Science.gov

Sample records for fluid injection

  1. Fluid injection microvalve

    DOEpatents

    Renzi, Ronald F.

    2005-11-22

    A microvalve for extracting small volume samples into analytical devices, e.g., high pressure liquid chromatography (HPLC) column, includes: a first body having a first interior surface and two or more outlet ports at the first interior surface that are in fluid communication with two or more first channels; a second body having a second interior surface and two or more inlet ports at the second interior surface that are in fluid communication with two or more second channels wherein the outlet ports of the first body are coaxial with the corresponding inlet ports of the second body such that there are at least two sets of coaxial port outlets and port inlets; a plate member, which has a substantially planar first mating surface and a substantially planar second mating surface, that is slidably positioned between the first interior surface and the second interior surface wherein the plate member has at least one aperture that traverses the height of the plate member, and wherein the aperture can be positioned to be coaxial with any of the at least two sets of coaxial port outlets and port inlets; and means for securing the first surface of the first body against the first mating surface and for securing the second surface of the second body against the second mating surface.

  2. Fluid injection and induced seismicity

    NASA Astrophysics Data System (ADS)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  3. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  4. Creating fluid injectivity in tar sands formations

    SciTech Connect

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  5. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  6. Computational fluid dynamics of reaction injection moulding

    NASA Astrophysics Data System (ADS)

    Mateus, Artur; Mitchell, Geoffrey; Bártolo, Paulo

    2012-09-01

    The modern approach to the development of moulds for injection moulding (Reaction Injection Moulding - RIM, Thermoplastic Injection Moulding - TIM and others) differs from the conventional approach based exclusively on the designer's experience and hypotheses. The increasingly complexityof moulds and the requirement by the clients for the improvement of their quality, shorter delivery times, and lower prices, demand the development of novel approaches to developed optimal moulds and moulded parts. The development of more accurate computational tools is fundamental to optimize both, the injection mouldingprocesses and the design, quality and durability of the moulds. This paper focuses on the RIM process proposing a novel thermo-rheo-kinetic model. The proposed model was implemented in generalpurpose Computational Fluid Dynamics (CFD) software. The model enables to accurately describe both flow and curing stages. Simulation results were validated against experimental results.

  7. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical

  8. Coping with earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  9. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  10. Flow regimes for fluid injection into a confined porous medium

    DOE PAGESBeta

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  11. Fluid injection triggering of 2011 earthquake sequence in Oklahoma

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Savage, H. M.; Abers, G. A.; Cochran, E. S.

    2012-12-01

    Significant earthquakes are increasingly occurring within the United States midcontinent, with nine having moment-magnitude (Mw) ≥4.0 and five with Mw≥5.0 in 2011 alone. In parallel, wastewater injection into deep sedimentary formations has increased as unconventional oil and gas resources are developed. Injected fluids may lower normal stress on existing fault planes, and the correlation between injection wells and earthquake locations led to speculation that many 2011 earthquakes were triggered by injection. The largest earthquake potentially related to injection (Mw5.7) struck in November 2011 in central Oklahoma. Here we use aftershocks to document the fault patterns responsible for the M5.7 earthquake and a prolific sequence of related events, and use the timing and spatial correlation of the earthquakes with injection wells and subsurface structures to show that the earthquakes were likely triggered by fluid injection. The aftershock sequence details rupture along three distinct fault planes, the first of which reaches within 250 meters of active injection wells and within 1 km of the surface. This earthquake sequence began where fluids are injected at low pressure into a depleted oil reservoir bound by faults that effectively seal fluid flow. Injection into sealed compartments allows reservoir pressure to increase gradually over time, suggesting that reservoir volume, in this case, controls the triggering timescale. This process allows multi-year lags between the commencement of fluid injection and triggered earthquakes.

  12. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime

  13. Fluid-Injection Tool for Inaccessible Areas

    NASA Technical Reports Server (NTRS)

    Myers, J. E.

    1982-01-01

    New tool injects liquids or gases into narrow crevices. Can be used to apply caulking and waterproofing compounds, adhesives, detergent, undercoats and oil and to aerate hard-to-reach places. Nozzle can reach into opening 1/32 inch wide to depth of more than 4 inches. Although thin, device is rigid and strong.

  14. Seismicity triggered by fluid injection-induced aseismic slip

    NASA Astrophysics Data System (ADS)

    Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek

    2015-06-01

    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ=0.67+0.045ln(vv0) with v0 = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep.

  15. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault

  16. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving

  17. Fluid injection and withdrawal in deep geothermal borehole.

    NASA Astrophysics Data System (ADS)

    Troiano, A.; Di Giuseppe, M. G.; Troise, C.; Tramelli, A.; De Natale, G.

    2012-04-01

    Geothermal systems represents a large resource that can provide, with a reasonable investment, a very high and cost-competitive power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite this unquestionable potential, geothermal exploitation has always been perceived as limited, mainly because of the dependance of a site usefulness on several pre-existing conditions, mainly correlated to the reservoir rock's permeability and porosity, the amount of fluid saturation and, first of all, a convenient temperature-depth relationship. However, this major barrier it is not insurmountable and a notable progress in recent tests is achieved with the Enhanced Geothermal System (EGS), where massive fluid injection and withdrawal were performed to enlarge the natural fracture system of the basement rock. The permeability of the surrounding rocks results highly increased by pressurized fluids circulation and geothermal resources, in such way, become accessible in areas where deep reservoir exploitation, otherwise, could be not advantageous or even possible. Still problematic remains, however, most of the key technical requirements as, firstly, deep fluid injection, that represents a necessary field practice in EGS development. This kind of procedure have often strong and uncontrolled physical effects on the neighboring environment, involving possibly even large areas and, in particular, they represent one of the most important sources of seismicity induced by human activities. In some cases, seismicity reaches level that can not be sustained, as in the paradigmatic case of the 2006 M=3.4 earthquake induced in the Basel city (Swiss), with the consequent EGS project early termination. We test a numerical procedure that models deep fluid injection and withdrawal, during well stimulation, and its effects on induced seismicity. We propose such a procedure as a way to estimate how

  18. Angled injection: Hybrid fluid film bearings for cryogenic applications

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1995-01-01

    A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.

  19. Impact of injection solvents on supercritical fluid chromatography.

    PubMed

    Abrahamsson, Victor; Sandahl, Margareta

    2013-09-01

    Even though there has been a rapid development in instrumentation and applications of supercritical fluid chromatography (SFC), relatively little is known about retention mechanisms compared to high-performance liquid chromatography (HPLC). Much effort has been made to characterize the influence of injection solvents on chromatographic efficiency in HPLC, however has been left rather uninvestigated in the domain of SFC. In this study properties of different injection solvents have been studied and correlated with properties of seven various analytes on three different columns, a C18, a 2-ethylpyridine and a bare-silica column. Aided by calculations of correlation coefficients and principal component analysis (PCA), the physical properties of injection solvents and the interactions between injection solvent, solute and stationary phase were investigated. The findings of this work shows that interactions capable of masking accessible silanol groups on a C18 column are of importance in order to maximize the plate number. While solvents with dipolar and hydrogen bond interaction properties are associated negatively with chromatographic efficiency using polar columns. Properties such as molar density, vapor pressure and boiling point were related to sharper peaks, mostly likely because of solubility issues of the injection solvent into the methanol-modified carbon dioxide. However, no additional solubility due to hydrogen interactions between the injection solvent and the carbon dioxide in SFC was observed. Surface tension and viscosity was not particularly associated with a decrease in plate numbers. By increasing the injection volume a stronger correlation between solubility related properties and plate numbers were obtained. Additional experiments showed that the resistance in solubility became an issue when performing partial-loop injection where additional washing solvent entered the system, thus providing broadened peaks. PMID:23899383

  20. Numerical study of subcritical flow with fluid injection

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1990-01-01

    It is suggested that the study of synthetic flows, where controlled experiments can be performed, is useful in understanding turbulent flow structures. The early states of formation of hairpin structures in shear flows and the subsequent evolution of these structures is studied in shear flows and the subsequent evolution of these structures is studied through numerical simulations, by developing full-time dependent three-dimensional flow solution of an initially laminar (subcritical) flow in which injection of fluid through a narrow streamwise slot from the bottom wall of a plate is carried out. Details of the numerical approach and significance of the present findings are reported in this work.

  1. Joint aspiration and injection and synovial fluid analysis.

    PubMed

    Courtney, Philip; Doherty, Michael

    2009-04-01

    Joint aspiration/injection and synovial fluid (SF) analysis are both invaluable procedures for the diagnosis and treatment of joint disease. This chapter addresses: (1) the indications, the technical principles and the expected benefits and risks of aspiration and injection of intra-articular corticosteroid; and (2) practical aspects relating to SF analysis, especially in relation to crystal identification. Intra-articular injection of long-acting insoluble corticosteroids is a well-established procedure that produces rapid pain relief and resolution of inflammation in most injected joints. The knee is the most common site to require aspiration, although any non-axial joint is accessible for obtaining SF. The technique requires a knowledge of basic anatomy and should not be unduly painful for the patient. Provided sterile equipment and a sensible, aseptic approach are used, it is very safe. Analysis of aspirated SF is helpful in the differential diagnosis of arthritis and is the definitive method for diagnosis of septic arthritis and crystal arthritis. The gross appearance of SF can provide useful diagnostic information in terms of the degree of joint inflammation and presence of haemarthrosis. Microbiological studies of SF are the key to the confirmation of infectious conditions. Increasing joint inflammation is associated with increased SF volume, reduced viscosity, increasing turbidity and cell count, and increasing ratio of polymorphonuclear: mononuclear cells, but such changes are non-specific and must be interpreted in the clinical setting. However, detection of SF monosodium urate and calcium pyrophosphate dihydrate crystals, even from un-inflamed joints during intercritical periods, allow a precise diagnosis of gout and of calcium pyrophosphate crystal-related arthritis. PMID:19393565

  2. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  3. Microcontroller-driven fluid-injection system for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Alonso, L.; Jacquet, P.; Adamcik, J.; Haeberli, C.; Dietler, G.

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  4. Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids

    SciTech Connect

    Truex, Michael J.; Vermeul, Vincent R.; Mendoza, Donaldo P.; Fritz, Brad G.; Mackley, Rob D.; Oostrom, Martinus; Wietsma, Thomas W.; Macbeth, Tamzen

    2011-02-18

    Approximately 190 kg of two micron-diameter zero-valent iron (ZVI) particles were injected into a test zone in the top two meters of an unconfined aquifer within a trichloroethene (TCE) source area. A shear-thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to four meters from a single injection well. The ZVI particles were mixed in-line with the injection water, shear-thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 days after injection. These results suggest that ZVI can be directly injected into an aquifer with shear-thinning fluids and extends the applicability of ZVI to situations where other emplacement methods may not be viable.

  5. Mechanical instability induced by water weakening in laboratory fluid injection tests

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J.; Sarout, J.; Delle Piane, C.; Menéndez, B.; Macault, R.; Bertauld, D.

    2015-06-01

    To assess water-weakening effects in reservoir rocks, previous experimental studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks fully saturated either with water or with inert fluids. So far, little attention has been paid to the mechanical behavior during fluid injection under conditions similar to enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behavior of the weakly consolidated Sherwood sandstone in laboratory experiments. Our specimens were instrumented with 16 ultrasonic P wave transducers for both passive and active acoustic monitoring during loading and fluid injection to record the acoustic signature of fluid migration in the pore space and the development of damage. Calibration triaxial tests were conducted on three samples saturated with air, water, or oil. In a second series of experiments, water and inert oil were injected into samples critically loaded up to 80% or 70% of the dry or oil-saturated compressive strength, respectively, to assess the impact of fluid migration on mechanical strength and elastic properties. The fluids were injected with a low back pressure to minimize effective stress variations during injection. Our observations show that creep takes place with a much higher strain rate for water injection compared to oil injection. The most remarkable difference is that water injection in both dry and oil-saturated samples triggers mechanical instability (macroscopic failure) within half an hour whereas oil injection does not after several hours. The analysis of X-ray computed tomography images of postmortem samples revealed that the mechanical instability was probably linked to loss of cohesion in the water-invaded region.

  6. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  7. Fluid injection apparatus and method used between a blowout preventer and a choke manifold

    SciTech Connect

    Hailey, C.D.

    1986-10-21

    An apparatus is described for pumping fluid into a blowout preventer through a first opening thereof and into a choke manifold through a second opening thereof. The apparatus comprises: a base frame; fluid container means, mounted on the base frame, for receiving the fluid to be pumped into the blowout preventer and the choke manifold; pump means, mounted on the base frame, for pumping the fluid of the fluid container means through a flow inlet and an outlet of the pump means; and spacer flange coupling means, connectible between the first and second openings, for coupling the outlet of the pump means with the blowout preventer and the choke manifold. A method is described of injecting a fluid into a blowout preventer. The method consists of: connecting to the choke flow line and the inlet, between the first and second valve means, flow port means for providing a fluid communication path between the choke flow line of the blowout preventer and the inlet of the choke manifold and for providing an injection port into the fluid communication path; and pumping the fluid into the injection port so that the fluid is dispersed through the fluid communication path towards the first and second valve means.

  8. Investigating the Fate of Hydraulic Fracturing Fluid in Shale Gas Formations Through Two-Phase Numerical Modelling of Fluid Injection

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Doster, F.; Celia, M. A.; Bandilla, K.

    2015-12-01

    The process of hydraulic fracturing in shale gas formations typically involves the injection of large quantities of water-based fluid (2×107L typical) into the shale formations in order to fracture the rock. A large proportion of the fracturing fluids injected into shale gas wells during hydraulic fracturing does not return out of the well once production begins. The percentage of water returning varies within and between different shale plays, but is generally around 30%. The large proportion of the fluid that does not return raises the possibility that it could migrate out of the target shale formation and potentially toward aquifers and the surface through pathways such as the created hydraulic fractures, faults and adjacent wells. A leading hypothesis for the fate of the remaining fracturing fluid is that it is spontaneously imbibed from the hydraulic fractures into the shale rock matrix due to the low water saturation and very high capillary pressure in the shale. The imbibition hypothesis is assessed using numerical modeling of the two-phase flow of fracturing fluid and gas in the shale during injection. The model incorporates relevant two-phase physical phenomena such as capillarity and relative permeability, including hysteretic behavior in both. Modeling scenarios for fracturing fluid injection were assessed under varying conditions for shale reservoir parameters and spatial heterogeneities in permeability and wettability. The results showed that the unaccounted fracturing fluid may plausibly be imbibed into the shale matrix under certain conditions, and that significant small-scale spatial heterogeneity in the shale permeability likely plays an important role in imbibing the fracturing fluid.

  9. Qualitative investigation of cryogenic fluid injection into a supersonic flow field

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Boldman, D. R.; Neumann, H. E.; Vlcek, B. L.

    1990-01-01

    The behavior of liquid nitrogen injected into a supersonic nitrogen flow field was investigated using an experimental apparatus in which a Mach 2.7 2D gas nitrogen tunnel is coupled with a high-pressure cryogenic source. Observations were monitored and recorded via a video camera and a motion picture camera. It was found that the penetration of a supersonic flow field by injection of liquid nitrogen is strongly dependent on the flow Mach number, the cryogen injection pressure (Pi/Pc), the injector configuration, and the cryogen temperature. For a 2D gaseous N2, Mach 2.7 tunnel, with cryogen injection Pi/Pc approaching 2, the injected fluid penetration for the 1/8-in. injection port approached one half of the tunnel width at 90-deg injection, and one fourth of the tunnel width at 20-deg injection.

  10. Complex fluid flow revealed by monitoring CO2 injection in a fluvial formation

    NASA Astrophysics Data System (ADS)

    Lu, Jiemin; Cook, Paul J.; Hosseini, Seyyed A.; Yang, Changbing; Romanak, Katherine D.; Zhang, Tongwei; Freifeld, Barry M.; Smyth, Rebecca C.; Zeng, Hongliu; Hovorka, Susan D.

    2012-03-01

    At Cranfield, Mississippi, United States, a large-scale carbon dioxide (CO2) injection through an injection well (˜3,080 m deep) was continuously monitored using U-tube samplers in two observation wells located 68 and 112 m east of the injector. The Lower Tuscaloosa Formation injection zone, which consists of amalgamated fluvial point-bar and channel-fill deposits, presents an interesting environment for studying fluid flow in heterogeneous formations. Continual fluid sampling was carried out during the first month of CO2 injection. Two subsequent tracer tests using sulfur hexafluoride (SF6) and krypton were conducted at different injection rates to measure flow velocity change. The field observations showed significant heterogeneity of fluid flow and for the first time clearly demonstrated that fluid flow evolved with time and injection rate. It was found the wells were connected through numerous, separate flow pathways. CO2 flowed through an increasing fraction of the reservoir and sweep efficiency improved with time. The field study also first documented in situ component exchange between brine and gas phases during CO2 injection. It was found that CH4 degassed from brine and is enriched along the gas-water contact. Multiple injectate flow fronts with high CH4 concentration arrived at different times and led to gas composition fluctuations in the observation wells. The findings provide valuable insights into heterogeneous multiphase flow in rock formations and show that conventional geological models and static fluid flow simulations are unable to fully describe the heterogeneous and dynamic flow during fluid injection.

  11. INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.

    PubMed

    Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek

    2015-06-12

    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. PMID:26068845

  12. A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms.

    PubMed

    Doomernik, D E; Kruse, R R; Reijnen, M M P J; Kozicz, T L; Kooloos, J G M

    2016-10-01

    Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and limitations of each substance was given, and a comparison of vascular infusion procedures in both preservation methods was made. A literature search was performed in order to identify the most commonly used vascular injection products. Acrylic paint, latex, gelatin, silicone, Araldite F and Batson's No. 17 were selected for the study. One fresh-frozen and one embalmed cadaver forearm were infused with each injection product according to a uniform protocol. The curing time, skin- and subcutaneous tissue penetration, degree of filling of the arterial tree, extravasations, consistency of the injected vessels during dissection, and the costs of each injection fluid were noted. There was a large variation between the injection fluids in processing- and curing time, colour intensity, flexibility, fragility, elasticity, strength, toxicity and costs. All fluids were suitable for infusion. The penetration of injection fluid into the skin and subcutaneous tissue was significantly better in fresh-frozen specimens (P = 0.002 and P = 0.009, respectively), with significantly smaller branches casted (P = 0.004). Vascular infusion of fresh-frozen cadaver specimens results in a significantly better filled coloured arterial tree, enabling more detail to be achieved and smaller branches casted. The biomechanical properties of fresh-frozen soft tissues are less affected compared with formalin fixation. All the injection fluids studied are suitable for vascular infusion, but their different properties ensure that certain products and procedures are more suitable for specific study purposes. PMID:27329696

  13. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  14. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  15. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    SciTech Connect

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  16. Hydraulic fracture characterization resulting from low-viscosity fluid injection: Implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Zhou, X.

    2013-12-01

    The initiation of hydraulic fractures during CO2 sequestration can be either engineered or induced unintentionally. Some fractures may be desirable such as horizontal fractures that can facilitate fluid injection and migration; whereas some fractures may be unfavorable if the fractures tend to extend vertically above a certain limit, thus creating a potential leaking condition. Historically, carbon dioxide as a liquefied gas has been used in oil and gas field stimulation since the early1960s because it eliminates formation damage and residual fluids. Carbon dioxide injection is considered to be one of the most effective technologies for improving oil recovery from hard-to-extract oil reserves because CO2 is effective in penetrating the formation due to its high diffusivity, while the rock associated with petroleum-containing formations is generally porous. However, low viscosity and high compressibility fluids such as CO2 exhibit different effects on the hydraulic fracture initiation/propagation behavior in comparison with high viscosity and low compressibility fluids. Laboratory tests show that viscous fluids tend to generate thick and planar cracks with few branches, while low viscosity fluids tend to generate narrow and wavelike cracks with many secondary branches. A numerical comparison between water and supercritical CO2-like fluid has been made to investigate the influence of fluids to fracture propagation behavior. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Thin fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison to fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation. One is the time at which a crack ceases opening, and he other is the time at which a crack

  17. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Peacock, J. R.; Thiel, S.; Reid, P.; Heinson, G.

    2012-09-01

    Enhanced geothermal systems (EGS) are on the verge of becoming commercially viable for power production, where advancements in subsurface characterization are imperative to develop EGS into a competitive industry. Theory of an EGS is simple, pump fluids into thermally enhanced lithology and extract the hot fluids to produce energy. One significant complication in EGS development is estimating where injected fluids flow in the subsurface. Micro-seismic surveys can provide information about where fractures opened, but not fracture connectivity nor fluid inclusion. Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. In July, 2011, an injection test for a 3.6 km deep EGS at Paralana, South Australia was continuously monitored by both micro-seismic and magnetotellurics (MT). Presented are the first results from continuous MT measurements suggesting transient variations in subsurface conductivity structure generated from the introduction of fluids at depth can be measured. Furthermore, phase tensor representation of the time dependent MT response suggests fluids migrated in a NE direction from the injection well. Results from this experiment supports the extension of MT to a monitoring tool for not only EGS but other hydraulic stimulations.

  18. Electroconvection of a poorly conducting fluid under unipolar charge injection in a steady electric field

    SciTech Connect

    Il’in, V. A. Mordvinov, A. N.; Petrov, D. A.

    2015-01-15

    We study the stability of equilibrium and nonlinear regimes of a nonuniformly heated poorly conducting fluid in a horizontal capacitor in the gravity field and in a dc electric field under a unipolar charge injection. A model in which the density of charges injected from the cathode is proportional to the electric field strength in the capacitor is considered. The dependences of critical parameters on the degree of heating and charge injection are determined. The effect of the Prandtl number on the equilibrium instability boundary and on the frequency of neutral vibrations is analyzed. Nonlinear regimes of electroconvection are studied for heating from below.

  19. A numerical study of fluid injection and mixing under near-critical conditions

    NASA Astrophysics Data System (ADS)

    Li, Hua-Guang; Lu, Xi-Yun; Yang, Vigor

    2012-06-01

    Nitrogen injection under conditions close vicinity of the liquid-gas critical point is studied numerically. The fluid thermodynamic and transport properties vary drastically and exhibit anomalies in the near-critical regime. These anomalies can cause distinctive effects on heat-transfer and fluid-flow characteristics. To focus on the influence of thermodynamics on the flow field, a relatively low injection Reynolds number of 1 750 is adopted. For comparisons, a reference case with the same configuration and Reynolds number is simulated in the ideal gas regime. The model accommodates full conservation laws, real-fluid thermodynamic and transport phenomena. Results reveal that the flow features of the near-critical fluid jet are significantly different from their counterpart. The near-critical fluid jet spreads faster andmixes more efficiently with the ambient fluid along with a more rapidly development of the vortex pairing process. Detailed analysis at different streamwise locations including both the flat shear-layer region and fully developed vortex region reveals the important effect of volume dilatation and baroclinic torque in the near-critical fluid case. The former disturbs the shear layer and makes it more unstable. The volume dilatation and baroclinic effects strengthen the vorticity and stimulate the vortex rolling up and pairing process.

  20. a Numerical Study of Fluid Injection and Mixing Under Near-Critical Conditions

    NASA Astrophysics Data System (ADS)

    Li, Hua-Guang; Lu, Xi-Yun; Yang, Vigor

    Nitrogen injection under conditions in close vicinity of liquid-gas critical point is studied through numerical simulation. The thermodynamic and transport properties of fluid exhibit anomalies in the near-critical fluid regime. These anomalies can cause distinctive effects on heat transfer and hydrodynamics. To focus on the influence of the highly variable properties and avoid the difficulties encountered in modeling high Reynolds number flows, a relatively low injection Reynolds number is adopted. A reference case with the same configuration and Reynolds number is also simulated in the ideal gas regime. Full conservation laws, real-fluid thermodynamic and transport phenomena are accommodated in the model. The obtained results reveal that the flow features of the near-critical fluid jet are significantly different from the ideal gas case. The near-critical fluid jet spreads faster and mixes better with the ambient fluid compared to the ideal gas jet. It is also identified that vortex pairing process develops faster in the near-critical case than in the ideal gas case. Detailed analysis of data at different streamwise positions including both flat shear layer region and fully developed vortex region reveals the effect of volume dilatation and baroclinic torque plays an important role in the near-critical fluid case. The volume dilatation effect disturbs the shear layer and makes it more unstable. The volume dilatation and baroclinic effects strengthen the vorticity and stimulate the vortex rolling up and pairing process.

  1. Seismicity on Basement Faults Induced by Simultaneous Fluid Injection-Extraction

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Won; Segall, Paul

    2016-06-01

    Large-scale carbon dioxide (CO2) injection into geological formations increases pore pressure, potentially inducing seismicity on critically stressed faults by reducing the effective normal stress. In addition, poroelastic expansion of the reservoir alters stresses, both within and around the formation, which may trigger earthquakes without direct pore-pressure diffusion. One possible solution to mitigate injection-induced earthquakes is to simultaneously extract pre-existing pore fluids from the target reservoir. To examine the feasibility of the injection-extraction strategy, we compute the spatiotemporal change in Coulomb stress on basement normal faults, including: (1) the change in poroelastic stresses Δ τ _s+fΔ σ _n , where Δ τ _s and Δ σ _n are changes in shear and normal stress. respectively, and (2) the change in pore-pressure fΔ p . Using the model of (J. Geophys. Res. Solid Earth 99(B2):2601-2618, 1994), we estimate the seismicity rate on basement fault zones. Fluid extraction reduces direct pore-pressure diffusion into conductive faults, generally reducing the risk of induced seismicity. Limited diffusion into/from sealing faults results in negligible pore pressure changes within them. However, fluid extraction can cause enhanced seismicity rates on deep normal faults near the injector as well as shallow normal faults near the producer by poroelastic stressing. Changes in seismicity rate driven by poroelastic response to fluid injection-extraction depends on fault geometry, well operations, and the background stressing rate.

  2. Seismicity on Basement Faults Induced by Simultaneous Fluid Injection-Extraction

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Won; Segall, Paul

    2016-08-01

    Large-scale carbon dioxide (CO2) injection into geological formations increases pore pressure, potentially inducing seismicity on critically stressed faults by reducing the effective normal stress. In addition, poroelastic expansion of the reservoir alters stresses, both within and around the formation, which may trigger earthquakes without direct pore-pressure diffusion. One possible solution to mitigate injection-induced earthquakes is to simultaneously extract pre-existing pore fluids from the target reservoir. To examine the feasibility of the injection-extraction strategy, we compute the spatiotemporal change in Coulomb stress on basement normal faults, including: (1) the change in poroelastic stresses Δ τ _s+fΔ σ _n, where Δ τ _s and Δ σ _n are changes in shear and normal stress. respectively, and (2) the change in pore-pressure fΔ p. Using the model of (J. Geophys. Res. Solid Earth 99(B2):2601-2618, 1994), we estimate the seismicity rate on basement fault zones. Fluid extraction reduces direct pore-pressure diffusion into conductive faults, generally reducing the risk of induced seismicity. Limited diffusion into/from sealing faults results in negligible pore pressure changes within them. However, fluid extraction can cause enhanced seismicity rates on deep normal faults near the injector as well as shallow normal faults near the producer by poroelastic stressing. Changes in seismicity rate driven by poroelastic response to fluid injection-extraction depends on fault geometry, well operations, and the background stressing rate.

  3. Constant Rate or Stepwise Injection of Cold Fluid into a Geologic Formation: A Hydro-Thermo-Mechanical Analysis

    NASA Astrophysics Data System (ADS)

    Kim, S.; Hosseini, S. A.

    2015-12-01

    Operations such as CO2 geologic storage, enhanced geothermal systems, and wastewater injection are rendering fluid injection as important as fluid extraction. In particular, injecting fluid colder than the original fluid causes thermal contraction and ensuing decreases in stresses, which yield an effect opposite of what volume expansion driven by the fluid injection imposes. In this study, we conduct numerical simulations to investigate pore-pressure buildup, thermal diffusion, and stress changes for two conditions: (1) constant rate, and (2) stepwise injection of cold fluid. The numerical-simulation method—which combines fluid flow, poroelasticity, thermal diffusion, and thermal stress—is based on the single-phase flow condition to simplify a computation model and thus facilitate a focus on mechanical responses. We also examine temporal evolutions of stress states and mobilized friction angles across base, injection-zone, and caprock layers for two different stress regimes: normal-faulting and reverse-faulting. Under the normal-faulting stress regime, the maximum mobilized friction angle occurs inside of the injection zone, which may act to improve the stability of the caprock. Special attention is required, however, because the location of the maximum mobilized friction angle is close to interfaces with the caprock and base layers. The hypothetical stepwise injection of cold fluid is shown to improve the stability of the injection zone to some extent. Under the reverse-faulting stress regime, the maximum mobilized friction angle occurs near the middle of the injection zone; stability in the injection zone is enhanced while that in the caprock/base is aggravated with time. The hypothetical stepwise injection not only helps improve the stability of the injection zone but also delays the moment when the maximum friction angle is mobilized. Finally, we suggest using dimensionless parameters to determine a prevalence of the thermal-stress effect in the injection

  4. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  5. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States.

    PubMed

    van der Elst, Nicholas J; Savage, Heather M; Keranen, Katie M; Abers, Geoffrey A

    2013-07-12

    A recent dramatic increase in seismicity in the midwestern United States may be related to increases in deep wastewater injection. Here, we demonstrate that areas with suspected anthropogenic earthquakes are also more susceptible to earthquake-triggering from natural transient stresses generated by the seismic waves of large remote earthquakes. Enhanced triggering susceptibility suggests the presence of critically loaded faults and potentially high fluid pressures. Sensitivity to remote triggering is most clearly seen in sites with a long delay between the start of injection and the onset of seismicity and in regions that went on to host moderate magnitude earthquakes within 6 to 20 months. Triggering in induced seismic zones could therefore be an indicator that fluid injection has brought the fault system to a critical state. PMID:23846900

  6. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    DOEpatents

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  7. Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.

    2009-12-01

    At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2

  8. Pathophysiological Changes Resulting from Intravenous Injection of Ovine Hydatid Cyst Fluid to Sheep

    PubMed Central

    Tabatabai, M.; Ismaili, M. H.; Nazarian, I.; Daneshbod, K.

    1974-01-01

    The pathophysiological changes produced by intravenous administration of ovine hydatid fluid were studied in 40 sodium pentobarbitone-anaesthetized sheep. Hydatid fluid was obtained from the lung and liver cysts of freshly-slaughtered sheep. Fifty per cent of the animals died following intravenous injection of 5-10 ml hydatid fluid. In the latter group, postmortem examination revealed a great amount of mucus in the lower airway, intra-alveolar oedema and haemorrhage, congestion of the pulmonary capillaries and peribronchiolar vessels and of the central sinusoids of the liver. Eighty per cent of the animals (including those which died) developed hypotension and respiratory alterations such as transient apnoea and/or rapid respiration to hydatid fluid administration. The 20% non-reactive animals manifested low blood pressure and respiratory changes when they were reinjected hydatid fluid 48 hours or more after the first test. Pretreatment with the antihistamine chlorpheniramine substantially reduced the fall in blood pressure in 3 out of 8 reactive sheep. Atropine pretreatment failed to block the reactions to hydatid fluid. The responses brought about in sheep by hydatid fluid administration may be due to antigen-antibody reactions or due to pharmacological properties of the cyst fluid. ImagesFigs. 1-2Figs. 3-4Figs. 5-7 PMID:4835796

  9. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen

    2013-04-01

    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  10. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model

    PubMed Central

    2012-01-01

    Background Stem cell injection therapies have been proposed to overcome the limited efficacy and adverse reactions of bulking agents. However, most have significant limitations, including painful procurement, requirement for anesthesia, donor site infection and a frequently low cell yield. Recently, human amniotic fluid stem cells (hAFSCs) have been proposed as an ideal cell therapy source. In this study, we investigated whether periurethral injection of hAFSCs can restore urethral sphincter competency in a mouse model. Methods Amniotic fluids were collected and harvested cells were analyzed for stem cell characteristics and in vitro myogenic differentiation potency. Mice underwent bilateral pudendal nerve transection to generate a stress urinary incontinence (SUI) model and received either periurethral injection of hAFSCs, periurethral injection of Plasma-Lyte (control group), or underwent a sham (normal control group). For in vivo cell tracking, cells were labeled with silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate (MNPs@SiO2 (RITC)) and were injected into the urethral sphincter region (n = 9). Signals were detected by optical imaging. Leak point pressure and closing pressure were recorded serially after injection. Tumorigenicity of hAFSCs was evaluated by implanting hAFSCs into the subcapsular space of the kidney, followed two weeks later by retrieval and histologic analysis. Results Flow activated cell sorting showed that hAFSCs expressed mesenchymal stem cell (MSC) markers, but no hematopoietic stem cell markers. Induction of myogenic differentiation in the hAFSCs resulted in expression of PAX7 and MYOD at Day 3, and DYSTROPHIN at Day 7. The nanoparticle-labeled hAFSCs could be tracked in vivo with optical imaging for up to 10 days after injection. Four weeks after injection, the mean LPP and CP were significantly increased in the hAFSC-injected group compared with the control group. Nerve regeneration and neuromuscular junction

  11. Seismogenic response to fluid injection operations in Oklahoma and California: Implications for crustal stresses

    NASA Astrophysics Data System (ADS)

    Goebel, T.; Aminzadeh, F.

    2015-12-01

    The seismogenic response to induced pressure changes provides insight into the proximity to failure of faults close to injection sites. Here, we examine possible seismicity rate changes in response to wastewater disposal and enhanced oil recovery operations in hydrocarbon basins in California and Oklahoma. We test whether a statistically significant rate increase exists within these areas and determine the corresponding timing and location based on nonparametric modeling of background seismicity rates. Annual injection volumes increased monotonically since ~2001 in California and ~1998 in Oklahoma. While OK experienced a recent surge in seismic activity which exceeded the 95% confidence limit of a stationary Poisson process in ~2010, seismicity in CA showed no increase in background rates between 1980 and 2014. A systematic analysis of frequency-magnitude-distributions (FMDs) of likely induced earthquakes in OK indicates that FMDs are depleted in large-magnitude events. Seismicity in CA hydrocarbon basins, on the other hand, shows Gutenberg-Richter type FMDs and b~1. Moreover, the earthquakes and injection operations occur preferably in distinct areas in CA whereas in OK earthquakes occur closer to injection wells than expected from a random uniform process. To test whether injection operations may be responsible for the strongly different seismicity characteristics in CA and OK, we compare overall well density, wellhead pressures, peak and cumulative rates as well as injection depths. We find that average injection rates, pressures and volumes are comparable between CA and OK and that injection occurs on average 0.5 km deeper in CA than in OK. Thus, the here tested operational parameters can not easily explain the vastly different seismogenic response to injection operations in CA and OK, and may only be of secondary importance for the resulting earthquake activity. The potential to induce earthquakes by fluid injection operations is likely controlled by the

  12. The processes controlling damage zone propagation induced by wellbore fluid injection

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir

    2013-04-01

    Induced seismicity by wellbore fluid injection is an important tool for enhancing permeability in hydrocarbon and geothermal reservoirs. We model nucleation and propagation of damage zones and seismicity patterns for two-dimensional plane strain configuration at a depth of 5 km using novel numerical software developed in the course of this study. Simulations include the coupling of poro-elastic deformation and groundwater flow with damage evolution (weakening and healing) and its effect on the elastic and hydrologic parameters. Results show that the process occurring during fluid injection can be divided into four stages. The duration of each stage depends on the hydrological and mechanical parameters. Initially, fluid flows into the rock with no seismic events (5 to 20 hr). At this stage, damage increases from 0 to 1 creating two sets of conjugate zones (four narrow damage zones). Thereafter, the occurrence of seismic events and faulting begins and accelerates for the next 20 to 70 hr. At the initial part of this stage, two of the damage zones create stress shadows on the other two damage zones that stop progressing. The velocity of the advancing damage is limited only by the rock parameters controlling damage evolution. At the third stage, which lasts for the following 20-30 hr, damage acceleration decreases because fluid transport becomes a limiting factor as the damage zones are too long to efficiently transfer the pressure from the well to the tip of the damage zones. Finally, the damage decelerates and even stops in some cases. The propagation of damage is controlled and limited by fluid transport from the injection well to the tip of the damage zones because fluid transport does not keep up with the dilatancy of the damage zones. The time and distance of propagation depend on the damage-permeability coupling and the remote shear stress. Higher remote shear stress causes shorter initial periods of no seismicity; strong damage-permeability coupling causes

  13. Computational fluid dynamics analysis of cold plasma carrier gas injected into a fluid using level set method.

    PubMed

    Shahmohammadi Beni, Mehrdad; Yu, K N

    2015-01-01

    A promising application of plasma medicine is to treat living cells and tissues with cold plasma. In cold plasmas, the fraction of neutrals dominates, so the carrier gas could be considered the main component. In many realistic situations, the treated cells are covered by a fluid. The present paper developed models to determine the temperature of the fluid at the positions of the treated cells. Specifically, the authors developed a three-phase-interaction model which was coupled with heat transfer to examine the injection of the helium carrier gas into water and to investigate both the fluid dynamics and heat transfer output variables, such as temperature, in three phases, i.e., air, helium gas, and water. Our objective was to develop a model to perform complete fluid dynamics and heat transfer computations to determine the temperature at the surface of living cells. Different velocities and plasma temperatures were also investigated using finite element method, and the model was built using the comsol multiphysics software. Using the current model to simulate plasma injection into such systems, the authors were able to investigate the temperature distributions in the domain, as well as the surface and bottom boundary of the medium in which cells were cultured. The temperature variations were computed at small time intervals to analyze the temperature increase in cell targets that could be highly temperature sensisitve. Furthermore, the authors were able to investigate the volume of the plasma plume and its effects on the average temperature of the medium layer/domain. Variables such as temperature and velocity at the cell layer could be computed, and the variations due to different plume sizes could be determined. The current models would be very useful for future design of plasma medicine devices and procedures involving cold plasmas. PMID:26467659

  14. Injection of colloidal Fe{sup 0} particles in sand with shear-thinning fluids

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.

    1997-08-01

    A novel approach to emplacing chemically reactive barriers is the injection of zero-valent iron (Fe{sup 0}) colloids into the subsurface. A difficulty encountered in this approach is that the dense Fe{sup 0} colloids settle out of solution with time, decreasing the distance the colloids can be injected into the subsurface. Studies were conducted to evaluate if several viscous shear-thinning fluids could enhance Fe{sup 0} colloid emplacement in porous media. Aqueous solutions of three nontoxic polymers at different concentrations were investigated: a synthetic high molecular weight polymer [vinyl polymer, (VP)], a biopolymer (gum xanthan, GX), and a cellulose-type polymer (carboxymethyl cellulose, CMC). The use of shear-thinning fluids greatly increases the mobility of the colloidal Fe{sup 0} suspensions in porous media. VP was superior to GX and GMC because the VP suspensions produced the lowest back pressures, resulting in the highest hydraulic conductivities.

  15. Monitoring of Fluid Injection and Soil Consolidation Using Surface Tilt Measurements

    SciTech Connect

    Vasco, D.W.; Karasaki, Kenzi; Myer, Larry

    1996-08-01

    Temporal variations of surface tilt may be used for the noninvasive monitoring of subsurface volume change. Such volume changes may accompany settlement near structures, the response due to fluid injection or withdrawal, and excavation-related activity. We outline a methodology for using tilt data to estimate volume changes within poroelastic media. The expressions relating subsurface volume change and surface tilt are simple and compact, offering the possibility of real-time monitoring. The inversion of actual tilt data from a site near Raymond, Calif., generates images of fluid withdrawal from a complex fracture zone about 30 m below the surface. Volume changes are confined to an elongated north-south zone in agreement with independent well test data. We have also applied the methodology for the inversion of surface tilt to data from a grout injection experiment in Los Banos. The technique enables us to monitor grout migration through a porous gravel.

  16. Monitoring of fluid injection and soil consolidation using surface tilt measurements

    SciTech Connect

    Vasco, D.W.; Karasaki, K.; Myer, L.

    1998-01-01

    Temporal variations of surface tilt may be used for the noninvasive monitoring of subsurface volume change. Such volume changes may accompany settlement near structures, the response due to fluid injection or withdrawal, and excavation-related activity. The authors outline a methodology for using tilt data to estimate volume changes within poroelastic media. The expressions relating subsurface volume change and surface tilt are simple and compact, offering the possibility of real-time monitoring. The inversion of actual tilt data from a site near Raymond, California, generates images of fluid withdrawal from a complex fracture zone about 30 m below the surface. Volume changes are confined to an elongated north-south zone in agreement with independent well test data. The authors have also applied the methodology for the inversion of surface tilt to data from a grout injection experiment in Los Banos. The technique enables one to monitor grout migration through a porous gravel.

  17. Significance for secure CO2 storage of earthquakes induced by fluid injection

    NASA Astrophysics Data System (ADS)

    Verdon, James P.

    2014-05-01

    The link between subsurface fluid injection and induced seismicity has gained recent significance with an increase in earthquakes associated with the disposal of oilfield waste fluids. There are obvious similarities between wastewater reinjection and proposed CO2 storage (CCS) operations. However, as well as the seismic hazard, induced seismicity during CCS operations poses additional risks, because an induced event located above the target reservoir could compromise the hydraulic integrity of the caprock. In this paper we re-examine case examples where earthquakes have been induced by wastewater injection into deep aquifers in the light of proposed future CCS operations. In particular we consider possible controls on event magnitudes, and look at the spatial distributions of events. We find that the majority of events are located below the target reservoirs. This is an encouraging observation from the perspective of caprock integrity, although it presents a challenge in terms of pre-injection characterization of deep-lying faults several kilometres below the target zone. We observe that 99% of events are found within 20 km of injection wells, suggesting a minimum radius for geomechanical characterization and monitoring. We conclude by making recommendations for modelling and monitoring strategies to be followed prior to and during commercial-scale deployment of CO2 storage projects.

  18. Was the Timpson, Texas, M4.8 event induced by fluid injection?

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Eichhubl, P.; Gale, J.; Olson, J. E.; Frohlich, C.; Gono, V.

    2014-12-01

    A M4.8 earthquake with dominant strike-slip near Timpson, east Texas, the largest documented earthquake to date in that region, has received extensive attention due to the possible linkage to waste water injection. The reliably located aftershocks align along a previously mapped fault striking about N42°W. Two active injection wells are located within 3 km of the aftershocks. One injection well became operational in August 2006 with an average injection rate of 42,750 m3/mo at an average pumping pressure of 12.4 MPa at depths between 1853 and 1868 m. Six months later, the second well started injection at 15,600 m3/mo. To investigate the causative relationship between fluid injection and possibly induced seismic fault slip, we integrated geologic and geophysical data into a poroelastic finite element model to simulate the spatial and temporal evolution of pore pressure and stress fields and analyze the stability of fault by applying the Coulomb failure criterion. Parametric studies were performed to analyze the sensitivity of Coulomb failure stress to the variability of input parameters including permeability of injection layer, fault orientation and permeability, and orientation and magnitude of stress state prior to injection. Assuming a Byerlee friction coefficient of 0.6, and using best available estimates of layer permeability, fault orientation, and stress tensor orientation and magnitude, we calculated fault slip occurs 55 months after the start of injection in the model, close to the observed delay of 69 months between injection and the M4.8 event. However, even with principal stress directions and fault orientation being reasonably well constrained, Coulomb failure stress is highly sensitive to input parameters resulting in large uncertainties in correlating injection rate and volume with the onset of induced seismic events. In addition, injection layer and fault zone permeability has a profound effect on the pore pressure evolution. These results

  19. The devastating outcome of massive subcutaneous injection of highly viscous fluids in male-to-female transsexuals.

    PubMed

    Hage, J J; Kanhai, R C; Oen, A L; van Diest, P J; Karim, R B

    2001-03-01

    Illicit subcutaneous injections of massive quantities of highly viscous fluids are still performed, often by unqualified persons. Fifteen male-to-female transsexuals consulted the authors regarding their devastating long-term outcomes after the injection of up to 8 liters of alleged silicone or mineral oil to feminize their bodies. After a latency period of up to 17 years, these injections led to complications ranging from scarring and deformity to infections. These patients were treated conservatively for inflammation and infection or surgically by resection of the oil-infested areas. In view of the potential dangers, feminization by the injection of high-viscosity fluids should be soundly condemned. PMID:11304599

  20. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    SciTech Connect

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research

  1. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    PubMed

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. PMID:23745958

  2. Preserving drinking water quality in geotechnical operations: predicting the feedback between fluid injection, fluid flow, and contamination

    NASA Astrophysics Data System (ADS)

    Schilling, Frank R.

    2014-05-01

    Not only in densely populated areas the preservation of drinking water quality is of vital interest. On the other side, our modern economies request for a sustained energy supply and a secure storage of waste materials. As energy sources with a high security of supply, oil, natural gas, and geothermal energy cover ca. 60% of Europe's energy demand; together with coal more than 75% (IEA 2011). Besides geothermal energy, all of the resources have a high greenhouse gas footprint. All these production activities are related to fluid injection and/or fluid production. The same holds true for gas storage operations in porous reservoirs, to store natural gases, oil, or greenhouse gases. Different concerns are discussed in the public and geoscientific community to influence the drinking water quality: - wastewater discharges from field exploration, drilling, production, well treatment and completion - wastewater sequestration - gas storage - tight gas and tight oil production (including hydraulic fracturing) - Shale gas production (including hydraulic fracturing) - mine drainage This overview contribution focusses on strategies to systematically reduce the risk of water pollution in geotechnical operations of deep reservoirs. The principals will be exemplarily revealed for different geotechnical operations. - How to control hydraulic fracturing operations to reduce the risk of enhanced seismic activity and avoiding the connection of originally separated aquifers. The presented approach to quantitatively predict the impact of stimulation activities is based on petrophysical models taking the feedback of geomechanical processes and fluid flow in porous media, fissures and faults into account. The specific flow patterns in various rock types lead to distinguished differences in operational risk. - How can a proper planning of geotechnical operations reduce the involved risks. A systematic risk reduction strategy will be discussed. On selected samples the role of exploration

  3. Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the High Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Stabile, T. A.; Giocoli, A.; Perrone, A.; Piscitelli, S.; Lapenna, V.

    2014-08-01

    On 2 June 2006 the wastewater produced during the oil and gas field exploitation in High Agri Valley (southern Italy) started to be managed by disposal through pumping the fluids back into the subsurface at the Costa Molina 2 (CM2) injection well, located in the southeastern sector of the valley. The onset of microearthquakes (Ml ≤ 2) after 4 days at about 1.3 km SW of CM2 well suggests fluid injection induced seismicity by the diffusion of pore pressure. Moreover, the space-time evolution of 196 high-resolution relocated events reveals a previously unmapped NE dipping fault. We investigate the physical processes related to the fluid injection induced seismicity and delineate the previously unmapped fault by jointly analyzing seismicity data, geological observations, fluid injection data, the stratigraphic log of the CM2 well, and the electrical resistivity tomography survey carried out in the study area.

  4. Importance of synovial fluid aspiration when injecting intra-articular corticosteroids

    PubMed Central

    Weitoft, T.; Uddenfeldt, P.

    2000-01-01

    OBJECTIVE—The aim of this prospective study was to find if a complete synovial fluid aspiration before injecting intra-articular corticosteroids influences the treatment result.
METHODS—The study was performed in 147 patients with rheumatoid arthritis (RA). One hundred and ninety one knees with synovitis were randomised to arthrocentesis (n=95) or no arthrocentesis (n=96) before 20 mg triamcinolone hexacetonide was injected. The duration of effect was followed up for a period of six months. All patients were instructed to contact the rheumatology department if signs and symptoms from the treated knee recurred. If arthritis could be confirmed by a clinical examination a relapse was noted.
RESULTS—There was a significant reduction of relapse in the arthrocentesis group (p=0.001).
CONCLUSION—The study shows that aspiration of synovial fluid can reduce the risk for arthritis relapse when treating RA patients with intra-articular corticosteroids. It is concluded that arthrocentesis shall be included in the intra-articular corticosteroid injection procedure.

 PMID:10700435

  5. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  6. Enhanced remote earthquake triggering at fluid injection sites in the Midwestern U.S

    NASA Astrophysics Data System (ADS)

    van der Elst, N.; Savage, H. M.; Keranen, K. M.; Abers, G. A.

    2013-12-01

    A dramatic increase in seismicity in the Midwestern United States may be related to increased deep wastewater injection. We systematically examined sites of potential anthropogenic seismicity for evidence of remote earthquake triggering, which could indicate high fluid pressure and critically stressed faults. Using a cross-correlation method to enhance earthquake catalogs for individual TA stations, we found that regions of anthropogenic seismicity are also susceptible to earthquake triggering from natural transient stresses carried by seismic waves of large remote earthquakes. We detected triggered earthquakes following the three largest dynamic strain events since 2010, showing triggering by the 2010 Mw 8.8 Maule, Chile, earthquake at Prague, OK, and Trinidad, CO, and triggering by the 2011 Mw 9.1 Tohoku-Oki earthquake at Snyder, TX. Each of these sites hosted larger earthquakes (Mw 4.5-5.7) within the next 6 to 20 months. Enhanced triggering susceptibility could therefore be an advance indicator that fluid injection has brought the regional fault system to a critical state. Remote triggering is strongest at sites where the onset of seismicity lagged injection by many years, and where high swarm activity had not yet begun. The sites that triggered during the 2010 Chile earthquake did not trigger in the subsequent 2011 Tohoku earthquake, which suggests the importance of local conditions or a long recharge period for the triggering mechanism. By analogy with natural dynamic triggering at hydrothermal sites, we invoke a mechanism involving fracture unclogging or dynamic permeability enhancement, in which the seismic waves alter subsurface fluid flow and accelerate pressure changes on already critically stressed faults.

  7. Man-made Earthquakes & Multifractals in Neutral Fluid Turbulence/Injection

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-

    Man-made earthquakes coincides with induced seismicity:''typically minor earthquakes & tremors that are caused by human activity that alters the stresses & Strains on the earth crust''[Wikipedia:''induced seismicity'']. For these, RD Andrews wrote:''Based on observed seismicity rate &geographical trends following major oil & gas plays with large amounts of produced water, the rates &trends in seismicity are very unlikely to represent a naturally occurring process''. ``The Prague, Oklahoma, earthquake sequence of 2011, along the Wilzetta faults zone, included the significant foreshock, a main shock of magnetic 5.7, it has been suggested that this sequence represent earthquakes triggered by fluid injection/natural fluid turbulence shows multifractal characteristics , of [405 ]-325-7968 of Dr. G. Randy Keller to UI tuitions of @ Rp. 29, 405, 000.00. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  8. Earthquakes induced by fluid injection: Implications for secure CO2 storage

    NASA Astrophysics Data System (ADS)

    Verdon, J.; Kendall, J. M.

    2013-12-01

    It is well understood that the injection of fluids into the subsurface can trigger seismic activity. Recently, the US unconventional gas boom has lead to an increase in the volumes of produced water being disposed in geological formations and a concomitant increase in triggered seismic events. This issue is especially pertinent for geologic carbon sequestration, where the injection volumes necessary to store the CO2 emissions from a typical coal-fired power station far exceed the volumes known to have triggered seismic activity. Moreover, unlike water disposal operations, where there is no strong buoyancy drive to return injected fluids to the surface, CO2 sequestration requires a sealing caprock to prevent upward CO2 migration. Induced seismic events may create or reactivate faults and fracture networks, compromising the hydraulic integrity of the caprock. Therefore, induced seismic activity at future CCS sites is of doubly significant, given both the direct seismic hazard and the risk to secure CO2 storage. With this in mind, we re-examine case histories of seismic activity induced by waste water disposal into sedimentary formations with the intention of learning lessons that can be applied to future CCS sites. In particular, we examine the spatial and temporal distributions of events to determine whether there are any rules-of-thumb that might be usefully applied when appraising and monitoring operations. We find that in all cases, at least some seismicity occurs at the depth of the injection interval, but the majority (~80% of events) occur at least 500m below the injection depth. Less than 2% of events occur more than 500m above the shallowest injection interval. This observation must be considered encouraging from a CCS perspective, where seismicity in sealing caprocks will be of greatest concern. However, without a phenomenological explanation for the relative lack of seismicity above injection depths, it cannot be guaranteed that such observations would be

  9. Heat transfer processes during low or high enthalpy fluid injection into naturally fractured reservoirs

    SciTech Connect

    Fernando Ascencio Cendejas; Jesus Rivera Rodriguez

    1994-01-20

    Disposal of hot separated brine by means of reinjection within the limits of the geothermal reservoir is, at present, a problem that remains to be solved. Possible thermal, as well as chemical contamination of the resources present key questions that have to be appropiately answered before a reinjection project is actually implemented in the field. This paper focusses on the basic heat-transfer process that takes place when a relatively cold brine is injected back into the naturally fractured hot geothermal reservoir after steam has been separated at the surface. The mathematical description of this process considers that rock matrix blocks behaves as uniformly distributed heat sources, meanwhile heat transfer between matrix blocks and the fluid contained in the fractures takes place under pseudo-steady state conditions with the main temperature drop occurring in the rock-matrix blocks interphase. Analytical solutions describing the thermal front speed of propagation are presented. Discussion on the effect of several variables affecting the thermal front speed of propagation is included, stressing the importance that a proper “in-situ” determination of the effective heat transfer area at the rock-fluid interphase has on the whole process. Solutions are also presented as a type-curve that can be practically used to estimate useful parameters involved in heat transfer phenomena during cold fluid reinjection in naturally fractured geothermal systems.

  10. Determination of hydraulic fracture parameters using a non-stationary fluid injection

    NASA Astrophysics Data System (ADS)

    Valov, A. V.; Golovin, S. V.

    2016-06-01

    In this paper, one provides a theoretical justification of the possibility of hydraulic fracture parameters determination by using a non-stationary fluid injection. It is assumed that the fluid is pumped into the fractured well with the time-periodic flow rate. It is shown that there is a phase shift between waves of fluid pressure and velocity. For the modelling purposes, the length and width of the fracture are assumed to be fixed. In the case of infinite fracture, one constructs an exact solution that ensures analytical determination of the phase shift in terms of the physical parameters of the problem. In the numerical calculation, the phase shift between pressure and velocity waves is found for a finite fracture. It is shown that the value of the phase shift depends on the physical parameters and on the fracture geometry. This makes it possible to determine parameters of hydraulic fracture, in particular its length, by the experimental measurement of the time shift and comparison with the numerical solution.

  11. A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Troise, Claudia; Tramelli, Anna; De Natale, Giuseppe

    2013-10-01

    Fluid injection in and withdrawal from wells are basic procedures in mining activities and deep resources exploitation, such as oil and gas extraction, permeability enhancement for geothermal exploitation and waste fluid disposal. All of these activities have the potential to induce seismicity, as exemplified by the 2006 Basel earthquake (ML 3.4). Despite several decades of experience, the mechanisms of induced seismicity are not known in detail, which prevents effective risk assessment and/or mitigation. In this study, we provide an interpretation of induced seismicity based on computation of Coulomb stress changes that result from fluid injection/withdrawal at depth, mainly focused on the interpretation of induced seismicity due to stimulation of a geothermal reservoir. Seismicity is, theoretically, more likely where Coulomb stress changes are larger. For modeling purposes, we simulate the thermodynamic evolution of a system after fluid injection/withdrawal. The associated changes in pressure and temperature are subsequently considered as sources of incremental stress changes, which are then converted to Coulomb stress changes on favourably oriented faults, taking into account the background regional stress. Numerical results are applied to the water injection that was performed to create the fractured reservoir at the enhanced-geothermal-system site, Soultz-sous-Forets (France). Our approach describes well the observed seismicity, and provides an explanation for the different behaviors of a system when fluids are injected or withdrawn.

  12. Analysis of Scaling Parameters of Event Magnitudes by Fluid Injections in Reservoirs

    NASA Astrophysics Data System (ADS)

    Dinske, Carsten; Krüger, Oliver; Shapiro, Serge

    2014-05-01

    We continue to elaborate scaling parameters of observed frequency-magnitude distributions of injection-induced seismicity. In addition to pumped fluid mass, b-value and seismogenic index (Shapiro et al., 2010, Dinske and Shapiro, 2013), one more scaling was recognised by the analysis of the induced event magnitudes. A frequently observed under-representation of events with larger magnitudes in comparison with the Gutenberg-Richter relation is explained by the geometry and the dimensions of the hydraulically stimulated rock volume (Shapiro et al., 2011, 2013). This under-representation, however, introduces a bias in b-value estimations which then should be considered as an apparent and transient b-value depending on the size of the perturbed rock volume. We study in detail in which way the seismogenic index estimate is affected by the apparent b-value. For this purpose, we compare b-value and seismogenic index estimates using two different approaches. First, we perform standard Gutenberg-Richter power-law fitting and second, we apply frequency-magnitude lower bound probability fitting as proposed by Shapiro et al. (2013). The latter takes into account the finite size of the perturbed rock volume. Our result reveals that the smaller is the perturbed rock volume the larger are the deviations between the two sets of derived parameters. It means that the magnitude statistics of the induced events is most affected for low injection volumes and/or short injection times. At sufficiently large stimulated volumes both fitting approaches provide comparable b-value and seismogenic index estimates. In particular, the b-value is then in the range of b-values universally obtained for tectonic earthquakes (i.e., 0.8 - 1.2). Based on our findings, we introduce the specific magnitude which is a seismotectonic characteristic for a reservoir location. Defined as the ratio of seismogenic index and b-value, the specific magnitude is found to be a magnitude scaling parameter which is

  13. Estimating maximum sustainable injection pressure duringgeological sequestration of CO2 using coupled fluid flow andgeomechanical fault-slip analysis

    SciTech Connect

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2006-10-17

    This paper demonstrates the use of coupled fluid flow andgeomechanical fault slip (fault reactivation) analysis to estimate themaximum sustainable injection pressure during geological sequestration ofCO2. Two numerical modeling approaches for analyzing faultslip areapplied, one using continuum stress-strain analysis and the other usingdiscrete fault analysis. The results of these two approaches to numericalfault-slip analyses are compared to the results of a more conventionalanalytical fault-slip analysis that assumes simplified reservoirgeometry. It is shown that the simplified analytical fault-slip analysismay lead to either overestimation or underestimation of the maximumsustainable injection pressure because it cannot resolve importantgeometrical factors associated with the injection induced spatialevolution of fluid pressure and stress. We conclude that a fully couplednumerical analysis can more accurately account for the spatial evolutionof both insitu stresses and fluid pressure, and therefore results in amore accurate estimation of the maximum sustainable CO2 injectionpressure.

  14. Effects of Long-Term Fluid Injection on Maximum Magnitude and Induced Seismicity Parameters at Northwestern The Geysers Geothermal Field

    NASA Astrophysics Data System (ADS)

    Bohnhoff, M.; Kwiatek, G.; Martínez-Garzón, P.; Dresen, G. H.; Sone, H.; Hartline, C. S.

    2015-12-01

    The long-term temporal and spatial changes in statistical, source and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (US) are analyzed in relation to the field operations, fluid migration and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1,776 events recorded throughout a seven-year period were analyzed. The seismicity catalog was relocated and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting and mesh spectral ratio techniques. The source characteristics together with statistical parameters (b-value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial and source characteristics were clearly attributed to fluid injection and fluid migration towards greater depths, involving increasing pore pressure in the reservoir. Increasing poroelastic stresses at greater depths affect the kinematic properties of the seismicity in that at reservoir depths normal faulting mechanism events dominate, whereas at larger depths the contribution of strike-slip events are is significantly increasing. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude. The observed maximum magnitude was found to be clearly correlated to the dimensions of seismic cloud which is related to the volume of formation weakened by fluid injection and injection rate, and the average pore pressure change in

  15. Distribution in cerebrospinal fluid, blood, and lymph of epidurally injected morphine and inulin in dogs

    SciTech Connect

    Durant, P.A.; Yaksh, T.L.

    1986-06-01

    We describe procedures for catheterizing the epidural space, the azygos vein, and the thoracic lymph duct of dogs without using fluoroscopy. The success rates of the procedures were 100, 80, and 50%, respectively (n = 10). To assess the validity of the model, /sup 3/H-morphine and unlabeled morphine (2 mg) were injected epidurally in ten dogs. Lumbar cerebrospinal fluid (CSF), azygos venous blood, arterial blood, and lymph were sampled before and 5, 20, 60, 120, 180, 240, 300 and 360 min after injection. During the first 20 min, morphine levels in the azygos vein were about three and ten times greater than arterial and lymphatic levels, respectively (n = 3; P less than 0.01). Morphine levels were significantly greater in the azygos vein (n = 8) and the femoral artery (n = 10) during the first 20 and 60 min than they were later, respectively (P less than 0.05). In the lymph (n = 5), the levels of morphine at 60 min were statistically greater (P less than 0.05) than levels at 4, 5, and 6 hr. At no time were the concurrent arterial and lymph levels different from each other. In the lumbar CSF, the morphine peak concentration was reached 5-60 min after epidural injection and ranged between 5 and 93 micrograms/ml. In the CSF, the levels of morphine were significantly greater during the first 20 min than later (n = 7; P less than 0.05). The washout of the lumbar CSF curve for morphine appeared to be fitted by a two-compartment open model. The t1/2-alpha and t1/2-beta values were 14.7 +/- 7.2 min and 106 +/- 45 min, respectively (mean +/- SD). Cumulative percentages of the epidural dose of morphine passed into the azygos system within the first 5, 20, 60, and 120 min after injection were calculated to be 4.0 +/- 2.1, 23.5 +/- 14.6, 49.2 +/- 34.2, and 55.9 +/- 35.3, respectively (mean +/- SD; n = 8).

  16. Instability in a non-ohmic/ohmic fluid interface under a perpendicular electric field and unipolar injection

    NASA Astrophysics Data System (ADS)

    Vega, F.; Perez, A. T.

    2002-08-01

    We set the equations for the linear electrohydrodynamic instability of an interface between two fluids, subjected to a perpendicular field and a unipolar charge injection. One of the fluids is modeled as being in non-ohmic regime (insulating), whereas the other is ohmic. A new interfacial instability mechanism is described, which may account for the Rose-window instability. The equations are analytically solved in the limit of long wavelength and neglecting the fluid motion. We show that this limit applies well to the case of an air-ohmic liquid interface. The applicability to a liquid-liquid interface is also analyzed.

  17. Intracerebral injection of oil cyst content of human craniopharyngioma (oil machinery fluid) as a toxic model in the rat brain.

    PubMed

    Tena-Suck, Martha Lilia; Hernández-Campos, Ma Elena; Ortiz-Plata, Alma; Salinas-Lara, Citlaltepetl; Colín-González, Ana Laura; Santamaría, Abel

    2014-04-01

    Craniopharyngiomas (CPs) are benign epithelial cystic tumors of the sellar and suprasellar region with a high survival rate and high recurrence in children. CPs contain dense oily fluid, but little is known yet about this content and its contribution to tissue damage and tumoral growth. In this study, we developed a simple experimental model produced by intracortical injection to rats of the cyst fluid content collected from human CPs to explore its possible contribution to brain tissue damage. The cyst fluid of the CPs ("oil machinery fluid") was collected during surgical removal, briefly preserved and further tested in rats through intracortical infusion. The group receiving "oil machinery fluid" presented increased reactive oxygen species formation, oxidative damage to lipids and reactive gliosis accompanied by augmented immunoreactivity to peroxiredoxin and thioredoxin reductase 1 at 15, 30 and 45 days post-injection. Other markers of inflammation and cell damage were stimulated at all post-lesion days tested. There was also a body weight gain. The persistence of tissue damage and oxidative stress suggests that "oil machinery fluid" exerts progressive alterations similar to those observed in patients with CPs, supporting the concept that some components of cyst fluid may contribute to brain tissue damage in these patients. PMID:24192215

  18. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    PubMed Central

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  19. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin.

    PubMed

    Foster, Derek M; Martin, Luke G; Papich, Mark G

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  20. Supra-Descemet’s Fluid Drainage with Simultaneous Air Injection: An Alternative Treatment for Descemet’s Membrane Detachment

    PubMed Central

    Ghaffariyeh, Alireza; Honarpisheh, Nazafarin; Chamacham, Tooraj

    2011-01-01

    In this report, we present an alternative technique to manage Descemet’s membrane detachment (DMD). We call the technique supra-Descemet’s fluid drainage with intracameral air injection. Under topical anesthesia, we injected air through the stab incision to fill 2/3 of the anterior chamber. Then we inserted the tip of a curved 10/0 needle through the corneal surface (entry angle at 45 degrees) into the supra-Descemet’s area 3 times to drain this fluid. In our method, we neither injected expanding gas or viscoelastic nor used a suture. Consequently, there was little chance for suture-induced astigmatism or increased intraocular pressure. This technique may be considered a relatively safe and simple surgical method for the management of postoperative DMD. PMID:21731334

  1. A study on chemical interactions between waste fluid, formation water, and host rock during deep well injection

    SciTech Connect

    Spycher, Nicolas; Larkin, Randy

    2004-05-14

    A new disposal well was drilled in the vicinity of an injection well that had been in operation for 12 years. The drilling activities provided an opportunity to assess the fate and transport of waste products injected in the nearby well, and the impact, if any, on the host geologic formation. The origin of the fluid collected while drilling the new well and the interaction between injected waste and the formation were investigated using analyses of formation waters, waste, and formation minerals, by applying traditional graphical methods and sophisticated numerical models. This approach can be used to solve a wide range of geochemical problems related to deep well injection of waste. Trilinear Piper diagrams, Stiff diagrams, and correlation plots show that the chemical characteristics of recovered fluid at the new well are similar to those of formation water. The concentrations of most major constituents in the fluid appear diluted when compared to formation water sampled at other locations. This could be explained by mixing with waste, which is less saline than formation water. However, the waste injected near the new well consists primarily of ammonia and sulfate, and these waste constituents are not found at concentrations elevated enough to suggest that significant mixing of formation water with waste has occurred. To determine whether chemical interactions between injected waste and formation could explain the chemistry of fluid recovered from the new well, we simulated the chemical reaction between waste, formation water, and the formation rock by numerical modeling. Initial modeling calculations were done using a multicomponent geochemical reaction-path model to simulate fresh waste reacting with the formation. A more complex simulation coupling flow, transport, and reaction was then run using a multicomponent geochemical reactive transport model. These numerical simulations were carried out to calculate porosity changes and evaluate chemical processes

  2. Physics-based Probabilistic Seismic Hazard Analysis for Seismicity Induced by Fluid Injection

    NASA Astrophysics Data System (ADS)

    Foxall, W.; Hutchings, L. J.; Johnson, S.; Savy, J. B.

    2011-12-01

    Risk associated with induced seismicity (IS) is a significant factor in the design, permitting and operation of enhanced geothermal, geological CO2 sequestration and other fluid injection projects. Whereas conventional probabilistic seismic hazard and risk analysis (PSHA, PSRA) methods provide an overall framework, they require adaptation to address specific characteristics of induced earthquake occurrence and ground motion estimation, and the nature of the resulting risk. The first problem is to predict the earthquake frequency-magnitude distribution of induced events for PSHA required at the design and permitting stage before the start of injection, when an appropriate earthquake catalog clearly does not exist. Furthermore, observations and theory show that the occurrence of earthquakes induced by an evolving pore-pressure field is time-dependent, and hence does not conform to the assumption of Poissonian behavior in conventional PSHA. We present an approach to this problem based on generation of an induced seismicity catalog using numerical simulation of pressure-induced shear failure in a model of the geologic structure and stress regime in and surrounding the reservoir. The model is based on available measurements of site-specific in-situ properties as well as generic earthquake source parameters. We also discuss semi-empirical analysis to sequentially update hazard and risk estimates for input to management and mitigation strategies using earthquake data recorded during and after injection. The second important difference from conventional PSRA is that in addition to potentially damaging ground motions a significant risk associated with induce seismicity in general is the perceived nuisance caused in nearby communities by small, local felt earthquakes, which in general occur relatively frequently. Including these small, usually shallow earthquakes in the hazard analysis requires extending the ground motion frequency band considered to include the high

  3. Elastic stress transfer as a diffusive process due to aseismic fault slip in response to fluid injection

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.

    2015-12-01

    Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure

  4. Monitoring in situ deformation induced by a fluid injection in a fault zone in shale using seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Rivet, D.; De Barros, L.; Guglielmi, Y.; Castilla, R.

    2015-12-01

    We monitor seismic velocity changes during an experiment at decametric scale aimed at artificially reactivate a fault zone by a high-pressure hydraulic injection in a shale formation of the underground site of Tournemire, South of France. A dense and a multidisciplinary instrumentation, with measures of pressure, fluid flow, strain, seismicity, seismic properties and resistivity allow for the monitoring of this experiment. We couple hydromechanical and seismic observations of the fault and its adjacent areas to better understand the deformation process preceding ruptures, and the role played by fluids. 9 accelerometers recorded repeated hammers shots on the tunnel walls. For each hammer shot we measured small travel time delays on direct P and S waves. We then located the seismic velocity perturbations using a tomography method. At low injection pressure, i.e. P< 15 Bars, we observe an increase of P-waves velocity around the injection, while we measure no change in S waves velocity. When the pressure overcomes 15 Bars, velocity perturbations dramatically increase with both P and S waves affected. A decrease of velocity is observed close to the injection point and is surrounded by regions of increasing velocity. Our observations are consistent with hydromechanical measures. Below 15 Bars, we interpret the P-wave velocity increase to be related to the compression of the fault zone around the injection chamber. Above 15 Bars, we measure a shear and dilatant fault movement, and a rapid increase in the injected fluid flow. At this step, our measures are coherent with a poroelastic opening of the fault with velocities decrease at the injection source and velocities increase related to stress transfer in the far field. Velocity changes prove to be efficient to monitor stress/strain variation in an activated fault, even if these observations might produce complex signals due to the highly contrasted hydromechanical responses in a heterogeneous media such as a fault zone.

  5. Simulating Thermal-Hydrologic-Mechanical-Chemical Evolution Surrounding Fluid Injection in a Fractured Porous Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Taron, J.; Min, K.; Elsworth, D.

    2006-12-01

    Computational analysis is conducted on the coupled thermal-hydrologic-mechanical-chemical (THMC) behavior of a stimulated EGS geothermal reservoir. Numerical analyses utilize a newly developed simulator capable of examining THMC processes in fractured porous geologic media. The simulator links the thermal-hydrologic- chemical (THC) computational code TOUGHREACT with the mechanical (M) capability of FLAC3D, where the response of pore fluid pressure to mechanical disturbance is treated as an undrained system and mineral precipitation/dissolution generates porosity and permeability change within each dual-permeability continuum. Non-linear permeability response to thermal-hydrologic-mechanical (THM) mechanisms is accommodated via embryonic mechanical and transport constitutive laws, and is considered to act in union with permeability changes associated with the removal or addition of minerals within the system. This construct is applied to the geometry of an injector-withdrawal doublet within the Coso Geothermal field, where in situ stress conditions, thermal state, and mineralogical composition at 3000m depth are extracted from recorded field data. Initial results for feasible parametric settings show that permeability reduction in the vicinity of a cool (80°C) injection well may be significant, within an order of magnitude, and accompanied by large (MPa) changes in the stress field throughout the reservoir for imposed boundary conditions of constant stress.

  6. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    NASA Astrophysics Data System (ADS)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  7. Eliminating whirl occurrence in fluid-film bearings of rotary machinery through optimally controlled anti-swirl injection

    NASA Astrophysics Data System (ADS)

    Le, Duc-Do; Tsuei, Ching-Kuan; Pan, Min-Chun

    2014-03-01

    The phenomenon of fluid-induced instability existing in fluid-film bearing systems has been coped with for long time. The study aims to soothe and even eliminate the occurrence of whirl in rotary machinery by increasing the threshold of instability through the anti-swirl injection using an optimal control based linear quadratic regulator. An acceptance region was established in order to decide starting up the control process. Some case studies were carried out to illustrate the effectiveness of the control scheme. The research results present that a simple control method incorporating with an acceptance region enables to avoid the fluid induced instability flexibly in rotary machinery. Moreover, the developed techniques can also be applied in other fluid-induced instability problems such as whip and rub, etc.

  8. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  9. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    PubMed

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  10. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect

    Serrato, M. G.

    2013-09-27

    located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  11. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic

  12. Transient Fluid Flow Along Basement Faults and Rupture Mechanics: Can We Expect Injection-Induced Earthquake Behavior to Correspond Directly With Injection Operations?

    NASA Astrophysics Data System (ADS)

    Norbeck, J. H.; Horne, R. N.

    2015-12-01

    We explored injection-induced earthquake behavior in geologic settings where basement faults are connected hydraulically to overlying saline aquifers targeted for wastewater disposal. Understanding how the interaction between natural geology and injection well operations affects the behavior of injection-induced earthquake sequences has important implications for characterizing seismic hazard risk. Numerical experiments were performed to investigate the extent to which seismicity is influenced by the migration of pressure perturbations along fault zones. Two distinct behaviors were observed: a) earthquake ruptures that were confined to the pressurized region of the fault and b) sustained earthquake ruptures that propagated far beyond the pressure front. These two faulting mechanisms have important implications for assessing the manner in which seismicity can be expected respond to injection well operations.Based upon observations from the numerical experiments, we developed a criterion that can be used to classify the expected faulting behavior near wastewater disposal sites. The faulting criterion depends on the state of stress, the initial fluid pressure, the orientation of the fault, and the dynamic friction coefficient of the fault. If the initial ratio of shear to effective normal stress resolved on the fault (the prestress ratio) is less than the fault's dynamic friction coefficient, then earthquake ruptures will tend to be limited by the distance of the pressure front. In this case, parameters that affect seismic hazard assessment, like the maximum earthquake magnitude or earthquake recurrence interval, could correlate with injection well operational parameters. For example, the maximum earthquake magnitude might be expected to grow over time in a systematic manner as larger patches of the fault are exposed to significant pressure changes. In contrast, if the prestress ratio is greater than dynamic friction, a stress drop can occur outside of the pressurized

  13. Synthetic modeling of a fluid injection-induced fault rupture with slip-rate dependent friction coefficient

    NASA Astrophysics Data System (ADS)

    Urpi, Luca; Rinaldi, Antonio Pio; Rutqvist, Jonny; Cappa, Frédéric; Spiers, Christopher J.

    2016-04-01

    Poro-elastic stress and effective stress reduction associated with deep underground fluid injection can potentially trigger shear rupture along pre-existing faults. We modeled an idealized CO2 injection scenario, to assess the effects on faults of the first phase of a generic CO2 aquifer storage operation. We used coupled multiphase fluid flow and geomechanical numerical modeling to evaluate the stress and pressure perturbations induced by fluid injection and the response of a nearby normal fault. Slip-rate dependent friction and inertial effects have been aken into account during rupture. Contact elements have been used to take into account the frictional behavior of the rupture plane. We investigated different scenarios of injection rate to induce rupture on the fault, employing various fault rheologies. Published laboratory data on CO2-saturated intact and crushed rock samples, representative of a potential target aquifer, sealing formation and fault gouge, have been used to define a scenario where different fault rheologies apply at different depths. Nucleation of fault rupture takes place at the bottom of the reservoir, in agreement with analytical poro-elastic stress calculations, considering injection-induced reservoir inflation and the tectonic scenario. For the stress state here considered, the first triggered rupture always produces the largest rupture length and slip magnitude, correlated with the fault rheology. Velocity weakening produces larger ruptures and generates larger magnitude seismic events. Heterogeneous faults have been considered including velocity-weakening or velocity strengthening sections inside and below the aquifer, while upper sections being velocity-neutral. Nucleation of rupture in a velocity strengthening section results in a limited rupture extension, both in terms of maximum slip and rupture length. For a heterogeneous fault with nucleation in a velocity-weakening section, the rupture may propagate into the overlying velocity

  14. Compatibility of ketorolac tromethamine injection with common infusion fluids and administration sets.

    PubMed

    Floy, B J; Royko, C G; Fleitman, J S

    1990-05-01

    The compatibility of ketorolac tromethamine injection with commonly used i.v. infusion solutions and administration set components was evaluated. The infusion solutions tested were 0.9% sodium chloride injection, 5% dextrose injection, 0.9% sodium chloride and 5% dextrose injection, Plasma-Lyte A pH 7.4 injection, Ringer's injection, and lactated Ringer's injection. The ketorolac tromethamine admixture concentration studied was 30 mg/50 mL for all solutions. Admixtures were stored in polyvinyl chloride bags and glass bottles at room temperature under fluorescent light and sampled at 0, 6, 24, and 48 hours. Chemical compatibility was determined by high-performance liquid chromatography, and physical compatibility was determined by visual analysis, counting of subvisible particles by HIAC, and pH measurements. Adsorption of ketorolac tromethamine to i.v. administration set components was also evaluated. Ketorolac tromethamine exhibited excellent physical and chemical stability in all six infusion solutions tested. No degradation of drug, formation of particulates, or adsorption to containers or infusion tubing was noted at any concentration for any of the solutions. After the solutions were mixed, the pH remained essentially unchanged. Ketorolac tromethamine injection was physically and chemically stable when mixed with a variety of commonly used infusion solutions and was not adsorbed to administration set components or to glass or polyvinyl chloride containers. PMID:2337102

  15. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  16. The 17 May 2012 M4.8 earthquake near Timpson, East Texas: An event possibly triggered by fluid injection

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff; Ellsworth, William; Brown, Wesley A.; Brunt, Michael; Luetgert, Jim; MacDonald, Tim; Walter, Steve

    2014-01-01

    This study summarizes our investigation of the 17 May 2012 MW-RMT4.8 earthquake near Timpson, Texas, the largest earthquake recorded historically in eastern Texas. To identify preshocks and aftershocks of the 17 May event we examined the arrivals recorded at Nacogdoches (NATX) 30 km from the 17 May epicenter, at nearby USArray Transportable Array stations, and at eight temporary stations deployed between 26 May 2012 and mid-2013. At NATX we identified seven preshocks, the earliest occurring in April 2008. Reliably located aftershocks recorded by the temporary stations lie along a 6 km long NW-SE linear trend corresponding to a previously mapped basement fault that extends across the highest-intensity (MMI VII) region of the 17 May main shock. Earthquakes in this sequence are relatively shallow—with focal depths ranging from 1.6 to 4.6 km. Evidence supporting these depths include: hypocentral locations of exceptionally well-recorded aftershocks, S-P intervals at the nearest stations, and comparisons of synthetics and observed seismograms. Within 3 km of the linear trend of aftershock activity there are two Class II injection disposal wells injecting at 1.9 km depth beginning in August 2006 and February 2007, with injection rates averaging 42,750 m3/mo and 15,600 m3/mo, respectively. Several observations support the hypothesis that fluid injection triggered the Timpson sequence: well-located epicenters are situated near a mapped basement fault and near high-volume injection wells, focal depths are at or below the depths of injection, and the earliest preshock (April 2008) occurred after the onset of injection in 2006.

  17. Seismic Versus Aseismic Slip and Maximum Induced Earthquake Magnitude in Models of Faults Stimulated by Fluid Injection

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Cappa, F.; Galis, M.; Mai, P. M.

    2015-12-01

    The assessment of earthquake hazard induced by fluid injection or withdrawal could be advanced by understanding what controls the maximum magnitude of induced seismicity (Mmax) and the conditions leading to aseismic instead of seismic slip. This is particularly critical for the viability of renewable energy extraction through engineered geothermal systems, which aim at enhancing permeability through controlled fault slip. Existing empirical relations and models for Mmax lack a link between rupture size and the characteristics of the triggering stress perturbation based on earthquake physics. We aim at filling this gap by extending results on the nucleation and arrest of dynamic rupture. We previously derived theoretical relations based on fracture mechanics between properties of overstressed nucleation regions (size, shape and overstress level), the ability of dynamic ruptures to either stop spontaneously or run away, and the final size of stopping ruptures. We verified these relations by comparison to 3D dynamic rupture simulations under slip-weakening friction and to laboratory experiments of frictional sliding nucleated by localized stresses. Here, we extend these results to the induced seismicity context by considering the effect of pressure perturbations resulting from fluid injection, evaluated by hydromechanical modeling. We address the following question: given the amplitude and spatial extent of a fluid pressure perturbation, background stress and fracture energy on a fault, does a nucleated rupture stop spontaneously at some distance from the pressure perturbation region or does it grow away until it reaches the limits of the fault? We present fracture mechanics predictions of the rupture arrest length in this context, and compare them to results of 3D dynamic rupture simulations. We also conduct a systematic study of the effect of localized fluid pressure perturbations on faults governed by rate-and-state friction. We investigate whether injection

  18. A parallel computing tool for large-scale simulation of massive fluid injection in thermo-poro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Karrech, Ali; Schrank, Christoph; Regenauer-Lieb, Klaus

    2015-10-01

    Massive fluid injections into the earth's upper crust are commonly used to stimulate permeability in geothermal reservoirs, enhance recovery in oil reservoirs, store carbon dioxide and so forth. Currently used models for reservoir simulation are limited to small perturbations and/or hydraulic aspects that are insufficient to describe the complex thermal-hydraulic-mechanical behaviour of natural geomaterials. Comprehensive approaches, which take into account the non-linear mechanical deformations of rock masses, fluid flow in percolating pore spaces, and changes of temperature due to heat transfer, are necessary to predict the behaviour of deep geo-materials subjected to high pressure and temperature changes. In this paper, we introduce a thermodynamically consistent poromechanics formulation which includes coupled thermal, hydraulic and mechanical processes. Moreover, we propose a numerical integration strategy based on massively parallel computing. The proposed formulations and numerical integration are validated using analytical solutions of simple multi-physics problems. As a representative application, we investigate the massive injection of fluids within deep formation to mimic the conditions of reservoir stimulation. The model showed, for instance, the effects of initial pre-existing stress fields on the orientations of stimulation-induced failures.

  19. PERMEABILITY EVOLUTION IN A FRACTURED ROCK MASS IN RESPONSE TO FLUID INJECTION

    SciTech Connect

    Morris, J; Johnson, S

    2008-08-13

    Large-scale carbon capture and sequestration (CCS) projects involving annual injections of millions of tons of CO2 are a key infrastructural element needed to substantially reduce greenhouse gas emissions. The large rate and volume of injection will induce pressure and stress gradients within the formation that could activate existing fractures and faults, or drive new fractures through the caprock. We will present results of an ongoing investigation to identify conditions that will activate existing fractures/faults or make new fractures within the caprock using the Livermore Distinct Element Code (LDEC). LDEC is a multiphysics code, developed at LLNL, capable of simulating dynamic fracture of rock masses under a range of conditions. We will present several demonstrations of LDEC functionality and applications of LDEC to CO2 injection scenarios including injection into an extensively fractured rock-mass. These examples highlight the advantages of explicitly including the geomechanical response of each interface within the rock-mass.

  20. Surface uplift and time-dependent seismic hazard due to fluid-injection in eastern Texas

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Ellsworth, W. L.; Tiampo, K. F.; González, P. J.; Manga, M.

    2015-12-01

    US states such as Texas and Oklahoma that produce high-volumes of unconventional oil and gas, are facing a sharp increase in seismicity. Observations of the associated surface deformation and accompanying physical models that unequivocally link the seismicity and waste water injection are scarce. Here, we find that the waste water injection in eastern Texas causes uplift, detectable using radar interferometric data. Combining the uplift and injection data through a poroelastic model allows for the resolution of a complex crustal distribution of hydraulic conductivity and pore pressure. We find that the ~5 years pore pressure increase is capable of triggering the 17 May 2012, Mw 4.8 earthquake, the largest event recorded in east Texas. This study shows that surface deformation data are vital in order to constrain the spatiotemporal variations of the stress field in the vicinity of injection sites.

  1. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  2. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    SciTech Connect

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  3. Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength

    DOEpatents

    Colgate, S.A.

    1983-01-25

    A finite region of overpressure can be created in solid underground formations by the periodic injection of a fluid that has finite gel strength that subsequently, after each injection, partially sets--i.e., equivalently becomes a very much stronger gel. A region of overpressure is a region in which the static, locked in pressure is larger than what was there before. A region of overpressure can be used to prevent a roof of a tunnel from caving by adding compressive stresses in the roof. A sequence of regions of overpressure can be used to lift an arch or dome underground, squeeze off water or gas flows, stabilize dams, foundations, large underground rooms, etc. In general, the stress or pressure distribution in rock can be altered and engineered in a fashion that is more advantageous than what would have been the case without overstressing. 3 figs.

  4. Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength

    DOEpatents

    Colgate, Stirling A.

    1983-01-01

    A finite region of overpressure can be created in solid underground formations by the periodic injection of a fluid that has finite gel strength that subsequently, after each injection, partially sets--i.e., equivalently becomes a very much stronger gel. A region of overpressure is a region in which the static, locked in pressure is larger than what was there before. A region of overpressure can be used to prevent a roof of a tunnel from caving by adding compressive stresses in the roof. A sequence of regions of overpressure can be used to lift an arch or dome underground, squeeze off water or gas flows, stabilize dams, foundations, large underground rooms, etc. In general, the stress or pressure distribution in rock can be altered and engineered in a fashion that is more advantageous than what would have been the case without overstressing.

  5. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function.

    PubMed

    Würdemann, Till; Kersten, Maxi; Tokay, Tursonjan; Guli, Xiati; Kober, Maria; Rohde, Marco; Porath, Katrin; Sellmann, Tina; Bien, Christian G; Köhling, Rüdiger; Kirschstein, Timo

    2016-02-15

    Autoimmune encephalitis is increasingly recognized in patients with otherwise unexplained encephalopathy with epilepsy. Among these, patients with anti-N-methyl D-aspartate receptor (NMDAR) encephalitis present epileptic seizures, memory deficits, and psychiatric symptoms. However, the functional consequences of such autoantibodies are poorly understood. In order to investigate the pathophysiology of this disease, we stereotactically injected either cerebrospinal fluid (CSF) from three anti-NMDAR encephalitis patients or commercially available anti-NMDAR1 into the dentate gyrus of adult female rats. Control animals were injected with either CSF obtained from three epilepsy patients (ganglioglioma, posttraumatic epilepsy, focal cortical dysplasia) lacking anti-NMDAR or saline. Intracellular recordings from dentate gyrus granule cells showed a significant reduction of the NMDAR-evoked excitatory postsynaptic potentials (NMDAR-EPSPs) in animals treated with anti-NMDAR. As a consequence of this, action potential firing in these cells by NMDAR-EPSPs was significantly impaired. Long-term potentiation in the dentate gyrus was also significantly reduced in rats injected with anti-NMDAR as compared to control animals. This was accompanied by a significantly impaired learning performance in the Morris water maze hidden platform task when the animals had been injected with anti-NMDAR antibody-containing CSF. Our findings suggest that anti-NMDAR lead to reduced NMDAR function in vivo which could contribute to the memory impairment found in patients with anti-NMDAR encephalitis. PMID:26721688

  6. DIAGNOSTIC CARDIAC CATHETERIZATION USING THE MEDRAD AVANTA FLUID MANAGEMENT SYSTEM AS COMPARED TO THE TRADITIONAL MANUAL INJECTION METHOD

    SciTech Connect

    Winniford, Michael D

    2013-02-08

    Nearly 4 million patient procedures performed annually in US cardiac catheterization laboratories utilize contrast media to achieve vessel opacification. The amount of contrast media used is variable and depends on the complexity of the procedure, the method of contrast delivery as well as the skill-level of the operator. Since the total amount of contrast used for each procedure can have both patient safety and economic implications, it is essential for cardiologists to have the ability to control contrast delivery such that optimal angiographic image quality is achieved using the least amount of contrast. Although the complication rate associated with cardiac catheterization remains low, the most common serious complication, contrast-induced nephropathy (CIN), is associated with poor prognosis and a high mortality rate. Numerous interventional strategies for preventing and reducing the severity of CIN have demonstrated varying degrees of clinical benefit, but none has been shown to reliably prevent this serious complication. To date, the most effective approach for reducing the risk of CIN is to properly hydrate the patient and to minimize the amount of contrast media administered. Automated injection systems are intended for use in virtually all cardiac catheterization procedures and have numerous features which can provide potential advantages over traditional methods. With automated injection technology the operator is able to control and precisely monitor contrast delivery. Additionally, the MEDRAD Avanta Fluid Management Injection System utilizes a sterile contrast reservoir which eliminates the need to discard unused contrast in individual opened containers following each procedure. Considering that an average of 50% of opened contrast media is wasted using manual injection methods, this savings can provide a substantial economic benefit. Automated systems also facilitate the use of smaller (5 French) catheter sizes. Precise flow control and the use of

  7. Teduglutide Injection

    MedlinePlus

    ... syndrome in people who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in ... analogs. It works by improving the absorption of fluids and nutrients in the intestines.

  8. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig

    2015-10-01

    The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.

  9. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  10. Numerical investigation of fluid and thermal mixing during high-pressure injection

    SciTech Connect

    Horng, T.S.; Chieng, C.C.

    1987-10-01

    A computer program is developed to simulate the fluid and thermal mixing of the Electric Power Research Institute/Creare one-fifth scale test. The mass-flow-weighted skew-upwind differencing scheme (SUDS), as well as the upwind differencing scheme, and the kappa-epsilon two-equation model of turbulence in cylindrical coordinates are employed in the numerical simulation. The computational results are compared with experimental data of test numbers 42, 46, and 51 and COMMIX results. The numerical diffusion is significantly reduced by SUDS, and a satisfactory prediction is achieved.

  11. Injection of colloidal size particles of Fe{sup 0} in porous media with shearthinning fluids as a method to emplace a permeable reactive zone

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.

    1997-12-31

    Previous work has demonstrated the feasibility of injecting suspensions of micron-size zero-valent (FeO) particles into porous media as a method to emplace a permeable reactive zone. Further studies were conducted to evaluate the effects of several shearthinning fluids on enhancing the injectability of micron-size FeO particles into porous media. In contrast to Newtonian fluids, whose viscosities are constant with shear rate, certain non-Newtonian fluids are shearthinning, that is, the viscosity of these fluids decreases with increasing shear rate. The primary benefit of using these fluids for this application is that they increase the viscosity of the aqueous phase without adversely decreasing the hydraulic conductivity. A suspension formulated with a shearthinning fluid will maintain a relatively high viscosity in solution near the FeO particles (where the shear stress is low) relative to locations near the surfaces of the porous media, where the shear stress is high. The increased viscosity decreases the rate of gravitational settling of the dense FeO colloids (7.6 9/cm3) while maintaining a relatively high hydraulic conductivity that permits pumping the colloid suspensions into porous media at greater flowrates and distances. Aqueous solutions of three polymers at different concentrations were investigated. It was determined that, the use of shear thinning fluids greatly increases the injectability of the colloidal FeO suspensions in porous media.

  12. Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 1. Saturation and temperature

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2014-11-01

    This work introduces the derivation and solution of the conservation laws for nonisothermal immiscible two-phase flow in one dimension (1D) with heat loss to surrounding strata. Purely advective flow is assumed so that the method of characteristics can be applied to the fluid flow and thermal equations with an arbitrary relative permeability model. The formulation allows for a wide class of time-dependent models for heat loss into surrounding strata. One-dimensional linear and radial displacements are considered. Thermal losses to the under- and over-burden are modelled using a heat-loss coefficient derived from the classic Lauwerier model. In order to demonstrate the two kinds of solution that may occur, examples are shown for cold methane injection into an aquifer and cold water injection into a natural gas reservoir. Finally the new analytical solutions are compared with two literature models which assume piston-like displacement, and numerical reservoir simulations. The solutions from the proposed model match the thermal profile from the reservoir simulation much better than either of the literature models in the examples considered.

  13. Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion

    PubMed Central

    Uwanta, I. J.; Hamza, M. M.

    2014-01-01

    An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632

  14. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    SciTech Connect

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.; Kim, Charlson C.

    2013-08-15

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  15. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.

    2013-08-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  16. Improved Neurological Outcome by Intramuscular Injection of Human Amniotic Fluid Derived Stem Cells in a Muscle Denervation Model

    PubMed Central

    Su, Hong-Lin; Sheu, Meei-Ling; Lu, Zong-Han; Chiang, Chien-Yi; Yang, Dar-Yu; Sheehan, Jason; Pan, Hung-Chuan

    2015-01-01

    Purpose The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS) have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model. Materials and Methods Seventy two Sprague-Dawley rats weighing 200–250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups. Results NT-3 (Neurotrophin 3), BDNF (Brain derived neurotrophic factor), CNTF (Ciliary neurotrophic factor), and GDNF (Glia cell line derived neurotrophic factor) were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index) and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology. Conclusion Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection

  17. Determination of Methotrexate in Biological Fluids and a Parenteral Injection Using Terbium-Sensitized Method

    PubMed Central

    Jouyban, Abolghasem; Shaghaghi, Masoomeh; L. Manzoori, Jamshid; Soleymani, Jafar; JalilVaez-Gharamaleki, Jalil

    2011-01-01

    A new sensitive, simple and rapid method for determination of methotrexate (MTX) was developed based on quenching effects of MTX on the fluorescence intensity of Tb3+-1,10-phenanthroline complex. The fluorescence intensity was measured with excitation wavelength of 300 nm and emission wavelength of 545 nm and the quenched fluorescence intensity is proportional to the concentration of MTX in Tris-HCl buffer solution with a pH of 7.0. The effects of pH, time, order of addition of the reagents, temperature and the concentrations of Tb3+, buffer and 1,10-phenanthroline were investigated and optimized. The obtained linear range for the determination of MTX was 0.02-10 μg/mL. The detection limits (signal: noise = 3) was 0.015 μg/mL and the relative standard deviation for replicated determinations of 1 μg/mL of MTX was 1.9%. The proposed method is a simple, practical and relatively free from interference effects and was successfully applied to assess MTX in urine, serum and samples of an injection solution. PMID:24250404

  18. (1,3)-β-d-Glucan in Cerebrospinal Fluid for Diagnosis of Fungal Meningitis Associated with Contaminated Methylprednisolone Injections

    PubMed Central

    Singal, Bonita; Wheat, L. Joseph; Al Sous, Ola; Summons, Theresa A.; Durkin, Michelle M.; Pettit, April C.

    2014-01-01

    Prompt diagnosis and treatment of fungal meningitis are critical, but culture is insensitive. (1,3)-β-d-Glucan (BDG) testing is FDA approved for serological diagnosis of invasive fungal disease; however, BDG testing is not approved for cerebrospinal fluid (CSF), and the appropriate cutoff value is unknown. We aimed to validate the diagnostic accuracy of CSF BDG measurements for fungal meningitis among patients exposed to contaminated methylprednisolone acetate (MPA). A retrospective observational study was conducted at St. Joseph Mercy Hospital and Vanderbilt University from November 2013 to February 2014. Patients were included if they had received a contaminated MPA injection. Cases were classified as probable or proven meningitis according to Centers for Disease Control and Prevention guidelines. CSF BDG testing was performed according to the package insert instructions for serum samples, and results were validated using Clinical and Laboratory Standards Institute procedures (MiraVista Diagnostics). Of 233 patients, 45 had meningitis (28 proven cases), 53 had spinal/paraspinal infections (19 proven cases), and 135 did not develop disease. Using the manufacturer's cutoff value (≥80 pg/ml), the sensitivity and specificity were 96% and 95%, respectively, for proven meningitis and 84% and 95% for probable or proven meningitis. Receiver operating characteristic analysis identified the optimal cutoff value for proven meningitis to be 66 pg/ml (sensitivity, 100%; specificity, 94%) and that for probable or proven meningitis to be 66 pg/ml (sensitivity, 91%; specificity, 92%). Our results suggest that CSF BDG measurements are highly sensitive and specific for the diagnosis of fungal meningitis associated with contaminated MPA injections. Further study on the utility of CSF BDG testing for other types of fungal meningitis is needed. PMID:25540391

  19. Crustal deformation due to fluid extraction and re-injection in the Hengill geothermal area in Southwest Iceland

    NASA Astrophysics Data System (ADS)

    Juncu, D.; Arnadottir, T.; Budzińska, K.; Hooper, A. J.

    2014-12-01

    Several geothermal energy production fields are currently harnessed in Iceland. One of these is located at the Hengill triple junction, where the oblique plate motion along the Reykjanes peninsula is partitioned between the E-W oriented transform along the South Iceland Seismic Zone (SISZ) and spreading across the Western Volcanic Zone in SW Iceland. The Hengill volcano has high temperature geothermal areas utilized by the Hellisheiði and Nesjavellir power plants. The region around the power plants is subject to motion and deformation of the Earth's surface due to several processes. These include the motion of the Earth's crust due to plate spreading, co- and post seismic deformation due to earthquakes in the South Iceland Seismic Zone and deformation due to water and steam extraction and wastewater re-injection near geothermal power plants. We measure surface displacement using both GPS and InSAR data. The former are obtained from four continuous and more than 15 campaign GPS stations, with time-series starting after two M6 earthquakes on 29 May 2008 in Ölfus - the western most part of the SISZ. The InSAR data consist of 10 images taken on track 41 of the TerraSar-X mission, starting October 2009. We can see a clear subsidence signal in the proximity of the power plants with a maximum of ~18 mm/yr in Line-of-Sight direction (LOS) at Hellisheiði. The subsidence is elongated in NNE-SSW direction and possibly related to the orientation of the Hengill fissure swarm. In addition to subsidence, we observe an uplift signal of ca. 10 mm/yr in LOS west of the Hellisheiði site, potentially due to wastewater re-injection in the area. The area of maximum uplift is located close to the epicenters of two M4 earthquakes that occurred in October 2011. Since the signal around the power plants is the most prominent, we start our investigation with trying to find an appropriate model for deformation due to fluid extraction and re-injection with the aim of simulating the data. By

  20. Acceptability of rapid oral fluid HIV testing among male injection drug users in Taiwan, 1997 and 2007.

    PubMed

    Lyu, Shu-Yu; Morisky, Donald E; Yeh, Ching-Ying; Twu, Shiing-Jer; Peng, Eugene Yu-Chang; Malow, Robert M

    2011-04-01

    Rapid oral fluid HIV testing (rapid oral testing) is in the process of being adapted in Taiwan and elsewhere given its advantages over prior HIV testing methods. To guide this process, we examined the acceptability of rapid oral testing at two time points (i.e., 1997 and 2007) among one of the highest risk populations, male injection drug users (IDUs). For this purpose, an anonymous self-administered survey was completed by HIV-negative IDUs involved in the criminal justice system in 1997 (N (1)=137 parolees) and 2007 (N (2)=106 prisoners). A social marketing model helped guide the design of our questionnaire to assess the acceptability of rapid oral testing. This included assessing a new product, across four marketing dimensions: product, price, promotion, and place. Results revealed that in both 1997 and 2007, over 90% indicated that rapid oral testing would be highly acceptable, particularly if the cost was under US$6, and that a pharmacy would be the most appropriate and accessible venue for selling the rapid oral testing kits. The vast majority of survey respondents believed that the cost of rapid oral testing should be federally subsidized and that television and newspaper advertisements would be the most effective media to advertise for rapid oral testing. Both the 1997 and 2007 surveys suggested that rapid oral HIV testing would be particularly accepted in Taiwan by IDUs after release from the criminal justice system. PMID:21271392

  1. An Experiment to Test Geophysical Methods For Monitoring Fluid Re-Injection at the Wairakei Geothermal Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Bowles-Martinez, E.; Feucht, D. W.; Ryan, J.; Caldwell, T. G.; Bannister, S. C.; Bertrand, T.; Bennie, S.; Bourguignon, S.

    2010-12-01

    The National Science Foundation (NSF) is supporting US students to participate in GNS Science’s geothermal research program supported by the New Zealand Government. The NSF international program aims to quick-start a new generation of geothermal-oriented US geophysics students who will be poised to be active participants and leaders in US geothermal energy development. This year’s project evaluated joint passive seismic and magnetotelluric (MT) field measurements to determine three-dimensional (3-D) reservoir characteristics during fluid withdrawal and re-injection. A preliminary test of the ability to achieve repeatable MT data in high noise locations was carried out in the Wairakei geothermal field using a 14-site base-line MT survey and repeat occupations at four sites. Different data processing schemes identified MT frequency bands where impedance phase tensor data were most sensitive to known variables such as daily solar source variations, wind, and drilling operations. Other frequency bands were identified where good MT repeatability will allow further tests. A streamlined method was developed for visualizing 3-D earthquake focal mechanisms resulting from production changes in geothermal reservoirs. The computer program allows spatial sorting of seismic events and thus subsurface fracture identification.

  2. Colistimethate Injection

    MedlinePlus

    ... antibiotic, to help treat your infection. The drug will be either injected directly into a vein through ... catheter or added to an intravenous fluid that will drip through a needle or catheter into a ...

  3. Dexamethasone Injection

    MedlinePlus

    ... severe allergic reactions. It is used in the management of certain types of edema (fluid retention and ... needed for normal body functioning) and in the management of certain types of shock. Dexamethasone injection is ...

  4. An objective method for the assessment of fluid injection-induced seismicity and application to tectonically active regions in central California

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Hauksson, E.; Aminzadeh, F.; Ampuero, J.-P.

    2015-10-01

    Changes in seismicity rates, whether of tectonic or of induced origin, can readily be identified in regions where background rates are low but are difficult to detect in seismically active regions. We present a novel method to identify likely induced seismicity in tectonically active regions based on short-range spatiotemporal correlations between changes in fluid injection and seismicity rates. The method searches through the entire parameter space of injection rate thresholds and determines the statistical significance of correlated changes in injection and seismicity rates. Applying our method to Kern County, central California, we find that most earthquakes within the region are tectonic; however, fluid injection contributes to seismicity in four different cases. Three of these are connected to earthquake sequences with events above M4. Each of these sequences followed an abrupt increase in monthly injection rates of at least 15,000 m3. The probability that the seismicity sequences and the abrupt changes in injection rates in Kern County coincide by chance is only 4%. The identified earthquake sequences display low Gutenberg-Richter b values of ˜0.6-0.7 and at times systematic migration patterns characteristic for a diffusive process. Our results show that injection-induced pressure perturbations can influence seismic activity at distances of 10 km or more. Triggering of earthquakes at these large distances may be facilitated by complex local geology and faults in tectonically active regions. Our study provides the first comprehensive, statistically robust assessment of likely injection-induced seismicity within a large, tectonically active region.

  5. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    SciTech Connect

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  6. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  7. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution

  8. Geomechanical analysis of fluid injection and seismic fault slip for the Mw4.8 Timpson, Texas, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Fan, Zhiqiang; Eichhubl, Peter; Gale, Julia F. W.

    2016-04-01

    An earthquake sequence that culminated in a Mw4.8 strike-slip event near Timpson, east Texas, the largest reported earthquake to date in that region, had previously been attributed to wastewater injection starting 17 months before the onset of recorded seismic activity. To test if this earthquake sequence can be attributed to wastewater injection, we conducted coupled poroelastic finite element simulations to assess the spatial and temporal evolution of pore pressure and stress field in the vicinity of the injection wells and to calculate the Coulomb failure stress on the seismogenic fault as a function of the permeability of the injection layer, fault orientation, fault permeability, and orientation and magnitude of the in situ stress. We find that injection-induced fault slip is plausible within the range of selected model input parameters, with slip favored by low reservoir permeability, low fault permeability, and a favorable orientation of the fault relative to the in situ stress state. Other combinations of equally plausible input parameters predict no slip within 96 months of simulated injection. Under most favorable boundary conditions for fault slip, fault slip occurs 7 months after the start of injection. Our results highlight the importance of detailed geomechanical site characterization for robust fault stability assessment prior to wastewater injection.

  9. Implementation of Sub-Cooling of Cryogenic Propellants by Injection of Non-condensing Gas to the Generalized Fluid Systems Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Huggett, Daniel J.; Majumdar, Alok

    2013-01-01

    Cryogenic propellants are readily heated when used. This poses a problem for rocket engine efficiency and effective boot-strapping of the engine, as seen in the "hot" LOX (Liquid Oxygen) problem on the S-1 stage of the Saturn vehicle. In order to remedy this issue, cryogenic fluids were found to be sub-cooled by injection of a warm non-condensing gas. Experimental results show that the mechanism behind the sub-cooling is evaporative cooling. It has been shown that a sub-cooled temperature difference of approximately 13 deg F below saturation temperature [1]. The phenomenon of sub-cooling of cryogenic propellants by a non-condensing gas is not readily available with the General Fluid System Simulation Program (GFSSP) [2]. GFSSP is a thermal-fluid program used to analyze a wide variety of systems that are directly impacted by thermodynamics and fluid mechanics. In order to model this phenomenon, additional capabilities had to be added to GFSSP in the form of a FORTRAN coded sub-routine to calculate the temperature of the sub-cooled fluid. Once this was accomplished, the sub-routine was implemented to a GFSSP model that was created to replicate an experiment that was conducted to validate the GFSSP results.

  10. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity

  11. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    SciTech Connect

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  12. The analysis of the suction/injection on the MHD Maxwell fluid past a stretching plate in the presence of nanoparticles by Lie group method

    NASA Astrophysics Data System (ADS)

    Cao, Limei; Si, Xinhui; Zheng, Liancun; Pang, Huihui

    2015-01-01

    In this paper, the magnetohydrodynamic (MHD) Maxwell fluid past a stretching plate with suction/ injection in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The dimensionless governing equations are solved numerically using Bvp4c with MATLAB, which is a collocation method equivalent to the fourth order mono-implicit Runge-Kutta method. The effects of some physical parameters, such as the elastic parameter K, the Hartmann number M, the Prandtl number Pr, the Brownian motion Nb, the thermophoresis parameter Nt and the Lewis number Le, on the velocity, temperature and nanoparticle fraction are studied numerically especially when suction and injection at the sheet are considered.

  13. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection.

    PubMed

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  14. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection

    PubMed Central

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  15. Direct Injection LC-MS-MS Analysis of Opiates, Methamphetamine, Buprenorphine, Methadone and Their Metabolites in Oral Fluid from Substitution Therapy Patients.

    PubMed

    Liu, Hsiu-Chuan; Lee, Hsi-Tzu; Hsu, Ya-Ching; Huang, Mei-Han; Liu, Ray H; Chen, Tai-Jui; Lin, Dong-Liang

    2015-01-01

    A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed, validated and applied to simultaneous analysis of oral fluid samples for the following 10 analytes: methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), buprenorphine, norbuprenorphine, morphine, codeine, 6-acetylmorphine, 6-acetylcodeine, amphetamine, and methamphetamine. The oral fluid sample was briefly centrifuged and the supernatant was directly injected into the LC-MS-MS system operated under reverse-phase chromatography and electrospray ionization (ESI). Deuterated analogs of the analytes were adopted as the internal standards and found to be effective (except for buprenorphine) to compensate for potential matrix effects. Each analytical run took <10 min. Linearity range (r(2) > 0.99) established for buprenorphine and the other nine analytes were 5-100 and 1-100 ng/mL. Intra- and interday precision (% CV) ranges for the 10 analytes were 0.87-12.2% and 1.27-12.8%, while the corresponding accuracy (%) ranges were 91.8-113% and 91.9-111%. Limits of detection and quantitation established for these 10 analytes were in the ranges of 0.1-1.0 and 0.25-1.0 ng/mL (5 ng/mL for buprenorphine). The method was successfully applied to the analysis of 62 oral fluid specimens collected from patients participating in methadone and buprenorphine substitution therapy programs. Analytical results of methadone and buprenorphine were compared with data derived from GC-MS analysis and found to be compatible. Overall, the direct injection LC-MS-MS method performed well, permitting rapid analysis of oral fluid samples for simultaneous quantification of methadone, buprenorphine, opiate and amphetamine drug categories without extensive sample preparation steps. PMID:25935159

  16. Evaluation of C-14 as a natural tracer for injected fluids at theAidlin sector of The Geysers geothermal system through modeling ofmineral-water-gas Reactions

    SciTech Connect

    Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

    2006-06-01

    A reactive-transport model for 14C was developed to test its applicability to the Aidlin geothermal system. Using TOUGHREACT, we developed a 1-D grid to evaluate the effects of water injection and subsequent water-rock-gas interaction on the compositions of the produced fluids. A dual-permeability model of the fracture-matrix system was used to describe reaction-transport processes in which the permeability of the fractures is many orders of magnitude higher than that of the rock matrix. The geochemical system included the principal minerals (K-feldspar, plagioclase, calcite, silica polymorphs) of the metagraywackes that comprise the geothermal reservoir rocks. Initial simulation results predict that the gas-phase CO2 in the reservoir will become more enriched in 14C as air-equilibrated injectate water (with a modern carbon signature) is incorporated into the system, and that these changes will precede accompanying decreases in reservoir temperature. The effects of injection on 14C in the rock matrix will be lessened somewhat because of the dissolution of matrix calcite with ''dead'' carbon.

  17. Numerical Investigation on Stress Shadowing in Fluid Injection-Induced Fracture Propagation in Naturally Fractured Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Yoon, Jeoung Seok; Zimmermann, Günter; Zang, Arno

    2015-07-01

    In low permeability shale reservoirs, multi-stage hydraulic fracturing is largely used to increase the productivity by enlarging the stimulated rock volume. Hydraulic fracture created alters the stress field around it, and affects the subsequent fractures by the change of the stress field, in particular, mostly increased minimum principal stress at the area of subsequent fracturing. This is called stress shadow which accumulates as the fracturing stages advance from toe to heel. Hydraulic fractures generated in such altered stress field are shorter and compact with orientation deviating significantly from the far-field maximum horizontal stress orientation. This paper presents 2D discrete element-based numerical modeling of multi-stage hydraulic fracturing in a naturally fractured reservoir and investigates stress shadowing. The stress shadowing is tested with two different injection scenarios: constant and cyclic rate injections. The results show that cyclic injection tends to lower the effect of stress shadow as well as mitigates the magnitude of the induced seismicity. Another modeling case is presented to show how the stress shadow can be utilized to optimize a hydraulic fracture network in application to Groß Schönebeck geothermal reservoir, rather than being mitigated. The modeling demonstrated that the stress shadow is successfully utilized for optimizing the geothermal heat exchanger by altering the initial in situ stress field from highly anisotropic to less or even to isotropic.

  18. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  19. Coupled Flow and Geomechanical Modeling of Fluid Production and Injection in the Cavone Oil Field, Northern Italy: an Assessment of the Potential for Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Jha, B.; Plesch, A.; Shaw, J. H.; Hager, B. H.; Juanes, R.

    2014-12-01

    There has been a recent increase in the number of earthquakes reported in proximity of active oil and gas fields. In particular, the occurrence of a sequence of damaging earthquakes in May 2012 near the Cavone oil field, in Northern Italy, raised the question of whether these earthquakes might have been triggered, or, if not, if future activities might trigger other damaging events. Production and injection of fluids in the underground reservoirs are known to be capable of triggering seismicity by inducing slip on seismogenic faults. However, the effects of injection and production on fault stability in real fields are not always intuitively obvious, and require the development of new-generation coupled flow-geomechanical models that capture the effect of multiphase poromechanics on faults. We study, by way of numerical modeling and simulation, the potential for induced seismicity at the Cavone field. Using a coupled flow and geomechanics model of the field that honors reservoir geology and historical well schedule, we simulate oil production and water injection in the field for a period of three decades leading up to the earthquake sequence. We calculate the change in Coulomb stress on the bounding Mirandola fault, which sourced the May 29, 2012 M 5.8 earthquake. This quantity varies in space and evolves in time with changing pore pressure and total stress in the reservoir. A novel and important aspect of our work is the identification of a potential instability mechanism for a bounding fault at the edge of a reservoir experiencing pressure depletion. The discontinuity in pore pressure across the fault means that there is a discontinuity in effective normal stress and that, therefore, the Coulomb failure criterion must be evaluated locally on both sides of the fault. We track the evolution of the Coulomb stress at the earthquake hypocenter and compare it with the regional tectonic stressing rate to conclude in favor of tectonic origin of the earthquake. In

  20. Geometrical Scaling of the Magnitude Frequency Statistics of Fluid Injection Induced Earthquakes and Implications for Assessment and Mitigation of Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Dinske, C.; Shapiro, S. A.

    2015-12-01

    To study the influence of size and geometry of hydraulically perturbed rock volumes on the magnitude statistics of induced events, we compare b value and seismogenic index estimates derived from different algorithms. First, we use standard Gutenberg-Richter approaches like least square fit and maximum likelihood technique. Second, we apply the lower bound probability fit (Shapiro et al., 2013, JGR, doi:10.1002/jgrb.50264) which takes the finiteness of the perturbed volume into account. The different estimates systematically deviate from each other and the deviations are larger for smaller perturbed rock volumes. It means that the frequency-magnitude distribution is most affected for small injection volume and short injection time resulting in a high apparent b value. In contrast, the specific magnitude value, the quotient of seismogenic index and b value (Shapiro et al., 2013, JGR, doi:10.1002/jgrb.50264), appears to be a unique seismotectonic parameter of a reservoir location. Our results confirm that it is independent of the size of perturbed rock volume. The specific magnitude is hence an indicator of the magnitudes that one can expect for a given injection. Several performance tests to forecast the magnitude frequencies of induced events show that the seismogenic index model provides reliable predictions which confirm its applicability as a forecast tool, particularly, if applied in real-time monitoring. The specific magnitude model can be used to predict an asymptotical upper limit of probable frequency-magnitude distributions of induced events. We also conclude from our analysis that the physical process of pore pressure diffusion for the event triggering and the scaling of their frequency-magnitude distribution by the size of perturbed rock volume well depicts the presented relation between upper bound of maximum seismic moment and injected fluid volume (McGarr, 2014, JGR, doi:10.1002/2013JB010597), particularly, if nonlinear effects in the diffusion process

  1. Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection

    NASA Astrophysics Data System (ADS)

    M. El-Hawary, H.; Mostafa, A. A. Mahmoud; Reda, G. Abdel-Rahman; Abeer, S. Elfeshawey

    2014-09-01

    The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two-parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge—Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.

  2. Semi-analytical solutions for nonisothermal fluid injection including heat loss from the reservoir: Part 2. Pressure and stress

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Mijić, A.; Ennis-King, J.; Paterson, L.

    2014-11-01

    In this work semi-analytical solutions for saturation, temperature, pressure and in situ reservoir stress are found for immiscible nonisothermal injection into a radial porous medium. A model for advection-dominated, nonisothermal, two-phase flow from a previous work is used to estimate the reservoir pressure and stress that result from injection of cold CO2. Flow is assumed to be one-dimensional and purely advective, while temperature has radial advection in the reservoir and transverse diffusion into the surrounding media. A simplified thermal solution is developed to allow for easier analysis of the reservoir stress. Two pressure models are presented, one which requires numerical integration of the pressure in the two-phase region, and one which is fully analytical, but simplifies the pressure profile. Two models are used to calculate reservoir stress, one which uses the full pressure and temperature profiles and must be numerically integrated, and one which uses the simplified models and has a closed-form analytical solution. The resulting radial and tangential (hoop) stress profiles in the reservoir are compared and it is shown that the simplified model is adequate for estimating the reservoir stresses. The impact of outer boundary conditions on reservoir pressure and stresses is also explored.

  3. Intravitreal injection

    MedlinePlus

    Retinal vein occlusion-intravitreal injection; Triamcinolone-intravitreal injection; Dexamethasone-intravitreal injection; Lucentis-intravitreal injection; Avastin-intravitreal injection; Bevacizumab-intravitreal injection; Ranibizumab- ...

  4. Determination of nifuroxazide in biological fluids by automated high-performance liquid chromatography with large-volume injection.

    PubMed

    Guinebault, P R; Broquaire, M; Braithwaite, R A

    1981-01-16

    A high-performance liquid chromatographic method for the measurement of nifuroxazide in plasma is described. The technique is based on the single extraction of the drug from buffered plasma with chloroform, using nifuratel as internal standard. The chromatographic system consisted of a 15 cm x 4.6 mm I.D. stainless-steel column packed with Spherisorb ODS, 5 micrometer, and the mobile phase was acetonitrile-orthophosphoric acid (pH 2.5) (30:70). The method was able to measure accurately plasma nifuroxazide concentrations down to 2 ng . ml-1 using 2 ml of sample with no interference from endogenous compounds. The coefficients of variation of the method at 200 and 2 ng . ml-1 were 3% and 15%, respectively, and the calibration graph was linear in this range. The use of automatic injection makes the method suitable for the routine analysis of large numbers of samples. PMID:7217261

  5. Opening of a fault and resulting slip due to injection of fluid for the extraction of geothermal heat

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Abe, H.

    1982-02-01

    The possibility has been contemplated that a fault, which is considered to be a prefractured layer in the earth's crust, may serve as a reservoir or a part of a main reservoir for the extraction of geothermal heat. An investigation is conducted regarding the behavior of a fault with a fluid-filled region which is opened by a hydraulic pressure. A fault is modeled, taking into account an interface between two elastic bodies. The problem involves the solution of a set of singular integral equations. The unknown functions are the derivatives of the displacement-discontinuities across the interface with respect to the direction along the interface. The size of the opened region is determined by the condition that the stresses are finite at the ends of the opened region. The obtained results imply that a fault might be used as a reservoir in connection with a scheme for extracting geothermal heat.

  6. Numerical modelling of crustal deformation due to fluid extraction and re-injection in the Hengill geothermal area in South Iceland

    NASA Astrophysics Data System (ADS)

    Juncu, Daniel; Árnadóttir, Thóra; Ali, Tabrez; Hooper, Andrew

    2015-04-01

    numerical simulations using the Finite Element Method to model the poroelastic response of the crust to the fluid extraction and re-injection at the power plants, based on Biot's equations. The equations are solved implicitly using the code Defmod. We include the real extraction and injection rates, obtained from the power plant operator. These rates induce pressure change in the system and consequently drive the flow of pore fluids and the deformation. Preliminary results show that the observed surface deformation can in parts be explained by this effect. We use an iterative scheme to reduce residuals by parameter variation to gain a better understanding of the geometry and hydraulic parameters of the geothermal reservoir as well as the properties of the local crust.

  7. Borehole and Caprock integrity - Pre-Failure Permeability Response to Stress Change of Storage Domain Rocks (Caprocks, Barriers to Fluid Flow, and Reservoir) Caused by CO2 Injection: an Experimental and Analytical Approach

    NASA Astrophysics Data System (ADS)

    Armitage, P. J.; Faulkner, D. R.; Worden, R. H.

    2011-12-01

    Field trials into CO2 sequestration are currently being undertaken at the In Salah gas field, Algeria. As a part of a wider project, we are experimentally investigating the geomechanical and geochemical effects of CO2 sequestration on storage domain rocks. Detailed experimental studies of the development of permeability in storage domain rocks during reactive fluid flow are essential to understand borehole and caprock integrity on short term timescales during injection of CO2. The experiments are needed to help constrain larger-scale models that predict bulk fluid flow within the storage system. It has been demonstrated from experiments and modeling that accumulation of microfractures under differential stress before rock failure occurs systematically and leads to enhanced porosity, permeability and fracture surface area. (Mitchell and Faulkner, 2008). Changes in stress affecting storage domain rocks can occur on short-term, production timescales from drilling the boreholes and from injection of CO2. Increasing pore fluid pressure will reduce the effective stress, bringing the rocks closer to failure and potentially increasing permeability. Creation of boreholes for injection will change the stress field and lead to greater differential stresses, bringing the rocks closer to failure and potentially increasing permeability beyond that of the far field stress state. These stress changes will affect fluid flow properties of storage domain rocks, which in turn may facilitate CO2 migration and escape from the intended structure. We present results from direct experimental evaluation of permeability evolution for these stress changes on samples of low porosity rock from the In Salah CO2 storage site, representing a barrier to fluid flow, and samples of a sandstone representing a porous reservoir rock. Pre-failure stress changes associated with CO2 injection leads to increased rock permeability for intact rock, by up to 2 orders of magnitude in these samples.

  8. Off-fault shear failure potential enhanced by high-stiff/low-permeable damage zone during fluid injection in porous reservoirs

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Nguyen, T. K.; Torabi, A.

    2015-09-01

    Several studies have focused on the role of damage zone (DZ) on the hydromechanical behaviour of faults by assuming a fractured DZ (i.e. low stiffness/high permeability). Yet, this vision may not be valid in all geological settings, in particular, in high-porosity reservoirs as targeted by several underground exploitations. We investigate the impact of a high-stiff/low-permeable DZ on the shear reactivation of a blind, undetectable normal fault (1 km long, ≤10 m offset), with a 0.5 m thick low-porosity/permeability fault core during fluid injection into a high-porosity reservoir. The spatial distribution of effective properties (elastic moduli, Biot's coefficients and permeability) of DZ including deformation bands (DB; elliptic inclusions) and intact rock were derived using upscaling analytical expressions. The influence of DZ on the hydromechanical behaviour of the fault zone was numerically explored using 2-D plane-strain finite-element simulations within the framework of fully saturated isothermal porous media by accounting for an orthotropic elastic rheology. The numerical results showed that the presence of DB plays a protective role by reducing the potential for shear reactivation inside the fault core. On the other hand, they favour shear failure in the vicinity of the fault core (off-fault damage) by accelerating the decrease of the minimum principal effective stress while limiting the decrease of the maximum one. This behaviour is strongly enhanced by the fault-parallel DZ effective stiffness, but limited by the combined effect of fault-normal DZ effective permeability and of the Biot's coefficients. This can have implications for the location and size of aftershocks during fault reactivation.

  9. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling with application to the Fox Creek, Alberta, 2013-2015 earthquake sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yajing; Deng, Kai; Clerc, Fiona; Castro, Andres; Harrington, Rebecca

    2016-04-01

    Stress change and pore pressure evolution caused by fluid injection has been postulated as a key factor for inducing both moderate-size earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with stress perturbations provided by a poroelastic model for multistage hydraulic fracturing scenarios. The coupling of external stress changes and their spatiotemporal variation to fault frictional strength in a single computational procedure provides a quantitative understanding of the source processes (i.e., slip rate, triggering threshold) of the spectrum of induced slip modes. We apply the physics-based fault slip model to the induced earthquake sequences near Fox Creek, Alberta, in the western Canada sedimentary basin, where two earthquakes of ML4.4 (2015/01/23) and Mw4.6 (2015/06/13) were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated by the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model as external perturbations, we find that the fault, previously undergoing aseismic slip, can be perturbed into seismic rupturing even after hydraulic fracturing has stopped but stress perturbations continues to evolve in the medium (Scenario 1). In an end-member case (Scenario 2) where stress perturbations are instantaneously returned to zero at shut-in, we observe aseismic slip; all other conditions unchanged from Scenario 1. Seismic slip is also more readily induced by larger stress perturbations. Our preliminary results thus suggest the design of flow-back strategy, either passively evolving in the medium or actively dropping to pre-perturbation level, is essential to

  10. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  11. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  12. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  13. Golimumab Injection

    MedlinePlus

    ... it.Golimumab injection comes in prefilled syringes and auto-injection devices for subcutaneous injection. Use each syringe ... method.Do not remove the cap from the auto-injection device or the cover from the prefilled ...

  14. Modeling of Fluid Induced Deformation of the Upper Crust of the Earth: Tilt Investigations About the Large Scale Injection Experiment at the KTB/Germany

    NASA Astrophysics Data System (ADS)

    Jahr, T.; Jentzsch, G.; Gebauer, A.

    2006-12-01

    The injection experiment at the KTB started in June, 2004 with a medium injection rate of 180 liters/minute into the KTB pilot borehole (4000 meters deep). A tiltmeter array, consisting of five high resolution borehole tiltmeters of the ASKANIA type, was operating in the surrounding area of the KTB location from mid 2003 until September 2006. The tiltmeters have a resolution of better than 0.2 msec (about 1 nrad). The aim of the research project was to observe the induced deformation of the upper crust at kilometer scale and to interpret the observation by numerical modeling, together with the monitoring of induced seismicity in the area. We expect elastic as well as anelastic responses: Changes of the rheologic properties due to pore pressure increase will cause changes in the tidal parameters. Further we expect sudden changes of the drift curve as well as slow variations. For the separation of the induced drift signal it is necessary to eliminate locally induced interference, e.g. arising from groundwater variations. The ground water / pore pressure changes, observed at all stations show significant correlations with the recorded tilt signals. The reduction of these locally acting effects and also meteorological influences like barometric pressure changes or precipitation yield tilt signals, which are significantly correlated with the injection experiment: The hodograms, which describe the tip movement of the pendulum over ground, show a clear dominant drift away from the injection point for three stations. This corresponds with a bulge in the area where the injection takes place. The tilt amplitudes are in the order of some milliseconds. Parallel to the observations with the tiltmeter array we quantified the expected additional drift for different injection scenarios at each tiltmeter site, by numerical modeling using the program POEL. It can be demonstrated that the tilt signals caused by injection intervals of less than three days are not detectable by the

  15. Perturbation solutions for a micropolar fluid flow in a semi-infinite expanding or contracting pipe with large injection or suction through porous wall

    NASA Astrophysics Data System (ADS)

    Si, Xinhui; Yuan, Lili; Cao, Limei; Zheng, Liancun; Shen, Yanan; Li, Lin

    2016-07-01

    We investigate an unsteady incompressible laminar micropolar flow in a semi-infinite porous pipe with large injection or suction through a deforming pipe wall. Using suitable similarity transformations, the governing partial differential are transformed into a coupled nonlinear singular boundary value problem. For large injection, the asymptotic solutions are constructed using the Lighthill method, which eliminates singularity of solution in the high order derivative. For large suction, a series expansion matching method is used. Analytical solutions are validated against the numerical solutions obtained by Bvp4c.

  16. Coupling of STOMP and ABAQUS for Hydro-Geomechanical Modeling of Fluid Flow and Rock Deformation Associated with Subsurface CO2 Injection

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Nguyen, B. N.; Fang, Y.; Richmond, M. C.; Murray, C. J.

    2011-12-01

    Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, geomechanical, and geochemical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objective of this study was to examine the coupling of hydraulic and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. The impact of nonisothermal multifluid flow and porous media deformation mechanics on CO2 migration and storage was evaluated. We present a sequentially coupled approach for multifluid and geomechanical simulation using STOMP and ABAQUS that has been developed and validated through comparison to the solutions for benchmark problems that were solved with a coupled TOUGH-FLAC simulator. The poroelastic model was implemented with user-subroutines in ABAQUS. We also compare the STOMP-ABAQUS simulator to a new version of STOMP that includes the fully coupled poroelastic simulation within the multifluid flow and transport simulator. The poroelastic model computes stiffness, stresses, and strains using aqueous and gas pressures as well as saturations from STOMP output, and provides STOMP with the updated permeability, porosity, and capillary pressure over time during the simulation. The hydraulic only (uncoupled from mechanics) simulation and the hydrogeomechanical (coupled) simulation results using STOMP-ABAQUS were comparable to the previous results of a TOUGH-FLAC simulator. Results from the STOMP-ABAQUS coupled simulator were essentially identical to the fully coupled STOMP hydrogeomechanical simulator when the sequential coupling occurred at small time steps, and deviations between results increased with

  17. Golimumab Injection

    MedlinePlus

    ... at golimumab injection before injecting it. Check the expiration date printed on the auto-injection device or carton and do not use the medication if the expiration date has passed. Do not use a prefilled syringe ...

  18. Retail display evaluation of steaks from select beef strip loins injected with a brine containing 1% ammonium hydroxide. Part 1: Fluid loss, oxidation, color, and microbial plate counts.

    PubMed

    Parsons, A N; VanOverbeke, D L; Goad, C L; Mireles Dewitt, C A

    2011-01-01

    Select beef loin pairs (n = 10) were injected (10% pump) with brine containing either 4.5% sodium-based phosphates, (CON), or 1% ammonium hydroxide treatment (AHT). Both brines also contained 3.6% NaCl and 1% Rosemary Herbalox. Steaks cut from loins were high oxygen (80% O(2)/20% CO(2)) modified atmosphere packaged, stored 4 d at 4 °C in the dark to simulate transportation, and then placed in retail display for 14 d (4 °C). On day 0, 7, and 14 of retail display steak properties were measured. Purge from AHT steaks was higher than CON (P < 0.05). Panelists were not able to visually discriminate between AHT and CON steaks through the first 6 d of retail display. After day 6, panelists rated AHT steaks higher for muscle color, percent discoloration, and overall color. Steaks from both treatments started at day 0 retail display with similar total plate counts (P > 0.05). Microbial counts increased more rapidly for AHT steaks than CON steaks (P < 0.05). AHT and CON steaks were not different in terms of lipid oxidation through day 7 retail display. By day 14 retail display CON steaks were above the threshold for consumer perception of oxidized flavors in fresh meat. However, results also indicated the AHT and CON steaks were no longer acceptable by day 14 in terms of color, were questionable in terms of microbial load, and likely were beyond their reasonable shelf life. Based on retail display properties, results indicated 1% AHT could successfully replace 4.5% SP in a meat injection brine. Practical Application: The research in this report compares steaks that have been injected with a commercial brine formulated with SP to steaks that have been injected with a brine, where the SP in the formulation are replaced with 1% AHT. Ammonium hydroxide is an USDA-FSIS approved ingredient in brines injected into fresh meats. Successful replacement of sodium phosphate with ammonium hydroxide would allow processors to significantly reduce the sodium content of injected fresh meat

  19. Pleural fluid analysis

    MedlinePlus

    ... cleans the skin around the insertion site. Numbing medicine (anesthetic) is injected into the skin. A needle is placed through the skin and muscles of the chest wall into the pleural space. As fluid drains into a collection bottle, you ...

  20. Evaluation of C-14 as a natural tracer for injected fluids at theAidlin sector of The Geysers geothermal system through modeling ofmineral-water-gas Reactions

    SciTech Connect

    Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

    2006-06-01

    A reactive-transport model for 14C was developed to test itsapplicability to the Aidlin geothermal system. Using TOUGHREACT, wedeveloped a 1-D grid to evaluate the effects of water injection andsubsequent water-rock-gas interaction on the compositions of the producedfluids. A dual-permeability model of the fracture-matrix system was usedto describe reaction-transport processes in which the permeability of thefractures is many orders of magnitude higher than that of the rockmatrix. The geochemical system included the principal minerals(K-feldspar, plagioclase, calcite, silica polymorphs) of themetagraywackes that comprise the geothermal reservoir rocks. Initialsimulation results predict that the gas-phase CO2 in the reservoir willbecome more enriched in 14C as air-equilibrated injectate water (with amodern carbon signature) is incorporated into the system, and that thesechanges will precede accompanying decreases in reservoir temperature. Theeffects of injection on 14C in the rock matrix will be lessened somewhatbecause of the dissolution of matrix calcite with "dead"carbon.

  1. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  2. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect

    Ericksen, R.L.

    1999-10-28

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  3. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  4. Pore-scale interfacial dynamics during gas-supersaturated water injection in porous media - on nucleation, growth and advection of disconnected fluid phases (Invited)

    NASA Astrophysics Data System (ADS)

    Or, D.; Ioannidis, M.

    2010-12-01

    Degassing and in situ development of a mobile gas bubbles occur when injecting supersaturated aqueous phase into water-saturated porous media. Supersaturated water injection (SWI) has potentially significant applications in remediation of soils contaminated by non-aqueous phase liquids and in enhanced oil recovery. Pore network simulations indicate the formation of a region near the injection boundary where gas phase nuclei are activated and grow by mass transfer from the flowing supersaturated aqueous phase. Ramified clusters of gas-filled pores develop which, owing to the low prevailing Bond number, grow laterally to a significant extent prior to the onset of mobilization, and are thus likely to coalesce. Gas cluster mobilization invariably results in fragmentation and stranding, such that a macroscopic region containing few tenuously connected large gas clusters is established. Beyond this region, gas phase nucleation and mass transfer from the aqueous phase are limited by diminishing supply of dissolved gas. New insights into SWI dynamics are obtained using rapid micro-visualization in transparent glass micromodels. Using high-speed imaging, we observe the nucleation, initial growth and subsequent fate (mobilization, fragmentation, collision, coalescence and stranding) of CO2 bubbles and clusters of gas-filled pores and analyze cluster population statistics. We find significant support for the development of invasion-percolation-like patterns, but also report on hitherto unaccounted for gas bubble behavior. Additionally, we report for the first time on the acoustic emission signature of SWI in porous media and relate it to the dynamics of bubble nucleation and growth. Finally, we identify the pore-scale mechanisms associated with the mobilization and subsequent recovery of a residual non-aqueous phase liquid due to gas bubble dynamics during SWI.

  5. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    PubMed Central

    Berteau, Cecile; Filipe-Santos, Orchidée; Wang, Tao; Rojas, Humberto E; Granger, Corinne; Schwarzenbach, Florence

    2015-01-01

    Aim The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. Methods The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain. PMID:26635489

  6. Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice.

    PubMed

    Smith, David E; Hu, Yongjun; Shen, Hong; Nagaraja, Tavarekere N; Fenstermacher, Joseph D; Keep, Richard F

    2011-01-01

    The purpose of this study was to define the cerebrospinal fluid (CSF) clearance kinetics, choroid plexus uptake, and parenchymal penetration of PEPT2 substrates in different regions of the brain after intracerebroventricular administration. To accomplish these objectives, we performed biodistribution studies using [(14)C]glycylsarcosine (GlySar) and [(3)H]cefadroxil, along with quantitative autoradiography of [(14)C]GlySar, in wild-type and Pept2 null mice. We found that PEPT2 deletion markedly reduced the uptake of GlySar and cefadroxil in choroid plexuses at 60 mins by 94% and 82% (P<0.001), respectively, and lowered their CSF clearances by about fourfold. Autoradiography showed that GlySar concentrations in the lateral, third, and fourth ventricle choroid plexuses were higher in wild-type as compared with Pept2 null mice (P<0.01). Uptake of GlySar by the ependymal-subependymal layer and septal region was higher in wild-type than in null mice, but the half-distance of penetration into parenchyma was significantly less in wild-type mice. The latter is probably because of the clearance of GlySar from interstitial fluid by brain cells expressing PEPT2, which stops further penetration. These studies show that PEPT2 knockout can significantly modify the spatial distribution of GlySar and cefadroxil (and presumably other peptides/mimetics and peptide-like drugs) in brain. PMID:20571525

  7. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Non-plugging injection valve

    DOEpatents

    Carey, Jr., Henry S.

    1985-01-01

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  9. Paclitaxel Injection

    MedlinePlus

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  10. Mipomersen Injection

    MedlinePlus

    ... become pregnant during your treatment, stop using mipomersen injection and call your doctor immediately. ... Mipomersen injection may cause side effects. Tell your doctor if any of these ... and tiredness that are most likely to occur during the first 2 days ...

  11. Levofloxacin Injection

    MedlinePlus

    ... infections. Levofloxacin injection is also used to prevent anthrax (a serious infection that may be spread on ... in people who may have been exposed to anthrax germs in the air. Levofloxacin injection is in ...

  12. Ciprofloxacin Injection

    MedlinePlus

    ... injection is also used to prevent or treat anthrax (a serious infection that may be spread on ... in people who may have been exposed to anthrax germs in the air. Ciprofloxacin injection is in ...

  13. Romidepsin Injection

    MedlinePlus

    ... with at least one other medication given by mouth or by injection. Romidepsin injection is in a ... antifungals such as itraconazole (Sporanox), ketoconazole (Nizoral), and voriconazole (Vfend); cisapride (Propulsid) (not available in the U.S.); ...

  14. Degarelix Injection

    MedlinePlus

    Degarelix injection is used to treat advanced prostate cancer (cancer that begins in the prostate [a male reproductive gland]). Degarelix injection is in a class of medications called gonadotropin-releasing hormone (GnRH) ...

  15. Paclitaxel Injection

    MedlinePlus

    ... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  16. Glatiramer Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... to inject glatiramer, inject it around the same time every day. Follow the directions on your prescription ...

  17. Daratumumab Injection

    MedlinePlus

    ... any laboratory test, tell your doctor and the laboratory personnel that you are receiving or received daratumumab injection. ... a blood transfusion, tell your doctor and the laboratory personnel that you are receiving or received daratumumab injection. ...

  18. Pralatrexate Injection

    MedlinePlus

    ... will need to take folic acid and vitamin B12 during your treatment with pralatrexate injection to help ... that you will need to receive a vitamin B12 injection no more than 10 weeks before your ...

  19. Cefoxitin Injection

    MedlinePlus

    ... injection is used to treat infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work ...

  20. Chloramphenicol Injection

    MedlinePlus

    ... treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection ... antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work ...

  1. Oxacillin Injection

    MedlinePlus

    ... is used to treat infections caused by certain bacteria. Oxacillin injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as oxacillin injection will not work ...

  2. Nafcillin Injection

    MedlinePlus

    ... to treat infections caused by certain types of bacteria. Nafcillin injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as nafcillin injection will not work ...

  3. Doripenem Injection

    MedlinePlus

    ... tract, kidney, and abdomen that are caused by bacteria. Doripenem injection is not approved by the Food ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work ...

  4. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone injection is a very effective method of birth control but does not prevent the spread of human ... you have been using a different method of birth control and are switching to medroxyprogesterone injection, your doctor ...

  5. Chloramphenicol Injection

    MedlinePlus

    Chloramphenicol injection is used to treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection is in a class of medications called ...

  6. Levoleucovorin Injection

    MedlinePlus

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of ... people who have accidentally received an overdose of methotrexate or similar medications. Levoleucovorin injection is in a ...

  7. Estrogen Injection

    MedlinePlus

    ... forms of estrogen injection are used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) ... If you are using estrogen injection to treat hot flushes, your symptoms should improve within 1 to ...

  8. Palonosetron Injection

    MedlinePlus

    Palonosetron injection is used to prevent nausea and vomiting that may occur within 24 hours after receiving ... occur several days after receiving certain chemotherapy medications. Palonosetron injection is in a class of medications called ...

  9. Leuprolide Injection

    MedlinePlus

    ... normal number of red blood cells) caused by uterine fibroids (noncancerous growths in the uterus). Leuprolide injection is ... Your doctor will tell you how long your treatment with leuprolide injection will last. When used in ...

  10. Naltrexone Injection

    MedlinePlus

    Naltrexone injection is used along with counseling and social support to help people who have stopped drinking large ... injection is also used along with counseling and social support to help people who have stopped abusing opiate ...

  11. Posaconazole Injection

    MedlinePlus

    Posaconazole injection is used to prevent fungal infections in people with a weakened ability to fight infection. Posaconazole injection is in a class of medications called azole antifungals. It works ...

  12. Epinephrine Injection

    MedlinePlus

    Adrenalin® Chloride Solution ... a pre-filled automatic injection device containing a solution (liquid) to inject under the skin or into ... device when this date passes. Look at the solution in the device from time to time. If ...

  13. Trastuzumab Injection

    MedlinePlus

    Trastuzumab injection is used along with other medications or after other medications have been used to treat ... has spread to other parts of the body. Trastuzumab injection is also used during and after treatment ...

  14. Fondaparinux Injection

    MedlinePlus

    ... using fondaparinux injection while you are in the hospital at least 6 to 8 hours after your ... you will continue to use fondaparinux after your hospital stay, you can inject fondaparinux yourself or have ...

  15. Doxycycline Injection

    MedlinePlus

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  16. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone subcutaneous injection is also used to treat endometriosis (a condition in which the type of tissue ... parts of the body in women who have endometriosis. Medroxyprogesterone injection is a very effective method of ...

  17. Ferumoxytol Injection

    MedlinePlus

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... and may cause the kidneys to stop working). Ferumoxytol injection is in a class of medications called ...

  18. Aripiprazole Injection

    MedlinePlus

    ... aripiprazole injection and aripiprazole extended-release injection developed gambling problems or other intense urges or behaviors that ... even if you do not realize that your gambling or any other intense urges or unusual behaviors ...

  19. Flight and Stability of a Laser Inertial Fusion Energy Target in the Drift Region between Injection and the Reaction Chamber with Computational Fluid Dynamics

    SciTech Connect

    Mitori, T.

    2013-12-01

    A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed with a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different angles of attack were used to determine the aerodynamic coefficients of drag, lift, Magnus moment, and overturning moment as well as target stability. The drag force, lift force, and overturning moment changed minimally with spin. Above an angle of attack of 15°, the overturning moment would be destabilizing. At low angles of attack (less than 15°), the overturning moment would tend to decrease the target’s angle of attack, indicating the lack of a need for spin for stability at small angles. This stabilizing moment would cause the target to move in a mildly damped oscillation about the axis parallel to the free-stream velocity vector through the target’s center of gravity.

  20. MHD flow and heat transfer of a viscous fluid over a radially stretching power-law sheet with suction/injection in a porous medium

    NASA Astrophysics Data System (ADS)

    Khan, M.; Munir, A.; Shahzad, A.; Shah, A.

    2015-03-01

    A steady boundary layer flow and heat transfer over a radially stretching isothermal porous sheet is analyzed. Stretching is assumed to follow a radial power law, and the fluid is electrically conducting in the presence of a transverse magnetic field with a very small magnetic Reynolds number. The governing nonlinear partial differential equations are reduced to a system of nonlinear ordinary differential equations by using appropriate similarity transformations, which are solved analytically by the homotopy analysis method (HAM) and numerically by employing the shooting method with the adaptive Runge-Kutta method and Broyden's method in the domain [0,∞). Analytical expressions for the velocity and temperature fields are derived. The influence of pertinent parameters on the velocity and temperature profiles is discussed in detail. The skin friction coefficient and the local Nusselt number are calculated as functions of several influential parameters. The results predicted by both methods are demonstrated to be in excellent agreement. Moreover, HAM results for a particular problem are also compared with exact solutions.

  1. Small Scale Earthquake Mechanisms Induced by Fluid Injection at the Enhanced Geothermal System Reservoir Soultz (Alsace) in 2003 using Alternative Source Models

    NASA Astrophysics Data System (ADS)

    Šílený, Jan; Jechumtálová, Zuzana; Dorbath, Catherine

    2014-10-01

    The geothermal reservoir at Soultz-sous-Forêts is a valuable natural laboratory for understanding the mechanisms of microearthquakes generated during stimulations and circulation tests. An ongoing effort currently exists regarding the retrieval of mechanisms aimed to indicate the type of fracturing of the rock massif. As a default, a moment tensor description has been applied. Nevertheless, the retrieval of the mode of fracturing still remains ambiguous. Recent studies indicate a prevailing shear slip but, rarely, a non-shear pattern has also been observed. The moment tensor, used today as a universal tool for descriptions of the mechanism, captures general balanced dipole sources. However, in the case of small-scale earthquakes, the moment tensor need not always be reliably determined. In an effort to fit the data, there may be notable non-shear components caused by the low quality of input data. Constraining the source model to directly determine a simpler one is convenient for describing the physical phenomena expected for a particular focus. An opening of new fractures can be described, to a first approximation, by a tensile crack, optionally combined with a shear slip. Such an alternative model is called a shear-tensile crack (STC) source model. The combination is practical, and can be used to both identify events that reflect purely mode-I (tensile) failure and to determine the dilation angle of the fracture undergoing shear. The latter is particularly important in enhanced geothermal system reservoirs such as Soultz, where shear-related dilation is believed to be the primary mechanism underpinning permeability creation during stimulation injections. We performed a synthetic case study by simulating seismic data as recorded by the actual seismic array installed at Soultz-sous-Forêts. Synthetic P and S amplitudes for several shear-tensile source models were inverted for several types of station coverage. The analysis explored how results were influenced by

  2. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  3. Source mechanisms of micro-earthquakes induced in a fluid injection experiment at the HDR site Soultz-sous-Forêts (Alsace) in 2003 and their temporal and spatial variations

    NASA Astrophysics Data System (ADS)

    Horálek, Josef; Jechumtálová, Zuzana; Dorbath, Louis; Šílený, Jan

    2010-06-01

    We have inverted the peak amplitudes of direct P waves of 45 micro-earthquakes with magnitudes between M = 1.4 and 2.9, which occurred during and after the 2003 massive fluid injection in the GPK3 borehole of the Soultz-sous-Forêts Hot Dry Rock facility. These events were recorded by a surface seismic network of 15 stations operated by the Ecole et Observatoire des Sciences de la Terre, University of Strasbourg. The unconstrained moment tensor (MT) expression of the mechanism was applied, allowing the description of a general system of dipoles, that is, both double-couple (DC) and non-DC sources, as tensile fractures. The mechanisms of all but one event are dominantly DCs with a few per cent additional components at the most. We have checked carefully the reliability of the MT retrieval in bootstrap trials eliminating some data, by simulating the mislocation of the hypocentre and by applying simplified velocity models of the area in constructing Green's functions. In some of the trials non-DC components amounting to several tens of per cent appear, but the F-test classifies them as insignificant. Even the only micro-earthquake with an exceptionally high non-DC mechanism cannot be classified unambiguously-the F-test assigns similar significance to the pure DC solution. The massive dominance of the DC indicates the shear-slip as the mechanism of the micro-earthquakes investigated. The mechanisms display large variability and are of normal dip-slip, oblique normal to strike-slip types. The T-axes are fairly stable, being concentrated subhorizontally roughly in the E-W direction. On the contrary, the P-axes are ill constrained varying in the N-S direction from nearly vertical to nearly horizontal, which points to heterogeneous stress in the Soultz injected volume. This is in agreement with the stress pattern from in situ measurements: the minimum stress axis is well constrained to E-W, whereas the maximum and intermediate stress values are close to one another

  4. Injectable barriers for waste isolation

    SciTech Connect

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K.; Muller, S.J.

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.

  5. Lacosamide Injection

    MedlinePlus

    ... may be prescribed for other uses; ask your doctor or pharmacist for more information. ... Before using lacosamide injection,tell your doctor and pharmacist if you are allergic to lacosamide, any other medications, or any of the ingredients in lacosamide injection. Ask your pharmacist for a ...

  6. Dexamethasone Injection

    MedlinePlus

    ... lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body inappropriate happiness difficulty falling asleep or staying asleep extreme ... increased appetite injection site pain or redness Some side effects can ...

  7. Pralatrexate Injection

    MedlinePlus

    ... you that you will need to receive a vitamin B12 injection no more than 10 weeks before your first ... tests to check your body's response to pralatrexate injection.Ask your ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  8. Leucovorin Injection

    MedlinePlus

    ... lack of vitamin B12 or inability to absorb vitamin B12. Your doctor will not prescribe leucovorin injection to treat this type of anemia.tell your ... tests to check your body's response to leucovorin injection.It is ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  9. Etanercept Injection

    MedlinePlus

    ... and colorless. The liquid may contain small white particles, but should not contain large or colored particles. Do not use a syringe or dosing pen ... liquid is cloudy or contains large or colored particles.The best place to inject etanercept injection is ...

  10. Musculoskeletal Injection

    PubMed Central

    Wittich, Christopher M.; Ficalora, Robert D.; Mason, Thomas G.; Beckman, Thomas J.

    2009-01-01

    Patients commonly present to primary care physicians with musculoskeletal symptoms. Clinicians certified in internal medicine must be knowledgeable about the diagnosis and management of musculoskeletal diseases, yet they often receive inadequate postgraduate training on this topic. The musculoskeletal problems most frequently encountered in our busy injection practice involve, in decreasing order, the knees, trochanteric bursae, and glenohumeral joints. This article reviews the clinical presentations of these problems. It also discusses musculoskeletal injections for these problems in terms of medications, indications, injection technique, and supporting evidence from the literature. Experience with joint injection and the pharmacological principles described in this article should allow primary care physicians to become comfortable and proficient with musculoskeletal injections. PMID:19720781

  11. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  12. Fuel injection

    SciTech Connect

    Iiyoshi, A.; Vogoshi, S.

    1983-12-01

    The Plasma Physics Laboratory and the Dept. of Electrical Engineering report on three types of pellet injectors which have different applications: injection of a pellet into a magnetic bottle for magnetic confinement; injection of a pellet into a vacuum chamber for an inertial confinement experiment; and injection of a pellet into a magnetic bottle where the pellet is ionized by high-power laser irradiation for target plasma production. The requirements of pellet injectors are summarized in a table. Theoretical studies on pellet ablation in hot plasma and ablated particle diffusion are underway.

  13. Certolizumab Injection

    MedlinePlus

    ... has not improved when treated with other medications, rheumatoid arthritis (a condition in which the body attacks its ... continues. When certolizumab injection is used to treat rheumatoid arthritis, it is usually given every other week and ...

  14. Ramucirumab Injection

    MedlinePlus

    ... dose of ramucirumab injection. Tell your doctor or nurse if you experience any of the following while you receive ramucirumab: uncontrollable shaking of a part of the body; back pain or spasms; chest pain and tightness; chills; flushing; ...

  15. Topotecan Injection

    MedlinePlus

    ... organs where eggs are formed) and small cell lung cancer (a type of cancer that begins in the ... topotecan injection is used to treat ovarian or lung cancer, it is usually given once a day for ...

  16. Mitoxantrone Injection

    MedlinePlus

    ... medications to relieve pain in people with advanced prostate cancer who did not respond to other medications. Mitoxantrone ... doses). When mitoxantrone injection is used to treat prostate cancer, it is usually given once every 21 days. ...

  17. Palivizumab Injection

    MedlinePlus

    ... this medicine each month during RSV season. Your health care provider will let you know when the monthly injections are no longer needed.Your child's health care provider (doctor, nurse, or pharmacist) may measure ...

  18. Terbutaline Injection

    MedlinePlus

    Terbutaline injection is used to treat wheezing, shortness of breath, coughing, and chest tightness caused by asthma, chronic bronchitis, and emphysema. Terbutaline is in a class of medications called beta ...

  19. Leuprolide Injection

    MedlinePlus

    ... of the body and causes pain, heavy or irregular menstruation [periods], and other symptoms). Leuprolide injection (Lupron ... mention any of the following: certain medications for irregular heartbeat such as amiodarone (Cordarone), disopyramide (Norpace), procainamide ( ...

  20. Sumatriptan Injection

    MedlinePlus

    ... accompanied by nausea and sensitivity to sound and light). Sumatriptan injection is also used to treat the ... children. Store it at room temperature, away from light, excess heat, and moisture (not in the bathroom). ...

  1. Insulin Injection

    MedlinePlus

    ... contraceptives (birth control pills, patches, rings, injections, or implants); niacin (Niacor, Niaspan, Slo-Niacin); octreotide (Sandostatin);oral ... cramps abnormal heartbeat large weight gain in a short period of time swelling of the arms, hands, ...

  2. Fondaparinux Injection

    MedlinePlus

    ... had a serious allergic reaction (difficulty breathing or swallowing or swelling of the face, throat, tongue, lips, ... the face, throat, tongue, lips, or eyes difficulty swallowing or breathing Fondaparinux injection may cause other side ...

  3. Daclizumab Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... injections. Before you use daclizumab yourself the first time, read the written instructions that come with it. ...

  4. Haloperidol Injection

    MedlinePlus

    ... emotions). Haloperidol injection is also used to control motor tics (uncontrollable need to repeat certain body movements) ... people who have Tourette's disorder (condition characterized by motor or verbal tics). Haloperidol is in a class ...

  5. Certolizumab Injection

    MedlinePlus

    ... causes pain, swelling, and damage) including the following: Crohn's disease (a condition in which the body attacks the ... home. When certolizumab injection is used to treat Crohn's disease, it is usually given every two weeks for ...

  6. Natalizumab Injection

    MedlinePlus

    ... prevent episodes of symptoms in people who have Crohn's disease (a condition in which the body attacks the ... If you are receiving natalizumab injection to treat Crohn's disease, your symptoms should improve during the first few ...

  7. Daptomycin Injection

    MedlinePlus

    ... blood infections or serious skin infections caused by bacteria. Daptomycin injection is in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria. Antibiotics will not work for treating colds, flu, ...

  8. Ciprofloxacin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria. Ciprofloxacin injection is also used to prevent or ... of antibiotics called fluoroquinolones. It works by killing bacteria that cause infections. Antibiotics will not work for ...

  9. Gentamicin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as gentamicin injection will not work ...

  10. Ertapenem Injection

    MedlinePlus

    ... abdominal (stomach area) infections, that are caused by bacteria. It is also used for the prevention of ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work ...

  11. Cefepime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia, and skin, urinary tract, and kidney ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work ...

  12. Ceftriaxone Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria such as gonorrhea (a sexually transmitted disease), pelvic ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work ...

  13. Moxifloxacin Injection

    MedlinePlus

    ... skin, and abdominal (stomach area) infections caused by bacteria. Moxifloxacin injection is in a class of antibiotics called fluoroquinolones. It works by killing the bacteria that cause infections. Antibiotics will not work against ...

  14. Ceftaroline Injection

    MedlinePlus

    ... infections and pneumonia (lung infection) caused by certain bacteria. Ceftaroline is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work ...

  15. Tobramycin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as tobramycin injection will not work ...

  16. Cefazolin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including skin, bone, joint, genital, blood, heart valve, ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work ...

  17. Cefotaxime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work ...

  18. Amikacin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as amikacin injection will not work ...

  19. Ampicillin Injection

    MedlinePlus

    ... to treat certain infections that are caused by bacteria such as meningitis (infection of the membranes that ... of medications called penicillins. It works by killing bacteria.Antibiotics such as ampicillin injection will not work ...

  20. Cefuroxime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work ...

  1. Vancomycin Injection

    MedlinePlus

    ... medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection ... infection may not be completely treated and the bacteria may become resistant to antibiotics.

  2. Ceftazidime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work ...

  3. Telavancin Injection

    MedlinePlus

    ... serious skin infections caused by certain types of bacteria. Telavancin injection is in a class of medications ... antibiotics. It works by stopping the growth of bacteria. Antibiotics will not work for colds, flu, or ...

  4. Teduglutide Injection

    MedlinePlus

    ... injection, prefilled syringes containing diluent (liquid to be mixed with teduglutide powder), needles to attach to the diluent syringe, dosing syringes with needles attached, and alcohol swab pads. Throw away needles, syringes, and vials ...

  5. Cefoxitin Injection

    MedlinePlus

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  6. Nafcillin Injection

    MedlinePlus

    ... medications called penicillins. It works by killing bacteria.Antibiotics such as nafcillin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  7. Cefepime Injection

    MedlinePlus

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using antibiotics when they are not needed increases your risk ...

  8. Oxacillin Injection

    MedlinePlus

    ... medications called penicillins. It works by killing bacteria.Antibiotics such as oxacillin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  9. Pembrolizumab Injection

    MedlinePlus

    ... treat a certain type of non-small-cell lung cancer that has spread to nearby tissues or to ... successfully with other medications for non-small-cell lung cancer. Pembrolizumab injection is in a class of medications ...

  10. Ibandronate Injection

    MedlinePlus

    ... Ibandronate is in a class of medications called bisphosphonates. It works by preventing bone breakdown and increasing ... while receiving this medication.Being treated with a bisphosphonate medication such as ibandronate injection for osteoporosis may ...

  11. Omalizumab Injection

    MedlinePlus

    ... asthma attacks (sudden episodes of wheezing, shortness of breath, and trouble breathing) in people with allergic asthma ( ... receiving a dose of omalizumab injection shortness of breath coughing up blood skin sores severe pain, numbness ...

  12. Necitumumab Injection

    MedlinePlus

    ... chest pain; shortness of breath; dizziness; loss of consciousness; or fast, irregular, or pounding heartbeat.Keep all appointments with your doctor and the laboratory.Talk to your doctor about the risks of receiving necitumumab injection.

  13. Dolasetron Injection

    MedlinePlus

    ... receiving cancer chemotherapy medications. Dolasetron is in a class of medications called serotonin 5-HT3 receptor antagonists. ... stiff or twitching muscles seizures coma (loss of consciousness) Dolasetron injection may cause other side effects. Call ...

  14. Topotecan Injection

    MedlinePlus

    ... also used together with other medications to treat cervical cancer (cancer that begins in the opening of the ... days. When topotecan injection is used to treat cervical cancer, it is usually given once a day for ...

  15. Ertapenem Injection

    MedlinePlus

    Ertapenem injection is used to treat certain serious infections, including pneumonia and urinary tract, skin, diabetic foot, ... for the prevention of infections following colorectal surgery. Ertapenem is in a class of medications called carbapenem ...

  16. Octreotide Injection

    MedlinePlus

    ... immediate-release injection is also used to control diarrhea and flushing caused by carcinoid tumors (slow-growing ... symptoms are severe or do not go away: diarrhea constipation pale, bulky, foul-smelling stools constantly feeling ...

  17. Infliximab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for 2 hours afterward. A doctor or ... the following symptoms during or shortly after your infusion: hives; rash; itching; swelling of the face, eyes, ...

  18. Vedolizumab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for several hours afterward. A doctor or ... of the following symptoms during or after your infusion: rash; itching; swelling of the face, eyes, mouth, ...

  19. Panitumumab Injection

    MedlinePlus

    ... as a solution (liquid) to be given by infusion (injected into a vein). It is usually given ... doctor or nurse in a doctor's office or infusion center. Panitumumab is usually given once every 2 ...

  20. Tositumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive tositumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  1. Ibritumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive ibritumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  2. Temozolomide Injection

    MedlinePlus

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called ... injected once a day. For some types of brain tumors, temozolomide is given daily for 42 to 49 ...

  3. Tigecycline Injection

    MedlinePlus

    ... to treat certain serious infections including community acquired pneumonia (a lung infection that developed in a person ... Tigecycline injection should not be used to treat pneumonia that developed in people who were in a ...

  4. Acetaminophen Injection

    MedlinePlus

    ... injection is also used in combination with opioid (narcotic) medications to relieve moderate to severe pain. Acetaminophen is in a class of medications called analgesics (pain relievers) and antipyretics (fever reducers). It works by changing ...

  5. Dexrazoxane Injection

    MedlinePlus

    ... certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent ... tissues that may be caused when an anthracycline chemotherapy medication such as daunorubicin (Daunoxome, Cerubidine), doxorubicin (Doxil), ...

  6. Denosumab Injection

    MedlinePlus

    ... menstrual periods), who have an increased risk for fractures (broken bones) or who cannot take or did ... receiving certain treatments that increase their risk for fractures. Denosumab injection (Xgeva) is used to reduce fractures ...

  7. Mitoxantrone Injection

    MedlinePlus

    ... of disability in patients with certain forms of multiple sclerosis (MS). Mitoxantrone injection is also used together with steroid ... a class of medications called anthracenediones. Mitoxantrone treats MS by stopping certain cells of the immune system ...

  8. Dexrazoxane Injection

    MedlinePlus

    ... and pharmacist if you are allergic to dexrazoxane injection or any other medications.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  9. Oritavancin Injection

    MedlinePlus

    ... for at least 5 days after receiving oritavancin injection.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  10. Ferumoxytol Injection

    MedlinePlus

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in adults with chronic kidney disease (damage to the kidneys which may worsen over ...

  11. Exenatide Injection

    MedlinePlus

    ... month. Exenatide extended-release solution is injected once weekly at any time of day without regard to ... you remember it and then continue your regular weekly schedule. However, if there are less than 3 ...

  12. Fluconazole Injection

    MedlinePlus

    ... injection is used to treat fungal infections, including yeast infections of the mouth, throat, esophagus (tube leading from ... by fungus. Fluconazole is also used to prevent yeast infections in patients who are likely to become infected ...

  13. Mipomersen Injection

    MedlinePlus

    Mipomersen injection is used to decrease levels of cholesterol and other fatty substances in the blood in people who have homozygous familial hypercholesterolemia (HoFH; a rare inherited condition that ...

  14. Cefuroxime Injection

    MedlinePlus

    ... pneumonia and other lower respiratory tract (lung) infections; meningitis (infection of the membranes that surround the brain ... hearing loss, if you are being treated for meningitis Cefuroxime injection may cause other side effects. Call ...

  15. Busulfan Injection

    MedlinePlus

    ... cancer cells in preparation for a bone marrow transplant. Busulfan is in a class of medications called ... a total of 16 doses) before bone marrow transplant.Busulfan injection may cause seizures during therapy with ...

  16. Methylnaltrexone Injection

    MedlinePlus

    ... injection is used to treat constipation caused by opioid (narcotic) pain medications in patients with advanced illnesses ... a class of medications called peripherally acting mu-opioid receptor antagonists. It works by protecting the bowel ...

  17. Methylprednisolone Injection

    MedlinePlus

    ... treatment.You may receive methylprednisolone injection in a hospital or medical facility, or you may be given ... doctor or if you are admitted to a hospital. It is also important information to carry with ...

  18. Ampicillin Injection

    MedlinePlus

    ... have.You may receive ampicillin injection in a hospital or you may administer the medication at home. ... doctor or if you are admitted to a hospital. It is also important information to carry with ...

  19. Romidepsin Injection

    MedlinePlus

    ... bleeding fever, cough, flu-like symptoms, muscle aches, burning on urination, worsening skin problems, and other signs of infection rash blistering or peeling skin Romidepsin injection may cause other side effects. Call your doctor if you have any unusual ...

  20. Ranitidine Injection

    MedlinePlus

    ... the pancreas and small intestine that caused increased production of stomach acid). Ranitidine injection is in a ... your doctor and the laboratory. Your doctor may order certain lab tests to check your body's response ...

  1. Ganciclovir Injection

    MedlinePlus

    ... injection is for intravenous (into a vein) use only. Giving ganciclovir through intramuscular (into a muscle) or ... the storage of ganciclovir solution. Store your medication only as directed. Make sure you understand what you ...

  2. Olanzapine Injection

    MedlinePlus

    Olanzapine extended-release injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... treat episodes of agitation in people who have schizophrenia or in people who have bipolar I disorder ( ...

  3. Risperidone Injection

    MedlinePlus

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... do not already have diabetes. If you have schizophrenia, you are more likely to develop diabetes than ...

  4. Aripiprazole Injection

    MedlinePlus

    ... injections (Abilify Maintena, Aristada) are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... treat episodes of agitation in people who have schizophrenia or in people who have bipolar I disorder ( ...

  5. Secukinumab Injection

    MedlinePlus

    ... to see if you need to receive any vaccinations. It is important to have all vaccines appropriate ... treatment with secukinumab injection. Do not have any vaccinations during your treatment without talking to your doctor. ...

  6. Tesamorelin Injection

    MedlinePlus

    ... fat in the stomach area in adults with human immunodeficiency virus (HIV) who have lipodystrophy (increased body ... injection is in a class of medications called human growth hormone-releasing factor (GRF) analogs. It works ...

  7. Naloxone Injection

    MedlinePlus

    ... emergency medical treatment to reverse the life-threatening effects of a known or suspected opiate (narcotic) overdose. ... is also used after surgery to reverse the effects of opiates given during surgery. Naloxone injection is ...

  8. Methotrexate Injection

    MedlinePlus

    ... Methotrexate injection is also used to treat severe psoriasis (a skin disease in which red, scaly patches ... slowing the growth of cancer cells. Methotrexate treats psoriasis by slowing the growth of skin cells to ...

  9. Sumatriptan Injection

    MedlinePlus

    ... sometimes are accompanied by nausea and sensitivity to sound and light). Sumatriptan injection is also used to ... stomach pain sudden weight loss paleness or blue color of the fingers and toes shortness of breath ...

  10. Denosumab Injection

    MedlinePlus

    ... injection is in a class of medications called RANK ligand inhibitors. It works by decreasing bone breakdown ... medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. ...

  11. Omacetaxine Injection

    MedlinePlus

    ... for CML and can no longer benefit from these medications or cannot take these medications due to side effects. Omacetaxine injection is ... side effects. Tell your doctor if any of these symptoms are severe or do not go away: ...

  12. Basiliximab Injection

    MedlinePlus

    ... is used with other medications to prevent immediate transplant rejection (attack of the transplanted organ by the immune system of the person receiving the organ) in people who are receiving kidney transplants. Basiliximab injection is in a class of medications ...

  13. Metoclopramide Injection

    MedlinePlus

    ... is used to relieve symptoms caused by slow stomach emptying in people who have diabetes. These symptoms include ... When metoclopramide injection is used to treat slowed stomach emptying due to diabetes, it may be given up ...

  14. Intrathymic Injection.

    PubMed

    Manna, Sugata; Bhandoola, Avinash

    2016-01-01

    Intrathymic injection is used in several T cell-associated immunological studies to deliver cells or other substances directly into the thymus. Here, we describe the intrathymic injection procedure involving surgical incision of the mouse with or without a thoracotomy. Though this procedure can result in poor recovery, postsurgical complications, and distress to the animal, it is actually a simple procedure that can be carried out relatively easily and quickly with experience. PMID:26294410

  15. Geothermal injection technology program. Annual progress report, FY-85

    SciTech Connect

    Not Available

    1986-02-01

    This report summarizes injection research conducted during FY-1985. The objective was to develop a better understanding of the migration and impact of fluids injected in geothermal reservoirs. Separate abstracts have been prepared for individual project summaries. (ACR)

  16. Injection nozzle for a turbomachine

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  17. Injection-induced earthquakes.

    PubMed

    Ellsworth, William L

    2013-07-12

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard. PMID:23846903

  18. Pemetrexed Injection

    MedlinePlus

    ... another chemotherapy (anti-cancer) medication to treat malignant pleural mesothelioma (a type of cancer that affects the ... effects.tell your doctor if you have a pleural effusion (excess fluid between the linings around the ...

  19. Turbomachine injection nozzle including a coolant delivery system

    DOEpatents

    Zuo, Baifang

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  20. Application of a liquid chromatographic procedure for the analysis of penicillin antibiotics in biological fluids and pharmaceutical formulations using sodium dodecyl sulphate/propanol mobile phases and direct injection.

    PubMed

    Rambla-Alegre, Maria; Martí-Centelles, Rosa; Esteve-Romero, Josep; Carda-Broch, Samuel

    2011-07-29

    A direct injection liquid chromatography procedure was developed for the simultaneous determination of four penicillin antibiotics (amoxicillin, ampicillin, cloxacillin and dicloxacillin) in pharmaceutical formulations and physiological fluids (urine) using hybrid micellar mobile phases. These antimicrobials are used to treat gastrointestinal and systemic infections. The four penicillins were analysed using a Zorbax C18 reversed-phase column and detected at 210 nm. These antibiotics were separated by an interpretive optimisation procedure based on the accurate description of the retention and shape of the chromatographic peaks. Antibiotics were eluted in less than 16 min with no interference by the urine protein band or endogenous compounds using the mobile phase 0.11 M sodium dodecyl sulphate-6% propanol-0.01 M NaH(2)PO(4) buffered at pH 3. The method was validated according to the Food and Drug Administration guideline, including analytical parameters such as linearity (R(2)>0.993), intra- and inter-day precisions (RSD, %: 0.1-4.4 and 1.2-5.9, respectively), and robustness for the four compounds. This method is sensitive enough for the routine analysis of penicillins at therapeutic urine levels, with limits of detection in the 1.5-15 ng mL(-1) range and limits of quantification of 50 ng mL(-1). Recoveries in a micellar medium and a spiked urine matrix were in the 92.4-108.2% and 96-110% ranges, respectively. Finally, the method was successfully applied to determine these antibiotics in urine samples and pharmaceutical formulations. PMID:21190691

  1. Tracing Geothermal Fluids

    SciTech Connect

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  2. Aflibercept Injection

    MedlinePlus

    ... injection is used to treat wet age-related macular degeneration (AMD; an ongoing disease of the eye that causes loss of the ability to see straight ahead and may make it more ... used to treat macular edema after retinal vein occlusion (an eye disease ...

  3. Cabazitaxel Injection

    MedlinePlus

    ... prednisone to treat prostate cancer (cancer of a male reproductive organ) that has already been treated with other medications. Cabazitaxel injection is in a class of medications called microtubule inhibitors. It works by slowing or stopping the growth of cancer cells.

  4. Hydrocortisone Injection

    MedlinePlus

    ... purple blotches or lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body difficulty falling asleep or staying asleep inappropriate happiness extreme ... increased sweating muscle weakness joint pain dizziness irregular ...

  5. Methylprednisolone Injection

    MedlinePlus

    ... purple blotches or lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body difficulty falling asleep or staying asleep inappropriate happiness extreme ... increased sweating muscle weakness joint pain dizziness irregular ...

  6. Triptorelin Injection

    MedlinePlus

    ... a sudden wave of mild or intense body heat) decreased sexual ability or desire leg or joint pain breast pain pain, itching, swelling, or redness at the place where injection was given difficulty falling asleep or staying asleep Some side effects can be serious. If you experience any of ...

  7. Eribulin Injection

    MedlinePlus

    ... tests to check your body's response to eribulin injection.It is important for you to keep a written list of all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  8. Pegaptanib Injection

    MedlinePlus

    ... to 7 days after you receive each pegaptanib injection.It is important for you to keep a written list of all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  9. Omalizumab Injection

    MedlinePlus

    ... and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or plan to take. Be sure to mention any of the following: allergy shots (a series of injections given regularly to prevent the body from developing ...

  10. Famotidine Injection

    MedlinePlus

    ... treat ulcers (sores in the lining of the stomach or intestine) that were not successfully treated with other medications. ... Ellison syndrome (tumors in the pancreas and small intestine that caused increased production of stomach acid). Famotidine injection is in a class of ...

  11. Ranitidine Injection

    MedlinePlus

    ... treat ulcers (sores in the lining of the stomach or intestine) that were not successfully treated with other medications. ... Ellison syndrome (tumors in the pancreas and small intestine that caused increased production of stomach acid). Ranitidine injection is in a class of ...

  12. Oxytocin Injection

    MedlinePlus

    ... provider immediately: chest pain or difficulty breathing confusion fast or irregular heartbeat severe headache irritation at the injection site If you experience a serious side effect, you or your doctor may send a report to the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...

  13. Ganciclovir Injection

    MedlinePlus

    ... will be given to you two times a day for 2 to 3 weeks, and then once a day, 5 to 7 days of each week.Your dose of ganciclovir will ... may give you several doses (enough for a day's supply) of premixed ganciclovir injection solution at one ...

  14. Ibritumomab Injection

    MedlinePlus

    ... have received ibritumomab injection.do not have any vaccinations without talking to your doctor.you should know ... cells) and myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  15. Tositumomab Injection

    MedlinePlus

    ... have received tositumomab injection.do not have any vaccinations without talking to your doctor.you should know ... blood cells), myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  16. Dulaglutide Injection

    MedlinePlus

    ... other body tissues where it is used for energy. Dulaglutide injection also works by slowing the movement ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call local emergency services at ...

  17. Liraglutide Injection

    MedlinePlus

    ... other body tissues where it is used for energy. Liraglutide injection also slows the emptying of the ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call local emergency services at ...

  18. Albiglutide Injection

    MedlinePlus

    ... other body tissues where it is used for energy. Albiglutide injection also works by slowing the movement ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call local emergency services at ...

  19. Propping agent for fracturing fluids

    SciTech Connect

    Hunter, W.D.

    1983-11-29

    Hydrocarbons are recovered from a subterranean hydrocarbon-bearing formation penetrated by an injection well and a production well by displacing hydrocarbons toward the production well using a drive fluid such as water thickened with polyacrylamide or partially hydrolyzed polyacrylamide or the sodium, potassium or ammonium salt thereof and a minor amount of polyacrylamide or partially hydrolyzed polyacrylamide or the sodium, potassium or ammonium salt thereof alkoxylated with an alkylene oxide. Optionally, the drive fluid can be saturated with carbon dioxide and/or natural gas at the injection pressure. An aqueous fracturing fluid containing a small amount of alkoxylated polyacrylamide or partially hydrolyzed polyacrylamide is also described.

  20. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  1. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  2. Amniotic fluid

    MedlinePlus

    Amniotic fluid is a clear, slightly yellowish liquid that surrounds the unborn baby (fetus) during pregnancy. It is ... in the womb, the baby floats in the amniotic fluid. The amount of amniotic fluid is greatest at ...

  3. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  4. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  5. Passive injection control for microfluidic systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  6. Low-pressure injection molding

    SciTech Connect

    Mangels, J.A. )

    1994-05-01

    Ceramic injection molding experienced a revival in the 1970s and 1980s with the application of ceramics for gas turbine components. Concurrently, techniques were being developed for the injection molding of powdered metal compositions into complex shaped articles. The impetus for the development of injection molding as a ceramic fabrication process lay in the potential to produce complex-shaped components to near-net shape. In the ceramic injection molding process, ceramic powders are processed to obtain the desired particle size, distribution and morphology and blended to obtain a homogeneous distribution. These powders are then mixed with the organic binders, generally in a heated, highshear mixer at temperatures above the melting point of the organic binders. The injection molding mix is pelletized, cooled and fed into an injection molding machine. The molding mix is reheated to a fluid state and injected under high pressure (7--70 MPa) into a die cavity. The molded part is removed from the tooling after the molding mix has solidified in the die. The organic binders are then removed from the component at temperatures up to 400 C, generally by some combination of wicking and thermal decomposition. Finally, the component is sintered to obtain its final ceramic properties, using conventional ceramic processes.

  7. Injection plume behavior in fractured, vapor-dominated reservoirs

    SciTech Connect

    Pruess, Karsten

    1996-01-24

    We discuss fluid flow and heat transfer processes during water injection into hot, fluid-depleted vapor zones. Numerical simulations of injection plumes in fractures, modeled as two-dimensional heterogeneous porous media, indicate complex behavior. Under certain conditions it is possible to make detailed quantitative predictions of vaporization behavior. However, when effects of reservoir heterogeneity are dominant it will only be possible to predict the behavior of injection plumes in general terms.

  8. Topographic viscous fingering: fluid-fluid displacement in a channel of non-uniform gap width.

    PubMed

    Woods, Andrew W; Mingotti, Nicola

    2016-10-13

    We consider the displacement of one fluid by a second immiscible fluid through a long, thin permeable channel whose thickness and permeability decrease away from the axis of the channel. We build a model that illustrates how the shape of the fluid-fluid interface evolves in time. We find that if the injected fluid is of the same viscosity as the original fluid, then the cross-channel variations in permeability and thickness tend to focus the flow along the centre of the channel. If the viscosity of the injected fluid is smaller than the original fluid, then this flow focusing intensifies, leading to very poor sweep of the original fluid in the system, with the injected fluid bypassing much of the channel. We also show that if the viscosity ratio of the injected fluid to the original fluid is sufficiently large, then a blunt nose may develop at the leading edge of the injected fluid, whereas the remainder of the fluid-fluid interface becomes stretched out along the edges of the channel. This leads to a much more efficient sweep of the original fluid from the channel. We generalize the model to illustrate how buoyancy forces and capillary pressure affect the evolution of the system and compare our model predictions with some simple laboratory experiments. This partial stabilization of a fluid interface in a channel of non-uniform width represents a generalization of the classical Saffman-Taylor instability, and our nonlinear solutions for the evolution of the interface highlight the importance of cross-channel variations in permeability and thickness in modelling flow in channelled reservoirs.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597790

  9. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  10. Epidural Steroid Injections

    MedlinePlus

    ... Assessment Tools Injection Treatments for Spinal Pain Epidural Steroid Injections Lumbar Zygapophysial (Facet) Joint Injections Surgical Options Nonsurgical Treatments Alternative Medicine Epidural Steroid Injections General Information Why Get an Epidural Steroid ...

  11. Amniotic fluid

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002220.htm Amniotic fluid To use the sharing features on this page, please enable JavaScript. Amniotic fluid is a clear, slightly yellowish liquid that surrounds ...

  12. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-01

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process. PMID:27070765

  13. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas Edward; Lacy, Benjamin Paul; Ziminsky, Willy Steve

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  14. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  15. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  16. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  17. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  18. Spacer fluids

    SciTech Connect

    Wilson, W.N.; Bradshaw, R.D.; Wilton, B.S.; Carpenter, R.B.

    1992-05-19

    This patent describes a method for cementing a wellbore penetrating an earth formation into which a conduit extends, the wellbore having a space occupied by a drilling fluid. It comprises displacing the drilling fluid from the space with a spacer fluid comprising: sulfonated styrene-maleic anhydride copolymer, bentonite, welan gum, surfactant and a weighting agent; and displacing the spacer composition and filling the wellbore space with a settable cement composition.

  19. Comparative Study Between The Alternative Used By The IMP Type Pecussion Drills And The Version Using Fluid Elements Regarding The Supplying, Command And Automatic Adjustment Systems Of The Injection Water Pressure

    NASA Astrophysics Data System (ADS)

    Cotetiu, Adriana; Cotetiu, Radu; Ungureanu, Nicolae

    2015-12-01

    Starting from analyzing of an existing solution regarding the injection water feeding system for the pneumatic rotating and percussion drilling installations, which is included in the structure of the perforator installation (IMP-1or IMP-2), the paper presents part of a research regarding an original solution of the automatic command and regulate with monostable fluidic elements, with different physical nature jets. This solution is applicable to this drilling installations type, made in Romania.

  20. Cytology exam of pleural fluid

    MedlinePlus

    ... of skin on your back is cleaned. Numbing medicine (local anesthetic) is injected in this area. The doctor inserts a needle through the skin and muscles of the chest wall into the pleural space. Fluid is collected. The needle is removed. A ...

  1. Fluid Substitution Modeling to Determine Sensitivity of 3D Vertical Seismic Profile Data to Injected CO­2­ at an active Carbon Capture, Utilization and Storage Project, Farnsworth field, TX.

    NASA Astrophysics Data System (ADS)

    Haar, K. K.; Balch, R. S.

    2015-12-01

    The Southwest Regional Partnership on Carbon Sequestration monitors a CO2 capture, utilization and storage project at Farnsworth field, TX. The reservoir interval is a Morrowan age fluvial sand deposited in an incised valley. The sands are between 10 to 25m thick and located about 2800m below the surface. Primary oil recovery began in 1958 and by the late 1960's secondary recovery through waterflooding was underway. In 2009, Chaparral Energy began tertiary recovery using 100% anthropogenic CO2 sourced from an ethanol and a fertilizer plant. This constitutes carbon sequestration and fulfills the DOE's initiative to determine the best approach to permanent carbon storage. One purpose of the study is to understand CO­2 migration from injection wells. CO2­ plume spatial distribution for this project is analyzed with the use of time-lapse 3D vertical seismic profiles centered on CO2 injection wells. They monitor raypaths traveling in a single direction compared to surface seismic surveys with raypaths traveling in both directions. 3D VSP surveys can image up to 1.5km away from the well of interest, exceeding regulatory requirements for maximum plume extent by a factor of two. To optimize the timing of repeat VSP acquisition, the sensitivity of the 3D VSP surveys to CO2 injection was analyzed to determine at what injection volumes a seismic response to the injected CO­2 will be observable. Static geologic models were generated for pre-CO2 and post-CO2 reservoir states through construction of fine scale seismic based geologic models, which were then history matched via flow simulations. These generated static states of the model, where CO2­ replaces oil and brine in pore spaces, allow for generation of impedance volumes which when convolved with a representative wavelet generate synthetic seismic volumes used in the sensitivity analysis. Funding for the project is provided by DOE's National Energy Technology Laboratory (NETL) under Award No. DE-FC26-05NT42591.

  2. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  3. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. he external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water th...

  4. TEMPERATURE, RADIOACTIVE TRACER, AND NOISE LOGGING FOR INJECTION WELL INTEGRITY

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  5. Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids

    SciTech Connect

    Sundaryanto, Bagus; Yortsos, Yanis C.

    1999-10-18

    In applications involving this injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controlling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, a fundamental approach based on optimal control theory, for the case when the fluids are miscible, of equal viscosity and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates.

  6. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  7. Fluid inflation

    SciTech Connect

    Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-09-01

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  9. Beam Injection into RHIC

    NASA Astrophysics Data System (ADS)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  10. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Hargens, Alan R.; Dulchavsky, Scott A.; Ebert, Douglas J.; Lee, Stuart M. C.; Laurie, Steven S.; Garcia, Kathleen M.; Sargsyan, Ashot E.; Martin, David S.; Liu, John; Macias, Brandon R.; Arbeille, Philippe; Danielson, Richard; Chang, Douglas; Gunga, Hanns-Christian; Johnston, Smith L.; Westby, Christian M.; Ploutz-Snyder, Robert J.; Smith, Scott M.

    2016-01-01

    We hypothesize that microgravity-induced cephalad fluid shifts elevate intracranial pressure (ICP) and contribute to VIIP. We will test this hypothesis and a possible countermeasure in ISS astronauts.

  11. Wellbore fluid

    SciTech Connect

    Swanson, B.L.

    1984-06-19

    The water loss properties of well completion and well workover fluids are improved by the addition of an effective amount of at least one adjuvant selected from (1) sodium carbonate with either sodium bicarbonate or an organic polycarboxylic acid or polycarboxylic acid anhydride or (2) sodium bicarbonate alone. In another embodiment, the adjuvants are added to stabilize water loss control agents in wellbore fluids, especially at elevated temperatures.

  12. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  13. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  14. A study of steam injection in fractured media

    SciTech Connect

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  15. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  16. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  17. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  18. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  19. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  20. 40 CFR 146.5 - Classification of injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... types of Class V injection wells are also described in 40 CFR 144.81. Class V wells include: (1) Air... hazardous waste beneath the lowermost formation containing, within one quarter (1/4) mile of the well bore... inject fluids beneath the lowermost formation containing, within one quarter mile of the well bore,...

  1. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  2. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  3. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  4. 40 CFR 146.86 - Injection well construction requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Injection well construction requirements. 146.86 Section 146.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER..., corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure;...

  5. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  6. Numerical modeling of injection experiments at The Geysers

    SciTech Connect

    Pruess, Karsten; Enedy, Steve

    1993-01-28

    Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and overrecovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

  7. Numerical modeling of injection experiments at The Geysers

    SciTech Connect

    Pruess, K. ); Enedy, S. )

    1993-01-01

    Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and over-recovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  9. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, P.

    1995-03-28

    A method is disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product. 1 figure.

  10. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, Paul

    1995-01-01

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  11. Corticotropin, Repository Injection

    MedlinePlus

    ... age; episodes of symptoms in people who have multiple sclerosis (MS; a disease in which the nerves do ... When corticotropin repository injection is used to treat multiple sclerosis, it is usually injected once a day for ...

  12. Urinary incontinence - injectable implant

    MedlinePlus

    Injectable implants are injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a ... into the tissue next to the sphincter. The implant procedure is usually done in the hospital. Or ...

  13. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  14. OnabotulinumtoxinA Injection

    MedlinePlus

    Botox® Cosmetic ... OnabotulinumtoxinA injection (Botox, Botox Cosmetic) is used to treat a number of conditions.OnabotulinumtoxinA injection (Botox) is used to relieve the symptoms of cervical dystonia ( ...

  15. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  16. Deoxycholic Acid Injection

    MedlinePlus

    ... severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a ... as a liquid to be injected subcutaneously (just under the skin) by a doctor. Your doctor will ...

  17. RimabotulinumtoxinB Injection

    MedlinePlus

    (rim a bott' you lye num bee)RimabotulinumtoxinB injection may spread from the area of injection and ... Event Reporting program online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  18. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  19. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  20. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  1. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  2. IncobotulinumtoxinA Injection

    MedlinePlus

    ... injection is used to relieve the symptoms of cervical dystonia (spasmodic torticollis; uncontrollable tightening of the neck ... is injected into a muscle, it blocks the nerve signals that cause uncontrollable tightening and movements of ...

  3. Transition duct with late injection in turbine system

    SciTech Connect

    LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray; Flanagan, James Scott; Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-15

    A system for supplying an injection fluid to a combustor is disclosed. The system includes a transition duct comprising an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The passage defines a combustion chamber. The system further includes a tube providing fluid communication for the injection fluid to flow through the transition duct and into the combustion chamber.

  4. Endolymphatic Hydrops Detected by 3-Dimensional Fluid-Attenuated Inversion Recovery MRI following Intratympanic Injection of Gadolinium in the Asymptomatic Contralateral Ears of Patients with Unilateral Ménière’s Disease

    PubMed Central

    Liu, Yupeng; Jia, Huan; Shi, Jun; Zheng, Hui; Li, Yuhua; Yang, Jun; Wu, Hao

    2015-01-01

    Background The aim of this study was to identify the incidence of endolymphatic hydrops using 3-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging (MRI) in the contralateral ear in patients with unilateral Ménière’s disease (MD). Material/Methods This was a prospective study. 3D-FLAIR MRI was performed with a 3 Tesla (3 T) unit 24 h after the intratympanic administration of gadolinium (Gd) in 30 unilateral MD patients with an asymptomatic contralateral ear. The incidence of contralateral involvement in unilateral MD patients and the potential correlations between the affected and contralateral ears were analyzed. Results Endolymphatic hydrops was observed in 7 of the 30 (23.3%) asymptomatic ears. The mean PTA of the asymptomatic ears in the contralateral hydrops patients (33.0±6.1 dB) was significantly higher compared with the non-hydrops patients (17.8±5.7 dB). The patients with observed contralateral hydrops exhibited a significantly longer duration of the disease compared with the non-hydrops patients (6.7±6.3 vs. 2.9±3.1 years, respectively). Furthermore, the patients with contralateral hydrops had a worse hearing level in the affected ears compared with the non-hydrops patients (70.3±7.4 vs. 52.5±3.8 dB, respectively). Conclusions Endolymphatic hydrops is closely related to hearing loss but does not necessarily result in Ménière’s symptoms. Patients with a long history of MD and severe hearing loss in the affected ear are more likely to exhibit endolymphatic hydrops in the asymptomatic contralateral ear. Adequate attention should focus on unilateral MD patients with contralateral ear hydrops because of the potential to develop bilateral MD. PMID:25742875

  5. Correlation between Changes in Seismicity Rates and Well Injection Volumes in Oklahoma

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Baker, J.; Walsh, R.; Zoback, M. D.

    2015-12-01

    We present a statistical approach to establish correlations between locations with seismicity increase in Oklahoma and nearby well injection volumes. Seismicity rates in the state have significantly increased since approximately 2008. Fluid injection into deep wells has been theorized to be the cause of this seismicity, but the increase occurred significantly after the start of injection activities in the region. Further, injection-induced earthquakes depend on the presence and orientation of basement faults and the stress state in the region. Because of these complexities, it has been difficult to directly correlate fluid injection with seismicity. Here we show that a statistical correlation between increase in seismicity and injection volumes can be established in Oklahoma. We first employ a change point method to locate the regions where a change in seismicity rates has occurred. We then use a logistic regression model to relate the injection volumes in a region with the presence or absence of seismicity change in the region. This model is further used to evaluate the relative contribution of cumulative injection volumes and monthly injection rates to seismicity. The model can be used to identify "seismically sensitive regions" where seismicity increase has been observed with little fluid injection, and "seismically stable regions" where seismicity changes have not been observed even with high fluid injection. This information can be combined with geological information in a region, and used to make decisions about acceptable volumes for injection and to identify lower-risk regions for injection.

  6. Beam injection into RHIC

    SciTech Connect

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  7. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  8. Well completion technology. Multiuse polymer protects injection well during drilling, underreaming, gravel packing

    SciTech Connect

    Davis, K.E.; Jarrell, M.D.

    1983-12-12

    Fluids for drilling, gravel-packing, and completion were optimized for an expensive injection well. Successful engineering gave maximum injection rates and no skin damage, while accomplishing all the fundamental drilling and suspension functions of fluids. Formation protection was critical. The approximately $5-million well was planned for chemical waste disposal, and plant capacity is limited by injectivity. This work describes the fluid, hardware, and techniques used. The 3 distinct fluids were variations on the same polymer-based system. Results of tests showed that Kelzan XCD Polymer, a dispersible form of xanthan gum, had the most applicable overall properties.

  9. Strategies for safe injections.

    PubMed Central

    Battersby, A.; Feilden, R.; Stoeckel, P.; Da Silva, A.; Nelson, C.; Bass, A.

    1999-01-01

    In 1998, faced with growing international concern, WHO set out an approach for achieving injection safety that encompassed all elements from patients' expectations and doctors' prescribing habits to waste disposal. This article follows that lead and describes the implications of the approach for two injection technologies: sterilizable and disposable. It argues that focusing on any single technology diverts attention from the more fundamental need for health services to develop their own comprehensive strategies for safe injections. National health authorities will only be able to ensure that injections are administered safely if they take an approach that encompasses the whole system, and choose injection technologies that fit their circumstances. PMID:10680247

  10. 40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... head pressure calculated by using the following formula: Pm = (0.8 − 0.433 Sg) d where: Pm = injection pressure at the well head in pounds per square inch Sg = specific gravity of injected fluid (unitless)...

  11. Analysis of thermally induced permeability enhancement in geothermal injection wells

    SciTech Connect

    Benson, S.M.; Daggett, J.S.; Iglesias, E.; Arellano, V.; Ortiz-Ramirez, J.

    1987-02-01

    Reinjection of spent geothermal brine is a common means of disposing of geothermal effluents and maintaining reservoir pressures. Contrary to the predictions of two-fluid models (two-viscosity) of nonisothermal injection, an increase of injectivity, with continued injection, is often observed. Injectivity enhancement and thermally-affected pressure transients are particularly apparent in short-term injection tests at the Los Azufres Geothermal Field, Mexico. During an injection test, it is not uncommon to observe that after an initial pressure increase, the pressure decreases with time. As this typically occurs far below the pressure at which hydraulic fracturing is expected, some other mechanism for increasing the near-bore permeability must explain the observed behavior. This paper focuses on calculating the magnitude of the nearbore permeability changes observed in several nonisothermal injection tests conducted at the Los Azufres Geothermal Field.

  12. Shadowgraphy of transcritical cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.

    1994-01-01

    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.

  13. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  14. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    SciTech Connect

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  15. An unfortunate injection.

    PubMed

    Shah, Bhavik Sandip; Yarbrough, Chase; Price, Amy; Biswas, Rakesh

    2016-01-01

    Intramuscular injection has been used to administer medications for more than a hundred years. However, despite our profession's long experience with intramuscular administration, preventable complications such as injection nerve palsies are still prevalent in developing countries. Injections account for one-fifth of all traumatic nerve injuries. These injuries largely occur due to indiscriminate use of intramuscular injections for treating common illnesses, frequently by unlicensed or undertrained practitioners administering unnecessary treatment to impoverished patients. The sciatic nerve is the most commonly injured, and frequently the resulting muscle weakness and associated disability are irreversible. This case report includes a video of a patient with foot drop 6 weeks after gluteal intramuscular injection. Such injuries can be prevented by proper awareness and training, the implementation of safer injection techniques, and quality assurance methods. PMID:26931130

  16. Sciatic nerve injection injury.

    PubMed

    Jung Kim, Hyun; Hyun Park, Sang

    2014-06-11

    Nerve injury is a common complication following intramuscular injection and the sciatic nerve is the most frequently affected nerve, especially in children, the elderly and underweight patients. The neurological presentation may range from minor transient pain to severe sensory disturbance and motor loss with poor recovery. Management of nerve injection injury includes drug treatment of pain, physiotherapy, use of assistive devices and surgical exploration. Early recognition of nerve injection injury and appropriate management are crucial in order to reduce neurological deficit and to maximize recovery. Sciatic nerve injection injury is a preventable event. Total avoidance of intramuscular injection is recommended if other administration routes can be used. If the injection has to be administered into the gluteal muscle, the ventrogluteal region (gluteal triangle) has a more favourable safety profile than the dorsogluteal region (the upper outer quadrant of the buttock). PMID:24920643

  17. Optimization of fluid front dynamics in porous media using rate control. I. Equal mobility fluids

    SciTech Connect

    Sudaryanto, Bagus; Yortsos, Yannis C.

    2000-07-01

    In applications involving the injection of a fluid in a porous medium to displace another fluid, a main objective is the maximization of the displacement efficiency. For a fixed arrangement of injection and production points (sources and sinks), such optimization is possible by controling the injection rate policy. Despite its practical relevance, however, this aspect has received scant attention in the literature. In this paper, we provide a fundamental approach based on optimal control theory, for the simplified case when the fluids are miscible, of equal viscosity, and in the absence of dispersion and gravity effects. Both homogeneous and heterogeneous porous media are considered. From a fluid dynamics viewpoint, this is a problem in the deformation of material lines in porous media, as a function of time-varying injection rates. It is shown that the optimal injection policy that maximizes the displacement efficiency, at the time of arrival of the injected fluid, is of the ''bang-bang'' type, in which the rates take their extreme values in the range allowed. This result applies to both homogeneous and heterogeneous media. Examples in simple geometries and for various constraints are shown, illustrating the efficiency improvement over the conventional approach of constant rate injection. In the heterogeneous case, the effect of the permeability heterogeneity, particularly its spatial correlation structure, on diverting the flow paths, is analyzed. It is shown that bang-bang injection remains the optimal approach, compared to constant rate, particularly if they were both designed under the assumption that the medium was homogeneous. Experiments in a homogeneous Hele-Shaw cell are found to be in good agreement with the theory. (c) 2000 American Institute of Physics.

  18. Botulinum toxin injection - larynx

    MedlinePlus

    Injection laryngoplasty; Botox-larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography-guided botulinum toxin treatment; Percutaneous indirect laryngoscopy- ...

  19. Urinary incontinence - injectable implant

    MedlinePlus

    ... repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... Blaivas JM, Gormley EA, et al. Female Stress Urinary Incontinence Update Panel of the American Urological Association Education ...

  20. Trapping non-wettable fluid in porous rock: Implication to CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Yun, T.

    2013-12-01

    The residual saturation of CO2 mainly determines the effective storage capacity in geological formation whereas its transport and fate are dominated by fluid properties and pore characteristics. This experimental study evaluates the relative permeability of brine and non-wettable fluids in Berea sandstone. The surrogate fluids representing CO2 are continuously injected into the brine-saturated sandstone and the effluent is simultaneously separated to measure the residual volume. The variables under consideration include the viscosity and surface tension of injected fluids, porosity, anisotropy of rock, and injection pressure and the residual saturation of non-wettable fluids is quantified based on the proposed variables. Results highlight that the storage capacity can be readily modulated and maximized by controlling the cyclic injection, initial saturation of non-wettable fluids, and injection pressure.

  1. Drilling fluid

    SciTech Connect

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  2. Cerebrospinal fluid.

    PubMed

    Jerrard, D A; Hanna, J R; Schindelheim, G L

    2001-08-01

    A quick and accurate diagnosis of maladies affecting the central nervous system (CNS) is imperative. Procurement and analysis of cerebrospinal fluid (CSF) are paramount in helping the clinician determine a patient's clinical condition. Various staining methods, measurement of white blood cell counts, glucose and protein levels, recognition of xanthochromia, and microbiologic studies are CSF parameters that are collectively important in the ultimate determination by a clinician of the presence or absence of a catastrophic CNS condition. Many of these CNS parameters have significant limitations that should be recognized to minimize under treating patients with catastrophic illness. PMID:11489408

  3. Peritoneal Fluid Analysis

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Peritoneal Fluid Analysis Share this page: Was this page helpful? Formal name: Peritoneal Fluid Analysis Related tests: Pleural Fluid Analysis , Pericardial Fluid ...

  4. Pleural Fluid Analysis Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid ...

  5. Injection dynamics of gelled propellants

    NASA Astrophysics Data System (ADS)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow

  6. Penicillin G Procaine Injection

    MedlinePlus

    Duracillin A-S ® ... Pfizerpen A-S® ... injection should not be used to treat gonorrhea (a sexually transmitted disease) or early in the treatment ... serious infections. Penicillin G procaine injection is in a class of medications called penicillins. It works by ...

  7. Tolerability of hypertonic injectables.

    PubMed

    Wang, Wei

    2015-07-25

    Injectable drug products are ideally developed as isotonic solutions. Often, hypertonic injectables may have to be marketed for a variety of reasons such as product solubilization and stabilization. A key concern during product formulation development is the local and systemic tolerability of hypertonic products upon injection. This report reviews and discusses the tolerability in terms of local discomfort, irritation, sensation of heat and pain, along with other observed side effects of hypertonicity in both in-vitro systems and in-vivo animal and human models. These side effects clearly depend on the degree of hypertonicity. The sensation of pain among different injection routes seems to follow this order: intramuscular>subcutaneous>intravenous or intravascular. It is recommended that the upper osmolality limit should be generally controlled under 600 mOsm/kg for drug products intended for intramuscular or subcutaneous injection. For drug products intended for intravenous or intravascular injection, the recommended upper limit should be generally controlled under 1,000 mOsm/kg for small-volume injections (≤ 100 mL) and 500 mOsm/kg for large-volume injections (>100mL). Several options are available for minimization of hypertonicity-induced pain upon product administration. PMID:26027488

  8. Tevatron reverse injection

    SciTech Connect

    Saritepe, S.; Annala, G.

    1993-06-25

    In the new injection scenario antiprotons are injected onto a helical orbit in the Tevatron in order to avoid the detrimental effects of the beam-beam interaction at 150 GeV. The new scenario required changes in the tuning procedure. Antiprotons are too precious to be used for tuning, therefore the antiproton injection line has to be tuned with protons by reverse injecting them from the Tevatron into the Main Pang (MR). Previously, the reverse injection was performed in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS dock event $D8 as MRBS $D8 thus marking it possible to inject 6 proton batches and eject them one at a time on command, performing orbit closure each time in the MR.

  9. Health Instruction Packages: Injections.

    ERIC Educational Resources Information Center

    Dunkleman, Ellie; And Others

    Text, illustrations, and exercises are utilized in this set of four learning modules designed to instruct nursing students in techniques and equipment utilized for intramuscular injections. The first module, "Equipment for Intramuscular Injections" by Ellie Dunkleman, presents guidelines for selecting needles of the proper length and gauge…

  10. Spin injection into semiconductors

    NASA Astrophysics Data System (ADS)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  11. Gyroelastic fluids

    SciTech Connect

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  12. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  13. Migration rates and formation injectivity to determine containment time scales of sequestered carbon dioxide

    USGS Publications Warehouse

    Burke, Lauri

    2012-01-01

    Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.

  14. Carbon dioxide fluid-flow modeling and injectivity calculations

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.

  15. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE PAGESBeta

    Matzel, Eric; White, Joshua; Templeton, Dennise; Pyle, Moira; Morency, Christina; Trainor-Guitton, Whitney

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  16. Temporal pore pressure induced stress changes during injection and depletion

    NASA Astrophysics Data System (ADS)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  17. A coupled model of fluid flow in jointed rock

    SciTech Connect

    Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don

    1991-01-01

    We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.

  18. THE RHIC INJECTION SYSTEM.

    SciTech Connect

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  19. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  20. Penicillin G Benzathine Injection

    MedlinePlus

    ... to treat and prevent certain infections caused by bacteria. Penicillin G benzathine injection is in a class of antibiotics called penicillins. It works by killing bacteria that cause infections.Antibiotics such as penicillin G ...

  1. Penicillin G Procaine Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used ... of medications called penicillins. It works by killing bacteria that cause infections.Antibiotics such as penicillin G ...

  2. Botulinum toxin injection - larynx

    MedlinePlus

    Injection laryngoplasty; Botox-larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography-guided botulinum toxin treatment; Percutaneous indirect laryngoscopy-guided botulinum toxin Treatment; ...

  3. Giving an insulin injection

    MedlinePlus

    ... One Type of Insulin Wash your hands with soap and water. Dry them well. Check the insulin ... syringe before injecting it. Wash your hands with soap and water. Dry them well. Check the insulin ...

  4. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  5. Ferric Carboxymaltose Injection

    MedlinePlus

    ... on dialysis. Ferric carboxymaltose injection is in a class of medications called iron replacement products. It works ... rapid, weak pulse; chest pain; or loss of consciousness. If you experience a severe reaction, your doctor ...

  6. Epoetin Alfa Injection

    MedlinePlus

    ... surgery to decrease the chance that blood transfusions (transfer of one person's blood to another person's body) ... wheezing difficulty breathing or swallowing hoarseness lack of energy dizziness fainting Epoetin alfa injection may cause other ...

  7. Sipuleucel-T Injection

    MedlinePlus

    ... doctor or nurse in a doctor's office or infusion center. It is usually given once every 2 ... injection may cause serious allergic reactions during an infusion and for about 30 minutes afterwards. A doctor ...

  8. Quinupristin and Dalfopristin Injection

    MedlinePlus

    ... a class of medications called streptogramin antibiotics. They work by killing bacteria that cause infections.Antibiotics such as quinupristin and dalfopristin injection will not work for colds, flu, or other viral infections. Taking ...

  9. Amphotericin B Injection

    MedlinePlus

    ... injection is in a class of medications called antifungals. It works by slowing the growth of fungi ... amikacin, gentamicin, or tobramycin (Bethkis, Kitabis Pak, Tobi); antifungals such as clotrimazole, fluconazole (Diflucan), itraconazole (Onmel, Sporanox), ...

  10. Epoetin Alfa Injection

    MedlinePlus

    ... types of surgery to decrease the chance that blood transfusions (transfer of one person's blood to another person's ... injection is used to decrease the risk that blood transfusions will be required due to surgery, it is ...

  11. Darbepoetin Alfa Injection

    MedlinePlus

    ... may tell you not to use darbepoetin alfa injection.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  12. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  13. Insulin Lispro Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... if it is colored, cloudy, or contains solid particles. If you are using insulin lispro suspension, the ...

  14. Collagenase Clostridium Histolyticum Injection

    MedlinePlus

    ... disease (a thickening of tissue [plaque] inside the penis that causes the penis to curve). Collagenase Clostridium histolyticum injection is in ... the plaque of thickened tissue and allows the penis to be straightened.

  15. Ceftazidime and Avibactam Injection

    MedlinePlus

    ... may receive ceftazidime and avibactam injection in a hospital or you may administer the medication at home. ... doctor or if you are admitted to a hospital. It is also important information to carry with ...

  16. Sipuleucel-T Injection

    MedlinePlus

    ... be sure you are not having a serious reaction to the medication. You will be given other medications 30 minutes before your infusion to prevent reactions to sipuleucel-T injection. Tell your doctor or ...

  17. Supersonic Pulsed Injection

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Harding, G. C.; Diskin, G. S.

    2001-01-01

    An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.

  18. AbobotulinumtoxinA Injection

    MedlinePlus

    ... is also used to temporarily smooth frown lines (wrinkles between the eyebrows). AbobotulinumtoxinA injection is in a ... to treat excessive sweating, many types of facial wrinkles, anal fissures, and to prevent headaches in patients ...

  19. Sodium Ferric Gluconate Injection

    MedlinePlus

    ... the kidneys to stop working) who are on dialysis and are also receiving the medication epoetin (Epogen, ... gluconate injection is usually given during 8 consecutive dialysis sessions for a total of 8 doses. If ...

  20. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  1. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  2. Tevatron injection timing

    SciTech Connect

    Saritepe, S.; Annala, G.

    1993-06-01

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  3. Injections--how safe.

    PubMed

    Sharma, Saurabh

    2005-04-01

    Injection, is a skin-piercing event performed by a syringe and needle with the purpose of introducing a curative substance or vaccine in a patient. According to WHO, safe injection is one which does not harm to the recepient, does not expose the health worker to any risk and does not result in waste that is dangerous for the community. To achieve this injection should be prepared on a clean workspace, provider should clean his hands appropriately, sterility of the syringe and needle to be maintained, skin of the recipient should be cleaned and above all sharps waste should be managed appropriately. Common danger of unsafe injection is infection. Most medication used in primary care can be administered orally. So firstly the behaviour of healthcare providers and patients must be changed so as to decrease overuse of injections, secondly provision of sufficient quantities of appropriate injection equipment and infection control supplies should be made available and thirdly a sharp waste management system should be set up. PMID:16173426

  4. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  5. Lipidomics by Supercritical Fluid Chromatography.

    PubMed

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  6. Lipidomics by Supercritical Fluid Chromatography

    PubMed Central

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  7. Ciliary fluid transport enhanced by viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2015-11-01

    Motile cilia encounter complex, non-Newtonian fluids as they beat to gain self-propulsion of cells, transport fluids, and mix particles. Recently there have been many studies on swimming in complex fluids, both experimentally and theoretically. However the role of the non-Newtonian fluid in the ciliary transport system remains largely unknown. Here we use a one-way-coupled immersed boundary method to evaluate the impacts of viscoelastic fluid (Oldroyd-B fluid) on the fluid transport generated by an array of rabbit tracheal cilia beating in a channel at low Reynolds number. Our results show that the viscoelasticity could enhance the fluid transport generated by the rabbit tracheal cilia beating pattern and the flow is sensitive to the Deborah number in the range we investigate.

  8. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  9. Synovial fluid analysis

    MedlinePlus

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  10. Pleural fluid Gram stain

    MedlinePlus

    Gram stain of pleural fluid ... lungs fill a person's chest with air. If fluid builds up in the space outside the lungs ... chest, it can cause many problems. Removing the fluid can relieve a person's breathing problems and help ...

  11. Pericardial fluid culture

    MedlinePlus

    Culture - pericardial fluid ... the heart (the pericardium). A small amount of fluid is removed. You may have an ECG and ... x-ray after the test. Sometimes the pericardial fluid is taken during open heart surgery. The sample ...

  12. Pleural fluid culture

    MedlinePlus

    Culture - pleural fluid ... is used to get a sample of pleural fluid. The sample is sent to a laboratory and ... the chest wall into the pleural space. As fluid drains into a collection bottle, you may cough ...

  13. Injectable Multiple Sclerosis Medications

    PubMed Central

    Tran, Zung Vu

    2012-01-01

    Although injection-site reactions (ISRs) occur with US Food and Drug Administration–approved injectable disease-modifying therapies (DMTs) for multiple sclerosis, there are currently few reports of real-world data on ISR management strategies or possible correlations between ISRs and patient demographics, disease characteristics, and missed injections. Patient-reported data on the use of DMTs, patient demographic and disease characteristics, missed injections, and ISR reduction strategies were collected via e-mail, a patient registry (www.ms-cam.org), and a Web-based survey. Of the 1380 respondents, 1201 (87%) indicated that they had used injectable DMTs, of whom 377 (31%) had used intramuscular (IM) interferon beta-1a (IFNβ-1a), 172 (14%) had used subcutaneous (SC) IFNβ-1a, 183 (15%) had used SC IFNβ-1b, and 469 (39%) had used glatiramer acetate (GA). The majority of respondents were older (73% were ≥40 years), female (79%), married or living with a partner (72%), white (94%), and nonsmoking (82%). Injection-site reaction incidence, grouped according to severity, varied among DMTs, with IM IFNβ-1a causing significantly (P < .001) fewer mild, moderate, or severe ISRs than the other therapies. Female sex and younger age were significantly (P < .05) associated with more moderate ISRs among users of IM IFNβ-1a, SC IFNβ-1b, and GA. Nonwhites reported severe ISRs more often than whites. For all DMTs injection-site massage and avoidance of sensitive sites were the most frequently used strategies to minimize ISRs. These data may help identify patients with characteristics associated with a higher risk for ISRs, allowing health-care professionals to provide anticipatory guidance to patients at risk for decreased adherence or discontinuation. PMID:24453732

  14. Fluid sampling device

    NASA Technical Reports Server (NTRS)

    Studenick, D. K. (Inventor)

    1977-01-01

    An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.

  15. Syringe injectable electronics

    PubMed Central

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  16. [The injectables in urogynecology].

    PubMed

    Pifarotti, P; Gattei, U; Meschia, M

    2003-04-01

    The purpose of this review is to summarize the results of reports of injectable agents for the treatment of female urinary stress incontinence. The real indication for injectables is intrinsic shincter deficiency (ISD) but urethral hypermobility is not a controindication. Six agents were reviewed: Teflon, autologous fat, collagen, silicone microparticles, silicone microballoons and pyrolytic carbon. Collagen was the most frequently reported agent and yielded 1 year cure/ improvement rate of 60-80%, but results de-creased significantly with longer term follow-up. Teflon has been used longer for the treatment of stress incontinence but both low long and short-term success rate and the reported complications such as particles migration have resulted in its lack of widespread acceptance. Autologous fat has been suggested as the natural injectable but yielded disappointing success rate. Injection of silicone microparticles was associated with a long-term success rate of about 70% in patients with ISD. Moreover, it is now injected without urethroscopy and this makes the procedure easier. Silicone microballoons and pyrolytic carbon have been recently introduced into clinical practice with a short-term success rate of about 70%. However, longer follow-up is needed. In conclusion, long-term durability, cost effectiveness and some safety issues still have to be addressed by further clinical trials. PMID:12711996

  17. Syringe-injectable electronics

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  18. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-03-24

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.

  19. The use of variable speed drives to retrofit hydraulic injection molding machines

    SciTech Connect

    Ambs, L.; Frerker, M.M.

    1998-06-01

    Injection molding is a common method of plastic processing in which thermoplastic materials can be molded into arbitrary complex shapes. Most injection molding machines use complicated hydraulic systems to perform the necessary work of the process. Hydraulic system flow and pressure requirements vary throughout the cycle and in many cases, excess fluid that is not required by the process is throttled back to the reservoir, wasting motor energy and producing additional thermal load on the cooling system. Variable speed drives can be used to allow injection molding machine hydraulic systems to vary the amount of fluid being pumped and thus reduce the amount of fluid that is throttled reducing the amount of wasted energy. This article discusses injection molding machine processes and develops a protocol for assessing the efficacy of variable speed drive retrofits for hydraulic injection molding machines.

  20. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  1. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  2. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  3. One-Dimensional SO2 Predictions for Duct Injection

    Energy Science and Technology Software Center (ESTSC)

    1993-10-05

    DIAN1D is a one-dimensional model that predicts SO2 absorption by slurry droplets injected into a flue gas stream with two-fluid atomizers. DIANUI is an interactive user interface for DIAN1D. It prepares the input file for DIAN1D from plant design specifications and process requirements.

  4. Turbulent acidic jets and plumes injected into an alkaline environment

    NASA Astrophysics Data System (ADS)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  5. Optimization of injection scheduling in geothermal fields

    SciTech Connect

    Lovekin, J.

    1987-05-01

    This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

  6. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  7. Osmotic extraction of hypotonic fluid from the lungs.

    PubMed

    Effros, R M

    1974-10-01

    After injections of sucrose, NaCl, and urea solutions, the flow of tissue fluid from the lungs amounted to 0.182, 0.216, and 0.152 x 10(-3) ml/s per mosmol/kg of concentration difference between plasma and tissues in each gram of wet tissue weight. The extracted fluid contained less than 20% of the Na(+), K(+) and urea concentrations of the plasma. It was concluded that this fluid was distinctly hypotonic in comparision with the fluids of the plasma and tissue compartments both before and after the injection of hypertonic solutions. The presence of low solute concentrations in the extracted fluid is attributed to the passage of this fluid across cellular membranes, which are relatively impermeable to small hydrophilic solutes. Movement of fluid out of the junctions appears to be less than that through the endothelial cells. It is suggested that the injected solutes rapidly leak into the junctions and consequently induce relatively little movement of water or tissue solutes out of the junctions. Concentrations of tritiated water and [(14)C]antipyrine in the extracted fluid are essentially the same as base-line plasma concentrations when the animals have been primed with these tracers. It is therefore likely that these tracers can readily traverse cellular membranes. Red cell transit through the lungs is impaired by hypertonic solutions of sucrose and NaCl with transient increases in pulmonary arterial hemoglobin concentrations of as much as 35% of base-line values. PMID:4430723

  8. Analysis of nonisothermal injection and falloff tests in layered reservoirs

    SciTech Connect

    Halfman, S.E.; Benson, S.M.

    1985-03-01

    The effects of reservoir layering and gravity segregation on nonisothermal injection and falloff tests are investigated. Results show that layering does not affect injection or falloff data if all the layers are permeable and accept fluids from the wellbore. In such cases, the average permeability, skin factor, and distance to the thermal front can be calculated using the techniques developed for homogeneous reservoirs. Special considerations have to be taken for cases where several layers are impermeable or are permeable but do not accept fluids of the well face. In the first case (impermeable layers), knowledge of the total thickness of the permeable layers is required for the existing techniques to be applied successfully. In the second case, the existing techniques cannot be applied, but characteristic responses from injection and falloff test are seen; therefore, this case can be identified easily. 13 refs., 8 figs.

  9. Fluid mechanics in fluids at rest.

    PubMed

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases. PMID:23005525

  10. Scaleup tests and supporting research for the development of duct injection technology

    SciTech Connect

    Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. ); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. )

    1989-05-01

    Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE's Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

  11. Fault slip controlled by stress path and fluid pressurization rate

    NASA Astrophysics Data System (ADS)

    French, Melodie E.; Zhu, Wenlu; Banker, Jeremy

    2016-05-01

    The practice of injecting fluids into the crust is linked to regional increases in seismicity. Increasing fluid pressure along preexisting faults is believed to enhance seismicity rates by reducing the shear stress required for slip, but the processes that cause faults to slip under conditions of fluid pressurization are poorly constrained. We use experimental rock deformation to investigate the controls of fluid pressurization and pressurization rates on fault slip style. We show that pore fluid pressurization is less effective that mechanical changes in fault normal stress at initiating accelerated slip events. Fluid pressurization enhances the total slip, slip velocity, and shear stress drop of events initiated by mechanical changes in normal stress, and these parameters are correlated with pressurization rate, but not the magnitude of fluid pressure. This result is consistent with field-scale observations and indicates that processes active at the pore network scale affect induced seismicity.

  12. STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    The approach used is to inject steam into 1- dimensional columns that have been packed with contaminated soil from the site. Temperatures in the system are monitored aliquots of the effluent collected for analysis. A sample of the initial soil, the final steamed soil, the effluen...

  13. Talimogene Laherparepvec Injection

    MedlinePlus

    ... It is a weakened and changed form of Herpes Simplex Virus Type I (HSV-1 'cold sore virus') that ... injection sites or bandages. This can spread the virus in the talimogene ... signs of a herpes infection;: pain, burning, or tingling in a blister ...

  14. Magnetron injection gun scaling

    SciTech Connect

    Lawson, W.

    1988-04-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations.

  15. Intracytoplasmic sperm injection

    MedlinePlus Videos and Cool Tools

    ... in which fertilization occurs outside of the body. First, egg cells are harvested and transferred to a special media in a laboratory dish. Within a few hours, a single sperm is injected through a fine needle into the center of an egg cell to aid in the process of fertilization. If successful, the ...

  16. Collagen and injectable fillers.

    PubMed

    Cheng, Jacqueline T; Perkins, Stephen W; Hamilton, Mark M

    2002-02-01

    Soft tissue augmentation of facial rhytids, scars, and deformities is a frequently performed office procedure. This article reviews the available biologic (collagen, Dermalogen, Autologen, Isolagen, autologous fat, Fibrel, hyaluronic acid derivatives, particulate fascia lata, micronized Alloderm) and alloplastic (silicone, Bioplastique, and Artecoll) soft tissue injectable fillers. PMID:11781208

  17. Pellet injection technology

    NASA Astrophysics Data System (ADS)

    Combs, S. K.

    1993-07-01

    During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures (≂10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of ≂1-2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1-40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice. A few two-stage pneumatic systems (single-shot) have recently been installed on tokamak

  18. Fluid transport container

    DOEpatents

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  19. Fluid transport container

    DOEpatents

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  20. Oil recovery process: injection of fatty alcohol followed by soap

    SciTech Connect

    Cardenas, R.; Carlin, J.

    1980-07-22

    A method is described for recovering crude oil from a subterranean reservoir having one or more injection means in fluid communication with one or more producing means. The method comprises injecting into said reservoir through said injection means an effective quantity of a solution of a fatty alcohol wherein the alcohol is selected from the group consisting of n-dodecyl, n-octyl and oleyl alcohols and mixtures thereof ranging in concentration from about 0.1 to about 10.0 weight percent of the injected solution and either a crude oil or a refined fraction of crude oil followed by an effective quantity of a solution comprising a soap and water wherein said soap is a sodium dodecyl sulfate ranging in concentration from about 0.05 to about 5.0 weight percent of the injected solution, said solutions combining with the crude oil present in the reservoir to form an oil-in-water emulsion, driving said solutions and emulsion through the reservoir by injection of a driving fluid and recovering the crude oil through said produciton means.

  1. METHODS FOR DETERMINING THE MECHANICAL INTEGRITY OF CLASS II INJECTION WELLS

    EPA Science Inventory

    The mechanical integrity of injection wells must be determined to insure that there is no significant leak in the casing, tubing or packer, and that there is no significant fluid movement through vertical channels adjacent to the injection well. Methods for mechanical integrity t...

  2. 75 FR 30392 - Approval of a Petition for Exemption from Hazardous Waste Disposal Injection Restrictions to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ..., penetrations of the confining zone, and computational models of the injection zone. EPA has determined that the... fluid migration out of the injection zone within 10,000 years, as required under 40 CFR part 148. The... sequence of permeable and less permeable sedimentary rocks, which provide additional protection from...

  3. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance.

    PubMed

    Gordon, Christopher J; Phillips, Pamela M; Johnstone, Andrew F M

    2016-03-01

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed %fluid, and is a measure of unbound water in the vascular and extracellular spaces. We hypothesized that injecting a bolus of fluid into the peritoneal cavity would lead to an abrupt increase in %fluid and the rate of clearance monitored with TD-NMR would provide a noninvasive assessment of the free water homeostasis in an awake rat. Several strains of laboratory rats were injected intraperitoneally with 10 ml/kg isotonic or hypertonic saline and %fluid was monitored repeatedly with a Bruker "Minispec" TD-NMR body composition system. Following isotonic saline, %fluid increased immediately by 0.5% followed by a recovery over ∼6 h. Injecting hypertonic (3 times normal saline) resulted in a significantly greater rise in %fluid and longer recovery. Intraperitoneal and subcutaneous fluid injection led to similar rates of clearance. The Wistar-Kyoto rat strain displayed significantly slower recovery to fluid loads compared with Long-Evans and Sprague-Dawley strains. Rats exercised chronically showed significant increases in %fluid, but the rate of clearance of fluid was similar to that of sedentary animals. We conclude that this technique could be used to study vascular and extracellular volume homeostasis noninvasively in rats. PMID:26697983

  4. Fluid pressure waves trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2015-03-01

    Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.

  5. Induced Seismicity of the Paradox Valley Brine Injection

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Foxall, W.; Daley, T. M.

    2013-12-01

    The Paradox Valley Unit (PVU) is operated by the U.S. Bureau of Reclamation (USBR) and is built to control the water quality of the Dolores River - a feeder of the Colorado River. Brine is extracted along the river from several shallow wells. Before it is injected into a 4.8km deep well for long-term storage, it is filtered at a surface-treatment facility. The target zone of the injection is a subhorizontal formation of a Mississippian-age limestone. The first injection test started in 1991, continuous injections started in 1996 and are still ongoing. The injection of the fluid in the underground induces micro-seismicity that is monitored by the USBR with the 15-station Paradox Valley Seismic Network. This network located more then 5700 events in the 20 years since the injection started. The locations of the seismic events give crucial insights to the pathways of the injected fluid. In this study we analyze the seismicity up to the end of 2011, which does not include the magnitude 3.9 event that caused a temporary shut down of the PVU in January 2013. The largest event included in our study period is an event with M4.3 of May 2000. The majority (75%) of events are micro-seismic events with magnitudes of 1 or smaller; only 74 events have magnitudes larger or equal to 2.5 of which only 4 are larger or equal to 3.5. Most of the seismicity is constrained to the vicinity of the injection well with roughly 80% of the events occurring within a 4km radius. However, there is one active zone more then 10 km away from the injection well that showed first activity in late 2010. More than 500 micro-seismic events occurred within several weeks in this new zone. The goal behind this study is to understand the processes behind a long-term injection of fluid into the underground where no circulation takes place. While other such projects exist, such as different wastewater injections, none of them has been monitored as well as the Paradox Valley seismicity and or has been going on

  6. Hydrologic characteristics of the Bandelier Tuff as determined through an injection well system

    SciTech Connect

    Purtymun, W.D.; Enyart, E.A.; McLin, S.G.

    1989-08-01

    Injection wells were used to determine some of the hydrologic transmitting characteristics of the unsaturated Bandelier Tuff. At site 1, a 60-ft injection well with a 5-ft injection zone was used to conduct four tests. These preliminary tests were made in order to design an injection-well monitoring system that could track the movement of fluids in the tuff. At site 2, a second injection well with a 10-ft injection zone and seven observation holes was used to monitor the movement of 335,000 gal. of water injected into the tuff. The initial injection rate at site 2 was 5.8 gallons per minute (gpm), but that rate gradually declined to 0.4 gpm after 89 days of the test; 289 days after the test ended, the pear-shaped nephol (the shape of moisture injected into the tuff) reached a maximum depth of 210 ft and had a diameter of about 120 ft. A second test at site 2 indicated that intermittent use of an injection system would allow for short periods of higher injection rates, thereby extending the life of the system. Finally, a third test at site 2 was made using a 50-ft injection zone, which resulted in an injection rate of 15.8 gpm, or about 3 times the initial rate achieved when a 10-ft injection zone was used. 8 refs., 10 figs., 5 tabs.

  7. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  8. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  9. Experimental constraints on the deformation and breakup of injected magma

    NASA Astrophysics Data System (ADS)

    Hodge, Kirsten F.; Carazzo, Guillaume; Jellinek, A. Mark

    2012-04-01

    The injection, breakup and stirring of dikes entering convecting silicic magma chambers can govern how they grow and differentiate, as well as influence their potential for eruption at the surface. Enclaves observed in plutons may preserve a record of this process and, thus, identifying and understanding the physical processes underlying their formation is a crucial issue in volcanology. We use laboratory experiments and scaling theory to investigate the mechanical and rheological conditions leading to the deformation and breakup of analog crystal-rich dikes injected as discrete plumes that descend into an underlying imposed shear flow. To scale the experiments and map the results across a wide range of natural conditions we define the ratio S of the timescale for the growth of a gravitational Rayleigh-Taylor (R-T) instability of the sheared, injected material to the timescale for settling through the fluid layer and the ratio Y of the timescales for shearing and lateral disaggregation of the particle-fluid mixture (yielding). At low S (< 3) and high Y (> 40), descending plumes are stretched and tilted before undergoing R-T instability, forming drips with a wavelength that is comparable to the initial diameter of the injection. At low Y (< 40) and S values that increase from ∼ 3 as Y → 0, an injection yields in tension before a R-T instability can grow, forming discrete particle-fluid blobs that are much smaller than the initial injection diameter and separated by thin filaments of the original mixture. At high S (> 3) and high Y (> 40), injections remain intact as they settle through the layer and pond at the floor. Applied to magma chambers, our results do not support the production of a continuum of enclave sizes. Indeed, from scaling analyses we expect the two breakup regimes to form distinct size populations: Whereas enclaves formed in the R-T regime will be comparable to the injection size, those formed in the tension regime will be much smaller. We show

  10. Injection of deuterium pellets

    SciTech Connect

    Sorensen, H.; Andersen, P.; Andersen, S.A.; Andersen, V.; Nordskov-Nielsen, A.; Sass, B.; Weisberg, K.V.

    1984-09-01

    A discussion is given of the work done at Riso National Laboratory on the design and construction of deuterium pellet injectors. A pellet injection system made for the TFR tokamak at Fontenay-aux-Roses, Paris is described. 0.12-mg pellets are injected with velocities of around 600-700 m/s through a 5-m long guide tube. Next some of the details of a new light gas gun are given; with this gun, hydrogen pellets are accelerated to velocities above 1400 m/s, deuterium pellets to velocities above 1300 m/s and neon pellets to velocities above 550 m/s. Finally, a new acceleration method where a pellet should be accelerated by means of a magnetically stabilised electrical discharge is discussed, and a set up for measuring of the pellet size by means of a microwave cavity is outlined.

  11. Fuel injection valve connection

    SciTech Connect

    Eshleman, E.S.; Field, M.J.; Penwright, J.L.

    1987-09-15

    A fuel injection valve connection is described which consists of a fuel injection valve having a cylindrical inlet fitting. The fitting has a threaded internal surface and a cylindrical external surface. A fuel connector has a projection with a threaded external surface that mates with the threaded internal surface of the fitting. The connector also has a sleeve with a cylindrical internal surface surrounding the fitting and an O-ring sealingly engaging the internal surface of the sleeve and the external surface of the fitting, whereby the valve may be rotated relative to the connector without breaking the sealing engagement between the valve and the connector, and wherein the connector also has a tab engageable with the injector to prevent unthreading of the valve from the connector.

  12. INJECTION-MOLDING APPARATUS

    DOEpatents

    Lobell, G.M.

    1958-02-11

    This patent is drawn to an injection molding apparatus for producing a tube closed at one end wherein the normally unsupported end of the core located in the cavity during the injection of the molten material to fill the space between the core and cavity wall, which supporting means is automatically removed from operation during the forming of the closed end of the tube. This support means is a plug extending through the end of the core into a recess in the bottom of the cavity where the closed end of the tube is to be formed. The plug is spring pressed into said recess and is forced out of the recess by a slidable bushing at the top of the cavity which is moved against the force of the spring by the molten material when it fills the uppormost open end portion of the cavity, thereby permitting the closed end of the tube to be formed.

  13. Injectable nanocarriers for biodetoxification

    NASA Astrophysics Data System (ADS)

    Leroux, Jean-Christophe

    2007-11-01

    Hospitals routinely treat patients suffering from overdoses of drugs or other toxic chemicals as a result of illicit drug consumption, suicide attempts or accidental exposures. However, for many life-threatening situations, specific antidotes are not available and treatment is largely based on emptying the stomach, administering activated charcoal or other general measures of intoxication support. A promising strategy for managing such overdoses is to inject nanocarriers that can extract toxic agents from intoxicated tissues. To be effective, the nanocarriers must remain in the blood long enough to sequester the toxic components and/or their metabolites, and the toxin bound complex must also remain stable until it is removed from the bloodstream. Here, we discuss the principles that govern the use of injectable nanocarriers in biodetoxification and review the pharmacological performance of a number of different approaches.

  14. Exserohilum Infections Associated with Contaminated Steroid Injections

    PubMed Central

    Ritter, Jana M.; Muehlenbachs, Atis; Blau, Dianna M.; Paddock, Christopher D.; Shieh, Wun-Ju; Drew, Clifton P.; Batten, Brigid C.; Bartlett, Jeanine H.; Metcalfe, Maureen G.; Pham, Cau D.; Lockhart, Shawn R.; Patel, Mitesh; Liu, Lindy; Jones, Tara L.; Greer, Patricia W.; Montague, Jeltley L.; White, Elizabeth; Rollin, Dominique C.; Seales, Cynthia; Stewart, Donna; Deming, Mark V.; Brandt, Mary E.; Zaki, Sherif R.

    2014-01-01

    September 2012 marked the beginning of the largest reported outbreak of infections associated with epidural and intra-articular injections. Contamination of methylprednisolone acetate with the black mold, Exserohilum rostratum, was the primary cause of the outbreak, with >13,000 persons exposed to the potentially contaminated drug, 741 confirmed drug-related infections, and 55 deaths. Fatal meningitis and localized epidural, paraspinal, and peripheral joint infections occurred. Tissues from 40 laboratory-confirmed cases representing these various clinical entities were evaluated by histopathological analysis, special stains, and IHC to characterize the pathological features and investigate the pathogenesis of infection, and to evaluate methods for detection of Exserohilum in formalin-fixed, paraffin-embedded (FFPE) tissues. Fatal cases had necrosuppurative to granulomatous meningitis and vasculitis, with thrombi and abundant angioinvasive fungi, with extensive involvement of the basilar arterial circulation of the brain. IHC was a highly sensitive method for detection of fungus in FFPE tissues, demonstrating both hyphal forms and granular fungal antigens, and PCR identified Exserohilum in FFPE and fresh tissues. Our findings suggest a pathogenesis for meningitis involving fungal penetration into the cerebrospinal fluid at the injection site, with transport through cerebrospinal fluid to the basal cisterns and subsequent invasion of the basilar arteries. Further studies are needed to characterize Exserohilum and investigate the potential effects of underlying host factors and steroid administration on the pathogenesis of infection. PMID:23809916

  15. Snowplow Injection Front Effects

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Buzulukova, N.; Collinson, G. A.; Kepko, E. L.; Garcia-Sage, K. S.; Henderson, M. G.; Sitnov, M. I.

    2013-01-01

    As the Polar spacecraft apogee precessed through the magnetic equator in 2001, Polar encountered numerous substorm events in the region between geosynchronous orbit and 10 RE geocentric distance; most of them in the plasma sheet boundary layers. Of these, a small number was recorded near the neutral sheet in the evening sector. Polar/Thermal Ion Dynamics Experiment provides a unique perspective on the lowest-energy ion plasma, showing that these events exhibited a damped wavelike character, initiated by a burst of radially outward flow transverse to the local magnetic field at approximately 80 km/s. They then exhibit strongly damped cycles of inward/outward flow with a period of several minutes. After one or two cycles, they culminated in a hot plasma electron and ion injection, quite similar to those observed at geosynchronous orbit. Cold plasmaspheric plasmas comprise the outward flow cycles, while the inward flow cycles contain counterstreaming field-parallel polar wind-like flows. The observed wavelike structure, preceding the arrival of an earthward moving substorm injection front, suggests an outward displacement driven by the inward motion at local times closer to midnight, that is, a "snowplow" effect. The damped in/out flows are consistent with interchange oscillations driven by the arrival at the observed local time by an injection originating at greater radius and local time.

  16. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  17. A Fluid Bait for Remedial Control of Subterranean Termites.

    PubMed

    Su, Nan-Yao

    2015-02-01

    A fluid bait, comprising α-cellulose and fine-ground phagostimulants (Summon Preferred Food Source) impregnated with 0.5% hexaflumuron (AI wt/wt) and mixed with 1% methylcel solution to yield 10% dry weight, was injected into simulated foraging galleries of Coptotermes formosanus Shiraki and Reticulitermes virginicus (Banks) for a laboratory efficacy evaluation. Six weeks after the injection, mortalities for both species exceeded 90%, and all termites died by the eight wk. The fluid bait can be applied internally through a small drill hole in a tight spot with any surface contour and may bypass many problems associated with the AG system that has to be installed externally on the walls or wood surface. When injected into an active gallery of termites in a structure, a tree, or in soil, the fluid baits may be fed immediately by termites to achieve the colony elimination. PMID:26470130

  18. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond ... to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications ...

  19. Interferon Beta-1b Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... interferon beta-1b injection at around the same time of day each time you inject it. Follow ...

  20. Peginterferon Beta-1a Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... peginterferon beta-1a injection at around the same time of day each time you inject it. Follow ...