveillance with the Autonomous Real-time Ground Ubiquitous Surveillance - Imaging System (ARGUS-IS). The system will be capable of imaging an area of greater than 40 square kilometers with a Ground Space Distance (GSD) of 15 cm at video rates of greater than 12 Hz. This paper will discuss the elements of the ARGUS-IS program.

  18. National nosocomial infections surveillance system (NNIS): description of surveillance methods.

    PubMed

    Emori, T G; Culver, D H; Horan, T C; Jarvis, W R; White, J W; Olson, D R; Banerjee, S; Edwards, J R; Martone, W J; Gaynes, R P

    1991-02-01

    The National Nosocomial Infections Surveillance System (NNIS) is an ongoing collaborative surveillance system sponsored by the Centers for Disease Control (CDC) to obtain national data on nosocomial infections. The CDC uses the data that are reported voluntarily by participating hospitals to estimate the magnitude of the nosocomial infection problem in the United States and to monitor trends in infections and risk factors. Hospitals collect data by prospectively monitoring specific groups of patients for infections with the use of protocols called surveillance components. The surveillance components used by the NNIS are hospitalwide, intensive care unit, high-risk nursery, and surgical patient. Detailed information including demographic characteristics, infections and related risk factors, pathogens and their antimicrobial susceptibilities, and outcome, is collected on each infected patient. Data on risk factors in the population of patients being monitored are also collected; these permit the calculation of risk-specific rates. An infection risk index, which includes the traditional wound class, is being evaluated as a predictor of the likelihood that an infection will develop after an operation. A major goal of the NNIS is to use surveillance data to develop and evaluate strategies to prevent and control nosocomial infections. The data collected with the use of the surveillance components permit the calculation of risk-specific infection rates, which can be used by individual hospitals as well as national health-care planners to set priorities for their infection control programs and to evaluate the effectiveness of their efforts. The NNIS will continue to evolve in finding more effective and efficient ways to assess the influence of patient risk and changes in the financing of health care on the infection rate. PMID:1850582

  19. Video sensor architecture for surveillance applications.

    PubMed

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  20. Video Sensor Architecture for Surveillance Applications

    PubMed Central

    Sánchez, Jordi; Benet, Ginés; Simó, José E.

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723

  1. Type of service wide area networking

    NASA Technical Reports Server (NTRS)

    Lekashman, John

    1989-01-01

    A variety of long-distance types of circuits can be used for data communication. A description is given of an experiment which optimizes the simultaneous use of terrestrial and satellite circuits in a TCP/IP network. Traditionally, it has been difficult to use effectively the full capacity of high-bandwidth satellite circuits, due to long round-trip times coupled with TCP window-size limitations. The experiment significantly reduced the problem, and the result was effective use of all the available bandwidth and a satellite circuit for a single data transfer. This experiment also demonstrates the use of multiple T1 communication lines and type of service networking over these lines.

  2. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  3. Proceedings: Wide-area disaster preparedness conference

    SciTech Connect

    Not Available

    1991-05-01

    Electric Power Research Institute (EPRI) member utilities were among those challenged by the natural disasters of 1989, Hurricane Hugo and the Loma Prieta Earthquake. There were valuable experiences that came out of those ordeals, and this workshop was organized to capture as much of those useful lessons as possible. NERC and EEI have long made disaster planning a part of their programs, and those utilities which can participate in their programs should do so. It was thought that an EPRI conference would be valuable in addition to these ongoing programs because (1) not all EPRI members are eligible for EEI membership, and (2) we were interested in covering some aspects not addressed by NRC. The papers presented here were prepared by the most knowledgeable men and women we could locate to share their experiences, plans and thoughts about each particular aspect of disaster planning. Using their ideas as a basis, we can make prudent plans for the unexpected disasters which the future undoubtedly holds. Individual papers have been cataloged separately.

  4. Pan-European Chikungunya surveillance: designing risk stratified surveillance zones.

    PubMed

    Tilston, Natasha; Skelly, Chris; Weinstein, Phil

    2009-01-01

    The first documented transmission of Chikungunya within Europe took place in Italy during the summer of 2007. Chikungunya, a viral infection affecting millions of people across Africa and Asia, can be debilitating and no prophylactic treatment exists. Although imported cases are reported frequently across Europe, 2007 was the first confirmed European outbreak and available evidence suggests that Aedes albopictus was the vector responsible and the index case was a visitor from India. This paper proposed pan-European surveillance zones for Chikungunya, based on the climatic conditions necessary for vector activity and viral transmission. Pan-European surveillance provides the best hope for an early-warning of outbreaks, because national boundaries do not play a role in defining the risk of this new vector borne disease threat. A review of climates, where Chikungunya has been active, was used to inform the delineation of three pan-European surveillance zones. These vary in size each month across the June-September period of greatest risk. The zones stretch across southern Europe from Portugal to Turkey. Although the focus of this study was to define the geography of potential surveillance zones based on the climatic limits on the vector and virus, a preliminary examination of inward bound airline passengers was also undertaken. This indicated that France and Italy are likely to be at greater risk due to the number of visitors they receive from Chikungunya active regions, principally viraemic visitors from India. Therefore this study represents a first attempt at creating risk stratified surveillance zones, which we believe could be usefully refined with the use of higher resolution climate data and more complete air travel data. PMID:19878588

  5. Regional Disease Surveillance Meeting - Final Paper

    SciTech Connect

    Lesperance, Ann M.; Mahy, Heidi A.

    2006-08-08

    On June 1, 2006, public health officials working in surveillance, epidemiological modeling, and information technology communities from the Seattle/Tacoma area and State of Washington met with members of the Pacific Northwest National Laboratory (PNNL) to discuss the current state of disease surveillance and gaps and needs to improve the current systems. The meeting also included a discussion of PNNL initiatives that might be appropriate to enhance disease surveillance and the current tools being used for disease surveillance. Participants broke out into two groups to identify critical gaps and needs for improving a surveillance system, and discuss the requirements for developing improved surveillance. Each group developed a list of key priorities summarizing the requirements for improved surveillance. The objective of this meeting was to work towards the development of an improved disease surveillance system.

  6. Privacy-protecting video surveillance

    NASA Astrophysics Data System (ADS)

    Wickramasuriya, Jehan; Alhazzazi, Mohanned; Datt, Mahesh; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2005-02-01

    Forms of surveillance are very quickly becoming an integral part of crime control policy, crisis management, social control theory and community consciousness. In turn, it has been used as a simple and effective solution to many of these problems. However, privacy-related concerns have been expressed over the development and deployment of this technology. Used properly, video cameras help expose wrongdoing but typically come at the cost of privacy to those not involved in any maleficent activity. This work describes the design and implementation of a real-time, privacy-protecting video surveillance infrastructure that fuses additional sensor information (e.g. Radio-frequency Identification) with video streams and an access control framework in order to make decisions about how and when to display the individuals under surveillance. This video surveillance system is a particular instance of a more general paradigm of privacy-protecting data collection. In this paper we describe in detail the video processing techniques used in order to achieve real-time tracking of users in pervasive spaces while utilizing the additional sensor data provided by various instrumented sensors. In particular, we discuss background modeling techniques, object tracking and implementation techniques that pertain to the overall development of this system.

  7. Video surveillance with speckle imaging

    DOEpatents

    Carrano, Carmen J.; Brase, James M.

    2007-07-17

    A surveillance system looks through the atmosphere along a horizontal or slant path. Turbulence along the path causes blurring. The blurring is corrected by speckle processing short exposure images recorded with a camera. The exposures are short enough to effectively freeze the atmospheric turbulence. Speckle processing is used to recover a better quality image of the scene.

  8. SETI radio spectrum surveillance system

    NASA Technical Reports Server (NTRS)

    Crow, B.; Lokshin, A.; Marina, M.; Ching, L.

    1985-01-01

    The SETI Radio Spectrum Surveillance System (SRSSS) will provide a data base for assessing the radio frequency interference (RFI) environment for SETI and minimizing RFI disruptions during the search. The system's hardware and software are described and the sensitivity of the system is discussed.

  9. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  10. Nutrition Surveillance. Annual Summary 1982.

    ERIC Educational Resources Information Center

    Centers for Disease Control (DHHS/PHS), Atlanta, GA.

    This report summarizes information, including selected indices of nutritional status, as reported from 28 states and the District of Columbia to the Nutritional Status Surveillance System. This system has two components, one addressing nutritional status among high-risk pediatric populations, and the other addressing nutritional status among…