Sample records for fluconazole-resistant candida albicans

  1. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans.

    PubMed

    Li, Xiuyun; Yu, Cuixiang; Huang, Xin; Sun, Shujuan

    2016-01-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases in the clinic. The emergence of drug resistance in Candida albicans has become a noteworthy phenomenon due to the extensive use of antifungal agents and the development of biofilms. This study showed that budesonide potentiates the antifungal effect of fluconazole against fluconazole-resistant Candida albicans strains both in vitro and in vivo. In addition, our results demonstrated, for the first time, that the combination of fluconazole and budesonide can reverse the resistance of Candida albicans by inhibiting the function of drug transporters, reducing the formation of biofilms, promoting apoptosis and inhibiting the activity of extracellular phospholipases. This is the first study implicating the effects and mechanisms of budesonide against Candida albicans alone or in combination with fluconazole, which may ultimately lead to the identification of new potential antifungal targets.

  2. A Case Report of Penile Infection Caused by Fluconazole- and Terbinafine-Resistant Candida albicans.

    PubMed

    Hu, Yongxuan; Hu, Yanqing; Lu, Yan; Huang, Shiyun; Liu, Kangxing; Han, Xue; Mao, Zuhao; Wu, Zhong; Zhou, Xianyi

    2017-04-01

    Candida albicans is the most common pathogen that causes balanoposthitis. It often causes recurrence of symptoms probably due to its antifungal resistance. A significant number of balanitis Candida albicans isolates are resistant to azole and terbinafine antifungal agents in vitro. However, balanoposthitis caused by fluconazole- and terbinafine-resistant Candida albicans has rarely been reported. Here, we describe a case of a recurrent penile infection caused by fluconazole- and terbinafine-resistant Candida albicans, as well as the treatments administered to this patient. The isolate from the patient was tested for drug susceptibility in vitro. It was sensitive to itraconazole, voriconazole, clotrimazole and amphotericin B, but not to terbinafine and fluconazole. Thus, oral itraconazole was administrated to this patient with resistant Candida albicans penile infection. The symptoms were improved, and mycological examination result was negative. Follow-up treatment of this patient for 3 months showed no recurrence.

  3. Ambroxol Hydrochloride Combined with Fluconazole Reverses the Resistance of Candida albicans to Fluconazole.

    PubMed

    Li, Xiuyun; Zhao, Yuanhao; Huang, Xin; Yu, Cuixiang; Yang, Yilei; Sun, Shujuan

    2017-01-01

    In this study, we found that ambroxol hydrochloride (128 μg/mL) exhibits synergistic antifungal effects in combination with fluconazole (2 μg/mL) against resistant planktonic Candida albicans ( C. albicans ) cells. This combination also exhibited synergistic effects against resistant C. albicans biofilms in different stages (4, 8, and 12 h) according to the microdilution method. In vitro data were further confirmed by the success of this combination in treating Galleria mellonella infected by resistant C. albicans . With respect to the synergistic mechanism, our result revealed that ambroxol hydrochloride has an effect on the drug transporters of resistant C. albicans , increasing the uptake and decreasing the efflux of rhodamine 6G, a fluorescent alternate of fluconazole. This is the first study to investigate the in vitro and in vivo antifungal effects, as well as the possible synergistic mechanism of ambroxol hydrochloride in combination with fluconazole against resistant C. albicans . The results show the potential role for this drug combination as a therapeutic alternative to treat resistant C. albicans and provide insights into the development of antifungal targets and new antifungal agents.

  4. Potent In Vitro Synergism of Fluconazole and Osthole against Fluconazole-Resistant Candida albicans

    PubMed Central

    Li, De-Dong; Chai, Dong; Huang, Xiao-Wen; Guan, Shao-Xing; Du, Jiang; Zhang, Hao-Yu

    2017-01-01

    ABSTRACT Osthole is a natural coumarin that exhibits wide biological and pharmacological activities such as neuroprotective, osteogenic, immunomodulation, antitumor, and anti-inflammatory effects. In this study, we investigated the antifungal effects of osthole in vitro. A checkerboard microdilution assay showed that osthole has significant synergistic effect with fluconazole against fluconazole-resistant Candida albicans. Similar results were obtained from a growth curve assay. Meanwhile, XTT reduction assay demonstrated the synergism of fluconazole and osthole against C. albicans biofilm formation. Microarray results showed that the expression of genes involved in the oxidation-reduction process, energy metabolism, and transportation changed significantly after the combined treatment with fluconazole and osthole, and further results showed that endogenous reactive oxygen species (ROS) was significantly increased in the combination group. In conclusion, these results demonstrate the synergism of fluconazole and osthole against fluconazole-resistant C. albicans and indicate that endogenous ROS augmentation might contribute to the synergism of fluconazole and osthole. PMID:28607012

  5. Potent In Vitro Synergism of Fluconazole and Osthole against Fluconazole-Resistant Candida albicans.

    PubMed

    Li, De-Dong; Chai, Dong; Huang, Xiao-Wen; Guan, Shao-Xing; Du, Jiang; Zhang, Hao-Yu; Sun, Yan; Jiang, Yuan-Ying

    2017-08-01

    Osthole is a natural coumarin that exhibits wide biological and pharmacological activities such as neuroprotective, osteogenic, immunomodulation, antitumor, and anti-inflammatory effects. In this study, we investigated the antifungal effects of osthole in vitro A checkerboard microdilution assay showed that osthole has significant synergistic effect with fluconazole against fluconazole-resistant Candida albicans Similar results were obtained from a growth curve assay. Meanwhile, XTT reduction assay demonstrated the synergism of fluconazole and osthole against C. albicans biofilm formation. Microarray results showed that the expression of genes involved in the oxidation-reduction process, energy metabolism, and transportation changed significantly after the combined treatment with fluconazole and osthole, and further results showed that endogenous reactive oxygen species (ROS) was significantly increased in the combination group. In conclusion, these results demonstrate the synergism of fluconazole and osthole against fluconazole-resistant C. albicans and indicate that endogenous ROS augmentation might contribute to the synergism of fluconazole and osthole. Copyright © 2017 American Society for Microbiology.

  6. Competitive Fitness of Fluconazole-Resistant Clinical Candida albicans Strains.

    PubMed

    Popp, Christina; Hampe, Irene A I; Hertlein, Tobias; Ohlsen, Knut; Rogers, P David; Morschhäuser, Joachim

    2017-07-01

    The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis. Resistance is often caused by gain-of-function mutations in the transcription factors Mrr1 and Tac1, which result in constitutive overexpression of multidrug efflux pumps, and Upc2, which result in constitutive overexpression of ergosterol biosynthesis genes. However, the deregulated gene expression that is caused by hyperactive forms of these transcription factors also reduces the fitness of the cells in the absence of the drug. To investigate whether fluconazole-resistant clinical C. albicans isolates have overcome the fitness costs of drug resistance, we assessed the relative fitness of C. albicans isolates containing resistance mutations in these transcription factors in competition with matched drug-susceptible isolates from the same patients. Most of the fluconazole-resistant isolates were outcompeted by the corresponding drug-susceptible isolates when grown in rich medium without fluconazole. On the other hand, some resistant isolates with gain-of-function mutations in MRR1 did not exhibit reduced fitness under these conditions. In a mouse model of disseminated candidiasis, three out of four tested fluconazole-resistant clinical isolates did not exhibit a significant fitness defect. However, all four fluconazole-resistant isolates were outcompeted by the matched susceptible isolates in a mouse model of gastrointestinal colonization, demonstrating that the effects of drug resistance on in vivo fitness depend on the host niche. Collectively, our results indicate that the fitness costs of drug resistance in C. albicans are not easily remediated, especially when proper control of gene expression is required for successful adaptation to life within a mammalian host. Copyright © 2017 American Society for Microbiology.

  7. The Influence of Tea Tree Oil (Melaleuca alternifolia) on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains

    PubMed Central

    Garbusińska, Aleksandra; Kowalska, Magdalena; Król, Wojciech

    2015-01-01

    The aim of this study was to evaluate the activity of fluconazole against 32 clinical strains of fluconazole-resistant Candida albicans, and C. albicans ATCC 10231 reference strain, after their exposure to sublethal concentrations of tea tree oil (TTO) or its main bioactive component terpinen-4-ol. For all tested fluconazole-resistant C. albicans strains TTO and terpinen-4-ol minimal inhibitory concentrations (MICs) were low, ranging from 0.06% to 0.5%. The 24-hour exposure of fluconazole-resistant C. albicans strains to fluconazole with sublethal dose of TTO enhanced fluconazole activity against these strains. Overall, 62.5% of isolates were classified as susceptible, 25.0% exhibited intermediate susceptibility, and 12.5% were resistant. For all of the tested clinical strains the fluconazole MIC decreased from an average of 244.0 μg/mL to an average of 38.46 μg/mL, and the fluconazole minimal fungicidal concentrations (MFC) decreased from an average of 254.67 μg/mL to an average of 66.62 μg/mL. Terpinen-4-ol was found to be more active than TTO, and strongly enhanced fluconazole activity against fluconazole-resistant C. albicans strains. The results of this study demonstrate that combining natural substances such as TTO and conventional drug such as fluconazole, may help treat difficult yeast infections. PMID:25722982

  8. Fluconazole resistance in Candida species: a current perspective

    PubMed Central

    Berkow, Elizabeth L; Lockhart, Shawn R

    2017-01-01

    Candida albicans and the emerging non-albicans Candida spp. have significant clinical relevance among many patient populations. Current treatment guidelines include fluconazole as a primary therapeutic option for the treatment of these infections, but it is only fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase in the drug target, and development of compensatory pathways for producing the target sterol, ergosterol. While many mechanisms of resistance observed in C. albicans are also found in the non-albicans species, there are also important and unexpected differences between species. Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the global health threat Candida auris, are largely unknown. In order to preserve the utility of one of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the manner by which Candida spp. manifest resistance to it. PMID:28814889

  9. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans

    PubMed Central

    Break, Timothy J; Desai, Jigar V; Ferre, Elise M N; Henderson, Christina; Zelazny, Adrian M; Siebenlist, Ulrich; Hoekstra, William J; Schotzinger, Robert J; Garvey, Edward P; Lionakis, Michail S

    2018-01-01

    Abstract Background Candida albicans, the most common human fungal pathogen, causes chronic mucosal infections in patients with inborn errors of IL-17 immunity that rely heavily on chronic, often lifelong, azole antifungal agents for treatment. However, a rise in azole resistance has predicated a need for developing new antifungal drugs. Objectives To test the in vitro and in vivo efficacy of VT-1161 and VT-1129 in the treatment of oropharyngeal candidiasis with azole-susceptible or -resistant C. albicans strains. Methods MICs of VT-1161, VT-1129 and nine licensed antifungal drugs were determined for 31 Candida clinical isolates. The drug concentrations in mouse serum and tongues were measured following oral administration. IL-17-signalling-deficient Act1−/− mice were infected with fluconazole-susceptible or fluconazole-resistant C. albicans strains, and the amount of mucosal fungal burden was determined after fluconazole or VT-1161 treatment. Results Fourteen isolates (45%) were not fluconazole susceptible (MIC ≥4 mg/L). VT-1161 and VT-1129 showed significant in vitro activity against the majority of the 31 mucosal clinical isolates (MIC50 0.03 and 0.06 mg/L, respectively), including Candida glabrata (MIC50, 0.125 and 0.25 mg/L, respectively). After oral doses, VT-1161 and VT-1129 concentrations in mouse serum and tongues were well above their MIC50 values. VT-1161 was highly effective as treatment of both fluconazole-susceptible and -resistant oropharyngeal candidiasis in Act1−/− mice. Conclusions VT-1129 and VT-1161 exhibit significant in vitro activity against Candida strains, including fluconazole-resistant C. albicans and C. glabrata. VT-1161 administration in mice results in significant mucosal drug accumulation and eradicates infection caused by fluconazole-susceptible and -resistant Candida strains. PMID:29040636

  10. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    PubMed

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  11. Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans.

    PubMed

    Han, Bing; Chen, Jia; Yu, Yi-qun; Cao, Yong-bing; Jiang, Yuan-ying

    2016-02-01

    This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  12. Susceptibilities of Norwegian Candida albicans strains to fluconazole: emergence of resistance. The Norwegian Yeast Study Group.

    PubMed Central

    Sandven, P; Bjørneklett, A; Maeland, A

    1993-01-01

    All Candida albicans isolates in Norwegian microbiological laboratories in 1991 judged clinically important (except vaginal isolates) were collected. The isolates were tested for susceptibility to fluconazole with an agar dilution test and a commercially available agar diffusion test. A total of 212 strains (95%) were susceptible to fluconazole, and MICs for most of the strains (92%) were < or = 1.56 micrograms/ml. The agar diffusion test using a 15-micrograms tablet and a 48-h incubation period separated resistant from susceptible strains with a wide margin. The only exception was a strain for which the MIC was 6.25 micrograms/ml. The difference in zone size between the resistant and the susceptible populations of strains was 11 mm. Accordingly, it appears that the agar diffusion test is an appropriate method for detecting fluconazole resistance. The 12 fluconazole-resistant isolates originated from eight AIDS patients with oral or esophageal Candida infections. Seven of the patients had been given fluconazole for 1 month or more, often as self medication. Four had infections that were clinically resistant to fluconazole; one additional patient responded only when the dose was increased. All isolates recovered from these patients were analyzed by multilocus enzyme electrophoresis. The 12 C. albicans isolates belonged to five electrophoretic types, but three of four patients attending one hospital had isolates belonging to one electrophoretic type. One possible explanation for this finding could be that a nosocomial spread of resistant strains has occurred. PMID:8285631

  13. Fluconazole impacts the extracellular matrix of fluconazole-susceptible and -resistant Candida albicans and Candida glabrata biofilms.

    PubMed

    Panariello, Beatriz Helena Dias; Klein, Marlise I; Mima, Ewerton Garcia De Oliveira; Pavarina, Ana Cláudia

    2018-01-01

    Background : Fluconazole (FLZ) is a drug commonly used for the treatment of Candida infections. However, β-glucans in the extracellular matrices (ECMs) hinder FLZ penetration into Candida biofilms, while extracellular DNA (eDNA) contributes to the biofilm architecture and resistance. Methods : This study characterized biofilms of FLZ-sensitive (S) and -resistant (R) Candida albicans and Candida glabrata in the presence or absence of FLZ focusing on the ECM traits. Biofilms of C. albicans American Type Culture Collection (ATCC) 90028 (CaS), C. albicans ATCC 96901 (CaR), C. glabrata ATCC 2001 (CgS), and C. glabrata ATCC 200918 (CgR) were grown in RPMI medium with or without FLZ at 5× the minimum inhibitory concentration (37°C/48 h). Biofilms were assessed by colony-forming unit (CFU)/mL, biomass, and ECM components (alkali-soluble polysaccharides [ASP], water-soluble polysaccharides [WSP], eDNA, and proteins). Scanning electron microscopy (SEM) was also performed. Data were analyzed by parametric and nonparametric tests ( α   =  0.05). Results : In biofilms, FLZ reduced the CFU/mL of all strains ( p  < 0.001), except for CaS ( p  = 0.937). However, the ASP quantity in CaS was significantly reduced by FLZ ( p  = 0.034), while the drug had no effect on the ASP levels in other strains ( p  > 0.05). Total biomasses and WSP were significantly reduced by FLZ in the ECM of all yeasts ( p  < 0.001), but levels of eDNA and proteins were unaffected ( p  > 0.05). FLZ affected the cell morphology and biofilm structure by hindering hyphae formation in CaS and CaR biofilms, by decreasing the number of cells in CgS and CgR biofilms, and by yielding sparsely spaced cell agglomerates on the substrate. Conclusion : FLZ impacts biofilms of C. albicans and C. glabrata as evident by reduced biomass. This reduced biomass coincided with lowered cell numbers and quantity of WSPs. Hyphal production by C. albicans was also reduced.

  14. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    PubMed

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).

  15. Invitro Anti-mycotic Activity of Hydro Alcoholic Extracts of Some Indian Medicinal Plants against Fluconazole Resistant Candida albicans.

    PubMed

    Varadarajan, Saranya; Narasimhan, Malathi; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari

    2015-08-01

    Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans. Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct.

  16. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

    PubMed Central

    Whaley, Sarah G.; Berkow, Elizabeth L.; Rybak, Jeffrey M.; Nishimoto, Andrew T.; Barker, Katherine S.; Rogers, P. David

    2017-01-01

    Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species. PMID:28127295

  17. A chromosome 4 trisomy contributes to increased fluconazole resistance in a clinical isolate of Candida albicans

    PubMed Central

    Anderson, Matthew Z.; Saha, Amrita; Haseeb, Abid

    2017-01-01

    Candida albicans is an important opportunistic fungal pathogen capable of causing both mucosal and disseminated disease. Infections are often treated with fluconazole, a front-line antifungal drug that targets the biosynthesis of ergosterol, a major component of the fungal cell membrane. Resistance to fluconazole can arise through a variety of mechanisms, including gain-of-function mutations, loss of heterozygosity events and aneuploidy. The clinical isolate P60002 was found to be highly resistant to azole-class drugs, yet lacked mutations or chromosomal rearrangements known to be associated with azole resistance. Transcription profiling suggested that increased expression of two putative drug efflux pumps, CDR11 and QDR1, might confer azole resistance. However, ectopic expression of the P60002 alleles of these genes in a drug-susceptible strain did not increase fluconazole resistance. We next examined whether the presence of three copies of chromosome 4 (Chr4) or chromosome 6 (Chr6) contributed to azole resistance in P60002. We established that Chr4 trisomy contributes significantly to fluconazole resistance, whereas Chr6 trisomy has no discernible effect on resistance. In contrast, a Chr4 trisomy did not increase fluconazole resistance when present in the standard SC5314 strain background. These results establish a link between Chr4 trisomy and elevated fluconazole resistance, and demonstrate the impact of genetic background on drug resistance phenotypes in C. albicans. PMID:28640746

  18. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    PubMed

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  19. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans

    PubMed Central

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane). PMID:26986478

  20. Invitro Anti-mycotic Activity of Hydro Alcoholic Extracts of Some Indian Medicinal Plants against Fluconazole Resistant Candida albicans

    PubMed Central

    Varadarajan, Saranya; Malaisamy, Malaiyandi; Duraipandian, Chamundeeswari

    2015-01-01

    Background Candidiasis is one of the most common opportunistic infections caused by Candida albicans. Fluconazole is the drug of choice for prevention and management of this condition. However, the emergence of fluconazole resistant candidal strains has become a major concern. Many herbs like fenugreek, cinnamon, papaya, oregano, garlic are rich in phytochemical constituents known to express antimycotic activity. With the available information, the present research study was carried out to assess the invitro anti-mycotic activity of hydro alcoholic extracts of Trigonella foenum-graecum seeds, Cinnamomum verum bark and Carica papaya leaves and seeds against fluconazole resistant Candida albicans Materials and Methods Hydro alcoholic extracts of Trigonella foenum-graecum (seeds), Cinnamomum verum (bark), Carica papaya CO.2 strain (male and female leaves) and Carica papaya CO.2 strain (seeds) were prepared by maceration. The anti-mycotic activity of the prepared extracts against Candida albicans was assessed by agar well diffusion method. Three independent experiments were performed in triplicates and the mean and standard deviation were calculated. Minimum inhibitory concentration was determined. Results The results of the present study revealed that all the extracts exhibited anti-mycotic activity in a dose dependent manner and minimum inhibitory concentration of all the extracts was found to be 15.62 μg/ml. Conclusion The results of the present study shed light on the fact that plant extracts could be used not only as an alternate drug for management of fluconazole resistant candidiasis but also explored further for oral cancer prevention as a therapeutic adjunct. PMID:26436036

  1. Growth inhibitory action of ebselen on fluconazole-resistant Candida albicans: role of the plasma membrane H+-ATPase.

    PubMed

    Billack, Blase; Santoro, Michelle; Lau-Cam, Cesar

    2009-06-01

    PMA1 is a yeast gene that codes for the plasma membrane H(+)-ATPase, a protein commonly referred to as Pma1p. Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is a synthetic selenium-containing compound that has recently been shown to display antimicrobial activity owing to its ability to inhibit Pma1p. Ebselen is able to block the activity of Pma1p not only in opportunistic pathogens such as Cryptococcus neoformans and Candida albicans but also in nonpathogenic yeasts such as Saccharomyces cerevisiae. A series of in vitro studies aimed at evaluating the antifungal activity of ebselen were performed. At low concentrations (<10 microM), ebselen was fungistatic against three strains of S. cerevisiae (IC(50) approximately 3 microM) and one fluconazole-resistant strain of C. albicans (IC(50) approximately 6 microM), and at a high concentration (30 microM) it was fungicidal against C. albicans. Moreover, ebselen was found to inhibit medium acidification by the fluconazole-resistant strain of C. albicans in a concentration-dependent manner. In comparison to currently used antifungal agents represented by azole (itraconazole, ketoconazole, fluconazole) and polyene (amphotericin B) compounds, ebselen was at least 10-fold more potent than fluconazole but less active than the other compounds tested. The present results suggest that the growth inhibitory activity of ebselen toward fluconazole-resistant yeast cells is due, at least in part, to inhibition of Pma1p. Ebselen may also serve as a useful agent in the treatment of infections caused by fluconazole-resistant fungi.

  2. Ibuprofen-Mediated Reversal of Fluconazole Resistance in Clinical Isolates of Candida

    PubMed Central

    Sharma, Monika; Kotwal, Aarti; Thakuria, Bhaskar; Kakati, Barnali; Chauhan, Bhupendra Singh; Patras, Abhishek

    2015-01-01

    Introduction: In view of the increasing prevalence of invasive Candidiasis in today’s health-care scenario and the emergence of fluconazole resistance among clinical isolates of Candida, we sought to determine if Ibuprofen could elicit a reversal of fluconazole resistance and thereby offer a potential therapeutic breakthrough in fluconazole-resistant Candidiasis. Materials and Methods: We selected 69 clinical isolates of Candida, which demonstrated an MIC of >32 μg/ml for fluconazole, and subjected them to broth microdilution in presence and absence of Ibuprofen. Results: Forty two of the 69 isolates (60.9%) demonstrated reversal of Fluconazole resistance with concomitant use of Ibuprofen. This was characterized by significant species-wise variation (p=0.00008), with all the C. albicans isolates and none of the C. glabrata isolates demonstrating such reversal. Only 22.2% and 37.7% of C. krusei and C. tropicalis isolates respectively showed Ibuprofen-mediated reversal of Fluconazole resistance. Conclusion: Since Ibuprofen is a known efflux pump inhibitor, our findings hint at the possible mechanism of Fluconazole resistance in most of our Candida isolates and suggest a potential therapeutic alternative that could be useful in the majority of Fluconazole-resistant clinical isolates of Candida. PMID:25737988

  3. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  4. Mechanism of the synergistic effect of amiodarone and fluconazole in Candida albicans.

    PubMed

    Gamarra, Soledad; Rocha, Elousa Maria F; Zhang, Yong-Qiang; Park, Steven; Rao, Rajini; Perlin, David S

    2010-05-01

    The antiarrhythmic drug amiodarone has been found to have fungicidal activity. In Saccharomyces cerevisiae, its antifungal activity is mediated by calcium overload stress, which leads to a rapid nuclear accumulation of the calcineurin-regulated transcription factor CRZ1. In addition, low doses of amiodarone have been reported to be synergistic with fluconazole in fluconazole-resistant Candida albicans. To establish its mechanism of toxicity in C. albicans, we used expression profiling of key pathway genes to examine cellular responses to amiodarone alone and in combination with fluconazole. Gene expression profiling of 59 genes was done in five C. albicans strains (three fluconazole-susceptible strains and two fluconazole-resistant strains) after amiodarone and/or fluconazole exposure. Of the 59 genes, 27 analyzed showed a significant change (>2-fold) in expression levels after amiodarone exposure. The up- or downregulated genes included genes involved in Ca(2+) homeostasis, cell wall synthesis, vacuolar/lysosomal transport, diverse pathway regulation, stress response, and pseudohyphal morphogenesis. As expected, fluconazole induces an increase in ergosterol pathway genes expression levels. The combination treatment significantly dampened the transcriptional response to either drug, suggesting that synergism was due to an inhibition of compensatory response pathways. This dampening resulted in a decrease in total ergosterol levels and decreased pseudohyphal formation, a finding consistent with decreased virulence in a murine candidiasis model.

  5. Possible mechanisms of the antifungal activity of fluconazole in combination with terbinafine against Candida albicans.

    PubMed

    Khodavandi, Alireza; Alizadeh, Fahimeh; Vanda, Nasim Aghai; Karimi, Golgis; Chong, Pei Pei

    2014-12-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, the majority Candida albicans. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. Combination therapy would be one of the best strategies for the treatment of candidiasis due to increased resistance to azoles. The antifungal activities of fluconazole and terbinafine were evaluated in vitro alone and in combination using broth microdilution test and time kill study. Eventually the expression level of selected genes involved in ergosterol biosynthesis of Candida was evaluated using semi-quantitative RT-PCR. The obtained results showed the significant MICs ranging from 0.25 to 8 µg/mL followed by FICs ranged from 0.37 to 1 in combination with fluconazole/terbinafine. Our findings have demonstrated that the combination of fluconazole and terbinafine could also significantly reduce the expression of ERG1, 3, and 11 in the cell membrane of Candida in all concentrations tested ranging from 1.73- to 6.99-fold. This study was undertaken with the ultimate goal of finding the probable targets of fluconazole/terbinafine in C. albicans by looking at its effects on cell membrane synthesis.

  6. Fluconazole Resistant Candida Oesophagitis in Immunocompetent Patients: Is Empirical Therapy Justifiable?

    PubMed Central

    Kakati, Barnali; Biswas, Debasis; Sahu, Shantanu

    2015-01-01

    Introduction C. albicans (Candida albicans) is the foremost cause of fungal oesophagitis, however other species such as Candida tropicalis, Candida krusei and Candida stellatoidea have also been implicated to cause this condition. Although, numerous studies have identified risk factors for C. albicans oesophagitis, data for non- C. albicans species is still sparse. Aim To determine the aetiology of Candida oesophagitis in our medical centre over a two year period. Additionally, to investigate predisposing conditions for oesophageal candidiasis caused by different Candida species. Material and Methods All consecutive patients posted for upper gastrointestinal endoscopy at the endoscopy unit of a tertiary care hospital in north India with findings consistent with oesophagitis were screened for the presence of Candida oesophagitis by performing KOH (potassium hydroxide) examination and culture on SDA (Sabouraud’s dextrose agar). Antifungal susceptibility testing as per CLSI guidelines was performed for fluconazole, a most common empirically prescribed antifungal for the condition. Results A total of 1868 patients with no known immune-compromised condition underwent upper gastroscopy at our centre during the study period. The prevalence of Candida oesophagitis was 8.7% (n = 163). C. albicans was recovered from majority of infections (52.1%), followed by C. tropicalis (24%), C. parapsilosis (13.4%), C. glabrata (6.9%) and C. krusei (3.6%). Alarmingly, among the C. albicans isolates 8.6% were resistant to fluconazole. Conclusion With rising reports of antifungal drug resistance among the isolates of Candida species, an increasing prevalence of this organism could have an impact on the treatment of Candidal oesophagitis and it should be approached with caution by the clinician. PMID:26816890

  7. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans.

    PubMed

    Yonashiro Marcelino, Mônica; Azevedo Borges, Felipe; Martins Costa, Ana Flávia; de Lacorte Singulani, Junya; Ribeiro, Nathan Vinícius; Barcelos Costa-Orlandi, Caroline; Garms, Bruna Cambraia; Soares Mendes-Giannini, Maria José; Herculano, Rondinelli Donizetti; Fusco-Almeida, Ana Marisa

    2018-03-01

    This work aimed to produce a membrane based on fluconazole-loaded natural rubber latex (NRL), and study their interaction, drug release and antifungal susceptibility against Candida albicans. Fluconazole-loaded NRL membrane was obtained by casting method. The Fourier Transform Infrared Spectroscopy showed no modifications either in NRL or fluconazole after the incorporation. Mechanical test presented low Young's modulus and high strain, indicating the membranes have sufficient elasticity for biomedical application. The bio-membrane was able to release the drug and inhibit the growth of C. albicans as demonstrated by disk diffusion and macrodilution assays. The biomembrane was able to release fluconazole and inhibit the growth of C. albicans, representing a promising biomaterial for skin application.

  8. Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans

    PubMed Central

    Santamaría, Rodrigo; Lee, Wanseon; Rung, Johan; Tocci, Noemi; Abbey, Darren; Bezerra, Ana R.; Carreto, Laura; Moura, Gabriela R.; Bayés, Mónica; Gut, Ivo G.; Csikasz-Nagy, Attila; Cavalieri, Duccio; Berman, Judith

    2017-01-01

    ABSTRACT Regulated erroneous protein translation (adaptive mistranslation) increases proteome diversity and produces advantageous phenotypic variability in the human pathogen Candida albicans. It also increases fitness in the presence of fluconazole, but the underlying molecular mechanism is not understood. To address this question, we evolved hypermistranslating and wild-type strains in the absence and presence of fluconazole and compared their fluconazole tolerance and resistance trajectories during evolution. The data show that mistranslation increases tolerance and accelerates the acquisition of resistance to fluconazole. Genome sequencing, array-based comparative genome analysis, and gene expression profiling revealed that during the course of evolution in fluconazole, the range of mutational and gene deregulation differences was distinctively different and broader in the hypermistranslating strain, including multiple chromosome duplications, partial chromosome deletions, and polyploidy. Especially, the increased accumulation of loss-of-heterozygosity events, aneuploidy, translational and cell surface modifications, and differences in drug efflux seem to mediate more rapid drug resistance acquisition under mistranslation. Our observations support a pivotal role for adaptive mistranslation in the evolution of drug resistance in C. albicans. IMPORTANCE Infectious diseases caused by drug-resistant fungi are an increasing threat to public health because of the high mortality rates and high costs associated with treatment. Thus, understanding of the molecular mechanisms of drug resistance is of crucial interest for the medical community. Here we investigated the role of regulated protein mistranslation, a characteristic mechanism used by C. albicans to diversify its proteome, in the evolution of fluconazole resistance. Such codon ambiguity is usually considered highly deleterious, yet recent studies found that mistranslation can boost adaptation in stressful

  9. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis.

    PubMed

    Khosravi Rad, K; Falahati, M; Roudbary, M; Farahyar, S; Nami, S

    2016-12-01

    Candida albicans ( C. albicans ) is an opportunistic fungus that can colonize women's mucosal epithelial cell surfaces, causing vulvovaginitis in specific circumstances. The major genes contributing to drug resistance in C. albicans are the candida drug resistance ( CDR ) and multi drug resistance ( MDR ) genes. The purpose of this study was to evaluate the CDR-2 and MDR-1 gene expression patterns in C. albicans strains isolated from patients with recurrent vulvovaginal candidiasis. In this study, 40 isolates of fluconazole-resistant C. albicans were cultured on Sabouraud dextrose agar. These isolates were collected from women with vulvovaginitis who were referred to a clinic in Tehran, Iran, and transferred to a mycology laboratory. Then, RNA was extracted from the isolates using phenol-chloroform and glass beads, and the complementary DNA (cDNA) was synthetized. To detect the semi-quantitative expression of CDR-2 and MDR-1 genes, the reverse transcriptase-PCR (RT-PCR) technique was performed using specific primers. Our findings indicated that of the 40 C. albicans isolates, 35 (87.5%) strains were positive for mRNA of the CDR-2 gene, 32 (80%) strains expressed mRNA of the MDR-1 gene, and 30 (75%) strains were confirmed to express mRNA of both the CDR-2 and MDR-1 genes simultaneously using the RT-PCR assay. According to the obtained results, the expression rates of CDR-2 and MDR-1 genes were high in fluconazole-resistant C. albicans isolates, which can cause treatments to fail and result in chronic infections. Inhibiting these important genes using novel or natural agents can help with the treatment of chronic and recurrent vaginitis.

  10. The synergy of honokiol and fluconazole against clinical isolates of azole-resistant Candida albicans.

    PubMed

    Jin, J; Guo, N; Zhang, J; Ding, Y; Tang, X; Liang, J; Li, L; Deng, X; Yu, L

    2010-09-01

    To evaluate the interaction of fluconazole (FLC) and honokiol (HNK) in vitro and vivo against azole-resistant (azole-R) clinical isolates of Candida albicans. A checkerboard microdilution method was used to study the in vitro interaction of FLC and HNK in 24 azole-R clinical isolates of C. albicans. In vivo antifungal activity was performed to further analyse the interaction between FLC and HNK. In the in vitro study, synergism was observed in all 24 FLC-resistant strains tested as determined by fractional inhibitory concentration index (FICI), and in 22 strains by Delta E models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed by using the time-killing test for the selected strain C. albicans YL371, which shows strong susceptible to the combination of HNK and FLC. In the in vivo study, the mice with candidiasis were treated successfully by a combination therapy of HNK with FLC, the results showed a decrease of the colony forming unit in infected and treated animals compared to the controls, at the conditions of the treatment used in this study. Synergistic activity of HNK and FLC against clinical isolates of FLC-resistant C. albicans was observed in vitro and in vivo. This report might provide a potential therapeutic method to overcome the problem of drug-resistance in C. albicans.

  11. Triclosan Antagonizes Fluconazole Activity against Candida albicans

    PubMed Central

    Higgins, J.; Pinjon, E.; Oltean, H.N.; White, T.C.; Kelly, S.L.; Martel, C.M.; Sullivan, D.J.; Coleman, D.C.; Moran, G.P.

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes. PMID:21972257

  12. Strong synergism of dexamethasone in combination with fluconazole against resistant Candida albicans mediated by inhibiting drug efflux and reducing virulence.

    PubMed

    Sun, Wenwen; Wang, Decai; Yu, Cuixiang; Huang, Xin; Li, Xiuyun; Sun, Shujuan

    2017-09-01

    Candida albicans is the most commonly isolated Candida spp. in the clinic and its resistance to fluconazole (FLC) has been emerging rapidly. Combination therapy may be a potentially effective approach to combat drug resistance. In this study, the combination antifungal effects of dexamethasone (DXM) and FLC against resistant C. albicans in vitro were assayed using minimum inhibitory concentrations (MICs), sessile MICs and time-kill curves. The in vivo efficacy of this drug combination was evaluated using a Galleria mellonella model by determining survival rate, fungal burden and histological damage. In addition, the impact of DXM on efflux pump activity was investigated using a rhodamine 6G assay. Expression of CDR1, CDR2 and MDR1 was determined by real-time quantitative PCR, and extracellular phospholipase activity was detected by the egg yolk agar method to reveal the potential synergistic mechanism. The results showed that DXM potentiates the antifungal effect of FLC against resistant C. albicans strains both in vitro and in vivo, and the synergistic mechanism is related to inhibiting the efflux of drugs and reducing the virulence of C. albicans. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  13. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Rathod, V; Karuppayil, S Mohan

    2011-07-01

    Fluconazole (FLC) susceptibility of isolates of Candida spp., (n = 42) and efficacy as well as mechanism of anti-Candida activity of three constituents of geranium oil is evaluated in this study. No fluconazole resistance was observed among the clinical isolates tested, however 22% were susceptible-dose-dependent (S-DD) [minimal inhibitory concentration (MIC) ≥ 16 μg ml(-1)] and a standard strain of C. albicans ATCC 10231 was resistant (≥ 64 μg ml(-1)). Geraniol and geranyl acetate were equally effective, fungicidal at 0.064% v/v concentrations i.e. MICs (561 μg ml(-1) and 584 μg ml(-1) respectively) and killed 99.9% inoculum within 15 and 30 min of exposures respectively. Citronellol was least effective and fungistatic. C. albicans dimorphism (Y → H) was highly sensitive to geranium oil constituents tested (IC50 approximately 0.008% v/v). Geraniol, geranyl acetate and citronellol brought down MICs of FLC by 16-, 32- and 64-fold respectively in a FLC-resistant strain. Citronellol and geraniol arrested cells in G1 phase while geranyl acetate in G2-M phase of cell cycle at MIC(50). In vitro cytotoxicity study revealed that geraniol, geranyl acetate and citronellol were non-toxic to HeLa cells at MICs of the C. albicans growth. Our results indicate that two of the three geranium oil constituents tested exhibit excellent anti-Candida activity and significant synergistic activity with fluconazole. © 2010 Blackwell Verlag GmbH.

  14. Prevalence & susceptibility to fluconazole of Candida species causing vulvovaginitis.

    PubMed

    Mohanty, Srujana; Xess, Immaculata; Hasan, Fahmi; Kapil, Arti; Mittal, Suneeta; Tolosa, Jorge E

    2007-09-01

    Vulvovaginal candidiasis is an important cause of morbidity in women of reproductive age. This study was carried out to determine the species prevalence and susceptibility pattern to fluconazole of yeasts isolated from the vagina of symptomatic women. This prospective study was conducted in a rural primary health care center of north India from May 2003 to April 2004 and included 601 married, sexually active women (18-49 yr) with the self reported symptoms of vaginal discharge and/or genital itching and/or genital burning. Specific aetiology of the genitourinary symptoms including candidal infection were determined. Specimens from the lateral wall of vagina were subjected to direct wet mount microscopy and fungal culture on Sabouraud's dextrose agar. Susceptibility testing to fluconazole was carried out using broth microdilution method. Yeasts were isolated in 111 (18.5%) women and these consisted of Candida glabrata (56, 50.4%), C. albicans (39, 35.1%), C. tropicalis (12, 10.8%), C. krusei (3, 2.7%) and C. parapsilosis (1, 0.9%). Susceptibility testing carried out on 30 representative isolates (15 C. glabrata, 10 C. albicans, 4 C. tropicalis and 1 C. parapsilosis) revealed that 21 isolates (70%) were susceptible (MIC, < or = 8 microg/ml) to fluconazole while 9 (30%) were susceptible-dose dependent (S-DD, MIC 16-32 microg/ml). Our findings suggest a low prevalence of fluconazole resistance in vaginal candida isolates in our population. However, a high prevalence of non-albicans candida species and increased dose-dependent resistance in these isolates necessitates vigilance since this may warrant a change in the optimal therapy of non-albicans candida vaginitis.

  15. Fluconazole resistance in Candida glabrata.

    PubMed Central

    Hitchcock, C A; Pye, G W; Troke, P F; Johnson, E M; Warnock, D W

    1993-01-01

    We report a case of infection with Candida glabrata in which the organism became resistant to fluconazole and in which pre- and posttreatment isolates were available for comparison. The organism was cross-resistant to ketoconazole and itraconazole, in common with other azole-resistant yeasts. Fluconazole was a potent inhibitor of cytochrome P-450-dependent 14 alpha-sterol demethylase (P-450DM) in lysates of cells from both susceptible and resistant cultures (50% inhibitory concentration, 0.2 microM), indicating that resistance was unrelated to changes in P-450DM. Instead, it appeared to arise from a permeability barrier to fluconazole, since resistant cells were unable to take up radiolabelled drug. PMID:8239613

  16. Activity of Allyl Isothiocyanate and Its Synergy with Fluconazole against Candida albicans Biofilms.

    PubMed

    Raut, Jayant Shankar; Bansode, Bhagyashree Shridhar; Jadhav, Ashwini Khanderao; Karuppayil, Sankunny Mohan

    2017-04-28

    Candidiasis involving the biofilms of Candida albicans is a threat to immunocompromised patients. Candida biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti- Candida activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms. Results revealed the concentration-dependent activity of AITC against the planktonic growth and virulence factors of C. albicans . Significant ( p <0.05) inhibition of the biofilms was evident at < or =1 mg/ml concentrations of AITC. Notably, a combination of 0.004 mg/ml of FLC and 0.125 mg/ml of AITC prevented the biofilm formation. Similarly, the preformed biofilms were significantly ( p <0.05) inhibited by the AITC-FLC combination. The fractional inhibitory concentration indices ranging from 0.132 to 0.312 indicated the synergistic activity of AITC and FLC against the biofilm formation and the preformed biofilms. No hemolytic activity at the biofilm inhibitory concentrations of AITC and the AITC-FLC combination suggested the absence of cytotoxic effects. The recognizable synergy between AITC and FLC offers a potential therapeutic strategy against biofilm-associated Candida infections.

  17. In vitro photodynamic inactivation effects of benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans.

    PubMed

    Zhou, Shaona; Sun, Zhiyuan; Ye, Zulin; Wang, Ying; Wang, Leili; Xing, Limei; Qiu, Haixia; Huang, Naiyan; Luo, Yanping; Zhao, Yuxia; Gu, Ying

    2018-06-01

    The incidence of Candida infections has increased for various reasons, including, the more frequent use of immunosuppresants or broad-spectrum antibiotics. Photodynamic inactivation (PDI) is a promising approach for treating localized Candida infections. The PDI efficacies of three benzylidene cyclopentanone-based (BCB) photosensitizers (PSs: P1, P2 and Y1) against three fluconazole-resistant C. albicans (cal-1, cal-2, and cal-3) and one control C. albicans (ATCC 90028), respectively, were evaluated using an established plate dilution method. The binding of PSs to C. albicans was determined by fluorescence spectroscopy. The mechanism of antifungal PDI was investigated using confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Three BCB PSs all bound rapidly to C. albicans. After incubation with PSs for 30 min and irradiation with a 532 nm laser for 10 min (40 mW cm -2 , 24 J cm -2 ), the fungicidal activity was achieved as 7.5 μM for P1 and P2, and 25 μM for Y1. CLSM confirmed that P1 and Y1 were located in intracellular components, including mitochondria, while P2 bound to the protoplast exterior and failed to enter the cells. TEM revealed the damage of mitochondria ultrastructures after P1- or Y1-mediated PDI, consistenting with the CLSM results. However, most cells became edematous, enlarged or deformation after P2-mediated PDI. The three BCB PSs all have remarkable PDI effects on C. albicans. The best effect is obtained by P1, which has one cationic charge with a proper lipophilicity. The respective subcellular localization of the three PSs led to different PDI mechanisms. Copyright © 2018. Published by Elsevier B.V.

  18. Potent Synergistic Effect of Doxycycline with Fluconazole against Candida albicans Is Mediated by Interference with Iron Homeostasis

    PubMed Central

    2012-01-01

    Doxycycline was found to act synergistically with the antifungal fluconazole against Candida albicans. Combination with doxycycline converts fluconazole from fungistatic to fungicidal, prevents the onset of drug resistance, and is also effective against a clinical isolate characterized by elevated resistance to fluconazole. Investigation of the interactions between the two drugs by way of checkerboard assays indicated that doxycycline had an influence on the MIC for fluconazole, as defined by CLSI standards, only at high concentrations (200 μg/ml). However, lower concentrations were effective at eliminating residual cell growth at supra-MICs of fluconazole. Using MIC-0, defined as a drug combination resulting in optically clear wells, as an endpoint, doxycycline was found to be synergistic with fluconazole at a concentration as low as 25 μg/ml, with a fractional inhibitory concentration index of <0.5. Doxycycline-mediated growth inhibition can be reversed by externally added iron, indicating that iron depletion may account for the synergism. Consistently, we confirmed old literature data about iron-chelating activity of doxycycline. Synergism of fluconazole with doxycycline does not appear to be mediated by calcineurin, since doxycycline further aggravates the susceptibility to fluconazole of mutants lacking the catalytic or the regulatory subunits of calcineurin. Growth in the presence of fluconazole and doxycycline is restored by an elevated dosage of ERG11 in Saccharomyces cerevisiae but not in C. albicans, despite the full competence of the pathogen's protein to act as a suppressor in baker's yeast. PMID:22564841

  19. Biodistribution of free and encapsulated 99mTc-fluconazole in an infection model induced by Candida albicans.

    PubMed

    de Assis, Danielle Nogueira; Araújo, Raquel Silva; Fuscaldi, Leonardo Lima; Fernandes, Simone Odília Antunes; Mosqueira, Vanessa Carla Furtado; Cardoso, Valbert Nascimento

    2018-03-01

    Candida spp is an etiologic agent of fungal infections in hospitals and resistance to treatment with antifungals has been extensively reported. Thus, it is very important to develop formulations that increase effectiveness with low toxicity. In this sense, nanocarriers have been investigated, once they modify drug biodistribution profile. Thus, this study aimed to evaluate the biodistribution of free and encapsulated 99m Tc-fluconazole into nanocapsules (NCs) in an experimental immunosuppressed murine model of Candida albicans infection. Fluconazole was radiolabeled with technetium-99 metastable ( 99m Tc) and encapsulated into conventional ( 99m Tc-Fluconazole-PLA-POLOX) and surface-modified ( 99m Tc-Fluconazole-PLA-PEG) NCs by the interfacial deposition of the preformed biodegradable polymer [poly (D,L-lactic acid) (PLA) and PLA-PEG (polyethyleneglycol)] followed by solvent evaporation. The size distribution and zeta potential of the NCs preparations were determined in a Zetasizer by photon correlation spectroscopy and laser Doppler anemometry, respectively. Free and encapsulated 99m Tc-fluconazole were administered intravenously in immunosuppressed mice bearing a local infection induced by Candida Albicans inoculation in the right thigh muscle. At pre-established time intervals, tissues and organs of interest were removed and radioactivity was measured in an automatic gamma radiation counter. The NCs diameter was between 200 and 400 nm with negative zeta potential values. Free 99m Tc-fluconazole was more rapidly eliminated by the renal system compared to the encapsulated drug in NCs, which remained longer in blood circulation. The uptake of conventional NCs by mononuclear phagocyte system organs was higher than the one demonstrated by the surface-modified NCs. Both NCs remained longer in the infectious focus when compared to free 99m Tc-fluconazole, but the results did not show a significant difference between NC formulations. These data indicate that these NCs

  20. The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model.

    PubMed

    Bozó, Aliz; Domán, Marianna; Majoros, László; Kardos, Gábor; Varga, István; Kovács, Renátó

    2016-11-01

    Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.

  1. Antifungal activity of synthetic antiseptics and natural compounds against Candida dubliniensis before and after in vitro fluconazole exposure.

    PubMed

    Reginato, Cássia Franco; Bandeira, Laíssa Arévalo; Zanette, Régis Adriel; Santurio, Janio Morais; Alves, Sydney Hartz; Danesi, Cristiane Cademartori

    2017-01-01

    This study evaluated the susceptibilities of oral candidiasis-derived Candida albicans, fluconazole-resistant (FR) Candida dubliniensis, and fluconazole-susceptible (FS) C. dubliniensis to synthetic antiseptics [chlorhexidine gluconate (CHX), cetylpyridinium chloride (CPC), and triclosan (TRC)] and natural compounds (carvacrol, eugenol and thymol). Susceptibility tests were performed based on the M27-A3 reference method. The fluconazole-resistant C. dubliniensis strains were obtained after prolonged in vitro exposure to increasing fluconazole concentrations. The geometric mean values for minimum inhibitory concentrations and minimum fungicidal concentrations were compared among the groups. Fluconazole-susceptible C. dubliniensis was more sensitive to CPC and TRC than FR C. dubliniensis and C. albicans were. However, eugenol and thymol were more active against FR C. dubliniensis. The fungicidal activities of CHX and TRC were similar for the three groups, and FR C. dubliniensis and C. albicans had similar sensitivities to CPC. The resistance of C. dubliniensis to fluconazole affects its sensitivity the synthetic antiseptics and natural compounds that were tested.

  2. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes.

    PubMed

    Ricardo, Elisabete; Costa-de-Oliveira, Sofia; Dias, Ana Silva; Guerra, José; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-06-01

    Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida. The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 microg mL(-1)); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1, CDR2, MDR1, encoding for efflux pumps, and ERG11, encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly (P>0.05), probably acting as a Cdrp blocker.

  3. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis.

    PubMed

    Gao, Mei; Wang, Hui; Zhu, LiJuan

    2016-01-01

    Vulvovaginal candidiasis (VVC) is a common gynecological disease. Candida albicans is believed to be mainly implicated in VVC occurrence, the biofilm of which is one of the virulence factors responsible for resistance to traditional antifungal agents especially to fluconazole (FCZ). Quercetin (QCT) is a dietary flavonoid and has been demonstrated to be antifungal against C. albicans biofilm. 17 C. albicans isolates including 15 clinical ones isolated from VVC patients were employed to investigate the effects of QCT and/or FCZ on the inhibition of C. albicans biofilm. We observed that 64 µg/mL QCT and/or 128 µg/mL FCZ could (i) be synergistic against 10 FCZ-resistant planktonic and 17 biofilm cells of C. albicans, (ii) inhibit fungal adherence, cell surface hydrophobicity (CSH), flocculation, yeast-to-hypha transition, metabolism, thickness and dispersion of biofilms; (iii) down-regulate the expressions of ALS1, ALS3, HWP1, SUN41, UME6 and ECE1 and up-regulate the expressions of PDE2, NRG1 and HSP90, and we also found that (iv) the fungal burden was reduced in vaginal mucosa and the symptoms were alleviated in a murine VVC model after the treatments of 5 mg/kg QCT and/or 20 mg/kg FCZ. Together with these results, it could be demonstrated that QCT could be a favorable antifungal agent and a promising synergist with FCZ in the clinical management of VVC caused by C. albicans biofilm. © 2016 The Author(s) Published by S. Karger AG, Basel.

  4. Association of clinical and demographic factors in invasive candidiasis caused by fluconazole-resistant Candida species: a study in 15 hospitals, Medellín, Colombia 2010-2011.

    PubMed

    Maldonado, Natalia Andrea; Cano, Luz Elena; De Bedout, Catalina; Arbeláez, Carlos Alberto; Roncancio, Gustavo; Tabares, Angela María; Robledo, Carlos Gonzalo; Robledo, Jaime

    2014-06-01

    Candida is the most important agent of fungal infections. Several risk factors have been described associated with invasive infection by fluconazole-resistant Candida spp. A prospective cross-sectional study with case-control analysis was conducted. Case group patients with fluconazole-resistant Candida isolate were included; control group were patients with fluconazole-susceptible Candida spp. A multivariate logistic regression model was performed. Three hundred isolates of Candida spp. were analyzed. Most frequent species were Candida albicans/Candida dubliniensis (48.3%) and Candida tropicalis (22.3%). Posaconazole susceptibility was 93.7%; voriconazole, 84%; and fluconazole, 78.7%. Susceptibility to anidulafungin and caspofungin was 92.7% and 92.3%, respectively. Neutropenia (adjusted odds ratio [aOR] 6.5, 95% confidence interval [CI] 1.0-43.1), antifungal exposure (aOR 5.1, 95% CI 2.3-11.2), and antituberculosis therapy (aOR 7.7, 95% CI 1.4-43.2) were associated to fluconazole resistance. Susceptibility results are useful to guide the selection of empiric antifungal treatment and the design of local therapeutic guidelines. Previous antifungal exposure suggests possible resistance to fluconazole, pointing towards the selection of a different class of antifungal agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. [In vitro antifungal resistance in Candida albicans from HIV-infected patients with and without oral candidosis.].

    PubMed

    Ceballos Salobreña, A; Gaitán Cepeda, L A; Orihuela Cañada, F; Olea Barrionuevo, D; Ceballos García, L; Quindós, G

    1999-12-01

    The main purpose of this study has been to determine the in vitro antifungal susceptibility of clinical isolates from HIV-infected or AIDS patients, depending on the presence of oral candidosis. The oral cavity of 307 HIV-infected or AIDS patients was examined and an oral swab was cultured on Sabouraud glucose agar and studied by conventional mycological methods. In vitro antifungal susceptibility to amphotericin B, nystatin, fluconazole, itraconazole and ketoconazole was tested by disk diffusion with Neo-Sensitabs tablets (Rosco Diagnostica, Dinamarca). One hundred and thirty five Candida albicans isolates (91 serotype A, 38 serotype B, three C. albicans variety stellatoidea and three untyped isolates), three Candida krusei and two Candida glabrata were obtained. All the isolates were susceptible to nystatin and amphotericin B. However, 7.9% isolates were resistant to fluconazole and 2.9% isolates were resistant to ketoconazole or itraconazole. Nearly all C. krusei and C. glabrata isolates, 31% patients with candidosis and 20% Candida-colonized patients showed decreased susceptibility to azoles. This study shows that polyenes had a great in vitro efficacy against clinical isolates from HIV-infected patients and that in vitro resistance to azoles is not as high as observed in other countries.

  6. Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance.

    PubMed

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1 , a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2 , the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1 GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1 GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1 GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated. Copyright © 2017 American Society for Microbiology.

  7. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    PubMed Central

    Sharifzadeh, Aghil; Shokri, Hojjatollah

    2016-01-01

    Objective: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis), Zingiber officinale roscoe (Z. officinale roscoe), Matricaria chamomilla (Ma. chamomilla), Trachyspermum ammi (T. ammi) and Origanum vulgare (O. vulgare). The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS). Results: In GC-MS analysis, thymol (63.40%), linalool (42%), α-pinene (27.87%), α-pinene (22.10%), and zingiberene (31.79%) were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P<0.05). The main finding was that the susceptibilities of FLU-resistant C. albicans to essential oils were higher than those of the FLU-susceptible yeasts. Conclusion: Results of this study indicated that the oils from medicinal plants could be used as potential anti FLU-resistant C. albicans agents. PMID:27222835

  8. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis.

    PubMed

    Garvey, E P; Hoekstra, W J; Schotzinger, R J; Sobel, J D; Lilly, E A; Fidel, P L

    2015-09-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Efficacy of the Clinical Agent VT-1161 against Fluconazole-Sensitive and -Resistant Candida albicans in a Murine Model of Vaginal Candidiasis

    PubMed Central

    Hoekstra, W. J.; Schotzinger, R. J.; Sobel, J. D.; Lilly, E. A.; Fidel, P. L.

    2015-01-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. PMID:26124165

  10. Molecular Identification and Antifungal Susceptibility Pattern of Non-albicans Candida Species Isolated from Vulvovaginal Candidiasis

    PubMed Central

    Nejat, Ziba Abbasi; Farahyar, Shirin; Falahati, Mehraban; Khozani, Mahtab Ashrafi; Hosseini, Aga Fateme; Faiazy, Azamsadat; Ekhtiari, Masoome; Hashemi-Hafshenjani, Saeideh

    2018-01-01

    Background: Vulvovaginal candidiasis (VVC) is an important health problem caused by Candida spp. The aim of this study was molecular identification, phylogenetic analysis, and evaluation of antifungal susceptibility of non-albicans Candida isolates from VVC. Methods: Vaginal secretion samples were collected from 550 vaginitis patients at Sayyad Shirazi Medical and Educational Center of Gorgan (Golestan Province, Iran) from May to October 2015. Samples were analyzed using conventional mycological and molecular approaches. Clinical isolates were analyzed with specific PCR using CGL primers, and the internal transcribed spacer region and the D1-D2 domain of the large-subunit rRNA gene were amplified and sequenced. Susceptibility to amphotericin B, fluconazole, itraconazole, and clotrimazole was determined by the guidelines of the Clinical and Laboratory Standard Institute. Results: In total, 35 non-albicans Candida isolates were identified from VVC patients. The isolates included 27 strains of Candida glabrata (77.1%), 5 Candida krusei (Pichia kudriavzevii; 14.3%), 2 Candida kefyr (Kluyveromyces marxianus; 5.7%), and 1 Candida lusitaniae (Clavispora lusitaniae; 2.9%). The fungicides itraconazole and amphotericin B were effective against all species. One isolate of C. glabrata showed resistance to fluconazole and clotrimazole, and 26 isolates of C. glabrata indicated dose-dependent susceptibility to fluconazole. C. lusitaniae was susceptible in a dose-dependent manner to fluconazole and resistant to clotrimazole. Conclusions: Non-albicans Candida spp. are common agents of vulvovaginitis, and C. glabrata is the most common species in the tested patients. PMID:28688376

  11. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates.

    PubMed

    Moraes, Renata Cougo; Carvalho, Anderson Ramos; Lana, Aline Jacobi Dalla; Kaiser, Samuel; Pippi, Bruna; Fuentefria, Alexandre Meneghello; Ortega, George González

    2017-12-01

    Uncaria tomentosa D.C. (Rubiaceae) has several biological activities, including activity against resistant Candida strains. The synergistic interaction with terbinafine or fluconazole can be an important alternative to overcome this resistance. The potential synergy between a water insoluble fraction (WIF) from Uncaria tomentosa bark and the antifungals terbinafine (TRB) and fluconazole (FLZ) against non-Candida albicans resistant strains was investigated. TRB and FLZ, alone and combined with WIF, were tested by the checkerboard procedure using the micro-dilution technique against seven isolates of Candida glabrata and C. krusei. The molecular interactions occurring outside the cell wall were evaluated by scanning electron microscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) analysis. The checkerboard inhibitory assay demonstrated synergy for WIF:TRB and WIF:FLZ combinations, respectively. The best synergistic cell damage was demonstrated unequivocally for the associations of WIF and TRB (1.95:4.0 μg/mL) and WIF and FLZ (1.95:8.0 μg/mL). The comparison of the FT-IR spectra of the antifungal alone, and in combination with WIF, allows recognizing clear differences in 3000, 1600, 1400, and 700-800 cm -1 bands. Additionally, modifications on TRB and FLZ thermograms were clearly noticed after their combination with WIF. DSC and infrared analysis demonstrated intermolecular interactions between WIF and either TRB or FLZ. Hence, quite likely the synergistic effect is related to interaction events occurring outside the cell wall between antifungal and cat's claw proanthocyanidins. A direct action on the cell wall is suggested, without connection with the ABC efflux pump mechanism.

  12. Synergistic Interactions of Eugenol-tosylate and Its Congeners with Fluconazole against Candida albicans.

    PubMed

    Ahmad, Aijaz; Wani, Mohmmad Younus; Khan, Amber; Manzoor, Nikhat; Molepo, Julitha

    2015-01-01

    We previously reported the antifungal properties of a monoterpene phenol "Eugenol" against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1-62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2-9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.

  13. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains.

    PubMed

    Maesaki, S; Marichal, P; Hossain, M A; Sanglard, D; Vanden Bossche, H; Kohno, S

    1998-12-01

    We investigated the effects of combining tacrolimus and azole antifungal agents in azole-resistant strains of Candida albicans by comparing the accumulation of [3H]itraconazole. The CDR1-expressing resistant strain C26 accumulated less itraconazole than the CaMDR-expressing resistant strain C40 or the azole-sensitive strain B2630. A CDR1-expressing Saccharomyces cerevisiae mutant, DSY415, showed a marked reduction in the accumulation of both fluconazole and itraconazole. A CaMDR-expressing S. cerevisiae mutant, DSY416, also showed lower accumulation of fluconazole, but not of itraconazole. The addition of sodium azide, an electron-transport chain inhibitor, increased the intracellular accumulation of itraconazole only in the C26 strain, and not in the C40 or B2630 strains. Addition of tacrolimus, an inhibitor of multidrug resistance proteins, resulted in the highest increase in itraconazole accumulation in the C26 strain. The combination of itraconazole and tacrolimus was synergic in azole-resistant C. albicans strains. In the C26 strain, the MIC of itraconazole decreased from >8 to 0.5 mg/L when combined with tacrolimus. Our results showed that two multidrug resistance phenotypes (encoded by the CDR1 and CaMDR genes) in C. albicans have different substrate specificity for azole antifungal agents and that a combination of tacrolimus and azole antifungal agents is effective against azole-resistant strains of C. albicans.

  14. In vitro synergy of pseudolaric acid B and fluconazole against clinical isolates of Candida albicans.

    PubMed

    Guo, Na; Ling, Guanghui; Liang, Xiaoying; Jin, Jing; Fan, Junwen; Qiu, Jiazhang; Song, Yu; Huang, Ning; Wu, Xiuping; Wang, Xuelin; Deng, Xuming; Deng, Xuliang; Yu, Lu

    2011-09-01

    Candida albicans is the most common fungal pathogen in humans. The emergence of resistance to azole antifungals has raised the issue of using such antifungals in combination to optimise therapeutic outcome. The objective of this study was to evaluate in vitro synergy of pseudolaric acid B (PAB) and fluconazole (FLC) against clinical isolates of C. albicans. The in vitro antifungal activity of PAB, a diterpene acid from Pseudolarix kaempferi Gordon, was evaluated alone and in combination with FLC against 22 FLC-resistant (FLC-R) and 12 FLC-susceptible (FLC-S) C. albicans using the chequerboard microdilution method and time-killing test assays. Synergism was observed in all 22 (100%) FLC-R strains tested as determined by both fractional inhibitory concentration index (FICI) with values ranging from 0.02 to 0.13 and bliss independence (BI) models. Synergism was observed in two of 12 (17%) FLC-S strains as determined by FICI model with values ranging from 0.25 to 0.5 and in three of 12 (18%) FLC-S strains as determined by BI model. For FLC-R strains, the drug concentrations of FLC and PAB, where synergistic interactions were found, ranged from 0.06 to 4 μg ml(-1) and 0.5 to 4 μg ml(-1) respectively. For FLC-S strains, the drug concentrations of FLC and PAB were 1-8 μg ml(-1) and 0.5-4 μg ml(-1) respectively. The BI model gave results consistent with FICI, but no antagonistic activity was observed in any of the strains tested. These interactions between PAB and FLC were confirmed using the time-killing test for the selected strains. Fluconazole and PAB exhibited a good synergism against azole-R isolates of C. albicans. © 2010 Blackwell Verlag GmbH.

  15. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains.

    PubMed

    Xia, Jinping; Qian, Fang; Xu, Wenqian; Zhang, Zhenzhen; Wei, Xin

    2017-04-01

    Antifungal resistance is a serious problem in clinical infections. Farnesol, which is a potential antifungal agent against biofilms formed by Candida albicans resistant strains (a fluconazole-resistant isolate derived from SC5314 and two clinical Candida resistant isolates), was investigated in this study. The inhibitory effects of farnesol on biofilms were examined by XTT assay. The morphological changes and biofilm thicknesses were analyzed by scanning electron microscopy and confocal laser scanning microscopy, respectively. Additionally, the checkerboard microdilution method was used to investigate the interactions between farnesol and antifungals (fluconazole, amphotericin B, caspofungin, itraconazole, terbinafine and 5-flurocytosine) against biofilms. The results showed decreased SMICs of farnesol and thinner biofilms in the farnesol-treated groups, indicating that farnesol inhibited the development of biofilms formed by the resistant strain. Furthermore, there were synergistic effects between farnesol and fluconazole/5-flurocytosine, while there were antagonistic effects between farnesol and terbinafine/itraconazole, respectively, on the biofilms formed by the resistant strains.

  16. Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species.

    PubMed

    Sobel, J D; Sobel, R

    2018-06-22

    Clinicians are increasingly challenged by patients with refractory vulvovaginal candidiasis (VVC) caused by azole-resistant Candida species. Fluconazole resistant C.albicans is a growing and perplexing problem following years of indiscriminate drug prescription and unnecessary drug exposure and for which there are few therapeutic alternatives. Regrettably, although the azole class of drugs has expanded, new classes of antifungal drugs have not been forthcoming, limiting effective treatment options in patients with azole resistant Candida vaginitis. Areas covered: This review covers published data on epidemiology, pathophysiology and treatment options for women with azole-resistant refractory VVC. Expert opinion: Fluconazole resistant C.albicans adds to the challenge of azole resistant non-albicans Candida spp. Both issues follow years of indiscriminate drug prescription and unnecessary fluconazole exposure. Although an understanding of azole resistance in yeast has been established, this knowledge has not translated into useful therapeutic advantage. Treatment options for such women with refractory symptoms are extremely limited. New therapeutic options and strategies are urgently needed to meet this challenge of azole drug resistance.

  17. Fungicidal efficacy of various honeys against fluconazole-resistant Candida species isolated from HIV+ patients with candidiasis.

    PubMed

    Shokri, H; Sharifzadeh, A

    2017-06-01

    Honey is well known to possess a broad spectrum of activity against medically important organisms. The purpose of this study was to assess the antifungal activity of different honeys against 40 fluconazole (FLU) resistant Candida species, including Candida albicans (C. albicans), Candida glabrata, Candida krusei and Candida tropicalis. Three honey samples were collected from northern (Mazandaran, A), southern (Hormozgan, B) and central (Lorestan, C) regions of Iran. A microdilution technique based on the CLSI, M27-A2 protocol was employed to compare the susceptibility of honeys "A", "B" and "C" against different pathogenic Candida isolates. The results showed that different Candida isolates were resistant to FLU, ranging from 64μg/mL to 512μg/mL. All of the honeys tested had antifungal activities against FLU-resistant Candida species, ranging from 20% to 56.25% (v/v) and 25% to 56.25% (v/v) for minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs), respectively. Honey "A" (MIC: 31.59%, v/v) showed higher anti-Candida activity than honey "B" (MIC: 35.99%, v/v) and honey "C" (MIC: 39.2%, v/v). No statistically significant differences were observed among the mean MIC values of the honey samples (P>0.05). The order of overall susceptibility of Candida species to honey samples were; C. krusei>C. glabrata>C. tropicalis>C. albicans (P>0.05). In addition, the mean MICs of Candida strains isolated from the nail, vagina and oral cavity were 33.68%, 36.44% and 39.89%, respectively, and were not significantly different (P>0.05). Overall, varying susceptibilities to the anti-Candida properties of different honeys were observed with four FLU-resistant species of Candida. Further research is needed to assess the efficacy of honey as an inhibitor of candidal growth in clinical trials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells.

    PubMed

    Vila, Taissa; Ishida, Kelly; Seabra, Sergio Henrique; Rozental, Sonia

    2016-11-01

    Candida spp. can adhere to and form biofilms over different surfaces, becoming less susceptible to antifungal treatment. Resistance of biofilms to antifungal agents is multifactorial and the extracellular matrix (ECM) appears to play an important role. Among the few available antifungals for treatment of candidaemia, only the lipid formulations of amphotericin B (AmB) and the echinocandins are effective against biofilms. Our group has previously demonstrated that miltefosine has an important effect against Candida albicans biofilms. Thus, the aim of this work was to expand the analyses of the in vitro antibiofilm activity of miltefosine to non-albicans Candida spp. Miltefosine had significant antifungal activity against planktonic cells and the development of biofilms of C. albicans, Candida parapsilosis, Candida tropicalis and Candida glabrata. The activity profile in biofilms was superior to fluconazole and was similar to that of AmB and caspofungin. Biofilm-derived cells with their ECM extracted became as susceptible to miltefosine as planktonic cells, confirming the importance of the ECM in the biofilm resistant behaviour. Miltefosine also inhibited biofilm dispersion of cells at the same concentration needed to inhibit planktonic cell growth. The data obtained in this work reinforce the potent inhibitory activity of miltefosine on biofilms of the four most pathogenic Candida spp. and encourage further studies for the utilisation of this drug and/or structural analogues on biofilm-related infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans.

    PubMed

    Longhi, Carline; Santos, Jussevania Pereira; Morey, Alexandre Tadachi; Marcato, Priscyla Daniely; Durán, Nelson; Pinge-Filho, Phileno; Nakazato, Gerson; Yamada-Ogatta, Sueli Fumie; Yamauchi, Lucy Megumi

    2016-05-01

    Silver nanoparticles (AgNPs) have been extensively studied because of their anti-microbial potential. Here, we evaluated the effect of biologically synthesized silver nanoparticles (AgNPbio) alone and in combination with fluconazole (FLC) against planktonic cells and biofilms of FLC-resistant Candida albicans AgNPbio exhibited a fungicidal effect, with a minimal inhibitory concentration (MIC) and fungicidal concentration ranging from 2.17 to 4.35 μg/ml. The combination of AgNPbio and FLC reduced the MIC of FLC around 16 to 64 times against planktonic cells of allC. albicans There was no significant inhibitory effect of AgNPbio on biofilm cells. However, FLC combined with AgNPbio caused a significant dose-dependent decrease in the viability of both initial and mature biofilm. All concentrations of AgNPbio, alone or in combination with FLC, were not cytotoxic to mammalian cells.The results highlight the effectiveness of the combination of AgNPbio with FLC against FLC-resistant C. albicans. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate, or propylparaben against Candida albicans in vitro.

    PubMed

    Scott, E M; Tariq, V N; McCrory, R M

    1995-12-01

    The combination of fluconazole with either ibuprofen, sodium salicylate, or propylparaben resulted in synergistic activity (fractional inhibitory index, < 0.5) against Candida albicans NCYC 620 in a microdilution checkerboard assay. Synergism between miconazole and ibuprofen was also demonstrated. In three or four clinical isolates of C. albicans from AIDS patients, the combination of fluconazole and ibuprofen was synergistic. Preparation of the inoculum and the growth conditions used were those recommended by the National Committee for Clinical Laboratory Standards for susceptibility testing. A visual estimation of total inhibition of growth and determination of an 80% reduction in the optical density at 492 nm compared with those for the control were taken as endpoints for the calculation of synergy, and a good correlation between both estimates was demonstrated.

  1. Mechanism of the Synergistic Effect of Amiodarone and Fluconazole in Candida albicans▿ †

    PubMed Central

    Gamarra, Soledad; Rocha, Elousa Maria F.; Zhang, Yong-Qiang; Park, Steven; Rao, Rajini; Perlin, David S.

    2010-01-01

    The antiarrhythmic drug amiodarone has been found to have fungicidal activity. In Saccharomyces cerevisiae, its antifungal activity is mediated by calcium overload stress, which leads to a rapid nuclear accumulation of the calcineurin-regulated transcription factor CRZ1. In addition, low doses of amiodarone have been reported to be synergistic with fluconazole in fluconazole-resistant Candida albicans. To establish its mechanism of toxicity in C. albicans, we used expression profiling of key pathway genes to examine cellular responses to amiodarone alone and in combination with fluconazole. Gene expression profiling of 59 genes was done in five C. albicans strains (three fluconazole-susceptible strains and two fluconazole-resistant strains) after amiodarone and/or fluconazole exposure. Of the 59 genes, 27 analyzed showed a significant change (>2-fold) in expression levels after amiodarone exposure. The up- or downregulated genes included genes involved in Ca2+ homeostasis, cell wall synthesis, vacuolar/lysosomal transport, diverse pathway regulation, stress response, and pseudohyphal morphogenesis. As expected, fluconazole induces an increase in ergosterol pathway genes expression levels. The combination treatment significantly dampened the transcriptional response to either drug, suggesting that synergism was due to an inhibition of compensatory response pathways. This dampening resulted in a decrease in total ergosterol levels and decreased pseudohyphal formation, a finding consistent with decreased virulence in a murine candidiasis model. PMID:20194694

  2. Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate, or propylparaben against Candida albicans in vitro.

    PubMed Central

    Scott, E M; Tariq, V N; McCrory, R M

    1995-01-01

    The combination of fluconazole with either ibuprofen, sodium salicylate, or propylparaben resulted in synergistic activity (fractional inhibitory index, < 0.5) against Candida albicans NCYC 620 in a microdilution checkerboard assay. Synergism between miconazole and ibuprofen was also demonstrated. In three or four clinical isolates of C. albicans from AIDS patients, the combination of fluconazole and ibuprofen was synergistic. Preparation of the inoculum and the growth conditions used were those recommended by the National Committee for Clinical Laboratory Standards for susceptibility testing. A visual estimation of total inhibition of growth and determination of an 80% reduction in the optical density at 492 nm compared with those for the control were taken as endpoints for the calculation of synergy, and a good correlation between both estimates was demonstrated. PMID:8592988

  3. In vitro inhibition of oral Candida albicans by chicken egg yolk antibody (IgY).

    PubMed

    Wang, X Z; Fan, B; Liu, L G; Hu, X Y; Li, R Y; Wei, Y; Wan, Z; Deng, X L

    2008-06-01

    This study was conducted to measure Candida albicans-specific chicken egg yolk antibody (IgY) inhibition of fluconazole-sensitive and resistant strains of C. albicans in order to assess potential use in the prevention and treatment of oral candidiasis. In this study, laying hens were immunized, and IgY was extracted by water dilution. The Minimal Inhibitory Concentrations (MICs) of IgY for inhibiting C. albicans growth were determined using the broth microdilution method from the CLSI M27-A2 protocol. Fluconazole (FLC) was used as the control. The results were analyzed with the chi(2) test. The anti-Candida titer of anti-C. albicans IgY was 1:12,000. The concentration of the IgY extract that effectively inhibited the growth of C. albicans was between 1.25 g/l and 5.0 g/l, and the efficacy rate was 82.98% during the observed 24-48 h time period. No correlation was recorded between the drug resistance of FLC and growth inhibition by IgY. It was concluded that anti-C. albicans IgY inhibited the growth of C. albicans in vitro and there was no correlation between the drug resistance of FLC and the growth inhibition by IgY (P > 0.99).

  4. Evaluation of Four Calcium Channel Blockers as Fluconazole Resistance Inhibitors in Candida glabrata.

    PubMed

    Alnajjar, Lina M; Bulatova, Nailya R; Darwish, Rula M

    2018-04-14

    In this study we aimed to evaluate the ability of four calcium channel blockers, verapamil, diltiazem, nicardipine and nifedipine to enhance sensitivity of Candida glabrata strains to fluconazole. The synergistic antifungal effect was examined by checkerboard method; fractional inhibitory concentration index (FIC) was determined. Time-kill curve method was used for the most promising combination to further evaluate the synergetic effects. nicardipine showed additive effect with fluconazole against fluconazole-resistant and fluconazole-susceptible-dose-dependent strains (DSY565 and CBS138) known to express efflux pumps but not against fluconazole-sensitive strains. Nifedipine exhibited additive effect with fluconazole in both checkerboard (0.5< FIC <1) and time-kill curve methods (<2 log10 colony-forming units (CFU)/ml decrease in viable count). Additionally, nifedipine had own antifungal effect consistently against most of the strains used in this study with minimum inhibitory concentration of 8μg/ml. nicardipine showed additive effect with fluconazole in fluconazole-resistant strains of Candida glabrata-most probably via efflux pump inhibition as demonstrated selectively in fluconazole-resistant strains with known efflux pumps. Nifedipine displayed promising antifungal effect alone and additive effects with fluconazole. Copyright © 2018. Published by Elsevier Ltd.

  5. Efficacy of PLD-118, a Novel Inhibitor of Candida Isoleucyl-tRNA Synthetase, against Experimental Oropharyngeal and Esophageal Candidiasis Caused by Fluconazole-Resistant C. albicans

    PubMed Central

    Petraitis, Vidmantas; Petraitiene, Ruta; Kelaher, Amy M.; Sarafandi, Alia A.; Sein, Tin; Mickiene, Diana; Bacher, John; Groll, Andreas H.; Walsh, Thomas J.

    2004-01-01

    PLD-118, formerly BAY 10-8888, is a synthetic antifungal derivative of the naturally occurring β-amino acid cispentacin. We studied the activity of PLD-118 in escalating dosages against experimental oropharyngeal and esophageal candidiasis (OPEC) caused by fluconazole (FLC)-resistant Candida albicans in immunocompromised rabbits. Infection was established by fluconazole-resistant (MIC > 64 μg/ml) clinical isolates from patients with refractory esophageal candidiasis. Antifungal therapy was administered for 7 days. Study groups consisted of untreated controls; animals receiving PLD-118 at 4, 10, 25, or 50 mg/kg of body weight/day via intravenous (i.v.) twice daily (BID) injections; animals receiving FLC at 2 mg/kg/day via i.v. BID injections; and animals receiving desoxycholate amphotericin B (DAMB) i.v. at 0.5 mg/kg/day. PLD-118- and DAMB-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, and esophagus in comparison to untreated controls (P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, respectively), while FLC had no significant activity. PLD-118 demonstrated nonlinear plasma pharmacokinetics across the investigated dosage range, as was evident from a dose-dependent increase in plasma clearance and a dose-dependent decrease in the area under the plasma concentration-time curve. The biochemical safety profile was similar to that of FLC. In summary, PLD-118 demonstrated dosage-dependent antifungal activity and nonlinear plasma pharmacokinetics in treatment of experimental FLC-resistant oropharyngeal and esophageal candidiasis. PMID:15388459

  6. Efficacy of PLD-118, a novel inhibitor of candida isoleucyl-tRNA synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albicans.

    PubMed

    Petraitis, Vidmantas; Petraitiene, Ruta; Kelaher, Amy M; Sarafandi, Alia A; Sein, Tin; Mickiene, Diana; Bacher, John; Groll, Andreas H; Walsh, Thomas J

    2004-10-01

    PLD-118, formerly BAY 10-8888, is a synthetic antifungal derivative of the naturally occurring beta-amino acid cispentacin. We studied the activity of PLD-118 in escalating dosages against experimental oropharyngeal and esophageal candidiasis (OPEC) caused by fluconazole (FLC)-resistant Candida albicans in immunocompromised rabbits. Infection was established by fluconazole-resistant (MIC > 64 microg/ml) clinical isolates from patients with refractory esophageal candidiasis. Antifungal therapy was administered for 7 days. Study groups consisted of untreated controls; animals receiving PLD-118 at 4, 10, 25, or 50 mg/kg of body weight/day via intravenous (i.v.) twice daily (BID) injections; animals receiving FLC at 2 mg/kg/day via i.v. BID injections; and animals receiving desoxycholate amphotericin B (DAMB) i.v. at 0.5 mg/kg/day. PLD-118- and DAMB-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, and esophagus in comparison to untreated controls (P resistant oropharyngeal and esophageal candidiasis.

  7. In vitro susceptibility of Candida albicans clinical isolates to eight antifungal agents in Ouagadougou (Burkina Faso).

    PubMed

    Zida, A; Yacouba, A; Bamba, S; Sangare, I; Sawadogo, M; Guiguemde, T; Kone, S; Traore, L K; Ouedraogo-Traore, R; Guiguemde, R T

    2017-12-01

    In recent years, the infection Candida albicans infection worldwide has risen, and the incidence of resistance to traditional antifungal therapies is also increasing. The aim of this study was to evaluate in vitro susceptibility of C. albicans clinical isolates to eight antifungal agents in Ouagadougou. A cross-sectional study was conducted from January 2013 to December 2015 at Yalgado Ouédraogo University Teaching Hospital. Two hundred seven strains have been isolated from 347 symptomatic patients received in different clinical services. Samples were cultured on Sabouraud Dextrose Agar supplemented with Cloramphenicol. Isolates were diagnosed as C. albicans using germ tube test, chlamydospore formation on Corn Meal Agar, and Api-Candida test (Biomérieux). Antifungal susceptibility testing was performed by disk diffusion method and isolates classified as susceptible, susceptible dose-dependent and resistant. Three hundred forty-seven (347) patients are included in this study. Two hundred and six (206) out of 347 collected samples (59.36%) were found positive for C. albicans. The strains were mostly isolated from vulvovaginal (49%) and oral infections (40.3%). The highest resistance rates of azoles were obtained with fluconazole (66.5%), itraconazole (52.3%) and ketoconazole (22.9%) when all clinical isolates were included. The resistance rates of fluconazole, itraconazole and ketoconazole remain highest for vulvovaginal and oral isolates. The rate of resistance to the polyene amphotericin B was 32.0% for all clinical isolates and was 56.4% for vulvovaginal strains. Resistance rate to nystatin was 6.3% for all clinical isolates. Cross-resistance analysis with data of all clinical strains revealed that the incidence of resistance to ketoconazole and itraconazole in fluconazole-resistant isolates was significantly higher than recorded for fluconazole-susceptible isolates. In vitro C. albicans antifungal susceptibility test in this study showed relatively high

  8. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms.

    PubMed

    Jia, Wei; Zhang, Haiyun; Li, Caiyun; Li, Gang; Liu, Xiaoming; Wei, Jun

    2016-06-18

    Biofilms produced by Candida albicans (C. albicans) are intrinsically resistant to fungicidal agents, which are a main cause of the pathogenesis of catheter infections. Several lines of evidence have demonstrated that calcineurin inhibitor FK506 or cyclosporine A (CsA) can remarkably enhance the antifungal activity of fluconazole (FLC) against biofilm-producing C. albicans strain infections. The aim of present study is thus to interrogate the mechanism underpinning the synergistic effect of FLC and calcineurin inhibitors. Twenty four clinical C. albicans strains isolated from bloodstream showed a distinct capacity of biofilm formation. A combination of calcineurin inhibitor CsA and FLC exhibited a dose-dependent synergistic antifungal effect on the growth and biofilm formation of C. albicans isolates as determined by a XTT assay and fluorescent microscopy assay. The synergistic effect was accompanied with a significantly down-regulated expression of adhesion-related genes ALS3, hypha-related genes HWP1, ABC transporter drug-resistant genes CDR1 and MDR1, and FLC targeting gene, encoding sterol 14alpha-demethylase (ERG11) in clinical C. albicans isolates. Furthermore, an addition of CsA significantly reduced the cellular surface hydrophobicity but increased intracellular calcium concentration as determined by a flow cytometry assay (p < 0.05). The results presented in this report demonstrated that the synergistic effect of CsA and FLC on inhibited C. albicans biofilm formation and enhanced susceptibility to FLC was in part through a mechanism involved in suppressing the expression of biofilm related and drug-resistant genes, and reducing cellular surface hydrophobicity, as well as evoking intracellular calcium concentration.

  9. Synergistic Effects of Amiodarone and Fluconazole on Candida tropicalis Resistant to Fluconazole

    PubMed Central

    da Silva, Cecília Rocha; de Andrade Neto, João Batista; Sidrim, José Júlio Costa; Ângelo, Maria Rozzelê Ferreira; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Brilhante, Raimunda Sâmia Nogueira; Macedo, Danielle Silveira; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa

    2013-01-01

    There have recently been significant increases in the prevalence of systemic invasive fungal infections. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapies have become one of the most widely used and effective strategies to alleviate this problem. Amiodarone (AMD) is classically used for the treatment of atrial fibrillation and is the drug of choice for patients with arrhythmia. Recent studies have shown broad antifungal activity of the drug when administered in combination with fluconazole (FLC). In the present study, we induced resistance to fluconazole in six strains of Candida tropicalis and evaluated potential synergism between fluconazole and amiodarone. The evaluation of drug interaction was determined by calculating the fractional inhibitory concentration and by performing flow cytometry. We conclude that amiodarone, when administered in combination with fluconazole, exhibits activity against strains of C. tropicalis that are resistant to fluconazole, which most likely occurs via changes in the integrity of the yeast cell membrane and the generation of oxidative stress, mitochondrial dysfunction, and DNA damage that could lead to cell death by apoptosis. PMID:23357774

  10. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates.

    PubMed

    Denardi, Laura Bedin; Mario, Débora Alves Nunes; Loreto, Érico Silva; Santurio, Janio Morais; Alves, Sydney Hartz

    2015-03-01

    In vitro interaction between tacrolimus (FK506) and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole) against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%), followed by that of the combination with ketoconazole (37%), against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata , a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%), itraconazole (73%), voriconazole (63%) and fluconazole (60%). The synergisms that we observed in vitro , notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  11. Regression analysis and categorical agreement of fluconazole disk zone diameters and minimum inhibitory concentration by broth microdilution of clinical isolates of Candida.

    PubMed

    Aggarwal, P; Kashyap, B

    2017-06-01

    Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Variability in the clinical distributions of Candida species and the emergence of azole-resistant non-Candida albicans species in public hospitals in the Midwest region of Brazil.

    PubMed

    Mattos, Karine; Rodrigues, Luana Carbonera; Oliveira, Kelly Mari Pires de; Diniz, Pedro Fernando; Marques, Luiza Inahê; Araujo, Adriana Almeida; Chang, Marilene Rodrigues

    2017-01-01

    Incidence and antifungal susceptibility of Candida spp. from two teaching public hospitals are described. The minimum inhibitory concentrations of fluconazole, voriconazole, itraconazole, and amphotericin B were determined using Clinical Laboratory Standard Institute broth microdilution and genomic differentiation using PCR. Of 221 Candida isolates, 50.2% were obtained from intensive care unit patients; 71.5% were recovered from urine and 9.1% from bloodstream samples. Candida parapsilosis sensu stricto was the most common candidemia agent. We observed variations in Candida species distribution in hospitals in the same geographic region and documented the emergence of non-C. albicans species resistant to azoles.

  13. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms.

    PubMed

    Luiz, Raul Leal Faria; Vila, Taissa Vieira Machado; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru; Rozental, Sonia; Ishida, Kelly

    2015-03-19

    Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.

  14. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida.

    PubMed

    Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian

    2016-08-30

    The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol

  15. Antifungal activity of geldanamycin alone or in combination with fluconazole against Candida species.

    PubMed

    Zhang, Jinqing; Liu, Wei; Tan, Jingwen; Sun, Yi; Wan, Zhe; Li, Ruoyu

    2013-04-01

    A standardized broth microdilution method was used to test the antifungal activity of geldanamycin (GA), an inhibitor of heat shock protein 90 (Hsp90), alone or in combination with the antifungal agent fluconazole (FLC) against 32 clinical isolates of Candida spp. In addition, a disk diffusion test was also used to evaluate the antifungal effect of these two drugs against Candida spp. by measuring the inhibition zone diameters. We found that the range of minimal inhibitory concentrations (MICs) for GA alone against Candida spp. was 3.2-12.8 mg/L and the geometric mean of MICs was 6.54 mg/L. In addition, the combination of GA with FLC showed synergistic effects in vitro against 2 FLC-susceptible and 6 FLC-resistant isolates of C. albicans. As for the other isolates, indifference but no antagonism was observed. In the disk diffusion assay, the diameter of inhibition zones for FLC combined with GA against FLC-resistant C. albicans isolates was 30 mm, while no inhibition was observed with FLC alone. These results demonstrate that GA possesses antifungal activity against Candida spp., and the combination of GA with FLC shows in vitro synergistic activity against some C. albicans isolates, especially those resistant to FLC.

  16. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery.

    PubMed

    Liu, Shuyuan; Hou, Yinglong; Chen, Xu; Gao, Yuan; Li, Hui; Sun, Shujuan

    2014-05-01

    The past decades have witnessed a dramatic increase in invasive fungal infections, especially candidiasis. Despite the development of more effective new antifungal agents, fluconazole (FLC) is still widely used in the clinic because of its efficacy and low toxicity. However, as the number of patients treated with FLC has increased, FLC-resistant Candida albicans isolates emerge more frequently. In addition, biofilm-associated infections are commonly encountered and their resistance poses a great challenge to antifungal treatment. Various approaches have been proposed to increase the susceptibility of C. albicans to FLC in order to cope with treatment failures, among which is the combination of FLC with different classes of non-antifungal agents such as antibacterials, calcineurin inhibitors, heat shock protein 90 inhibitors, calcium homeostasis regulators and traditional Chinese medicine drugs. Interestingly, many of these combinations showed synergistic effects against C. albicans, especially resistant strains. The main mechanisms of these synergistic effects appear to be increasing the permeability of the membrane, reducing the efflux of antifungal drugs, interfering with intracellular ion homeostasis, inhibiting the activity of proteins and enzymes required for fungal survival, and inhibiting biofilm formation. These modes of action and the antifungal mechanisms of various compounds referenced in this paper highlight the idea that the reversal of fungal resistance can be achieved through various mechanisms. Studies examining drug interactions will hopefully provide new approaches against antifungal drug resistance as well as insight into antifungal agent discovery. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Is empiric therapy with fluconazole appropriate for esophageal candidiasis?

    PubMed

    Sajith, Kattiparambil Gangadharan; Dutta, Amit Kumar; Sahni, Rani Diana; Esakimuthu, Saritha; Chacko, Ashok

    2014-03-01

    We studied the prevalence of fluconazole resistance in esophageal candidiasis. Patients with suspected esophageal candidiasis during gastroscopy underwent culture of white plaques. Minimum inhibitory concentration (MIC) >64 μg/mL of fluconazole for Candida was indicative of resistance. Sensitivity of itraconazole was tested in a subset of resistant strains. Sixty-five patients were included. Mean (SD) age was 50.03 (13.5) years and 67.7 % were males. Predisposing factors for candidiasis were found in 42 (64.6 %) patients. C. albicans was identified in 64 (97.4 %) patients and C. glabrata in one patient. Fluconazole resistance was seen in 38 (59.4 %) patients with C. albicans and also in the one patient with C. glabrata. All the fluconazole resistant isolates of C. albicans had MIC >128 μg/mL suggesting very high resistance. Twelve patients with fluconazole resistance had itraconazole resistance as well. The study shows a high rate of fluconazole resistance in patients with esophageal candidiasis.

  18. Anticandidal synergistic activity of Ocimum sanctum and fluconazole of azole resistance strains of clinical isolates.

    PubMed

    Zaidi, K U; Shah, F; Parmar, R; Thawani, V

    2018-06-01

    Candida albicans is the most prevalent fungal pathogen in humans. It is the causative agent and most associated with serious fungal infection, accounting for more than 90% of cases. It is a most common cause of deep mycoses and vulvovaginal candidiasis. In the present study we found that methanolic extract of O. sanctum in combination of fluconazole shows higher zone of inhibition and lesser MIC values as compared to methanolic extract of leaves of O. sanctum or fluconazole when used alone. Synergistic antimicrobial activity was found when methanolic extract of leaves of O. sanctum was used in combination with fluconazole against C. albicans azole resistance strains isolated from catheter tip (CT) and high vaginal swab (HVS) (FIC≤0.5). Partial synergistic activity was observed against urine (U). Methanolic extract of stem of O. sanctum in combination with fluconazole gave indifferent antifungal results (FIC=1.0-4.0). Benzene extract of the leaf and stem of O. sanctum in combination with fluconazole showed indifferent antifungal results (FIC=1.0-4.0). Aqueous extract of leaves of O. sanctum in combination with fluconazole showed partial synergistic antimicrobial activity against catheter tip (CT) and high vaginal swab (HVS) and urine (U) (FIC=0.5-1.0). In the present study we evaluate the synergism of C. albicans against azole resistant clinical isolates. This study indicates clear evidence supporting the traditional use of O. sanctum in treating Candida infectious diseases. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Successful Treatment of Fluconazole-Resistant Oropharyngeal Candidiasis by a Combination of Fluconazole and Terbinafine

    PubMed Central

    Ghannoum, Mahmoud A.; Elewski, Boni

    1999-01-01

    Increasing incidence of resistance to conventional antifungal therapy has demanded that novel therapies be introduced. Recent in vitro studies have shown that combinations involving azoles and allylamines may be effective in inhibiting fluconazole-resistant fungi. In this report, we describe the case of a 39-year-old woman who presented with white patches on her buccal mucosa, tongue, and palate with a bright erythematous erosive base. A fungal culture revealed Candida albicans. The patient failed to respond to the initially prescribed fluconazole therapy. Failure of therapy can be attributed to a developed resistance to fluconazole from the patient’s intermittent use of this antifungal agent at varying dosages for the preceding 2 years due to a diagnosis of onychomycosis. In vitro testing of the culture from the patient showed elevated MICs of fluconazole, itraconzole, and terbinafine (MICs were 32, 0.5, and 64 μg/ml, respectively). Our goal was to combine therapies of fluconazole and terbinafine in an attempt to clear the fungal infection. Impressively, this combination resulted in the clearing of the clinical symptoms and the patient has successfully been asymptomatic for more than 12 months posttreatment. PMID:10548586

  1. [In vitro assessment of the sensitivity of Candida albicans strains isolated from the vagina on basis antimycotics].

    PubMed

    Lisiak, M; Kłyszejko, C; Marcinkowski, Z; Gwieździński, Z

    2000-09-01

    The purpose of the study was to analyses the sensitivity of 73 randomly selected Candida albicans strains isolated from the vagina of pregnant and delivering women against seven basic antimycotics. The microtest FUNGITEST (Sanofi Diagnostics Pasteur) was applied in assessing the sensitivity of 5-fluorocytosin, amphotericin B, ketoconazol, fluconazol, itraconazol and miconazol and the disk-diffusion method with the use of a Casitone base for nystatin. Variations in the sensitivity against drugs have been noted between individual strains of Candida albicans species. The largest number of strains was resistant against ketoconazol--56.16%, and only 10.96% was resistant against nystatin.

  2. Activities of Fluconazole, Caspofungin, Anidulafungin, and Amphotericin B on Planktonic and Biofilm Candida Species Determined by Microcalorimetry

    PubMed Central

    Maiolo, Elena Maryka; Furustrand Tafin, Ulrika; Borens, Olivier

    2014-01-01

    We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains. PMID:24566186

  3. Synergistic antifungal effect of lactoferrin with azole antifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis.

    PubMed

    Kobayashi, Tsutomu; Kakeya, Hiroshi; Miyazaki, Taiga; Izumikawa, Koichi; Yanagihara, Katsunori; Ohno, Hideaki; Yamamoto, Yoshihiro; Tashiro, Takayoshi; Kohno, Shigeru

    2011-01-01

    The combination of lactoferrin with fluconazole has been reported to synergistically enhance the antifungal activity of fluconazole against Candida spp. and inhibit the hyphal formation in fluconazole-resistant strains of Candida albicans. In this study, we investigated the association between the therapeutic effects of this combination and the pharmacological characteristics of fluconazole and itraconazole and the variation in these effects with differences among the strains in terms of the susceptibility and resistance mechanisms. Lactoferrin enhanced the growth-inhibitory activity of fluconazole against two different ergosterol mutants but not againt pump mutants or an azole-susceptible strain; but increased the activity of itraconazole against all the strains tested in this study. Exogenous iron cancelled the synergistic effect, which suggests that the iron-chelating function of lactoferrin may contribute to the synergism. Besides, radiolabeled fluconazole assays revealed that lactoferrin did not affect the intracellular concentrations of fluconazole, thereby indicating that these synergistic effects were not due to the alteration of the intracellular uptake of the drug. The development of new clinical treatments and therapeutic method against resistant Candida will depend on our understanding of the resistance mechanisms and methods to overcome them by the application of suitable drug combinations with synergistic effects. The results of this study might contribute to the improvement of our understand of the mechanisms underlying the resistance of Candida strains.

  4. Aberrant lipogenesis is a metabolic marker for azole-resistant candida albicans (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karanja, Caroline; Hong, Weili; Younis, Waleed; Cheng, Ji-Xin; Seleem, Mohamed

    2017-02-01

    Candida is the single most important cause of fungal bloodstream infections worldwide causing significant mortality as high as 50%. This high mortality rate is, in part, due to the inability to rapidly diagnose and simultaneously initiate an effective antifungal therapy early in the disease process. Current culture-based diagnostics are often slow, requiring several days to complete, and are only 50% sensitive in diagnosing candidemia (Candida bloodstream infection). For every 12 hours of delay in starting correct antifungal therapy, the risk of death for a given patient with candidemia increases by 200%. To address this unmet need, we explored the potential of employing stimulated Raman Scattering (SRS) imaging to diagnose candidemia and probe metabolic differences between resistant and susceptible strain at a single cell level. Metabolism is integral to pathogenicity; microorganism have very short life cycles, and therefore only a few hours are needed to observe a full metabolic cycle. SRS imaging at C-H vibration frequency at 2850 cm-1 revealed a substantial difference in lipogenesis between the susceptible and resistant C. albicans. Treating the C. albicans with fluconazole, an antimicrobial drug that targets ergosterol biosynthesis only affected the lipogenesis in the susceptible strain. Our results show that single-cell metabolic imaging under a SRS microscope can be used for diagnose candidemia and early detection of antimicrobial susceptibility.

  5. Correlation between In Vitro and In Vivo Antifungal Activities in Experimental Fluconazole-Resistant Oropharyngeal and Esophageal Candidiasis

    PubMed Central

    Walsh, Thomas J.; Gonzalez, Corina E.; Piscitelli, Steven; Bacher, John D.; Peter, Joanne; Torres, Richard; Shetti, Daiva; Katsov, Victoria; Kligys, Kristina; Lyman, Caron A.

    2000-01-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, ≤0.125 μg/ml) and three fluconazole-resistant (FR) (MIC, ≥64 μg/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro fluconazole

  6. Correlation between in vitro and in vivo antifungal activities in experimental fluconazole-resistant oropharyngeal and esophageal candidiasis.

    PubMed

    Walsh, T J; Gonzalez, C E; Piscitelli, S; Bacher, J D; Peter, J; Torres, R; Shetti, D; Katsov, V; Kligys, K; Lyman, C A

    2000-06-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, fluconazole-resistant (FR) (MIC, >/=64 microgram/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P < 0.001) and tissue burden of C. albicans in tongue, soft palate, and esophagus (P < 0.001). In comparison, rabbits infected with FR isolates were unresponsive to fluconazole and had no reduction in oral mucosal quantitative cultures or tissue burden of C. albicans versus untreated controls. We conclude that there is a strong correlation between in vitro

  7. In Vitro Analysis of Finasteride Activity against Candida albicans Urinary Biofilm Formation and Filamentation

    PubMed Central

    Chavez-Dozal, Alba A.; Lown, Livia; Jahng, Maximillian; Walraven, Carla J.

    2014-01-01

    Candida albicans is the 3rd most common cause of catheter-associated urinary tract infections, with a strong propensity to form drug-resistant catheter-related biofilms. Due to the limited efficacy of available antifungals against biofilms, drug repurposing has been investigated in order to identify novel agents with activities against fungal biofilms. Finasteride is a 5-α-reductase inhibitor commonly used for the treatment of benign prostatic hyperplasia, with activity against human type II and III isoenzymes. We analyzed the Candida Genome Database and identified a C. albicans homolog of type III 5-α-reductase, Dfg10p, which shares 27% sequence identity and 41% similarity to the human type III 5-α-reductase. Thus, we investigated finasteride for activity against C. albicans urinary biofilms, alone and in combination with amphotericin B or fluconazole. Finasteride alone was highly effective in the prevention of C. albicans biofilm formation at doses of ≥16 mg/liter and the treatment of preformed biofilms at doses of ≥128 mg/liter. In biofilm checkerboard analyses, finasteride exhibited synergistic activity in the prevention of biofilm formation in a combination of 4 mg/liter finasteride with 2 mg/liter fluconazole. Finasteride inhibited filamentation, thus suggesting a potential mechanism of action. These results indicate that finasteride alone is highly active in the prevention of C. albicans urinary biofilms in vitro and has synergistic activity in combination with fluconazole. Further investigation of the clinical utility of finasteride in the prevention of urinary candidiasis is warranted. PMID:25049253

  8. Scope and frequency of fluconazole trailing assessed using EUCAST in invasive Candida spp. isolates.

    PubMed

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Sánchez-Carrillo, Carlos; Bouza, Emilio; Guinea, Jesús

    2016-10-01

    Trailing is a well-known phenomenon that is defined as reduced but persistent visible growth of Candida spp. at fluconazole concentrations above the MIC. Trailing is commonly detected using the CLSI M27-A3 method, although little is known about its frequency when investigated with EUCAST. We assessed the frequency and scope of fluconazole trailing after using EUCAST EDef 7.2. against a large number of Candida spp. isolates from patients with candidemia. We studied 639 fluconazole-susceptible non-krusei Candida spp. isolates from 570 patients admitted to Gregorio Marañón Hospital. Isolates were tested in vitro for fluconazole susceptibility according to the EUCAST EDef 7.2 procedure; trailing was defined as the presence of any residual growth in wells containing fluconazole concentrations above the MIC. According to the mean percentage of trailing observed, isolates were classified as residual trailers (0.1-5%), slight trailers (6%-10%), moderate trailers (11%-15%), and heavy trailers (>15%). The relationship between trailing and genotyping was assessed. The mean overall percentage of trailing was 6.8%, with C. albicans and C. tropicalis showing the highest percentages (9.75% and 9.29%, respectively; P < .001). C. albicans and C. tropicalis had the highest percentage of heavy trailers (>15%). Trailing was not genotype-specific. Fluconazole trailing was observed frequently when EUCAST was used for antifungal susceptibility testing, particularly in isolates of C. albicans and C. tropicalis The cut-off proposed enabled us to classify the isolates according to the degree of trailing and can be used as the basis for future studies to evaluate the clinical impact of this phenomenon. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains.

    PubMed

    R M Machado, Gabriella da; Pippi, Bruna; Dalla Lana, Daiane Flores; Amaral, Ana Paula S; Teixeira, Mário Lettieri; Souza, Kellen C B de; Fuentefria, Alexandre M

    2016-11-01

    The increased incidence of non-albicans Candida (NAC) resistant to fluconazole (FLZ) makes it necessary to use new therapeutic alternatives. Acca sellowiana (O.berg) Burret (Myrtaceae) is a guava with several proven biological activities. The interaction with fluconazole can be a feasible alternative to overcome this resistance. This study evaluates the in vitro antifungal activity of fractions obtained from the lyophilized aqueous extract of the leaves of A. sellowiana against resistant strains of NAC. The antifungal activity of the fractions was evaluated at 500 μg/mL by microdilution method. Checkerboard assay was performed to determine the effect of the combination of the F2 fraction and antifungal at concentrations: MIC/4, MIC/2, MIC, MIC × 2 and MIC × 4. Candida glabrata showed the lowest MIC values (500-3.90 μg/mL) and the F2 active fraction was the most effective. The association of F2 with FLZ showed a strong synergistic effect (FICI ≤ 0.5) against 100% of C. glabrata resistant isolates. Moreover, the F2 active fraction has demonstrated that probably acts in the cell wall of these yeasts. There was no observed acute dermal toxicity of lyophilized aqueous extract of leaves of A. sellowiana on pig ear skin cells. The interaction between substances present in the F2 active fraction is possibly responsible for the antifungal activity presented by this fraction. This study is unprecedented and suggests that the combination of F2 active fraction and FLZ might be used as an alternative treatment for mucocutaneus infections caused by C. glabrata resistant.

  10. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms

    PubMed Central

    Jackson, Desmond N.; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J.

    2015-01-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis. PMID:26195512

  11. Pharmacoeconomic analysis of antifungal therapy for primary treatment of invasive candidiasis caused by Candida albicans and non-albicans Candida species.

    PubMed

    Ou, Huang-Tz; Lee, Tsung-Ying; Chen, Yee-Chun; Charbonneau, Claudie

    2017-07-10

    Cost-effectiveness studies of echinocandins for the treatment of invasive candidiasis, including candidemia, are rare in Asia. No study has determined whether echinocandins are cost-effective for both Candida albicans and non-albicans Candida species. There have been no economic evaluations that compare non-echinocandins with the three available echinocandins. This study was aimed to assess the cost-effectiveness of individual echinocandins, namely caspofungin, micafungin, and anidulafungin, versus non-echinocandins for C. albicans and non-albicans Candida species, respectively. A decision tree model was constructed to assess the cost-effectiveness of echinocandins and non-echinocandins for invasive candidiasis. The probability of treatment success, mortality rate, and adverse drug events were extracted from published clinical trials. The cost variables (i.e., drug acquisition) were based on Taiwan's healthcare system from the perspective of a medical payer. One-way sensitivity analyses and probability sensitivity analyses were conducted. For treating invasive candidiasis (all species), as compared to fluconazole, micafungin and caspofungin are dominated (less effective, more expensive), whereas anidulafungin is cost-effective (more effective, more expensive), costing US$3666.09 for each life-year gained, which was below the implicit threshold of the incremental cost-effectiveness ratio in Taiwan. For C. albicans, echinocandins are cost-saving as compared to non-echinocandins. For non-albicans Candida species, echinocandins are cost-effective as compared to non-echinocandins, costing US$652 for each life-year gained. The results were robust over a wide range of sensitivity analyses and were most sensitive to the clinical efficacy of antifungal treatment. Echinocandins, especially anidulafungin, appear to be cost-effective for invasive candidiasis caused by C. albicans and non-albicans Candida species in Taiwan.

  12. Mitochondrial Cochaperone Mge1 Is Involved in Regulating Susceptibility to Fluconazole in Saccharomyces cerevisiae and Candida Species.

    PubMed

    Demuyser, Liesbeth; Swinnen, Erwin; Fiori, Alessandro; Herrera-Malaver, Beatriz; Vestrepen, Kevin; Van Dijck, Patrick

    2017-07-18

    MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism and protein import into the mitochondria. In this study, we identified MGE1 as a multicopy suppressor of susceptibility to the antifungal fluconazole in the model yeast Saccharomyces cerevisiae We demonstrate that this phenomenon is not exclusively dependent on the integrity of the mitochondrial DNA or on the presence of the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1 plays a protective role by retaining increased amounts of ergosterol upon fluconazole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are involved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is required. Additionally, we show the necessity but, by itself, insufficiency of activating the iron regulon in establishing the Mge1-related effect on drug susceptibility. Finally, we confirm a similar role for Mge1 in fluconazole susceptibility in the pathogenic fungi Candida glabrata and Candida albicans IMPORTANCE Although they are mostly neglected compared to bacterial infections, fungal infections pose a serious threat to the human population. While some of them remain relatively harmless, infections that reach the bloodstream often become lethal. Only a few therapies are available, and resistance of the pathogen to these drugs is a frequently encountered problem. It is thus essential that more research is performed on how these pathogens cope with the treatment and cause recurrent infections. Baker's yeast is often used as a model to study pathogenic fungi. We show here, by using this model, that iron metabolism and the formation of the important iron-sulfur clusters are involved in regulating susceptibility to fluconazole, the most commonly used antifungal drug. We show that the same process likely also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata and Candida albicans . Copyright © 2017 Demuyser et al.

  13. A single-centre 10-year experience with Candida bloodstream infections

    PubMed Central

    Labbé, Annie-Claude; Pépin, Jacques; Patiño, Carlos; Castonguay, Stéphanie; Restieri, Christiane; Laverdiere, Michel

    2009-01-01

    OBJECTIVE: To describe the clinical and microbiological features associated with Candida bloodstream infections observed at Hôpital Maisonneuve-Rosemont (Montreal, Quebec) between August 1996 and July 2006. METHODS: Episodes were retrieved from the microbiology laboratory. Different patient episodes and different isolate episodes in the same patient were selected. Antifungal susceptibility was determined by the Clinical and Laboratory Standards Institute’s (USA) M27A2 method. RESULTS: A total of 190 different episodes of candidemia in 185 patients were identified. Eleven (6%) episodes occurred in outpatients. Candida albicans was identified in the majority of episodes (57%). Its frequency remained stable over the years. The proportion of Candida krusei candidemia episodes increased between 2003 and 2006, but this was not statistically significant. A central venous indwelling catheter or a peripherally inserted central catheter line was present in the majority of patients (167 [88%]). Of the indwelling catheters removed at the time of diagnosis, 39% were positive for Candida species on culture. Overall, voriconazole was the most active agent (the minimum inhibitory concentration required to inhibit the growth of 90% of organisms was 0.5 mg/L). Resistance to fluconazole was observed in 26 (14%) isolates (C albicans, 4%; versus non-albicans Candida species, 27%; P<0.001). Being on the hematology-oncology unit at the time of diagnosis (adjusted OR 7.8; 95% CI 2.3 to 27.1; P=0.001) and having received fluconazole or itraconazole within the past three months (adjusted OR 8.3; 95% CI 2.8 to 24.4; P<0.001) were significantly associated with resistance to fluconazole in multivariate analysis. CONCLUSIONS: At Hôpital Maisonneuve-Rosemont, the frequency and species distribution of blood isolates of Candida remained stable over the past decade. In vitro resistance of C albicans to fluconazole and itraconazole remained minimal; resistance of non-albicans Candida species to

  14. Multi-drug resistant oral Candida species isolated from HIV-positive patients in South Africa and Cameroon.

    PubMed

    Dos Santos Abrantes, Pedro Miguel; McArthur, Carole P; Africa, Charlene Wilma Joyce

    2014-06-01

    Candida species are a common cause of infection in immune-compromised HIV-positive individuals, who are usually treated with the antifungal drug, fluconazole, in public hospitals in Africa. However, information about the prevalence of drug resistance to fluconazole and other antifungal agents on Candida species is very limited. This study examined 128 Candida isolates from South Africa and 126 Cameroonian Candida isolates for determination of species prevalence and antifungal drug susceptibility. The isolates were characterized by growth on chromogenic and selective media and by their susceptibility to 9 antifungal drugs tested using the TREK™ YeastOne9 drug panel (Thermo Scientific, USA). Eighty-three percent (82.8%) of South African isolates were Candida albicans (106 isolates), 9.4% were Candida glabrata (12 isolates), and 7.8% were Candida dubliniensis (10 isolates). Of the Cameroonian isolates, 73.02% were C. albicans (92 isolates); 19.05% C. glabrata (24 isolates); 3.2% Candida tropicalis (4 isolates); 2.4% Candida krusei (3 isolates); 1.59% either Candida kefyr, Candida parapsilopsis, or Candida lusitaneae (2 isolates); and 0.79% C. dubliniensis (1 isolate). Widespread C. albicans resistance to azoles was detected phenotypically in both populations. Differences in drug resistance were seen within C. glabrata found in both populations. Echinocandin drugs were more effective on isolates obtained from the Cameroon than in South Africa. A multiple-drug resistant C. dubliniensis strain isolated from the South African samples was inhibited only by 5-flucytosine in vitro on the YO9 panel. Drug resistance among oral Candida species is common among African HIV patients in these 2 countries. Regional surveillance of Candida species drug susceptibility should be undertaken to ensure effective treatment for HIV-positive patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Candida profiles and antifungal resistance evolution over a decade in Lebanon.

    PubMed

    Araj, George Farah; Asmar, Rima George; Avedissian, Aline Zakaria

    2015-09-27

    Infection with and antifungal resistance of Candida species have been on the rise globally. Relevant data on these pathogens are relatively few in our region, including Lebanon, thus warranting this study. This retrospective study of Candida spp. profiles and their in vitro antifungal susceptibility was based on analysis requests for 186 Candida non-albicans and 61 C. albicans during three periods (2005-2007, 2009-2011, and 2012-2014) over the span of the last 10 years at the American University of Beirut Medical Center (AUBMC), a major tertiary care center in Lebanon. Identification of Candida was done using the API 20C AUX system, and the E-test was used to determine the minimum inhibitory concentrations (MICs) of antifungal agents. Among the 1,300-1,500 Candida isolates recovered yearly, C. albicans rates decreased from 86% in 2005 to around 60% in 2014. Simultaneously, the non-albicans rates increased from 14% in 2005 to around 40% in 2014, revealing 11 species, the most frequent of which were C. tropicalis, C. glabrata, and C. parapsilosis. All these demonstrated high resistance (35%-79%) against itraconazole, but remained uniformly susceptible (100%) to amphotericin B. Though C. albicans and the other species maintained high susceptibility against fluconazole and voriconazole, their MIC90 showed an elevated trend over time, and C. glabrata had the highest resistance rates. The observed rise in resistance among Candida spp. in Lebanon mandates the need for close surveillance and monitoring of antifungal drug resistance for both epidemiologic and treatment purposes.

  16. Inhibition of Hyphal Growth of Azole-Resistant Strains of Candida albicans by Triazole Antifungal Agents in the Presence of Lactoferrin-Related Compounds

    PubMed Central

    Wakabayashi, Hiroyuki; Abe, Shigeru; Teraguchi, Susumu; Hayasawa, Hirotoshi; Yamaguchi, Hideyo

    1998-01-01

    The effects of bovine lactoferrin (LF) or the LF-derived antimicrobial peptide lactoferricin B (LFcin B) on the growth of Candida albicans hyphae, including those of three azole-resistant strains, were investigated by a crystal violet staining method. The hyphae of two highly azole-resistant strains were more susceptible to inhibition by LF or LFcin B than the azole-susceptible strains tested. One moderately azole-resistant strain was defective in the formation of hyphae and showed a susceptibility to LF greater than that of the susceptible strains but a susceptibility to LFcin B similar to that of the susceptible strains. The highly azole-resistant strain TIMM3317 showed trailing growth in the presence of fluconazole or itraconazole, while the extent of growth was reduced by the addition of LF or LFcin B at a sub-MIC. Thus, the addition of LF or LFcin B at a sub-MIC resulted in a substantial decrease in the MICs of fluconazole and itraconazole for two highly azole-resistant strains; e.g., the MIC of fluconazole for TIMM3317 was shifted from >256 to 0.25 μg/ml by LF, but the MICs were not decreased for the susceptible strains. The combination effects observed with triazoles and LF-related compounds in the case of the two highly azole-resistant strains were confirmed to be synergistic by the fractional inhibitory concentration index. These results demonstrate that for some azole-resistant C. albicans strains, LF-related compounds combined with triazoles can inhibit the growth of hyphae, an important form of this organism in pathogenesis. PMID:9660988

  17. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth

    PubMed Central

    Haque, Farazul; Alfatah, Md.; Ganesan, K.; Bhattacharyya, Mani Shankar

    2016-01-01

    Candida albicans causes superficial and life-threatening systemic infections. These are difficult to treat often due to drug resistance, particularly because C. albicans biofilms are inherently resistant to most antifungals. Sophorolipid (SL), a glycolipid biosurfactant, has been shown to have antimicrobial and anticancer properties. In this study, we investigated the effect of SL on C. albicans biofilm formation and preformed biofilms. SL was found to inhibit C. albicans biofilm formation as well as reduce the viability of preformed biofilms. Moreover, SL, when used along with amphotericin B (AmB) or fluconazole (FLZ), was found to act synergistically against biofilm formation and preformed biofilms. Effect of SL on C. albicans biofilm formation was further visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed absence of hyphae, typical biofilm architecture and alteration in the morphology of biofilm cells. We also found that SL downregulates the expression of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4, which possibly explains the inhibitory effect of SL on hyphae and biofilm formation. PMID:27030404

  18. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis.

    PubMed

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G; Cormack, Brendan; Edgerton, Mira

    2016-03-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.

  19. The essential oil of Allium sativum as an alternative agent against Candida isolated from dental prostheses.

    PubMed

    Mendoza-Juache, Alejandro; Aranda-Romo, Saray; Bermeo-Escalona, Josué R; Gómez-Hernández, Araceli; Pozos-Guillén, Amaury; Sánchez-Vargas, Luis Octavio

    The colonization of the surfaces of dental prostheses by Candida albicans is associated with the development of denture stomatitis. In this context, the use of fluconazole has been proposed, but its disadvantage is microbial resistance. Meanwhile, the oil of Allium sativum has shown an effect in controlling biofilm formation by C. albicans. The objective of this study was to determine the antifungal activities of the essential oil of A. sativum and fluconazole against clinical isolates of Candida species obtained from rigid, acrylic-based partial or total dentures and to compare these agents' effects on both biofilm and planktonic cells. A total of 48 clinical isolates obtained from the acrylic surface of partial or complete dentures were examined, and the following species were identified: C. albicans, Candida glabrata, Candida tropicalis, and Candida krusei. For each isolate, the antifungal activities of the essential oil of A. sativum and fluconazole against both biofilm and planktonic cells were evaluated using the Clinical & Laboratory Standards Institute (CLSI) M27-A3 method. The isolates were also evaluated by semiquantitative XTT reduction. All planktonic Candida isolates were susceptible to the essential oil of A. sativum, whereas 4.2% were resistant to fluconazole. Regarding susceptibilities in biofilms, 43.8% of biofilms were resistant to A. sativum oil, and 91.7% were resistant to fluconazole. All planktonic cells of the different Candida species tested are susceptible to <1mg/ml A. sativum oil, and the majority are susceptible to fluconazole. Susceptibility decreases in biofilm cells, with increased resistance to fluconazole compared with A. sativum oil. The essential oil of A. sativum is thus active against clinical isolates of Candida species obtained from dentures, with effects on both biofilm and planktonic cells in vitro. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria.

    PubMed

    Ogbolu, D O; Oni, A A; Daini, O A; Oloko, A P

    2007-06-01

    The emergence of antimicrobial resistance, coupled with the availability of fewer antifungal agents with fungicidal actions, prompted this present study to characterize Candida species in our environment and determine the effectiveness of virgin coconut oil as an antifungal agent on these species. In 2004, 52 recent isolates of Candida species were obtained from clinical specimens sent to the Medical Microbiology Laboratory, University College Hospital, Ibadan, Nigeria. Their susceptibilities to virgin coconut oil and fluconazole were studied by using the agar-well diffusion technique. Candida albicans was the most common isolate from clinical specimens (17); others were Candida glabrata (nine), Candida tropicalis (seven), Candida parapsilosis (seven), Candida stellatoidea (six), and Candida krusei (six). C. albicans had the highest susceptibility to coconut oil (100%), with a minimum inhibitory concentration (MIC) of 25% (1:4 dilution), while fluconazole had 100% susceptibility at an MIC of 64 microg/mL (1:2 dilution). C. krusei showed the highest resistance to coconut oil with an MIC of 100% (undiluted), while fluconazole had an MIC of > 128 microg/mL. It is noteworthy that coconut oil was active against species of Candida at 100% concentration compared to fluconazole. Coconut oil should be used in the treatment of fungal infections in view of emerging drug-resistant Candida species.

  1. Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis

    PubMed Central

    Tati, Swetha; Davidow, Peter; McCall, Andrew; Hwang-Wong, Elizabeth; Rojas, Isolde G.; Cormack, Brendan; Edgerton, Mira

    2016-01-01

    Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata. PMID:27029023

  2. The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: in vitro susceptibility of 375 Candida albicans isolates and biofilm production.

    PubMed

    Tortorano, Anna Maria; Prigitano, Anna; Biraghi, Emanuela; Viviani, Maria Anna

    2005-10-01

    To investigate the in vitro antifungal susceptibility pattern of 375 Candida albicans bloodstream isolates recovered during the European Confederation of Medical Mycology survey of candidaemia performed in Lombardia, Italy and to test the ability to form biofilm. In vitro susceptibility to flucytosine, fluconazole, itraconazole, posaconazole, voriconazole and caspofungin was performed by broth microdilution following the NCCLS guidelines. Biofilm production was measured using the XTT reduction assay in 59 isolates selected as representative of different patterns of susceptibility to flucytosine and azoles. MICs (mg/L) at which 90% of the strains were inhibited were < or =0.25 for flucytosine, 0.25 for caspofungin, 4 for fluconazole and 0.06 for itraconazole, voriconazole and posaconazole. Flucytosine resistance was detected in five isolates and was associated with serotype B in 2/29 and serotype A in 3/346. Resistance to fluconazole was detected in 10 isolates; nine of these exhibited reduced susceptibility to the other azoles. Among the 10 patients with fluconazole-resistant C. albicans bloodstream infection, only one, an AIDS patient, had been previously treated with fluconazole. Biofilm production was observed in 23 isolates (39%) and was significantly associated with serotype B. No relationship was detected with the pattern of antifungal susceptibility. Resistance is uncommon in C. albicans isolates recovered from blood cultures, while biofilm production is a relatively frequent event. Periodic surveillance is warranted to monitor the incidence of in vitro antifungal resistance as well as of biofilm production.

  3. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    PubMed

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  4. Species distribution and susceptibility profile to fluconazole, voriconazole and MXP-4509 of 551 clinical yeast isolates from a Romanian multi-centre study.

    PubMed

    Minea, B; Nastasa, V; Moraru, R F; Kolecka, A; Flonta, M M; Marincu, I; Man, A; Toma, F; Lupse, M; Doroftei, B; Marangoci, N; Pinteala, M; Boekhout, T; Mares, M

    2015-02-01

    This is the first multi-centre study regarding yeast infections in Romania. The aim was to determine the aetiological spectrum and susceptibility pattern to fluconazole, voriconazole and the novel compound MXP-4509. The 551 isolates were identified using routine laboratory methods, matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and DNA sequence analysis. Susceptibility testing was performed using the European Committee for Antimicrobial Susceptibility Testing (EUCAST) method and breakpoints. The yeasts originated from superficial infections (SUP, 51.5 %), bloodstream infections (BSI, 31.6 %) and deep-seated infections (DEEP, 16.9 %), from patients of all ages. Nine genera and 30 species were identified. The 20 Candida species accounted for 94.6 % of all isolates. C. albicans was the overall leading pathogen (50.5 %). Lodderomyces elongisporus is reported for the first time as a fungaemia cause in Europe. C. glabrata and Saccharomyces cerevisiae, as well as the non-Candida spp. and non-albicans Candida spp. groups, showed decreased fluconazole susceptibility (<75 %). The overall fluconazole resistance was 10.2 %. C. krusei accounted for 27 of the 56 fluconazole-resistant isolates. The overall voriconazole resistance was 2.5 % and was due mainly to C. glabrata and C. tropicalis isolates. Fluconazole resistance rates for the three categories of infection were similar to the overall value; voriconazole resistance rates differed: 4 % for BSI, 3.2 % for DEEP and 1.4 % for SUP. The antifungal activity of MXP-4509 was superior to voriconazole against C. glabrata and many fluconazole-resistant isolates. There was a large percentage of non-albicans Candida isolates. A large part of the high fluconazole resistance was not acquired but intrinsic, resulting from the high percentage of C. krusei.

  5. Urinary tract infections and Candida albicans.

    PubMed

    Behzadi, Payam; Behzadi, Elham; Ranjbar, Reza

    2015-01-01

    Urinary tract candidiasis is known as the most frequent nosocomial fungal infection worldwide. Candida albicans is the most common cause of nosocomial fungal urinary tract infections; however, a rapid change in the distribution of Candida species is undergoing. Simultaneously, the increase of urinary tract candidiasis has led to the appearance of antifungal resistant Candida species. In this review, we have an in depth look into Candida albicans uropathogenesis and distribution of the three most frequent Candida species contributing to urinary tract candidiasis in different countries around the world. For writing this review, Google Scholar -a scholarly search engine- (http://scholar.google.com/) and PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) were used. The most recently published original articles and reviews of literature relating to the first three Candida species causing urinary tract infections in different countries and the pathogenicity of Candida albicans were selected and studied. Although some studies show rapid changes in the uropathogenesis of Candida species causing urinary tract infections in some countries, Candida albicans is still the most important cause of candidal urinary tract infections. Despite the ranking of Candida albicans as the dominant species for urinary tract candidiasis, specific changes have occurred in some countries. At this time, it is important to continue the surveillance related to Candida species causing urinary tract infections to prevent, control and treat urinary tract candidiasis in future.

  6. Effects of antifungal agents alone and in combination against Candida glabrata strains susceptible or resistant to fluconazole.

    PubMed

    Alves, Izabel Almeida; Bandeira, Laíssa Arévalo; Mario, Débora Alves Nunes; Denardi, Laura Bedin; Neves, Louise Vignoles; Santurio, Janio Morais; Alves, Sydney Hartz

    2012-09-01

    The rise of Candida spp. resistant to classic triazole antifungal agents has led to a search for new therapeutic options. Here, we evaluated combinations of antifungals in a checkerboard assay against two groups of Candida glabrata strains: one containing fluconazole-susceptible clinical isolates (FS) and another containing fluconazole-resistant laboratory derivative (FR). The most synergistic combination observed was amphotericin B + flucytosine (synergistic for 61.77 % of FS strains and 76.47 % of FR strains). The most antagonistic combination observed was ketoconazole + flucytosine (FS 61.77 % and FR 55.88 %). Surprisingly, most combinations evidenced indifferent interactions, and the best synergism appeared when amphotericin B and flucytosine were combined against both groups of isolates.

  7. Boric Acid and Commercial Organoboron Products as Inhibitors of Drug-Resistant Candida albicans.

    PubMed

    Larsen, Bryan; Petrovic, Marija; De Seta, Francesco

    2018-04-01

    Clinical use of boric acid as a topical antifungal in women who have failed standard antifungal therapy with azole drugs has been used sporadically for decades. Our previous in vitro work showing inhibition of Candida albicans growth was conducted on clinical isolates without antifungal drug susceptibility profiling. Here, we report that boric acid restricts growth of drug-resistant Candida albicans and inhibits hyphal growth and diminishes cell volume. The availability of over-the-counter organoboron compounds intended for use as oral nutritional supplements led us to determine if these also were inhibitory toward resistant Candida and show here that they also possess antifungal activity. Candida glabrata was also found to be inhibited by boric acid and organoboron compounds. Further development of organoboron compounds as topical therapeutics is of potential value.

  8. Does Long-Term Itraconazole Prophylaxis Result in In Vitro Azole Resistance in Mucosal Candida albicans Isolates from Persons with Advanced Human Immunodeficiency Virus Infection?

    PubMed Central

    Goldman, Mitchell; Cloud, Gretchen A.; Smedema, Melinda; LeMonte, Ann; Connolly, Patricia; McKinsey, David S.; Kauffman, Carol A.; Moskovitz, Bruce; Wheat, L. Joseph

    2000-01-01

    The effects of prolonged itraconazole exposure on the susceptibility of Candida albicans isolates to itraconazole and fluconazole have not been well characterized. A recent placebo-controlled study of long-term itraconazole antifungal prophylaxis in persons with advanced human immunodeficiency virus infection afforded the opportunity to address this question. Mucosal Candida sp. isolates were obtained from subjects who developed oropharyngeal or esophageal candidiasis, and in vitro susceptibilities of the last isolate obtained at removal from the study as a prophylaxis failure were compared in itraconazole and placebo recipients. More subjects in the placebo group (74 of 146 [51%]) than in the itraconazole group (51 of 149 [34%]) developed mucosal candidiasis (P = 0.004). A total of 112 isolates were recovered from 56 of the 74 (76%) subjects with mucosal candidiasis assigned to the placebo group, compared to 97 isolates from 45 of the 51 (88%) subjects in the itraconazole group. C. albicans accounted for 98% of isolates in the placebo group and 89% of isolates in the itraconazole group. The itraconazole MIC at which 50% of the isolates tested were inhibited (MIC50) for last-episode isolates from the itraconazole group was 0.125 μg/ml compared to 0.015 μg/ml for the placebo group subjects, P = 0.0001. The MIC50 of fluconazole for the last isolates from the itraconazole group was 1.5 μg/ml compared to 0.5 μg/ml for the placebo subjects (P = 0.005). A lower proportion of isolates recovered from subjects on itraconazole therapy were classified as susceptible to itraconazole (63%) compared to isolates from the placebo group (96%) (P = 0.001). Similarly, a lower proportion of C. albicans isolates from subjects on itraconazole therapy were susceptible to fluconazole (78%) compared to isolates from the placebo group (96%) (P = 0.01). Also, the proportion of isolates that were not fully susceptible to itraconazole or fluconazole was greater in patients assigned to the

  9. Phenotypic Characterization and Antifungal Susceptibility Pattern to Fluconazole in Candida species Isolated from Vulvovaginal Candidiasis in a Tertiary Care Hospital

    PubMed Central

    Poongothai, G.K; Sinazer, Annie Rofeena; Kannaiyan, Kavitha; Gurumurthy, Hemalatha; Jaget, Nirmala; Kuthalaramalingam, Sethumadhavan

    2014-01-01

    Background: Vaginal candidiasis is a common gynecological finding among women worldwide. This study was carried out to determine the prevalence of vulvovaginal candidiasis (VVC) along with speciation of Candida with special reference to its antifungal susceptibility pattern to fluconazole and also to evaluate the risk factors responsible for VVC in patients attending our tertiary care hospital in Puducherry, India. Materials and Methods: This study was carried out in the tertiary care hospital in Puducherry during the period of August 2010 to September 2012.The study group consisted of 180 women between the age group of 15 to 56 years with the complaints of excessive vaginal discharge, pruritis and pain. Materials used for this study consisted of high vaginal swabs from patients with relevant history, attending Obstetrics & Gynecology department. High vaginal swabs were subjected to direct 10% KOH wet mount microscopy, Gram stain, culture onto Sabouraud’s dextrose agar (SDA) & 5% sheep blood agar and susceptibility testing to fluconazole was performed using E-test. Results: Candida was isolated in 40 (22.2 %) women & these consisted of C. albicans 26 (65%), C. glabrata 9 (22.5%), C.tropicalis 3 (7.5%) & C. parapsilosis 2 (5%). Susceptibility test carried out on the 40 isolates revealed that 35 (87.5%) Candida isolates were sensitive to fluconazole, 3 (7.5%) were moderately sensitive and 2 (2.5%) were resistant. Thirty one percent patients had itching as the presenting complaints followed by vaginal discharge (29.4%). Conclusion: The high frequency with which C. albicans was recovered in our study and its susceptibility to fluconazole supports the continued use of azole agents for empirical therapy of uncomplicated candidal vulvovaginitis in the community. PMID:24995172

  10. Comparison of species-level identification and antifungal susceptibility results from diagnostic and reference laboratories for bloodstream Candida surveillance isolates, South Africa, 2009-2010.

    PubMed

    Naicker, Serisha D; Govender, Nevashan; Patel, Jaymati; Zietsman, Inge L; Wadula, Jeannette; Coovadia, Yacoob; Kularatne, Ranmini; Seetharam, Sharona; Govender, Nelesh P

    2016-11-01

    From February 2009 through August 2010, we compared species-level identification of bloodstream Candida isolates and susceptibility to fluconazole, voriconazole, and caspofungin between diagnostic and reference South African laboratories during national surveillance for candidemia. Diagnostic laboratories identified isolates to genus/species level and performed antifungal susceptibility testing, as indicated. At a reference laboratory, viable Candida isolates were identified to species-level using automated systems, biochemical tests, or DNA sequencing; broth dilution susceptibility testing was performed. Categorical agreement (CA) was calculated for susceptibility results of isolates with concordant species identification. Overall, 2172 incident cases were detected, 773 (36%) by surveillance audit. The Vitek 2 YST system (bioMérieux Inc, Marcy l'Etoile, France) was used for identification (360/863, 42%) and susceptibility testing (198/473, 42%) of a large proportion of isolates. For the five most common species (n = 1181), species-level identification was identical in the majority of cases (Candida albicans: 98% (507/517); Candida parapsilosis: 92% (450/488); Candida glabrata: 89% (89/100); Candida tropicalis: 91% (49/54), and Candida krusei: 86% (19/22)). However, diagnostic laboratories were significantly less likely to correctly identify Candida species other than C. albicans versus C. albicans (607/664, 91% vs. 507/517, 98%; P < .001). Susceptibility data were compared for isolates belonging to the five most common species and fluconazole, voriconazole, and caspofungin in 860, 580, and 99 cases, respectively. Diagnostic laboratories significantly under-reported fluconazole resistance in C. parapsilosis (225/393, 57% vs. 239/393, 61%; P < .001) but over-reported fluconazole non-susceptibility in C. albicans (36/362, 10% vs. 3/362, 0.8%; P < .001). Diagnostic laboratories were less likely to correctly identify Candida species other than C. albicans, under

  11. Transformation of Candida albicans with a synthetic hygromycin B resistance gene.

    PubMed

    Basso, Luiz R; Bartiss, Ann; Mao, Yuxin; Gast, Charles E; Coelho, Paulo S R; Snyder, Michael; Wong, Brian

    2010-12-01

    Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2-containing plasmids or single-copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT-1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild-type C. albicans. We used PCR to fuse CaHygB or SAT-1 to approximately 1 kb of 5' and 3' noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild-type C. albicans strains. Homologous targeting frequencies were approximately 50-70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?

    PubMed

    Bona, E; Cantamessa, S; Pavan, M; Novello, G; Massa, N; Rocchetti, A; Berta, G; Gamalero, E

    2016-12-01

    Candida albicans is an important opportunistic pathogen, responsible for the majority of yeast infections in humans. Essential oils, extracted from aromatic plants, are well-known antimicrobial agents, characterized by a broad spectrum of activities, including antifungal properties. The aim of this work was to assess the sensitivity of 30 different vaginal isolated strains of C. albicans to 12 essential oils, compared to the three main used drugs (clotrimazole, fluconazole and itraconazole). Thirty strains of C. albicans were isolated from vaginal swab on CHROMagar ™ Candida. The agar disc diffusion method was employed to determine the sensitivity to the essential oils. The antifungal activity of the essential oils and antifungal drugs (clotrimazole, itraconazole and fluconazole) were investigated using a microdilution method. Transmission and scanning electron microscopy analyses were performed to get a deep inside on cellular damages. Mint, basil, lavender, tea tree oil, winter savory and oregano essential oils inhibited both the growth and the activity of C. albicans more efficiently than clotrimazole. Damages induced by essential oils at the cellular level were stronger than those caused by clotrimazole. Candida albicans is more sensitive to different essential oils compared to the main used drugs. Moreover, the essential oil affected mainly the cell wall and the membranes of the yeast. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis. © 2016 The Society for Applied Microbiology.

  13. Mediator Tail Module Is Required for Tac1-Activated CDR1 Expression and Azole Resistance in Candida albicans.

    PubMed

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1 , are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention. Copyright © 2017 American Society for Microbiology.

  14. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans.

    PubMed

    Sun, L-M; Liao, K; Liang, S; Yu, P-H; Wang, D-Y

    2015-04-01

    The goal of this study was to investigate the synergic effects between magnolol and azoles, and the potential antifungal mechanisms. Microdilution checkerboard, time-kill and agar diffusion assay were employed to evaluate the synergic effects between magnolol and fluconazole (FLC). Magnolol significantly decreased the efflux of rhodamine 123 (Rh123), leading to greater intracellular accumulation of Rh123 in Candida albicans cells. Compared to the Candida drug resistance (cdr) 2 or multidrug resistance (mdr) 1 deletion mutant, the growth of cdr1 strain was most sensitive to magnolol exposure. In the presence of magnolol, MDR1 overexpressing cells were sensitive to FLC, whereas CDR1 and CDR2 overexpressing cells displayed tolerance to FLC. Magnolol treatment correlated with up-regulation of transporter and ergosterol biosynthesis pathway genes, analyzed by real-time reverse transcription-polymerase chain reaction. The ergosterol content of C. albicansSC5314 was significantly decreased after magnolol exposure. Magnolol synergizes with azoles for targeting of C. albicans by inducing a higher intracellular content of antifungals, by tapping into the competitive effect of ABC transporter Cdr1p substrates, and enhancing the effect by targeting of the ergosterol biosynthesis pathway. Our results provide the first evidence that magnolol may function as a Cdr1p substrate and as an inhibitor of ergosterol biosynthesis. This function can thus be exploited in combination with azoles to reverse multidrug resistance of C. albicans strains. © 2014 The Society for Applied Microbiology.

  15. The efficacy of gaseous ozone against different forms of Candida albicans

    PubMed Central

    Zargaran, M; Fatahinia, M; Zarei Mahmoudabadi, A

    2017-01-01

    Background and Purpose: Ozone is an inorganic molecule with effective antimicrobial properties. Clinical treatment of ozonated water was used for the elimination of Candida albicans, Enterococcus faecalis, endotoxins, and biofilms from root canals. In addition, its therapeutic effects for tinea pedis, ulcers, and leishmaniasis were investigated. The purpose of the present study was to evaluate the fungicidal effects of ozone on different forms of C. albicans. In addition, antifungal susceptibility profile of strains was assessed before and after exposure to ozone. Materials and Methods: Fifty strains of C. albicans were exposed to gaseous ozone at different times. Furthermore, biofilm formation and germ tube production were evaluated when yeast suspensions were exposed to ozone. In addition, antifungal susceptibility of ozone resistant colonies was investiagted as compared to controls. Results: Ozone was highly effective in killing C. albicans in yeast form and inhibition of germ tube formation during 210 and 180 s, respectively. Although with increasing exposure time biofilm production was considerably decreased, resistance to ozone was much higher among vaginal and nail isolates even after 60 min. All the strains were sensitive to fluconazole, caspofungin, and terbinafine pre- and post-ozone exposure. Resistance to amphotericin B was significantly enhanced after exposure to ozone. Conclusion: Although ozone was highly effective on the yeast form of C. albicans and it can inhibit the formation of germ tubes in C. albicans, the complete removal of biofilms did not happen even after 60 min. It seems that ozone therapy induces resistance to amphotericin B. PMID:29354778

  16. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species

    PubMed Central

    Whibley, Natasha; Gaffen, Sarah L.

    2015-01-01

    The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on C. albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions. PMID:26276374

  17. Non Candida albicans fungal peritonitis in continuous ambulatory peritoneal dialysis patients.

    PubMed

    Kleinpeter, M A; Butt, A A

    2001-01-01

    We report four episodes of non Candida albicans peritonitis (NCAP) in 3 patients on continuous ambulatory peritoneal dialysis (CAPD). Risk factors for NCAP included diabetes mellitus and prior antibiotic use in half of the cases. The antibiotic treatment was prescribed for exit-site infection (ESI) or peritonitis in the patient. Treatment for NCAP included antifungal therapy with oral fluconazole or intravenous amphotericin B. The NCAP resulted in catheter loss in 100% of the patients over time. Initial catheter salvage in one patient was followed 6 months later by catheter loss following treatment of a bacterial peritonitis that was complicated by the development of Candida (Torulopsis) glabrata peritonitis unresponsive to treatment with intravenous amphotericin B. Although the literature suggests that Candida peritonitis responds to oral fluconazole with and without catheter removal, this series suggests that the treatment of NCAP includes removal of the peritoneal dialysis catheter with appropriate antifungal agents.

  18. Evaluation of the antifungal effect of EDTA, a metal chelator agent, on Candida albicans biofilm.

    PubMed

    Casalinuovo, I A; Sorge, R; Bonelli, G; Di Francesco, P

    2017-03-01

    Candida albicans biofilm is frequently found on artificial surfaces and the infections related to biofilm are difficult to eliminate, as they require the removal of artificial devices and treatment with antifungal drugs. Nowadays, fungal growth in biofilms is difficult to eradicate with conventional antifungal drugs such as fluconazole. Among chelating agents, disodium salt-Ethylene Diamine Tetraacetic Acid (EDTA) is known to have antifungal activity. In this study, we examined the in vitro activity of the EDTA and the antifungal drug fluconazole against C. albicans mature biofilm. C. albicans ATCC 20191, fluconazole-susceptible strain, was grown at an inoculum starter of 1 x 106 cells/ml for 72 h in 24-well microtiter plates and was further treated for 24 h with EDTA and/or fluconazole. Antifungal activities in biofilms were expressed as reduction in optical density (OD) determined by a 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay and compared to untreated biofilms. Colorimetric readings revealed that EDTA alone (at 25 and 2.5 mM) significantly reduced fungal metabolic activity in preformed biofilms. Also, EDTA combined with fluconazole significantly reduced the growth of biofilm when compared to biofilm treated with fluconazole alone (at 25 and 2.5 µg/ml). Our data suggest that the employment of EDTA or other chemicals destabilizers of the biofilm matrix, in combination with antifungal drugs, could lead to the development of new strategies for the management of infections associated to Candida biofilm. Another relevant result of our study suggests that the initial cell concentration, probably through mechanisms of quorum sensing, affects the cellular viability during the process of biofilm formation.

  19. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals.

    PubMed

    Vipulanandan, G; Herrera, M; Wiederhold, N P; Li, X; Mintz, J; Wickes, B L; Kadosh, D

    2018-01-01

    Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.

  20. In Vitro Activities of Terbinafine against Cutaneous Isolates of Candida albicans and Other Pathogenic Yeasts

    PubMed Central

    Ryder, Neil S.; Wagner, Sonja; Leitner, Ingrid

    1998-01-01

    Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined. PMID:9593126

  1. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms.

    PubMed

    De Cremer, Kaat; Lanckacker, Ellen; Cools, Tanne L; Bax, Marijke; De Brucker, Katrijn; Cos, Paul; Cammue, Bruno P A; Thevissen, Karin

    2015-01-01

    Mucosal biofilm-related fungal infections are very common, and the incidence of recurrent oral and vulvovaginal candidiasis is significant. As resistance to azoles (the preferred treatment) is occurring, we aimed at identifying compounds that increase the activity of miconazole against Candida albicans biofilms. We screened 1,600 compounds of a drug-repositioning library in combination with a subinhibitory concentration of miconazole. Synergy between the best identified potentiators and miconazole was characterized by checkerboard analyses and fractional inhibitory concentration indices. Hexachlorophene, pyrvinium pamoate, and artesunate act synergistically with miconazole in affecting C. albicans biofilms. Synergy was most pronounced for artesunate and structural homologues thereof. No synergistic effect could be observed between artesunate and fluconazole, caspofungin, or amphotericin B. Our data reveal enhancement of the antibiofilm activity of miconazole by artesunate, pointing to potential combination therapy consisting of miconazole and artesunate to treat C. albicans biofilm-related infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Anti-Candida activity of fluoxetine alone and combined with fluconazole: a synergistic action against fluconazole-resistant strains.

    PubMed

    Oliveira, Ana S; Gaspar, Carlos A; Palmeira-de-Oliveira, Rita; Martinez-de-Oliveira, José; Palmeira-de-Oliveira, Ana

    2014-07-01

    The purpose of this work was to determine the antimicrobial activity of fluoxetine, alone and combined with fluconazole, against 29 Candida strains isolated from patients with vulvovaginal candidiasis. MIC and minimum lethal concentration values ranged from 9.8 to 625 μg/ml for all strains tested. The combination of fluconazole with fluoxetine resulted in synergistic activity against six Candida strains, with fractional inhibitory index (FIX) values between 0.15 and 0.31. An indifferent effect was found for the remaining strains, with FIX values between 0.63 and 1. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Candida albicans gastrointestinal colonization and invasion in the mouse: effect of antibacterial dosing, antifungal therapy and immunosuppression.

    PubMed

    Kinsman, O S; Pitblado, K

    1989-12-01

    Infant mice infected with Candida albicans by the oral-intragastric route became colonized in the gut and were persistently colonized into adulthood. Faecal levels of Candida were correlated with total gastrointestinal Candida and provided a useful means of detecting yeast overgrowth or elimination. Antibacterial agents promoting Candida overgrowth when given by the oral or parenteral route included ceftriaxone, augmentin and cefoperazone. Ceftizoxime had less effect. Ceftazidime and latamoxef produced raised levels only by the oral route. Gentamicin, vancomycin and metronidazole did not affect the Candida levels. Dosing with some antibacterials promoted an increase in gastrointestinal Candida and invasion to a greater extent than immunosuppression. Antifungal therapy to reduce gastrointestinal colonization was investigated using amphotericin B, nystatin, ketoconazole, intraconazole and fluconazole. Fluconazole was most effective at reducing faecal Candida.

  4. The patterns of colonization and antifungal susceptibility of Candida, isolated from preterm neonates in Khorramabad, South West of Iran.

    PubMed

    Kooshki, P; Rezaei-Matehkolaei, A; Mahmoudabadi, A Z

    2018-06-01

    Usually, 7-20% of preterm neonates colonized by Candida species present invasive candidiasis. Candida albicans, and several non-albicans species cause invasive infection with C. albicans being the most dominant agent. In the last two decades, infection due to non-albicans have been increased dramatically due to their low sensitivity to antifungal drugs such as fluconazole. The aim of present study was to evaluate Candida colonization pattern and antifungal susceptibility among preterm neonates from Khorramabad, South west of Iran. Samples were collected from 80 preterm neonates, cultured on CHROMagar Candida and incubated at 37°C. All recovered isolates were primarily screened based on classical methods and identified by PCR-RFLP targeting the ITS-rDNA regions. Antifungal susceptibility testing of all isolates was performed according to the CLSI method against amphotericin B, caspofungin, itraconazole, fluconazole and voriconazole. Totally 23 isolates of Candida species were recovered from 20 patients (female: male, 50:50) including, C. albicans (18), C. parapsilosis (2) and C. glabrata (1). Furthermore, the blood cultures from two patients were yielded C. albicans and C. parapsilosis so that patient with C. albicans died after five days. Generally, in this study, 9 (39.1%) isolates were resistant to amphotericin B including; 7 (30.4%) C. albicans and 2 (8.7%) C. parapsilosis. In addition, 2 (8.7%) and 4 (17.4%) isolates were also resistant to itraconazole and caspofungin, respectively. In conclusion, Candida colonization among preterm neonates is still an important issue in hospitals. In addition, in spite of a significant amphotericin B resistant Candida, voriconazole, fluconazole, and itraconazole are valuable antifungals, due to fully sensitivity to Candida. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi.

    PubMed

    Mansfield, Bryce E; Oltean, Hanna N; Oliver, Brian G; Hoot, Samantha J; Leyde, Sarah E; Hedstrom, Lizbeth; White, Theodore C

    2010-09-30

    Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a K(m) of 0.64 μM and V(max) of 0.0056 pmol/min/10⁸ cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.

  6. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, new imidazoles with potent activity against Candida albicans and dermatophytes. Synthesis, structure-activity relationship, and molecular modeling studies.

    PubMed

    La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano

    2008-07-10

    New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC

  7. Synergistic Effect of the Flavonoid Catechin, Quercetin, or Epigallocatechin Gallate with Fluconazole Induces Apoptosis in Candida tropicalis Resistant to Fluconazole

    PubMed Central

    da Silva, Cecília Rocha; de Andrade Neto, João Batista; de Sousa Campos, Rosana; Figueiredo, Narjara Silvestre; Sampaio, Letícia Serpa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Gaspar, Danielle Macêdo; de Andrade, Geanne Matos; Lima, Iri Sandro Pampolha; de Barros Viana, Glauce Socorro; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa

    2014-01-01

    Flavonoids are a class of phenolic compounds commonly found in fruits, vegetables, grains, flowers, tea, and wine. They differ in their chemical structures and characteristics. Such compounds show various biological functions and have antioxidant, antimicrobial, anti-inflammatory, and antiapoptotic properties. The aim of this study was to evaluate the in vitro interactions of flavonoids with fluconazole against Candida tropicalis strains resistant to fluconazole, investigating the mechanism of synergism. Three combinations formed by the flavonoids (+)-catechin hydrated, hydrated quercetin, and (−)-epigallocatechin gallate at a fixed concentration with fluconazole were tested. Flavonoids alone had no antifungal activity within the concentration range tested, but when they were used as a cotreatment with fluconazole, there was significant synergistic activity. From this result, we set out to evaluate the possible mechanisms of cell death involved in this synergism. Isolated flavonoids did not induce morphological changes or changes in membrane integrity in the strains tested, but when they were used as a cotreatment with fluconazole, these changes were quite significant. When evaluating mitochondrial damage and the production of reactive oxygen species (ROS) only in the cotreatment, changes were observed. Flavonoids combined with fluconazole were shown to cause a significant increase in the rate of damage and the frequency of DNA damage in the tested strains. The cotreatment also induced an increase in the externalization of phosphatidylserine, an important marker of early apoptosis. It is concluded that flavonoids, when combined with fluconazole, show activity against strains of C. tropicalis resistant to fluconazole, promoting apoptosis by exposure of phosphatidylserine in the plasma membrane and morphological changes, mitochondrial depolarization, intracellular accumulation of ROS, condensation, and DNA fragmentation. PMID:24366745

  8. Antifungal Susceptibilities of Candida Species Causing Vulvovaginitis and Epidemiology of Recurrent Cases

    PubMed Central

    Richter, Sandra S.; Galask, Rudolph P.; Messer, Shawn A.; Hollis, Richard J.; Diekema, Daniel J.; Pfaller, Michael A.

    2005-01-01

    There are limited data regarding the antifungal susceptibility of yeast causing vulvovaginal candidiasis, since cultures are rarely performed. Susceptibility testing was performed on vaginal yeast isolates collected from January 1998 to March 2001 from 429 patients with suspected vulvovaginal candidiasis. The charts of 84 patients with multiple positive cultures were reviewed. The 593 yeast isolates were Candida albicans (n = 420), Candida glabrata (n = 112), Candida parapsilosis (n = 30), Candida krusei (n = 12), Saccharomyces cerevisiae ( n = 9), Candida tropicalis (n = 8), Candida lusitaniae (n = 1), and Trichosporon sp. (n = 1). Multiple species suggesting mixed infection were isolated from 27 cultures. Resistance to fluconazole and flucytosine was observed infrequently (3.7% and 3.0%); 16.2% of isolates were resistant to itraconazole (MIC ≥ 1 μg/ml). The four imidazoles (econazole, clotrimazole, miconazole, and ketoconazole) were active: 94.3 to 98.5% were susceptible at ≤1 μg/ml. Among different species, elevated fluconazole MICs (≥16 μg/ml) were only observed in C. glabrata (15.2% resistant [R], 51.8% susceptible-dose dependent [S-DD]), C. parapsilosis (3.3% S-DD), S. cerevisiae (11.1% S-DD), and C. krusei (50% S-DD, 41.7% R, considered intrinsically fluconazole resistant). Resistance to itraconazole was observed among C. glabrata (74.1%), C. krusei (58.3%), S. cerevisiae (55.6%), and C. parapsilosis (3.4%). Among 84 patients with recurrent episodes, non-albicans species were more common (42% versus 20%). A ≥4-fold rise in fluconazole MIC was observed in only one patient with C. parapsilosis. These results support the use of azoles for empirical therapy of uncomplicated candidal vulvovaginitis. Recurrent episodes are more often caused by non-albicans species, for which azole agents are less likely to be effective. PMID:15872235

  9. Frequent detection of ‘azole’ resistant Candida species among late presenting AIDS patients in northwest Ethiopia

    PubMed Central

    2013-01-01

    Background The chronic use of antifungal agents in the treatment of fungal infection in general and oropharyngeal candidiasis mainly in AIDS patient’s leads to the selection of strain resistant to these therapies and a shift in the spectrum of Candida species. This study determines the species diversity and in vitro susceptibility of Candida isolates from late presenting AIDS patients in northwest Ethiopia. Methods Two hundred and twenty one HIV/AIDS patients were assessed with a standardized evaluation form at enrolment. Oral rinses were cultured on CHROMagar plates at 37°C for 48 hours and Candida species identification were made following standard microbiological techniques. In vitro drug susceptibility tests were made using broth microdilution method. Results The colonization rate of Candida species was found to be 82.3% (177/215). C. albicans was the predominant species isolated from 139 (81%) patients but there was a diversity of other species. C. glabrata was the most frequent non-albicans species isolated in 22.5% (40/177) of the patients followed by C. tropicalis 14.1% (27/177), C. krusei 5.6% (10) and other unidentifiable Candida species 4% (7/177). Recurrent episodes of oropharyngeal candidiasis and previous exposure to antifungal drugs were found to be predisposing factors for colonization by non-albicans species. Irrespective of the Candida species identified 12.2% (11/90), 7.7% (7/90) and 4.7% (4) of the isolates were resistant to fluconazole, ketoconazole and itraconazole, respectively. In contrast, resistance to micafungin, amphotericin B and 5-Fluorocytosine was infrequent. Conclusion HIV/AIDS patients are orally colonized by single or multiple albicans and non- albicans Candida species that are frequently resistant to azoles and occasionally to amphotericin B, 5-Fluorocytosine and micafungin. These highlight the need for national surveillance for examining Candida epidemiology and resistance to antifungal drugs. PMID:23398783

  10. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans.

    PubMed

    Khan, Mohd Sajjad Ahmad; Ahmad, Iqbal

    2012-03-27

    Oils of Cymbopogon citratus and Syzygium aromaticum have been used in traditional medicine to treat fungal infections of skin, mouth, urinary and vaginal tract in Asian countries particularly India and other developing countries. To evaluate essential oils of Cymbopogon citratus and Syzygium aromaticum for their anti-biofilm activity against strong biofilm forming strains of Candida albicans. XTT reduction assay, Time kill assays, light microscopy and scanning electron microscopy (SEM) were employed to determine the effect of test oils on the Candida albicans biofilms. Most of the Candida albicans strains tested displayed formation of moderate to strong biofilms. Preformed Candida biofilms showed ≥1024 times increased resistance to antifungal drugs, 2 times to Syzygium aromaticum, but no increased tolerance for Cymbopogon citratus. Test oils were more active against preformed biofilms compared to amphotericin B and fluconazole. At 0.5× MIC, Cymbopogon citratus followed by Syzygium aromaticum were most inhibitory against biofilm formation. Light and electron microscopic studies revealed the deformity of three dimensional structures of biofilms formed in the presence of sub-MICs of Cymbopogon citratus. The cell membranes appeared to be the target site of compounds in sessile cells as displayed by SEM observations. Our data had demonstrated promising in vitro anti-biofilm activity by Cymbopogon citratus and Syzygium aromaticum and confirm the ethnopharmacological use of these oils in muco-cutaneous Candida infections. Furthermore, it suggests exploitation of these oils as new anti-biofilm products to deal with the problem of drug-resistance and recurrent infection associated with biofilm mode of growth of Candida spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis

    PubMed Central

    Hargrove, Tatiana Y.; Friggeri, Laura; Wawrzak, Zdzislaw; Qi, Aidong; Hoekstra, William J.; Schotzinger, Robert J.; York, John D.; Guengerich, F. Peter; Lepesheva, Galina I.

    2017-01-01

    With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as Candida albicans has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of C. albicans CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: (R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1H-tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of C. albicans CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against Candida krusei and Candida glabrata, pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals. PMID:28258218

  12. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region.

    PubMed

    Wang, He; Xu, Ying-Chun; Hsueh, Po-Ren

    2016-10-01

    In the Asia-Pacific region, Candida albicans is the predominant Candida species causing invasive candidiasis/candidemia in Australia, Japan, Korea, Hong Kong, Malaysia, Singapore and Thailand whereas C. tropicalis is the most frequently encountered Candida species in Pakistan and India. Invasive isolates of C. albicans, C. parapsilosis complex and C. tropicalis remain highly susceptible to fluconazole (>90% susceptible). Fluconazole resistance (6.8-15%), isolates with the non-wild-type phenotype for itraconazole susceptibility (3.9-10%) and voriconazole (5-17.8%), and echinocandin resistance (2.1-2.2% in anidulafungin and 2.2% in micafungin) among invasive C. glabrata complex isolates are increasing in prevalence. Moreover, not all isolates of C. tropicalis have been shown to be susceptible to fluconazole (nonsusceptible rate, 5.7-11.6% in China) or voriconazole (nonsusceptible rate, 5.7-9.6% in China).

  13. Evaluation of Candida species and antifungal susceptibilities among children with invasive candidiasis

    PubMed Central

    Sütçü, Murat; Acar, Manolya; Genç, Gonca Erköse; Kökçü, İlknur; Aktürk, Hacer; Atay, Gürkan; Törun, Selda Hançerli; Salman, Nuran; Erturan, Zayre; Somer, Ayper

    2017-01-01

    Aim Non-albicans Candida species and resistant microorganisms have been more commonly isolated in invasive candidiasis in recent years. The aim of this study was to evaluate the distrubution of Candida spp and antifungal resistance in our clinic. Material and Methods Fifty-four Candida isolates and antifungal susceptibility results obtained from patients diagnosed as having invasive candidiasis between December 2012 and June 2016 were included. Clinical and laboratory data were retrospectively analyzed. E-test method was used in order to determine antifungal susceptibilities of Candida spp for amphotericin B, fluconazole, voriconazole, ketoconazole, itraconazole, anidulafungin, caspofungin, and flucytosine. Results The clinical diagnoses of the patients were candidemia (n=27, 50%), catheter-related blood stream infection (n=1, 1.8%), urinary tract infection (n=13, 24%), surgical site infection (n=4, 7.4%), intraabdominal infection (n=3, 5.5%), empyema (n=2, 3.7%), and pneumonia (n=4, 7.4%). The most common isolated agent was C. albicans (n=27, 50%) and the others were C. parapsilosis (n=13, 24%), C. tropicalis (n=6, 11.1%), C. glabrata (n=3, 5.6%), C. lusitaniae (n=2, 3.7%), and unspecified Candida spp. (n=3, 5.6%). Fluconazole resistance was 7.4% among all isolates. Resistance against itraconazole, ketoconazole, anidulafungin, voriconazole and caspofungin were 33.3%, 12.5%, 11.1%, 5%, and 2.5%, respectively. Isolates presented intermediate resistance against itraconazole (41.7%), voriconazole (5.6%), and amphotericin B (3.7%) to varying extents. All of the isolates were susceptible to flucytosine. Conclusions In our clinic, C. albicans and non-albicans Candida species were equally distributed and antifungal susceptibilities against major antifungal agents such as fluconazole, amphotericin B, and caspofungin were found considerably high. PMID:29062248

  14. In vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and the correlation between triazoles susceptibility: Results from a five-year study.

    PubMed

    Lei, J; Xu, J; Wang, T

    2018-06-01

    Candida spp. is a common cause of invasive fungal disease. The aim of this study was to examine the susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and explore the correlation between triazoles susceptibility. The antifungal susceptibility in the present study was measured by ATB Fungus 3 method, and the potential relationship was examined by obtaining the correlation of measured minimal inhibitory concentrations (MICs) of Candida spp. isolates. A total of 2099 clinical isolates of Candida spp. from 1441 patients were analyzed. The organisms included 1435 isolates of Candida albicans, 207 isolates of Candida glabrata, 65 isolates of Candida parapsilosis, 31 isolates of Candida krusei, 268 isolates of Candida tropicalis. Voriconazole and itraconazole were more active than fluconazole and against Candida spp. in vitro. The fluconazole, itraconazole and voriconazole MIC 90 (MIC for 90% of the isolates) for all Candida spp. isolates was 4mg/L, 1mg/L and 0.25mg/L, respectively. There was a moderate correlation between the fluconazole MIC s for Candida spp. isolates and this for voriconazole (R 2 =0.475; P<0.01) and itraconazole (R 2 =0.431; P<0.01). Voriconazole MICs for the Candida spp. isolates also correlated with those for itraconazole (R 2 =0.401; P<0.01). These observations suggest that the in vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole exhibits a moderate correlation. Published by Elsevier Masson SAS.

  15. MALDI-TOF typing highlights geographical and fluconazole resistance clusters in Candida glabrata.

    PubMed

    Dhieb, C; Normand, A C; Al-Yasiri, M; Chaker, E; El Euch, D; Vranckx, K; Hendrickx, M; Sadfi, N; Piarroux, R; Ranque, S

    2015-06-01

    Utilizing matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra for Candida glabrata typing would be a cost-effective and easy-to-use alternative to classical DNA-based typing methods. This study aimed to use MALDI-TOF for the typing of C. glabrata clinical isolates from various geographical origins and test its capacity to differentiate between fluconazole-sensitive and -resistant strains.Both microsatellite length polymorphism (MLP) and MALDI-TOF mass spectra of 58 C. glabrata isolates originating from Marseilles (France) and Tunis (Tunisia) as well as collection strains from diverse geographic origins were analyzed. The same analysis was conducted on a subset of C. glabrata isolates that were either susceptible (MIC ≤ 8 mg/l) or resistant (MIC ≥ 64 mg/l) to fluconazole.According to the seminal results, both MALDI-TOF and MLP classifications could highlight C. glabrata population structures associated with either geographical dispersal barriers (p < 10(-5)) or the selection of antifungal drug resistance traits (<10(-5)).In conclusion, MALDI-TOF geographical clustering was congruent with MPL genotyping and highlighted a significant population genetic structure according to fluconazole susceptibility in C. glabrata. Furthermore, although MALDI-TOF and MLP resulted in distinct classifications, MALDI-TOF also classified the isolates with respect to their fluconazole susceptibility profile. Further prospective studies are required to evaluate the capacity of MALDI-TOF typing to investigate C. glabrata infection outbreaks and predict the antifungal susceptibility profile of clinical laboratory isolates. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis.

    PubMed

    Hargrove, Tatiana Y; Friggeri, Laura; Wawrzak, Zdzislaw; Qi, Aidong; Hoekstra, William J; Schotzinger, Robert J; York, John D; Guengerich, F Peter; Lepesheva, Galina I

    2017-04-21

    With some advances in modern medicine (such as cancer chemotherapy, broad exposure to antibiotics, and immunosuppression), the incidence of opportunistic fungal pathogens such as Candida albicans has increased. Cases of drug resistance among these pathogens have become more frequent, requiring the development of new drugs and a better understanding of the targeted enzymes. Sterol 14α-demethylase (CYP51) is a cytochrome P450 enzyme required for biosynthesis of sterols in eukaryotic cells and is the major target of clinical drugs for managing fungal pathogens, but some of the CYP51 key features important for rational drug design have remained obscure. We report the catalytic properties, ligand-binding profiles, and inhibition of enzymatic activity of C. albicans CYP51 by clinical antifungal drugs that are used systemically (fluconazole, voriconazole, ketoconazole, itraconazole, and posaconazole) and topically (miconazole and clotrimazole) and by a tetrazole-based drug candidate, VT-1161 (oteseconazole: ( R )-2-(2,4-difluorophenyl)-1,1-difluoro-3-(1 H -tetrazol-1-yl)-1-(5-(4-(2,2,2-trifluoroethoxy)phenyl)pyridin-2-yl)propan-2-ol). Among the compounds tested, the first-line drug fluconazole was the weakest inhibitor, whereas posaconazole and VT-1161 were the strongest CYP51 inhibitors. We determined the X-ray structures of C. albicans CYP51 complexes with posaconazole and VT-1161, providing a molecular mechanism for the potencies of these drugs, including the activity of VT-1161 against Candida krusei and Candida glabrata , pathogens that are intrinsically resistant to fluconazole. Our comparative structural analysis outlines phylum-specific CYP51 features that could direct future rational development of more efficient broad-spectrum antifungals. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors.

    PubMed

    Moraes, D C; Curvelo, J A R; Anjos, C A; Moura, K C G; Pinto, M C F R; Portela, M B; Soares, R M A

    2018-03-26

    Candida albicans is the most important fungal pathogen that causes infections in humans, and the search for new therapeutic strategies for its treatment is essential. The aim of this study was to evaluate the activity of seven naphthoquinones (β-lapachone, β-nor-lapachone, bromide-β-lapachone, hydroxy-β-lapachone, α-lapachone, α-nor-lapachone and α-xyloidone) on the growth of a fluconazole-resistant C. albicans oral clinical isolate and the effects of these compounds on the viability of mammalian cells, on yeast's morphogenesis, biofilm formation and cell wall mannoproteins availability. All the compounds were able to completely inhibit the yeast growth. β-lapachone and α-nor-lapachone were the less cytotoxic compounds against L929 and RAW 264.7 cells. At IC 50 , β-lapachone inhibited morphogenesis in 92%, while the treatment of yeast cells with α-nor-lapachone decreased yeast-to-hyphae transition in 42%. At 50μg/ml, β-lapachone inhibited biofilm formation by 84%, whereas α-nor-lapachone reduced biofilm formation by 64%. The treatment of yeast cells with β-lapachone decreased cell wall mannoproteins availability in 28.5%, while α-nor-lapachone was not able to interfere on this virulence factor. Taken together, data show that β-lapachone and α-nor-lapachone exhibited in vitro cytotoxicity against a fluconazole-resistant C. albicans strain, thus demonstrating to be promising candidates to be used in the treatment of infections caused by this fungus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  19. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    PubMed

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p < 0.001) than non-albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Molecular epidemiology of invasive Candida albicans at a tertiary hospital in northern Taiwan from 2003 to 2011.

    PubMed

    Wang, Shao-Hung; Shen, Mandy; Lin, Hsin-Chieh; Sun, Pei-Lun; Lo, Hsiu-Jung; Lu, Jang-Jih

    2015-11-01

    Candida albicans is a common cause of bloodstream fungal infections in hospitalized patients. To investigate its epidemiology, multilocus sequence typing (MLST) was performed on 285 C. albicans bloodstream isolates from patients in Chang Gung Memorial Hospital at Linkou (CGMHL), Taiwan from 2003 to 2011. Among these isolates, the three major diploid sequence types (DSTs) were 693, 659, and 443 with 19, 16, and 13 isolates, respectively. The 179 DSTs were classified into 16 clades by unweighted pair-group method using arithmetic averages (UPGMA). The major ones were clades 1, 4, 3, and 17 (54, 49, 31, and 31 isolates, respectively). Further analyses with eBURST clustered the 285 isolates into 28 clonal complexes (CC). The most common complexes were CC8, CC20, and CC9. DST 693 that had the highest number of isolates was determined to be the cluster founder of CC20, which belonged to clade 3. So far, 33 isolates worldwide including 29 from Taiwan and 4 from Korea, are CC20, suggesting that CC20 is an Asian cluster. Two fluconazole-resistant isolates belonging to CC12 and CC19 were detected. All other CGMHL isolates were susceptible to 5-flucytosine, amphotericin B, anidulfungin, caspofungin, fluconazole, itraconazole, micafungin, posaconazole, and voriconazole. However, CC20 isolates exhibited significantly lower susceptibility to fluconazole. In conclusion, the 285 CGMHL C. albicans isolates displayed geographically clustering with Asian isolates, and most of them are susceptible to common antifungal drugs. Isolates of DST 693, a Taiwanese major genotype belonging to MLST clade 3, were more resistant to fluconazole than other isolates. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Influence of different susceptibility testing methods and media on determination of the relevant fluconazole minimum inhibitory concentrations for heavy trailing Candida isolates with low-high phenotype.

    PubMed

    Alp, Sehnaz; Sancak, Banu; Hascelik, Gulsen; Arikan, Sevtap

    2010-11-01

    We investigated the incidence of trailing growth with fluconazole in 101 clinical Candida isolates (49 C. albicans and 52 C. tropicalis) and tried to establish the convenient susceptibility testing method and medium for fluconazole minimum inhibitory concentration (MIC) determination. MICs were determined by CLSI M27-A2 broth microdilution (BMD) and Etest methods on RPMI-1640 agar supplemented with 2% glucose (RPG) and on Mueller-Hinton agar supplemented with 2% glucose and 0.5 μg ml(-1) methylene blue (GMB). BMD and Etest MICs were read at 24 and 48 h, and susceptibility categories were compared. All isolates were determined as susceptible with BMD, Etest-RPG and Etest-GMB at 24 h. While all isolates were interpreted as susceptible at 48 h on Etest-RPG and Etest-GMB, one C. albicans isolate was interpreted as susceptible-dose dependent (S-DD) and two C. tropicalis isolates were interpreted as resistant with BMD. On Etest-RPG, trailing growth caused widespread microcolonies within the inhibition zone and resulted in confusion in MIC determination. On Etest-GMB, because of the nearly absence of microcolonies within the zone of inhibition, MICs were evaluated more easily. We conclude that, for the determination of fluconazole MICs of trailing Candida isolates, the Etest method has an advantage over BMD and can be used along with this reference method. Moreover, GMB appears more beneficial than RPG for the fluconazole Etest. © 2009 Blackwell Verlag GmbH.

  2. Antifungal susceptibilities of Candida species isolated from urine culture.

    PubMed

    Toka Özer, Türkan; Durmaz, Süleyman; Yula, Erkan

    2016-09-01

    Candida spp. are the most common opportunistic mycosis worldwide. Although Candida albicans is the most common cause of urinary tract infections, the frequency of non-albicans Candida species is increasing with common use of antifungal in the prophylaxis and treatment. This may lead to difficulties in treatment. Antifungal tests should be applied with identification of species for effective treatment. In this study, identification of Candida species isolated from urine culture and investigation of susceptibility of these strains to amphotericin B, flucytosine, fluconazole, voriconazole was aimed. In this study, 58 Candida strains isolated from urine cultures at Osmaniye State Hospital between January 2012 and April 2013 were included. Urine culture and antifungal susceptibility tests were applied. Incidence rate of Candida spp. was determined as C. albicans (56.9%), Candida glabrata (20.6%), Candida tropicalis (10.3%), Candida parapsilosis (7%), Candida krusei (3.4%), Candida kefyr (1.8%). Most of the isolates were susceptible to amphotericin B, flucytosine, fluconazole, voriconazole. Twenty three (39.7%) Candida strains were isolated from internal medical branches and Intensive Care Unit and 12 (20.6%) from the Surgical Medical Branches. C. albicans and C. glabrata species were isolated most frequently as a candiduria factor in this hospital between January 2012 and April 2013. The analysis of antifungal susceptibility profile shows no significant resistance to antifungals. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates.

    PubMed

    Costa Silva, Rose Anny; da Silva, Cecília Rocha; de Andrade Neto, João Batista; da Silva, Anderson Ramos; Campos, Rosana Sousa; Sampaio, Letícia Serpa; do Nascimento, Francisca Bruna Stefany Aires; da Silva Gaspar, Brenda; da Cruz Fonseca, Said Gonçalves; Josino, Maria Aparecida Alexandre; Grangeiro, Thalles Barbosa; Gaspar, Danielle Macedo; de Lucena, David Freitas; de Moraes, Manoel Odorico; Cavalcanti, Bruno Coêlho; Nobre Júnior, Hélio Vitoriano

    2017-06-01

    Recent research has shown broad antifungal activity of the classic antidepressants selective serotonin reuptake inhibitors (SSRIs). This fact, combined with the increased cross-resistance frequency of the genre Candida regarding the main treatment today, fluconazole, requires the development of novel therapeutic strategies. In that context, this study aimed to assess the antifungal potential of fluoxetine, sertraline, and paroxetine against fluconazole-resistant Candida spp. planktonic cells, as well as to assess the mechanism of action and the viability of biofilms treated with fluoxetine. After 24 h, the fluconazole-resistant Candida spp. strains showed minimum inhibitory concentration (MIC) in the ranges of 20-160 μg/mL for fluoxetine, 10-20 μg/mL for sertraline, and 10-100.8 μg/mL for paroxetine by the broth microdilution method (M27-A3). According to our data by flow cytometry, each of the SSRIs cause fungal death after damaging the plasma and mitochondrial membrane, which activates apoptotic signaling pathways and leads to dose-dependant cell viability loss. Regarding biofilm-forming isolates, the fluoxetine reduce mature biofilm of all the species tested. Therefore, it is concluded that SSRIs are capable of inhibit the growth in vitro of Candida spp., both in planktonic form, as biofilm, inducing cellular death by apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Outbreak of candidemia caused by fluconazole resistant Candida parapsilosis strains in an intensive care unit.

    PubMed

    Pinhati, Henrique Marconi Sampaio; Casulari, Luiz Augusto; Souza, Ana Carolina Remondi; Siqueira, Ricardo Andreotti; Damasceno, Camila Maria Gomes; Colombo, Arnaldo Lopes

    2016-08-20

    Candidemia is an increasing problem in tertiary care hospitals worldwide. Here, we report the first outbreak of candidemia caused by fluconazole-resistant C. parapsilosis (FRCP) strains in Brazil. This was a cross-sectional study of clinical and microbiological data of all candidemic episodes diagnosed from July 2011 to February 2012 in a 200-bed tertiary care hospital. Initial yeast identification and susceptibility testing were performed using the VITEK 2 - System. Isolates of Candida spp. resistant to fluconazole were sent to a reference laboratory (LEMI-UNIFESP) for further molecular identification and confirmation of resistance by CLSI microdilution test. A multivariate analysis was conducted to identify factors associated with FRCP infection. We identified a total of 40 critically ill patients with candidemia (15 women) with a median age of 70 years. The incidence of candidemia was 6 cases/1,000 patients admissions, including 28 cases (70 %) of infection with C. parapsilosis, 21 of which (75 %) were resistant to fluconazole. In only 19 % of FRCP candidemia cases had fluconazole been used previously. The results of our study indicated that diabetes is a risk factor for FRCP candidemia (p = 0.002). Overall, mortality from candidemia was 45 %, and mortality from episodes of FRCP infections was 42.9 %. The clustering of incident cases in the ICU and molecular typing of strains suggest horizontal transmission of FRCP. Accurate vigilant monitoring for new nosocomial strains of FRCP is required.

  5. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains.

    PubMed

    Essid, Rym; Hammami, Majdi; Gharbi, Dorra; Karkouch, Ines; Hamouda, Thouraya Ben; Elkahoui, Salem; Limam, Ferid; Tabbene, Olfa

    2017-09-01

    The present study aimed to investigate the anti-Candida activity of ten essential oils (EOs) and to evaluate their potential synergism with conventional drugs. The effect on secreted aspartic protease (SAP) activity and the mechanism of action were also explored. The antifungal properties of essential oils were investigated using standard micro-broth dilution assay. Only Cinnamomum verum, Thymus capitatus, Syzygium aromaticum, and Pelargonium graveolens exhibited a broad spectrum of activity against a variety of pathogenic Candida strains. Chemical composition of active essential oils was performed by gas chromatography-mass spectrometry (GC-MS). Synergistic effect was observed with the combinations C. verum/fluconazole and P. graveolens/fluconazole, with FIC value 0.37. Investigation of the mechanism of action revealed that C. verum EO reduced the quantity of ergosterol to 83%. A total inhibition was observed for the combination C. verum/fluconazole. However, P. graveolens EO may disturb the permeability barrier of the fungal cell wall. An increase of MIC values of P. graveolens EO and the combination with fluconazole was observed with osmoprotectants (sorbitol and PEG6000). Furthermore, the combination with fluconazole may affect ergosterol biosynthesis and disturb fatty acid homeostasis in C. albicans cells as the quantity of ergosterol and oleic acid was reduced to 52.33 and 72%, respectively. The combination of P. graveolens and C. verum EOs with fluconazole inhibited 78.31 and 64.72% SAP activity, respectively. To our knowledge, this is the first report underlying the mechanism of action and the inhibitory effect of SAP activity of essential oils in synergy with fluconazole. Naturally occurring phytochemicals C. verum and P. graveolens could be effective candidate to enhance the efficacy of fluconazole-based therapy of C. albicans infections.

  6. Characterization of a novel antibiofilm effect of nitric oxide-releasing aspirin (NCX-4040) on Candida albicans isolates from denture stomatitis patients

    PubMed Central

    Madariaga-Venegas, Francisco; Fernández-Soto, Roberto; Duarte, Luisa Fernanda; Suarez, Nicole; Delgadillo, Daniela; Jara, José A.; Fernández-Ramires, Ricardo; Urzúa, Blanca; Molina-Berríos, Alfredo

    2017-01-01

    Candida albicans biofilms play a key role in denture stomatitis, one of the most common oral pathologies in elderly people. Because biofilms are highly resistant to antifungals, new pharmacological strategies are needed. Aspirin and nitric oxide-donor molecules have both shown antibiofilm effects on C. albicans, making them promising candidates for treatment. In this study, we evaluated the antifungal/antibiofilm effect of a nitric-oxide releasing aspirin (NO-ASA) on C. albicans isolates from denture stomatitis patients in vitro. Disk diffusion assays showed that while NO-ASA had no antifungal effect, the drug potentiated fluconazole inhibition zone diameters, increasing the effect of fluconazole by 20–30% (p<0.05). The effect of NO-ASA on the morphogenesis of C. albicans was evaluated using light microscopy after inducing hyphae formation. For all clinical strains assayed, 125 μM NO-ASA significantly decreased the number of filamentous cells present (p<0.01). Adhesion to abiotic surfaces, a critical event for biofilm formation, was evaluated in 96-well polystyrene plates using crystal violet assay; 125 μM NO-ASA significantly inhibited adhesion. Biofilms were observed with scanning electron microscopy (SEM) and quantified using XTT reduction assay. NO-ASA decreased biofilm formation (IC50 ranging from 300 μM to 700 μM), consistent with SEM findings of altered biofilm microarchitecture. PGE2 and carboxy-PTIO (an NO scavenger) both blocked the antibiofilm effects of NO-ASA, suggesting that the efficacy of NO-ASA may be associated with both inhibition of PGE2 synthesis and release of NO. NO-ASA is a promising novel antibiofilm agent for treating fluconazole-resistant strains of C. albicans. PMID:28493889

  7. Characterization of a novel antibiofilm effect of nitric oxide-releasing aspirin (NCX-4040) on Candida albicans isolates from denture stomatitis patients.

    PubMed

    Madariaga-Venegas, Francisco; Fernández-Soto, Roberto; Duarte, Luisa Fernanda; Suarez, Nicole; Delgadillo, Daniela; Jara, José A; Fernández-Ramires, Ricardo; Urzúa, Blanca; Molina-Berríos, Alfredo

    2017-01-01

    Candida albicans biofilms play a key role in denture stomatitis, one of the most common oral pathologies in elderly people. Because biofilms are highly resistant to antifungals, new pharmacological strategies are needed. Aspirin and nitric oxide-donor molecules have both shown antibiofilm effects on C. albicans, making them promising candidates for treatment. In this study, we evaluated the antifungal/antibiofilm effect of a nitric-oxide releasing aspirin (NO-ASA) on C. albicans isolates from denture stomatitis patients in vitro. Disk diffusion assays showed that while NO-ASA had no antifungal effect, the drug potentiated fluconazole inhibition zone diameters, increasing the effect of fluconazole by 20-30% (p<0.05). The effect of NO-ASA on the morphogenesis of C. albicans was evaluated using light microscopy after inducing hyphae formation. For all clinical strains assayed, 125 μM NO-ASA significantly decreased the number of filamentous cells present (p<0.01). Adhesion to abiotic surfaces, a critical event for biofilm formation, was evaluated in 96-well polystyrene plates using crystal violet assay; 125 μM NO-ASA significantly inhibited adhesion. Biofilms were observed with scanning electron microscopy (SEM) and quantified using XTT reduction assay. NO-ASA decreased biofilm formation (IC50 ranging from 300 μM to 700 μM), consistent with SEM findings of altered biofilm microarchitecture. PGE2 and carboxy-PTIO (an NO scavenger) both blocked the antibiofilm effects of NO-ASA, suggesting that the efficacy of NO-ASA may be associated with both inhibition of PGE2 synthesis and release of NO. NO-ASA is a promising novel antibiofilm agent for treating fluconazole-resistant strains of C. albicans.

  8. Synergistic Activity of Econazole-Nitrate and Chelerythrine against Clinical Isolates of Candida albicans.

    PubMed

    Chen, Zhibao; Li, Xinran; Wu, Xiuping; Wang, Wei; Wang, Wendong; Xin, Mingxun; Shen, Fengge; Liu, Lihui; Liang, Junchao; Li, Lei; Yu, Lu

    2014-01-01

    The aim of this investigation was to assess the in-vitro interaction of two antifungal agents, econazole-nitrate and chelerythrine, against ten fluconazole-resistant clinical isolates and one ATCC type strain 10231 of Candida albicans. The checkerboard microdilution method was performed according to the recommendations of the National Committee for Clinical Laboratory Standards, and the results were determined by visual examination. The interaction intensity was tested in all isolates using the fractional inhibitory concentration index (FICI). These experiments showed synergism between econazole-nitrate and chelerythrine in antifungal activity against C. albicans, and no antagonistic activity was observed in any of the strains tested. Moreover, time-kill curves were performed with selected strains to confirm the positive interactions. The similarity between the results of the FICI values and the time-kill curves revealed that chelerythrine greatly enhances the antifungal effects of econazole-nitrate against isolates of C. albicans. This synergistic effect may markedly reduce the dose of econazole-nitrate required to treat candidiasis, thereby decreasing the econazole-nitrate toxic side effects. This novel synergism might provide a potential combination treatment against fungal infections.

  9. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis

    PubMed Central

    Peters, Brian M.; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M.; Rogers, P. David

    2017-01-01

    ABSTRACT We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro, it does not seem to affect azole susceptibility in vivo. PMID:28348159

  10. In vitro susceptibility of 137 Candida sp. isolates from HIV positive patients to several antifungal drugs.

    PubMed

    Magaldi, S; Mata, S; Hartung, C; Verde, G; Deibis, L; Roldán, Y; Marcano, C

    2001-01-01

    Oropharyngeal candidiasis caused by various species of Candida is one of the most common infections in HIV seropositive or AIDS patients. Drug resistance among these yeasts is an increasing problem. We studied the frequency of resistance profile to fluconazole, itraconazole, ketoconazole, amphotericin B and terbinafine of 137 isolates of Candida sp. From HIV positive or AIDS patients with oropharyngeal candidiasis at Instituto de Inmunología, U.C.V. and the Hospital "Jose Ignacio Baldó", Caracas Venezuela, using the well diffusion susceptibility test (Magaldi et al.). We found that nearly 10% of C. albicans isolates were primarily fluconazole resistant, 45% of C. albicans isolates from patients with previous treatment were resistant to fluconazole, of which 93% showed cross-resistance to itraconazole, and even about 30% of C. tropicalis (n = 13) were resistant to fluconazole and/or itraconazole. To this respect, several recent reports have been described antifungal cross-resistance among azoles. Therefore, we consider that C. tropicalis should be added to the growing list of yeast in which antifungal drug resistance is common. This report could be useful for therapeutic aspect in AIDS patients with oral candidiasis.

  11. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections.

    PubMed

    Alshami, Issam; Alharbi, Ahmed E

    2014-02-01

    To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  12. [Comparison of microdilution and disk diffusion methods for the detection of fluconazole and voriconazole susceptibility against clinical Candida glabrata isolates and determination of changing susceptibility with new CLSI breakpoints].

    PubMed

    Hazırolan, Gülşen; Sarıbaş, Zeynep; Arıkan Akdağlı, Sevtap

    2016-07-01

    Candida albicans is the most frequently isolated species as the causative agent of Candida infections. However, in recent years, the isolation rate of non-albicans Candida species have increased. In many centers, Candida glabrata is one of the commonly isolated non-albicans species of C.glabrata infections which are difficult-to-treat due to decreased susceptibility to fluconazole and cross-resistance to other azoles. The aims of this study were to determine the in vitro susceptibility profiles of clinical C.glabrata isolates against fluconazole and voriconazole by microdilution and disk diffusion methods and to evaluate the results with both the previous (CLSI) and current species-specific CLSI (Clinical and Laboratory Standards Institute) clinical breakpoints. A total of 70 C.glabrata strains isolated from clinical samples were included in the study. The identification of the isolates was performed by morphologic examination on cornmeal Tween 80 agar and assimilation profiles obtained by using ID32C (BioMérieux, France). Broth microdilution and disk diffusion methods were performed according to CLSI M27-A3 and CLSI M44-A2 documents, respectively. The results were evaluated according to CLSI M27-A3 and M44-A2 documents and new vs. species-specific CLSI breakpoints. By using both previous and new CLSI breakpoints, broth microdilution test results showed that voriconazole has greater in vitro activity than fluconazole against C.glabrata isolates. For the two drugs tested, very major error was not observed with disk diffusion method when microdilution method was considered as the reference method. Since "susceptible" category no more exists for fluconazole vs. C.glabrata, the isolates that were interpreted as susceptible by previous breakpoints were evaluated as susceptible-dose dependent by current CLSI breakpoints. Since species-specific breakpoints remain yet undetermined for voriconazole, comparative analysis was not possible for this agent. The results obtained

  13. Effect of Delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection.

    PubMed

    Blumstein, Gideon W; Parsa, Arya; Park, Anthony K; McDowell, Beverly L P; Arroyo-Mendoza, Melissa; Girguis, Marie; Adler-Moore, Jill P; Olson, Jon; Buckley, Nancy E

    2014-01-01

    Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1-4, 8-11 and 15-18. On day 19, mice were infected with 5×10(5) C. albicans. We also determined the effect of chronic Δ9-THC (4-64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×10(4) C. albicans on day 2, followed by a higher challenge with 5×10(5) C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge.

  14. Candida Drug Resistance Protein 1, a Major Multidrug ATP Binding Cassette Transporter of Candida albicans, Translocates Fluorescent Phospholipids in a Reconstituted System†

    PubMed Central

    Shukla, Sudhanshu; Rai, Versha; Saini, Preeti; Banerjee, Dibyendu; Menon, Anant K.; Prasad, Rajendra

    2008-01-01

    Candida albicans drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, contributes to multidrug resistance in Candida-infected immunocompromised patients. Previous cell-based assays suggested that Cdr1p also acts as a phospholipid translocator. To investigate this, we reconstituted purified Cdr1p into sealed membrane vesicles. Comparison of the ATPase activities of sealed and permeabilized proteoliposomes indicated that Cdr1p was asymmetrically reconstituted such that ~70% of the molecules had their ATP binding sites accessible to the extravesicular space. Fluorescent glycerophospholipids were incorporated into the outer leaflet of the proteoliposomes, and their transport into the inner leaflet was tracked with a quenching assay using membrane-impermeant dithionite. We observed ATP-dependent transport of the fluorescent lipids into the inner leaflet of the vesicles. With ~6 molecules of Cdr1p per vesicle on average, the half-time to reach the maximal extent of transport was ~15 min. Transport was reduced in vesicles reconstituted with Cdr1p variants with impaired ATPase activity and could be competed out to different levels by a molar excess of drugs such as fluconazole and miconazole that are known to be effluxed by Cdr1p. Transport was not affected by ampicillin, a compound that is not effluxed by Cdr1p. Our results suggest a direct link between the ability of Cdr1p to translocate fluorescent phospholipids and efflux drugs. We note that only a few members of the ABC superfamily of Candida have a well-defined role as drug exporters; thus, lipid translocation mediated by Cdr1p could reflect its cellular function. PMID:17924650

  15. Plagiochin E, a botanic-derived phenolic compound, reverses fungal resistance to fluconazole relating to the efflux pump.

    PubMed

    Guo, X-L; Leng, P; Yang, Y; Yu, L-G; Lou, H-X

    2008-03-01

    In this study, we investigated the effect of plagiochin E (PLE), a botanic-derived phenolic natural product, on reversal of fungal resistance to fluconazole (FLC) in vitro and the related mechanism. A synergistic action of PLE and FLC was observed in the FLC-resistant Candida albicans strains and was evaluated using the fractional inhibited concentration index. The effect of PLE on FLC intracellular uptake was investigated in FLC-resistant C. albicans cells by liquid chromatography-tandem mass spectrometry, and the effect on efflux drug pump was assessed by measuring the efflux of Rhodamine 123 (Rh123). PLE significantly inhibited the efflux, but not the absorption, of Rh123 in FLC-resistant strains in phosphate-buffered saline with 5% glucose. Overexpression of the multidrug-resistance gene CDR1 in FLC-resistant C. albicans isolates was detected, and the introduction of PLE to the cells showed a significant reduction of the CDR1 expression in those FLC-resistant isolates. These findings indicate that PLE could reverse the fungal resistant to FLC by inhibiting the efflux of FLC from C. albicans, and this effect may be related to the efflux pump. These results indicate that the combination of PLE and FLC may provide an approach for the clinical therapy of fungus infection induced by FLC-resistant strains.

  16. Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance.

    PubMed

    Xiao, Meng; Fan, Xin; Chen, Sharon C-A; Wang, He; Sun, Zi-Yong; Liao, Kang; Chen, Shu-Lan; Yan, Yan; Kang, Mei; Hu, Zhi-Dong; Chu, Yun-Zhuo; Hu, Tie-Shi; Ni, Yu-Xing; Zou, Gui-Ling; Kong, Fanrong; Xu, Ying-Chun

    2015-03-01

    To define the antifungal susceptibility patterns of the most common non-albicans Candida spp. in China. We evaluated the susceptibilities to nine antifungal drugs of Candida parapsilosis species complex, Candida tropicalis, Candida glabrata species complex and Candida krusei isolates from patients with invasive candidiasis at 11 hospitals over 3 years. Isolates were identified by MALDI-TOF MS supplemented by DNA sequencing. MICs were determined by Sensititre YeastOne(TM) using current clinical breakpoints/epidemiological cut-off values to assign susceptibility (or WT), and by CLSI M44-A2 disc diffusion for fluconazole and voriconazole. Of 1072 isolates, 392 (36.6%) were C. parapsilosis species complex. C. tropicalis, C. glabrata species complex and C. krusei comprised 35.4%, 24.3% and 3.7% of the isolates, respectively. Over 99.3% of the isolates were of WT phenotype to amphotericin B and 5-flucytosine. Susceptibility/WT rates to azoles among C. parapsilosis species complex were ≥97.5%. However, 11.6% and 9.5% of C. tropicalis isolates were non-susceptible to fluconazole and voriconazole, respectively (7.1% were resistant to both). Approximately 14.3% of C. glabrata sensu stricto isolates (n = 258) were fluconazole resistant, and 11.6% of C. glabrata sensu stricto isolates were cross-resistant to fluconazole and voriconazole. All C. krusei isolates were susceptible/WT to voriconazole, posaconazole and itraconazole. Overall, 97.7%-100% of isolates were susceptible to caspofungin, micafungin and anidulafungin, but 2.3% of C. glabrata were non-susceptible to anidulafungin. There was no azole/echinocandin co-resistance. Disc diffusion and Sensititre YeastOne(TM) methods showed >95% categorical agreement for fluconazole and voriconazole. In summary, reduced azole susceptibility was seen among C. tropicalis. Resistance to echinocandins was uncommon. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  17. Colonization and antifungals susceptibility patterns of Candida species isolated from hospitalized patients in ICUs and NICUs.

    PubMed

    Zarei Mahmoudabadi, Ali; Rezaei-Matehkolaei, Ali; Navid, Mojgan; Torabizadeh, Mehdi; Mazdarani, Shahnam

    2015-07-01

    Several studies have shown that there are an increasing in invasive candidiasis during 2-3 last decades. Although, Candida albicans is considered as the most common candidiasis agents, other non-albicans such as C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis were raised as infectious agents. Resistance to fluconazole among non-albicans species is an important problem for clinicians during therapy and prophylaxis. The aim of current study was to detect the Candida species from hospitalized neonatal and children in intensive care units (ICUs) and neonatal intensive care units (NICUs). In addition, the susceptibility of isolated agents were also evaluated against three antifungals. In the present study 298 samples including 98 blood samples, 100 urines and 100 swabs from oral cavity were inoculated on CHROMagar Candida. Initial detection was done according to the coloration colonies on CHROMagar Candida . Morphology on cornmeal agar, germ tube formation and growth at 45°C were confirmed isolates. Amphotericin B, fluconazole and terbinafine (Lamisil) were used for the susceptibility tests using microdilution method. In the present study 21% and 34% of urines and swabs from oral cavity were positive for Candida species, respectively. The most common species was C. albicans (62.5%) followed by C. tropicalis (15.6%), C. glabrata (6.3%) and Candida species (15.6%). Our study indicated that the most tested species of Candida, 70.3% were sensitive to fluconazole at the concentration of ≤8 μg/mL. Whereas 9 (14.1%) of isolates were resistant to amphotericine B at ≥8 μg/mL. This study demonstrates the importance of species identification and antifungals susceptibility testing for hospitalized patients in ICUs and NICUs wards.

  18. Epidemiology and antifungal susceptibility of bloodstream Candida isolates in Quebec: Report on 453 cases between 2003 and 2005

    PubMed Central

    St-Germain, Guy; Laverdière, Michel; Pelletier, René; René, Pierre; Bourgault, Anne-Marie; Lemieux, Claude; Libman, Michael

    2008-01-01

    BACKGROUND Between May 2003 and April 2005, a population-based surveillance of Candida bloodstream infections was conducted in Quebec. A total of 453 episodes of candidemia (464 yeast isolates) from 54 participating hospitals were studied. RESULTS The annual incidence rate was three per 100,000 population. Global hospital mortality was 38%. The most common predisposing factors were the presence of an intravascular catheter (80%), use of antibacterial therapy (67%), stay in an intensive care unit (49%), use of parenteral nutrition (32%) and intra-abdominal surgery (31%). Fluconazole alone or in association with other antifungals was used for treatment in over 80% of cases. Candida albicans comprised 62% of isolates, followed by Candida glabrata (17%), Candida parapsilosis (9%), Candida tropicalis (5%), Candida lusitaniae (3%) and Candida krusei (3%). Of the 288 C albicans isolates, seven (2%) were resistant to flucytosine, one to fluconazole and none to itraconazole or voriconazole. Of the 75 non-C albicans species isolates with reduced susceptibility to fluconazole (minimum inhibitory concentration [MIC] 16 μg/mL or greater), none were susceptible to itraconazole (MIC 0.12 mg/L or lower), whereas 71 (95%) were susceptible to voriconazole (MIC 1 μg/mL or lower). However, only five of 12 (42%) fluconazole-resistant isolates were susceptible to voriconazole. Posaconazole, ravuconazole and caspofungin displayed a broad spectrum of activity against these isolates, with MICs of 1 mg/L or lower in 56%, 92% and 100% of isolates, respectively. Overall, a correlation (r2>0.87) was observed among increasing fluconazole MICs and the geometric mean MICs of itraconazole, voriconazole, posaconazole and ravuconazole. CONCLUSIONS These surveillance results when compared with those of the 1993 to 1995 survey confirm little variation in the distribution of species causing invasive Candida infection over a 10-year period in Quebec, as well as the continuous excellent overall in

  19. [Prevalence of Candida albican serotypes in blood isolates in Chile, and first report of Candida dubliniensis candidemia].

    PubMed

    Silva, Víctor; Cabrera, Macarena; Díaz, María Cristina; Abarca, Claudia; Hermosilla, Germán

    2003-06-01

    Our main goal was to determine the prevalence of C. albicans serotypes isolates from blood cultures and identify the presence of C. dubliniensis. We studied 47 strains identified as C. albicans by conventional methods, 28 were isolated from children and 19 from adult patients. The strains were re-identified by standard methods and phenotypic screening as xylose assimilation and growth at 42 degrees C. API ID 32C (bioMérieux) was employed with the C. dubliniensis suspected strains and confirmation was made by molecular fingerprinting using random amplified polymorphic DNA (RAPD). The C. albicans serotype was determined by agglutination with antiserum anti-antigen 6 from cell wall (Candida Check, Iatron Inc., Japan) and the in vitro susceptibilities were evaluated by a microdilution method. From 47 strains, 46 were confirmed as C. albicans, 31 of them (67%) were serotype A. Adult patients presented a high prevalence of serotype A (95%) and children presented a frequency of 52% of the serotype B (p<0.05). We confirmed the identification of C. dubliniensis in one strain isolated from an infant. All serotype B strains were susceptible to fluconazole, itraconazole and amphotericin B. On the other hand, 3% and 6% of serotype A strains were "susceptible dose dependent" to fluconazole and itraconazole, respectively. C. albicans serotype A was predominant in adult candidemia and its distribution was homogenous in children patients. All strains were highly susceptible to antifungals. We report here the first case of C. dubliniensis candidemia in South America.

  20. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran.

    PubMed

    Sharifynia, Somayeh; Falahati, Mehraban; Akhlaghi, Lame; Foroumadi, Alireza; Fateh, Roohollah

    2017-01-01

    Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Candida species were isolated from eighty suspected patients (61.79%). The most common pathogen was Candida albicans (63.75%). Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis.

  1. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran

    PubMed Central

    Sharifynia, Somayeh; Falahati, Mehraban; Akhlaghi, Lame; Foroumadi, Alireza; Fateh, Roohollah

    2017-01-01

    Background: Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Materials and Methods: Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Results: Candida species were isolated from eighty suspected patients (61.79%). The most common pathogen was Candida albicans (63.75%). Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. Conclusion: The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis. PMID:29387119

  2. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species.

    PubMed

    Taveira, Gabriel B; Carvalho, André O; Rodrigues, Rosana; Trindade, Fernanda G; Da Cunha, Maura; Gomes, Valdirene M

    2016-01-27

    Thionins are a family of plant antimicrobial peptides (AMPs), which participate in plant defense system against pathogens. Here we describe some aspects of the CaThi thionin-like action mechanism, previously isolated from Capsicum annuum fruits. Thionin-like peptide was submitted to antimicrobial activity assays against Candida species for IC50 determination and synergism with fluconazole evaluation. Viability and plasma membrane permeabilization assays, induction of intracellular ROS production analysis and CaThi localization in yeast cells were also investigated. CaThi had strong antimicrobial activity against six tested pathogenic Candida species, with IC50 ranging from 10 to 40 μg.mL(-1). CaThi antimicrobial activity on Candida species was candidacidal. Moreover, CaThi caused plasma membrane permeabilization in all yeasts tested and induces oxidative stresses only in Candida tropicalis. CaThi was intracellularly localized in C. albicans and C. tropicalis, however localized in nuclei in C. tropicalis, suggesting a possible nuclear target. CaThi performed synergistically with fluconazole inhibiting all tested yeasts, reaching 100% inhibition in C. parapsilosis. The inhibiting concentrations for the synergic pair ranged from 1.3 to 4.0 times below CaThi IC50 and from zero to 2.0 times below fluconazole IC50. The results reported herein may ultimately contribute to future efforts aiming to employ this plant-derived AMP as a new therapeutic substance against yeasts.

  3. Eradication of C. albicans and T. rubrum with photoactivated indocyanine green, Citrus aurantifolia essential oil and fluconazole.

    PubMed

    Fekrazad, Reza; Poorsattar Bejeh Mir, Arash; Ghasemi Barghi, Vadood; Shams-Ghahfarokhi, Masoomeh

    2015-06-01

    We aimed to evaluate the efficacy of alternative therapies rather than the current antifungal conventional therapy and with assessing the hypothesis of photoactivation of citrus essential oil, fluconazole and Indocyanine green to treat two common mucocutaneous fungal infections. Suspensions of Candida albicans and Tricophyton rubrum containing 10(6)cells/ml was prepared. Equal samples were treated with infrared (IR) laser irradiation (810 nm, 55 J/cm(2)) in the presence of Indocyanine green (Emundo, 1 mg/ml) (IRLE), photoactivated Citrus aurantifolia essential oil (EO) with sequential exposure to natural and tungsten lights (CE), control non-activated essential oil (CC), laser alone (IRL), indocyanine green alone (E) and neither of treatments as the control group (C). Additional fluconazole (FL, 25.6 μg/ml) and IR activated fluconazole (IRLFL) groups were designed for T. rubrum fungi. Inoculums were serially diluted to 10(-2) and 10(-4) and streaked on Sabouraud dextrose agar plates. Final outcomes were assessed as the percent of reduction. Cell reduction rates (%) in C. albicans groups were 99.99 (CE), 91.67 (IRLE), 86.67 (CC), 72.37 (E) and 67.27 (RL). Whereas, a 99.99 (CE), 89.99 (CC), 74.5 (IRLE), 64.5 (E), 38.5 (IRLF), 37.5 (RL), and 31 (FL) percent eradication was achieved in T. rubrum groups. Photoactivation of Citrus EO increased the killing capability by 10-13%. A modest 7.5% augmented effect was observed with IR activation of Fluconazole. Both Citrus EO and photothermal-photodynamic therapy with ICG and IR diode laser exhibited remarkable lethal effect on fungal cells. Candida viable cells are more susceptible to laser only and ICG only treatments than Tricophyton cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In vitro inhibitory activities of magnolol against Candida spp.

    PubMed

    Zhou, Peiru; Fu, Jingya; Hua, Hong; Liu, Xiaosong

    2017-01-01

    Candida spp. cause various infections involving the skin, mucosa, deep tissues, and even life-threatening candidemia. They are regarded as an important pathogen of nosocomial bloodstream infection, with a high mortality rate. As a result of prolonged exposure to azoles, the therapeutic failure associated with azoles resistance has become a serious challenge in clinical situations. Therefore, novel, alternative antifungals are required urgently. In the present study, the CLSI M-27A broth microdilution method and the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay were used to evaluate the antifungal effects of magnolol against various standard Candida strains in planktonic mode and biofilm formation, respectively. The antifungal activity of magnolol was demonstrated in planktonic C. albicans and non-albicans Candida species, especially fluconazole-resistant Candida krusei , with the minimum inhibitory concentrations ranging from 10 to 40 μg/mL. The BMIC 90 (minimum concentration with 90% Candida biofilm inhibited) values of magnolol ranged from 20 to 160 μg/mL, whereas the BMIC 90 values of fluconazole were more than 128 μg/mL. As an alternative and broad-spectrum antifungal agent, magnolol might be of benefit to the treatment of refractory Candida infection.

  5. [Pulsatilla decoction inhibits vulvovaginal Candida albicans proliferation and reduces inflammatory cytokine levels in vulvovaginal candidiasis mice].

    PubMed

    Xia, Dan; Zhang, Mengxiang; Shi, Gaoxiang; Xu, Zhiqing; Wu, Daqiang; Shao, Jing; Wang, Tianming; Wang, Changzhong

    2016-02-01

    To explore the possible regulatory effect of Pulsatilla decoction on Th17 cells and inflammatory cytokines of vulvovaginal candidiasis (VVC) mice. Seventy-two female Kunming mice were randomly assigned into six groups: a blank control group, a VVC model group, a fluconazole group and three Pulsatilla decoction groups (dose levels: 22.5, 15.0 and 7.5 g/kg, respectively). The VVC mouse models were established by vaginal inoculation with Candida albicans (C. albicans) in female mice in pseudoestrus state caused by estradiol injection. After 7-day treatment on VVC mice, the vaginal C. albicans burden was assessed using dilution spread plate method; the vaginal C. albicans morphology was observed by Gram staining method; the levels of interleukin 6 (IL-6), IL-17, IL-21 and tumor necrosis factor α (TNF-α) in sera were detected by ELISA. The content of the transcription factor retinoid related orphan receptor gamma t (RORγt) in vaginal tissues was detected by immunohistochemistry. The VVC mouse models were successfully developed. After treatment, the vaginal C. albicans burden of the fluconazole group and 22.5 g/kg Pulsatilla decoction group dropped significantly compared with that of the VVC model group. Gram staining showed that the VVC mice had lots of C. albicans hyphae in vaginal discharge, that 7.5 g/kg Pulsatilla decoction group remained the mycelia-phase C. albicans, and that 15.0 g/kg Pulsatilla decoction group had the majority of yeast-phase C. albicans and a few of mycelia-phase, while no hyphae and only very few of yeast-phase C. albicans were observed in 22.5 g/kg Pulsatilla decoction group and fluconazole group. After 7-day treatment, compared with the model group, the levels of IL-6, IL- 17, IL-21 and TNF-α in the sera of the fluconazole group, 15.0 and 22.5 g/kg Pulsatilla decoction groups were reduced significantly and the levels of RORγt in the vaginal tissues of the fluconazole group, 15.0 and 22.5 g/kg Pulsatilla decoction groups also decreased

  6. An Azole-Tolerant Endosomal Trafficking Mutant of Candida albicans Is Susceptible to Azole Treatment in a Mouse Model of Vaginal Candidiasis.

    PubMed

    Peters, Brian M; Luna-Tapia, Arturo; Tournu, Hélène; Rybak, Jeffrey M; Rogers, P David; Palmer, Glen E

    2017-06-01

    We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21 Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro , it does not seem to affect azole susceptibility in vivo . Copyright © 2017 American Society for Microbiology.

  7. Multicenter Comparative Evaluation of Six Commercial Systems and the National Committee for Clinical Laboratory Standards M27-A Broth Microdilution Method for Fluconazole Susceptibility Testing of Candida Species

    PubMed Central

    Morace, G.; Amato, G.; Bistoni, F.; Fadda, G.; Marone, P.; Montagna, M. T.; Oliveri, S.; Polonelli, L.; Rigoli, R.; Mancuso, I.; La Face, S.; Masucci, L.; Romano, L.; Napoli, C.; Tatò, D.; Buscema, M. G.; Belli, C. M. C.; Piccirillo, M. M.; Conti, S.; Covan, S.; Fanti, F.; Cavanna, C.; D'Alò, F.; Pitzurra, L.

    2002-01-01

    Fluconazole susceptibility among 800 clinical Candida isolates (60% C. albicans) and two control strains (C. krusei ATCC 6258 and C. parapsilosis ATCC 22019) was tested with the NCCLS M27-A method (gold standard) and six commercial products (Candifast, disk, Etest, Fungitest, Integral System Yeasts, and Sensititre YeastOne). Results were classified as susceptible, susceptible-dose dependent, or resistant using M27-A breakpoints or, for Fungitest, Integral System Yeasts, and Candifast, as susceptible, intermediate, or resistant, according to the manufacturers' instructions. Concordance with NCCLS M27-A results was analyzed with the χ2 test. Intra- and interlaboratory reproducibility was also evaluated. NCCLS M27-A (90.1%), Etest (93.1%), Sensititre YeastOne (93.1%), disk (96.7%), Fungitest (92.6%), Integral System Yeasts (40.6%), and Candifast (6.0%) classified the indicated percentages of C. albicans isolates as susceptible. Among non-C. albicans strains, the percentages of susceptible isolates were as follows: NCCLS M27-A, 74.0%; Etest, 83.8%; Sensititre YeastOne, 64.1%; disk, 60.6%; Fungitest, 76.6%; Integral System Yeasts, 28.3%; and Candifast, 27.4%. All methods except Candifast and Integral System Yeasts showed good agreement with NCCLS M27-A results for both C albicans and non-C. albicans isolates. Intralaboratory reproducibility was excellent for NCCLS M27-A, Etest, Sensititre YeastOne, disk, and Fungitest (88 to 91%). Similar results emerged from the interlaboratory reproducibility evaluation. Our findings indicate that some commercial methods can be useful for fluconazole susceptibility testing of clinical Candida isolates. Those characterized by a lack of medium standardization and/or objective interpretative criteria should be avoided. Particular caution is necessary when testing is being done for clinical and epidemiological purposes. PMID:12149358

  8. Species Distribution and In Vitro Antifungal Susceptibility of Vulvovaginal Candida Isolates in China

    PubMed Central

    Wang, Feng-Juan; Zhang, Dai; Liu, Zhao-Hui; Wu, Wen-Xiang; Bai, Hui-Hui; Dong, Han-Yu

    2016-01-01

    Background: Vulvovaginal candidiasis (VVC) was a common infection associated with lifelong harassment of woman's social and sexual life. The purpose of this study was to describe the species distribution and in vitro antifungal susceptibility of Candida species (Candida spp.) isolated from patients with VVC over 8 years. Methods: Species which isolated from patients with VVC in Peking University First Hospital were identified using chromogenic culture media. Susceptibility to common antifungal agents was determined using agar diffusion method based on CLSI M44-A2 document. SPSS software (version 14.0, Inc., Chicago, IL, USA) was used for statistical analysis, involving statistical description and Chi-square test. Results: The most common strains were Candida (C.) albicans, 80.5% (n = 1775) followed by C. glabrata, 18.1% (n = 400). Nystatin exhibited excellent activity against all species (<4% resistant [R]). Resistance to azole drugs varied among different species. C. albicans: clotrimazole (3.1% R) < fluconazole (16.6% R) < itraconazole (51.5% R) < miconazole (54.0% R); C. glabrata: miconazole (25.6% R) < clotrimazole (50.5% R) < itraconazole (61.9% R) < fluconazole (73.3% R); Candida krusei: clotrimazole (0 R) < fluconazole (57.7% R) < miconazole (73.1% R) < itraconazole (83.3% R). The susceptibility of fluconazole was noticeably decreasing among all species in the study period. Conclusions: Nystatin was the optimal choice for the treatment of VVC at present. The species distribution and in vitro antifungal susceptibility of Candida spp. isolated from patients with VVC had changed over time. PMID:27174323

  9. Comparison of the Vitek 2 yeast susceptibility system with CLSI microdilution for antifungal susceptibility testing of fluconazole and voriconazole against Candida spp., using new clinical breakpoints and epidemiological cutoff values.

    PubMed

    Pfaller, Michael A; Diekema, Daniel J; Procop, Gary W; Rinaldi, Michael G

    2013-09-01

    A commercially available, fully automated yeast susceptibility test system (Vitek 2; bioMérieux, Marcy d'Etoile, France) was compared in 3 different laboratories with the Clinical and Laboratory Standards Institute (CLSI) reference microdilution (BMD) method by testing 2 quality control strains, 10 reproducibility strains, and 425 isolates of Candida spp. against fluconazole and voriconazole. Reference CLSI BMD MIC endpoints and Vitek 2 MIC endpoints were read after 24 hours and 9.1-27.1 hours incubation, respectively. Excellent essential agreement (within 2 dilutions) between the reference and Vitek 2 MICs was observed for fluconazole (97.9%) and voriconazole (96.7%). Categorical agreement (CA) between the 2 methods was assessed using the new species-specific clinical breakpoints (CBPs): susceptible (S) ≤2 μg/mL, susceptible dose-dependent (SDD) 4 μg/mL, and resistant (R) ≥8 μg/mL for fluconazole and Candida albicans, Candida tropicalis, and Candida parapsilosis and ≤32 μg/mL (SDD), ≥64 μg/mL (R) for Candida glabrata; S ≤0.12 μg/mL, SDD 0.25-0.5 μg/mL, R ≥1 μg/mL for voriconazole and C. albicans, C. tropicalis, and C. parapsilosis, and ≤0.5 μg/mL (S), 1 μg/mL (SDD), ≥2 μg/mL (R) for Candida krusei. The epidemiological cutoff value (ECV) of 0.5 μg/mL for voriconazole and C. glabrata was used to differentiate wild-type (WT; MIC ≤ ECV) from non-WT (MIC > ECV) strains of this species. Due to the lack of CBPs for the less common species, the ECVs for fluconazole and voriconazole, respectively, were used for Candida lusitaniae (2 μg/mL and 0.03 μg/mL), Candida dubliniensis (0.5 μg/mL and 0.03 μg/mL), Candida guilliermondii (8 μg/mL and 0.25 μg/mL), and Candida pelliculosa (4 μg/mL and 0.25 μg/mL) to categorize isolates of these species as WT and non-WT. CA between the 2 methods was 96.8% for fluconazole and 96.5% for voriconazole with less than 1% very major errors and 1.3-3.0% major errors. The Vitek 2 yeast susceptibility system

  10. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    PubMed

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in

  11. Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence.

    PubMed

    McManus, Brenda A; McGovern, Eleanor; Moran, Gary P; Healy, Claire M; Nunn, June; Fleming, Pádraig; Costigan, Colm; Sullivan, Derek J; Coleman, David C

    2011-05-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy.

  12. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia.

    PubMed

    Couzigou, Célia; Gabriel, Frédéric; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Noël, Thierry; Accoceberry, Isabelle

    2014-07-01

    We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast.

  13. Dosage-Dependent Antifungal Efficacy of V-Echinocandin (LY303366) against Experimental Fluconazole-Resistant Oropharyngeal and Esophageal Candidiasis

    PubMed Central

    Petraitis, Vidmantas; Petraitiene, Ruta; Groll, Andreas H.; Sein, Tin; Schaufele, Robert L.; Lyman, Caron A.; Francesconi, Andrea; Bacher, John; Piscitelli, Stephen C.; Walsh, Thomas J.

    2001-01-01

    V-echinocandin (VER-002; LY303366) is a semisynthetic derivative of echinocandin B and a potent inhibitor of fungal (1, 3)-β-d-glucan synthase. We studied the antifungal efficacy, the concentrations in saliva and tissue, and the safety of VER-002 at escalating dosages against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant Candida albicans in immunocompromised rabbits. Study groups consisted of untreated controls, animals treated with VER-002 at 1, 2.5, and 5 mg/kg of body weight/day intravenously (i.v.), animals treated with fluconazole at 2 mg/kg/day i.v., or animals treated with amphotericin B at 0.3 mg/kg/day. VER-002-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, esophagus, stomach, and duodenum in comparison to that for untreated controls. VER-002 also was superior to amphotericin B and fluconazole in clearing the organism from all sites studied. These in vivo findings are consistent with the results of in vitro time-kill assays, which demonstrated that VER-002 has concentration-dependent fungicidal activity. Esophageal tissue VER-002 concentrations were dosage proportional and exceeded the MIC at all dosages. Echinocandin concentrations in saliva were greater than or equal to the MICs at all dosages. There was no elevation of serum hepatic transaminase, alkaline phosphatase, bilirubin, potassium, or creatinine levels in VER-002-treated rabbits. In summary, the echinocandin VER-002 was well tolerated, penetrated the esophagus and salivary glands, and demonstrated dosage-dependent antifungal activity against fluconazole-resistant esophageal candidiasis in immunocompromised rabbits. PMID:11158743

  14. Colonization and antifungals susceptibility patterns of Candida species isolated from hospitalized patients in ICUs and NICUs

    PubMed Central

    Zarei Mahmoudabadi, Ali; Rezaei-Matehkolaei, Ali; Navid, Mojgan; Torabizadeh, Mehdi; Mazdarani, Shahnam

    2015-01-01

    Background: Several studies have shown that there are an increasing in invasive candidiasis during 2-3 last decades. Although, Candida albicans is considered as the most common candidiasis agents, other non-albicans such as C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis were raised as infectious agents. Resistance to fluconazole among non-albicans species is an important problem for clinicians during therapy and prophylaxis. Objectives: The aim of current study was to detect the Candida species from hospitalized neonatal and children in intensive care units (ICUs) and neonatal intensive care units (NICUs). In addition, the susceptibility of isolated agents were also evaluated against three antifungals. Materials and Methods: In the present study 298 samples including 98 blood samples, 100 urines and 100 swabs from oral cavity were inoculated on CHROMagar Candida. Initial detection was done according to the coloration colonies on CHROMagar Candida . Morphology on cornmeal agar, germ tube formation and growth at 45°C were confirmed isolates. Amphotericin B, fluconazole and terbinafine (Lamisil) were used for the susceptibility tests using microdilution method. Results: In the present study 21% and 34% of urines and swabs from oral cavity were positive for Candida species, respectively. The most common species was C. albicans (62.5%) followed by C. tropicalis (15.6%), C. glabrata (6.3%) and Candida species (15.6%). Our study indicated that the most tested species of Candida, 70.3% were sensitive to fluconazole at the concentration of ≤8 μg/mL. Whereas 9 (14.1%) of isolates were resistant to amphotericine B at ≥8 μg/mL. Conclusions: This study demonstrates the importance of species identification and antifungals susceptibility testing for hospitalized patients in ICUs and NICUs wards. PMID:26312235

  15. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance.

    PubMed

    Dib, Leila; Hayek, Peter; Sadek, Helen; Beyrouthy, Berna; Khalaf, Roy A

    2008-06-01

    Candida albicans is a dimorphic pathogenic fungus that causes mucosal and systemic infections. C. albicans pathogenicity is attributed to its ability to exist in different morphologic states and to respond to stress by up regulating several key genes. DDR48 is a stress-associated gene involved in DNA repair and in response to antifungal drug exposure. One allele of DDR48 was knocked out by homologous recombination that inserted a marker cassette in its position. Furthermore, reintroducing DDR48 on a plasmid created a revertant strain. Strains were grown on filamentation inducing and noninducing media, subjected to an oxidative stress challenge, injected into mice to assess virulence, and assayed for antifungal susceptibility by the E-test method. DDR48 was found to be haploid insufficient and possibly essential, since only a heterozygote, but not a homozygous, null mutant was generated. The mutant was filamentation defective on all hyphal media tested including serum and corn meal agar. Discrepancies in drug resistance profiles also were present: compared with the parental strain, DDR48/ddr48 heterozygote strain was susceptible in a dose-dependent manner to itraconazole and fluconazole and susceptible to ketoconazole. The mutant also appeared to be hypersensitive to a potentially lethal hydrogen peroxide challenge. However, no reduction in virulence of the mutant was observed. The present findings provide evidence that DDR48 is essential for filamentation, stress response, and possibly viability of C. albicans, making it a prime target for antifungal drug design.

  16. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    PubMed Central

    Alshami, Issam; Alharbi, Ahmed E

    2014-01-01

    Objective To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. Methods In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent. PMID:25182280

  17. Fluconazole Resistance Associated with Drug Efflux and Increased Transcription of a Drug Transporter Gene, PDH1, in Candida glabrata

    PubMed Central

    Miyazaki, Haruko; Miyazaki, Yoshitsugu; Geber, Antonia; Parkinson, Tanya; Hitchcock, Christopher; Falconer, Derek J.; Ward, Douglas J.; Marsden, Katherine; Bennett, John E.

    1998-01-01

    Sequential Candida glabrata isolates were obtained from the mouth of a patient infected with human immunodeficiency virus type 1 who was receiving high doses of fluconazole for oropharyngeal thrush. Fluconazole-susceptible colonies were replaced by resistant colonies that exhibited both increased fluconazole efflux and increased transcripts of a gene which codes for a protein with 72.5% identity to Pdr5p, an ABC multidrug transporter in Saccharomyces cerevisiae. The deduced protein had a molecular mass of 175 kDa and was composed of two homologous halves, each with six putative transmembrane domains and highly conserved sequences of ATP-binding domains. When the earliest and most azole-susceptible isolate of C. glabrata from this patient was exposed to fluconazole, increased transcripts of the PDR5 homolog appeared, linking azole exposure to regulation of this gene. PMID:9661006

  18. A CTG Clade Candida Yeast Genetically Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in Human-Pathogenic Yeasts.

    PubMed

    Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry

    2018-01-01

    A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.

  19. Microbiological Screening of Irish Patients with Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Reveals Persistence of Candida albicans Strains, Gradual Reduction in Susceptibility to Azoles, and Incidences of Clinical Signs of Oral Candidiasis without Culture Evidence▿†

    PubMed Central

    McManus, Brenda A.; McGovern, Eleanor; Moran, Gary P.; Healy, Claire M.; Nunn, June; Fleming, Pádraig; Costigan, Colm; Sullivan, Derek J.; Coleman, David C.

    2011-01-01

    Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy. PMID:21367996

  20. Recovery of fluconazole sensitive Candida ciferrii in a diabetic chronic obstructive pulmonary disease patient presenting with pneumonia

    PubMed Central

    Saha, Kaushik; Sit, Niranjan Kr.; Maji, Arnab; Jash, Debraj

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) exacerbations admitted in intensive care units (ICUs) occur rarely due to fungal respiratory tract infections, but may occur when associated co-morbidities like diabetes mellitus coexist. Candida ciferrii is a new agent, recently was isolated from lung infections but usually resistant to fluconazole. Here, we report a rare case of pneumonia due to fluconazole sensitive Candida ciferrii in a COPD patient with known diabetes, admitted in our ICU. PMID:24339494

  1. Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species

    PubMed Central

    Cheng, Ming-Fang; Yang, Yun-Liang; Yao, Tzy-Jyun; Lin, Chin-Yu; Liu, Jih-Shin; Tang, Ran-Bin; Yu, Kwok-Woon; Fan, Yu-Hua; Hsieh, Kai-Sheng; Ho, Monto; Lo, Hsiu-Jung

    2005-01-01

    Background Invasive fungal infections, such as candidemia, caused by Candida species have been increasing. Candidemia is not only associated with a high mortality (30% to 40%) but also extends the length of hospital stay and increases the costs of medical care. Sepsis caused by Candida species is clinically indistinguishable from bacterial infections. Although, the clinical presentations of the patients with candidemia caused by Candida albicans and non-albicans Candida species (NAC) are indistinguishable, the susceptibilities to antifungal agents of these species are different. In this study, we attempted to identify the risk factors for candidemia caused by C. albicans and NAC in the hope that this may guide initial empiric therapy. Methods A retrospective chart review was conducted during 1996 to 1999 at the Veterans General Hospital-Taipei. Results There were 130 fatal cases of candidemia, including 68 patients with C. albicans and 62 with NAC. Candidemia was the most likely cause of death in 55 of the 130 patients (42.3 %). There was no significant difference in the distribution of Candida species between those died of candidemia and those died of underlying conditions. Patients who had one of the following conditions were more likely to have C. albicans, age ≧ 65 years, immunosuppression accounted to prior use of steroids, leukocytosis, in the intensive care unit (ICU), and intravascular and urinary catheters. Patients who had undergone cancer chemotherapy often appeared less critically ill and were more likely to have NAC. Conclusion Clinical and epidemiological differences in the risk factors between candidemia caused by C. albicans and NAC may provide helpful clues to initiate empiric therapy for patients infected with C. albicans versus NAC. PMID:15813977

  2. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia

    PubMed Central

    Couzigou, Célia; Gabriel, Frédéric; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Noël, Thierry; Accoceberry, Isabelle

    2014-01-01

    We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast. PMID:24936404

  3. Biofilm-forming capacity of blood-borne Candida albicans strains and effects of antifungal agents.

    PubMed

    Turan, Hanni; Demirbilek, Müge

    Infections related to Candida albicans biofilms and subsequent antifungal resistance have become more common with the increased use of indwelling medical devices. Regimens for preventing fungal biofilm formation are needed, particularly in high-risk patients. In this study, we investigated the biofilm formation rate of multiple strains of Candida albicans (n=162 clinical isolates), their antifungal susceptibility patterns, and the efficacy of certain antifungals for preventing biofilm formation. Biofilm formation was graded using a modified Christensen's 96-well plate method. We further analyzed 30 randomly chosen intense biofilm-forming isolates using the XTT method. Minimum biofilm inhibition concentrations (MBIC) of caspofungin, micafungin, anidulafungin, fluconazole, voriconazole, posaconazole, itraconazole, and amphotericin B were determined using the modified Calgary biofilm method. In addition, the inhibitory effects of antifungal agents on biofilm formation were investigated. Our study showed weak, moderate, and extensive biofilm formation in 29% (n=47), 38% (n=61), and 23% (n=37) of the isolates, respectively. We found that echinocandins had the lowest MBIC values and that itraconazole inhibited biofilm formation in more isolates (26/32; 81.3%) than other tested agents. In conclusion, echinocandins were most effective against formed biofilms, while itraconazole was most effective for preventing biofilm formation. Standardized methods are needed for biofilm antifungal sensitivity tests when determining the treatment and prophylaxis of C. albicans infections. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Candidiasis: Prevalence and resistance profiling in a tertiary care hospital of Pakistan.

    PubMed

    Jamil, Bushra; Mukhtar Bokhari, Mohammad Tauseef; Saeed, Azhar; Mukhtar Bokhari, Mohammad Zahid; Hussain, Zakir; Khalid, Tayyaba; Bokhari, Habib; Imran, Mohammad; Abbasi, Shahid Ahmad

    2017-05-01

    To determine Candida colonisation/infection in renal transplant patients and to determine the resistance pattern against antifungal drugs. This prospective, observational study was conducted at Al-Sayyed Hospital, Rawalpindi, Pakistan, from January to October 2014, in collaboration with the Microbiology and Public Health Laboratory's, Islamabad campus..The clinical specimens investigated included respiratory tract secretions, blood, urine, high vaginal swab, skin scrapings, and plastic devices samples. Of the 7,850 samples, 164(2.08%) were positive for Candida. Candida albicans were most prevalent as they were found in 114(69%) samples. Besides, 56(34%) of the positive samples were resistant to one or more antifungal agents. Highest resistance was obtained against fluconazole. We found only 5(3.04%) positive samples of Candida glabrata; of them, 3(60%)were resistant. In case of Candida spp, 27(48%) resistance was observed. In Candida albicans, 23(41%) of the samples were found to be resistant. Most of the Candida isolates was recovered from bronchial alveolar lavage. Although Candida albicans remained the main responsible species for Candida infections, but non-albican Candida species are also emerging.

  5. In Vitro Activity of Miltefosine against Candida albicans under Planktonic and Biofilm Growth Conditions and In Vivo Efficacy in a Murine Model of Oral Candidiasis

    PubMed Central

    Chaturvedi, Ashok K.; Rozental, Sonia

    2015-01-01

    The generation of a new antifungal against Candida albicans biofilms has become a major priority, since biofilm formation by this opportunistic pathogenic fungus is usually associated with an increased resistance to azole antifungal drugs and treatment failures. Miltefosine is an alkyl phospholipid with promising antifungal activity. Here, we report that, when tested under planktonic conditions, miltefosine displays potent in vitro activity against multiple fluconazole-susceptible and -resistant C. albicans clinical isolates, including isolates overexpressing efflux pumps and/or with well-characterized Erg11 mutations. Moreover, miltefosine inhibits C. albicans biofilm formation and displays activity against preformed biofilms. Serial passage experiments confirmed that miltefosine has a reduced potential to elicit resistance, and screening of a library of C. albicans transcription factor mutants provided additional insight into the activity of miltefosine against C. albicans growing under planktonic and biofilm conditions. Finally, we demonstrate the in vivo efficacy of topical treatment with miltefosine in the murine model of oropharyngeal candidiasis. Overall, our results confirm the potential of miltefosine as a promising antifungal drug candidate, in particular for the treatment of azole-resistant and biofilm-associated superficial candidiasis. PMID:26416861

  6. Vaginal nystatin versus oral fluconazole for the treatment for recurrent vulvovaginal candidiasis.

    PubMed

    Fan, Shangrong; Liu, Xiaoping; Wu, Cong; Xu, Lixuan; Li, Jianling

    2015-02-01

    Recurrent vulvovaginal candidiasis (RVVC) is a common condition that can physically and psychologically impact patients. We compared the efficacy and safety of vaginal nystatin suppositories for 14 days each month versus standard oral fluconazole regimens for the treatment for RVVC. Patients (n = 293) were enrolled in the study from April 2010 to September 2013. After the initial therapy, the mycological cure rates were 78.3% (119/152) and 73.8% (104/141) in the nystatin group and fluconazole group, respectively (95% CI, 0.749-2.197, p > 0.05). The mycological cure rates at the end of maintenance therapy were 80.7% (96/119) and 72.7% (72/99) in the two groups, respectively (95% CI, 0.954-3.293, p > 0.05).The mycological cure rates at the end without treatment for 6 months were 81.25% (78/96) and 82.19% (60/73) in the two groups, respectively (95% CI, 0.427-2.066, p > 0.05). The mycological cure rates of RVVC caused by C. albicans were 84.0% (89/106) and 81.8% (99/121) in the two groups, respectively. The mycological cure rates of RVVC caused by C. glabrata were 64.3% (27/42) and 12.5% (2/16) in the two groups, respectively. The initial and 6-month maintenance therapy were successful in five of the nine patients in the nystatin group with RVVC caused by fluconazole-resistant Candida, whereas in the fluconazole group, initial therapy failed in all patients with RVVC caused by fluconazole-resistant Candida (n = 7). We conclude that both fluconazole and nystatin therapies are effective in treating RVVC. Nystatin may also be effective for the treatment for RVVC caused by C. glabrata or fluconazole-resistant Candida.

  7. Intestinal colonization with Candida albicans and mucosal immunity

    PubMed Central

    Bai, Xiao-Dong; Liu, Xian-Hua; Tong, Qing-Ying

    2004-01-01

    AIM: To observe the relationship between intestinal lumen colonization with Candida albicans and mucosal secretory IgA (sIgA). METHODS: A total of 82 specific-pathogen-free mice were divided randomly into control and colonization groups. After Candida albicans were inoculated into specific-pathogen-free mice, the number of Candida albicans adhering to cecum and mucosal membrane was counted. The lymphocyte proliferation in Peyer’s patch and in lamina propria was shown by BrdU incorporation, while mucosal sIgA (surface membrane) isotype switch in Peyer’s patch was investigated. IgA plasma cells in lamina propria were observed by immunohistochemical staining. Specific IgA antibodies to Candida albicans were measured with ELISA. RESULTS: From d 3 to d 14 after Candida albicans gavaging to mice, the number of Candida albicans colonizing in lumen and adhering to mucosal membrane was sharply reduced. Candida albicans translocation to mesenteric lymph nodes occurred at early time points following gavage administration and disappeared at later time points. Meanwhile, the content of specific IgA was increased obviously. Proliferation and differentiation of lymphocytes in lamina propria were also increased. CONCLUSION: Lymphocytes in lamina propria play an important role in intestinal mucosal immunity of specific-pathogen-free mice when they are first inoculated with Candida albicans. The decreasing number of Candida albicans in intestine is related to the increased level of specific IgA antibodies in the intestinal mucus. PMID:15237449

  8. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole.

    PubMed

    Gajbhiye, Monali; Kesharwani, Jayendra; Ingle, Avinash; Gade, Aniket; Rai, Mahendra

    2009-12-01

    Silver nanoparticles (Ag-NPs) are known to have inhibitory and bactericidal effects. Resistance of fungal infections has emerged in recent years and is a major health problem. Here, we report the extracellular biosynthesis of Ag-NPs using a common fungus, Alternaria alternata. Also in this study, these nanoparticles were evaluated for their part in increasing the antifungal activity of fluconazole against Phoma glomerata, Phoma herbarum, Fusarium semitectum, Trichoderma sp., and Candida albicans. The antifungal activity of fluconazole was enhanced against the test fungi in the presence of Ag-NPs. Fluconazole in combination with Ag-NPs showed the maximum inhibition against C. albicans, which was confirmed from the increase in fold area of inhibition, followed by P. glomerata and Trichoderma sp., which showed less increase in the fold area, whereas no significant enhancement of activity was found against P. herbarum and F. semitectum. The antifungal activity of fluconazole was enhanced in presence of silver nanoparticles against the test fungi. Fluconazole in combination with Ag-NPs showed the maximum inhibition against C. albicans, followed by P. glomerata and Trichoderma sp. No significant enhancement of activity was found against P. herbarum and F. semitectum.

  9. Absence of Photoreactivating Enzyme in Candida albicans, Candida stellatoidea, and Candida tropicalis

    PubMed Central

    Miller, Glendon R.; Sarachek, Alvin

    1974-01-01

    In vitro assays demonstrate photoreactivating enzyme activity in extracts of Candida pseudotropicalis but not in extracts of Candida albicans, Candida stellatoidea, or Candida tropicalis. PMID:4604052

  10. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms.

    PubMed

    Cataldi, Valentina; Di Campli, Emanuela; Fazii, Paolo; Traini, Tonino; Cellini, Luigina; Di Giulio, Mara

    2017-08-01

    Candida species are regular commensal in humans, but-especially in immunocompromised patients-they represent opportunistic pathogens giving rise to systemic infection. The aim of the present work was to isolate and characterize for their antifungal profile Candida species from different body sites and to analyze the biofilms produced by C. albicans and C. glabrata isolates. Eighty-one strains of Candida species from 77 patients were identified. Epidemiological study showed that the most isolated species were C. albicans (44), C. glabrata (13) and C. parapsilosis (13) mainly from Hematology, Infectious Diseases, Medicine, Neonatology and Oncology Divisions, the majority of the biological samples were swabs (44) and blood cultures (16). The analysis of the biofilm formation was performed at 24 and 48-hours comparing resistant and susceptible strains of C. albicans to resistant and susceptible strains of C. glabrata. Candida albicans has a greater ability to form biofilm compared to C. glabrata, both in the susceptible and resistant strains reaching maturity after 24 hours with a complex structure composed of blastospores, pseudohyphae, and hyphae embedded in a matrix. On the contrary, C. glabrata biofilm was composed exclusively of blastospores that in the resistant strain, after 24 hours, were organized in a compact multilayer different to the discontinuous structure observed in the susceptible analyzed strains. In conclusion, the increasing of the incidence of Candida species infection together with their emerging drug resistance also related to the biofilm forming capability underline the need to monitor their distribution and susceptibility patterns for improving the surveillance and for a correct management of the infection. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Frequency of Candida albicans in Patients with Funguria.

    PubMed

    Jamil, Sana; Jamil, Naz; Saad, Uzma; Hafiz, Saleem; Siddiqui, Sualleha

    2016-02-01

    To determine the frequency of Candida albicansin patients with funguria. Descriptive cross-sectional study. Department of Microbiology, Sindh Institute of Urology and Transplantation, from July to December 2012. Patients’ urine samples with fungus/Candida were included. Candida albicans was identified by the production of tubular structures (germ tubes) on microscopy as per standard procedure followed by inoculation on Chrom agar (Oxoid) and Corn Meal-Tween 80 agar (Oxoid). The identification of other non-albicans Candidaspecies was also done both microscopically and macroscopically as per standard procedure. Out of the 289 isolates, 204 (70.6%) were male patients and 85 (29.4%) were female patients, with 165 (57.1%) from the out-patients and 124 (42.9%) from the in-patients. Five species of Candidawere found to be prevalent including 87 (30.1%) Candida albicans, 176 (60.9%) Candida tropicalis, 14 (4.8%) Candida parapsilosis, 8 (2.8%) Candida glabrata and 4 (1.4%) Candida lusitaniae. Majority of patients with funguria were aged above 50 years (60.2%). In the present study, 30.1% patients with funguria had Candida albicans. The most frequently isolated species was Candida tropicalis(60.9%), followed by other non-albicansCandida. This study has shown the emergence of non-albicans Candidaas a major cause of candiduria.

  12. In vitro antifungal sensitivity of fluconazole, clotrimazole and nystatin against vaginal candidiasis in females of childbearing age.

    PubMed

    Khan, Fouzia; Baqai, Rakhshanda

    2010-01-01

    Vaginal candidiasis is the most common infection of females. A large variety of antifungal drugs are used for treatment. The objective of this study was isolation and identification of Candida from high vaginal swabs and in vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin against Candida. Two hundred and fifty high vaginal swabs were collected from females reporting at different hospitals of Karachi. Wet mount was performed to observe the budding cells of Candida. Vaginal swabs were cultured on Sabouraud's dextrose agar with added antibiotics. Plates were incubated at room temperature for seven days. Chlamydospores of Candida albicans were identified on corn meal agar. Species of Candida were identified on Biggy agar. In vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin was performed by MIC (Minimum inhibitory concentration), well diffusion method and disc diffusion method. Out of 250 high vaginal swabs, Candida species were isolated in 100 (40%) of cases. Out of 100, C. albican 30 (30%), C. tropicalis 21 (21%), C. parapsillosis 10 (10%), C. parakrusi 8 (8%), C. glabrata 8 (8%), C. krusei 3 (3%) were isolated. In vitro antifungal activity indicated Clotrimazole (MIC 16 and 8 microg/ml) effective against 68 (70%) of Candida SPP, Fluconazole (MIC 64 and 32 microg/ml) effective against 29 (36.2%) and Nystatin disc (100 units) was 51 (63.5%) effective. C. albicans was mainly isolated. Clotrimazole was more effective as compared to Fluconazole and Nystatin. Antifungal susceptibility testing should be determined before therapy to avoid treatment failures.

  13. Psoriasin, a novel anti-Candida albicans adhesin.

    PubMed

    Brauner, Annelie; Alvendal, Cathrin; Chromek, Milan; Stopsack, Konrad H; Ehrström, Sophia; Schröder, Jens M; Bohm-Starke, Nina

    2018-05-07

    Candida albicans belongs to the normal microbial flora on epithelial surfaces of humans. However, under certain, still not fully understood conditions, it can become pathogenic and cause a spectrum of diseases, from local infections to life-threatening septicemia. We investigated a panel of antimicrobial proteins and peptides (AMPs), potentially involved in mucosal immunity against this pathogen. Out of six studied AMPs, psoriasin was most up-regulated during a mucosal infection, an acute episode of recurrent Candida vulvovaginitis, although candidacidal activity has not been demonstrated. We here show that psoriasin binds to β-glucan, a basic component of the C. albicans cell wall, and thereby inhibits adhesion of the pathogen to surfaces and increases IL-8 production by mucosal epithelial cells. In conclusion, we show a novel mechanism of action of psoriasin. By inhibiting C. albicans adhesion and by enhancing cytokine production, psoriasin contributes to the immune response against C. albicans. The antimicrobial peptide psoriasin is highly up-regulated during a local mucosal infection, Candida albicans vulvovaginitis. Psoriasin binds to β-glucan in the Candida albicans cell wall and thereby inhibits adhesion of the pathogen. Binding of psoriasin to Candida albicans induces an immune response by mucosal epithelial cells.

  14. International Surveillance of Bloodstream Infections Due to Candida Species: Frequency of Occurrence and In Vitro Susceptibilities to Fluconazole, Ravuconazole, and Voriconazole of Isolates Collected from 1997 through 1999 in the SENTRY Antimicrobial Surveillance Program

    PubMed Central

    Pfaller, M. A.; Diekema, D. J.; Jones, R. N.; Sader, H. S.; Fluit, A. C.; Hollis, R. J.; Messer, S. A.

    2001-01-01

    A surveillance program (SENTRY) of bloodstream infections (BSI) in the United States, Canada, Latin America, and Europe from 1997 through 1999 detected 1,184 episodes of candidemia in 71 medical centers (32 in the United States, 23 in Europe, 9 in Latin America, and 7 in Canada). Overall, 55% of the yeast BSIs were due to Candida albicans, followed by Candida glabrata and Candida parapsilosis (15%), Candida tropicalis (9%), and miscellaneous Candida spp. (6%). In the United States, 45% of candidemias were due to non-C. albicans species. C. glabrata (21%) was the most common non-C. albicans species in the United States, and the proportion of non-C. albicans BSIs was highest in Latin America (55%). C. albicans accounted for 60% of BSI in Canada and 58% in Europe. C. parapsilosis was the most common non-C. albicans species in Latin America (25%), Canada (16%), and Europe (17%). Isolates of C. albicans, C. parapsilosis, and C. tropicalis were all highly susceptible to fluconazole (97 to 100% at ≤8 μg/ml). Likewise, 97 to 100% of these species were inhibited by ≤1 μg/ml of ravuconazole (concentration at which 50% were inhibited [MIC50], 0.007 to 0.03 μg/ml) or voriconazole (MIC50, 0.007 to 0.06 μg/ml). Both ravuconazole and voriconazole were significantly more active than fluconazole against C. glabrata (MIC90s of 0.5 to 1.0 μg/ml versus 16 to 32 μg/ml, respectively). A trend of increased susceptibility of C. glabrata to fluconazole was noted over the three-year period. The percentage of C. glabrata isolates susceptible to fluconazole increased from 48% in 1997 to 84% in 1999, and MIC50s decreased from 16 to 4 μg/ml. A similar trend was documented in both the Americas (57 to 84% susceptible) and Europe (22 to 80% susceptible). Some geographic differences in susceptibility to triazole were observed with Canadian isolates generally more susceptible than isolates from the United States and Europe. These observations suggest susceptibility patterns and trends

  15. Effect of aqueous and ethanolic extracts of Lippia citriodora on candida albicans

    PubMed Central

    Ghasempour, Maryam; Omran, Saeid Mahdavi; Moghadamnia, Ali Akbar; Shafiee, Faranak

    2016-01-01

    Introduction Because of resistance and side effects to common antifungal drugs activity, the research on herbal substances with antifungal activity is frequent. Lemon verbena (Lippia citriodora) is a member of Verbenaceae family. The aim of this study was to determine the anti-candida activities of the ethanolic and aqueous extracts of the lemon verbena leaves and compare them with nystatin and fluconazole. Methods In this 2015 study, 15 clinical isolates and standard strain of candida albicans PTCC 5027 were used, and the inhibitory effects of the ethanolic and aqueous extracts, Nystatin and Fluconazole, were evaluated using disk and well diffusion methods. Also, the minimal inhibitory concentration (MIC) was determined. Five concentrations of aqueous and ethanolic extracts (156–2500 μg/ml), Nystatin (8–128 μg/ml) and Fluconazole (4–64 μg/ml) were used in disk and well diffusion methods, and nine concentrations of aqueous and ethanolic extracts (19–5000 μg/ml), Nystatin (0.5–128 μg/ml), and Fluconazole (0.25–64 μg/ml) were applied for MIC. Data were analyzed using Tukey’s post-hoc and one-way ANOVA tests. The significant level was considered p < 0.05 in the current study. Results In the well and disk diffusion techniques, limited growth inhibition halos were produced around some clinical isolates at different concentrations of ethanolic extract; however, no growth inhibitory halo was observed with any concentrations of the aqueous extract. The MIC values of ethanolic extract, aqueous extract, Nystatin and Fluconazole for clinical isolated and standard strain were 833 ± 78.5and 625μg/ml; 4156 ± 67.4 and 2500 μg/ml; 10.13 ± 1.91 and 4 μg/ml; and 1.97 ± 0.25 and 1 μg/ml, respectively. Conclusion The results showed that the ethanolic extract was stronger than the aqueous extract of this plant, which can be used as an alternative for drugs. It is recommended that the ethanolic extract of this plant be investigated in vivo for better

  16. Development of a high-throughput Candida albicans biofilm chip.

    PubMed

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  17. Candida albicans biofilms: development, regulation, and molecular mechanisms

    PubMed Central

    Gulati, Megha; Nobile, Clarissa J.

    2016-01-01

    A major virulence attribute of Candida albicans is its ability to form biofilms, densely packed communities of cells adhered to a surface. These biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental factors, making biofilm-associated infections a significant clinical challenge. Here, we review current knowledge on the development, regulation, and molecular mechanisms of C. albicans biofilms. PMID:26806384

  18. Comparison of the MUREX C. albicans, Albicans-Sure, and BactiCard Candida test kits with the germ tube test for presumptive identification of Candida albicans.

    PubMed Central

    Crist, A E; Dietz, T J; Kampschroer, K

    1996-01-01

    The MUREX C. albicans (MC)(Murex Diagnostics), Albicans-Sure (AS) (Clinical Standards Laboratories), and BactiCard Candida (BC) (Remel) test kits were compared with the germ tube (GT) test for the rapid, presumptive identification of Candida albicans. All three test kits detect the enzymes L-proline aminopeptidase and beta-galactosaminidase in yeast cells grown on culture media and are based on the principle that C. albicans produces both enzymes whereas other yeasts produce only one or neither of the enzymes. The organisms evaluated were fresh clinical isolates identified by methods routinely used in our laboratory (API 20C system and conventional methods) and included 303 C. albicans isolates, 153 Candida glabrata isolates, 70 Candida tropicalis isolates, 36 Candida parapsilosis isolates, 13 isolates of other Candida spp., 5 Cryptococcus neoformans isolates, and 3 Saccharomyces cerevisiae isolates. The MC, AS, BC, and GT tests detected 299 (98.7%), 300 (99.0%), 301 (99.3%), and 287 (94.7%) C. albicans isolates, respectively. There was one false-positive result with both the MC and BC kits and two false-positive results with the GT test. The enzymatic methods evaluated in this study provide rapid and accurate alternatives to the GT test for the presumptive identification of C. albicans. PMID:8880535

  19. Postantifungal effect of caspofungin against the Candida albicans and Candida parapsilosis clades.

    PubMed

    Gil-Alonso, Sandra; Jauregizar, Nerea; Eraso, Elena; Quindós, Guillermo

    2016-10-01

    Killing and postantifungal effects could be relevant for the selection of optimal dosing schedules. This study aims to compare time-kill and postantifungal effects with caspofungin on Candida albicans (C. albicans, Candida dubliniensis, Candida africana) and Candida parapsilosis (C. parapsilosis, Candida metapsilosis, Candida orthopsilosis) clades. In the postantifungal effect experiments, strains were exposed to caspofungin for 1 h at concentrations 0.12-8 μg/mL. Time-kill experiments were conducted at the same concentrations. Caspofungin exhibited a significant and prolonged postantifungal effect (>37 h) with 2 μg/mL against the most strains of C. albicans clade. Against the C. parapsilosis clade, the postantifungal effect was <12 h at 8 μg/mL, except for two strains. Caspofungin was fungicidal against C. albicans, C. dubliniensis and C. metapsilosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011.

    PubMed

    Lockhart, Shawn R; Iqbal, Naureen; Cleveland, Angela A; Farley, Monica M; Harrison, Lee H; Bolden, Carol B; Baughman, Wendy; Stein, Betsy; Hollick, Rosemary; Park, Benjamin J; Chiller, Tom

    2012-11-01

    Between 2008 and 2011, population-based candidemia surveillance was conducted in Atlanta, GA, and Baltimore, MD. Surveillance had been previously performed in Atlanta in 1992 to 1993 and in Baltimore in 1998 to 2000, making this the first population-based candidemia surveillance conducted over multiple time points in the United States. From 2,675 identified cases of candidemia in the current surveillance, 2,329 Candida isolates were collected. Candida albicans no longer comprised the majority of isolates but remained the most frequently isolated species (38%), followed by Candida glabrata (29%), Candida parapsilosis (17%), and Candida tropicalis (10%). The species distribution has changed over time; in both Atlanta and Baltimore the proportion of C. albicans isolates decreased, and the proportion of C. glabrata isolates increased, while the proportion of C. parapsilosis isolates increased in Baltimore only. There were 98 multispecies episodes, with C. albicans and C. glabrata the most frequently encountered combination. The new species-specific CLSI Candida MIC breakpoints were applied to these data. With the exception of C. glabrata (11.9% resistant), resistance to fluconazole was very low (2.3% of isolates for C. albicans, 6.2% for C. tropicalis, and 4.1% for C. parapsilosis). There was no change in the proportion of fluconazole resistance between surveillance periods. Overall echinocandin resistance was low (1% of isolates) but was higher for C. glabrata isolates, ranging from 2.1% isolates resistant to caspofungin in Baltimore to 3.1% isolates resistant to anidulafungin in Atlanta. Given the increase at both sites and the higher echinocandin resistance, C. glabrata should be closely monitored in future surveillance.

  1. Species Identification and Antifungal Susceptibility Testing of Candida Bloodstream Isolates from Population-Based Surveillance Studies in Two U.S. Cities from 2008 to 2011

    PubMed Central

    Iqbal, Naureen; Cleveland, Angela A.; Farley, Monica M.; Harrison, Lee H.; Bolden, Carol B.; Baughman, Wendy; Stein, Betsy; Hollick, Rosemary; Park, Benjamin J.; Chiller, Tom

    2012-01-01

    Between 2008 and 2011, population-based candidemia surveillance was conducted in Atlanta, GA, and Baltimore, MD. Surveillance had been previously performed in Atlanta in 1992 to 1993 and in Baltimore in 1998 to 2000, making this the first population-based candidemia surveillance conducted over multiple time points in the United States. From 2,675 identified cases of candidemia in the current surveillance, 2,329 Candida isolates were collected. Candida albicans no longer comprised the majority of isolates but remained the most frequently isolated species (38%), followed by Candida glabrata (29%), Candida parapsilosis (17%), and Candida tropicalis (10%). The species distribution has changed over time; in both Atlanta and Baltimore the proportion of C. albicans isolates decreased, and the proportion of C. glabrata isolates increased, while the proportion of C. parapsilosis isolates increased in Baltimore only. There were 98 multispecies episodes, with C. albicans and C. glabrata the most frequently encountered combination. The new species-specific CLSI Candida MIC breakpoints were applied to these data. With the exception of C. glabrata (11.9% resistant), resistance to fluconazole was very low (2.3% of isolates for C. albicans, 6.2% for C. tropicalis, and 4.1% for C. parapsilosis). There was no change in the proportion of fluconazole resistance between surveillance periods. Overall echinocandin resistance was low (1% of isolates) but was higher for C. glabrata isolates, ranging from 2.1% isolates resistant to caspofungin in Baltimore to 3.1% isolates resistant to anidulafungin in Atlanta. Given the increase at both sites and the higher echinocandin resistance, C. glabrata should be closely monitored in future surveillance. PMID:22875889

  2. Predictors of candidaemia caused by non-albicans Candida species: results of a population-based surveillance in Barcelona, Spain.

    PubMed

    Rodríguez, D; Almirante, B; Cuenca-Estrella, M; Rodríguez-Tudela, J L; Mensa, J; Ayats, J; Sanchez, F; Pahissa, A

    2010-11-01

    Although Candida albicans (CA) is the most common cause of Candida bloodstream infections (BSIs), recent studies have observed an increasing percentage of candidaemias caused by non-albicans Candida species (NAC). In the present study, we attempted to identify the predictors of candidaemia due to NAC compared to CA. We analyzed data from an active population-based surveillance in Barcelona (Spain) from January 2002 to December 2003. Factors associated with NAC fungaemia were determined by multivariate analysis. A total of 339 episodes of Candida BSI, in 336 patients (median age 63 years, interquartile range: 41-72 years), were included. CA was the most commonly isolated (52%), followed by Candida parapsilosis (23%), Candida tropicalis (10%), Candida glabrata (8.6%), Candida krusei (3.4%) and other NAC spp. (3%).Overall, 48% of cases were due to NAC spp. Multivariate logistic regression analysis identified factors associated with a risk of BSI due to NAC spp.: having received a haematologic transplant (OR 10.8; 95% CI 1.31-90.01; p 0.027), previous fluconazole exposure (OR 4.47; 95% CI 2.12-9.43; p <0.001) and neonatal age (OR 4.42; 95% CI 1.63-12.04; p 0.004). Conversely, previous CA colonization (OR 0.33; 95% CI 0.19-0.57; p 0.001) and previous antibiotic use (OR 0.42; 95% CI 0.21-0.85; p 0.017) were associated with CA fungaemia compared to NAC. In conclusion, NAC candidaemia comprised 48% of cases in our series. Predictors of NAC include having received a haematologic transplant, neonatal age and previous fluconazole use. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  3. [Susceptibility to azoles and amphotericin B of isolates of Candida spp. Experience of a university health network, between 2004 and 2010].

    PubMed

    Porte, Lorena; León, Pilar; Gárate, Cynthia; Guzmán, Ana María; Labarca, Jaime; García, Patricia

    2012-04-01

    To describe antifungal susceptibility testing surveillance (December 2004-September 2010) in Candida spp., for amphotericin B, fluconazole and voriconazole, at the Laboratorio de Microbiología, Pontificia Universidad Católica de Chile. The study was performed utilizing E test and included yeasts from invasive origin and isolates in which antifungal susceptibility testing was asked for by the patient's physician. The yeasts were mainly recovered from urine samples (n: 64), blood cultures (n: 51) and secretions (n: 24). Two hundred ninety three isolates were studied: C. albicans (38%), C. glabrata (30%), C. tropicalis (11%), C. parapsilosis (10%), C. krusei (4%) and others (7%). All Candida species were 100% susceptible to amphotericin B, except C. krusei (1/12). Fluconazole's global susceptibility in C. albicans was 91.8%, but 100% in isolates from blood cultures versus 76% in isolates from urine. C. tropicalis was 93.9% susceptible to fluconazole, C. parapsilosis, 90% and C. glabrata 30.3%. C. krusei had no susceptible isolates to fluconazole. Voriconazole resistance was mainly present in C. glabrata (11.5%). We recommend the study of antifungal susceptibility in isolates from invasive origin, selected urine strains and C. glabrata. Fluconazole remains effective in C. albicans from blood.

  4. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} formore » fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.« less

  5. Non-albicans Candida Vulvovaginitis: Treatment Experience at a Tertiary Care Vaginitis Center.

    PubMed

    Powell, Anna M; Gracely, Edward; Nyirjesy, Paul

    2016-01-01

    The aims of this study are to analyze a cohort of women with vulvovaginal symptoms and positive cultures for non-albicans Candida (NAC) to determine whether yeast was responsible for their symptoms and to evaluate the mycological effectiveness of various regimens. This observational study was performed from retrospective chart review of patients with positive NAC cultures between April 1, 2008, and January 31, 2011, at a tertiary care vaginitis center. Patient intake demographics were entered into a database. Follow-up visits were analyzed for data about patient treatments and outcomes. Patients were considered a clinical cure if their symptoms were significantly improved and mycologic cure (MC) if later yeast cultures were negative. If clinical symptoms improved at the same time as MC, the isolate was considered the proximate cause for the symptoms. One hundred eight patients meeting entry criteria were analyzed. Boric acid was effective at obtaining MC in 32 (78%) of 41 patients with C. glabrata, 3 of 3 patients with C. tropicalis, and 3 of 3 patients with C. lusitaniae. Fluconazole was effective as initial treatment for 3 (60%) of 5 patients with C. glabrata and 13 (81%) of 16 patients with C. parapsilosis. In 52.7% of C. glabrata, 66.7% of C. parapsilosis, and 57.1% of C. tropicalis cases, effective antifungal therapy led to symptom improvement. In a tertiary care vaginitis center, NAC, when isolated on culture, caused clinically significant infections in approximately half of symptomatic patients. A majority of infections can be effectively treated with boric acid or fluconazole regardless of the non-albicans Candida species.

  6. Candida glabrata olecranon bursitis treated with bursectomy and intravenous caspofungin.

    PubMed

    Skedros, John G; Keenan, Kendra E; Trachtenberg, Joel D

    2013-01-01

    Orthopedic surgeons are becoming more involved in the care of patients with septic arthritis and bursitis caused by yeast species. This case report involves a middle-aged immunocompromised female who developed a Candida glabrata septic olecranon bursitis that developed after she received a corticosteroid injection in the olecranon bursa for presumed aseptic bursitis. Candida (Torulopsis) glabrata is the second most frequently isolated Candida species from the bloodstream in the United States. Increased use of fluconazole and other azole antifungal agents as a prophylactic treatment for recurrent Candida albicans infections in immunocompromised individuals is one reason why there appears to be increased resistance of C. glabrata and other nonalbicans Candida (NAC) species to fluconazole. In this patient, this infection was treated with surgery (bursectomy) and intravenous caspofungin, an echinocandin. This rare infectious etiology coupled with this intravenous antifungal treatment makes this case novel among cases of olecranon bursitis caused by yeasts.

  7. Prevalence and Antifungal Susceptibility of 442 Candida Isolates from Blood and Other Normally Sterile Sites: Results of a 2-Year (1996 to 1998) Multicenter Surveillance Study in Quebec, Canada

    PubMed Central

    St-Germain, G.; Laverdière, M.; Pelletier, R.; Bourgault, A.-M.; Libman, M.; Lemieux, C.; Noël, G.

    2001-01-01

    During a 2-year surveillance program (1996 to 1998) in Quebec, Canada, 442 strains of Candida species were isolated from 415 patients in 51 hospitals. The distribution of species was as follows: Candida albicans, 54%; C. glabrata, 15%; C. parapsilosis, 12%; C. tropicalis, 9%; C. lusitaniae, 3%; C. krusei, 3%; and Candida spp., 3%. These data, compared to those of a 1985 survey, indicate variations in species distribution, with the proportions of C. glabrata and C. parapsilosis increasing by 9 and 4%, respectively, and those of C. albicans and C. tropicalis decreasing by 10 and 7%, respectively. However, these differences are statistically significant for C. glabrata and C. tropicalis only. MICs of amphotericin B were ≥4 μg/ml for 3% of isolates, all of which were non-C. albicans species. Three percent of C. albicans isolates were resistant to flucytosine (≥32 μg/ml). Resistance to itraconazole (≥1 μg/ml) and fluconazole (≥64 μg/ml) was observed, respectively, in 1 and 1% of C. albicans, 14 and 9% of C. glabrata, 5 and 0% of C. tropicalis, and 0% of C. parapsilosis and C. lusitaniae isolates. Clinical data were obtained for 343 patients. The overall crude mortality rate was 38%, reflecting the multiple serious underlying illnesses found in these patients. Bloodstream infections were documented for 249 patients (73%). Overall, systemic triazoles had been administered to 10% of patients before the onset of candidiasis. The frequency of isolation of non-C. albicans species was significantly higher in this group of patients. Overall, only two C. albicans isolates were found to be resistant to fluconazole. These were obtained from an AIDS patient and a leukemia patient, both of whom had a history of previous exposure to fluconazole. At present, it appears that resistance to fluconazole in Quebec is rare and is restricted to patients with prior prolonged azole treatment. PMID:11230409

  8. Fluconazole-, amphotericin-B-, caspofungin-, and anidulafungin-resistant Candida ciferrii: an unknown cause of systemic mycosis in a child.

    PubMed

    Agın, Hasan; Ayhan, Yüce; Devrim, Ilker; Gülfidan, Gamze; Tulumoglu, Sener; Kayserili, Ertan

    2011-09-01

    Candida ciferrii, which is known as an agent of superficial yeast infection and onychomycosis, has rarely been isolated as an agent of candidemia. Limited reports have suggested different patterns of antifungal sensitivity. We report a rare candidemia case caused by c.ciferrii in an 8-year-old child in which isolated candida species were resistant to amphotericin-B (MIC > 1 μg/ml), fluconazole, (MIC ≥ 64 μg/ml), caspofungin (MIC ≥ 32 μg/ml), and anidulafungin (MIC ≥ 32 μg/ml) but sensitive to voriconazole (MIC ≤ 0.12 μg/ml). As far as we aware, this was the first recorded C. ciferrii candidemia case in children.

  9. Association phenothiazine and laser on growth of C. tropicalis fluconazole-resistant

    NASA Astrophysics Data System (ADS)

    Gomes Júnior, Rafael Araújo; de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gesteira, Maria F. M.; Zanin, Fátima A. A.; Brugnera, Aldo; Pinheiro, Antônio Luiz B.; Vannier-Santos, Marcos A.

    2014-02-01

    Candidiasis is caused by Candida species found on the skin, gastrointestinal tract and mucous cavities of the humans and may be acute, chronic, localized or systemic. Alhough C. albicans is the species most often identified as responsible for this type of infection C. Tropicalis has been considered an emerging cause. The effect of the association of phenothiazine - PTZ and laser on fluconazole-resistant C.tropicalis growth was tested. 2.5 x 106 CFU/mL 100mg/mL of phenothiazine with the pre-irradiation time of 10 min were irradiated with laser light (660 nm; 4.8 and 12 J/cm2 (L1 and L2 respectively) 40 mW) followed by incubation in RPMI for 24h. The following conditions were tested: control (control), laser (L1 and L2), phenothiazine (F1 and F2), and PACT (F1L1 and F2L2). Statistically significant diferences were seen between groups (L-F +) and (F + L +) for both conditions of the laser, with a growth inhibition of the yeast around 67 and 51%, respectively, however, when using only the laser there was an increase of 18% in the survival of these cells. PACT's efficacy on fluconazole-resistant C. tropicalis depended on both the time of pre-irradiation and concentration of the PTZ.

  10. In vitro modification of Candida albicans invasiveness.

    PubMed

    Fontenla de Petrino, S E; de Jorrat, M E; Sirena, A; Valdez, J C; Mesón, O

    1986-05-01

    Candida albicans produces germ-tubes (GT) when it is incubated in animal or human serum. This dimorphism is responsible for its invasive ability. The purpose of the present paper is (1) to evaluate the ability of rat peritoneal macrophages to inhibit GT production of ingested Candida albicans, obtained from immunized rats and then activated in vitro with Candida-induced lymphokines; (2) to determinate any possible alteration of phagocytic and candidacidal activities. The phagocytes were obtained from rats immunized with viable C. albicans. Some of them were exposed to Candida-induced lymphokines in order to activate the macrophages in vitro. The monolayers of activated, immune and normal macrophages were infected with a C. albicans suspension during 4 hr. Activated macrophages presented not only the highest phagocytic and candidacidal activities but a noticeable inhibition of GT formation and incremented candidacidal activity.

  11. Candida albicans biofilms formed into catheters and probes and their resistance to amphotericin B.

    PubMed

    Boucherit-Atmani, Z; Seddiki, S M L; Boucherit, K; Sari-Belkharoubi, L; Kunkel, D

    2011-09-01

    In Algeria, many bacterial biofilms have been studied but those of fungal origin, particularly those due to the yeast Candida albicans remained unidentified. The present study was performed at the Chabane Hamdoune hospital in Maghnia (Algeria), where 51 strains of C. albicans representing 16.94% of all taken samples were isolated. They were collected from catheters and probes used in different hospital services with variable rates; the most concerned service was ICU (40.74%) followed by gynecology department (17.39%), while general surgery came third (15.79%). Testing the antifungal property of amphotericin B (AmB) we showed clearly that the sessile cells of C. albicans were much more resistant than their planktonic counterparts (suspended cells), especially when the resistance increased during the different phases of biofilm formation until it reached its threshold at the ripening stage (at 48h). Furthermore, scanning electron microscopy of the isolated strains in the laboratory revealed the formation of biofilms on catheters by C. albicans. Surprisingly, observations revealed the presence of a new structure in these biofilms: a chlamydospore? Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Comparative Study of the Effects of Fluconazole and Voriconazole on Candida glabrata, Candida parapsilosis and Candida rugosa Biofilms.

    PubMed

    Madhavan, Priya; Jamal, Farida; Pei, Chong Pei; Othman, Fauziah; Karunanidhi, Arunkumar; Ng, Kee Peng

    2018-06-01

    Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC 50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.

  13. In Vitro Antifungal Susceptibility of Oral Candida Isolates from Patients Suffering from Caries and Chronic Periodontitis.

    PubMed

    De-la-Torre, Janire; Ortiz-Samperio, María Esther; Marcos-Arias, Cristina; Marichalar-Mendia, Xabier; Eraso, Elena; Echebarria-Goicouria, María Ángeles; Aguirre-Urizar, José Manuel; Quindós, Guillermo

    2017-06-01

    Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.

  14. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation.

    PubMed

    Vila, Taissa V M; Ishida, Kelly; de Souza, Wanderley; Prousis, Kyriakos; Calogeropoulou, Theodora; Rozental, Sonia

    2013-01-01

    The aim of this study was to evaluate miltefosine and four synthetic compounds (TCAN26, TC19, TC106 and TC117) for their in vitro inhibitory activity against Candida albicans planktonic and biofilm cells and investigate whether these compounds are able to inhibit the biofilm formation and to reduce the viability of mature C. albicans biofilm cells. The XTT reduction assay and transmission and scanning electron microscopy were employed to determine the inhibitory effects of the test compounds in comparison with amphotericin B and fluconazole against both planktonic cells and sessile cells in biofilms. C. albicans planktonic cells were susceptible to miltefosine, TCAN26 and TC19, all alkylphospholipid compounds. Miltefosine and TCAN26 present a fungicidal activity with similar values of MIC and minimum fungicidal concentration (MFC), ranging from 2 to 8 mg/L. Cell treatment with sub-inhibitory concentrations of alkylphospholipids induced several ultrastructural alterations. In relation to biofilms, miltefosine reduced formation (38%-71%) and mature biofilms viability (32%-44%), at concentrations of 64 mg/L. TCAN26 also reduced biofilm formation (24%-30%) and mature biofilm viability (15%-20%), at concentrations of 64 mg/L. Although amphotericin B reduced biofilm formation similarly to miltefosine (51%-74%), its activity was lower on mature biofilms (24%-30%). Miltefosine antibiofilm activity was significantly higher than amphotericin B, on both formation and mature biofilms (P<0.05 and P<0.0001, respectively). Fluconazole was the least effective compound tested. Promising antibiofilm activity was displayed by miltefosine and other alkylphosphocholine compounds, which could be considered a putative option for future treatment of candidaemia associated with biofilm formation, although further evaluation in in vivo systems is required.

  15. The Celecoxib Derivative AR-12 Has Broad-Spectrum Antifungal Activity In Vitro and Improves the Activity of Fluconazole in a Murine Model of Cryptococcosis

    PubMed Central

    Koselny, Kristy; Green, Julianne; DiDone, Louis; Halterman, Justin P.; Fothergill, Annette W.; Wiederhold, Nathan P.; Patterson, Thomas F.; Cushion, Melanie T.; Rappelye, Chad; Wellington, Melanie

    2016-01-01

    Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 μg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity. PMID:27645246

  16. Prevalence of Candida albicans and non-albicans isolates from vaginal secretions: comparative evaluation of colonization, vaginal candidiasis and recurrent vaginal candidiasis in diabetic and non-diabetic women.

    PubMed

    Gunther, Luciene Setsuko Akimoto; Martins, Helen Priscila Rodrigues; Gimenes, Fabrícia; Abreu, André Luelsdorf Pimenta de; Consolaro, Marcia Edilaine Lopes; Svidzinski, Terezinha Inez Estivalet

    2014-01-01

    Vulvovaginal candidiasis (VVC) is caused by abnormal growth of yeast-like fungi on the female genital tract mucosa. Patients with diabetes mellitus (DM) are more susceptible to fungal infections, including those caused by species of Candida. The present study investigated the frequency of total isolation of vaginal Candida spp., and its different clinical profiles - colonization, VVC and recurrent VVC (RVVC) - in women with DM type 2, compared with non-diabetic women. The cure rate using fluconazole treatment was also evaluated. Cross-sectional study conducted in the public healthcare system of Maringá, Paraná, Brazil. The study involved 717 women aged 17-74 years, of whom 48 (6.7%) had DM type 2 (mean age: 53.7 years), regardless of signs and symptoms of VVC. The yeasts were isolated and identified using classical phenotypic methods. In the non-diabetic group (controls), total vaginal yeast isolation occurred in 79 (11.8%) women, and in the diabetic group in 9 (18.8%) (P = 0.000). The diabetic group showed more symptomatic (VVC + RVVC = 66.66%) than colonized (33.33%) women, and showed significantly more colonization, VVC and RVVC than seen among the controls. The mean cure rate using fluconazole was 75.0% in the diabetic group and 86.7% in the control group (P = 0.51). We found that DM type 2 in Brazilian women was associated with yeast colonization, VVC and RVVC, and similar isolation rates for C. albicans and non-albicans species. Good cure rates were obtained using fluconazole in both groups.

  17. Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps.

    PubMed

    Zhang, Hong; Gao, Aili; Li, Fengxia; Zhang, Gehua; Ho, Hon In; Liao, Wanqing

    2009-05-01

    Synergistic effects have previously been observed for a natural compound, tetrandrine (TET), with fluconazole (FLC) in vitro and in the treatment of Candida albicans-infected mice. To investigate the mechanisms of these synergistic effects, 16 strains of C. albicans from the same parent but with different FLC sensitivities were examined using flow cytometry and fluorescent spectrophotometry. Rhodamine 123 (Rh123)-positive cells and intracellular Rh123 fluorescence intensity were determined in accumulation/efflux experiments involving no or a noncytotoxic dose of TET. Total RNA extracted from each strain was used to compare the expressions of drug efflux pump genes in FLC-susceptible, -susceptible dose-dependent, and -resistant strains before and 24 h after TET administration. Accumulation experiments determined that mean percentages of Rh123-positive cells were 26.65% (TET-free) and 70.99% (TET 30 microg/ml), and mean respective intracellular Rh123 fluorescence intensities were 11.34 and 18.00. Efflux experiments showed that percentages of Rh123-positive cells were 1.79% (TET free) and 42.57% (TET 30 microg/ml), respectively, and respective mean intracellular Rh123 fluorescence intensities were 0.74 and 2.19. Differences in MDR1, FLU1, CDR1, and CDR2 expression levels in the absence of TET were statistically significant (p<0.05) between FLC-susceptible, -susceptible dose-dependent, and -resistant strains. Compared with TET-free conditions, 24 h TET-treated strains showed statistically different (p<0.05) expression of MDR1 (FLC-resistant strain), FLU1 (FLC-susceptible dose-dependent and -resistant strains), and CDR1 and CDR2 (FLC-susceptible, -susceptible dose-dependent, and -resistant strains). Thus TET can inhibit the C. albicans drug efflux system and reduce drug efflux. Its mechanism of action is related to the inhibition of expression of the drug efflux pump genes MDR1, FLU1, CDR1, and CDR2.

  18. Synergistic activity between Echinophora platyloba DC ethanolic extract and azole drugs against clinical isolates of Candida albicans from women suffering chronic recurrent vaginitis.

    PubMed

    Avijgan, M; Mahboubi, M; Moheb Nasab, M; Ahmadi Nia, E; Yousefi, H

    2014-06-01

    Candida albicans is one of the main causes of vaginitis, especially in women with recurrent episodes. The appearance of drug resistant C. albicans and adverse effects of chemical agents have raised interest in Echinophora platyloba as one of four native species in Traditional Persian-Iranian medicine. This study evaluates the antifungal activity of ethanolic extract from dried aerial parts of E. platyloba against 27 clinical isolates of C. albicans from women suffering chronic recurrent vaginitis by micro-broth dilution assay. The synergistic effect of azole drugs and E. platyloba ethanolic extract were also determined by disc diffusion method after determining the MIC90. The results of this study showed a potent synergistic effect of E. platyloba ethanolic extract and itraconazole (P<0.01) and fluconazole (P<0.001) but an antagonistic effect between E. platyloba ethanolic extract and clotrimazole and miconazole against clinical isolates of C. albicans. These results must be confirmed by clinical application and by further clinical studies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Candida albicans Biofilms and Human Disease

    PubMed Central

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  20. D-Cateslytin: a new antifungal agent for the treatment of oral Candida albicans associated infections.

    PubMed

    Dartevelle, Pauline; Ehlinger, Claire; Zaet, Abdurraouf; Boehler, Christian; Rabineau, Morgane; Westermann, Benoit; Strub, Jean-Marc; Cianferani, Sarah; Haïkel, Youssef; Metz-Boutigue, Marie-Hélène; Marban, Céline

    2018-06-18

    The excessive use of antifungal agents, compounded by the shortage of new drugs being introduced into the market, is causing the accumulation of multi-resistance phenotypes in many fungal strains. Consequently, new alternative molecules to conventional antifungal agents are urgently needed to prevent the emergence of fungal resistance. In this context, Cateslytin (Ctl), a natural peptide derived from the processing of Chromogranin A, has already been described as an effective antimicrobial agent against several pathogens including Candida albicans. In the present study, we compared the antimicrobial activity of two conformations of Ctl, L-Ctl and D-Ctl against Candida albicans. Our results show that both D-Ctl and L-Ctl were potent and safe antifungal agents. However, in contrast to L-Ctl, D-Ctl was not degraded by proteases secreted by Candida albicans and was also stable in saliva. Using video microscopy, we also demonstrated that D-Ctl can rapidly enter C. albicans, but is unable to spread within a yeast colony unless from a mother cell to a daughter cell during cellular division. Besides, we revealed that the antifungal activity of D-Ctl could be synergized by voriconazole, an antifungal of reference in the treatment of Candida albicans related infections. In conclusion, D-Ctl can be considered as an effective, safe and stable antifungal and could be used alone or in a combination therapy with voriconazole to treat Candida albicans related diseases including oral candidosis.

  1. Investigation of the mechanism of action of 3-(4-bromophenyl)-5-acyloxymethyl-2,5-dihydrofuran-2-one against Candida albicans by flow cytometry.

    PubMed

    Vale-Silva, Luís A; Buchta, Vladimír; Vokurková, Doris; Pour, Milan

    2006-05-01

    The mechanism of action of the antifungal agent 3-(4-bromophenyl)-5-acyloxymethyl-2,5-dihydrofuran-2-one against Candida albicans was investigated by flow cytometry, using propidium iodide, DiBAC4(3), and FUN-1 as the fluorescent dyes. A related but less active agent, together with amphotericin B and fluconazole, was tested in parallel for comparison of the results. The incrustoporine derivative was found to have a potent fungicidal activity on C. albicans, resulting in damage of cell membrane.

  2. Rat Indwelling Urinary Catheter Model of Candida albicans Biofilm Infection

    PubMed Central

    Nett, Jeniel E.; Brooks, Erin G.; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen

    2014-01-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract. PMID:25183731

  3. Budding off: bringing functional genomics to Candida albicans

    PubMed Central

    Anderson, Matthew Z.

    2016-01-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein–DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. PMID:26424829

  4. [In vitro activity of matrine against Candida albicans biofilms].

    PubMed

    Wu, Lan; Zhou, Zeng-tong; Zhou, Yong-mei; Wang, Hai-yan; Shi, Lin-jun

    2009-08-01

    To establish a model of Candida albicans biofilms and to examine the effect of matrine on C.albicans biofilms and ultrastructure. C. albicans collection strain ATCC76615 was obtained and propagated. Biofilms were formed in 96-well microtiter plates. Antifungal susceptibility testing of C. albicans biofilms were assessed with the tetrazolium salt (XTT) reduction assay. Confocal laser scanning microscopy (CLSM) and dead/live fluorescent staining technique were combined to detect the effects of Matrine on preformed C. albican biofilms' composition and ultrastructure. Matrine was active against different growth stages (early,middle,mature) of biofilms; The bioactivity and drug-resistance of C. albican biofilm increased with culturing time. CLSM showed that C. albicans biofilms were inhibited and growth were predominantly composed of yeast cells and pseudohyphae. This study demonstrates that Matrine has potent activity against C.albicans biofilms in vitro and potential therapeutic implication for biofilm-associated candidal infections.

  5. In Vivo Inhibitory Effect on the Biofilm Formation of Candida albicans by Liverwort Derived Riccardin D

    PubMed Central

    Li, Yan; Ma, Yukui; Zhang, Li; Guo, Feng; Ren, Lei; Yang, Rui; Li, Ying; Lou, Hongxiang

    2012-01-01

    Riccardin D, a macrocyclic bisbibenzyl isolated from Chinese liverwort Dumortiera hirsute, has been proved to have inhibitory effect on biofilms formation of Candida albicans in in vitro study. Our present study aims to investigate the in vivo effect and mechanisms of riccardin D against C. albicans biofilms when used alone or in combination with clinical using antifungal agent fluconazole. XTT reduction assay revealed riccardin D had both prophylactic and therapeutic effect against C. albicans biofilms formation in a dose-dependent manner when using a central venous catheter related infective animal model. Scanning electron microscope and laser confocal scanning microscope showed that the morphology of biofilms was altered remarkably after riccardin D treatment, especially hypha growth inhibition. To uncover the underlying molecular mechanisms, quantitative real-time RT-PCR was performed to observe the variation of related genes. The downregulation of hypha-specific genes such as ALS1, ALS3, ECE1, EFG1, HWP1 and CDC35 following riccardin D treatment suggested riccardin D inhibited the Ras-cAMP-Efg pathway to retard the hypha formation, then leading to the defect of biofilms maturation. Moreover, riccardin D displayed an increased antifungal activity when administered in combination with fluconazole. Our study provides a potential clinical application to eliminate the biofilms of relevant pathogens. PMID:22545115

  6. Antifungal susceptibility patterns of colonized Candida species isolates from immunocompromised pediatric patients in five university hospitals.

    PubMed

    Badiee, Parisa; Choopanizadeh, Maral; Moghadam, Abdolkarim Ghadimi; Nasab, Ali Hossaini; Jafarian, Hadis; Shamsizadeh, Ahmad; Soltani, Jafar

    2017-12-01

    Colonization of Candida species is common in pediatric patients admitted to hematology-oncology wards. The aim of this study was to identify colonized Candida species and their susceptibility patterns in hematologic pediatric patients. Samples were collected from mouth, nose, urine and stool of the patients admitted to five university hospitals and cultured on sabouraud dextrose agar. The isolates were identified by API 20 C AUX system and their susceptibility patterns were evaluated by CLSI M27-A3 and S4. From 650 patients, 320 (49.2%) were colonized with 387 Candida species. Candida albicans was the most prevalent isolated species, followed by Candida glabrata, Candida tropicalis, Candida famata, Candida kefyr and Candida kuresi . The epidemiological cut off value (ECV) for all Candida species to amphotericin B was ≤0.25 μg except C. krusei (4 μg). The resistance rate to fluconazole in this study in C. albicans was 4.9% with ECV 8 μg/ml, followed by C. tropicalis 8.8% with ECV 0.5 μg/ml. Voriconazole and posaconazole were effective antifungal agents for all Candida isolates. The ECV of C. albicans, Candida parapsilosis, C. tropicalis, C. glabrata and C. krusei for itraconazole were 0.5, 0.25, 0.5, 1 and 2 μg, respectively. The resistant and intermediate rates of Candida species to caspofungin in this study were 2.9%, 5.9%, 18.8%, 47.9%, 0.0% and 16.7% in C. tropicalis, C. glabrata and C. parapsilosis respectively. C. albicans was the most prevalent species in pediatric colonized patients. New azole agents like voriconazole and posaconazole are effective against non-albicans Candida species. Increase in intermediate species is alarming to future emerging resistant species.

  7. Comparison of broth macrodilution, broth microdilution, and E test antifungal susceptibility tests for fluconazole.

    PubMed Central

    Sewell, D L; Pfaller, M A; Barry, A L

    1994-01-01

    A comparison of the E test, the broth microdilution test, and the reference broth macrodilution susceptibility test of the National Committee for Clinical Laboratory Standards for fluconazole susceptibility testing was performed with 238 clinical isolates of Candida species and Torulopsis (Candida) glabrata. An 80% inhibition endpoint MIC was determined by the reference broth macrodilution method after 48 h of incubation. The MICs obtained by the two study methods were read after 24 and 48 h of incubation. Overall, excellent agreement within 2 doubling dilutions was obtained between the broth microdilution and the broth macrodilution methods for the combined results for all species at both 24 h (93%) and 48 h (94%). The correlation of 24-h MIC endpoints between the E test and the broth macrodilution methods was 37% for T. glabrata, 56% for Candida tropicalis, 93% for Candida albicans, and 90% for other Candida species. The percent agreement at 48 h ranged from 34% for T. glabrata to 97% for Candida species other than C. albicans and C. tropicalis. These initial results support the further evaluation of the E test as an alternative method for fluconazole susceptibility testing of Candida species. PMID:7814531

  8. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities.

    PubMed

    Muadcheingka, Thaniya; Tantivitayakul, Pornpen

    2015-06-01

    The purposes of this investigation were to study the prevalence of Candida albicans and non-albicans Candida (NAC) species from oral candidiasis patients and evaluate the cell surface hydrophobicity (CSH) and biofilm forming capacity of the clinical isolates Candida species from oral cavity. This study identified a total of 250 Candida strains isolated from 207 oral candidiasis patients with PCR-RFLP technique. CSH value, total biomass of biofilm and biofilm forming ability of 117 oral Candida isolates were evaluated. C. albicans (61.6%) was still the predominant species in oral candidiasis patients with and without denture wearer, respectively, followed by C. glabrata (15.2%), C. tropicalis (10.4%), C. parapsilosis (3.2%), C. kefyr (3.6%), C. dubliniensis (2%), C. lusitaniae (2%), C. krusei (1.6%), and C. guilliermondii (0.4%). The proportion of mixed colonization with more than one Candida species was 18% from total cases. The relative CSH value and biofilm biomass of NAC species were greater than C. albicans (p<0.001). Ninety-two percent of oral isolates NAC species had biofilm forming ability, whereas 78% of C. albicans were biofilm formers. Furthermore, the significant difference of relative CSH values between biofilm formers and non-biofilm formers was observed in the NAC species (p<0.005), whereas the difference was not statistically significant in C. albicans. The frequency of the NAC species colonization in oral cavity was gradually increasing. The possible contributing factors might be high cell surface hydrophobicity and biofilm forming ability. The relative CSH value could be a putative factor for determining biofilm formation ability of the non-albicans Candida species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Combinatorial drug approaches to tackle Candida albicans biofilms.

    PubMed

    De Cremer, Kaat; Staes, Ines; Delattin, Nicolas; Cammue, Bruno P A; Thevissen, Karin; De Brucker, Katrijn

    2015-08-01

    The human fungal opportunistic pathogen Candida albicans resides in the human gut, genitourinary tract and on the skin. The majority of infections caused by C. albicans are biofilm-related. In the first part of this review, we discuss new insights into C. albicans biofilm characteristics, concentrating on the extracellular matrix, phenotypic switching, efflux pumps and persister cells. It is widely accepted that this multicellular lifestyle is more resistant to traditional antifungal treatment compared to free-living cells. Therefore, much effort is put in the search for combinations of drugs leading to synergistic interactions against microbial biofilms to achieve lower effective doses of the drugs. In the second part of this manuscript, we review all recently identified compounds that act synergistically with azoles, echinocandins and/or polyenes against C. albicans biofilms.

  10. Correlation between microdilution, Etest, and disk diffusion methods for antifungal susceptibility testing of fluconazole against Candida sp. blood isolates.

    PubMed

    Menezes, Everardo Albuquerque; Vasconcelos Júnior, Antônio Alexandre de; Ângelo, Maria Rozzelê Ferreira; Cunha, Maria da Conceição dos Santos Oliveira; Cunha, Francisco Afrânio

    2013-01-01

    Antifungal susceptibility testing assists in finding the appropriate treatment for fungal infections, which are increasingly common. However, such testing is not very widespread. There are several existing methods, and the correlation between such methods was evaluated in this study. The susceptibility to fluconazole of 35 strains of Candida sp. isolated from blood cultures was evaluated by the following methods: microdilution, Etest, and disk diffusion. The correlation between the methods was around 90%. The disk diffusion test exhibited a good correlation and can be used in laboratory routines to detect strains of Candida sp. that are resistant to fluconazole.

  11. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Moser, Doris; Schneider-Stickler, Berit

    2016-09-20

    Although most cases of candidiasis have been attributed to Candida albicans, non-C. albicans Candida species have been isolated in increasing numbers in patients. In this study, we determined the inhibition of carboxymethyl chitosan (CM-chitosan) on single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata. Biofilm by all tested species in microtiter plates were inhibited nearly 70%. CM-chitosan inhibited mixed species biofilm in microtiter plates and also on medical materials surfaces. To investigate the mechanism, the effect of CM-chitosan on cell viability and biofilm growth was employed. CM-chitosan inhibited Candida planktonic growth as well as adhesion. Further biofilm formation was inhibited with CM-chitosan added at 90min, 12h or 24h after biofilm initiation. CM-chitosan was not only able to inhibit the metabolic activity of Candida cells, but was also active upon the establishment and the development of biofilms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of Low-Level Laser therapy on the fungal proliferation of Candida albicans

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Araújo, Natália C.; Menezes, Rebeca F. d.; Moreno, Lara M.; Santos-Neto, Alexandrino d. P.; Gerbi, Marleny Elizabeth M.

    2016-03-01

    Candida albicans plays an important role in triggering infections in HIV+ patients. The indiscriminate use of antifungals has led to resistance to Candida albicans, which requires new treatment alternatives for oral candidiasis. Low-level laser therapy promotes a considerable improvement in the healing of wounds and in curing illnesses caused by microorganisms. The aim of the present study was to assess the effect of laser radiation on the cell proliferation of Candida albicans in immunosuppressed patients. Six Candida albicans strains that had been isolated from immunosuppressed patients were divided into a control group and experimental groups, which received eight sessions of laser therapy (InGaAlP, λ685nm, P = 30mW, CW, Φ~6 mm and GaAlAs, λ830nm, P = 40mW, CW, Φ~6 mm) using dosimetries of 6J/cm2, 8J/cm2, 10J/cm2 and 12J/cm2 for each wavelength and power. The results were not statistically significant (Kruskal Wallis, p > 0.05), although the proliferation of Candida albicans was lower in some of the experimental groups. The dosimetry of 6J/cm2 (GaAlAs, λ830nm, P = 40mW) provided lower mean scores than the other groups for the growth of Candida. Further studies are required to confirm whetehr laser therapy is a viable option in the treatment of fungal infections.

  13. Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo

    PubMed Central

    Lee, Keunsook K.; MacCallum, Donna M.; Jacobsen, Mette D.; Walker, Louise A.; Odds, Frank C.

    2012-01-01

    Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations. PMID:21986821

  14. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole.

    PubMed

    Lu, Mengjiao; Li, Tao; Wan, Jianjian; Li, Xiuyun; Yuan, Lei; Sun, Shujuan

    2017-02-01

    Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  15. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.

    PubMed

    de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-07-01

    Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.

  16. Budding off: bringing functional genomics to Candida albicans.

    PubMed

    Anderson, Matthew Z; Bennett, Richard J

    2016-03-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. The evolution of drug resistance in clinical isolates of Candida albicans

    PubMed Central

    Guiducci, Candace; Martinez, Diego A; Delorey, Toni; Li, Bi yu; White, Theodore C; Cuomo, Christina; Rao, Reeta P; Berman, Judith; Thompson, Dawn A; Regev, Aviv

    2015-01-01

    Candida albicans is both a member of the healthy human microbiome and a major pathogen in immunocompromised individuals. Infections are typically treated with azole inhibitors of ergosterol biosynthesis often leading to drug resistance. Studies in clinical isolates have implicated multiple mechanisms in resistance, but have focused on large-scale aberrations or candidate genes, and do not comprehensively chart the genetic basis of adaptation. Here, we leveraged next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients. We detected newly selected mutations, including single-nucleotide polymorphisms (SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events were commonly associated with acquired resistance, and SNPs in 240 genes may be related to host adaptation. Conversely, most aneuploidies were transient and did not correlate with drug resistance. Our analysis also shows that isolates also varied in adherence, filamentation, and virulence. Our work reveals new molecular mechanisms underlying the evolution of drug resistance and host adaptation. DOI: http://dx.doi.org/10.7554/eLife.00662.001 PMID:25646566

  18. Synergism Effect of the Essential Oil from Ocimum basilicum var. Maria Bonita and Its Major Components with Fluconazole and Its Influence on Ergosterol Biosynthesis

    PubMed Central

    Cardoso, Nathalia N. R.; Alviano, Celuta S.; Blank, Arie F.; Romanos, Maria Teresa V.; Fonseca, Beatriz B.; Rozental, Sonia; Rodrigues, Igor A.; Alviano, Daniela S.

    2016-01-01

    The aim of this study was to evaluate the activity of the EO and its major components of Ocimum basilicum var. Maria Bonita, a genetically improved cultivar, against the fluconazole sensitive and resistant strains of Candida albicans and Cryptococcus neoformans. Geraniol presented better results than the EO, with a low MIC (76 μg/mL against C. neoformans and 152 μg/mL against both Candida strains). The combination of EO, linalool, or geraniol with fluconazole enhanced their antifungal activity, especially against the resistant strain (MIC reduced to 156, 197, and 38 μg/mL, resp.). The ergosterol assay showed that subinhibitory concentrations of the substances were able to reduce the amount of sterol extracted. The substances tested were able to reduce the capsule size which suggests they have an important mechanism of action. Transmission electron microscopy demonstrated cell wall destruction of C. neoformans after treatment with subinhibitory concentrations. In C. albicans ultrastructure alterations such as irregularities in the membrane, presence of vesicles, and cell wall thickening were observed. The biofilm formation was inhibited in both C. albicans strains at MIC and twice MIC. These results provide further support for the use of O. basilicum EO and its major components as a potential source of antifungal agents. PMID:27274752

  19. Determination of Antimicrobial Potential of Five Herbs used in Ayurveda Practices against Candida albicans, Candida parapsilosis and Methicillin Resistant Staphylococcus aureus

    PubMed Central

    Gunasekara, TDCP; Radhika, NDM; Ragunathan, KK; Gunathilaka, DPP; Weerasekera, MM; Hewageegana, HGSP; Arawwawala, L A D M; Fernando, SSN

    2017-01-01

    Background: Medicinal plants are an important source of novel antimicrobial agents. Ayurvedic treatment involves the use of a variety of medicinal plants that merit investigation. Aims: To investigate the antimicrobial activity of bark of Pongamia pinnata (L.) Pierre, stem of Rubia cordifolia Linn, leaves of Jasminum officinale Linn, stem of Berberis ceylanica C.K. Schneid. and fruit of Garcina zeylanica Roxb. Subjects and Methods: Aqueous and ethanolic extracts of dried bark of Pongamia pinnata (Magul karanda), dried stem of Rubia cordifolia Linn (Welmadata), tender leaves of Jasminum officinale Linn (Jasmine) and dried stem of Berberis ceylanica (Dāruharidrā) were prepared according to standard protocols and tested for antimicrobial activity against five clinical isolates and one standard strain each of Candida albicans (ATCC 10231), Candida parapsilosis (ATCC 22019) and six Methicillin Resistant Staphylococcus aureus (MRSA) clinical isolates using the well diffusion method. Experiments were done in triplicates using well diffusion method. The plant extracts which gave a zone of inhibition in the well diffusion assay were further tested for Minimum Inhibitory Concentrations (MIC). Results: Aqueous and ethanolic extracts of Berberis ceylanica and ethanolic extract of Rubia cordifolia had antimicrobial activity against Candida albicans and Candida parapsilosis. Aqueous and ethanolic extracts of Garcinia zeylanica, and the ethanolic extracts of Jasminum officinale, Rubia cordifolia and Pongamia pinnata had antimicrobial activity against MRSA. Conclusions: Berberis ceylanica and Rubia crodifolia had antimicrobial activity against Candida species while Garcinia zeylanica, Jasminum officinale, Rubia crodifolia and Pongamia pinnata had antimicrobial activity against MRSA. PMID:29269969

  20. Molecular genetic techniques for gene manipulation in Candida albicans.

    PubMed

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-05-15

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains.

  1. Tobacco Agar, a New Medium for Differentiating Candida dubliniensis from Candida albicans

    PubMed Central

    Khan, Zia U.; Ahmad, Suhail; Mokaddas, Eiman; Chandy, Rachel

    2004-01-01

    Isolates of Candida dubliniensis may be misidentified as Candida albicans in microbiological laboratories if only the germ tube and/or the chlamydospore test is used for identification to the species level. In this study, we have evaluated the efficacy of tobacco agar for the differentiation of C. dubliniensis from C. albicans. On this medium at 28°C, all 30 C. dubliniensis isolates produced yellowish-brown colonies with hyphal fringes and abundant chlamydospores, whereas 54 C. albicans isolates formed smooth, white-to-cream-colored colonies with no chlamydospore production. This medium provides a simple tool for presumptive differentiation of C. dubliniensis from C. albicans. PMID:15472343

  2. Prevalence of Candida albicans, Candida dubliniensis and Candida africana in pregnant women suffering from vulvovaginal candidiasis in Argentina.

    PubMed

    Mucci, María Josefina; Cuestas, María Luján; Landanburu, María Fernanda; Mujica, María Teresa

    Vulvovaginal candidiasis (VVC) is a vulvovaginitis commonly diagnosed in gynecology care. In recent years, the taxonomy of the most important pathogenic Candida species, such as Candida albicans have undergone significant changes. This study examined the prevalence of C. albicans, Candida africana, and Candida dubliniensis in vaginal specimens from 210 pregnant women suffering from vulvovaginitis or having asymptomatic colonization. Phenotypic and molecular methods were used for the identification of the species. During the studied period, 55 isolates of Candida or other yeasts were obtained from specimens collected from 52 patients suffering from vulvovaginitis (24.8%). C. albicans was the predominant Candida species in 42 isolates (80.7%), either alone or in combination with other species of the genus (5.7%, n=3). Additionally, nine isolates of C. albicans (50%) were obtained from asymptomatic patients (n=18). C. dubliniensis was the causative agent in 2 (3.8%) cases of VVC, and was also isolated in one asymptomatic patient. Molecular assays were carried out using specific PCR to amplify the ACT1-associated intron sequence of C. dubliniensis. The amplification of the HWP1 gene also correctly identified isolates of the species C. albicans and C. dubliniensis. No C. africana was isolated in this work. Some C. albicans isolates were either homozygous or heterozygous at the HWP1 locus. The distribution of heterozygous and homozygous C. albicans isolates at the HWP1 locus was very similar among patients suffering from VVC and asymptomatic patients (p=0.897). The presence of C. albicans and C. dubliniensis, and the absence of C. africana in pregnant is noteworthy. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Molecular epidemiology, phylogeny and evolution of Candida albicans.

    PubMed

    McManus, Brenda A; Coleman, David C

    2014-01-01

    A small number of Candida species form part of the normal microbial flora of mucosal surfaces in humans and may give rise to opportunistic infections when host defences are impaired. Candida albicans is by far the most prevalent commensal and pathogenic Candida species. Several different molecular typing approaches including multilocus sequence typing, multilocus microsatellite typing and DNA fingerprinting using C. albicans-specific repetitive sequence-containing DNA probes have yielded a wealth of information regarding the epidemiology and population structure of this species. Such studies revealed that the C. albicans population structure consists of multiple major and minor clades, some of which exhibit geographical or phenotypic enrichment and that C. albicans reproduction is predominantly clonal. Despite this, losses of heterozygosity by recombination, the existence of a parasexual cycle, toleration of a wide range of aneuploidies and the recent description of viable haploid strains have all demonstrated the extensive plasticity of the C. albicans genome. Recombination and gross chromosomal rearrangements are more common under stressful environmental conditions, and have played a significant role in the evolution of this opportunistic pathogen. Surprisingly, Candida dubliniensis, the closest relative of C. albicans exhibits more karyotype variability than C. albicans, but is significantly less adaptable to unfavourable environments. This disparity most likely reflects the evolutionary processes that occurred during or soon after the divergence of both species from their common ancestor. Whilst C. dubliniensis underwent significant gene loss and pseudogenisation, C. albicans expanded gene families considered to be important in virulence. It is likely that technological developments in whole genome sequencing and data analysis in coming years will facilitate its routine use for population structure, epidemiological investigations, and phylogenetic analyses of

  4. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    NASA Astrophysics Data System (ADS)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  5. Candida Species Biofilms’ Antifungal Resistance

    PubMed Central

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  6. Enhanced oxidative killing of azole-resistant Candida glabrata strains with ERG11 deletion.

    PubMed Central

    Kan, V L; Geber, A; Bennett, J E

    1996-01-01

    The susceptibility of genetically defined Candida glabrata strains to killing by H2O2 and neutrophils was assessed. Fluconazole-susceptible L5L and L5D strains demonstrated survival rates higher than those of two fluconazole-resistant strains lacking the ERG11 gene coding for 14 alpha-demethylase. Fluconazole resistance can occur by mechanisms which increase fungal susceptibility to oxidative killing by H2O2 and neutrophils. PMID:8807069

  7. Relationship between salivary flow rates and Candida albicans counts.

    PubMed

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p < 0.001) related to the Candida counts. Unstimulated whole saliva significantly (p < 0.05) differed in persons with Candida counts of 0 versus <500 versus < or = 500. Chewing-stimulated saliva was significantly (p < 0.05) different in persons with 0 counts compared with those with a > or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  8. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    PubMed Central

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  9. Susceptibility and molecular characterization of Candida species from patients with vulvovaginitis.

    PubMed

    Fornari, Gheniffer; Vicente, Vania Aparecida; Gomes, Renata Rodrigues; Muro, Marisol Dominguez; Pinheiro, Rosangela Lameira; Ferrari, Carolina; Herkert, Patricia Fernanda; Takimura, Marcos; Carvalho, Newton Sérgio de; Queiroz-Telles, Flavio

    2016-01-01

    Vulvovaginal candidiasis affects women of reproductive age, which represents approximately 15-25% of vaginitis cases. The present study aimed to isolate and characterize yeast from the patients irrespective of the presentation of clinical symptoms. The isolates were subjected to in vitro susceptibility profile and characterization by molecular markers, which intended to assess the distribution of species. A total of 40 isolates were obtained and identified through the CHROMagar, API20aux and by ITS and D1/D2 regions sequencing of DNAr gene. Candida albicans strains were genotyped by the ABC system and the isolates were divided into two genotypic groups. The identity of the C. albicans, C. glabrata, C. guilliermondii, C. kefyr and Saccharomyces cerevisiae isolates was confirmed by the multilocus analysis. The strains of Candida, isolated from patients with complications, were found to be resistant to nystatin but sensitive to fluconazole, amphotericin B and ketoconazole, as observed by in vitro sensitivity profile. The isolates from asymptomatic patients, i.e., the colonized group, showed a dose-dependent sensitivity to the anti-fungal agents, fluconazole and amphotericin B. However, the isolates of C. albicans that belong to distinct genotypic groups showed the same in vitro susceptibility profile. Copyright © 2016. Published by Elsevier Editora Ltda.

  10. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013.

    PubMed

    Motoa, Gabriel; Muñoz, Juan Sebastián; Oñate, José; Pallares, Christian José; Hernández, Cristhian; Villegas, María Virginia

    The frequency of Candida isolates as a cause of hospital infections has risen in recent years, leading to high rates of morbidity and mortality. The knowledge of the epidemiology of those hospital acquired fungal infections is essential to implement an adequate antifungal therapy. To describe the epidemiology of Candida infections in Intensive Care Units (ICUs) from a surveillance network in Colombia. Information was collected from the microbiology laboratories of 20 tertiary healthcare institutions from 10 Colombian cities using the Whonet® software version 5.6. A general descriptive analysis of Candida species and susceptibility profiles focusing on fluconazole and voriconazole was completed between 2010 and 2013, including a sub-analysis of healthcare associated infections (HAIs) during the last year. Candida isolates made up 94.5% of the 2680 fungal isolates considered, with similar proportions for Candida albicans and non-C. albicans Candida species (48.3% and 51.7%, respectively). Among the latter, Candida tropicalis (38.6%) and Candida parapsilosis (28.5%) were the most frequent species. Of note, among the blood isolates C. albicans was not the main species. Most of the species isolated were susceptible to fluconazole and voriconazole. From the HAIs reported, 25.5% were caused by Candida; central line-associated bloodstream infection was the most common HAI (58.8%). There were no statistically significant differences regarding length of hospital stay and device days among HAIs. In ICUs of Colombia, non-C. albicans Candida species are as frequent as C. albicans, except in blood samples where non-C. albicans Candida isolates predominate. Further studies are needed to evaluate Candida associated risk factors and to determine its clinical impact. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Prevalence of Candida albicans and carriage of Candida non-albicans in the saliva of preschool children, according to their caries status.

    PubMed

    Lozano Moraga, Carla Paola; Rodríguez Martínez, Gonzalo Andrés; Lefimil Puente, Claudia Andrea; Morales Bozo, Irene Cecilia; Urzúa Orellana, Blanca Regina

    2017-01-01

    This study was conducted to establish associations among the Candida carriage rate, the diversity of Candida species carried and the different caries status of preschool children. Sixty-one children between 2 and 5 years of age were examined by a single expert examiner and were divided into three groups, the caries-free, moderate caries and severe caries groups, according to the criteria of the International Caries Detection and Assessment System II (ICDAS). Saliva samples were obtained from the members of each group and were plated on Sabouraud agar plates to assess the Candida carriage rates. CHROMagar Candida medium was used for the preliminary screening. Biochemical testing or PCR/sequencing was conducted to identify the different Candida species in the samples. The differences observed were considered significant if the p value was <0.05. The Candida carriage rate and the number of species of this fungus carried were higher in the group with the highest level of caries severity (p < 0.05). Whereas Candida albicans was the most predominant Candida species in the saliva of all of the children, C. dubliniensis was identified only in the most caries-affected group in addition to other rare species of Candida non-albicans. A high salivary Candida carriage rate and the presence of specific species of this fungus (such as C. albicans and C. dubliniensis) appear to be related to the severity of caries experienced by preschool children.

  12. [Candida and Aspergillus infections in the light of a new list of alarm factors on the example of the Lodz Medical University Hospital No. 1].

    PubMed

    Tyczkowska-Sieroń, Ewa; Bartoszko-Tyczkowska, Anna

    2012-01-01

    In 2011, the Polish Ministry of Health introduced Candida sp. resistant to fluconazole and Aspergillus sp. to the list of Alarm Factors as alert pathogens. The purpose of this paper is to confirm the validity of continuous monitoring of fungal infections caused by the pathogens mentioned above. The role offluconazole therapy in the Candida sp. infections is also discussed. The analysis of the fungal infections is performed based on the results obtained in the University Clinic Hospital (UCH) No. 1 in Lodz in 2009-2011. The swabs were plated on Sabouraud's agar. Body fluids and blood were incubated in an automated system Bactec 9050. Yeast ID Phoenix BD panels were used to determine the species of fungi. In turn, antimicrobial susceptibility testing was carried out by E-tests (bioMerieux). In the analysis of fungal infections occurring among patients in the UCH No. 1 in Lodz in 2009-2011, C. albicans, C. non-albicans and Aspergillus sp. infections are taken into account. This analysis is performed based on relations of the number of infections (per 100 patients) versus six-month periods. As one can see in Fig. 1, a clear, linear and statistically significant increase in the number of C. albicans and C. non-albicans infections is observed throughout the entire time period under discussion. On the other hand, the number of Aspergillus sp. infections remains at an almost constant low level. The more detailed analysis of fungal infections in the different hospital units, which are particularly exposed to this type of infections (Figs. 2-6), shows that there is a clear correlation between the number of C. non-albicans infections and the frequency of therapy with fluconazole. The results presented in this paper show in the example of the UCH No. 1 in Lodz that the number of infections caused by C. albicans and C. non-albicans resistant to fluconazole is clearly increasing in a hospital environment in recent years, which is a great clinical problem. Although the number of

  13. Impact of Environmental Conditions on the Form and Function of Candida albicans Biofilms

    PubMed Central

    Daniels, Karla J.; Park, Yang-Nim; Srikantha, Thyagarajan; Pujol, Claude

    2013-01-01

    Candida albicans, like other pathogens, can form complex biofilms on a variety of substrates. However, as the number of studies of gene regulation, architecture, and pathogenic traits of C. albicans biofilms has increased, so have differences in results. This suggests that depending upon the conditions employed, biofilms may vary widely, thus hampering attempts at a uniform description. Gene expression studies suggest that this may be the case. To explore this hypothesis further, we compared the architectures and traits of biofilms formed in RPMI 1640 and Spider media at 37°C in air. Biofilms formed by a/α cells in the two media differed to various degrees in cellular architecture, matrix deposition, penetrability by leukocytes, fluconazole susceptibility, and the facilitation of mating. Similar comparisons of a/a cells in the two media, however, were made difficult given that in air, although a/a cells form traditional biofilms in RPMI medium, they form polylayers composed primarily of yeast cells in Spider medium. These polylayers lack an upper hyphal/matrix region, are readily penetrated by leukocytes, are highly fluconazole susceptible, and do not facilitate mating. If, however, air is replaced with 20% CO2, a/a cells make a biofilm in Spider medium similar architecturally to that of a/α cells, which facilitates mating. A second, more cursory comparison is made between the disparate cellular architectures of a/a biofilms formed in air in RPMI and Lee's media. The results demonstrate that C. albicans forms very different types of biofilms depending upon the composition of the medium, level of CO2 in the atmosphere, and configuration of the MTL locus. PMID:23954841

  14. Person-to-person transfer of Candida albicans in the spacecraft environment

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Magee, B. B.; Mishra, S. K.

    1995-01-01

    We assessed the exchange of Candida albicans among crew members during 10 Space Shuttle missions. Throat, nasal, urine and faecal specimens were collected from 61 crew members twice before and once after space flights ranging from 7 to 10 days in duration; crews consisted of groups of five, six or seven men and women. Candida albicans was isolated at least once from 20 of the 61 subjects (33%). Candida strains were identified by restriction-fragment length polymorphism (RFLP) after digestion by the endonucleases EcoRI and HinfI; further discrimination was gained by Southern blot hybridization with the C. albicans repeat fragment 27A. Eighteen of the 20 Candida-positive crew members carried different strains of C. albicans in the specimens collected. Possible transfer of C. albicans between members of the same crew was demonstrated only once in the 10 missions studied. We conclude that the transfer of C. albicans among crew members during Space Shuttle flights is less frequent than had been predicted from earlier reports.

  15. Enterococcus faecalis and Candida albicans in the dental root canal and periapical infections.

    PubMed

    Kovac, J; Kovac, D; Slobodnikova, L; Kotulova, D

    2013-01-01

    The aim of the present study was to examine the prevalence of Enterococcus faecalis and Candida albicans in endodontic infections. Samples for microbiological examination were collected from 32 patients with deep dental caries, infected dental root canal, or periapical infection. Cultivation of the dental samples yielded four strains of Enterococcus faecalis (12.5 %), and three strains of Candida albicans (9.4 %). All Enterococcus faecalis isolates were susceptible to ampicillin, one isolate was resistant to tetracycline, two to erythromycin and azithromycin (additional 2 had intermediate susceptibility), and one strain had intermediate susceptibility to ciprofloxacin and moxifloxacin. We conclude that Enterococcus faecalis and Candida albicans can participate in the dental root canal and periapical infections, and the use of effective irrigant solutions and intracanal medicaments active against these microbes is important in order to prevent endodontic therapy failures. Unexpected was the isolation of C. albicans from a nine-year-old child with periodontitis apicalis. This finding must draw attention to the possibility that even at such a young age, this microorganism could be a potential etiological agent in endodontic infections (Tab. 2, Ref. 34). Text in PDF www.elis.sk.

  16. The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans

    PubMed Central

    Legrand, Melanie; Chan, Christine L.; Jauert, Peter A.; Kirkpatrick, David T.

    2011-01-01

    Genome rearrangements, a common feature of Candida albicans isolates, are often associated with the acquisition of antifungal drug resistance. In Saccharomyces cerevisiae, perturbations in the S-phase checkpoints result in the same sort of Gross Chromosomal Rearrangements (GCRs) observed in C. albicans. Several proteins are involved in the S. cerevisiae cell cycle checkpoints, including Mec1p, a protein kinase of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family and the central player in the DNA damage checkpoint. Sgs1p, the ortholog of BLM, the Bloom’s syndrome gene, is a RecQ-related DNA helicase; cells from BLM patients are characterized by an increase in genome instability. Yeast strains bearing deletions in MEC1 or SGS1 are viable (in contrast to the inviability seen with loss of MEC1 in S. cerevisiae) but the different deletion mutants have significantly different phenotypes. The mec1Δ/Δ colonies have a wild-type colony morphology, while the sgs1Δ/Δ mutants are slow-growing, producing wrinkled colonies with pseudohyphal-like cells. The mec1Δ/Δ mutants are only sensitive to ethylmethane sulfonate (EMS), methylmethane sulfonate (MMS), and hydroxyurea (HU) but the sgs1Δ/Δ mutants exhibit a high sensitivity to all DNA-damaging agents tested. In an assay for chromosome 1 integrity, the mec1Δ/Δ mutants exhibit an increase in genome instability; no change was observed in the sgs1Δ/Δ mutants. Finally, loss of MEC1 does not affect sensitivity to the antifungal drug fluconazole, while loss of SGS1 leads to an increased susceptibility to fluconazole. Neither deletion elevated the level of antifungal drug resistance acquisition. PMID:21511048

  17. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates

    PubMed Central

    Shirazi, F; Kontoyiannis, DP

    2015-01-01

    Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS–non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0–16.0 μg/mL) than for MICA (1.0–8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0–4.2 fold) and C. parapsilosis (4.8–5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0–4.2 fold) and C. parapsilosis (4.8–5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains. PMID:26065323

  18. Ultraviolet Microscopy of Candida albicans

    PubMed Central

    Balish, Edward; Svihla, George

    1966-01-01

    Balish, Edward (Argonne National Laboratory, Argonne, Ill.), and George Svihla. Ultraviolet microscopy of Candida albicans. J. Bacteriol. 92:1812–1820. 1966.—Yeast and mycelial strains of Candida albicans were grown in medium supplemented with sulfur amino acids in an effort to determine factors that control the morphology and pathogenicity of the organism. Ultraviolet microscopy revealed a greater concentration of S-adenosylmethionine in the vacuoles of the mycelial phase than in those of yeast phases. Supplementation with amino acids greatly increased the concentration of S-adenosylmethionine in the mycelial phase, and made these cells more sensitive to the lytic action of snail gut enzymes than two yeast phase strains. This indicates a difference in cell wall structure that may be related to the pathogenicity of the mycelial phase. Images PMID:5958110

  19. Chlorhexidine markedly potentiates the oxidants scavenging abilities of Candida albicans.

    PubMed

    Ginsburg, I; Koren, E; Feuerstein, O; Zogakis, I P; Shalish, M; Gorelik, S

    2015-10-01

    The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity.

  20. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae.

    PubMed

    Reis de Sá, Leandro Figueira; Toledo, Fabiano Travanca; de Sousa, Bruno Artur; Gonçalves, Augusto César; Tessis, Ana Claudia; Wendler, Edison P; Comasseto, João V; Dos Santos, Alcindo A; Ferreira-Pereira, Antonio

    2014-07-26

    Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals.

  1. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749

  2. In Vitro Interactions between Tacrolimus and Azoles against Candida albicans Determined by Different Methods▿

    PubMed Central

    Sun, Shujuan; Li, Yan; Guo, Qiongjie; Shi, Changwen; Yu, Jinlong; Ma, Lin

    2008-01-01

    Combination therapy could be of use for the treatment of fungal infections, especially those caused by drug-resistant fungi. However, the methods and approaches used for data generation and result interpretation need further optimizing. The fractional inhibitory concentration index (FICI) is the most commonly used method, but it has several drawbacks in characterizing antifungal drug interaction. Alternatively, some new methods can be used such as the ΔE model (difference between the predicted and measured fungal growth percentages) and the response surface approach, which uses the concentration-effect relationship over the whole concentration range instead of just the MIC. In the present study, in vitro interactions between tacrolimus (FK506) and three azoles—fluconazole (FLC), itraconazole (ITR), and voriconazole (VRC)-against Candida albicans were evaluated by the checkerboard microdilution method and time-killing test. The intensity of the interactions was determined by visual reading and the spectrophotometric method in a checkerboard assay, and the nature of the interactions was assessed by nonparametric models of FICI and ΔE. Colony counting and colorimetric viable detection methods (2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium hydroxide} [XTT] reduction test) were used for evaluating the combination antifungal effects over time. Synergistic and indifferent effects were found for the combination of FK506 and azoles against azole-sensitive strains, while strong synergy was found against azole-resistant strains analyzed by FICI. The ΔE model gave more consistent results with FICI. The positive interactions were also confirmed by the time-killing test. Our findings suggest a potential role for combination therapy with calcineurin pathway inhibitors and azoles to augment activity against resistant C. albicans. PMID:18056277

  3. Role of catalase overproduction in drug resistance and virulence in Candida albicans.

    PubMed

    Román, Elvira; Prieto, Daniel; Martin, Ry; Correia, Inês; Mesa Arango, Ana Cecilia; Alonso-Monge, Rebeca; Zaragoza, Oscar; Pla, Jesús

    2016-10-03

    To investigate the role of Cat1 overproduction in Candida albicans. Strains overproducing the CAT1 gene were constructed. Cells overproducing CAT1 were found to be more resistant to some oxidants and mammalian phagocytic cells. They also showed reduced intracellular reactive oxygen species generated by amphotericin B or ciclopirox olamine. CAT1 overproduction did not change the minimum inhibitory concentration of fungal cells to fungistatic or fungicidal azoles nor to amphotericin B although increased twofold the minimum inhibitory concentration to caspofungin. The role of Cat1 overproduction in virulence and colonization was also analyzed in mouse models. The overproduction of Cat1 protects against oxidants, phagocytes and certain antifungals at subinhibitory concentration but does not increase virulence in a systemic infection mouse model.

  4. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil.

    PubMed

    Canela, Heliara Maria Spina; Cardoso, Bárbara; Vitali, Lucia Helena; Coelho, Harnoldo Colares; Martinez, Roberto; Ferreira, Márcia Eliana da Silva

    2018-01-01

    Candida spp. are responsible for 80% of all systemic fungal infections and are associated with high mortality rates. This study characterised 79 bloodstream isolates of C. albicans, C. glabrata, C. orthopsilosis, C. parapsilosis and C. tropicalis from patients in a Brazilian hospital. The susceptibility to amphotericin B, caspofungin, fluconazole and voriconazole was determined; virulence factor production was assessed based on haemolysin, phospholipase and proteinase activities, and the patients' clinical characteristics were analysed. C. albicans was the predominant species (44%), followed by C. glabrata (19%), C. tropicalis (19%), C. parapsilosis (14%) and C. orthopsilosis (4%). The candidemia incidence was 1.52 per 1000 admissions, and the crude mortality rate was 52%. One C. albicans isolate was resistant to fluconazole and voriconazole. Moreover, 20.2%, 2.5% and 3.8% of the isolates exhibited dose-dependent susceptibility to fluconazole, voriconazole and caspofungin, respectively. In conclusion, although the C. glabrata incidence was higher than that usually described in Brazil, its increase was previously observed in studies conducted worldwide. Furthermore, the azole resistance of the C. albicans isolate could be due to previous exposure to these antifungals. These results highlight the importance of epidemiological studies and will facilitate an improved understanding of candidemia in the studied hospital. © 2017 Blackwell Verlag GmbH.

  5. Invasive candidiasis in intensive care units in China: in vitro antifungal susceptibility in the China-SCAN study.

    PubMed

    Liu, Wei; Tan, Jingwen; Sun, Jimei; Xu, Zhijiang; Li, Min; Yang, Qing; Shao, Haifeng; Zhang, Liyan; Liu, Weixia; Wan, Zhe; Cui, Wei; Zang, Bin; Jiang, Dongpo; Fang, Qiang; Qin, Bingyu; Qin, Tiehe; Li, Weiqin; Guo, Fengmei; Liu, Dawei; Guan, Xiandong; Yu, Kaijiang; Qiu, Haibo; Li, Ruoyu

    2014-01-01

    The objectives of this study were to determine species distribution and in vitro antifungal susceptibility of Candida isolates identified in the multicentre China-SCAN study of invasive Candida infection (ICI) in intensive care units (ICUs) across China. Candida isolates from patients in the China-SCAN study with documented ICI were evaluated by a central laboratory. Species were identified using chromogenic culture media or the API 20C AUX kit. Susceptibility to fluconazole, voriconazole, itraconazole, caspofungin and amphotericin B was determined using the CLSI broth microdilution method (M27-A3) and updated clinical breakpoints or epidemiological cut-off values. A total of 389 isolates from 244 patients were analysed. Species identified most frequently were Candida albicans (40.1%), Candida parapsilosis (21.3%), Candida tropicalis (17.2%) and Candida glabrata (12.9%). Rarer species such as Lodderomyces elongisporus and Candida ernobii were also identified. Fluconazole susceptibility was evident in 85.9% (134/156) of C. albicans, 62.7% (42/67) of C. tropicalis and 48.2% (40/83) of C. parapsilosis isolates. Susceptibility to voriconazole was ≥ 90% among all species. All isolates were susceptible to amphotericin B and caspofungin except C. glabrata [86.0% (43/50) susceptible to caspofungin]. Cross-resistance between fluconazole and voriconazole was observed for C. parapsilosis and C. glabrata. Although C. albicans was the predominant single species, non-albicans species constituted >50% of isolates. Fluconazole susceptibility was lower in most non-albicans species, indicating that fluconazole resistance should be closely monitored. Susceptibility to voriconazole, amphotericin B and caspofungin is encouraging. Differences between these data and those from other regions emphasize the importance of assessing regional variations.

  6. [Molecular epidemiology and antifungal susceptibility of Candida species isolated from urine samples of patients in intensive care unit].

    PubMed

    Yüksekkaya, Serife; Fındık, Duygu; Arslan, Uğur

    2011-01-01

    The aims of this study were to analyse the amphotericin B and fluconazole susceptibility and molecular epidemiology of Candida strains (Candida albicans, Candida tropicalis and Candida glabrata) isolated from the urine samples of patients hospitalized in the intensive care unit. Identification of the isolates was done according to microscopic morphology (chlamydospor, blastospor, pseudohyphae and true hyphae) on cornmeal agar, germ tube formation and carbohydrate assimilation patterns (API ID 32C bioMérieux, France). Antifungal susceptibilities of the isolates were determined by in vitro broth microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). To investigate the clonal relationship of the isolates, randomly amplified polymorphic DNA (RAPD) analysis was performed by using Cnd3 primer. Of the 56 Candida isolates minimum inhibitory concentration (MIC) ranges, MIC50 and MIC90 values for amphotericin B were 0.125-1 µg/ml, 0.125 and 0.5 µg/ml for C.albicans, 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.tropicalis and 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.glabrata, respectively. Fluconazole MIC ranges, MIC50 and MIC90 values were 0.25-4 µg/ml, 0.25 and 0.5 µg/ml for C.albicans, 0.25-16 µg/ml, 0.5 and 1 µg/ml for C.tropicalis and 0.5-64 µg/ml, 8 and 16 µg/ml for C.glabrata, respectively. For amphotericin B, none of the isolates had high MIC values (MIC > 1 µg/ml). While one of the C.glabrata isolates was resistant to fluconazole (MIC ≥ 64 µg/ml), one C.tropicalis and two C.glabrata isolates were dose-dependent susceptible (MIC: 16-32 µg/ml). The results of RAPD analysis indicated an exogenous spread from two clones for C.albicans, one clone for C.glabrata and one clone for C.tropicalis. This study underlines the importance of molecular epidemiological analysis of clinical samples together with hospital environmental samples in terms of Candida spp. To determine the exogenous origin for the related strains and to prevent

  7. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Candida albicans Biofilms Do Not Trigger Reactive Oxygen Species and Evade Neutrophil Killing

    PubMed Central

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-01-01

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  9. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis.

    PubMed

    Nagashima, Masahito; Yamagishi, Yuka; Mikamo, Hiroshige

    2016-02-01

    There have been the current Japanese data on susceptibility testing for Candida isolates from vaginal candidiasis. The in vitro activities of therapeutic antifungal drugs for vulvovaginal candidiasis (VVC); miconazole (MCZ), itraconazole (ITCZ), fluconazole (FLCZ), clotrimazole (CTZ), oxiconazole (OCZ), isoconazole (ICZ) and bifonazole (BFZ) against vaginal isolates. Fifty-four strains Candida albicans and 19 strains of Candida glabrata were evaluated using a broth microdilution method specified by Clinical Laboratories Standard Institute (CLSI) document M27-A3. The MIC90 of each drug, MCZ, ITCZ, FLCZ, CTZ, OCZ, ICZ and BFZ, against C. albicans and C. glabrata isolates were 0.25, 0.12, 1, 0.06, 0.12, 0.12 and 1 μg/ml and 1, 1, 8, 0.5, 0.25, 0.5 and 1 μg/ml respectively. The activities of these drugs, except for BFZ, against C. glabrata were lower than that of C. albicans. There was one azole-resistant isolate in C. glabrata of which MIC of FLCZ is > 64 μg/ml and this isolate had cross resistance to other antifungal drugs tested. These results suggest that antifungal drugs for treatment of VVC continues to have potent antifungal activities against C. albicans and C. glabrata isolates from vaginitis. CTZ, OCZ and ICZ susceptibility of FLCZ low susceptibility C. glabrata are relatively higher than MCZ, ITCZ and FLCZ. Copyright © 2015. Published by Elsevier Ltd.

  10. Synthesis, biological evaluation and structure-activity correlation study of a series of imidazol-based compounds as Candida albicans inhibitors.

    PubMed

    Moraca, Francesca; De Vita, Daniela; Pandolfi, Fabiana; Di Santo, Roberto; Costi, Roberta; Cirilli, Roberto; D'Auria, Felicia Diodata; Panella, Simona; Palamara, Anna Teresa; Simonetti, Giovanna; Botta, Maurizio; Scipione, Luigi

    2014-08-18

    A new series of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives was synthesized. The antifungal activity was evaluated in vitro against different fungal species. The biological results show that the most active compounds possess an antifungal activity comparable or higher than Fluconazole against Candida albicans, non-albicans Candida species, Cryptococcus neoformans and dermathophytes. Because of their racemic nature, the most active compounds 5f and 6c were tested as pure enantiomers. For 6c the (R)-enantiomer resulted more active than the (S)-one, otherwise for 5f the (S)-enantiomer resulted the most active. To rationalize the experimental data, a ligand-based computational study was carried out; the results of the modelling study show that (S)-5f and (R)-6c perfectly align to the ligand-based model, showing the same relative configuration. Preliminary studies on the human lung adenocarcinoma epithelial cells (A549) have shown that 6c, 5e and 5f possess a low cytotoxicity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Development of DNA probes for Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves.more » It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.« less

  12. Multicenter surveillance of species distribution and antifungal susceptibilities of Candida bloodstream isolates in South Korea.

    PubMed

    Jung, Sook-In; Shin, Jong Hee; Song, Jae-Hoon; Peck, Kyong Ran; Lee, Kyungwon; Kim, Mi-Na; Chang, Hyun Ha; Moon, Chi Sook

    2010-06-01

    Multicenter data on in vitro susceptibility of Candida bloodstream isolates to echinocandin antifungal agents is still lacking in South Korea. We performed a prospective multicenter study to determine the species distribution of Candida bloodstream isolates and their susceptibility to five antifungal agents, including caspofungin and micafungin. A total of 639 isolates were collected from 20 tertiary hospitals between September 2006 and August 2007. Antifungal susceptibilities were determined through the use of the CLSI broth microdilution method M27-A3. The overall species distribution was as follows; Candida albicans (38%), Candida parapsilosis (26%), Candia tropicalis (20%), Candida glabrata (11%), and miscellaneous Candida species (5%). Although C. parapsilosis and miscellaneous Candida species were less susceptible to both echinocandins, all 639 isolates were susceptible to both caspofungin and micafungin (MIC, Resistance to fluconazole and voriconazole was found in 0.8% and 0.3%, respectively, among all Candida isolates, with C. glabrata and C. krusei isolates displaying the greatest level of resistance. This is the largest multicenter candidemia study conducted in South Korea and shows that non-C. albicans Candida species, including C. parapsilosis, constitutes over 60% of all Candida species isolates recovered from the bloodstream. In addition, the rates of resistance to all five antifungals, including two echinocandins, are still low among bloodstream isolates in South Korea.

  13. Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates

    PubMed Central

    Bruder-Nascimento, Ariane; Camargo, Carlos Henrique; Mondelli, Alessandro Lia; Sugizaki, Maria Fátima; Sadatsune, Terue; Bagagli, Eduardo

    2014-01-01

    Over the last decades, there have been important changes in the epidemiology of Candida infections. In recent years, Candida species have emerged as important causes of invasive infections mainly among immunocompromised patients. This study analyzed Candida spp. isolates and compared the frequency and biofilm production of different species among the different sources of isolation: blood, urine, vulvovaginal secretions and peritoneal dialysis fluid. Biofilm production was quantified in 327 Candida isolates obtained from patients attended at a Brazilian tertiary public hospital (Botucatu, Sao Paulo). C. albicans ALS3 gene polymorphism was also evaluated by determining the number of repeated motifs in the central domain. Of the 198 total biofilm-positive isolates, 72 and 126 were considered as low and high biofilm producers, respectively. Biofilm production by C. albicans was significantly lower than that by non-albicans isolates and was most frequently observed in C. tropicalis. Biofilm production was more frequent among bloodstream isolates than other clinical sources, in urine, the isolates displayed a peculiar distribution by presenting two distinct peaks, one containing biofilm-negative isolates and the other containing isolates with intense biofilm production. The numbers of tandem-repeat copies per allele were not associated with biofilm production, suggesting the evolvement of other genetic determinants. PMID:25763043

  14. Growth inhibition and ultrastructural alterations induced by Delta24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms.

    PubMed

    Ishida, Kelly; Rodrigues, Juliany Cola Fernandes; Ribeiro, Marcos Dornelas; Vila, Taíssa Vieira Machado; de Souza, Wanderley; Urbina, Julio A; Nakamura, Celso Vataru; Rozental, Sonia

    2009-04-20

    Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment.The purpose of this study was to evaluate the antifungal activity of inhibitors of Delta24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5alpha-pregnan-3beta-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 microg.ml-1 for AZA and 2 microg.ml-1 for EIL, and the MIC90 was 2 microg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant

  15. Growth inhibition and ultrastructural alterations induced by Δ24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms

    PubMed Central

    2009-01-01

    Background Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment. The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5α-pregnan-3β-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. Results AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μg.ml-1 for AZA and 2 μg.ml-1 for EIL, and the MIC90 was 2 μg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Conclusion Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant

  16. Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans.

    PubMed

    Maurya, Indresh Kumar; Pathak, Sarika; Sharma, Monika; Sanwal, Hina; Chaudhary, Preeti; Tupe, Santosh; Deshpande, Mukund; Chauhan, Virander Singh; Prasad, Rajendra

    2011-08-01

    In the present work, we investigated the antifungal activity of two de novo designed, antimicrobial peptides VS2 and VS3, incorporating unnatural amino acid α,β-dehydrophenylalanine (ΔPhe). We observed that the low-hemolytic peptides could irreversibly inhibit the growth of various Candida species and multidrug resistance strains at MIC(80) values ranging from 15.62 μM to 250 μM. Synergy experiments showed that MIC(80) of the peptides was drastically reduced in combination with an antifungal drug fluconazole. The dye PI uptake assay was used to demonstrate peptide induced cell membrane permeabilization. Intracellular localization of the FITC-labeled peptides in Candida albicans was studied by confocal microscopy and FACS. Killing kinetics, PI uptake assay, and the intracellular presence of FITC-peptides suggested that growth inhibition is not solely a consequence of increased membrane permeabilization. We showed that entry of the peptide in Candida cells resulted in accumulation of reactive oxygen species (ROS) leading to cell necrosis. Morphological alteration in Candida cells caused by the peptides was visualized by electron microscopy. We propose that de novo designed VS2 and VS3 peptides have multiple detrimental effects on target fungi, which ultimately result in cell wall disruption and killing. Therefore, these peptides represent a good template for further design and development as antifungal agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis.

    PubMed

    Ishida, Kelly; Fernandes Rodrigues, Juliany Cola; Cammerer, Simon; Urbina, Julio A; Gilbert, Ian; de Souza, Wanderley; Rozental, Sonia

    2011-01-21

    Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs.

  18. [Ascitic peritonitis due to Candida albicans].

    PubMed

    Suárez, A; Otero, L; Navascués, C A; Menéndez, M T; Román, F J; García, R; Saro, C; Rodríguez, A

    1994-09-01

    We report a case of spontaneous peritonitis due to Candida albicans, in a diabetic patient with alcoholic liver cirrhosis, ascites, gastrointestinal bleeding from esophageal varices, sepsis, renal failure and encephalopathy. These factors, added to prolonged antibiotic therapy and instrumental manipulations, could have resulted in the colonization by Candida, usually described in secondary peritonitis, but perhaps underdiagnosed in cirrhotic patients with spontaneous peritonitis and severe multiorgan failure.

  19. Live Candida albicans suppresses production of reactive oxygen species in phagocytes.

    PubMed

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-beta-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-beta-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-beta-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-beta-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.

  20. Otite externe maligne à Candida Albicans

    PubMed Central

    Elayoubi, Fahd; Lachkar, Azeddine; Aabach, Ahmed; Chouai, Mohamed; Ghailan, Mohamed Rachid

    2016-01-01

    L’otite externe maligne est une ostéomyélite de la base du crane. Le Pseudomonas aeruginosa est le germe le plus incriminé. Cependant l’origine fongique n’est pas rare. Patiente âgée de 80 ans avait présenté une otalgie gauche persistante depuis deux mois malgré un traitement bien conduit. L’examen otologique mettait en évidence des signes inflammatoires au niveau du pavillon, une sténose du conduit avec des granulomes, et otorrhée d’allure purulente. Le scanner montrait un comblement otomastoïdien, un processus inflammatoire extensif des tissus pré et rétro-auriculaire et une lyse du tympanal. Vu l’absence d’amélioration un examen mycologique a été réalisé et qui a révélé la présence de Candida Albicans. Les cas d’otite externe maligne à Candida Albicans sont rarement rapportés. L’origine fongique doit être suspecté devant la négativité des prélèvements bactériologiques et la non amélioration malgré un traitement antibiotique bien conduit, et confirmée par des prélèvements mycologiques parfois multiples. L’otite externe maligne à Candida Albicans est une infection rare potentiellement mortelle. PMID:28154677

  1. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms.

    PubMed

    Harrison, Joe J; Ceri, Howard; Yerly, Jerome; Rabiei, Maryam; Hu, Yaoping; Martinuzzi, Robert; Turner, Raymond J

    2007-08-01

    Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO(4)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), AsO(2)(-), and SeO(3)(2-)) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated "domed," "layer cake," "flat," and "mycelial." This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.

  2. Prioritizing and modelling of putative drug target proteins of Candida albicans by systems biology approach.

    PubMed

    Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul

    2018-01-01

    Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are

  3. Candida parapsilosis Protects Premature Intestinal Epithelial Cells from Invasion and Damage by Candida albicans

    PubMed Central

    Gonia, Sara; Archambault, Linda; Shevik, Margaret; Altendahl, Marie; Fellows, Emily; Bliss, Joseph M.; Wheeler, Robert T.; Gale, Cheryl A.

    2017-01-01

    Candida is a leading cause of late-onset sepsis in premature infants and is thought to invade the host via immature or damaged epithelial barriers. We previously showed that the hyphal form of Candida albicans invades and causes damage to premature intestinal epithelial cells (pIECs), whereas the non-hyphal Candida parapsilosis, also a fungal pathogen of neonates, has less invasion and damage abilities. In this study, we investigated the potential for C. parapsilosis to modulate pathogenic interactions of C. albicans with the premature intestine. While a mixed infection with two fungal pathogens may be expected to result in additive or synergistic damage to pIECs, we instead found that C. parapsilosis was able to protect pIECs from invasion and damage by C. albicans. C. albicans-induced pIEC damage was reduced to a similar extent by multiple different C. parapsilosis strains, but strains differed in their ability to inhibit C. albicans invasion of pIECs, with the inhibitory activity correlating with their adhesiveness for C. albicans and epithelial cells. C. parapsilosis cell-free culture fractions were also able to significantly reduce C. albicans adhesion and damage to pIECs. Furthermore, coadministration of C. parapsilosis cell-free fractions with C. albicans was associated with decreased infection and mortality in zebrafish. These results indicate that C. parapsilosis is able to reduce invasion, damage, and virulence functions of C. albicans. Additionally, the results with cellular and cell-free fractions of yeast cultures suggest that inhibition of pathogenic interactions between C. albicans and host cells by C. parapsilosis occurs via secreted molecules as well as by physical contact with the C. parapsilosis cell surface. We propose that non-invasive commensals can be used to inhibit virulence features of pathogens and deserve further study as a non-pharmacological strategy to protect the fragile epithelial barriers of premature infants. PMID:28382297

  4. Fluconazole non-susceptible breakthrough candidemia after prolonged low-dose prophylaxis: a prospective FUNGINOS study.

    PubMed

    Orasch, Christina; Mertz, Dominik; Garbino, Jorge; van Delden, Christian; Emonet, Stephane; Schrenzel, Jacques; Zimmerli, Stefan; Damonti, Lauro; Mühlethaler, Konrad; Imhof, Alexander; Ruef, Christian; Fehr, Jan; Zbinden, Reinhard; Boggian, Katia; Bruderer, Thomas; Flückiger, Ursula; Conen, Anna; Khanna, Nina; Frei, Reno; Bregenzer, Thomas; Lamoth, Frédéric; Erard, Véronique; Bochud, Pierre-Yves; Calandra, Thierry; Bille, Jacques; Marchetti, Oscar

    2018-05-01

    Breakthrough candidemia (BTC) on fluconazole was associated with non-susceptible Candida spp. and increased mortality. This nationwide FUNGINOS study analyzed clinical and mycological BTC characteristics. A 3-year prospective study was conducted in 567 consecutive candidemias. Species identification and antifungal susceptibility testing (CLSI) were performed in the FUNGINOS reference laboratory. Data were analyzed according to STROBE criteria. 43/576 (8%) BTC occurred: 37/43 (86%) on fluconazole (28 prophylaxis, median 200 mg/day). 21% BTC vs. 23% non-BTC presented severe sepsis/septic shock. Overall mortality was 34% vs. 32%. BTC was associated with gastrointestinal mucositis (multivariate OR 5.25, 95%CI 2.23-12.40, p < 0.001) and graft-versus-host-disease (6.25, 1.00-38.87, p = 0.05), immunosuppression (2.42, 1.03-5.68, p = 0.043), and parenteral nutrition (2.87, 1.44-5.71, p = 0.003). Non-albicans Candida were isolated in 58% BTC vs. 35% non-BTC (p = 0.005). 63% of 16 BTC occurring after 10-day fluconazole were non-susceptible (Candida glabrata, Candida krusei, Candida norvegensis) vs. 19% of 21 BTC (C. glabrata) following shorter exposure (7.10, 1.60-31.30, p = 0.007). Median fluconazole MIC was 4 mg/l vs. 0.25 mg/l (p < 0.001). Ten-day fluconazole exposure predicted non-susceptible BTC with 73% accuracy. Outcomes of BTC and non-BTC were similar. Fluconazole non-susceptible BTC occurred in three out of four cases after prolonged low-dose prophylaxis. This implies reassessment of prophylaxis duration and rapid de-escalation of empirical therapy in BTC after short fluconazole exposure. Copyright © 2018 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  5. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11

    PubMed Central

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans. PMID:27902776

  6. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    PubMed

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri; Tavanti, Arianna; Lupetti, Antonella

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  7. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Yeasts isolated from Algerian infants's feces revealed a burden of Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae.

    PubMed

    Seddik, Hamza Ait; Ceugniez, Alexandre; Bendali, Farida; Cudennec, Benoit; Drider, Djamel

    2016-01-01

    This study aimed at showing the yeast diversity in feces of Algerian infants, aged between 1 and 24 months, hospitalized at Bejaia hospital (northeast side of the country). Thus, 20 colonies with yeast characteristics were isolated and identified using biochemical (ID32C Api system) and molecular (sequencing of ITS1-5.8S-ITS2 region) methods. Almost all colonies isolated (19 strains) were identified as Candida spp., with predominance of Candida albicans species, and one strain was identified as Saccharomyces cerevisiae. Screening of strains with inhibitory activities unveiled the potential of Candida parapsilosis P48L1 and Candida albicans P51L1 to inhibit the growth of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Further studies performed with these two Candida strains revealed their susceptibility to clinically used antifungal compounds and were then characterized for their cytotoxicity and hemolytic properties. On the other hand, Saccharomyces cerevisiae P9L1 isolated as well in this study was shown to be devoid of antagonism but resulted safe and overall usable as probiotic.

  9. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and chemometrics by CHROMagar™ Candida.

    PubMed

    Wohlmeister, Denise; Vianna, Débora Renz Barreto; Helfer, Virginia Etges; Calil, Luciane Noal; Buffon, Andréia; Fuentefria, Alexandre Meneghello; Corbellini, Valeriano Antonio; Pilger, Diogo André

    2017-10-01

    Pathogenic Candida species are detected in clinical infections. CHROMagar™ is a phenotypical method used to identify Candida species, although it has limitations, which indicates the need for more sensitive and specific techniques. Infrared Spectroscopy (FT-IR) is an analytical vibrational technique used to identify patterns of metabolic fingerprint of biological matrixes, particularly whole microbial cell systems as Candida sp. in association of classificatory chemometrics algorithms. On the other hand, Soft Independent Modeling by Class Analogy (SIMCA) is one of the typical algorithms still little employed in microbiological classification. This study demonstrates the applicability of the FT-IR-technique by specular reflectance associated with SIMCA to discriminate Candida species isolated from vaginal discharges and grown on CHROMagar™. The differences in spectra of C. albicans, C. glabrata and C. krusei were suitable for use in the discrimination of these species, which was observed by PCA. Then, a SIMCA model was constructed with standard samples of three species and using the spectral region of 1792-1561cm -1 . All samples (n=48) were properly classified based on the chromogenic method using CHROMagar™ Candida. In total, 93.4% (n=45) of the samples were correctly and unambiguously classified (Class I). Two samples of C. albicans were classified correctly, though these could have been C. glabrata (Class II). Also, one C. glabrata sample could have been classified as C. krusei (Class II). Concerning these three samples, one triplicate of each was included in Class II and two in Class I. Therefore, FT-IR associated with SIMCA can be used to identify samples of C. albicans, C. glabrata, and C. krusei grown in CHROMagar™ Candida aiming to improve clinical applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Candida albicans-induced inflammatory response in human keratinocytes.

    PubMed

    Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C

    2004-06-01

    Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.

  11. Antifungal Drug Susceptibility of Candida Species Isolated from HIV-Positive Patients Recruited at a Public Hospital in São Luís, Maranhão, Brazil.

    PubMed

    Terças, Ana L G; Marques, Sirlei G; Moffa, Eduardo B; Alves, Márcia B; de Azevedo, Conceição M P S; Siqueira, Walter L; Monteiro, Cristina A

    2017-01-01

    Oropharyngeal candidiasis is the most common fungal infection in hospitalized patients with acquired immune deficiency syndrome (AIDS). Its progression results in invasive infections, which are a significant cause of morbidity and mortality. This study aimed to quickly and accurately identify Candida spp. from oral mucosa of AIDS patients recruited at Presidente Vargas Hospital, in São Luís city, Brazil and to evaluate the sensitivity profile of these fungi to antifungals by using an automated system. Isolates were collected from oropharyngeal mucosa of 52 hospitalized AIDS patients, under anti-viral and antifungal therapies. Patients were included in research if they were HIV-positive, above 18 years of age and after obtaining their written consent. CHROMagar ® Candida and the automated ViteK-2 ® system were used to isolate and identify Candida spp., respectively. Antifungal susceptibility testing was performed using the ViteK-2 ® system, complemented with the Etest ® , using the drugs amphotericin B, fluconazole, flucytosine, and voriconazole. Oropharyngeal candidiasis had a high prevalence in these hospitalized AIDS patients (83%), and the most prevalent species was Candida albicans (56%). Antifungal susceptibility test showed that 64.7% of the Candida spp. were susceptible, 11.8% were dose-dependent sensitive, and 23.5% were resistant. All the Candida krusei and Candida famata isolates and two of Candida glabrata were resistant to fluconazole. Most of AIDS patients presented oropharyngeal candidiasis and C. albicans was the most frequently isolated species. The results showed high variability in resistance among isolated species and indicates the need to identify the Candida spp. involved in the infection and the need to test antifungal susceptibility as a guide in drug therapy in patients hospitalized with AIDS. This is the first relate about AIDS patients monitoring in a public hospital in São Luís concerning the precise identification and

  12. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans.

    PubMed

    Chen, Ying-Lien; Lehman, Virginia N; Averette, Anna F; Perfect, John R; Heitman, Joseph

    2013-01-01

    The object of this study was to test whether posaconazole, a broad-spectrum antifungal agent inhibiting ergosterol biosynthesis, exhibits synergy with the β-1,3 glucan synthase inhibitor caspofungin or the calcineurin inhibitor FK506 against the human fungal pathogen Candida albicans. Although current drug treatments for Candida infection are often efficacious, the available antifungal armamentarium may not be keeping pace with the increasing incidence of drug resistant strains. The development of drug combinations or novel antifungal drugs to address emerging drug resistance is therefore of general importance. Combination drug therapies are employed to treat patients with HIV, cancer, or tuberculosis, and has considerable promise in the treatment of fungal infections like cryptococcal meningitis and C. albicans infections. Our studies reported here demonstrate that posaconazole exhibits in vitro synergy with caspofungin or FK506 against drug susceptible or resistant C. albicans strains. Furthermore, these combinations also show in vivo synergy against C. albicans strain SC5314 and its derived echinocandin-resistant mutants, which harbor an S645Y mutation in the CaFks1 β-1,3 glucan synthase drug target, suggesting potential therapeutic applicability for these combinations in the future.

  13. CHROMagar Candida Medium for Direct Susceptibility Testing of Yeast from Blood Cultures

    PubMed Central

    Tan, Grace L.; Peterson, Ellena M.

    2005-01-01

    An evaluation was performed on 95 blood cultures positive for Candida spp. to determine the correlation of direct susceptibility testing of fluconazole versus both standardized disk diffusion and MIC methods. For direct testing, an aliquot taken from BD BACTEC Plus and/or BD BACTEC Lytic/10 bottles (Becton Dickinson [BD], Sparks, MD) positive by gram stain for yeast was subcultured to CHROMagar Candida (BD), and a 25-μg fluconazole disk (BD) was placed on the plate. The area of growth inhibition surrounding the disk was measured at 24 and 48 h. In addition, a subculture of the isolate was tested by a microdilution MIC using YeastOne (TREK Diagnostics Systems Inc., OH) and disk diffusion (NCCLS M44-A) using a standardized inoculum plated onto CHROMagar Candida as well as Mueller-Hinton agar to which 2% glucose and 0.5 μg/ml methylene blue dye was added (MH-GMB). The categorical interpretation derived from the MIC was used as the reference to which the disk diffusion results were compared. There were a total of 41 Candida albicans, 23 Candida glabrata, 20 Candida parapsilosis, 9 Candida tropicalis, and 1 each of Candida krusei and Candida lusitaniae tested. At 24 h there was full agreement among the methods for all C. albicans, C. tropicalis, C. lusitaniae, and C. krusei isolates. For the C. parapsilosis isolates at 24 h there was one very major discrepancy using the direct CHROMagar and one major error with the standardized MH-GMB. The majority of the errors were seen at 24 h with the C. glabrata isolates. Of the 23 C. glabrata isolates at 24 h by direct CHROMagar, there were 10 minor and 1 very major error; by MH-GMB there were 12 minor and 2 very major errors; and by standardized CHROMagar Candida there were 13 minor and 2 major errors. There were no very major errors with C. glabrata when all plates were read at 48 h. At 24 h by the direct and standardized CHROMagar the majority of C. glabrata isolates were more resistant, whereas by MH-GMB they were more

  14. Echinocandin Resistance in Candida Species Isolates from Liver Transplant Recipients.

    PubMed

    Prigent, Gwénolé; Aït-Ammar, Nawel; Levesque, Eric; Fekkar, Arnaud; Costa, Jean-Marc; El Anbassi, Sarra; Foulet, Françoise; Duvoux, Christophe; Merle, Jean-Claude; Dannaoui, Eric; Botterel, Françoise

    2017-02-01

    Liver transplant recipients are at risk of invasive fungal infections, especially candidiasis. Echinocandin is recommended as prophylactic treatment but is increasingly associated with resistance. Our aim was to assess echinocandin drug resistance in Candida spp. isolated from liver transplant recipients treated with this antifungal class. For this, all liver-transplanted patients in a University Hospital (Créteil, France) between January and June of 2013 and 2015 were included. Susceptibilities of Candida isolates to echinocandins were tested by Etest and the EUCAST reference method. Isolates were analyzed by FKS sequencing and genotyped based on microsatellites or multilocus sequence typing (MLST) profiles. Ninety-four patients were included, and 39 patients were colonized or infected and treated with echinocandin. Echinocandin resistance appeared in 3 (8%) of the treated patients within 1 month of treatment. One patient was colonized by resistant Candida glabrata, one by resistant Candida dubliniensis, and one by resistant Candida albicans Molecular analysis found three mutations in FKS2 HS1 (F659S, S663A, and D666E) for C. glabrata and one mutation in FKS1 HS1 (S645P) for C. dubliniensis and C. albicans Susceptible and resistant isolates belonged to the same genotype. To our knowledge, this is the first study on echinocandin resistance in Candida spp. in a liver transplant population. Most resistant isolates were found around/in digestive sites, perhaps due to lower diffusion of echinocandin in these sites. This work documents the risk of emergence of resistance to echinocandin, even after short-term treatment. Copyright © 2017 Prigent et al.

  15. Human recombinant lactoferrin acts synergistically with antimicrobials commonly used in neonatal practice against coagulase-negative staphylococci and Candida albicans causing neonatal sepsis.

    PubMed

    Venkatesh, Mohan Pammi; Rong, Liang

    2008-09-01

    Neonatal sepsis causes significant mortality and morbidity. Coagulase-negative staphylococci (CoNS) and Candida frequently cause neonatal sepsis at >72 h of age. Lactoferrin, which is present in human milk, is a component of innate immunity and has broad-spectrum antimicrobial activity. The synergistic effects of lactoferrin with antibiotics against neonatal isolates have not been systematically evaluated. Here, eight clinical strains (seven neonatal) of CoNS and three strains (two neonatal) of Candida albicans were studied. MIC50 and MIC90 values of human recombinant lactoferrin (talactoferrin; TLF), vancomycin (VAN) and nafcillin (NAF) against CoNS, and of TLF, amphotericin B (AMB) and fluconazole (FLC) against C. albicans, were evaluated according to established guidelines. Antimicrobial combinations of TLF with NAF or VAN against CoNS, and TLF with AMB or FLC against C. albicans, were evaluated by a checkerboard method with serial twofold dilutions. Synergy was evaluated by the median effects principle, and combination indices and dose reduction indices were reported at 50, 75 and 90% inhibitory effect at several drug-dose ratios. It was found that TLF acted synergistically with NAF and VAN against CoNS, and with AMB and FLC against C. albicans, at multiple dose effects and drug-dose ratios with few exceptions. In synergistic combinations, drug reduction indices indicated a significant reduction in doses of antibiotics, which may be clinically relevant. Thus TLF acts synergistically with anti-staphylococcal and anti-Candida agents commonly used in neonatal practice and is a promising agent that needs to be evaluated in clinical studies.

  16. [The in vitro antifungal activities of fluconazole against pathogenic yeasts recently isolated from clinical specimens].

    PubMed

    Yamaguchi, H; Igari, J; Kume, H; Abe, M; Oguri, T; Kanno, H; Kawakami, S; Okuzumi, K; Fukayama, M; Ito, A; Kawata, K; Uchida, K

    1997-09-01

    The emergence of Candida albicans resistance to azole antifungal agents have been reported in the U. S. and Europe. We examined the in vitro antifungal activities of fluconazole against clinical isolates collected by seven investigators in three years to examine if a tendency existed toward the development of azole-resistance among fungal isolates in Japan. The following results were obtained: 1. Sensitivities to fluconazole (FLCZ) were determined for yeast-like fungi, including 113 strains isolated in 1993, 149 strains isolated in 1994 and 205 strains isolated in 1995. No significant differences in sensitivities in the three years were detected. 2. Minimum inhibitory concentrations of FLCZ were 0.1-0.78 microgram/ml for C. albicans and 3.13-25 micrograms/ml for C. glabrata. Strains with 25 micrograms/ml of FLCZ's MIC were detected; two strains of C. krusei and one strain each of C. krusei, Trichospron beigelii and Hansenula anomala. No strains with higher than 50 micrograms/ml MIC of FLCZ were detected. 3. In vitro activities of FLCZ were compared between clinical strains isolated between 1993 and 1995 and clinical strains isolated before the marketing of FLCZ (up to December 1987) or clinical yeasts isolated between 1991 and 1992. No significant differences were observed, suggesting that no tendency existed toward azole resistance among fungal strains examined.

  17. Comparison of In Vitro Susceptibility Characteristics of Candida Species from Cases of Invasive Candidiasis in Solid Organ and Stem Cell Transplant Recipients: Transplant-Associated Infections Surveillance Network (TRANSNET), 2001 to 2006▿

    PubMed Central

    Lockhart, Shawn R.; Wagner, Debra; Iqbal, Naureen; Pappas, Peter G.; Andes, David R.; Kauffman, Carol A.; Brumble, Lisa M.; Hadley, Susan; Walker, Randall; Ito, James I.; Baddley, John W.; Chiller, Tom; Park, Benjamin J.

    2011-01-01

    Invasive fungal infections (IFI) are a major cause of morbidity and mortality among both solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients. Candida is the most common cause of IFI in SOT recipients and the second most common cause of IFI in HSCT recipients. We determined susceptibilities to fluconazole, voriconazole, itraconazole, posaconazole, amphotericin B, and caspofungin for 383 invasive Candida sp. isolates from SOT and HSCT recipients enrolled in the Transplant-Associated Infection Surveillance Network and correlated these results to clinical data. Fluconazole resistance in C. albicans, C. tropicalis, and C. parapsilosis isolates was low (1%), but the high percentage of C. glabrata and C. krusei isolates within this group of patients increased the overall percentage of fluconazole resistance to 16%. Voriconazole resistance was 3% overall but was 8% among C. glabrata isolates. On multivariable analysis, among HSCT recipients fluconazole nonsusceptibility was independently associated with C. glabrata, non-Hodgkin's lymphoma, cytomegalovirus (CMV) antigenemia, diabetes active at the time of the IFI, and any prior amphotericin B use; among SOT recipients, fluconazole nonsusceptibility was independently associated with any fluconazole use in the 3 months prior to the IFI, C. glabrata, ganciclovir use in the 3 months prior to the IFI, diabetes acquired since the transplant, and gender. PMID:21562099

  18. Chronic vulvovaginal candidiasis: characteristics of women with Candida albicans, C glabrata and no candida.

    PubMed Central

    Geiger, A M; Foxman, B; Sobel, J D

    1995-01-01

    INTRODUCTION--Although as many as 5% of all women complain of chronic vulvovaginitis, little is known about these women. They may often be misdiagnosed and the role of vaginal yeast culture in diagnosing vulvovaginal candidiasis (VVC) among them has not been clearly defined. METHODS--To address these deficiencies, we tabulated initial diagnoses among new patients and conducted a medical record-based, unmatched case-control study among women reporting a history of chronic vulvovaginitis (four or more episodes in the past year) at a vulvovaginitis specialty clinic. Clinical presentation and medical history were compared for women who had a positive vaginal yeast culture for either Candida albicans or C glabrata, or who had a negative culture. RESULTS--One-third of the women had no apparent vulvovaginal disease at their initial visit. All women reported similar symptoms, except for an increased prevalence of painful sexual intercourse in women with C albicans (chi 2 p = 0.014 versus women with C glabrata and p < 0.001 versus women with no candida). Women with C glabrata were more likely to be non-white (chi 2 p = 0.071 compared with women with C albicans) and to report an underlying medical condition (chi 2 p < or = 0.001 versus both women with C albicans and women with no candida). Physical examination was normal only in women with no candida. C albicans cases were more likely to have positive potassium hydroxide microscopy (chi 2 p = 0.016) and a pH < or = 4.5 (chi 2 p = 0.011) than were C glabrata cases. CONCLUSIONS--These results suggest that reliance on symptoms and signs alone will result in significant misdiagnosis of chronic vulvovaginitis. Among women with VVC, subtle differences in clinical presentation do not reliably distinguish women with C albicans from those with C glabrata. Our study also indicates that vaginal yeast cultures, while not necessary for every patient, are valuable in confirming negative diagnoses, detecting microscopy false-negatives, and

  19. Species distribution and antifungal susceptibility patterns of Candida isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa.

    PubMed

    Mnge, P; Okeleye, B I; Vasaikar, S D; Apalata, T

    2017-05-15

    Candida species are the leading cause of invasive fungal infections, and over the past decade there has been an increased isolation of drug resistant Candida species. This study aimed to identify the species distribution of Candida isolates and to determine their unique antifungal susceptibility and resistance patterns. During a cross-sectional study, 209 Candida isolates (recovered from 206 clinical samples) were collected and their species distribution was determined using ChromAgar Candida. The Vitek-2 system (Biomerieux, South Africa) was used to determine minimum inhibitory concentrations (MICs) to azoles (fluconazole, voriconazole), echinocandins (caspofungin, micafungin), polyenes (amphotericin B) and flucytosine. Four species of Candida were isolated, of which C. albicans was the most frequent, isolated in 45.4% (95/209) of the isolates, followed by C. glabrata: 31.1% (65/209). The MICs of the different antifungal drugs varied amongst the species of Candida. From the 130 isolates tested for MICs, 90.77% (112/130) were susceptible to all antifungal drugs and 6.9% (9/130) of the isolates were multi-drug resistant. C. dubliniensis (n=2) isolates were susceptible to all the above mentioned antifungal drugs. There was no significant difference in species distribution amongst clinical specimens and between patients' genders (P>0.05). An increase in MIC values for fluconazole and flucytosine towards the resistance range was observed. To our knowledge, this is the first report on surveillance of Candida species distribution and antifungal susceptibility at a public tertiary teaching hospital in Eastern Cape, South Africa.

  20. An outbreak of Candida albicans folliculitis masquerading as Malassezia folliculitis in a prison population.

    PubMed

    Jalalat, Sheila; Hunter, Lindsey; Yamazaki, Mika; Head, Elizabeth; Kelly, Brent

    2014-04-01

    Several inmates from a non-air-conditioned prison were sent to the University of Texas Medical Branch dermatology clinic for unexplained eruptions not responding to various treatments. They were initially diagnosed with Malassezia folliculitis based on clinical examination and histological findings. The patients' cultures from skin scrapings, however, revealed Candida albicans confirmed by growth on Mycosel agar and further by the germ tube production method. Five cases were brought to the clinic, but at least 30 other inmates were reported to have similar cutaneous eruptions. Given that these patients were generally immunocompetent, this is a rare finding. Factors favoring pseudohyphal growth for these patients included use of topical steroids and/or systemic antibiotics and hot and humid climate. All patients' folliculitis resolved with fluconazole and/or antifungal cream with no further complications.

  1. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1→3)-β-D-glucan.

    PubMed

    Panpetch, Wimonrat; Somboonna, Naraporn; Bulan, Dewi Embong; Issara-Amphorn, Jiraphorn; Finkelman, Malcolm; Worasilchai, Navaporn; Chindamporn, Ariya; Palaga, Tanapat; Tumwasorn, Somying; Leelahavanichkul, Asada

    2017-01-01

    Candida albicans is the most common fungus in the human intestinal microbiota but not in mice. To make a murine sepsis model more closely resemble human sepsis and to explore the role of intestinal C. albicans, in the absence of candidemia, in bacterial sepsis, live- or heat-killed C. albicans was orally administered to mice at 3h prior to cecal ligation and puncture (CLP). A higher mortality rate of CLP was demonstrated with Candida-administration (live- or heat-killed) prior to CLP. Fecal Candida presented only in experiments with live-Candida administration. Despite the absence of candidemia, serum (1→3)-β-D-glucan (BG) was higher in CLP with Candida-administration than CLP-controls (normal saline administration) at 6h and/or 18h post-CLP. Interestingly, fluconazole attenuated the fecal Candida burden and improved survival in mice with live-Candida administration, but not CLP-control. Microbiota analysis revealed increased Bacteroides spp. and reduced Lactobacillus spp. in feces after Candida administration. Additionally, synergy in the elicitation of cytokine production from bone marrow-derived macrophages, in vitro, was demonstrated by co-exposure to heat-killed E. coli and BG. In conclusion, intestinal abundance of fungi and/or fungal-molecules was associated with increased bacterial sepsis-severity, perhaps through enhanced cytokine elicitation induced by synergistic responses to molecules from gut-derived bacteria and fungi. Conversely, reducing intestinal fungal burdens decreased serum BG and attenuated sepsis in our model.

  2. Addition of DNase Improves the In Vitro Activity of Antifungal Drugs against Candida albicans Biofilms

    PubMed Central

    Martins, Margarida; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2011-01-01

    SUMMARY Background Cells within Candida albicans biofilms display decreased susceptibility to most clinically used antifungal agents. We recently demonstrated that extracellular DNA (eDNA) plays an important role in biofilm integrity, as a component of the biofilm matrix. Objective To gain insight into the contributions of eDNA to C. albicans biofilms antifungal susceptibility by the investigation of the impact of the combined use of deoxyribonuclease I (DNase) and antifungals to treat biofilms. Methods C. albicans biofilms were formed using a simple and reproducible 96-well plate-based method. The activity of the combined use of 0.13 mg l−1 DNase and antifungals was estimated by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay, and total viable counts. Results and Conclusions Here we report the improved efficacy of amphotericin B when in combination with DNase against C. albicans biofilms, as assessed by XTT readings and viable counts. Furthermore, although DNase increased the efficacy of caspofungin in the reduction of mitochondrial activity, no changes were observed in terms of culturable cells. DNase did not affect biofilm cells susceptibility to fluconazole. This work suggests that agents that target processes affecting the biofilm structural integrity may have potential use as adjuvants of a catheter–lock therapy. PMID:21668524

  3. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus.

    PubMed

    Costa, G M; Endo, E H; Cortez, D A G; Nakamura, T U; Nakamura, C V; Dias Filho, B P

    2016-09-01

    Three chalcones, 2'-hydroxy-4,4',6'-trimethoxychalcone, 2'-hydroxy-4,4',6'-tetramethoxychalcone, and 3,2'-dihydroxy-4,4',6'-trimethoxychalcone, were isolated from the leaves of Piper hispidum in a bioguided fractionation of crude extract. The antimicrobial activity of crude extract of P. hispidum leaves was determined against bacteria Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and yeasts Candida albicans, C. parapsilosis and C. tropicalis. Fractions and chalcones were tested against C. albicans and S. aureus. The checkerboard assay was performed to assess synergic interactions between extract and antifungal drugs, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay was used to evaluate anti-biofilm effects of extract. The extract was active against yeasts, S. aureus and B. subtilis with MIC values between 15.6 and 62.5μg/mL. Synergistic effects of extract associated with fluconazole and nystatin were observed against C. albicans, with fractional inhibitory concentration indices of 0.37 and 0.24, respectively. The extract was also effective against C. albicans and S. aureus biofilm cells at concentrations of 62.5 and 200μg/mL, respectively. Thus, P. hispidum may be a possible source of bioactive substances with antimicrobial properties. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis.

    PubMed

    Tashiro, Masato; Kimura, Soichiro; Tateda, Kazuhiro; Saga, Tomoo; Ohno, Akira; Ishii, Yoshikazu; Izumikawa, Koichi; Tashiro, Takayoshi; Kohno, Shigeru; Yamaguchi, Keizo

    2012-05-01

    Candidemia remains a major cause of morbidity and mortality, especially in immunocompromised patients. A strategy of reducing virulence and virulence factors of Candida spp. is an attractive approach for the treatment of serious infections caused by these yeasts. Recently, farnesol has been reported to be a quorum-sensing autoinducer, as well as a virulence factor of C. albicans. In the present study, we examined the effects of pravastatin, a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor on the in vitro production of farnesol. In addition, the synergistic effects of pravastatin with fluconazole (FLC) were examined in a mouse model of systemic infections. In vitro experiments demonstrated that pravastatin had synergistic activity with FLC as judged by fractional inhibitory concentration index (FICI) and suppression of farnesol production at sub-minimum inhibitory concentrations. Furthermore, significant improvement of survival in systemic infection models was shown with pravastatin supplementation. The survival benefits of pravastatin were correlated with reductions of fungal burden. These data suggest the potential of pravastatin as a supportive therapy against C. albicans infections. Synergistic antifungal activity and suppression of HMG-CoA reductase-associated Candida virulence factors, including farnesol, may explain, at least in part, the in vivo efficacy of pravastatin.

  5. Candida albicans, the opportunist. A cellular and molecular perspective.

    PubMed

    Dupont, P F

    1995-02-01

    Candida albicans causes the majority of opportunistic fungal infections. The yeast's commensualistic relationship with humans enables it, when environmental conditions are favorable, to multiply and replace much of the normal flora. Virulence factors of C. albicans, enabling the organism to adhere to and penetrate host tissues, involve specific molecular interactions between the cells of the fungus and the host. Localized disease, such as oral candidiasis, onychomycosis, and vaginitis, results. These infections are usually limited to surfaces of the host, and can be quickly and successfully controlled by the use of one of the available antifungal agents. Candida albicans infections typically become systemic and life threatening when the host is immunocompromised. Depending on the immune defect in the host, one of the spectrum of Candida diseases can develop. If successful treatment of these patients is to be achieved, modulation of the immune deficit, as well as the use of an appropriate antifungal drug, must become a routine part of therapeutic interventions.

  6. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  7. Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes▿ †

    PubMed Central

    Wellington, Melanie; Dolan, Kristy; Krysan, Damian J.

    2009-01-01

    Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism. PMID:18981256

  8. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    PubMed Central

    Bordbar, Mahboubeh; Nouraei, Hasti; Khodadadi, Hossein

    2017-01-01

    Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP) with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp), all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7%) were biofilm-positive, 54 out of 110 Candida isolates (49%) demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%). All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis. PMID:29318048

  9. Structure-Based Rational Design of Novel Inhibitors Against Fructose-1,6-Bisphosphate Aldolase from Candida albicans.

    PubMed

    Han, Xinya; Zhu, Xiuyun; Hong, Zongqin; Wei, Lin; Ren, Yanliang; Wan, Fen; Zhu, Shuaihua; Peng, Hao; Guo, Li; Rao, Li; Feng, Lingling; Wan, Jian

    2017-06-26

    Class II fructose-1,6-bisphosphate aldolases (FBA-II) are attractive new targets for the discovery of drugs to combat invasive fungal infection, because they are absent in animals and higher plants. Although several FBA-II inhibitors have been reported, none of these inhibitors exhibit antifungal effect so far. In this study, several novel inhibitors of FBA-II from C. albicans (Ca-FBA-II) with potent antifungal effects were rationally designed by jointly using a specific protocols of molecular docking-based virtual screening, accurate binding-conformation evaluation strategy, synthesis and enzymatic assays. The enzymatic assays reveal that the compounds 3c, 3e-g, 3j and 3k exhibit high inhibitory activity against Ca-FBA-II (IC 50 < 10 μM), and the most potential inhibitor is 3g, with IC 50 value of 2.7 μM. Importantly, the compounds 3f, 3g, and 3l possess not only high inhibitions against Ca-FBA-II, but also moderate antifungal activities against C. glabrata (MIC 80 = 4-64 μg/mL). The compounds 3g, 3l, and 3k in combination with fluconazole (8 μg/mL) displayed significantly synergistic antifungal activities (MIC 80 < 0.0625 μg/mL) against resistant Candida strains, which are resistant to azoles drugs. The probable binding modes between 3g and the active site of Ca-FBA-II have been proposed by using the DOX (docking, ONIOM, and XO) strategy. To our knowledge, no FBA-II inhibitors with antifungal activities against wild type and resistant strains from Candida were reported previously. The positive results suggest that the strategy adopted in this study are a promising method for the discovery of novel drugs against azole-resistant fungal pathogens in the future.

  10. Epidemiology of Oropharyngeal Candida Colonization and Infection in Patients Receiving Radiation for Head and Neck Cancer

    PubMed Central

    Redding, Spencer W.; Zellars, Richard C.; Kirkpatrick, William R.; McAtee, Robert K.; Caceres, Marta A.; Fothergill, Annette W.; Lopez-Ribot, Jose L.; Bailey, Cliff W.; Rinaldi, Michael G.; Patterson, Thomas F.

    1999-01-01

    Oral mucosal colonization and infection with Candida are common in patients receiving radiation therapy for head and neck cancer. Infection is marked by oral pain and/or burning and can lead to significant patient morbidity. The purpose of this study was to identify Candida strain diversity in this population by using a chromogenic medium, subculturing, molecular typing, and antifungal susceptibility testing of clinical isolates. These results were then correlated with clinical outcome in patients treated with fluconazole for infection. Specimens from 30 patients receiving radiation therapy for head and neck cancer were cultured weekly for Candida. Patients exhibiting clinical infection were treated with oral fluconazole. All isolates were plated on CHROMagar Candida and RPMI medium, subcultured, and submitted for antifungal susceptibility testing and molecular typing. Infections occurred in 27% of the patients and were predominantly due to Candida albicans (78%). Candida carriage occurred in 73% of patients and at 51% of patient visits. Yeasts other than C. albicans predominated in carriage, as they were isolated from 59% of patients and at 52% of patient visits. All infections responded clinically, and all isolates were susceptible to fluconazole. Molecular typing showed that most patients had similar strains throughout their radiation treatment. One patient, however, did show the acquisition of a new strain. With this high rate of infection (27%), prophylaxis to prevent infection should be evaluated for these patients. PMID:10565903

  11. Candida albicans aggravates duodenal ulcer perforation induced by administration of cysteamine in rats.

    PubMed

    Nakamura, Tetsuya; Yoshida, Masashi; Ishikawa, Hideki; Kameyama, Kaori; Wakabayashi, Go; Otani, Yoshihide; Shimazu, Motohide; Tanabe, Minoru; Kawachi, Shigeyuki; Kumai, Koichiro; Kubota, Tetsuro; Saikawa, Yoshiro; Sano, Katsuko; Kitajima, Masaki

    2007-05-01

    Candida sp are frequently isolated from the ascitic fluid of patients with perforated ulcers. The present study was performed to examine whether Candida infection may be involved in the process of ulcer perforation. Male Wistar rats were divided into a saline group (n = 15) and a Candida group (n = 17). Cysteamine-HCl (Sigma; 31 mg/100 g) was administered thrice on day 1 to both groups of animals. Candida albicans at a density of 10(8) in 0.5 mL of saline was administered 1 h before, and 12 h and 24 h after the first administration of cysteamine in the Candida group. Perforated duodenal ulcers were observed in 94.1% of the rats in the Candida group, but only 26.7% of the rats in the saline group (P < 0.01). The area of the duodenal ulcers in the Candida group was 40.89 +/- 33.07 mm2, whereas that in the saline group was 16.53 +/- 20.4 mm2 (P < 0.05). The mortality rate was significantly higher in the Candida group than in the saline group. In the Candida group, colonization by C. albicans was recognized at the ulcer base, surrounded by marked granulocytic infiltration. The number of eosinophils infiltrating the ulcer base was also significantly greater in the Candida group than in the saline group. Immunohistochemical analysis revealed the expression of secretory aspartyl protease (SAP) in the region of the ulcer showing colonization by C. albicans in the Candida group. Candida albicans aggravates duodenal ulcer perforation in the experimental model of cysteamine-induced duodenal ulcer perforation. The present findings suggest that SAP and host-parasite relationships, including granulocyte-dependent mechanisms, may be involved in the aggravation of ulcer perforation by C. albicans.

  12. Species spectrum and antifungal susceptibility profile of vaginal isolates of Candida in Kuwait.

    PubMed

    Alfouzan, W; Dhar, R; Ashkanani, H; Gupta, M; Rachel, C; Khan, Z U

    2015-03-01

    The study was undertaken to determine the prevalence of vulvovaginal candidiasis (VVC) among patients with vaginitis, frequency of different Candida species, and their susceptibility profile. Over six months period, high vaginal swabs were cultured on Sabouraud's dextrose agar and isolates were identified by culture on CHROMagar Candida and Vitek2 yeast identification system or/and API 20C (BioMerieux, France). Antifungal susceptibility of the Candida isolates was determined by E-test against amphotericin B, flucytosine, fluconazole, voriconazole, posaconazole and caspofungin. One thousand seven hundred and fifty-two women with vaginitis were screened for the prevalence of Candida spp. Vaginal swab cultures of 231 (13.2%) women yielded Candida spp. The isolation rates of different species were as follows: Candida albicans (73.9%), Candida glabrata (19.8%), Candida kefir (1.94%), Candida tropicalis (0.96%), Candida parapsilosis (0.96%), Candida krusei (0.96%), Candida guilliermondii (0.96%), and Saccharomyces cerevisiae (0.52%). All strains of C. albicans and non-C. albicans were susceptible to most of the antifungal agents tested. The high frequency with which C. albicans was recovered and its azole susceptibility support the continued use of azole agents for empirical therapy of uncomplicated VVC. However, a larger controlled study is required to determine the role of non-C. albicans in recurrent VVC. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Limonene inhibits Candida albicans growth by inducing apoptosis.

    PubMed

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  14. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  15. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004-2008.

    PubMed

    Pfaller, Michael A; Andes, David R; Diekema, Daniel J; Horn, David L; Reboli, Annette C; Rotstein, Coleman; Franks, Billy; Azie, Nkechi E

    2014-01-01

    This analysis describes the epidemiology and outcomes of invasive candidiasis caused by non-albicans species of Candida in patients enrolled in the Prospective Antifungal Therapy Alliance (PATH Alliance) registry from 2004 to 2008. A total of 2,496 patients with non-albicans species of Candida isolates were identified. The identified species were C. glabrata (46.4%), C. parapsilosis (24.7%), C. tropicalis (13.9%), C. krusei (5.5%), C. lusitaniae (1.6%), C. dubliniensis (1.5%) and C. guilliermondii (0.4%); 111 infections involved two or more species of Candida (4.4%). Non-albicans species accounted for more than 50% of all cases of invasive candidiasis in 15 of the 24 sites (62.5%) that contributed more than one case to the survey. Among solid organ transplant recipients, patients with non-transplant surgery, and patients with solid tumors, the most prevalent non-albicans species was C. glabrata at 63.7%, 48.0%, and 53.8%, respectively. In 1,883 patients receiving antifungal therapy on day 3, fluconazole (30.5%) and echinocandins (47.5%) were the most frequently administered monotherapies. Among the 15 reported species, 90-day survival was highest for patients infected with either C. parapsilosis (70.7%) or C. lusitaniae (74.5%) and lowest for patients infected with an unknown species (46.7%) or two or more species (53.2%). In conclusion, this study expands the current knowledge of the epidemiology and outcomes of invasive candidiasis caused by non-albicans species of Candida in North America. The variability in species distribution in these centers underscores the importance of local epidemiology in guiding the selection of antifungal therapy.

  16. Candida albicans osteomyelitis of the spine: progressive clinical and radiological features and surgical management in three cases.

    PubMed

    Khazim, Rabi M; Debnath, Ujjwal K; Fares, Youssef

    2006-09-01

    Candida albicans vertebral osteomyelitis is rare. Three cases are presented. Without antifungal treatment, they developed spinal collapse and neurological deterioration within 3-6 months from the onset of symptoms. There was a delay of 4.5 and 7.5 months between the onset of symptoms and surgery. All patients were managed with surgical debridement and reconstruction and 12-week fluconazole treatment. The neurological deficits resolved completely. The infection has not recurred clinically or radiologically at 5-6 years follow-up. Although rare, Candida should be suspected as a causative pathogen in cases of spinal osteomyelitis. Without treatment the disease is progressive. As soon as osteomyelitis is suspected, investigations with MRI and percutaneous biopsy should be performed followed by medical therapy. This may prevent the need for surgery. However, if vertebral collapse and spinal cord compression occurs, surgical debridement, fusion and stabilisation combined with antifungal medications can successfully eradicate the infection and resolve the neurological deficits.

  17. Candida albicans osteomyelitis of the spine: progressive clinical and radiological features and surgical management in three cases

    PubMed Central

    Debnath, Ujjwal K; Fares, Youssef

    2006-01-01

    Candida albicans vertebral osteomyelitis is rare. Three cases are presented. Without antifungal treatment, they developed spinal collapse and neurological deterioration within 3–6 months from the onset of symptoms. There was a delay of 4.5 and 7.5 months between the onset of symptoms and surgery. All patients were managed with surgical debridement and reconstruction and 12-week fluconazole treatment. The neurological deficits resolved completely. The infection has not recurred clinically or radiologically at 5–6 years follow-up. Although rare, Candida should be suspected as a causative pathogen in cases of spinal osteomyelitis. Without treatment the disease is progressive. As soon as osteomyelitis is suspected, investigations with MRI and percutaneous biopsy should be performed followed by medical therapy. This may prevent the need for surgery. However, if vertebral collapse and spinal cord compression occurs, surgical debridement, fusion and stabilisation combined with antifungal medications can successfully eradicate the infection and resolve the neurological deficits. PMID:16429290

  18. Distribution and Drug Susceptibility of Candida spp. Associated With Female Genital Tract Infection, Chongqing, China

    PubMed Central

    Luo, Xiaodong; Dong, Xiaojing; Pen, Zhi

    2015-01-01

    Background Vulvovaginal candidiasis is defined as vulvovaginitis associated with vaginal carriage of Candida spp. and is a common problem with a high rate of morbidity. Objectives To investigate the distribution of Candida spp. and evaluate the corresponding antifungal susceptibility in women with genital tract infection in Chongqing, southwestern China. Patients and Methods Samples (n = 2.129) were obtained from female patients with symptoms of genital tract infection. Candida spp. were isolated from the specimens and were identified using a coloration medium and the VITEK 2 Compact automatic microbial identification system. Antifungal susceptibility testing was performed using the ATB FUNGUS drug susceptibility testing system. Results From 2,129 samples, 478 (22.45%) isolates of Candida were isolated, of which 395 (82.64%) were Candida albicans, 39 (8.16%) were C. glabrata, 21 (4.39%) were C. tropicalis, 9 (1.88%) were C. parapsilosis, and 14 (2.93%) were other Candida spp. The resistance of C. albicans, C. glabrata, and C. tropicalis to 5 antifungal drugs (amphotericin B, voriconazole, fluconazole, 5-fluorocytosine, and itraconazole) ranged from 0.5% to 6.4%, 0% to 7.7%, and 0% to 9.6%, respectively. Conclusions Candida albicans was the major pathogen associated with candidiasis of the female genital tract in patients in Chongqing. The results of the antifungal sensitivity of the isolates suggest that it is important for clinicians to administer appropriate antifungals for the treatment of Candida spp. infections. PMID:28138369

  19. Toxicity of nalidixic acid on candida albicans, Saccharomyces cerevisiae, and Kluyveromyces lactis.

    PubMed

    Sobieski, R J; Brewer, A R

    1976-03-01

    The antibacterial drug nalidixic acid (Nal) can suppress the growth of Candida albicans at levels of the drug normally found in urine. Growth suppression increases as drug levels are increased, and Nal also causes a similar proportional inhibition of the synthesis of all cellular macromolecules. However, growth temperature (25 versus 37 C) and the divalent cations Mg(2+) and Mn(2+) can increase C. albicans resistance to Nal. Also, nitrogen depletion of Candida shows that Nal-treated and untreated cells exhibit no difference in leucine uptake during readaptation to nitrogen. In Nal-treated, nitrogen-starved cells, ribonucleic acid and deoxyribonucleic acid (DNA) biosynthesis are less affected than in unstarved Nal-treated cells, but of the two nucleic acids DNA synthesis is the most affected. Nal-resistant strains of C. albicans exhibit a slight toxicity for macromolecular synthesis. Nal treatment of a synchronized population of Saccharomyces cerevisiae results in an increase in the culture mean doubling time of, at most, 20%, but Nal causes the loss of synchronous cell division. With a synchronized population of Kluyveromyces lactis, Nal causes an increase in the mean doubling time of upwards of 300%, with synchrony of cell division being maintained. It is known that S. cerevisiae asynchronously synthesizes mitochondrial DNA during the cell cycle, whereas with K. lactis it is synchronous. Thus, with C. albicans Nal toxicity is dependent both on the dose and the physiological state of the cell. Furthermore, Nal inhibits growth of yeast with synchronous mitochondrial DNA synthesis more adversely than yeast with asynchronous mitochondrial DNA synthesis.

  20. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development.

    PubMed

    Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P

    2016-11-01

    As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories.

  1. Adaptation of Candida albicans to Reactive Sulfur Species

    PubMed Central

    Chebaro, Yasmin; Lorenz, Michael; Fa, Alice; Zheng, Rui; Gustin, Michael

    2017-01-01

    Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1, support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene. PMID:28235888

  2. Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells▿ †

    PubMed Central

    Park, Hyunsook; Liu, Yaoping; Solis, Norma; Spotkov, Joshua; Hamaker, Jessica; Blankenship, Jill R.; Yeaman, Michael R.; Mitchell, Aaron P.; Liu, Haoping; Filler, Scott G.

    2009-01-01

    Candida albicans interacts with oral epithelial cells during oropharyngeal candidiasis and with vascular endothelial cells when it disseminates hematogenously. We set out to identify C. albicans genes that govern interactions with these host cells in vitro. The transcriptional response of C. albicans to the FaDu oral epithelial cell line and primary endothelial cells was determined by microarray analysis. Contact with epithelial cells caused a decrease in transcript levels of genes related to protein synthesis and adhesion, whereas contact with endothelial cells did not significantly influence any specific functional category of genes. Many genes whose transcripts were increased in response to either host cell had not been previously characterized. We constructed mutants with homozygous insertions in 22 of these uncharacterized genes to investigate their function during host-pathogen interaction. By this approach, we found that YCK2, VPS51, and UEC1 are required for C. albicans to cause normal damage to epithelial cells and resist antimicrobial peptides. YCK2 is also necessary for maintenance of cell polarity. VPS51 is necessary for normal vacuole formation, resistance to multiple stressors, and induction of maximal endothelial cell damage. UEC1 encodes a unique protein that is required for resistance to cell membrane stress. Therefore, some C. albicans genes whose transcripts are increased upon contact with epithelial or endothelial cells are required for the organism to damage these cells and withstand the stresses that it likely encounters during growth in the oropharynx and bloodstream. PMID:19700637

  3. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids

    PubMed Central

    Fourie, Ruan; Ells, Ruan; Swart, Chantel W.; Sebolai, Olihile M.; Albertyn, Jacobus; Pohl, Carolina H.

    2016-01-01

    Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens. PMID:26955357

  4. Candida detection system (CAND-TEC) to differentiate between Candida albicans colonization and disease.

    PubMed Central

    Fung, J C; Donta, S T; Tilton, R C

    1986-01-01

    Eighty-three serum specimens from 24 patients infected with Candida albicans were examined for circulating Candida protein antigens with the Candida Detection System (CAND-TEC; Ramco Laboratories, Inc., Houston, Tex.). The medical records of each patient were reviewed for clinical evidence of Candida colonization or disease, predisposing factors for infection, underlying illness, the presence of a contaminated indwelling venous catheter, intravenous amphotericin B therapy, and outcome. Forty-nine serum specimens with antigen titers of 1:2 or less were obtained either from colonized patients or at a time when disseminated disease was not yet clinically suspected. Except for five specimens from two colonized patients, one with a contaminated arterial line, the other specimens with titers of 1:8 or greater (n = 14) were obtained from patients who had been clinically diagnosed and treated for disseminated candidiasis. Serum specimens with titers of 1:4 were often from patients with deep-seated candidal infection but were not uniformly diagnostic; in this situation additional specimens should be tested for Candida antigen titers. Only 1 of 24 serum specimens from patients with no evidence of C. albicans infection had a Candida protein antigen titer of 1:8. With a 1:8 or greater titer as a criterion for dissemination, the sensitivity of the CAND-TEC system was 71%, with a specificity of 98%. If the 1:8 titer for the colonized patient with a contaminated arterial line is not considered a false-positive result, the CAND-TEC sensitivity was 83%. The latex agglutination assay appears to be a useful, rapid, and noninvasive means of laboratory diagnosis of systemic candidiasis. The recovery of C. albicans from at least three body sites may also be a useful predictor of disseminated disease. PMID:3533975

  5. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B

    PubMed Central

    Toprak, Demet; Öcal Demir, Sevliya; Kadayifci, Eda Kepenekli; Türel, Özden; Soysal, Ahmet; Bakir, Mustafa

    2015-01-01

    Central nervous system (CNS) infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL) who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI) showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration. PMID:26558119

  6. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  7. Heteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with In Vivo Persistence.

    PubMed

    Ben-Ami, Ronen; Zimmerman, Offer; Finn, Talya; Amit, Sharon; Novikov, Anna; Wertheimer, Noa; Lurie-Weinberger, Mor; Berman, Judith

    2016-08-02

    Candida glabrata causes persistent infections in patients treated with fluconazole and often acquires resistance following exposure to the drug. Here we found that clinical strains of C. glabrata exhibit cell-to-cell variation in drug response (heteroresistance). We used population analysis profiling (PAP) to assess fluconazole heteroresistance (FLC(HR)) and to ask if it is a binary trait or a continuous phenotype. Thirty (57.6%) of 52 fluconazole-sensitive clinical C. glabrata isolates met accepted dichotomous criteria for FLC(HR) However, quantitative grading of FLC(HR) by using the area under the PAP curve (AUC) revealed a continuous distribution across a wide range of values, suggesting that all isolates exhibit some degree of heteroresistance. The AUC correlated with rhodamine 6G efflux and was associated with upregulation of the CDR1 and PDH1 genes, encoding ATP-binding cassette (ABC) transmembrane transporters, implying that HetR populations exhibit higher levels of drug efflux. Highly FLC(HR) C. glabrata was recovered more frequently than nonheteroresistant C. glabrata from hematogenously infected immunocompetent mice following treatment with high-dose fluconazole (45.8% versus 15%, P = 0.029). Phylogenetic analysis revealed some phenotypic clustering but also variations in FLC(HR) within clonal groups, suggesting both genetic and epigenetic determinants of heteroresistance. Collectively, these results establish heteroresistance to fluconazole as a graded phenotype associated with ABC transporter upregulation and fluconazole efflux. Heteroresistance may explain the propensity of C. glabrata for persistent infection and the emergence of breakthrough resistance to fluconazole. Heteroresistance refers to variability in the response to a drug within a clonal cell population. This phenomenon may have crucial importance for the way we look at antimicrobial resistance, as heteroresistant strains are not detected by standard laboratory susceptibility testing

  8. Interplay between Candida albicans and the Mammalian Innate Host Defense

    PubMed Central

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  9. Looking into Candida albicans infection, host response, and antifungal strategies.

    PubMed

    Wang, Yan

    2015-01-01

    Candida albicans, a commonly encountered fungal pathogen, causes diseases varying from superficial mucosal complaints to life-threatening systemic disorders. Among the virulence traits of C. albicans, yeast-to-hypha transition is most widely acknowledged. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs), and defence against C. albicans infection is provided by an exquisite interplay between the innate and adaptive arms of the host immune system.

  10. Candida albicans importance to denture wearers. A literature review.

    PubMed

    Gleiznys, Alvydas; Zdanavičienė, Eglė; Žilinskas, Juozas

    2015-01-01

    Opportunistic oral fungal infections have spred, especially in denture wearers. Denture stomatitis is a common inflammatory reaction, multifactorial etiology, which is usually associated with Candida species, particularly Candida albicans, due to its high virulence, ability to adhere and form biofilms on oral cavity tissues and denture surfaces. This article highlights the pathogenesis, clinical presentation, and management strategies of Candida-associated denture stomatitis commonly encountered in dental practice.

  11. Echinocandin Resistance in Candida Species: a Review of Recent Developments.

    PubMed

    Wiederhold, Nathan P

    2016-12-01

    The echinocandins are important agents for the treatment of invasive fungal infections, especially those caused by Candida species. However, as with other antimicrobial agents, microbiologic resistance to this class of antifungal agents has emerged and can result in clinical failure. Several studies have recently reported an increase in echinocandin resistance in Candida glabrata isolates at various medical centers in different geographic regions of the USA. Recent studies have also reported that many of these isolates may also be fluconazole resistant, leaving few treatment options available for clinicians to use in patients with invasive candidiasis caused by this species. Our understanding of the clinical relevance of specific point mutations within the FKS genes that cause echinocandin resistance and risk factors for the development of microbiologic resistance and clinical failure have also increased. The purpose of this review is to discuss echinocandin resistance in Candida species and recent reports that have increased our understanding of this growing clinical problem.

  12. Distribution of Candida albican genotype and Candida species is associated with the severity of vulvovagianl candidiasis.

    PubMed

    Zeng, Jun; Zong, Li-li; Mao, Ting; Huang, Yu-xing; Xu, Zheng-mei

    2011-10-01

    To investigate the distribution of pathogenic C.albican genotype and Candida species in association with the severity of vulvovaginal candidiasis (VVC). Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) of the internal transcribed spacer analysis was employed to identify the Candida species isolated from the vaginal secretions of 198 patients with acute VVC. SSCP and GeneScan analyses of microsatellite locus I polymorphism were used to determine the genotypes of the clinical isolates of C. albican associated with VVC. All the patients were scored for clinical signs and symptoms to evaluate the severity of VVC. A total of 198 Candida strains were isolated from VVC patients, including 140 (70.7%) C. albicans strains and 58 (29.3%) non-albicans strains. In the 95 patients with severe VVC and 103 with mild-moderate VVC, C.albican was detected in 62.1% and 76.6% of the patients, respectively (P=0.011). Thirty-eight microsatellite locus I genotypes were detected in 140 unrelated C. albican strains, among which the dominant genotypes 30-45 (44 strians, 31.43%) and 32-46 (23 strains, 16.43%) were the most common, followed by genotypes 30-46 (4 strains, 2.86%) and 32-47 (9 strains, 6.42%). The overall frequencies of the 4 genotypes were significantly higher in severe VVC than in mild-moderate VVC cases (77.9% vs 42.0%, P<0.001). C. albicans remains the most common pathogenic Candia species in patients with VVC, but the non-alibcans species seem more likely to cause severe VVC. The dominant genotypes of C. albicans with a tropism for the vagina are correlated to the severity of VVC.

  13. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    PubMed Central

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections. PMID:26048362

  14. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans.

    PubMed

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections.

  15. Immunological relatedness among Candida albicans and other pathogenic Candida species.

    PubMed Central

    Hector, R F; Lyon, F L; Domer, J E

    1981-01-01

    Membrane-mitochondrial (butanol-hot phosphate-buffered saline) and cytosol (soluble cytoplasmic substances) extracts from seven pathogenic species of Candida were used in in vivo and in vitro immunological assays to study antigenic similarities among the strains with respect to C. albicans. Mice were sensitized with C. albicans serotype A for footpad testing or to provide cells for lymphocyte stimulation assays, and guinea pigs were immunized with whole cells or butanol-hot phosphate-buffered saline extracts of C. albicans to obtain antisera for immunodiffusion assays. When extracts from each of the seven species were used in the assays, they consistently segregated, as determined by statistical or subjective analyses, into three groups. Extracts of C. albicans serotype A or B and C. stellatoidea were the most immunologically reactive in all assays, indicating close similarities between those two species, whereas extracts of C. tropicalis and C. parapsilosis elicited only moderate responses. Extracts from C. krusei, C. guilliermondii, and C. pseudotropicalis were hypo- or nonreactive in the assays, indicating a low level of antigenic relatedness to C. albicans. Images PMID:7037643

  16. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.

  17. Detecting Candida albicans in human milk.

    PubMed

    Morrill, Jimi Francis; Pappagianis, Demosthenes; Heinig, M Jane; Lönnerdal, Bo; Dewey, Kathryn G

    2003-01-01

    Procedures for diagnosis of mammary candidosis, including laboratory confirmation, are not well defined. Lactoferrin present in human milk can inhibit growth of Candida albicans, thereby limiting the ability to detect yeast infections. The inhibitory effect of various lactoferrin concentrations on the growth of C. albicans in whole human milk was studied. The addition of iron to the milk led to a two- to threefold increase in cell counts when milk contained 3.0 mg of lactoferrin/ml and markedly reduced the likelihood of false-negative culture results. This method may provide the necessary objective support needed for diagnosis of mammary candidosis.

  18. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship.

    PubMed

    Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E

    2014-03-03

    A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

    PubMed Central

    Ashman, R B; Papadimitriou, J M

    1995-01-01

    Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890

  20. Surface control of blastospore attachment and ligand-mediated hyphae adhesion of Candida albicans.

    PubMed

    Varghese, Nisha; Yang, Sijie; Sejwal, Preeti; Luk, Yan-Yeung

    2013-11-14

    Adhesion on a surface via nonspecific attachment or multiple ligand-receptor interactions is a critical event for fungal infection by Candida albicans. Here, we find that the tri(ethylene glycol)- and d-mannitol-terminated monolayers do not resist the blastospore attachment, but prevent the hyphae adhesion of C. albicans. The hyphae adhesion can be facilitated by tripeptide sequences of arginine-glycine-aspartic acid (RGD) covalently decorated on a background of tri(ethylene glycol)-terminated monolayers. This adhesion mediated by selected ligands is sensitive to the scrambling of peptide sequences, and is inhibited by the presence of cyclic RGD peptides in the solution.

  1. Uncoupling of oxidative phosphorylation enables Candida albicans to resist killing by phagocytes and persist in tissue.

    PubMed

    Cheng, Shaoji; Clancy, Cornelius J; Zhang, Zongde; Hao, Binghua; Wang, Wei; Iczkowski, Kenneth A; Pfaller, Michael A; Nguyen, M Hong

    2007-02-01

    After five serial passages of Candida albicans SC5314 through murine spleens by intravenous inoculation, we recovered a respiratory mutant (strain P5) that exhibited reduced colony size, stunted growth in glucose-deficient media, increased oxygen consumption and defective carbohydrate assimilation. Strain P5 was indistinguishable from SC5314 by DNA typing methods, but had a greater concentration of mitochondria by SYTO18 staining. Treatment with various inhibitors demonstrated that strain P5's electron transport chain was intact and oxidative phosphorylation was uncoupled. During disseminated candidiasis, the mutant did not kill mice or cause extensive damage to kidneys. The burden of strain P5 within kidneys on the first 3 days of disseminated candidiasis was significantly reduced. By days 28 and 60, it was similar to that at the time of death among mice infected with SC5314, suggesting that the mutant persisted and proliferated without killing mice. Strain P5 was resistant to phagocytosis by neutrophils and macrophages. It was also significantly more resistant to paraquat, suggesting that it is able to neutralize reactive oxygen species. Our findings indicate that regulation of respiration influences the interaction between C. albicans and the host. Uncoupling of oxidative phosphorylation might be a mechanism by which the organism adapts to stressful host environments.

  2. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008-2013: results from population-based surveillance.

    PubMed

    Cleveland, Angela Ahlquist; Harrison, Lee H; Farley, Monica M; Hollick, Rosemary; Stein, Betsy; Chiller, Tom M; Lockhart, Shawn R; Park, Benjamin J

    2015-01-01

    Recent reports have demonstrated a decline in bacterial bloodstream infections (BSIs) following adherence to central line insertion practices; however, declines have been less evident for BSIs due to Candida species. We conducted active, population-based laboratory surveillance for candidemia in metropolitan Atlanta, GA and Baltimore, MD over a 5-year period. We calculated annual candidemia incidence and antifungal drug resistance rates. We identified 3,848 candidemia cases from 2008-2013. Compared with 2008, candidemia incidence per 100,000 person-years decreased significantly by 2013 in both locations (GA: 14.1 to 9.5, p<0.001; MD: 30.9 to 14.4, p<0.001). A total of 3,255 cases (85%) had a central venous catheter (CVC) in place within 2 days before the BSI culture date. In both locations, the number of CVC-associated cases declined (GA: 473 to 294; MD: 384 to 151). Candida albicans (CA, 36%) and Candida glabrata (CG, 27%) were the most common species recovered. In both locations, the proportion of cases with fluconazole resistance decreased (GA: 8.0% to 7.1%, -10%; MD: 6.6% to 4.9%, -25%), while the proportion of cases with an isolate resistant to an echinocandin increased (GA: 1.2% to 2.9%, +147%; MD: 2.0% to 3.5%, +77%). Most (74%) echinocandin-resistant isolates were CG; 17 (<1%) isolates were resistant to both drug categories (multidrug resistant [MDR], 16/17 were CG). The proportion of CG cases with MDR Candida increased from 1.8% to 2.6%. We observed a significant decline in the incidence of candidemia over a five-year period, and increases in echinocandin-resistant and MDR Candida. Efforts to strengthen infection control practices may be preventing candidemia among high-risk patients. Further surveillance for resistant Candida is warranted.

  3. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade—A Review

    PubMed Central

    Liu, Xinning; Wang, Decai; Yu, Cuixiang; Li, Tao; Liu, Jianqiao; Sun, Shujuan

    2016-01-01

    Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation. PMID:27999568

  4. Candida albicans Adheres to Chitin by Recognizing N-acetylglucosamine (GlcNAc).

    PubMed

    Ishijima, Sanae A; Yamada, Tsuyoshi; Maruyama, Naho; Abe, Shigeru

    2017-01-01

    The binding of Candida albicans cells to chitin was examined in a cell-binding assay. Microscopic observations indicated that both living and heat-killed Candida cells bound to chitin-coated substrates. C. albicans preferentially bound to chitin-coated plastic plates over chitosan-coated and uncoated plates. We prepared 125 I-labeled Candida cells for quantitative analysis of their binding to chitin. Heat-killed 125 I-labeled Candida cells bound to chitin-coated plates in a time-dependent manner until 1.5 hours after start of incubation at 4℃. The binding of 125 I-labeled Candida cells to chitin-coated plates was inhibited by adding unlabeled living or unlabeled heat-killed Candida cells. The binding of Candida to chitin was also reduced by addition of 25 mg/ml chitin or chitosan up to 10%. N-acetylglucosamine (GlcNAc), which is a constituent of chitin, inhibited binding of Candida to chitin in a dose-dependent manner between 12.5 and 200 mM. Glucosamine, which is a constituent of chitosan, showed no such inhibitory effect. These findings suggest that the binding of Candida to chitin may be mediated by recognition of GlcNAc.

  5. [Candida sp endocarditis. Experience in a third-level hospital and review of the literature].

    PubMed

    Hernández-Torres, Alicia; García-Vázquez, Elisa; Laso-Ortiz, Alicia; Herrero-Martínez, José Antonio; Gómez-Gómez, Joaquín

    2013-03-01

    Despite the relative high frequency of Candida bloodstream infection, Candida endocarditis is a rare entity. We report five cases of Candida endocarditis admitted to our hospital in the period between 2005 and 2011. Two cases were caused by C. albicans, two cases were caused by C. parapsilosis and in the last one, we didn't identify the species of Candida. All but one had clear risk factors for candidemia. Treatment consisted of amphotericin B with / without flucytosine in four patients, and they all underwent surgery for valve replacement and / or removal of intravascular devices. Overall mortality was 60% (40% of mortality was directly related to endocarditis). All patients who survived were given suppressive therapy with fluconazole for a minimum of two years.After stopping fluconazole there was a case of recurrence.

  6. Candida bloodstream infection: a clinical microbiology laboratory perspective.

    PubMed

    Pongrácz, Júlia; Kristóf, Katalin

    2014-09-01

    The incidence of Candida bloodstream infection (BSI) has been on the rise in several countries worldwide. Species distribution is changing; an increase in the percentage of non-albicans species, mainly fluconazole non-susceptible C. glabrata was reported. Existing microbiology diagnostic methods lack sensitivity, and new methods need to be developed or further evaluation for routine application is necessary. Although reliable, standardized methods for antifungal susceptibility testing are available, the determination of clinical breakpoints remains challenging. Correct species identification is important and provides information on the intrinsic susceptibility profile of the isolate. Currently, acquired resistance in clinical Candida isolates is rare, but reports indicate that it could be an issue in the future. The role of the clinical microbiology laboratory is to isolate and correctly identify the infective agent and provide relevant and reliable susceptibility data as soon as possible to guide antifungal therapy.

  7. Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance

    PubMed Central

    Selmecki, Anna M.; Dulmage, Keely; Cowen, Leah E.; Anderson, James B.; Berman, Judith

    2009-01-01

    The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole. PMID:19876375

  8. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.

    PubMed

    Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T

    2017-03-01

    Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti-Candida

  9. Host response to Candida albicans bloodstream infection and sepsis

    PubMed Central

    Duggan, Seána; Leonhardt, Ines; Hünniger, Kerstin; Kurzai, Oliver

    2015-01-01

    Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management. PMID:25785541

  10. Candida albicans and non-albicans species as etiological agent of vaginitis in pregnant and non-pregnant women.

    PubMed

    Babic, Mirela; Hukic, Mirsada

    2010-02-01

    Pregnancy represents a risk factor in the occurrence of vaginal candidosis. The objectives of our study were: to make determination of the microscopic findings of vaginal swab, frequency of Candida species in the culture of pregnant women and patients who are not pregnant, determine the Candida species in all cultures, and to determine the frequency and differences in the frequency of C. albicans and other non-albicans species. In one year study performed during 2006 year, we tested patients of Gynaecology and Obstetrics clinic of the Clinical Centre in Sarajevo and Gynaecology department of the General hospital in Sarajevo. 447 woman included in the study were separated in two groups: 203 pregnant (in the last trimester of pregnancy), and 244 non-pregnant woman in period of fertility. Each vaginal swab was examined microscopically. The yeast, number of colonies, and the species of Candida were determined on Sabouraud dextrose agar with presence of antibiotics. For determination of Candida species, we used germ tube test for detection of C. albicans, and cultivation on the selective medium and assimilation tests for detection of non-albicans species. The results indicated positive microscopic findings in the test group (40,9%), as well as greater number of positive cultures (46,8%). The most commonly detected species for both groups was C. albicans ( test group 40.9% and control group 23,0%). The most commonly detected non-albicans species for the test group were C. glabrata (4,2 %) and C. krusei (3,2%), and for the control group were C. glabrata (3,2%) and C. parapsilosis (3,2%). The microscopic findings correlated with the number of colonies in positive cultures. In the test group, we found an increased number of yeasts (64,3%), and the pseudopyphae and blastopores by microscopic examination as an indication of infection. In the control group, we found a small number of yeasts (64,6%) , in the form of blastopores, as an indication of the candida colonisation. Our

  11. Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region.

    PubMed

    Tan, Thean Yen; Hsu, Li Yang; Alejandria, Marissa M; Chaiwarith, Romanee; Chinniah, Terrence; Chayakulkeeree, Methee; Choudhury, Saugata; Chen, Yen Hsu; Shin, Jong Hee; Kiratisin, Pattarachai; Mendoza, Myrna; Prabhu, Kavitha; Supparatpinyo, Khuanchai; Tan, Ai Ling; Phan, Xuan Thi; Tran, Thi Thanh Nga; Nguyen, Gia Binh; Doan, Mai Phuong; Huynh, Van An; Nguyen, Su Minh Tuyet; Tran, Thanh Binh; Van Pham, Hung

    2016-07-01

    Bloodstream infections caused by Candida species are of increasing importance and associated with significant mortality. We performed a multi-centre prospective observational study to identify the species and antifungal susceptibilities of invasive bloodstream isolates of Candida species in the Asia-Pacific region. The study was carried out over a two year period, involving 13 centers from Brunei, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. Identification of Candida species was performed at each study center, and reconfirmed at a central laboratory. Susceptibility testing was performed using a commercial broth dilution panel (Sensititre YeastOne YST-010, Thermofisher, United Kingdom) with susceptibility categorisation (S = susceptible, S-DD = susceptible dose-dependent) applied using breakpoints from the Clinical Laboratory Standards Institute. Eight hundred and sixty-one Candida isolates were included in the study. The most common species were C. albicans (35.9%), C. tropicalis (30.7%), C. parapsilosis (15.7%), and C. glabrata (13.6%). Non-albicans species exceeded C. albicans species in centers from all countries except Taiwan. Fluconazole susceptibility was almost universal for C. albicans (S = 99.7%) but lower for C. tropicalis (S = 75.8%, S-DD = 6.1%), C. glabrata (S-DD = 94.9%), and C. parapsilosis (S = 94.8%). Echinocandins demonstrated high rates of in vitro susceptibility (S>99%) against C. albicans, C. tropicalis, and C. parapsilosis This study demonstrates that non-albicans species are the most common isolates from bloodstream infections in most countries in the Asia-Pacific region, with C. tropicalis as the predominant species. Because of the prevalence of reduced susceptibility to fluconazole in non-albicans species, the study indicates that echinocandins should be the antifungal of choice in clinically unstable or high-risk patients with documented candidemia. © The Author 2016. Published by Oxford

  12. Fluconazole and its interaction with metal (II) complexes: SEM, Spectroscopic and antifungal studies.

    PubMed

    Ali, Mohsin; Ahmed, Mansoor; Ahmed, Shakil; Ali, Syed Imran; Perveen, Samina; Mumtaz, Majid; Haider, Syed Moazzam; Nazim, Urooj

    2017-01-01

    The human digestive tract contains some 100 trillion cells and thousands of species of micro-organisms may be present as normal flora of this tract as well as other mucocutaneous junctions of the body. Candida specie is the most common organism residing in these areas and can easily invade the internal tissues in cases of loss of host defenses. Modifications of previously existing antifungal agents may provide new options to fight against these species. Inorganic compounds of different antifungals are under investigations. Present study report six complexes of fluconazole with Cu (II)), Fe(II), Cd(II), Co(II), Ni(II) and Mn(II) have been synthesized and characterized by elemental analysis, IR, UV and H-NMR. The elemental analysis and spectroscopic data were found in agreement with the expected values as the metal to ligand value was 1:2 ratios with two chlorides in coordination sphere. The morphology of each complex was studied using scanning electron microscope and compared with fluconazole molecule the flaky-slab rock like particles of pure fluconazole was also observed as reported earlier. However, the complexes of fluconazole were showed different morphology in their micrograph. Fluconazole and its complex derivatives have also been screened in vitro for their antifungal activity against Candida albican and Aspergillus niger by MIC method. The complexes showed varied activity ranging from 2-20%.

  13. In vitro evaluation of BacT/Alert FA blood culture bottles and T2Candida assay for the detection of Candida in the presence of antifungals.

    PubMed

    Beyda, Nicholas D; Amadio, Jonathan; Rodriguez, Jose R; Malinowski, Karen; Garey, Kevin W; Wanger, Audrey; Ostrosky-Zeichner, Luis

    2018-06-13

    The T2Candida assay is a novel, non-culture based assay for the diagnosis of candidemia directly from whole blood. The impact of antifungals on the performance of the T2Candida assay and blood culture bottles have not been well described. In this study, the performance of the T2Candida assay was compared to that of blood culture in detecting Candida spp. in spiked blood cultures with or without the presence of antifungals. Clinical bloodstream isolates of Candida spp. were inoculated into human whole blood at low (1 - 5 cells/mL) and high (10-50 cells/mL) concentrations with or without presence of caspofungin and fluconazole. Time to detection (TTD) was assessed for prepared samples using BacTAlert FA aerobic blood culture bottles or the T2Candida assay. In the absence of antifungals, T2Candida assay sensitivity was comparable to that of blood culture at both the low and high inoculum (95% vs. 97.5% and 100% vs. 100%, respectively) and had an average TTD that was significantly faster (5.1 hrs vs 27.2 - 30 hrs, respectively). Neither caspofungin nor fluconazole was observed to impact the sensitivity or TTD of the T2Candida assay, while fluconazole reduced overall blood culture sensitivity by 7.5% - 12.5% (at low and high inoculum, respectively) and significantly prolonged the TTD of C. albicans, C. tropicalis , and C. parapsilosis by 14.8 - 67 hrs. Neither caspofungin nor fluconazole impacted the performance of the T2Candida assay in-vitro and may be useful for the diagnosis of candidemia in patients receiving antifungal therapy. Copyright © 2018 American Society for Microbiology.

  14. Five-year National Surveillance of Invasive Candidiasis: Species Distribution and Azole Susceptibility from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study.

    PubMed

    Xiao, Meng; Sun, Zi-Yong; Kang, Mei; Guo, Da-Wen; Liao, Kang; Chen, Sharon C-A; Kong, Fanrong; Fan, Xin; Cheng, Jing-Wei; Hou, Xin; Zhou, Meng-Lan; Li, Ying; Yu, Shu-Ying; Huang, Jing-Jing; Wang, He; Xu, Ying-Chun

    2018-05-09

    Data on the epidemiology of invasive candidiasis (IC) and antifungal susceptibility of Candida isolates in China are still limited. Here we report surveillance for IC from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study. Sixty-five tertiary hospitals collected 8,829 Candida isolates from August 1, 2009 to July 31, 2014. Matrix-assisted laser desorption/ionization -time of flight mass spectrometry supplemented by rDNA sequencing was used to define species, and fluconazole and voriconazole susceptibilities determined by the Clinical and Laboratory Standards Institute disk diffusion method. A total of 32 Candida species were identified. C. albicans was the most common species (44.9%) followed by C. parapsilosis complex (20.0%), C. tropicalis (17.2%) and C. glabrata complex (10.8%), with other species comprising <3%. However, in candidemia, the proportion of cases caused by C. albicans was only 32.3%. C. albicans and C. parapsilosis complex isolates were susceptible to fluconazole and voriconazole (<6% resistance), while fluconazole- and azole cross-resistant rates were high in C. tropicalis (13.3% and 12.9%), C. glabrata complex (18.7% and 14%) and uncommon Candida species (44.1% and 10.3%) isolates. Moreover, from year 1 to 5 of the study, there was a significant increase in resistant rates amongst C. glabrata complex isolates to fluconazole (12.2% to 24.0%), and amongst C. tropicalis isolates to both fluconazole (5.7% to 21.0%) and voriconazole (5.7% to 21.4%) (all P<0.01). Geographic variations in causative species and susceptibilities were noted. Our findings indicated that antifungal resistance have become noteworthy in China, and enhanced surveillance is warranted. Copyright © 2018 American Society for Microbiology.

  15. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms.

    PubMed

    Monteiro, D R; Silva, S; Negri, M; Gorup, L F; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2013-04-01

    The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

  16. Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans

    PubMed Central

    Woolley, Christine M.; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O.; Searles, Stephen C.; Nelman-Gonzalez, Mayra A.; Ott, C. Mark; Wilson, James W.; Pierson, Duane L.; Stefanyshyn-Piper, Heidemarie M.; Hyman, Linda E.; Nickerson, Cheryl A.

    2013-01-01

    This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid

  17. Interplay between the Gastric Bacterial Microbiota and Candida albicans during Postantibiotic Recolonization and Gastritis

    PubMed Central

    Mason, Katie L.; Erb Downward, John R.; Falkowski, Nicole R.; Young, Vincent B.; Kao, John Y.

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent. PMID:21986629

  18. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis.

    PubMed

    Mason, Katie L; Erb Downward, John R; Falkowski, Nicole R; Young, Vincent B; Kao, John Y; Huffnagle, Gary B

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent.

  19. Early Adhesion of Candida albicans onto Dental Acrylic Surfaces.

    PubMed

    Aguayo, S; Marshall, H; Pratten, J; Bradshaw, D; Brown, J S; Porter, S R; Spratt, D; Bozec, L

    2017-07-01

    Denture-associated stomatitis is a common candidal infection that may give rise to painful oral symptoms, as well as be a reservoir for infection at other sites of the body. As poly (methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures, the aim of this research was to evaluate the adhesion of Candida albicans cells onto PMMA surfaces by employing an atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) technique. For experiments, tipless AFM cantilevers were functionalized with PMMA microspheres and probed against C. albicans cells immobilized onto biopolymer-coated substrates. Both a laboratory strain and a clinical isolate of C. albicans were used for SCFS experiments. Scanning electron microscopy (SEM) and AFM imaging of C. albicans confirmed the polymorphic behavior of both strains, which was dependent on growth culture conditions. AFM force-spectroscopy results showed that the adhesion of C. albicans to PMMA is morphology dependent, as hyphal tubes had increased adhesion compared with yeast cells ( P < 0.05). C. albicans budding mother cells were found to be nonadherent, which contrasts with the increased adhesion observed in the tube region. Comparison between strains demonstrated increased adhesion forces for a clinical isolate compared with the lab strain. The clinical isolate also had increased survival in blood and reduced sensitivity to complement opsonization, providing additional evidence of strain-dependent differences in Candida-host interactions that may affect virulence. In conclusion, PMMA-modified AFM probes have shown to be a reliable technique to characterize the adhesion of C. albicans to acrylic surfaces.

  20. Comparative Evaluation of Oral Candida albicans Carriage in Children with and without Dental Caries: A Microbiological in vivo Study.

    PubMed

    Srivastava, Binita; Bhatia, Hind Pal; Chaudhary, Visuja; Aggarwal, Archana; Kumar Singh, Ashish; Gupta, Nidhi

    2012-05-01

    The aim of this study was to examine the presence of Candida albicans in extensive carious lesions before and after treatment of the carious lesions and to evaluate the carriage of Candida albicans in children with and without caries. The study was conducted on 60 childrens who were divided into two groups: Experimental group (group 1) and controlled group (group 2). Each group was further divided into 3 subgroups according to the dentition as: Group A (Deciduous), group B (Mixed) and group C (Permanent). Swab samples for mycological studies were collected from the dorsum of the tongue, vestibular sulcus and peak of the palatal vault. All samples were cultured directly on SDA plate (Sabouraud's dextrose agar). Number of Candida colonies was determined by counting colony forming unit on SDA plates. Further identification of Candida albicans was done by germ-tube test and corn-meal agar. Overall prevalence of Candida albicans carriage was significantly higher and mean value of Candida albicans CFU (colony forming unit) was remarkably higher in group 1 (experimental group) as compare to group 2 (control group). Significant reduction in the frequency and mean value of Candida albicans CFU/plate was seen in children after treatment of carious lesions. This study supports the active role of Candida species in dental caries. Hence, Candida albicans may play an important role as a risk factor for dental caries. It was also seen that the oral environment stabilization procedures were able to reduce Candida albicans counts. Thus, these procedures can be considered efficient in the reduction of caries risk. How to cite this article: Srivastava B, Bhatia HP, Chaudhary V, Aggarwal A, Singh AK, Gupta N. Comparative Evaluation of Oral Candida albicans Carriage in Children with and without Dental Caries: A Microbiological in vivo Study. Int J Clin Pediatr Dent 2012;5(2):108-112.

  1. Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.

    PubMed

    Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S

    2011-05-01

    Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.

  2. Tramadol, an Opioid Receptor Agonist: An Inhibitor of Growth, Morphogenesis, and Biofilm Formation in the Human Pathogen, Candida albicans.

    PubMed

    Kathwate, Gunderao Hanumantrao; Karuppayil, S Mohan

    2016-12-01

    Tramadol is a synthetic, centrally acting low-affinity agonist of μ-opioid receptors in humans. It is used as an analgesic and is shown to have local anesthetic action. In this study, we have tried to explore its anti-Candida potential. Minimum inhibitory concentration (MIC50) and minimum fungicidal concentration (MFC) values were established. MIC50 ranged from 2 to 4 mg/mL, whereas MFC was recorded at 8 mg/mL. Also, the effect of tramadol on germ tube formation, adhesion, and biofilms in Candida albicans was studied. Tramadol impaired in vitro growth of C. albicans. A time-dependent killing assay showed that it kills C. albicans within 24 h of exposure. Tramadol has strong activity against Candida virulence factors such as yeast-to-hyphal form switching and adhesion. C. albicans biofilms, which are notoriously resistant to many antifungals, were sensitive to tramadol. At 8 mg/mL of tramadol, 82% of early stage biofilms and 52.88% of matured biofilms were inhibited. Although our results show that the antifungal effect of tramadol requires concentrations that can be achieved only locally, they may provide potential candidates for development of novel antifungal drugs.

  3. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus.

    PubMed

    Gonçalves, Sarah Santos; Souza, Ana Carolina Remondi; Chowdhary, Anuradha; Meis, Jacques F; Colombo, Arnaldo Lopes

    2016-04-01

    The significant increase in the use of antifungal agents, both for the treatment of candidiasis and invasive aspergillosis and as azole fungicides in agricultural crop protection has resulted in the emergence of resistant clinical isolates, particularly to triazoles and echinocandins. Notably, among isolates that were primarily sensitive to fluconazole such as Candida parapsilosis and Candida tropicalis have witnessed an emerging resistance development. Also for echinocandins, the occurrence of Candida isolates with lower susceptibility to these drugs has been reported, which is possibly due to its broad clinical use. Triazole resistance among Aspergillus fumigatus and other Aspergillus species is commonly found in European and Asian countries. Specific mutations are associated with azole resistance in A. fumigatus and these mutations are now reported globally from six continents. Therefore, we highlight the need to conduct antifungal resistance surveillance studies using clinical isolates of Candida and Aspergillus in different geographical regions and monitoring of the infection rates in distinct population groups for early detection of resistance to these drugs and implementation of efficient policies for infection control and treatment. © 2016 Blackwell Verlag GmbH.

  4. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    PubMed

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  5. Diorcinol D Exerts Fungicidal Action against Candida albicans through Cytoplasm Membrane Destruction and ROS Accumulation

    PubMed Central

    Li, Ying; Chang, Wenqiang; Zhang, Ming; Li, Xiaobin; Jiao, Yang; Lou, Hongxiang

    2015-01-01

    Candida albicans, which is the most common human fungal pathogen, causes high mortality among immunocompromised patients. Antifungal drug resistance becomes a major challenge for the management of Candida infection. Diorcinol D (DD), a diphenyl ether derivative isolated from an endolichenic fungus, exerted fungicidal action against Candida species. In this study, we investigated the possible mechanism of its antifungal activity. The change of membrane dynamics and permeability suggested that the cell membrane was disrupted by the treatment of DD. This was further supported by the evidences of intracellular glycerol accumulation, alteration of cell ultrastructure, and down-regulation of genes involved in cell membrane synthesis. In addition, the treatment of C. albicans with DD resulted in the elevation of reactive oxygen species (ROS), which caused the dysfunction of mitochondria. These altogether suggested that DD exerted its antifungal activity through cytoplasmic membrane destruction and ROS accumulation. This finding is helpful to uncover the underlying mechanisms for the diphenyl ether derivatives and provides a potential application in fighting clinical fungal infections. PMID:26047493

  6. Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates

    PubMed Central

    2011-01-01

    Background Candida can cause mucocutaneous and/or systemic infections in hospitalized and immunosuppressed patients. Most individuals are colonized by Candida spp. as part of the oral flora and the intestinal tract. We compared oral and systemic isolates for the capacity to form biofilm in an in vitro biofilm model and pathogenicity in the Galleria mellonella infection model. The oral Candida strains were isolated from the HIV patients and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, C. norvegensis, and C. dubliniensis. The systemic strains were isolated from patients with invasive candidiasis and included species of C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. lusitaniae, and C. kefyr. For each of the acquired strains, biofilm formation was evaluated on standardized samples of silicone pads and acrylic resin. We assessed the pathogenicity of the strains by infecting G. mellonella animals with Candida strains and observing survival. Results The biofilm formation and pathogenicity in Galleria was similar between oral and systemic isolates. The quantity of biofilm formed and the virulence in G. mellonella were different for each of the species studied. On silicone pads, C. albicans and C. dubliniensis produced more biofilm (1.12 to 6.61 mg) than the other species (0.25 to 3.66 mg). However, all Candida species produced a similar biofilm on acrylic resin, material used in dental prostheses. C. albicans, C. dubliniensis, C. tropicalis, and C. parapsilosis were the most virulent species in G. mellonella with 100% of mortality, followed by C. lusitaniae (87%), C. novergensis (37%), C. krusei (25%), C. glabrata (20%), and C. kefyr (12%). Conclusions We found that on silicone pads as well as in the Galleria model, biofilm formation and virulence depends on the Candida species. Importantly, for C. albicans the pathogenicity of oral Candida isolates was similar to systemic Candida isolates, suggesting that Candida

  7. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.

    PubMed

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-09-25

    Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.

  8. Respiration, oxidative phosphorylation, and uncoupling protein in Candida albicans.

    PubMed

    Cavalheiro, R A; Fortes, F; Borecký, J; Faustinoni, V C; Schreiber, A Z; Vercesi, A E

    2004-10-01

    The respiration, membrane potential (Deltapsi), and oxidative phosphorylation of mitochondria in situ were determined in spheroplasts obtained from Candida albicans control strain ATCC 90028 by lyticase treatment. Mitochondria in situ were able to phosphorylate externally added ADP (200 microM) in the presence of 0.05% BSA. Mitochondria in situ generated and sustained stable mitochondrial Deltapsi respiring on 5 mM NAD-linked substrates, 5 mM succinate, or 100 microM N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus 1 mM ascorbate. Rotenone (4 microM) inhibited respiration by 30% and 2 micro M antimycin A or myxothiazole and 1 mM cyanide inhibited it by 85%. Cyanide-insensitive respiration was partially blocked by 2 mM benzohydroxamic acid, suggesting the presence of an alternative oxidase. Candida albicans mitochondria in situ presented a carboxyatractyloside-insensitive increase of Deltapsi induced by 5 mM ATP and 0.5% BSA, and Deltapsi decrease induced by 10 microM linoleic acid, both suggesting the existence of an uncoupling protein. The presence of this protein was subsequently confirmed by immunodetection and respiration experiments with isolated mitochondria. In conclusion, Candida albicans ATCC 90028 possesses an alternative electron transfer chain and alternative oxidase, both absent in animal cells. These pathways can be exceptional targets for the design of new chemotherapeutic agents. Blockage of these respiratory pathways together with inhibition of the uncoupling protein (another potential target for drug design) could lead to increased production of reactive oxygen species, dysfunction of Candida mitochondria, and possibly to oxidative cell death.

  9. A case of candida albicans mediastinitis after heart transplantation successfully treated with caspofungin.

    PubMed

    Garlicki, Mirosław; Czub, Paweł; Filczak, Krzysztof; Wojdyga, Ryszard; Puchniewicz, Maciej; Labuś, Krzysztof; Ehrlich, Marek P

    2006-01-01

    Reported here is a case of mediastinitis caused by candida albicans and Staphylococcus aureus following a heart transplantation that was successfully treated with caspofungin, antibiotics and mediastinal lavage. A review of the literature revealed that Candida albicans as a cause of mediastinitis has been rarely described. In the few existing reports, evolution was generally fatal, especially in immunocompromised patients, despite treatment with antifungal drugs and antibiotics.

  10. Modulation of Morphogenesis in Candida albicans by Various Small Molecules ▿

    PubMed Central

    Shareck, Julie; Belhumeur, Pierre

    2011-01-01

    The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections. PMID:21642508

  11. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton.

    PubMed

    Surdu, Lilioara; Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes.

  12. The Improvement of the Resistance to Candida albicans and Trichophyton interdigitale of Some Woven Fabrics Based on Cotton

    PubMed Central

    Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana

    2014-01-01

    This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes. PMID:25276112

  13. In vitro assessment of the growth and plasma membrane H+ -ATPase inhibitory activity of ebselen and structurally related selenium- and sulfur-containing compounds in Candida albicans.

    PubMed

    Orie, Natalie N; Warren, Andrew R; Basaric, Jovana; Lau-Cam, Cesar; Piętka-Ottlik, Magdalena; Młochowski, Jacek; Billack, Blase

    2017-06-01

    Ebselen (EB, compound 1) is an investigational organoselenium compound that reduces fungal growth, in part, through inhibition of the fungal plasma membrane H + -ATPase (Pma1p). In the present study, the growth inhibitory activity of EB and of five structural analogs was assessed in a fluconazole (FLU)-resistant strain of Candida albicans (S2). While none of the compounds were more effective than EB at inhibiting fungal growth (IC 50  ∼ 18 μM), two compounds, compounds 5 and 6, were similar in potency. Medium acidification assays performed with S2 yeast cells revealed that compounds 4 and 6, but not compounds 2, 3, or 5, exerted an inhibitory activity comparable to EB (IC 50  ∼ 14 μM). Using a partially purified Pma1p preparation obtained from S2 yeast cells, EB and all the analogs demonstrated a similar inhibitory activity. Taken together, these results indicate that EB analogs are worth exploring further for use as growth inhibitors of FLU-resistant fungi. © 2017 Wiley Periodicals, Inc.

  14. Prevalence and intraoral distribution of Candida albicans in Sjögren's syndrome.

    PubMed

    Tapper-Jones, L; Aldred, M; Walker, D M

    1980-03-01

    An imprint culture technique has been employed to study the prevalence and intraoral distribution of Candida albicans in 16 patients with Sjögren's syndrome and in 16 healthy controls matched for age, sex, and dental status. The prevalence and intraoral density of C. albicans was found to be significantly higher at almost all sites in the Sjögren's patients than in the controls. The distribution of candida was also altered, being significantly higher in the floor of the mouth and anterior labial sulcus in the Sjögren's group. There was an approximate inverse relationship between candida populations and rate of salivary flow. Mean candida densities were found to be significantly higher in those Sjögren's patients with detectable serum rheumatoid factor in the serum. However, patients with primary Sjögren's syndrome had significantly higher mean candida densities compared with patients with secondary Sjögren's syndrome.

  15. Serum interleukin-6 levels in murine models of Candida albicans infection.

    PubMed

    Kovács, Renátó; Czudar, Anita; Horváth, László; Szakács, Levente; Majoros, László; Kónya, József

    2014-03-01

    Two Balb/C mouse models of Candida infection were used to detect serum interleukin-6 (IL-6) responses. The first model used systemic infection by Candida albicans ATCC 10231 strain infected through the lateral tail vein of mice without any specific pretreatment. The median Candida burdens of the kidneys were 1.5 × 106 CFU/ml 24 h postinoculation (p.i.) and 1.2 × 107 CFU/ml 72 h p.i., while median serum IL-6 levels were 479.3 pg/ml and 934.5 pg/ml, respectively. The Candida burden showed significant correlation with serum IL-6 24 h p.i. (R2 = 0.6358; P = 0.0082) but not 72 h p.i.The second model was a mouse vaginitis model applying intravaginal inoculation of mice pretreated with subcutaneous estradiol-valerate (10 mg/ml) 3 days before infection. Candida cell count in vaginal lavage fluid was 2.8 × 106 CFU/ml 24 h p.i. and 1.4 × 108 CFU/ml 72 h p.i. Serum IL-6 response was detected in 4 of 15 mice 24 h p.i. and 9 of 15 mice 72 h p.i. Even the responders had low IL-6 serum levels (mean values 29.9 pg/ml and 60.1 pg/ml, respectively) not correlating with Candida cell count in vaginal lavage fluid.In conclusion, serum IL-6 had strong relationship with systemic C. albicans infection while the local C. albicans infection of the vagina led to partial, prolonged and limited serum IL-6 response.

  16. Efficacy and safety of fluconazole in the treatment of systemic fungal infections in pediatric patients. Multicentre Study Group.

    PubMed

    Presterl, E; Graninger, W

    1994-04-01

    In a non-comparative multicentre trial 51 patients aged 24 days to 17 years received treatment with intravenous or oral fluconazole for suspected systemic fungal infections. Twenty-seven patients had confirmed infections, 26 being confirmed mycologically and 1 histologically. All isolates were Candida species. Of the 43 clinically assessed patients, 30 were considered cured, 7 improved and 6 experienced failure of therapy. Of 27 patients with confirmed fungal infections, 25 were assessed mycologically and all but one were considered cured. Of the six patients experiencing clinical failure, two had a confirmed infection and only one of these experienced mycological failure. This patient had a primary diagnosis of candidemia with persistence of Candida albicans and Candida parapsilosis. All 51 patients were evaluable for safety. No treatment-related adverse events required termination of treatment. Treatment-related side effects (diarrhea, vomiting, deafness) were reported by three of 51 patients, three patients had laboratory test abnormalities possibly related to fluconazole treatment, including elevation of liver enzyme levels and of the eosinophil count. Results of this study confirm the efficacy and safety of fluconazole in the treatment of pediatric patients with severe fungal infection.

  17. Intervertebral infection due to Candida albicans in an intravenous heroin abuser.

    PubMed Central

    Rowe, I F; Wright, E D; Higgens, C S; Burnie, J P

    1988-01-01

    A 25 year old woman who had received intravenous heroin over one year previously developed an intervertebral abscess due to infection with Candida albicans. Immunological investigation of this patient showed no evidence of a specific defect in the host response to candida. Images PMID:3382272

  18. Biophysical Effects of a Polymeric Biosurfactant in Candida krusei and Candida albicans Cells.

    PubMed

    Ferreira, Gabriella Freitas; Dos Santos Pinto, Bruna Lorrana; Souza, Eliene Batista; Viana, José Lima; Zagmignan, Adrielle; Dos Santos, Julliana Ribeiro Alves; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Denadai, Ângelo Márcio Leite; Monteiro, Andrea Souza

    2016-12-01

    This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.

  19. Purification and germination of Candida albicans and Candida dubliniensis chlamydospores cultured in liquid media.

    PubMed

    Citiulo, Francesco; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2009-10-01

    Candida albicans and Candida dubliniensis are the only Candida sp. that have been observed to produce chlamydospores. The function of these large, thick-walled cells is currently unknown. In this report, we describe the production and purification of chlamydospores from these species in defined liquid media. Staining with the fluorescent dye FUN-1 indicated that chlamydospores are metabolically active cells, but that metabolic activity is undetectable in chlamydospores that are >30 days old. However, 5-15-day-old chlamydospores could be induced to produce daughter chlamydospores, blastospores, pseudohyphae and true hyphae depending on the incubation conditions used. Chlamydospores that were preinduced to germinate were also observed to escape from murine macrophages following phagocytosis, suggesting that these structures may be viable in vivo. Mycelium-attached and purified chlamydospores rapidly lost their viability in water and when subjected to dry stress, suggesting that they are unlikely to act as long-term storage structures. Instead, our data suggest that chlamydospores represent an alternative specialized form of growth by C. albicans and C. dubliniensis.

  20. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  1. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans.

    PubMed

    Chang, Wenqiang; Li, Ying; Zhang, Li; Cheng, Aixia; Liu, Yongqing; Lou, Hongxiang

    2012-01-01

    Candida albicans is one of the most prevalent human opportunistic pathogens. C. albicans undergoes a yeast-to-hyphal transition that has been identified as a virulence factor as well as a critical element for mature biofilm formation. A previous study in our lab showed retigeric acid B (RAB), a lichen derived pentacyclic triterpenoid, displayed synergistic antifungal activity with azoles. We now showed that this combination also proved to be adequate in combating the formation of hyphae in vitro. In vivo tests with mice demonstrated RAB could markedly enhance the efficacy of fluconazole to promote the host's longevity through inhibiting hyphae formation and adherence to host cells. It was also observed that RAB and azoles interacted synergistically to block the formation of biofilm. Our data suggested the attenuated yeast-to-hyphal switch contributed to the defect of mature biofilm formation. Moreover, quantitative real-time polymerase chain reaction (qPCR) analysis showed RAB could reduce the transcript level of MDR1, a multidrug efflux pump, and caused a slight transcriptional reduction for another drug pump related gene CDR1. Taken together, our work provides a potential application to combat candidiasis using the combination of RAB and azoles.

  2. Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses.

    PubMed

    Onurdağ, Fatma Kaynak; Ozkan, Semiha; Ozgen, Selda; Olmuş, Hülya; Abbasoğlu, Ufuk

    2011-04-01

    In this study it was aimed to determine the adherence of Pseudomonas and Candida to contact lens surfaces, and to determine the difference in adherence between five contact lens types. Biofilm-negative control strains were also used to emphasize the difference between biofilm-positive and biofilm-negative strains in adherence. Five different soft contact lenses were used to investigate the adherence of Pseudomonas aeruginosa and Candida albicans strains. P. aeruginosa ATCC 27853, P. aeruginosa ATCC 10145, C.albicans ATCC 10231 standard strains and C. albicans clinical isolate were included in the study. Slime formation was investigated by two methods; modified Christensen macrotube method, and a modified microtiter plate test. P. aeruginosa and C. albicans slime formation on soft contact lenses was studied in adherence and separation phases. Pseudomonas and Candida suspensions were serially diluted and inoculated to blood agar and sabouraud dextrose agar surfaces respectively. After overnight incubation, the colonies were counted. Sterile unworn contact lenses were used as negative controls, and bacterial and fungal culture suspensions were used as positive controls. The experiments were conducted in three parallel series. The number of adherent Pseudomonas was as follows from high to low in polymacon, etafilcon A, hilafilcon, ocufilcon and lotrafilcon contact lenses respectively. However, the number of adherent yeast were determined higher in lotrafilcon and ocufilcon contact lenses, followed by hilafilcon, etafilcon A and polymacon contact lenses. Biofilm-negative Pseudomonas ATCC standard strain and Candida clinical isolate were used to confirm that the number of adherent cells were lower than the biofilm-positive ones. This study demonstrates that in addition to the contact lens properties, the microorganisms themselves and their interactions with the lens material also play an important role in adherence.

  3. The relationship between fluorescent, agglutinating, and precipitating antibodies to Candida albicans and their immunoglobin classes

    PubMed Central

    Lehner, T.; Buckley, Helen R.; Murray, I. G.

    1972-01-01

    A parallel study of fluorescent, agglutinating, and precipitating antibodies to Candida albicans revealed that precipitating antibodies belong to the IgG class, whereas agglutinating antibodies reside in the IgG, IgM, and IgA classes. The three types as well as the three classes of antibodies were found in Candida endocarditis and mucocutaneous candidiasis. Immuno-absorption studies suggest that the three serological tests estimate antibodies to mannan determinants of Candida albicans. Images PMID:4555044

  4. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures.

    PubMed

    Wei, Guo-Xian; Xu, Xin; Wu, Christine D

    2011-06-01

    To investigate the antimycotic activity of the plant alkaloid berberine (BBR), alone and in combination with antifungal azoles, against planktonic and biofilm Candida cultures. The minimum inhibitory concentrations (MICs) of BBR, miconazole (MCZ), and fluconazole (FLC) towards Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida parapsilosis, and Candida tropicalis were determined by a microdilution method. For C. albicans, the synergistic effects of BBR combined with MCZ or FLC were examined in a paper disc agar diffusion assay and checkerboard microdilution assay. The effect of the BBR/MCZ combination was further investigated in a C. albicans biofilm formation model with a dual-chamber flow cell. The effect on metabolic activity of biofilm cells was established using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)/menadione. Berberine inhibited the growth of various Candida species (MICs 0.98-31.25mg/L) in the following order of susceptibility: C. krusei > C. kefyr > C. glabrata > C. tropicalis > C. parapsilosis and C. albicans. Synergism between BBR and MCZ or FLC was observed in the disc diffusion assay as well as in suspension showing an FIC index <0.5 (∑FIC=0.19). Whilst neither BBR (16 mg/L) nor MCZ (0.8 mg/L) alone significantly inhibited biofilm formation of C. albicans, their combination reduced biofilm formation by >91% after 24 h, as established from the reduction in surface area coverage (P<0.01). The BBR/MCZ combination also exhibited synergy against the metabolic activity of pre-formed C. albicans biofilms in polystyrene microtiter plates (∑FIC=0.25). Berberine exhibits synergistic effects with commonly used antimycotic drugs against C. albicans, either in planktonic or in biofilm growth phases. Published by Elsevier Ltd.

  5. The effect of denture adhesives on Candida albicans growth in vitro.

    PubMed

    Sampaio-Maia, Benedita; Figueiral, Maria Helena; Sousa-Rodrigues, Patricia; Fernandes, Maria Helena; Scully, Crispian

    2012-06-01

    Denture-wearing favours the growth of Candida. In view of the fact that many denture wearers regularly use adhesives to enhance denture retention, stability and function, the aim of this work was to study the effect of denture adhesives on Candida albicans growth in vitro. The denture adhesives tested were Corega(®) cream, Kukident(®) cream, Novafix(®) cream, Polident(®) cream, Protefix(®) cream, Steradent(®) cream, Aderyn(®) powder, Corega(®) ultra powder, Protefix(®) powder and Corega(®) strip. C. albicans growth curves were obtained in the presence or absence of a 1% solution of the denture adhesive diluted in Sabouraud broth. Macro- and microscopic morphological changes in C. albicans were analysed, as was microbial contamination of the denture adhesive. Most of the denture adhesives studied induced morphological changes in C. albicans cells and colonies, but only two had any significant inhibitory effect on yeast growth. Kukident(®) cream markedly inhibited C. albicans growth in a concentration-dependent way, reducing the growth rate by 95%, whereas Corega(®) cream also inhibited C. albicans growth but in a non-concentration-dependent way, reducing the growth rate by 37%. In addition, denture adhesives available as powders had detectable microbial contamination. Some commercially available denture adhesives showed microbial contamination and some had significant inhibitory effect on C. albicans growth. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  6. [INVESTIGATION ON ANTIFUNGAL SUSCEPTIBILITY OF CANDIDA YEASTS IN PREGNANT PATIENTS WITH CONFIRMED VULVOVAGINAL CANDIDIASIS AND THEIR NEWBORNS.

    PubMed

    Chokoeva, A; Kouzmanov, A; Ivanova, Z; Zisova, L; Amalie, G; Petleshkova, P; Miteva-Katrandzhieva, Ts; Krasteva, M; Uchikova, E

    patients with VVC immediately before birth (n = 22, 91.67 +/- 0.06%). Positive Candida colonization was detected in 14 (58.33%) of their newborns (n = 24), as no statistically significant difference was established, depending on the mode of delivery. The investigated antifungal susceptibility with test Fungifast (ELITech Microbiology Reagents), found 100% sensitivity of Candida albicans to Amphotericin B, Flucytosin and Voriconazole. Intermediate susceptibility to Itraconazole was found in 6 of 23 (26%) maternal isolates, and 5 of 23 (22%) isolates were moderately sensitive to Fluconazole. Candida krusei showed complete resistance to Fluconazole and Itraconazole. Within the group of antifungals for topical application (Econazole, Ketoconazole, Miconazole, Nystatin), the results established that 100% of the studied fungi were sensitive to Nystatin, while within the groups of azoles for vaginal and topical use - C.krusei was 100% resistant, as the sensitivity of C. albicans varied between 60-80%. Conclusion Our recommendation, based on the esablished results is that in pregnant with uncomplicated VVC as a first-line therapy should be considered the group of vaginal azoles and Nystatin, while the systemic therapy should be considered carefully and only after the firSt trimester. In cases of oral and intestinal candidiasis in neonatology, we recommend a therapy with minimal absorbable antifungals as Nystatin and miconazole (amphotericin B is available in our country), while systemic antifungal should be initiated only as a second choice. The exact etiological diagnosis is especially important because in our country there is a tendency for increased incidence of non-albicans fungus resistant to therapy, and that changes the therapeutic behavior.

  7. Gene flow contributes to diversification of the major fungal pathogen Candida albicans.

    PubMed

    Ropars, Jeanne; Maufrais, Corinne; Diogo, Dorothée; Marcet-Houben, Marina; Perin, Aurélie; Sertour, Natacha; Mosca, Kevin; Permal, Emmanuelle; Laval, Guillaume; Bouchier, Christiane; Ma, Laurence; Schwartz, Katja; Voelz, Kerstin; May, Robin C; Poulain, Julie; Battail, Christophe; Wincker, Patrick; Borman, Andrew M; Chowdhary, Anuradha; Fan, Shangrong; Kim, Soo Hyun; Le Pape, Patrice; Romeo, Orazio; Shin, Jong Hee; Gabaldon, Toni; Sherlock, Gavin; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe

    2018-06-08

    Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify.

  8. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    PubMed

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis

    PubMed Central

    2013-01-01

    Background Although Candida albicans and Candida dubliniensis are most closely related, both species behave significantly different with respect to morphogenesis and virulence. In order to gain further insight into the divergent routes for morphogenetic adaptation in both species, we investigated qualitative along with quantitative differences in the transcriptomes of both organisms by cDNA deep sequencing. Results Following genome-associated assembly of sequence reads we were able to generate experimentally verified databases containing 6016 and 5972 genes for C. albicans and C. dubliniensis, respectively. About 95% of the transcriptionally active regions (TARs) contain open reading frames while the remaining TARs most likely represent non-coding RNAs. Comparison of our annotations with publically available gene models for C. albicans and C. dubliniensis confirmed approximately 95% of already predicted genes, but also revealed so far unknown novel TARs in both species. Qualitative cross-species analysis of these databases revealed in addition to 5802 orthologs also 399 and 49 species-specific protein coding genes for C. albicans and C. dubliniensis, respectively. Furthermore, quantitative transcriptional profiling using RNA-Seq revealed significant differences in the expression of orthologs across both species. We defined a core subset of 84 hyphal-specific genes required for both species, as well as a set of 42 genes that seem to be specifically induced during hyphal morphogenesis in C. albicans. Conclusions Species-specific adaptation in C. albicans and C. dubliniensis is governed by individual genetic repertoires but also by altered regulation of conserved orthologs on the transcriptional level. PMID:23547856

  10. Functional equivalence of translation factor eIF5B from Candida albicans and Saccharomyces cerevisiae.

    PubMed

    Jun, Kyung Ok; Yang, Eun Ji; Lee, Byeong Jeong; Park, Jeong Ro; Lee, Joon H; Choi, Sang Ki

    2008-04-30

    Eukaryotic translation initiation factor 5B (eIF5B) plays a role in recognition of the AUG codon in conjunction with translation factor eIF2, and promotes joining of the 60S ribosomal subunit. To see whether the eIF5B proteins of other organisms function in Saccharomyces cerevisiae, we cloned the corresponding genes from Oryza sativa, Arabidopsis thaliana, Aspergillus nidulans and Candida albican and expressed them under the control of the galactose-inducible GAL promoter in the fun12Delta strain of Saccharomyces cerevisiae. Expression of Candida albicans eIF5B complemented the slow-growth phenotype of the fun12Delta strain, but that of Aspergillus nidulance did not, despite the fact that its protein was expressed better than that of Candida albicans. The Arabidopsis thaliana protein was also not functional in Saccharomyces. These results reveal that the eIF5B in Candida albicans has a close functional relationship with that of Sacharomyces cerevisiae, as also shown by a phylogenetic analysis based on the amino acid sequences of the eIF5Bs.

  11. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    PubMed

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-02-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates were, respectively, 37.0 and 6.0% after 24 h of incubation and 93.6 and 92.2% after 72 h of incubation, with specificities of 99.8 and 100%. Furthermore, CHROMagar Candida plates identified 13 of 14 Candida tropicalis and 9 of 12 Candida krusei strains after 48 h of incubation.

  12. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannai, S.; Berdicevsky, I.; Duek, L.

    1991-01-01

    Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans wasmore » the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.« less

  13. The Candida albicans Biofilm Matrix: Composition, Structure and Function

    PubMed Central

    Pierce, Christopher G.; Vila, Taissa; Romo, Jesus A.; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L.

    2017-01-01

    A majority of infections caused by Candida albicans—the most frequent fungal pathogen—are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections. PMID:28516088

  14. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans.

    PubMed

    Chen, Yuxin; Zeng, Hong; Tian, Jun; Ban, Xiaoquan; Ma, Bingxin; Wang, Youwei

    2013-08-01

    This work studied the antifungal mechanism of dill seed essential oil (DSEO) against Candida albicans. Flow cytometric analysis and inhibition of ergosterol synthesis were performed to clarify the mechanism of action of DSEO on C. albicans. Upon treatment of cells with DSEO, propidium iodide penetrated C. albicans through a lesion in its plasma membrane. DSEO also significantly reduced the amount of ergosterol. These findings indicate that the plasma membrane of C. albicans was damaged by DSEO. The effect of DSEO on the functions of the mitochondria in C. albicans was also studied. We assayed the mitochondrial membrane potential (mtΔψ) using rhodamine 123 and determined the production of mitochondrial dysfunction-induced reactive oxygen species (ROS) via flow cytometry. The effects of the antioxidant l-cysteine (Cys) on DSEO-induced ROS production and the antifungal effect of DSEO on C. albicans were investigated. Exposure to DSEO increased mtΔψ. Dysfunctions in the mitochondria caused ROS accumulation in C. albicans. This increase in the level of ROS production and DSEO-induced decrease in cell viability were prevented by the addition of Cys, indicating that ROS are an important mediator of the antifungal action of DSEO. These findings indicate that the cytoplasmic membrane and mitochondria are the main anti-Candida targets of DSEO.

  15. Phagocytosis of Candida albicans Inhibits Autophagic Flux in Macrophages.

    PubMed

    Duan, Zhimin; Chen, Qing; Du, Leilei; Tong, Jianbo; Xu, Song; Zeng, Rong; Ma, Yuting; Chen, Xu; Li, Min

    2018-01-01

    Autophagy machinery has roles in the defense against microorganisms such as Candida albicans . Lipidated LC3, the marker protein of autophagy, participates in the elimination of C. albicans by forming a single-membrane phagosome; this process is called LC3-associated phagocytosis (LAP). However, the influence of C. albicans on autophagic flux is not clear. In this study, we found that C. albicans inhibited LC3 turnover in macrophages. After the phagocytosis of C. albicans in macrophages, we observed fewer acridine orange-positive vacuoles and RFP-GFP-LC3 puncta without colocalization with phagocytized C. albicans . However, phagocytosis of C. albicans led to LC3 recruitment, but p62 and ATG9A did not colocalize with LC3 or C. albicans . These effects are due to an MTOR-independent pathway. Nevertheless, we found that the C. albicans pattern-associated molecular pattern β -glucan increased LC3 turnover. In addition, phagocytosis of C. albicans caused a decrease in BrdU incorporation. Blocking autophagic flux aggravated this effect. Our findings suggest that phagocytosis of C. albicans decreases autophagic flux but induces LAP in an MTOR-independent manner in macrophages. Occupation of LC3 by recruiting engulfed C. albicans might contribute to the inhibition of autophagic flux. Our study highlights the coordinated machinery between canonical autophagy and LAP that defends against C. albicans challenge.

  16. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    PubMed

    Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima

    2012-07-01

    To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.

  17. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm.

    PubMed

    Panwar, Richa; Pemmaraju, Suma C; Sharma, Asvene K; Pruthi, Vikas

    2016-06-01

    Candida albicans, an opportunistic fungal pathogen is a major causative agent of superficial to systemic life-threating biofilm infections on indwelling medical devices. These biofilms acts as double edge swords owing to their resistance towards antibiotics and immunological barriers. To overcome this threat ferulic acid encapsulated chitosan nanoparticles (FA-CSNPs) were formulated to assess its efficacy as an antibiofilm agent against C. albicans. These FA-CSNPs were synthesized using ionotropic gelation method and observed through field emission scanning electron microscopy (FESEM) and fluorescent microscopy. Assessment of successful encapsulation and stability of ferulic acid into chitosan nanoparticles was made using Fourier transform infrared spectrum (FTIR), (1)H NMR and thermal analyses. Synthesized FA-CSNPs, were found to be cytocompatible, when tested using Human Embryonic Kidney (HEK-293) cell lines. XTT assay revealed that FA-CSNPs reduced the cell metabolic activity of C. albicans upto 22.5% as compared to native ferulic acid (63%) and unloaded CSNPs (88%) after 24 h incubation. Disruption of C. albicans biofilm architecture was visualized by FESEM. Results highlighted the potential of FA-CSNPs to be used as an effective alternative to the conventional antifungal therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fluconazole prophylaxis in preterm infants: a systematic review.

    PubMed

    Rios, Juliana Ferreira da Silva; Camargos, Paulo Augusto Moreira; Corrêa, Luísa Petri; Romanelli, Roberta Maia de Castro

    This article aims to review the use of antifungal prophylaxis with intravenous fluconazole in premature newborns and the occurrence of Invasive Candidiasis. This is a systematic review with search at databases: PubMed, Capes Portal, Virtual Health Library (BVS - Biblioteca Virtual em Saúde)/Lilacs, Scopus and Cochrane. The keywords used were: "Antifungal", "Candida" "Fluconazole prophylaxis" and "Preterm infants". Invasive Candidiasis was evaluated in all the twelve items. In eleven of them, there was a statistically significant difference between the groups receiving prophylactic fluconazole, with lower frequency of Invasive Candidiasis, compared to placebo or no prophylaxis group. Colonization by Candida species was also evaluated in five studies; four of them presented statistically lower proportion of colonization in patients with Fluconazole prophylaxis, compared to placebo or no drugs. In one study, there was a significant difference, favoring the use of fluconazole, and reduction of death. Studies indicate the effectiveness of prophylaxis with fluconazole, with reduction in the incidence of colonization and invasive fungal disease. The benefits of prophylaxis should be evaluated considering the incidence of candidiasis in the unit, the mortality associated with candidiasis, the safety and toxicity of short and long-term medication, and the potential for development of resistant pathogens. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans.

    PubMed

    Guo, Yiqing; Wei, Changlei; Liu, Chuanxia; Li, Duo; Sun, Jun; Huang, Haiyun; Zhou, Hongmei

    2015-09-01

    The pathogenesis of Candida-associated stomatitis involves the dysfunction of flora antagonistic to Candida. Oral Actinomyces species play an important role in regulating the oral microecological balance. The objective of this study was to investigate the antagonism of three oral Actinomyces against Candida albicans. Suspensions, culture supernatants and bacterial lysates of Actinomyces viscosus, Actinomyces naeslundii and Actinomyces odontolyticus were investigated for their actions upon C. albicans. In addition to a commercial strain, six clinical strains of C. albicans were also tested. The proliferation of C. albicans was assessed using a liquid co-cultivation assay. The adhesion, acid protease and extracellular phospholipase activity, hyphae growth, and biofilm formation of C. albicans were measured. The results showed that the suspensions, culture supernatants and cell lysates of 10(8) colony forming units/ml oral Actinomyces significantly inhibited the proliferation of C. albicans (all P<0.001). The culture supernatants exhibited significant antagonistic interactions in terms of adhesion (A. viscosus P<0.001, A. naeslundii P=0.016 and A. odontolyticus P=0.009), acid protease (A. viscosus P=0.035, A. naeslundii P=0.022, A. odontolyticus P<0.001) and phospholipase activities (A. viscosus P=0.011, A. naeslundii P=0.042, A. odontolyticus P=0.021) of Candida, as well as its hyphae growth (A. viscosus P=0.002, A. naeslundii P=0.008, A. odontolyticus P=0.006). Inhibition of C. albicans biofilm formation was also observed. This study provides preliminary evidence that oral Actinomyces have inhibitory effects on the proliferation, adhesion, metabolic enzyme activity, hyphae formation and biofilm development of C. albicans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Direct bioethanol production by amylolytic yeast Candida albicans.

    PubMed

    Aruna, A; Nagavalli, M; Girijashankar, V; Ponamgi, S P D; Swathisree, V; Rao, L Venkateswar

    2015-03-01

    An attempt was made to produce bioethanol using optimized fermentation parameters and mutationally improved strain of Candida albicans. The mutant strain OMC3E6 obtained by UV irradiation followed by ethidium bromide successive mutations showed 2.6 times more glucoamylase secretion and 1.5 times more bioethanol production via direct conversion of starch. Enhanced hydrolysis of insoluble starch (72%) and potato starch (70%) was achieved with glucoamylase enzyme preparation from mutant C. albicans. In fermentation medium, the use of maltose, corn steep liquor, NaH2 PO4 , NaCl + MgSO4 and Triton X-100 has increased the glucoamylase production by the microbe. Under optimized conditions, C. albicans eventually produced 437 g ethanol kg(-1) potatoes. Earlier reports mentioned the use of thrice the quantity of starch as reported by us followed by more fermentation period (3-4 days) and demanded pretreatment of starch sources with alpha-amylase as well. Here, we simplified these three steps and obtained 73% conversion of insoluble starch into ethanol via direct conversion method in a period of 2 days without the involvement of cell immobilizations or enzyme pretreatment steps. Due to fast depletion of fossil fuels in the modern world, bioethanol usage as an alternate energy source is the need of the hour. For the first time, we report bioethanol production by Candida albicans via direct conversion of starchy biomass into ethanol along with enhanced starch-hydrolysing capacity and ethanol conversion ratio. So far, C. albicans was dealt in the field of clinical pathology, but here we successfully employed this organism to produce bioethanol from starchy agri-substrates. Optimizing fermentation parameters and improving the microbial strains through successive mutagenesis can improve the end product yield. © 2014 The Society for Applied Microbiology.

  1. Betamethasone augments the antifungal effect of menadione--towards a novel anti-Candida albicans combination therapy.

    PubMed

    Jakab, Ágnes; Emri, Tamás; Sipos, Lilla; Kiss, Ágnes; Kovács, Renátó; Dombrádi, Viktor; Kemény-Beke, Ádám; Balla, József; Majoros, László; Pócsi, István

    2015-08-01

    The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation and characterization of a monoclonal antibody against mannoprotein of Candida albicans.

    PubMed

    Farahnejad, Z; Rasaee, M J; Moghadam, M Frozandeh; Paknejad, M; Kashanian, S; Rajabi, M

    2005-06-01

    BALB/c mice were immunized via injection with whole cell of Candida albicans serotype A. The spleens were fused with myeloma cells of SP2/0 origin. A mannoprotein-reactive monoclonal antibody (MAb) was selected and characterized by ELISA technique. This MAb reacted with strains of Candida such as C. albicans, C. tropicalis, and C. albicans of the Persian Type Culture Collection (PTCC). However, our antibody did not react with other Candida species such as C. parapsilosis, C. glabrata, C. stellatoidae, C. lusitania, C. krusei, and S. cervisiae. These antibodies also did not recognize extracts of other fungal species such as Aspergillus fumigatus and Aspergillus flavus, and bacterial strains such as Staphylococcus aureus and Pseudomonas aeruginosa. Polyclonal antibody produced in this study could not differentiate the above species and was reactive towards all fungal species mentioned above except bacterial strains of S. aureus and P. aeruginosa. Western blot analysis of ligand affinity-purified mannoproteins of C. albicans wall protein using this MAb showed reactivity toward a single protein band in the region of 55-65 kDa molecular weight. The same antibody, when examined with unpurified C. albicans extract, reacted with a broad band in the region of 55-105 kDa, which we concluded was due to a possible different glycosylation pattern of mannoprotein in crude extract in which the higher molecular weight protein was eliminated by ligand-binding affinity purification.

  3. Diversities of interaction of murine macrophages with three strains of Candida albicans represented by MyD88, CARD9 gene expressions and ROS, IL-10 and TNF-α secretion

    PubMed Central

    Zhang, Xiaohuan; Ge, Yanping; Li, Wenqing; Hu, Yan

    2014-01-01

    Aim: To explore the mechanisms underlying the different responses of macrophages to distinct Candida albicans strains. Methods: Bone marrow was collected from mice. Macrophages were independently incubated with 3 Candida albicans strains. Results: MyD88 expression in Candida albicans 3683 group was significantly higher than that in Candida albicans 3630 group and Candida albicans SC5314 group, and marked difference was also observed between later two groups (P<0.05). CARD9 expression in Candida albicans 3630 group was higher than that in Candida albicans 3683 group and Candida albicans SC5314 group. Fluorescence intensity was 46.78±0.79 in Candida albicans 3630 group, 32.60±1.31 in Candida albicans 3683 group and 19.40±0.58 in Candida albicans SC5314, and significant difference was observed between any two groups (P<0.05). TNF-α and IL-10 were 18.9843±0.7081 pg/ml and 11.6690±0.3167 pg/ml, respectively, in Candida albicans 3683 group, which were markedly higher than those in Candida albicans 3630 group and Candida albicans SC5314 group (P<0.05 and 0.01). Conclusion: Different Candida albicans strains may induce CARD9 expression and alter the production of ROS, TNF-α and IL-10 in macrophages, which may be one of mechanisms underlying the different killing effects of macrophages on distinct Candida albicans strains. PMID:25664026

  4. Deoxyribonucleic acid-deficient strains of Candida albicans.

    PubMed

    Olaiya, A F; Steed, J R; Sogin, S J

    1980-03-01

    We analyzed a series of germ tube-negative variants isolated from Candida albicans 3153A for deoxyribonucleic acid content. As analyzed by flow microfluorometry, the deoxyribonucleic acid level in these variant strains was 50% of that of the parental strain and equivalent to that of haploid Saccharomyces cerevisiae. This finding was confirmed by comparison of survival rates when exposed to the mutagens ultraviolet light, ethyl methane sulfonate, and methyl methane sulfonate. The diameter of the variant cells as compared to the diameter of the parental 3153A strain showed a relationship similar to that of the diameters of haploid versus diploid S. cerevisiae. These results indicate that those strains may be representative of the imperfect stage of C. albicans.

  5. Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and Voriconazole for Six Candida Species as Determined by the Colorimetric Sensititre YeastOne Method

    PubMed Central

    Pemán, Javier; Iñiguez, Carmen; Hervás, David; Lopez-Hontangas, Jose L.; Pina-Vaz, Cidalia; Camarena, Juan J.; Campos-Herrero, Isolina; García-García, Inmaculada; García-Tapia, Ana M.; Guna, Remedios; Merino, Paloma; Pérez del Molino, Luisa; Rubio, Carmen; Suárez, Anabel

    2013-01-01

    In the absence of clinical breakpoints (CBP), epidemiological cutoff values (ECVs) are useful to separate wild-type (WT) isolates (without mechanisms of resistance) from non-WT isolates (those that can harbor some resistance mechanisms), which is the goal of susceptibility tests. Sensititre YeastOne (SYO) is a widely used method to determine susceptibility of Candida spp. to antifungal agents. The CLSI CBP have been established, but not for the SYO method. The ECVs for four azoles, obtained using MIC distributions determined by the SYO method, were calculated via five methods (three statistical methods and based on the MIC50 and modal MIC). Respectively, the median ECVs (in mg/liter) of the five methods for fluconazole, itraconazole, posaconazole, and voriconazole (in parentheses: the percentage of isolates inhibited by MICs equal to or less than the ECVs; the number of isolates tested) were as follows: 2 (94.4%; 944), 0.5 (96.7%; 942), 0.25 (97.6%; 673), and 0.06 (96.7%; 849) for Candida albicans; 4 (86.1%; 642), 0.5 (99.4%; 642), 0.12 (93.9%; 392), and 0.06 (86.9%; 559) for C. parapsilosis; 8 (94.9%; 175), 1 (93.7%; 175), 2 (93.6%; 125), and 0.25 (90.4%; 167) for C. tropicalis; 128 (98.6%; 212), 4 (95.8%; 212), 4 (96.0%; 173), and 2 (98.5; 205) for C. glabrata; 256 (100%; 53), 1 (98.1%; 53), 1 (100%; 33), and 1 (97.9%; 48) for C. krusei; 4 (89.2%; 93), 0.5 (100%; 93), 0.25 (100%; 33), and 0.06 (87.7%; 73) for C. orthopsilosis. All methods included ≥94% of isolates and yielded similar ECVs (within 1 dilution). These ECVs would be suitable for monitoring emergence of isolates with reduced susceptibility by using the SYO method. PMID:23761155

  6. In vitro antifungal susceptibility to six antifungal agents of 229 Candida isolates from patients with diabetes mellitus.

    PubMed

    Manfredi, M; McCullough, M J; Polonelli, L; Conti, S; Al-Karaawi, Z M; Vescovi, P; Porter, S R

    2006-06-01

    The most common antifungal drugs in current clinical use for the treatment of oral candidosis are polyenes and azoles, mainly used topically. Poor glycaemic control in association with other local factors, such as the presence of oral dental prostheses, salivary pH, salivary flow rate and tobacco habits, may lead to the development of oral candidosis. Topical antifungal agents are frequently used to prevent the development of candidal infections in patients with poor metabolic control, particularly in the elderly wearing dentures. The aim of this study was to assess the antifungal susceptibility of Candida isolates to six antifungal agents using a commercially available kit, Fungitest. The isolated were collected from patients affected by diabetes mellitus from two different geographic localities (London, UK, and Parma, Italy) and from a group of healthy non-diabetic subjects. No differences in antifungal susceptibility to the six agents tested were observed between Candida isolates from diabetic and non-diabetic subjects. However, differences were observed between the two geographically different diabetes mellitus populations. Oral yeast isolates from diabetes mellitus patients in the UK more often displayed resistance or intermediate resistance to fluconazole (P=0.02), miconazole (P<0.0001), and ketoconazole (P=0.01) than did isolates from diabetes mellitus patients in Italy. In addition, more C. albicans isolates were found in diabetic and non-diabetic subjects that were susceptible to fluconazole (P=0.0008 and P=0.01, respectively) than non-albicans isolates. The difference in the antifungal resistance of isolates from the two populations of diabetes mellitus patients may be related to differences in the therapeutic management of candidal infections between the two centres.

  7. Tinea cruris: diagnostic confusion due to isolation of Candida albicans alone.

    PubMed Central

    Kane, J.; Blakeman, J. M.; Fischer, J. B.

    1976-01-01

    The diagnostic importance of the isolation of Candida albicans from a skin lesion is often uncertain. In a 68-year-old man from whose lesions only C. albicans was originally isolated Trichophyton rubrum and Epidermophyton floccosum were also isolated when the growth of the yeast was inhibited in a selective medium. The use of this selective medium, casamino acids erythritol albumin agar, ensures the proper interpretation of the significance of the presence of C. albicans in skin lesions. PMID:773524

  8. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    PubMed

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. An in vitro study of antifungal drug susceptibility of Candida species isolated from human immunodeficiency virus seropositive and human immunodeficiency virus seronegative individuals in Lucknow population Uttar Pradesh.

    PubMed

    Dar, Mohammad Shafi; Sreedar, Gadiputi; Shukla, Abhilasha; Gupta, Prashant; Rehan, Ahmad Danish; George, Jiji

    2015-01-01

    Candidiasis is the most common opportunistic infection in human immunodeficiency virus (HIV) seropositive patients, starting from asymptomatic colonization to pathogenic forms and gradual colonization of non-albicans in patients with advanced immunosuppression leads to resistance for azole group of antifungal drugs with high rate of morbidity and mortality. To isolate the Candida species and determine of antifungal drug susceptibility against fluconazole, itraconazole, nystatin, amphotericin B, and clotrimazolein HIV seropositive and control individuals, with or without clinical oropharyngeal candidiasis (OPC). Includes samples from faucial region of 70 subjects with and without clinical candidiasis in HIV seropositive and controls were aseptically inoculated onto Sabaraud's Dextrose Agar media and yeasts were identified for the specific species by Corn Meal Agar, sugar fermentation and heat tolerance tests. Antifungal drug susceptibility of the isolated species was done against above-mentioned drugs by E-test and disc diffusion method. The commonly isolated species in HIV seropositive and controls were Candida albicans, Candida glabrata and Candida tropicalis Candida guilliermondii and Candida dubliniensis isolated only in HIV seropositive patients. Susceptibility against selected antifungal drugs was observed more in HIV-negative individuals whereas susceptible dose-dependent and resistance were predominant in HIV-positive patients. Resistance is the major problem in the therapy of OPC, especially in HIV seropositive patients due to aggressive and prolonged use of antifungal agents, therefore, our study emphasizes the need for antifungal drug susceptibility testing whenever antifungal treatment is desired, especially in HIV-infected subjects.

  10. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation.

    PubMed

    Larkin, Emily; Hager, Christopher; Chandra, Jyotsna; Mukherjee, Pranab K; Retuerto, Mauricio; Salem, Iman; Long, Lisa; Isham, Nancy; Kovanda, Laura; Borroto-Esoda, Katyna; Wring, Steve; Angulo, David; Ghannoum, Mahmoud

    2017-05-01

    Candida auris , a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans ( P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC 90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control ( P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans ) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris , indicating that further evaluation of this antifungal is warranted. Copyright © 2017 Larkin et al.

  11. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis.

    PubMed

    Sharma, Rahul; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    The present study is designed to explore the localized delivery of fluconazole using mucoadhesive polymeric nanofibers. Drug-loaded polymeric nanofibers were fabricated by the electrospinning method using polyvinyl alcohol (PVA) as the polymeric constituent. The prepared nanofibers were found to be uniform, non-beaded and non-woven, with the diameter of the fibers ranging from 150 to 180 nm. Further drug release studies indicate a sustained release of fluconazole over a period of 6 h. The results of studies on anti-microbial activity indicated that drug-loaded polymeric nanofibers exhibit superior anti-microbial activity against Candida albicans, when compared to the plain drug.

  12. The effect of ultraviolet radiation on the pathogenesis of Candida albicans in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denkins, Y.M.

    1991-01-01

    This dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans. UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the delayed type hypersensitivity (DTH) response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organismmore » from the kidneys of UV-irradiated mice. These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections.« less

  13. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    PubMed Central

    Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima

    2012-01-01

    Objective To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. Results The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7–23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09–93.48)% and (4.90–99.70)% v/v, respectively. Conclusions This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans. PMID:23569970

  14. In vitro effects of Salvia officinalis L. essential oil on Candida albicans

    PubMed Central

    Sookto, Tularat; Srithavaj, Theerathavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Shrestha, Binit

    2013-01-01

    Objective To determine the anticandidal activities of Salvia officinalis L. (S. officinalis) essential oil against Candida albicans (C. albicans) and the inhibitory effects on the adhesion of C. albicans to polymethyl methacrylate (PMMA) resin surface. Methods Disc diffusion method was first used to test the anticandidal activities of the S. officinalis L. essential oil against the reference strain (ATCC 90028) and 2 clinical strains of C. albicans. Then the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined by modified membrane method. The adhesion of C. albicans to PMMA resin surface was assessed after immersion with S. officinalis L. essential oil at various concentrations of 1×MIC, 0.5×MIC and 0.25×MIC at room temperature for 30 min. One-way ANOVA was used to compare the Candida cell adhesion with the pretreatment agents and Tukey's test was used for multiple comparisons. Results S. officinalis L. essential oil exhibited anticandidal activity against all strains of C. albicans with inhibition zone ranging from 40.5 mm to 19.5 mm. The MIC and MLC of the oil were determined as 2.780 g/L against all test strains. According to the effects on C. albicans adhesion to PMMA resin surface, it was found that immersion in the essential oil at concentrations of 1×MIC (2.780 g/L), 0.5×MIC (1.390 g/L) and 0.25×MIC (0.695 g/L) for 30 min significantly reduced the adhesion of all 3 test strains to PMMA resin surface in a dose dependent manner (P<0.05). Conclusions S. officinalis L. essential oil exhibited anticandidal activities against C. albicans and had inhibitory effects on the adhesion of the cells to PMMA resin surface. With further testing and development, S. officinalis essential oil may be used as an antifungal denture cleanser to prevent candidal adhesion and thus reduce the risk of candida-associated denture stomatitis. PMID:23646301

  15. Phagocytosis of Candida albicans Enhances Malignant Behavior of Murine Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ginsburg, Isaac; Fligiel, Suzanne E. G.; Kunkel, Robin G.; Riser, Bruce L.; Varani, James

    1987-12-01

    Murine tumor cells were induced to phagocytize either Candida albicans or group A streptococcal cells. The presence of microbial particles within the tumor cell cytoplasm had no effect on in vitro tumor cell growth. However, when Candida albicans-infected tumor cells were injected into syngeneic mice, they formed tumors that grew faster, invaded the surrounding normal tissue more rapidly and metastasized more rapidly than control tumor cells. Tumor cells infected with group A streptococcal particles did not grow faster or show increased malignant behavior. These data indicate that the in vivo behavior of malignant tumor cells can be modulated by microbial particles, which are often present in the microenvironment of the growing tumor.

  16. Enrichment of Multilocus Sequence Typing Clade 1 with Oral Candida albicans Isolates in Patients with Untreated Periodontitis

    PubMed Central

    McManus, Brenda A.; Maguire, Rory; Cashin, Phillipa J.; Claffey, Noel; Flint, Stephen; Abdulrahim, Mohammed H.

    2012-01-01

    This study investigated the prevalence and cell density of Candida species in periodontal pockets, healthy subgingival sites, and oral rinse samples of patients with untreated periodontitis. Twenty-one periodontitis patients underwent sampling at two periodontitis sites, and 19/21 of these patients underwent sampling at one periodontally healthy site. Both paper point and curette sampling techniques were employed. The periodontitis patients and 50 healthy subjects were also sampled by oral rinse. Candida isolates were recovered on CHROMagar Candida medium, and representative isolates were identified. Candida spp. were recovered from 10/21 (46.7%) periodontitis patients and from 16/50 (32%) healthy subjects. C. albicans predominated in both groups and was recovered from all Candida-positive subjects. Candida-positive periodontitis patients yielded Candida from periodontal pockets with average densities of 3,528 and 3,910 CFU/sample from curette and paper point samples, respectively, and 1,536 CFU/ml from oral rinse samples. The majority (18/19) of the healthy sites sampled from periodontitis patients were Candida negative. The 16 Candida-positive healthy subjects yielded an average of 279 CFU/ml from oral rinse samples. C. albicans isolates were investigated by multilocus sequence typing (MLST) to determine if specific clonal groups were associated with periodontitis. MLST analysis of 31 C. albicans isolates from periodontitis patients yielded 19 sequence types (STs), 13 of which were novel. Eleven STs belonged to MLST clade 1. In contrast, 16 C. albicans isolates from separate healthy subjects belonged to 16 STs, with 4 isolates belonging to clade 1. The distributions of STs between both groups were significantly different (P = 0.04) and indicated an enrichment of C. albicans isolates in periodontal pockets, which warrants a larger study. PMID:22875886

  17. Disseminated Candida infection syndrome in heroin addicts--dominance of a single Candida albicans biotype.

    PubMed

    Odds, F C; Palacio-Hernanz, A; Cuadra, J; Sanchéz, J

    1987-05-01

    Among 21 intravenous heroin abusers with cutaneous and ocular manifestations of disseminated Candida infection, a single C. albicans strain type (serotype A, biotype 153/7) was isolated from skin lesions in 14 cases. This suggests that central contamination of the heroin with C. albicans is less likely to be the source of infection than an endogenous source, and that one particular strain type is either better adapted than others to grow in the lemon juice used as a heroin solvent, or more likely than others to cause the specific pathology seen in these patients.

  18. A novel immunocompetent murine model for Candida albicans-promoted oral epithelial dysplasia

    PubMed Central

    DWIVEDI, P. P.; MALLYA, S.; DONGARI-BAGTZOGLOU, A.

    2009-01-01

    Candida albicans is a common opportunistic pathogen found in the oral mucosa. Clinical observations indicate a significant positive association between oral Candida carriage or infection and oral epithelial dysplasia/neoplasia. The aim of this study was to test whether C. albicans is able to promote epithelial dysplasia or carcinoma in a mouse model of infection where a carcinogen (4 Nitroquinoline 1-oxide [4NQO]) was used as initiator of neoplasia. Mice were divided into four groups: group 1 received 4NQO alone; group 2 received 4NQO followed by C. albicans (ATCC 90234); group 3 received vehicle dimethyl sulfoxide (DMSO) followed by C. albicans and group 4 was untreated. Although 4NQO treated mice did not develop oral lesions, mice exposed to both 4NQO and C. albicans developed oral dysplastic lesions 19 weeks after exposure to 4NQO. Mice challenged with C. albicans only developed hyperplastic lesions. The expression of Ki-67 and p16, two cell-cycle associated proteins that are frequently deregulated in oral dysplasia/neoplasia, was also tested in these lesions. Ki-67 and p16 expression increased from normal to hyperplastic to dysplastic mucosa and was highest in the group exposed to both 4NQO and C. albicans. In conclusion, we showed that C. albicans plays a role in the promotion of oral dysplasia in a mouse model of infection when 4NQO was used as initiator of oral neoplasia. PMID:18608888

  19. Influences of cinnamic aldehydes on H⁺ extrusion activity and ultrastructure of Candida.

    PubMed

    Shreaz, Sheikh; Bhatia, Rimple; Khan, Neelofar; Muralidhar, Sumathi; Manzoor, Nikhat; Khan, Luqman Ahmad

    2013-02-01

    The antifungal effects of cinnamaldehyde, 4-hydroxy-3-methoxycinnamaldehyde (coniferyl aldehyde) and 3,5-dimethoxy-4-hydroxycinnamaldehyde (sinapaldehyde) were investigated against 65 strains of Candida (six standard, 39 fluconazole-sensitive and 20 fluconazole-resistant). MICs of cinnamaldehyde, coniferyl aldehyde and sinapaldehyde ranged from 100 to 500 µg ml(-1), 100 to 300 µg ml(-1) and 100 to 200 µg ml(-1), respectively. All tested isolates showed a marked sensitivity towards these aldehydes in spot and time-kill assays. Sinapaldehyde was found to be the most effective, followed by coniferyl aldehyde and cinnamaldehyde. At their respective MIC(90) values, the three compounds caused mean inhibition levels of glucose-stimulated H(+)-efflux of 36, 34 and 41 % (cinnamaldehyde), 41, 42 and 47 % (coniferyl aldehyde) and 43, 45 and 51 % (sinapaldehyde) for standard-sensitive, clinical-sensitive and clinical-resistant isolates, respectively. Inhibition levels of H(+)-efflux caused by plasma membrane ATPase inhibitors N,N'-dicyclohexylcarbodiimide (100 µM) and diethylstilbestrol (10 µM) were 34, 45 and 44 %, and 57, 39 and 35 %, for standard-sensitive, clinical-sensitive and clinical-resistant isolates, respectively. Intracellular pH (pHi) was found to decrease by 0.34, 0.42 and 0.50 units following incubation with three tested aldehydes from the control pHi of 6.70. Scanning electron microscopy and transmission electron microscopy analysis was performed on a representative strain, C. albicans 10261, showing alterations in morphology, cell wall, plasma membrane damage and lysis. Haemolytic activity of the three compounds varied from 10 to 15 % at their highest MIC compared to an activity level of 20 % shown by fluconazole at 30 µg ml(-1). In conclusion, this study shows significant activity of cinnamic aldehydes against Candida, including azole-resistant strains, suggesting that these molecules can be developed as antifungals.

  20. Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals.

    PubMed

    Ku, Tsun Sheng N; Palanisamy, Suresh K A; Lee, Samuel A

    2010-11-01

    Despite growing data on antimicrobial lock therapy (ALT) in treating bacterial catheter-related bloodstream infections (CR-BSIs), ALT has not been established as a treatment option for CR-BSI caused by Candida albicans. Based on our finding that high-dose doxycycline exhibited antifungal activity against mature C. albicans biofilms, we evaluated additional antibacterial agents with Gram-positive activity [azithromycin, tigecycline (TIG) and vancomycin]. After screening these antibiotics, it was found that TIG had substantial antifungal activity against mature C. albicans biofilms. Therefore, TIG was assayed alone and in combination with fluconazole (FLC), amphotericin B (AmB) or caspofungin (CAS). TIG at 2048 μg/mL resulted in a >50% reduction in the growth of planktonic C. albicans cells. TIG inhibited the formation of biofilms from 128 μg/mL. Against mature biofilms, 2048 μg/mL TIG reduced metabolic activity by 84.2%. Furthermore, addition of 512 μg/mL TIG to FLC at all concentrations tested provided additional reduction in the metabolic activity of mature biofilms. However, this was not superior to 512 μg/mL TIG alone. TIG at 512 μg/mL increased the antifungal effect of lower concentrations of AmB (0.03125-0.25 μg/mL), but at 0.03125 μg/mL and 0.0625 μg/mL this effect was not superior to 512 μg/mL TIG alone. TIG inhibited the antifungal effect of higher concentrations of AmB (≥ 2 μg/mL). TIG at 512 μg/mL inhibited the antifungal activity of CAS at lower concentrations (0.25-8 μg/mL). These data indicate that high-dose TIG is highly active in vitro against planktonic cells, forming biofilms and mature biofilms of C. albicans. Published by Elsevier B.V.

  1. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.

    PubMed

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L

    2012-06-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.

  2. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  3. Diversity and antifungal resistance patterns of prevalent opportunistic pathogenic yeasts colonizing the oral cavities of asymptomatic human immunodeficiency virus-infected individuals, and their relation to CD4+ counts

    PubMed Central

    Kumar, Deepa Anil; Muralidhar, Sumathi; Banerjee, Uma; Basir, Seemi Farhat; Mathur, Purva; Khan, Luqman Ahmad

    2015-01-01

    Background: Yeasts are important opportunistic pathogens, in individuals infected with human immunodeficiency virus (HIV). Yeast species inhabiting the oral mucosa of HIV-infected persons can act as source of oral lesions, especially as the individual progresses towards immunocompromised state. Present study was conducted to evaluate the diversity of yeasts in oral cavities of asymptomatic HIV-infected persons and their association with CD4+ cell counts. Materials and Methods: 100 HIV seropositive subjects and 100 healthy controls were screened for oral yeast carriage using standard procedures. Results: Of the 100 HIV-seropositive persons screened, 48 were colonized by different yeasts, either alone or in association with another species. Candida albicans was the most common species (56.90%) while non C. albicans Candida (NCAC) accounted for 39.65%. Among NCAC, Candida tropicalis and Candida krusei were most common. One isolate each of rare opportunistic pathogenic yeasts, Geotrichum candidum and Saccharomyces cereviseae, was recovered. The control group had an oral candidal carriage rate of 23%; C. albicans was the predominant species, followed by Candida glabrata, C. tropicalis and Candida parapsilosis. Antifungal susceptibility testing revealed no resistance in C. albicans, to the commonly used antifungal agents, whereas resistance or dose dependent susceptibility to fluconazole was observed in some of the NCAC species. Conclusion: Oral carriage of opportunistic pathogenic yeasts was greater in HIV-seropositive persons heading towards immunocompromised state, as evidenced by their CD4+ cell count. The predominant yeast isolated in this study (C. albicans), was found to be susceptible to commonly used antifungals. PMID:26392655

  4. Candida albicans and Enterococcus faecalis in the gut

    PubMed Central

    Garsin, Danielle A; Lorenz, Michael C

    2013-01-01

    The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one. PMID:23941906

  5. Aloe vera extract reduces both growth and germ tube formation by Candida albicans.

    PubMed

    Bernardes, Ivy; Felipe Rodrigues, Monalisa Poliana; Bacelli, Gabrielle Klug; Munin, Egberto; Alves, Leandro Procópio; Costa, Maricilia Silva

    2012-05-01

    Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida have significantly increased in recent years. To grow, Candida albicans may form a germ tube extension from the cells, which is essential for virulence. In this work, we studied the effect of crude glycolic extract of Aloe vera fresh leaves (20% w/v) on growth and germ tube formation by C. albicans. The C. albicans growth was determined in the presence of different concentrations of A. vera extracts in Sabouraud dextrose broth medium. In the presence of A. vera extract (10% v/v), the pronounced inhibition in the C. albicans growth (90-100%) was observed. This inhibition occurred parallel to the decrease in the germ tube formation induced by goat serum. Our results demonstrated that A. vera fresh leaves plant extract can inhibit both the growth and the germ tube formation by C. albicans. Our results suggest the possibility that A. vera extract may be used as a promising novel antifungal treatment. © 2011 Blackwell Verlag GmbH.

  6. Antifungal activity of Morinda citrifolia fruit extract against Candida albicans.

    PubMed

    Jainkittivong, Aree; Butsarakamruha, Tassanee; Langlais, Robert P

    2009-09-01

    The objective of the study was to investigate the antifungal activity of Morinda citrifolia fruit extract on Candida albicans. Juice extract from M. citrifolia fruit was lyophilized and used in antifungal testing. Antifungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations and for different contact times. The inhibitory effect of M. citrifolia extract on C. albicans was determined by cultures and an applied broth dilution test. Using cultures, growth of C. albicans was not detected with 50 mg/mL of extract at 30-minute contact time or with 60 mg/mL of extract at 15-minute contact time. By the broth dilution test, the minimum fungicidal concentration of extract against C. albicans was 40 mg/mL at 90-minute contact time or with 50 mg/mL at 15-minute contact time. M. citrifolia fruit extract had an antifungal effect on C. albicans and the inhibitory effect varied with concentration and contact time.

  7. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces.

    PubMed

    Jackson, Sarah; Coulthwaite, Lisa; Loewy, Zvi; Scallan, Anthony; Verran, Joanna

    2014-10-01

    Candida albicans is a known etiologic agent of denture stomatitis. Candida hyphae exhibit the ability to respond directionally to environmental stimuli. This characteristic is thought to be important in the penetration of substrata such as resilient denture liners and host epithelium. It has been suggested that hyphal production also enhances adhesion and survival of Candida on host and denture surfaces. Surface roughness, in addition, can enhance adhesion where stronger interactions occur between cells and surface features of similar dimensions. The purpose of this study was to assess the development of hyphal and blastospore biofilms on abraded denture acrylic resin specimens and measure the ease of removal of these biofilms. Biofilms were grown for 48 hours on abraded 1-cm² denture acrylic resin specimens from adhered hyphal phase C albicans or from adhered blastospores. Subsequently, all specimens were stained with Calcofluor White and examined with confocal scanning laser microscopy. Biofilms were removed by vortex mixing in sterile phosphate buffered saline solution. Removed cells were filtered (0.2-μm pore size). Filters were dried at 37°C for 24 hours for dry weight measurements. Any cells that remained on the acrylic resin specimens were stained with 0.03% acridine orange and examined with epifluorescence microscopy. Biofilms grown from both cell types contained all morphologic forms of C albicans. Although the underlying surface topography did not affect the amount of biofilm produced, biofilms grown from hyphal phase Candida were visibly thicker and had greater biomass (P<.05). These biofilms were less easily removed from the denture acrylic resin, especially in the case of rougher surfaces, evidenced by the higher numbers of retained cells (P≤.05). The presence of hyphae in early Candida biofilms increased biofilm mass and resistance to removal. Increased surface roughness enhances retention of hyphae and yeast cells, and, therefore, will

  8. Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans.

    PubMed

    Gavanji, Shahin; Larki, Behrouz

    2017-03-01

    To determine the effect of propolis on Candida albicans and to compare it with the effects of some other herbal extracts and antibiotics on this pathogenic fungi. The extracts of propolis, Thymus vulgaris, Caryophillium aromaticus, Echinophora platyloba, Allium cepa and Cinnamomum zeylanicum were prepared and the antifungi effects of the extracts were examined on Candida albicans ATCC10231 using disc-diffusion assay and micro-broth dilution. The minimum fungicidal concentration (MFC) and minimum inhibitory concentrations (MIC) as well as inhibition zone were evaluated and the anti fungi effects of herbal extracts were compared with amphotricin B and nystatin at the times of 24, 48 and 72 h. Data analysis was performed using t test. Obtained results showed that propolis extract with MIC 90 and MFC equal to 39 and 65 μg/mL, respectively, possess the highest antifungal activity when compared with other studied extracts. The extracts of Allium cepa and Thymus vulgaris, with MFC of 169 and 137 μg/mL, respectively, showed the lowest effects on the fungi. Also nystatin and amphotricin B yielded better effects on the tested fungi compared with the effects of all studied extracts on Candida albicans. Propolis extract is effective in controlling Candida albicans. However, the issue requires further investigation on samples in animals and performing toxicological examinations.

  9. Antifungal catheter lock therapy for the management of a persistent Candida albicans bloodstream infection in an adult receiving hemodialysis.

    PubMed

    Paul DiMondi, V; Townsend, Mary L; Johnson, Melissa; Durkin, Michael

    2014-07-01

    Antifungal catheter lock therapy (AfLT) with liposomal amphotericin B has been used in the treatment of pediatric central line infections caused by Candida species; however, reports describing the use of liposomal amphotericin B lock therapy in the adult hemodialysis patient population are lacking. Management of central line-associated candidemia with systemic therapy alone is often challenging due to the propensity of Candida species to form biofilms on foreign bodies. We describe a 64-year-old woman who was receiving hemodialysis 3 times/week and was hospitalized with persistent fungemia. Despite receiving intravenous micafungin, she had multiple positive blood cultures for Candida albicans, which finally cleared after 7 days. Her double-lumen catheter was considered the most likely nidus of infection. Although catheter removal would have been preferred, this was not possible given her vasculopathy, history of multiple bloodstream infections, and lack of other available sites for vascular access. Catheter exchange was performed, and liposomal amphotericin B AfLT was administered in combination with intravenous micafungin for a total of 6 days. During this time, the patient experienced no discernible adverse effects secondary to AfLT. At discharge, AfLT was discontinued, and intravenous micafungin was changed to oral fluconazole. After 6 months of treatment, the patient remained culture negative and maintained her dialysis access. To our knowledge, this is the first case report of liposomal amphotericin B catheter lock therapy used to manage a persistent C. albicans bloodstream infection in an adult receiving hemodialysis. AfLT is a novel concept for treating catheter-associated fungal infections. Liposomal amphotericin B was chosen based on its favorable in vitro activity against Candida species biofilms in catheter lock environments. We identified several barriers to implementing AfLT, and these issues may prohibit the use of AfLT. This case report

  10. Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents.

    PubMed

    Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz

    2014-01-01

    Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.

  11. [Fungal infectivities of implanted catheters due to Candida sp. Biofilms formation and resistance].

    PubMed

    Seddiki, S M L; Boucherit-Otmani, Z; Boucherit, K; Kunkel, D

    2015-06-01

    Candidemia are the most common fungal infections in hospitals. However, the catheters are subject to be altered by Candida biofilms which increase the risk of invasive nosocomial infections due to the high resistance to antifungal agents. Therefore, the minimum inhibitory concentrations of planktonic (MIC) and sessile cells (CIMS) were evaluated. To review the in vivo biofilms structures of Candida sp. formed on the inner and/or external surfaces of collected catheters, we used scanning electron microscopy (SEM). The level of biofilm resistance was assessed against two conventional antifungal agents: amphotericin B (AmB), which belongs to the class of polyenes, and fluconazole (FLZ) which is an azole. The SEM observation of biofilms of Candida sp. reveals complex structures. Compared to MICs, the calculation of CIMS showed an increase of 32 times with AmB and of 128 times with FLZ. Catheters offer an ideal surface to Candida sp. to form biofilms. This complex structure induces the increase of the resistance of sessile cells against two antifungal agents, AmB and FLZ. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    PubMed

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  13. Disseminated cryptococcosis and fluconazole resistant oral candidiasis in a patient with acquired immunodeficiency syndrome (AIDS).

    PubMed

    Kothavade, Rajendra J; Oberai, Chetan M; Valand, Arvind G; Panthaki, Mehroo H

    2010-10-28

    Disseminated cryptococcosis and recurrent oral candidiasis was presented in a-heterosexual AIDS patient. Candida tropicalis (C.tropicalis) was isolated from the oral pseudomembranous plaques and Cryptococcus neoformans (C. neoformans) was isolated from maculopapular lesions on body parts (face, hands and chest) and body fluids (urine, expectorated sputum, and cerebrospinal fluid). In vitro drug susceptibility testing on the yeast isolates demonstrated resistance to fluconazole acquired by C. tropicalis which was a suggestive possible root cause of recurrent oral candidiasis in this patient.

  14. Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans▿

    PubMed Central

    Martel, Claire M.; Parker, Josie E.; Bader, Oliver; Weig, Michael; Gross, Uwe; Warrilow, Andrew G. S.; Rolley, Nicola; Kelly, Diane E.; Kelly, Steven L.

    2010-01-01

    Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ5,6-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC values, ≥256, 16, 16, 8, and 1 μg ml−1, respectively). Importantly, CA12 and CA1008 retained an azole-resistant phenotype even when assayed in the presence of FK506, a multidrug efflux inhibitor. Conversely, CA488, CA490, and three comparator isolates (CA6, CA14, and CA177, in which ergosterol comprised >80% of the total sterol fraction and ergosta 7,22-dienol was undetectable) all displayed azole-sensitive phenotypes under efflux-inhibited assay conditions. Owing to their ergosterol content, CA6, CA14, and CA177 were highly sensitive to amphotericin B (MIC values, <0.25 μg ml−1); CA1008, in which ergosterol comprised <2% of the total sterol fraction, was less sensitive (MIC, 1 μg ml−1). CA1008 harbored multiple amino acid substitutions in Erg3p but only a single conserved polymorphism (E266D) in sterol 14α-demethylase (Erg11p). CA12 harbored one substitution (W332R) in Erg3p and no residue changes in Erg11p. CA488 and CA490 were found to harbor multiple residue changes in both Erg3p and Erg11p. The results suggest that missense mutations in ERG3 might arise in C. albicans more frequently than currently supposed and that the clinical significance of erg3 mutants, including those in which additional mechanisms also contribute to resistance, should not be discounted. PMID:20733039

  15. In Vitro Evaluation of the Inhibitory Activity of Thymoquinone in Combatting Candida albicans in Denture Stomatitis Prevention

    PubMed Central

    Al-Khalifa, Khalifa S.; Gad, Mohammed M.; Al-Hariri, Mohammed; Alnassar, Talal

    2017-01-01

    Candida albicans adhesion and proliferation on denture bases may lead to denture stomatitis, which is a common and recurrent problem in denture wearers. The goal of this study was to assess the inhibitory effect of thymoquinone incorporated in the polymethyl methacrylate denture base material against Candida albicans. Eighty acrylic resin specimens were fabricated and divided into eight groups (n = 10) according to thymoquinone concentrations of 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, and 5% of acrylic powder. Two methods were used to evaluate the effect of thymoquinone on Candida albicans: the slide count and the serial dilution test. A multivariate analysis of variance (MANOVA) and the post-hoc Tukey’s Honestly Significant Difference (HSD) test were performed to compare the difference of means between the observations taken at various intervals with baseline. The p value was statistically significant at ≤0.05. According to the slide count and the serial dilution test, the mean number of adhered Candida albicans in the control group was 5436.9 ± 266 and 4691.4 ± 176.8; however, this number dramatically decreased to 0 ± 0 and 32.4 ± 1.7 in group 8 (concentration 5%). These results suggest that the incorporation of thymoquinone into the acrylic resin denture base material might be effective in preventing Candida albicans adhesion. PMID:28698449

  16. Structure-In Vitro Activity Relationships of Pentamidine Analogues and Dication-Substituted Bis-Benzimidazoles as New Antifungal Agents

    PubMed Central

    Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan; Tidwell, Richard R.; Czarny, Agnieszka; Bajic, Miroslav; Bajic, Marina; Kumar, Arvind; Boykin, David; Perfect, John R.

    1998-01-01

    Twenty analogues of pentamidine, 7 primary metabolites of pentamidine, and 30 dicationic substituted bis-benzimidazoles were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. A majority of the compounds had MICs at which 80% of the strains were inhibited (MIC80s) comparable to those of amphotericin B and fluconazole. Unlike fluconazole, many of these compounds were found to have potent fungicidal activity. The most potent compound against C. albicans had an MIC80 of ≤0.09 μg/ml, and the most potent compound against C. neoformans had an MIC80 of 0.19 μg/ml. Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. It is clear from the data presented here that further studies on the structure-activity relationships, mechanisms of action and toxicities, and in vivo efficacies of these compounds are warranted to determine their clinical potential. PMID:9756747

  17. In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzimidazoles

    PubMed Central

    Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.

    1998-01-01

    Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748

  18. Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures

    PubMed Central

    AL-Waili, Noori; Al-Ghamdi, Ahmad; Ansari, Mohammad Javed; Al-Attal, Y.; Salom, Khelod

    2012-01-01

    Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested. Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation. Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE. Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or

  19. Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaur, Naseem Akhtar; Manoharlal, Raman; Saini, Preeti

    2005-06-24

    Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild typemore » CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.« less

  20. Sensitization of Candida albicans to terbinafine by berberine and berberrubine

    PubMed Central

    LAM, PIKLING; KOK, STANTON HON LUNG; LEE, KENNETH KA HO; LAM, KIM HUNG; HAU, DESMOND KWOK PO; WONG, WAI YEUNG; BIAN, ZHAOXIANG; GAMBARI, ROBERTO; CHUI, CHUNG HIN

    2016-01-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50–70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency. PMID:27073630

  1. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    PubMed

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  2. Growth of Candida albicans hyphae.

    PubMed

    Sudbery, Peter E

    2011-08-16

    The fungus Candida albicans is often a benign member of the mucosal flora; however, it commonly causes mucosal disease with substantial morbidity and in vulnerable patients it causes life-threatening bloodstream infections. A striking feature of its biology is its ability to grow in yeast, pseudohyphal and hyphal forms. The hyphal form has an important role in causing disease by invading epithelial cells and causing tissue damage. This Review describes our current understanding of the network of signal transduction pathways that monitors environmental cues to activate a programme of hypha-specific gene transcription, and the molecular processes that drive the highly polarized growth of hyphae.

  3. Positive interaction of thyme (red) essential oil with human polymorphonuclear granulocytes in eradicating intracellular Candida albicans.

    PubMed

    Tullio, Vivian; Mandras, Narcisa; Allizond, Valeria; Nostro, Antonia; Roana, Janira; Merlino, Chiara; Banche, Giuliana; Scalas, Daniela; Cuffini, Anna Maria

    2012-10-01

    The essential oils have started to be recognized for their potential antimicrobial role only in recent years. Clinical experience showed that the efficacy of antimicrobial agents depends not only on their direct effect on a given microorganism but also on the functional activity of the host immune system. Since data on the effects of essential oils on the innate immune system are scanty and fragmentary, the aim of this study was to evaluate the influence of thyme (red) essential oil (EO), at subinhibitory/inhibitory concentrations, on intracellular killing activity by human polymorphonuclear granulocytes (PMNs) against Candida albicans. In order to provide a frame of reference for the activity of this EO, its in vitro killing activity in the absence of PMNs was also evaluated.Results showed that EO at subminimal inhibitory (subMIC)/minimal inhibitory (MIC) concentrations significantly enhanced intracellular killing of C. albicans in comparison with EO-free controls and was comparable to the positive control (fluconazole). In in vitro killing assays without PMNs, we observed progressive growth of the yeast cells in the presence of EO subMIC/MIC concentrations. A positive antifungal interaction with phagocytes could explain why this EO, which appeared to be only fungistatic in time-kill assays, had efficacy in killing yeast cells once incubated with PMNs. Georg Thieme Verlag KG Stuttgart · New York.

  4. Antifungal Properties of Crude Extracts, Fractions, and Purified Compounds from Bark of Curatella americana L. (Dilleniaceae) against Candida Species

    PubMed Central

    Mendes de Toledo, Cleyton Eduardo; Santos, Patrícia Regina; Palazzo de Mello, João Carlos; Dias Filho, Benedito Prado; Ueda-Nakamura, Tânia

    2015-01-01

    The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian cerrado, in which crude extract showed antifungal activity in a preliminary study. In this work, the antifungal and cytotoxic properties of the crude extract, fractions, and isolated compounds from C. americana were evaluated against the standard yeast strains Candida albicans, C. tropicalis, and C. parapsilosis, clinical isolates, and fluconazole-resistant strains. The combinatory effects between subfractions and isolated compounds and effects on cell morphology, virulence factors, and exogenous ergosterol were also evaluated. The MIC obtained against the Candida species including fluconazole-resistant strain ranged from 15.3 to 31.3 µg/mL for crude extract, 3.9 to 15.6 µg/mL for ethyl acetate fraction, and 7.8 to 31.3 µg/mL for subfractions. The isolated compounds identified as 4′-O-methyl-catechin, epicatechin-3-O-gallate, and 4′-O-methyl-catechin-3-O-gallate showed lower antifungal activity than the crude extract and fractions (MIC ranging from 31.3 to 125.0 µg/mL). The addition of exogenous ergosterol to yeast culture did not interfere in the antifungal activity of the extract and its fractions. Synergistic antifungal activity was observed between subfractions and isolated compounds. The effects on virulence factors and the different mechanisms of action compared to fluconazole and nystatin suggest that this ethnomedicinal plant may be an effective alternative treatment for candidiasis. PMID:26347790

  5. Adhesion of Candida albicans to Vanillin Incorporated Self-Curing Orthodontic PMMA Resin.

    NASA Astrophysics Data System (ADS)

    Zam, K.; Sawaengkit, P.; Thaweboon, S.; Thaweboon, B.

    2018-02-01

    It has been observed that there is an increase in Candida carriers during the treatment with orthodontic removable appliance. Vanillin is flavouring agent, which is known to have antioxidant and antimicrobial properties. The aim of this study was to evaluate the effect of vanillin incorporated PMMA on adhesion of Candida albicans. A total of 36 orthodontic self-curing PMMA resin samples were fabricated. The samples were divided into 3 groups depending on percentage of vanillin incorporated (0.1%, 0.5% and PMMA without vanillin as control). PMMA samples were coated with saliva. The adhesion assay was performed with C. albicans (ATCC 10231). The adherent yeast cells were stained with crystal violet and counted under microscope by random selection of 3 fields at 10X magnification. The statistical analyses performed by Kruskal Wallis and Mann Whitney non-parametric test. It was found that the PMMA resin samples with vanillin incorporation significantly reduced the adhesion of C. albicans as compared to the control group. This study indicates that vanillin incorporated resin can impede the adhesion of C. albicans to about 45 - 56 %. With further testing and development, vanillin can be employed as an antifungal agent to prevent adhesion of C. albicans to orthodontic self-curing PMMA resin.

  6. Farnesol-induced apoptosis in Candida albicans.

    PubMed

    Shirtliff, Mark E; Krom, Bastiaan P; Meijering, Roelien A M; Peters, Brian M; Zhu, Jingsong; Scheper, Mark A; Harris, Megan L; Jabra-Rizk, Mary Ann

    2009-06-01

    Farnesol, a precursor in the isoprenoid/sterol pathway, was recently identified as a quorum-sensing molecule produced by the fungal pathogen Candida albicans. Farnesol is involved in the inhibition of germination and biofilm formation by C. albicans and can be cytotoxic at certain concentrations. In addition, we have shown that farnesol can trigger apoptosis in mammalian cells via the classical apoptotic pathways. In order to elucidate the mechanism behind farnesol cytotoxicity in C. albicans, the response to farnesol was investigated, using proteomic analysis. Global protein expression profiles demonstrated significant changes in protein expression resulting from farnesol exposure. Among the downregulated proteins were those involved in metabolism, glycolysis, protein synthesis, and mitochondrial electron transport and the respiratory chain, whereas proteins involved in folding, protection against environmental and oxidative stress, actin cytoskeleton reorganization, and apoptosis were upregulated. Cellular changes that accompany apoptosis (regulated cell death) were further analyzed using fluorescent microscopy and gene expression analysis. The results indicated reactive oxygen species accumulation, mitochondrial degradation, and positive terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) in the farnesol-exposed cells concurrent with increased expression of antioxidant-encoding and drug response genes. More importantly, the results demonstrated farnesol-induced upregulation of the caspase gene MCA1 and the intracellular presence of activated caspases. In conclusion, this study demonstrated that farnesol promotes apoptosis in C. albicans through caspase activation, implying an important physiological role for farnesol in the fungal cell life cycle with important implications for adaptation and survival.

  7. Development and regulation of single- and multi-species Candida albicans biofilms

    PubMed Central

    Lohse, Matthew B.; Gulati, Megha; Johnson, Alexander D.; Nobile, Clarissa J.

    2017-01-01

    Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species. PMID:29062072

  8. Comparison of duplex PCR and phenotypic analysis in differentiating Candida dubliniensis from Candida albicans from oral samples.

    PubMed

    Sampath, Asanga; Weerasekera, Manjula; Dilhari, Ayomi; Gunasekara, Chinthika; Bulugahapitiya, Uditha; Fernando, Neluka; Samaranayake, Lakshman

    2017-12-01

    Candida dubliniensis shares a wide range of phenotypic characteristics with Candida albicans including a common trait called germ tube positivity. Hence, laboratory differentiation of these two species is cumbersome. Duplex PCR analyses for C. albicans and C. dubliniensis was performed directly on DNA extracted from a total of 122 germ tube positive isolates derived from 100 concentrated oral rinse samples from a random cohort of diabetics attending a clinic in Sri Lanka. These results were confirmed by DNA sequencing of internal transcribed spacer (ITS) region of rDNA of the yeasts. Performance efficacy of duplex PCR was then compared with phenotypic identification using a standard battery of phenotypic tests. Of the 122 germ tube positive isolates three were identified by duplex PCR as C. dubliniensis and the remainder as C. albicans. On the contrary, when the standard phenotypic tests, sugar assimilation and chlamydospore formation, were used to differentiate the two species 13 germ tube positive isolates were erroneously identified as C. dubliniensis. Duplex PCR was found to be rapid, sensitive and more specific than phenotypic identification methods in discriminating C. dubliniensis from C. albicans. This is also the first report on the oral carriage of C. dubliniensis in a Sri Lankan population.

  9. The absence of Candida albicans in milk samples of women with clinical symptoms of ductal candidiasis.

    PubMed

    Hale, Thomas W; Bateman, Tiffany L; Finkelman, Malcolm A; Berens, Pamela D

    2009-06-01

    The objective of this prospective study was to determine if Candida albicans is present in the milk of women suffering from symptoms of severe nipple and deep breast pain. The symptomatic group included women who reported sore, inflamed, or traumatized nipples or intense stabbing or burning pain. The control group included breastfeeding women without symptoms. The skin of the nipple and areola were washed with detergent and thoroughly rinsed. Milk samples were analyzed for (1 --> 3)-beta-D-glucan and grown on Candida growth medium. There was no significant difference in (1 --> 3)-beta-D-glucan levels between the control and symptomatic group. No Candida species were culturable either before or after the addition of iron to stimulate growth, with the exception of one patient. The addition of pure C. albicans to milk samples suggested that milk does not inhibit Candida growth. These data suggest that C. albicans is not present in milk ducts and may not be associated with this syndrome.

  10. Short peptides allowing preferential detection of Candida albicans hyphae.

    PubMed

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  11. Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans.

    PubMed

    Singh, Shweta; Fatima, Zeeshan; Hameed, Saif

    2016-07-01

    The anticandidal potential of Geraniol (Ger) against Candida albicans has already been established. The present study reveals deeper insights into the mechanisms of action of Ger. We observed that the repertoire of antifungal activity was not only limited to C. albicans and its clinical isolates but also against non-albicans species of Candida. The membrane tampering effect was visualized through transmission electron micrographs, depleted ergosterol levels and altered plasma membrane ATPase activity. Ger also affects cell wall as revealed by spot assays with cell wall-perturbing agents and scanning electron micrographs. Functional calcineurin pathway seems to be indispensable for the antifungal effect of Ger as calcineurin signaling mutant was hypersensitive to Ger while calcineurin overexpressing strain remained resistant. Ger also causes mitochondrial dysfunction, impaired iron homeostasis and genotoxicity. Furthermore, Ger inhibits both virulence attributes of hyphal morphogenesis and biofilm formation. Taken together, our results suggest that Ger is potential antifungal agent that warrants further investigation in clinical applications so that it could be competently employed in therapeutic strategies to treat Candida infections.

  12. Oral Administration of the Broad-Spectrum Antibiofilm Compound Toremifene Inhibits Candida albicans and Staphylococcus aureus Biofilm Formation In Vivo

    PubMed Central

    De Cremer, Kaat; Delattin, Nicolas; De Brucker, Katrijn; Peeters, Annelies; Kucharíková, Soña; Gerits, Evelien; Verstraeten, Natalie; Michiels, Jan; Van Dijck, Patrick; Thevissen, Karin

    2014-01-01

    We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound. PMID:25288093

  13. Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders.

    PubMed

    Gainza-Cirauqui, M L; Nieminen, M T; Novak Frazer, L; Aguirre-Urizar, J M; Moragues, M D; Rautemaa, R

    2013-03-01

    Production of carcinogenic acetaldehyde by Candida has been suggested to contribute to epithelial dysplasia and oral carcinogenesis. Oral lichen planus (OLP), oral lichenoid lesion (OLL) and oral leukoplakia (OL) are potentially carcinogenic oral diseases where colonisation by Candida is common, but acetaldehyde production by Candida has not been studied. Acetaldehyde production in ethanol (11 mM), glucose (100 mM), ethanol-glucose (11 mM and 100 mM) or red wine (1200 mM ethanol) incubation by Candida albicans from patients with OLL (n = 6), OLP (n = 16), OL (n = 6) and controls (n = 6) was measured by gas chromatography. Participants completed a questionnaire regarding their smoking habits and alcohol consumption. All Candida albicans isolates produced potentially carcinogenic levels of acetaldehyde (>100 μM) in all incubations containing ethanol. The control group isolates produced the highest acetaldehyde levels. Isolates from smokers produced more acetaldehyde in all incubations than those from non-smokers. The difference was significant in ethanol-glucose incubation. Isolates from patients who were both smokers and drinkers produced the highest amounts when incubated in ethanol, ethanol-glucose and wine. Candida albicans isolated from potentially carcinogenic oral diseases can produce mutagenic amounts of acetaldehyde. Cigarette smoking and alcohol consumption may favour adaptational changes resulting in the upregulation of candidal acetaldehyde metabolism. © 2012 John Wiley & Sons A/S. All rights reserved.

  14. The Synthetic Melanocortin (CKPV)2 Exerts Anti-Fungal and Anti-Inflammatory Effects against Candida albicans Vaginitis via Inducing Macrophage M2 Polarization

    PubMed Central

    Jia, Zhi-rong; Li, Xian-jing; Wang, Zhuo; Li, Li; Li, Yong-wen; Liu, Gen-yan; Tong, Ming-Qing; Li, Xiao-yi; Zhang, Guo-hui; Dai, Xiang-rong; He, Ling; Li, Zhi-yu; Cao, Cong; Yang, Yong

    2013-01-01

    In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation. PMID:23457491

  15. Efficacy of a Fixed Combination of Tetracycline, Chloramphenicol, and Colistimethate Sodium for Treatment of Candida albicans Keratitis.

    PubMed

    Blanco, Anna R; Nostro, Antonia; D'Angelo, Valeria; D'Arrigo, Manuela; Mazzone, Maria G; Marino, Andreana

    2017-08-01

    To evaluate the antifungal activity of a fixed antibiotic combination (AC) containing tetracycline (TET), chloramphenicol (CAF), and colistimethate sodium (CS). In vitro: Candida ATCC and clinical strains were used. The minimum inhibitory concentrations (MICs) of AC and of each antibiotic were determined. Fluconazole (FLC) was tested for comparison. Time-killing curves of selected strains were performed. Ex vivo keratitis: corneas were injected intrastromally with the selected strains. After the injection, corneas were divided into groups of treatments: AC, FLC, or saline. Then, the tissues were analyzed for colony-forming units per gram (CFU/g). Propidium iodide (PI) and MitoTracker (MTR) staining were used to investigate the mode of action. Values of MIC required to inhibit the growth of 90% of organisms for the antibiotics alone were higher than FLC. However, their activity was enhanced when used in combination against Candida yeasts. Time-killing curves showed that at 24 hours, AC reduced the load of both strains of approximately 1 Log10 CFU/g compared with the initial inoculum (P < 0.0001). This effect was also significant versus FLC. In ex vivo, AC was effective in decreasing the loads of both strains by 4 Log10 CFU/g with respect to the control. Moreover, it showed higher activity than FLC against Candida albicans ATCC 10231 (1 Log10 CFU/g, P < 0.01 versus control). PI staining demonstrated that CS changed the membrane's permeability, whereas MTR staining demonstrated that TET or CAF altered mitochondrial function. The cells treated with AC and stained showed both effects. In this study, AC showed antifungal efficacy versus Candida spp.; this activity can be due to the synergistic effects of antibiotics in it.

  16. Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species.

    PubMed

    Pinto, Eugénia; Gonçalves, Maria-José; Cavaleiro, Carlos; Salgueiro, Lígia

    2017-09-22

    The composition of the essential oil (EO) of Thapsia villosa (Apiaceae), isolated by hydrodistillation from the plant's aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5%) and methyleugenol (35.9%), were evaluated against clinically relevant yeasts ( Candida spp., Cryptococcus neoformans and Malassezia furfur ) and moulds ( Aspergillus spp. and dermatophytes). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI). The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration) values against Candida spp., Cryptococcus neoformans , dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast-mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL) and their major compounds in Candida albicans . Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses.

  17. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.

    PubMed

    Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A

    2016-01-01

    Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an

  18. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans

    PubMed Central

    Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja

    2016-01-01

    ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an

  19. Saccharomyces boulardii and Candida albicans experimental colonization of the murine gut.

    PubMed

    Samonis, G; Falagas, M E; Lionakis, S; Ntaoukakis, M; Kofteridis, D P; Ntalas, I; Maraki, S

    2011-05-01

    Saccharomyces boulardii has been and continues to be extensively used as a probiotic, with only rare associations with fungemia. This study evaluated the virulence of this yeast when given as a probiotic, and its role in preventing gastrointestinal (GI) colonization by Candida. Adult male Crl:CD1 (ICR) BR mice were given S. boulardii orally in three different doses or normal saline for 14 days. Stool cultures were performed at the time of discontinuation of yeast administration, as well as 1 and 2 weeks later. Gut colonization was proportional to the given dose but lasted only 1 week and no dissemination of the yeast was detected. S. boulardii was also given for 2 and 4 weeks to mice fed chow containing Candida albicans. S. boulardii in the gut did not affect Candida GI colonization. These findings suggest that oral administration of S. boulardii induces a substantial but short term increase of this yeast in the intestinal lumen and administration of the probiotic does not prevent subsequent GI colonization by C. albicans.

  20. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent.

    PubMed

    Arzmi, Mohd Hafiz; Alnuaimi, Ali D; Dashper, Stuart; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2016-11-01

    Oral biofilms comprise of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of polymicrobial interactions of Candida albicans, Actinomyces naeslundii, and Streptococcus mutans on biofilm formation with the hypotheses that biofilm biomass and metabolic activity are both C. albicans strain and growth medium dependent. To study monospecific biofilms, C. albicans, A. naeslundii, and S. mutans were inoculated into artificial saliva medium (ASM) and RPMI-1640 in separate vials, whereas to study polymicrobial biofilm formation, the inoculum containing microorganisms was prepared in the same vial prior inoculation into a 96-well plate followed by 72 hours incubation. Finally, biofilm biomass and metabolic activity were measured using crystal violet and XTT assays, respectively. Our results showed variability of monospecies and polymicrobial biofilm biomass between C. albicans strains and growth medium. Based on cut-offs, out of 32, seven RPMI-grown biofilms had high biofilm biomass (HBB), whereas, in ASM-grown biofilms, 14 out of 32 were HBB. Of the 32 biofilms grown in RPMI-1640, 21 were high metabolic activity (HMA), whereas in ASM, there was no biofilm had HMA. Significant differences were observed between ASM and RPMI-grown biofilms with respect to metabolic activity (P <01). In conclusion, biofilm biomass and metabolic activity were both C. albicans strain and growth medium dependent. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Deletion of the uracil permease gene confers cross-resistance to 5-fluorouracil and azoles in Candida lusitaniae and highlights antagonistic interaction between fluorinated nucleotides and fluconazole.

    PubMed

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle; Noël, Thierry

    2014-08-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Deletion of the Uracil Permease Gene Confers Cross-Resistance to 5-Fluorouracil and Azoles in Candida lusitaniae and Highlights Antagonistic Interaction between Fluorinated Nucleotides and Fluconazole

    PubMed Central

    Gabriel, Frédéric; Sabra, Ayman; El-Kirat-Chatel, Sofiane; Pujol, Sophie; Fitton-Ouhabi, Valérie; Brèthes, Daniel; Dementhon, Karine; Accoceberry, Isabelle

    2014-01-01

    We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport. PMID:24867971

  3. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    USDA-ARS?s Scientific Manuscript database

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  4. Antifungal activity of caspofungin in experimental infective endocarditis caused by Candida albicans.

    PubMed

    Victorio, Gerardo Becerra; Bourdon, Lorena Michele Brennan; Benavides, Leonel García; Huerta-Olvera, Selene G; Plascencia, Arturo; Villanueva, José; Martinez-Lopez, Erika; Hernández-Cañaveral, Iván Isidro

    2017-05-01

    Infective endocarditis is a disease characterised by heart valve lesions, which exhibit extracellular matrix proteins that act as a physical barrier to prevent the passage of antimicrobial agents. The genus Candida has acquired clinical importance given that it is increasingly being isolated from cases of nosocomial infections. To evaluate the activity of caspofungin compared to that of liposomal amphotericin B against Candida albicans in experimental infective endocarditis. Wistar rats underwent surgical intervention and infection with strains of C. albicans to develop infective endocarditis. Three groups were formed: the first group was treated with caspofungin, the second with liposomal amphotericin B, and the third received a placebo. In vitro sensitivity was first determined to further evaluate the effect of these treatments on a rat experimental model of endocarditis by semiquantitative culture of fibrinous vegetations and histological analysis. Our semiquantitative culture of growing vegetation showed massive C. albicans colonisation in rats without treatment, whereas rats treated with caspofungin showed significantly reduced colonisation, which was similar to the results obtained with liposomal amphotericin B. The antifungal activity of caspofungin is similar to that of liposomal amphotericin B in an experimental model of infective endocarditis caused by C. albicans.

  5. Application of surface plasmon resonance biosensor for the detection of Candida albicans

    NASA Astrophysics Data System (ADS)

    Yodmongkol, Sirasa; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Puttharugsa, Chokchai; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2016-02-01

    In this study, surface plasmon resonance imaging (SPR imaging) was developed for the detection of Candida albicans which is a causal agent of oral infection. The detection was based on the sandwich assay. The capture antibody was covalently immobilized on the mixed self assemble monolayers (SAMs). The ratio of mixed SAMs between 11-mercaptoundecanoic acid and 3-mercaptopropanol was varied to find the optimal ratio for use as a sensor surface. The results showed that the suitable surface for C. albicans detection was SAM of carboxylic (mixed SAMs 1:0), even though mixed SAMs 1:40 had a high detection signal in comparison to mixed SAMs 1:0, but the non-specific signal was higher. The detection limit was 107 cells/ml for direct detection, and was increased to 106 cells/ml with sandwich antibody. The use of polyclonal C. albicans antibody as capture and sandwich antibody showed good selectivity against the relevant oral bacteria including Escherichia coli, Streptococcus mutan, Staphylococcus aureus, β-streptococci, and Lactobacillus casei. SPR platform in this study could detect C. albicans from the mixed microbial suspension without requirement of skillful technician. This SPR imaging biosensor could be applied for Candida identification after cultivation.

  6. Suppression of humoral response during the course of Candida albicans infection in mice.

    PubMed

    Valdez, J C; Meson, O E; de Valdez, G A; Sirena, A

    1984-10-30

    This paper aims at demonstrating the non-specific immunosuppression as regards thyme-dependent antigens sheep erythrocytes (SRBC) during the course of Candida albicans systemic infection. Three lots of syngeneic/BALB/c mice, 8-12 weeks of age, were used. The first normal lot was inoculated via the intraperitoneal route with a (SRBC) suspension (4 X 10(8) cells ml) in a Hank's balanced saline solution. The primary response of antibodies formed by splenic cells was measured from 4 to 8 days after inoculation using the direct plaque forming cells technique. The second lot was infected by the same route with a suspension of Candida albicans (1 X 10(7) cells). Positive retrocultures from the blood and kidneys of these infected mice were obtained. These yeasts cultivated in a Sabouraud medium were harvested after 20 h at 37 degrees C. Following the same methodology the immune response to SRBC was determined. The serum obtained from infected mice was transferred to a third lot of mice at different intervals during the course of the infection. The immune response to SRBC was done by the direct plaque-forming cells technique. Controls were carried out using normal donors and recipients. A suppression of the immune response was obtained as from the 2nd day of inoculation up to the 28th day. It was not possible to transfer such suppression passively by means of the serum. These results suggest that the systemic infection by Candida albicans induce a non-specific immunosuppression in the organism, already demonstrated in viral infections, bacteria, protozoaria and metazoaria in mammals. In some way, this will contribute to explain the mechanisms of immune response to Candida albicans.

  7. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation.

    PubMed

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA's phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans . We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and metacaspase activation

  8. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation

    PubMed Central

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Background Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA’s phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. Methods In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. Results A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans. We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and

  9. Membrane of Candida albicans as a target of berberine.

    PubMed

    Zorić, Nataša; Kosalec, Ivan; Tomić, Siniša; Bobnjarić, Ivan; Jug, Mario; Vlainić, Toni; Vlainić, Josipa

    2017-05-17

    We investigated the mechanisms of anti-Candida action of isoquinoline alkaloid berberine, active constituent of medically important plants of Barberry species. The effects on membrane, morphological transition, synthesis of ergosterol and the consequent changes in membrane permeability have been studied. Polarization and lipid peroxidation level of the membrane following berberine treatment have been addressed. Minimal inhibitory concentration (MIC) of berberine against C. albicans was 17.75 μg/mL. Cytotoxic effect of berberine was concentration dependent, and in sub-MIC concentrations inhibit morphological transition of C. albicans cells to its filamentous form. Results showed that berberine affects synthesis of membrane ergosterol dose-dependently and induces increased membrane permeability causing loss of intracellular material to the outer space (DNA/protein leakage). Berberine also caused membrane depolarization and lipid peroxidation of membrane constituents indicating its direct effect on the membrane. Moreover, ROS levels were also increased following berberine treatment indicating further the possibility of membrane damage. Based on the obtained results it seems that berberine achieves its anti-Candida activity by affecting the cell membrane.

  10. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species

    PubMed Central

    Nagayoshi, Yohsuke; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions. PMID:28700656

  11. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species.

    PubMed

    Nagayoshi, Yohsuke; Miyazaki, Taiga; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions.

  12. [Evaluation of a rapid trehalase test for the identification of Candida glabrata].

    PubMed

    Kirdar, Sevin; Gültekin, Berna; Evcil, Gonca; Ozkütük, Aydan; Sener, Asli Gamze; Aydin, Neriman

    2009-04-01

    Candida species which cause local infections, may also lead to fatal systemic infections. The increasing incidence of non-albicans Candida, especially fluconazole susceptible or resistant dose-dependent C. glabrata, increased the importance of rapid and accurate species level identification for Candida. Rapid and correct identification of C. glabrata is essential for the initiation of the appropriate antifungal therapy. This study was conducted to evaluate the performance of the rapid trehalase test in the diagnosis of C. glabrata isolates. A total of 173 Candida strains isolated from various clinical specimens and identified according to germ tube test, growth on cornmeal Tween 80 agar and the colony morphologies on Mast-CHROMagar Candida medium (Mast Diagnostics, UK), were included to the study. The identification of non-albicans Candida species were also confirmed by API 20CAUX (BioMerieux, France) system. Accordingly 86 (50%) of the isolates were identified as C. glabrata, 48 (28%) C. albicans, 17 (10%) C. krusei, 13 (8%) C. tropicalis, 5 (3%) C. parapsilosis, 3 (2%) C. kefyr and 1 (1%) Cutilis. In order to detect the presence of trehalase enzyme in Condida strains, all isolates were grown on Sabouraud dextrose agar containing 4% glucose and then one yeast colony was emulsified in 50 microl of citrate buffer containing 4% (wt/vol) trehalose for 3 h at 37 degrees C. Presence of glucose which emerged after the action of trehalase on trehalose, was detected by a commercial "urinary glucose detection dipstick" (Spinreacta, Spain). All C. glabrata strains yielded positive result by trehalase test. None C. glabrata isolates were found negative by trehalase test except for one strain of C. tropicalis. In this study, the trehalase test allowed identification of C. globrata with 100% sensitivity and 98.9% specificity. It was concluded that trehalase test is a rapid, cost-effective and simple test that can be used for the accurate identification of C. glabrata.

  13. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran: comparison of colonizing and infecting isolates.

    PubMed

    Badiee, Parisa; Badali, Hamid; Boekhout, Teun; Diba, Kambiz; Moghadam, Abdolkarim Ghadimi; Hossaini Nasab, Ali; Jafarian, Hadis; Mohammadi, Rasoul; Mirhendi, Hossein; Najafzadeh, Mohammad Javad; Shamsizadeh, Ahmad; Soltani, Jafar

    2017-11-21

    Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to ten university hospitals in Iran. In totally, 846 Candida species were isolated from more than 4000 clinical samples and identified by the API 20 C AUX system. Antifungal susceptibility testing was performed by broth microdilution method according to CLSI. The most frequent Candida species isolated from all patients was Candida albicans (510/846). The epidemiological cutoff value and percentage of wild-type species for amphotericin B and fluconazole in Candida albicans, Candida tropicalis, Candida glabrata and Candida krusei were 0.5 μg/ml (95%) and 4 μg/ml (96%); 1 μg/ml (95%) and 8 μg/ml (95%); 0.5 μg/ml (99%) and 19 μg/ml (98%); and 4 μg/ml (95%) and 64 μg/ml (95%), respectively. The MIC90 and epidemiological cutoff values to posaconazole in Candida krusei were 0.5 μg/ml. There were significant differences between infecting and colonizing isolates of Candida tropicalis in MIC 90 values of amphotericin B, and isolates of Candida glabrata in values of amphotericin B, caspofungin, and voriconazole (P < 0.05). Our findings suggest that the susceptibility patterns of Candida species (colonizing and infecting isolates) in immunocompromised patients are not the same and acquired resistance was seen in some species.

  14. Melittin induces apoptotic features in Candida albicans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Cana; Lee, Dong Gun, E-mail: dglee222@knu.ac.kr

    2010-03-26

    Melittin is a well-known antimicrobial peptide with membrane-active mechanisms. In this study, it was found that Melittin exerted its antifungal effect via apoptosis. Candida albicans exposed to Melittin showed the increased reactive oxygen species (ROS) production, measured by DHR-123 staining. Fluorescence microscopy staining with FITC-annexin V, TUNEL and DAPI further confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, and DNA and nuclear fragmentation. The current study suggests that Melittin possesses an antifungal effect with another mechanism promoting apoptosis.

  15. Resistance profiles and risk factors of resistant microorganisms in bacteraemia of abdominal origin.

    PubMed

    Martín Jaramago, J; Armero Ibáñez, R; Camarena Miñana, J J; Morales Suárez-Varela, M

    2017-11-01

    The presence of resistant microorganisms is a major cause of failure in initial empirical antimicrobial therapy. The objectives of this study are to determine the resistance profile of microorganisms that cause bacteraemia of abdominal origin and to identify whether the previous use of antibiotics and the place of acquisition of bacteraemia are risk factors associated with the presence of resistant organisms. A clinical, observational, epidemiological, retrospective cohort study was conducted with all the adult patients admitted to a university hospital from 2011-2013. Antimicrobial resistance profiles were described and a 95% confidence interval chi-square test was used to determine whether the variables studied were risk factors in the isolation of resistant microorganisms. Of the 1245 patients with bacteraemia, 212 (17%) presented bacteraemia of abdominal origin. The resistance profile highlights the incidence of methicillin resistant Staphylococcus aureus (50%), coagulase-negative staphylococci resistant to linezolid (20.58%), enterococci resistant to vancomycin (3.12%), Escherichia coli resistant to third-generation cephalosporins (9.9%) and fluoroquinolones (35.64%), Klebsiella pneumoniae resistant to third-generation cephalosporins (8.33%), Pseudomonas aeruginosa resistant to fluoroquinolones and carbapenem (25% and 25% respectively) and Acinetobacter baumanii resistant to fluoroquinolones and carbapenem (100% and 100% respectively), Candida albicans resistant to fluconazole (11.11%), single Candida krusei isolate resistant to fluconazole and Candida parapsilosis resistant to echinocandins (12.5%). In our study, previous use of antibiotics had a statistically significant association with the isolation of resistant microorganisms (P=.013) but not the place of acquisition of bacteraemia (P=.239). Establishing the incidence of resistant organisms can improve empirical antimicrobial therapy in patients with bacteraemia of abdominal origin. Previous use of

  16. Particular Candida albicans Strains in the Digestive Tract of Dyspeptic Patients, Identified by Multilocus Sequence Typing

    PubMed Central

    Gong, Yan-Bing; Zheng, Jian-Ling; Jin, Bo; Zhuo, De-Xiang; Huang, Zhu-Qing; Qi, He; Zhang, Wei; Duan, Wei; Fu, Ji-Ting; Wang, Chui-Jie; Mao, Ze-Bin

    2012-01-01

    Background Candida albicans is a human commensal that is also responsible for chronic gastritis and peptic ulcerous disease. Little is known about the genetic profiles of the C. albicans strains in the digestive tract of dyspeptic patients. The aim of this study was to evaluate the prevalence, diversity, and genetic profiles among C. albicans isolates recovered from natural colonization of the digestive tract in the dyspeptic patients. Methods and Findings Oral swab samples (n = 111) and gastric mucosa samples (n = 102) were obtained from a group of patients who presented dyspeptic symptoms or ulcer complaints. Oral swab samples (n = 162) were also obtained from healthy volunteers. C. albicans isolates were characterized and analyzed by multilocus sequence typing. The prevalence of Candida spp. in the oral samples was not significantly different between the dyspeptic group and the healthy group (36.0%, 40/111 vs. 29.6%, 48/162; P > 0.05). However, there were significant differences between the groups in the distribution of species isolated and the genotypes of the C. albicans isolates. C. albicans was isolated from 97.8% of the Candida-positive subjects in the dyspeptic group, but from only 56.3% in the healthy group (P < 0.001). DST1593 was the dominant C. albicans genotype from the digestive tract of the dyspeptic group (60%, 27/45), but not the healthy group (14.8%, 4/27) (P < 0.001). Conclusions Our data suggest a possible link between particular C. albicans strain genotypes and the host microenvironment. Positivity for particular C. albicans genotypes could signify susceptibility to dyspepsia. PMID:22536371

  17. Prevalence of Candida albicans and Candida dubliniensis in caries-free and caries-active children in relation to the oral microbiota-a clinical study.

    PubMed

    Al-Ahmad, A; Auschill, T M; Dakhel, R; Wittmer, A; Pelz, K; Heumann, C; Hellwig, E; Arweiler, N B

    2016-11-01

    The correlation between caries and the oral prevalence of Candida spp. in children is contradictory in literature. Thereby, authors focused on Candida albicans as the most isolated Candida species from the oral cavity. Therefore, the aim of the present study was to compare caries-free and caries-bearing children regarding their oral carriage of Candida spp. Twenty-six caries-free (CF group) and 26 caries-active children (CA group) were included into this study. Three different types of specimens were assessed, saliva and plaque, and in the case of caries, infected dentine samples were microbiologically analyzed for aerobic and anaerobic microorganisms and their counts. Special attention was given to the differentiation between C. albicans and Candida dubliniensis. Additionally, different biochemical tests, VITEK 2 (VITEK®2, bioMérieux, Marcy-l'Etoile, France) and 16S and 18S ribosomal DNA (rDNA) sequencing, were applied for identification. The detection of C. albicans did not differ between the CF and CA groups. C. dubliniensis was never detected in any specimen of the CF group, but occurred in one quarter of the CA group (27 % in plaque, 23 % in saliva), thus leading to a statistically significant difference between the two groups (p < 0.05). In six of these cases, C. dubliniensis was detected concomitantly in saliva and plaque and once only in plaque. CA group harbored statistically more Streptococcus mutans than the control group revealing a correlation between S. mutans and C. dubliniensis regarding the caries group. This is the first study reporting a frequent detection of C. dubliniensis in caries-active children, which could have been underestimated so far due to difficulties in differentiation between this yeast species and C. albicans. Microbiological diagnostic-especially of oral Candida species-is an important determinant for identifying etiological factors of dental caries in children.

  18. Identification of Candida Species Using MP65 Gene and Evaluation of the Candida albicans MP65 Gene Expression in BALB/C Mice.

    PubMed

    Bineshian, Farahnaz; Yadegari, Mohammad Hossien; Sharifi, Zohre; Akbari Eidgahi, Mohammadreza; Nasr, Reza

    2015-05-01

    Systemic candidiasis is a major public health concern. In particular, in immunocompromised people, such as patients with neutropenia, patients with Acquired Immune Deficiency Syndrome (AIDS) and cancer who are undergoing antiballistic chemotherapy or bone marrow transplants, and people with diabetes. Since the clinical signs and symptoms are nonspecific, early diagnosis is often difficult. The 65-kDa mannoprotein (MP65) gene of Candida albicans is appropriate for detection and identification of systemic candidiasis. This gene encodes a putative b-glucanase mannoprotein of 65 kDa, which plays a major role in the host-fungus relationship, morphogenesis and pathogenicity. The current study aimed to identify different species of Candida (C. albicans, C. glabrata and C. parapsilosis) using the Polymerase Chain Reaction (PCR) technique and also to evaluate C. albicans MP65 gene expression in BALB/C mice. All yeast isolates were identified on cornmeal agar supplemented with tween-80, germ tube formation in serum, and assimilation of carbon sources in the API 20 C AUX yeast identification system. Polymerase Chain Reaction was performed on all samples using species-specific primers for the MP65 65 kDa gene. After RNA extraction, cDNA synthesis was performed by the Maxime RT Pre Mix kit. Candida albicans MP65 gene expression was evaluated by quantitative Real-Time (q Real-Time) and Real-Time (RT) PCR techniques. The 2-ΔΔCT method was used to analyze relative changes in gene expression of MP65. For statistical analysis, nonparametric Wilcoxon test was applied using the SPSS version 16 software. Using biochemical methods, one hundred, six and one isolates of clinical samples were determined as C. albicans, C. glabrata and C. parapsilosis, respectively. Species-specific primers for PCR experiments were applied to clinical specimens, and in all cases a single expected band for C. albicans, C. glabrata and C. parapsilosis was obtained (475, 361 and 124 base pairs, respectively

  19. Identification and Antifungal Susceptibility Testing of Candida Species: A Comparison of Vitek-2 System with Conventional and Molecular Methods.

    PubMed

    Kaur, Ravinder; Dhakad, Megh Singh; Goyal, Ritu; Haque, Absarul; Mukhopadhyay, Gauranga

    2016-01-01

    Candida infection is a major cause of morbidity and mortality in immunocompromised patients; an accurate and early identification is a prerequisite need to be taken as an effective measure for the management of patients. The purpose of this study was to compare the conventional identification of Candida species with identification by Vitek-2 system and the antifungal susceptibility testing (AST) by broth microdilution method with Vitek-2 AST system. A total of 172 Candida isolates were subjected for identification by the conventional methods, Vitek-2 system, restriction fragment length polymorphism, and random amplified polymorphic DNA analysis. AST was carried out as per the Clinical and Laboratory Standards Institute M27-A3 document and by Vitek-2 system. Candida albicans (82.51%) was the most common Candida species followed by Candida tropicalis (6.29%), Candida krusei (4.89%), Candida parapsilosis (3.49%), and Candida glabrata (2.79%). With Vitek-2 system, of the 172 isolates, 155 Candida isolates were correctly identified, 13 were misidentified, and four were with low discrimination. Whereas with conventional methods, 171 Candida isolates were correctly identified and only a single isolate of C. albicans was misidentified as C. tropicalis . The average measurement of agreement between the Vitek-2 system and conventional methods was >94%. Most of the isolates were susceptible to fluconazole (88.95%) and amphotericin B (97.67%). The measurement of agreement between the methods of AST was >94% for fluconazole and >99% for amphotericin B, which was statistically significant ( P < 0.01). The study confirmed the importance and reliability of conventional and molecular methods, and the acceptable agreements suggest Vitek-2 system an alternative method for speciation and sensitivity testing of Candida species infections.

  20. Cross-kingdom interactions: Candida albicans and bacteria.

    PubMed

    Shirtliff, Mark E; Peters, Brian M; Jabra-Rizk, Mary Ann

    2009-10-01

    Bacteria and fungi are found together in a myriad of environments and particularly in a biofilm, where adherent species interact through diverse signaling mechanisms. Yet, despite billions of years of coexistence, the area of research exploring fungal-bacterial interactions, particularly within the context of polymicrobial infections, is still in its infancy. However, reports describing a multitude of wide-ranging interactions between the fungal pathogen Candida albicans and various bacterial pathogens are on the rise. An example of a mutually beneficial interaction is coaggregation, a phenomenon that takes place in oral biofilms where the adhesion of C. albicans to oral bacteria is considered crucial for its colonization of the oral cavity. In contrast, the interaction between C. albicans and Pseudomonas aeruginosa is described as being competitive and antagonistic in nature. Another intriguing interaction is that occurring between Staphylococcus aureus and C. albicans, which although not yet fully characterized, appears to be initially synergistic. These complex interactions between such diverse and important pathogens would have significant clinical implications if they occurred in an immunocompromised host. Therefore, understanding the mechanisms of adhesion and signaling involved in fungal-bacterial interactions may lead to the development of novel therapeutic strategies for impeding microbial colonization and development of polymicrobial disease. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. The Adaptor CARD9 Is Required for Adaptive but Not Innate Immunity to Oral Mucosal Candida albicans Infections

    PubMed Central

    Bishu, Shrinivas; Hernández-Santos, Nydiaris; Simpson-Abelson, Michelle R.; Huppler, Anna R.; Conti, Heather R.; Ghilardi, Nico; Mamo, Anna J.

    2014-01-01

    Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate “type 17” cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9−/− mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9−/− mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses. PMID:24379290

  2. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species.

    PubMed

    Khodavandi, Alireza; Alizadeh, Fahimeh; Aala, Farzad; Sekawi, Zamberi; Chong, Pei Pei

    2010-04-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, and the type of infection encompassed by candidiasis ranges from superficial to systemic. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. In this study, we used allicin, an allyl sulfur derivative of garlic, to demonstrate both its intrinsic antifungal activity and its synergy with the azoles, in the treatment of these yeasts in vitro. In this study, the MIC(50) and MIC(90) of allicin alone against six Candida spp. ranged from 0.05 to 25 microg/ml. However, when allicin was used in combination with fluconazole or ketoconazole, the MICs were decreased in some isolates. Our results demonstrated the existing synergistic effect between allicin and azoles in some of the Candida spp. such as C. albicans, C. glabrata and C. tropicalis, but synergy was not demonstrated in the majority of Candida spp. tested. Nonetheless, In vivo testing needs to be performed to support these findings.

  3. Candida albicans chronic colonisation in cystic fibrosis may be associated with inhaled antibiotics.

    PubMed

    Noni, Maria; Katelari, Anna; Kaditis, Athanasios; Theochari, Ioanna; Lympari, Ioulia; Alexandrou-Athanassoulis, Helen; Doudounakis, Stavros-Eleftherios; Dimopoulos, George

    2015-07-01

    Candida albicans is increasingly recognised as a coloniser of the respiratory tract in cystic fibrosis (CF) patients. Yet, the potential role, if any, of the micro-organism in the progress of the disease remains unclear. In this study, we investigated the association between inhaled antibiotics and C. albicans chronic colonisation in patients with CF. A cohort of 121 CF patients born from 1988 to 1996 was, respectively, studied. The medical records of each patient were reviewed from the first time they attended the CF Centre until the occurrence of C. albicans chronic colonisation or their last visit for the year 2010. Chronic colonisation was defined as the presence of C. albicans in more than 50% of cultures in a given year. A number of possible confounders were included in the multivariate logistic regression analysis to identify an independent association between inhaled antibiotics and C. albicans chronic colonisation. Fifty-four (44.6%) of the 121 patients enrolled in the study developed chronic colonisation by the micro-organism. Multivariate logistic regression analysis determined the independent effect of inhaled antibiotic treatment on the odds of chronic colonisation (OR 1.112, 95% CI [1.007-1.229], P = 0.036). Candida albicans chronic colonisation may be associated with the duration of inhaled antibiotic treatment. © 2015 Blackwell Verlag GmbH.

  4. Fungal Profile of Vulvovaginal Candidiasis in a Tertiary Care Hospital.

    PubMed

    Kalaiarasan, Krishnapriya; Singh, Rakesh; Chaturvedula, Latha

    2017-03-01

    Vulvovaginal Candidiasis (VVC) is a common medical health problem of adult women. It is most commonly caused by Candida albicans . But there is a change in fungal profile. Sabouraud's Dextrose Agar (SDA) is the most common culture medium used where mixed fungal infection may be missed. It can be detected easily by using chromogenic culture medium. To know the fungal profile of vulvovaginal candidiasis using Candida CHROMagar and antifungal susceptibility pattern in patients attending tertiary care hospital. Culture confirmed cases of VVC presented at Department of Obstetrics and Gynaecology of Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India, from July 2015 to December 2015 were included in the cross-sectional study. Two high vaginal swabs were collected and inoculated on SDA and Candida CHROMagar (Hi-Media, Mumbai, India). After overnight incubation the colonies were counted and colour of the colonies were recorded from Candida CHROMagar. Candida spp. were identified by sugar fermentation and assimilation tests and other conventional tests. Antifungal susceptibility tests were performed by the disc diffusion method using fluconazole (25 μg) and voriconazole (1μg) as per the Clinical and Laboratory Standards Institute (CLSI - M44-A2) guidelines. A total of 50 culture confirmed (23.7%) cases were detected from 211 clinically suspected VVC cases. Candida glabrata (45.1%) was the most common isolate, followed by Candida tropicalis (23.5%) , Candida albicans (17.6%) , Candida krusei (9.8%) and Candida parapsilosis (3.9%) . One mixed infection of C. glabrata and C. albicans was identified on Candida CHROMagar. Mixed fungal infection was observed in 2% of positive culture and 0.5% of VVC cases. The antifungal susceptibility testing revealed that 15.7% and 9.8% isolates of Candida spp. were resistant and Susceptible Dose Dependent (S-DD) respectively to fluconazole. The increase resistant against fluconazole was because of

  5. Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, barcelona, Spain, from 2002 to 2003.

    PubMed

    Almirante, Benito; Rodríguez, Dolors; Park, Benjamin J; Cuenca-Estrella, Manuel; Planes, Ana M; Almela, Manuel; Mensa, Jose; Sanchez, Ferran; Ayats, Josefina; Gimenez, Montserrat; Saballs, Pere; Fridkin, Scott K; Morgan, Juliette; Rodriguez-Tudela, Juan L; Warnock, David W; Pahissa, Albert

    2005-04-01

    We conducted population-based surveillance for Candida bloodstream infections in Spain to determine its incidence, the extent of antifungal resistance, and risk factors for mortality. A case was defined as the first positive blood culture for any Candida spp. in a resident of Barcelona, from 1 January 2002 to 31 December 2003. We defined early mortality as occurring between days 3 to 7 after candidemia and late mortality as occurring between days 8 to 30. We detected 345 cases of candidemia, for an average annual incidence of 4.3 cases/100,000 population, 0.53 cases/1,000 hospital discharges, and 0.73 cases/10,000 patient-days. Outpatients comprised 11% of the cases, and 89% had a central venous catheter (CVC) at diagnosis. Overall mortality was 44%. Candida albicans was the most frequent species (51% of cases), followed by Candida parapsilosis (23%), Candida tropicalis (10%), Candida glabrata (8%), Candida krusei (4%), and other species (3%). Twenty-four isolates (7%) had decreased susceptibility to fluconazole (MIC > or = 16 microg/ml). On multivariable analysis, early death was independently associated with hematological malignancy (odds ratio [OR], 3.5; 95% confidence interval [CI], 1.1 to 10.4). Treatment with antifungals (OR, 0.05; 95% CI, 0.01 to 0.2) and removal of CVCs (OR, 0.3; 95% CI, 0.1 to 0.9) were protective factors for early death. Receiving adequate treatment, defined as having CVCs removed and administration of an antifungal medication (OR, 0.2; 95% CI, 0.08 to 0.8), was associated with lower odds of late mortality; intubation (OR, 7.5; 95% CI, 2.6 to 21.1) was associated with higher odds. The incidence of candidemia and prevalence of fluconazole resistance are similar to other European countries, indicating that routine antifungal susceptibility testing is not warranted. Antifungal medication and catheter removal are critical in preventing mortality.

  6. Genetic and phenotypic intra-species variation in Candida albicans

    PubMed Central

    Hirakawa, Matthew P.; Martinez, Diego A.; Sakthikumar, Sharadha; Anderson, Matthew Z.; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M.; Greenberg, Joshua M.; Berman, Judith

    2015-01-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. PMID:25504520

  7. Genetic and phenotypic intra-species variation in Candida albicans.

    PubMed

    Hirakawa, Matthew P; Martinez, Diego A; Sakthikumar, Sharadha; Anderson, Matthew Z; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M; Greenberg, Joshua M; Berman, Judith; Bennett, Richard J; Cuomo, Christina A

    2015-03-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. © 2015 Hirakawa et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Rapid identification of drug resistant Candida species causing recurrent vulvovaginal candidiasis.

    PubMed

    Diba, Kambiz; Namaki, Atefeh; Ayatolahi, Haleh; Hanifian, Haleh

    2012-01-01

    Some yeast agents including Candida albicans, Candida tropicalis and Candida glabrata have a role in recurrent vulvovaginal candidiasis. We studied the frequency of both common and recurrent vulvovaginal candidiasis in symptomatic cases which were referred to Urmia Medical Sciences University related gynecology clinics using morphologic and molecular methods. The aim of this study was the identification of Candida species isolated from recurrent vulvovaginal candidiasis cases using a rapid and reliable molecular method. Vaginal swabs obtained from each case, were cultured on differential media including cornmeal agar and CHROM agar Candida. After 48 hours at 37℃, the cultures were studied for growth characteristics and color production respectively. All isolates were identified using the molecular method of PCR - restriction fragment length polymorphism. Among all clinical specimens, we detected 19 ( 16 % ) non fungal agents, 87 ( 82.1 % ) yeasts and 2 ( 1.9 % ) multiple infections. The yeast isolates identified morphologically included Candida albicans ( n = 62 ), Candida glabrata ( n = 9 ), Candida tropicalis ( n = 8 ), Candida parapsilosis ( n = 8 ) and Candida guilliermondii and Candida krusei ( n = 1 each ). We also obtained very similar results for Candida albicans, Candida glabrata and Candida tropicalis as the most common clinical isolates, by using PCR - Restriction Fragment Length Polymorphism. Use of two differential methods, morphologic and molecular, enabled us to identify most medically important Candida species which particularly cause recurrent vulvovaginal candidiasis.

  9. Sfp1 and Rtg3 reciprocally modulate carbon source‐conditional stress adaptation in the pathogenic yeast Candida albicans

    PubMed Central

    Kastora, Stavroula L.; Herrero‐de‐Dios, Carmen; Avelar, Gabriela M.; Munro, Carol A.

    2017-01-01

    Summary The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host‐imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these ‘non‐standard’ growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source‐conditional manner. SFP1 is induced in stressed glucose‐grown cells, whereas RTG3 is upregulated in stressed lactate‐grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source‐dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation. PMID:28574606

  10. Role of FKS Mutations in Candida glabrata: MIC Values, Echinocandin Resistance, and Multidrug Resistance

    PubMed Central

    Pham, Cau D.; Iqbal, Naureen; Bolden, Carol B.; Kuykendall, Randall J.; Harrison, Lee H.; Farley, Monica M.; Schaffner, William; Beldavs, Zintars G.; Chiller, Tom M.; Park, Benjamin J.; Cleveland, Angela A.

    2014-01-01

    Candida glabrata is the second leading cause of candidemia in U.S. hospitals. Current guidelines suggest that an echinocandin be used as the primary therapy for the treatment of C. glabrata disease due to the high rate of resistance to fluconazole. Recent case reports indicate that C. glabrata resistance to echinocandins may be increasing. We performed susceptibility testing on 1,380 isolates of C. glabrata collected between 2008 and 2013 from four U.S. cities, Atlanta, Baltimore, Knoxville, and Portland. Our analysis showed that 3.1%, 3.3%, and 3.6% of the isolates were resistant to anidulafungin, caspofungin, and micafungin, respectively. We screened 1,032 of these isolates, including all 77 that had either a resistant or intermediate MIC value with respect to at least one echinocandin, for mutations in the hot spot regions of FKS1 and FKS2, the major mechanism of echinocandin resistance. Fifty-one isolates were identified with hot spot mutations, 16 in FKS1 and 35 in FKS2. All of the isolates with an FKS mutation except one were resistant to at least one echinocandin by susceptibility testing. Of the isolates resistant to at least one echinocandin, 36% were also resistant to fluconazole. Echinocandin resistance among U.S. C. glabrata isolates is a concern, especially in light of the fact that one-third of those isolates may be multidrug resistant. Further monitoring of U.S. C. glabrata isolates for echinocandin resistance is warranted. PMID:24890592

  11. Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida

    PubMed Central

    Hospenthal, Duane R; Beckius, Miriam L; Floyd, Karon L; Horvath, Lynn L; Murray, Clinton K

    2006-01-01

    Background CHROMagar Candida (CaC) is increasingly being reported as a medium used to differentiate Candida albicans from non-albicans Candida (NAC) species. Rapid identification of NAC can assist the clinician in selecting appropriate antifungal therapy. CaC is a differential chromogenic medium designed to identify C. albicans, C. krusei, and C. tropicalis based on colony color and morphology. Some reports have proposed that CaC can also reliably identify C. dubliniensis and C. glabrata. Methods We evaluated the usefulness of CaC in the identification of C. dubliniensis, C. famata, C. firmetaria, C. glabrata, C. guilliermondii, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. parapsilosis, and C. rugosa. Results Most NAC produced colonies that were shades of pink, lavender, or ivory. Several isolates of C. firmetaria and all C. inconspicua produced colonies difficult to differentiate from C. krusei. Most C. rugosa isolates produced unique colonies with morphology like C. krusei except in a light blue-green color. C. glabrata isolates produced small dark violet colonies that could be differentiated from the pink and lavender colors produced by other species. All seventeen isolates of C. dubliniensis produced green colonies similar to those produced by C. albicans. Conclusion C. glabrata and C. rugosa appear distinguishable from other species using CaC. Some NAC, including C. firmetaria and C. inconspicua, could be confused with C. krusei using this medium. PMID:16390552

  12. Antifungal Susceptibility Testing in HIV/AIDS Patients: a Comparison Between Automated Machine and Manual Method.

    PubMed

    Nelwan, Erni J; Indrasanti, Evi; Sinto, Robert; Nurchaida, Farida; Sosrosumihardjo, Rustadi

    2016-01-01

    to evaluate the performance of Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patients. a comparison study to evaluate Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patient was done. Categorical agreement between manual disc diffusion and Vitek2 machine was calculated using predefined criteria. Time to susceptibility result for automated and manual methods were measured. there were 137 Candida isolates comprising eight Candida species with C.albicans and C. glabrata as the first (56.2%) and second (15.3%) most common species, respectively. For fluconazole drug, among the C. albicans, 2.6% was found resistant on manual disc diffusion methods and no resistant was determined by Vitek2 machine; whereas 100% C. krusei was identified as resistant on both methods. Resistant patterns for C. glabrata to fluconazole, voriconazole and amphotericin B were 52.4%, 23.8%, 23.8% vs. 9.5%, 9.5%, 4.8% respectively between manual diffusion disc methods and Vitek2 machine. Time to susceptibility result for automated methods compared to Vitex2 machine was shorter for all Candida species. there is a good categorical agreement between manual disc diffusion and Vitek2 machine, except for C. glabrata for measuring the antifungal resistant. Time to susceptibility result for automated methods is shorter for all Candida species.

  13. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials

    PubMed Central

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-01-01

    Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103) comparing to injection molding acrylic resins (6×103) were statistically significant (p<0.001). Conclusion: Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis. PMID:28280761

  14. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials.

    PubMed

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-03-01

    Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer's instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×10 8 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×10 3 ) comparing to injection molding acrylic resins (6×10 3 ) were statistically significant ( p <0.001). Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis.

  15. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans

    NASA Astrophysics Data System (ADS)

    Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul

    2017-05-01

    This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.

  16. Candida albicans adherence to resin-composite restorative dental material: influence of whole human saliva.

    PubMed

    Maza, José Luis; Elguezabal, Natalia; Prado, Carlota; Ellacuría, Joseba; Soler, Iñaki; Pontón, José

    2002-11-01

    Attachment of Candida albicans to oral surfaces is believed to be a critical event in the colonization of the oral cavity and in the development of oral diseases such as Candida-associated denture stomatitis. Although there is considerable information about the adhesion of C albicans to buccal epithelial cells and prosthetic materials, there is very little information about the adhesion of C albicans to composite restorative materials. The purpose of this study was to investigate the degree of adhesion of C albicans to a resin-composite restorative material (Herculite). The adhesion of 2 strains of C albicans, a germinative and a germ tube-deficient mutant, was studied by a visual method after incubating the fungus and the resin with and without human whole saliva. In absence of saliva, the adhesion of the C albicans germinative isolate to the resin showed an increase in parallel with the germination, reaching a maximum at the end of the experiment (120 minutes). However, no significant differences were observed in the adhesion of the agerminative mutant during the period of time studied. In the presence of saliva, the adhesion of both isolates to the resin was significantly lowered. Germination and the presence of human whole saliva are important factors in the adhesion of C albicans to the resin-composite restorative material Herculite.

  17. Fungicidal activity of tioconazole in relation to growth phase of Candida albicans and Candida parapsilosis.

    PubMed Central

    Beggs, W H

    1984-01-01

    It was shown that tioconazole possesses an important property not shared by ketoconazole and miconazole, its well-known relatives in the imidazole group of antifungal drugs. At a concentration of 3.8 X 10(-5) M, tioconazole, like miconazole, caused rapid 2- to 3-log reductions in CFU per milliliter when added to late-logarithmic-phase Candida albicans or Candida parapsilosis cells. Only tioconazole, however, exerted similar reductions when added to diluted stationary-phase cultures. This growth-phase-independent lethal action has important clinical implications and may explain the superior performance of tioconazole, which was observed in earlier comparative drug studies. PMID:6097174

  18. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids.

    PubMed

    Guisbiers, Grégory; Lara, Humberto H; Mendoza-Cruz, Ruben; Naranjo, Guillermo; Vincent, Brandy A; Peralta, Xomalin G; Nash, Kelly L

    2017-04-01

    Selenoproteins play an important role in the human body by accomplishing essential biological functions like oxido-reductions, antioxidant defense, thyroid hormone metabolism and immune response; therefore, the possibility to synthesize selenium nanoparticles free of any contaminants is exciting for future nano-medical applications. This paper reports the first synthesis of selenium nanoparticles by femtosecond pulsed laser ablation in de-ionized water. Those pure nanoparticles have been successfully used to inhibit the formation of Candida albicans biofilms. Advanced electron microscopy images showed that selenium nanoparticles easily adhere on the biofilm, then penetrate into the pathogen, and consequently damage the cell structure by substituting with sulfur. 50% inhibition of Candida albicans biofilm was obtained at only 25 ppm. Finally, the two physical parameters proved to affect strongly the viability of Candida albicans are the crystallinity and particle size. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Identification, antifungal resistance profile, in vitro biofilm formation and ultrastructural characteristics of Candida species isolated from diabetic foot patients in Northern India.

    PubMed

    Kumar, D; Banerjee, T; Chakravarty, J; Singh, S K; Dwivedi, A; Tilak, R

    2016-01-01

    Diabetic foot ulcers are a serious cause of diagnostic and therapeutic concern. The following study was undertaken to determine the fungal causes of diabetic foot ulcers, with their phenotypic and genotypic characterisation. A total of 155 diabetic foot ulcers were studied for 1 year. Deep tissue specimen was collected from the wounds, and crushed samples were plated on Sabouraud dextrose agar with chloramphenicol (0.05 g). Identification was done by growth on cornmeal agar, germ tube formation and urease test. For molecular identification, conserved portion of the 18S rDNA region, the adjacent internal transcribed spacer 1 (ITS1) and a portion of the 28S rDNA region were amplified, using the ITS1 and ITS2 primers. Antifungal susceptibility against voriconazole, fluconazole and amphotericin B was determined by standard broth microdilution method. Biofilm formation was studied in three steps. First, on the surface of wells of microtiter plates followed by quantification of growth by fungal metabolism measurement. Finally, biofilms were analysed by scanning electron microscopy (SEM). Fungal aetiology was found in 75 patients (48.38%). All were identified as Candida species (100%). The prevalence of different species was Candida tropicalis (34.6%), Candida albicans (29.3%), Candida krusei (16.0%), Candida parapsilosis (10.6%), Candida glabrata (9.33%). All were susceptible to amphotericin B (100%). On microtiter plate, all the isolates were viable within 48 h showing biofilms. The metabolic activity of cells in the biofilm increased with cellular mass, especially in the first 24 h. On SEM, majority showed budding yeast form. Non-albicans Candida spp. with potential biofilm forming ability are emerging as a predominant cause of diabetic foot ulcers.

  20. Germ tube-specific antigens of Candida albicans cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specificmore » antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.« less