Science.gov

Sample records for fluid insulin-like growth

  1. Insulin-like growth factor binding proteins in follicular fluid from morphologically distinct healthy and atretic bovine antral follicles.

    PubMed

    Irving-Rodgers, H F; Catanzariti, K D; Master, M; Grant, P A; Owens, P C; Rodgers, R J

    2003-01-01

    In bovine follicles 2-5 mm in diameter, two morphologically distinct types of healthy follicles and two types of atretic follicles have been described recently. Healthy follicles either have columnar basal granulosa cells with follicular basal lamina composed of many layers or 'loops' or they have rounded basal cells with a conventional single-layered, aligned follicular basal lamina. In atretic follicles, cell death either commences at the basal layer and progresses to the antrum (basal atresia) with macrophage penetration of the membrana granulosa or death progresses from the antrum in a basal direction (antral atresia). Little is known about how these different phenotypes develop. To determine whether insulin-like growth factor binding protein (IGFBP) levels in follicular fluid differ between these different types of follicles, we measured IGFBP levels in fluids from these follicles. A total of 61 follicles were assessed by light microscopy and characterized by morphological analysis as either healthy, with columnar or rounded basal granulosa cells, or as undergoing antral or basal atresia. The IGFBP concentration in the follicular fluid of individual follicles from the four groups (n = 12-20 per group) was identified by Western ligand blots using (125)I-insulin-like growth factor (IGF)-II as a probe. Insulin-like growth factor binding proteins 2, 3 (44 and 40 kDa), 4 (glycosylated and non-glycosylated) and 5 were observed. The levels (per volume of fluid) of IGFBPs 2, 4 and 5 were greater in atretic follicles than in healthy follicles. However, there were no statistical differences in levels of each IGFBP between either the two types of healthy follicle or between the two types of atretic follicles. Thus, IGFBP levels are not related to the different types of healthy or atretic follicles. PMID:12921699

  2. Targeting insulin-like growth factor pathways

    PubMed Central

    Yee, D

    2006-01-01

    Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents. PMID:16450000

  3. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  4. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  5. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  6. Distribution of insulin-like growth factors in condylar hyperplasia.

    PubMed

    Götz, Werner; Lehmann, Tim Sebastian; Appel, Thorsten Robin; Rath-Deschner, Birgit; Dettmeyer, Reinhard; Luder, Hans-Ulrich; Reich, Rudolf H; Jäger, Andreas

    2007-01-01

    Condylar hyperplasia (CH) is a local overgrowth of the condylar process of the temporomandibular joint (TMJ) of unknown etiology. Probably, growth factors like the insulin-like growth factors (IGFs) are involved in its pathogenesis. Specimens from 12 patients were investigated histologically and immunohistochemically to obtain the distribution of the IGFs-I and -II and the IGF1 receptor. The results revealed juvenile and adult subtypes. While generally IGF-II could only be detected weakly, in the juvenile cases strong immunostaining for IGF-I in cartilage and bone supposes an influence on pathological growth processes. PMID:17695990

  7. Insulin-like growth factor-1: roles in androgenetic alopecia.

    PubMed

    Panchaprateep, Ratchathorn; Asawanonda, Pravit

    2014-03-01

    Of all the cytokines or growth factors that have been postulated to play a role in hair follicle, insulin-like growth factor-1 (IGF-1) is known to be regulated by androgens. However, how IGF-1 is altered in the balding scalp has not yet been investigated. In this study, expressions of IGF-1 and its binding proteins by dermal papilla (DP) cells obtained from balding versus non-balding hair follicles were quantified using growth factor array. DP cells from balding scalp follicles were found to secrete significantly less IGF-1, IGFBP-2 and IGFBP-4 (P < 0.05) than their non-balding counterparts. Our data confirmed that the downregulation of IGF-1 may be one of the important mechanisms contributing to male pattern baldness. PMID:24499417

  8. Insulin-like growth factor-II and insulin-like growth factor-binding proteins in bovine cystic ovarian disease.

    PubMed

    Rey, F; Rodríguez, F M; Salvetti, N R; Palomar, M M; Barbeito, C G; Alfaro, N S; Ortega, H H

    2010-01-01

    Cystic ovarian disease (COD) is one of the most common reproductive disorders of cattle and is considered to have multifactorial aetiology. An accepted hypothesis involves neuroendocrinological dysfunction of the hypothalamic-pituitary-gonadal axis; however, the role of growth factors in COD has not been extensively investigated. The present study examines the potential role of members of the insulin-like growth factor (IGF) family in COD. Expression of genes encoding IGF-II and insulin-like growth factor-binding proteins (IGFBPs) was examined and the distribution of IGF-II within the follicular wall was assessed immunohistochemically. Finally, the concentration of IGF-II protein was determined in follicular fluid. There was increased IGF-II mRNA in the wall of cystic follicles, mainly associated with granulosa cells. Additionally, there was significantly more IGF-II protein in granulosa and theca cells in cystic follicles, but no change in the concentration of IGF-II in follicular fluid. Total IGFBPs, assessed by western blotting, were similar in different structures. However, by discriminating each IGFBP a decrease was detected in IGFBP-2 expression in cystic follicles that may be related to the observed higher expression of IGF-II. In summary, the present study provides evidence to suggest that COD in cattle is associated with modifications in the IGF-II system. PMID:19959179

  9. Insulin-like growth factors and fish reproduction.

    PubMed

    Reinecke, Manfred

    2010-04-01

    Knowledge of fish reproduction is of high relevance to basic fish biology and comparative evolution. Furthermore, fish are excellent biomedical models, and the impact of aquaculture on worldwide food production is steadily increasing. Consequently, research on fish reproduction and the potential modes of its manipulation has become more and more important. Reproduction in fish is regulated by the integration of endogenous neuroendocrine (gonadotropins), endocrine, and autocrine/paracrine signals with exogenous (environmental) factors. The main endocrine regulators of gonadal sex differentiation and function are steroid hormones. However, recent studies suggest that other hormones are also involved. Most prominent among these hormones are the insulin-like growth factors (Igfs), i.e., Igf1, Igf2, and, most recently, Igf3. Thus, the present review deals with the expression patterns and potential physiological functions of Igf1 and Igf2 in male and female gonads. It further considers the potential involvement of growth hormone (Gh) and balances the reasons for endocrine vs. autocrine/paracrine action of the Igfs on the gonads of fish. Finally, this review discusses the early and late development of gonadal Igf1 and Igf2 and whether they are targets of endocrine-disrupting compounds. Future topics for novel research investigation on Igfs and fish reproduction are presented. PMID:19864315

  10. Defining human insulin-like growth factor I gene regulation.

    PubMed

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  11. Proteolysis of insulin-like growth factor-binding protein-3 by human skin keratinocytes in culture in comparison to that in skin interstitial fluid: the role and regulation of components of the plasmin system.

    PubMed

    Xu, S; Savage, P; Burton, J L; Sansom, J; Holly, J M

    1997-06-01

    Proteolysis of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is an important determinant of IGF action on cells. We have investigated this in a human skin keratinocyte cell line HaCaT. Although these cells did not normally produce an active IGFBP-3 protease, addition of plasminogen resulted in a dose-dependent proteolysis of endogenous and exogenous IGFBP-3, producing fragments similar to those cleaved by skin interstitial fluid, but different from those generated by plasmin. Protease inhibitor profiles suggested the enzyme in the conditioned medium to be a calcium-dependent serine protease. Exogenous IGFBP-3 either inhibited or slightly stimulated IGF-I-induced cell proliferation when it was coincubated or preincubated with the cells, respectively. Both effects were attenuated in the presence of plasminogen. Preincubation of cells with IGF-I or long R3 IGF-I divergently changed plasminogen activator inhibitor-1 and -2 secretion, but only IGF-I blocked IGFBP-3 proteolysis. Such inhibition was also observed in a cell-free protease assay. IGF-I, however, had no effect on plasmin-induced IGFBP-3 degradation. Together, these data indicate that an IGFBP-3 protease similar to that in skin interstitial fluid is generated in plasminogen-treated HaCaT cells, and it attenuates the effects of IGFBP-3 on IGF action. IGF-I, probably by coupling with IGFBP-3, can protect it from the action of this protease. PMID:9177397

  12. Insulin-like growth factor I in sera, ovarian follicles and follicular fluid of cows with spontaneous or induced cystic ovarian disease.

    PubMed

    Ortega, Hugo H; Palomar, Martin M; Acosta, Juan C; Salvetti, Natalia R; Dallard, Bibiana E; Lorente, Juan A; Barbeito, Claudio G; Gimeno, Eduardo J

    2008-06-01

    The objective of this research was to determine changes in IGF-I levels in serum and follicular fluid, and immunoreactivity of the follicle wall of cows with spontaneous (slaughter specimens) or ACTH-induced follicular cysts, and to compare results to normal cycling (control) cows after selection of the ovulatory follicle. Concentrations of IGF-I in serum did not differ between control and cystic animals (p=0.76). Fluid from the ovulatory follicle in control cows had 41% higher concentrations of IGF-I than that from cystic follicles collected at slaughter (spontaneous cysts; p<0.05) and 70% higher than that in induced follicular cysts (p<0.05). An intense positive immunostaining with anti-IGF-I was observed in granulosa cells (p<0.05) and in the theca interna (p<0.05) of secondary and tertiary follicles in all three groups of animals, but staining was less intense in cystic (p<0.05) and atretic follicles (p<0.05). This study provides evidence to suggest that cystic ovarian disease in cattle is associated with decreased concentrations of IGF-I in follicular fluid, but not in serum, and decreased production of IGF-I in the follicular wall. These data support the notion that IGF-I plays a role in the regulation of folliculogenesis, and may participate in the pathogenesis of cystic ovarian disease in cattle. PMID:17631370

  13. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  14. Mecasermin (recombinant human insulin-like growth factor I).

    PubMed

    Rosenbloom, Arlan L

    2009-01-01

    Growth hormone (GH) exercises its growth effects by stimulating insulin-like growth factor I (IGF-I) synthesis in the liver (endocrine IGF-I) and by inducing chondrocyte differentiation/replication and local production of IGF-I (paracrine/autocrine IGF-I). Injectable recombinant human (rh)IGF-I (mecasermin) has been available for nearly 20 years for treatment of the rare instances of GH insensitivity caused by GH receptor defects or GH-inhibiting antibodies. Full restoration of normal growth, as occurs with rhGH replacement of GH deficiency, is not seen, presumably because only the endocrine deficiency is addressed. RhIGF-I has also been effective as an insulin-sensitizing agent in severe insulin-resistant conditions. Although the insulin-sensitizing effect may benefit both type 1 and type 2 diabetes, there are no ongoing clinical trials because of concern about risk of retinopathy and other complications. Promotion of rhIGF-I for treatment of idiopathic short stature has been intensive, with neither data nor rationale suggesting that there might be a better response than has been documented with rhGH. Other applications that have either been considered or are undergoing clinical trial are based on the ubiquitous tissue-building properties of IGF-I and include chronic liver disease, cystic fibrosis, wound healing, AIDS muscle wasting, burns, osteoporosis, Crohn's disease, anorexia nervosa, Werner syndrome, X-linked severe combined immunodeficiency, Alzheimer's disease, muscular dystrophy, amyotrophic lateral sclerosis, hearing loss prevention, spinal cord injury, cardiovascular protection, and prevention of retinopathy of prematurity. The most frequent side effect is hypoglycemia, which is readily controlled by administration with meals. Other common adverse effects involve hyperplasia of lymphoid tissue, which may require tonsillectomy/adenoidectomy, accumulation of body fat, and coarsening of facies. The anti-apoptotic properties of IGF-I are implicated in cancer

  15. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance. PMID:11953652

  16. Small Is Beautiful: Insulin-Like Growth Factors and Their Role in Growth, Development, and Cancer

    PubMed Central

    Maki, Robert G.

    2010-01-01

    Insulin-like growth factors were discovered more than 50 years ago as mediators of growth hormone that effect growth and differentiation of bone and skeletal muscle. Interest of the role of insulin-like growth factors in cancer reached a peak in the 1990s, and then waned until the availability in the past 5 years of monoclonal antibodies and small molecules that block the insulin-like growth factor 1 receptor. In this article, we review the history of insulin-like growth factors and their role in growth, development, organism survival, and in cancer, both epithelial cancers and sarcomas. Recent developments regarding phase I to II clinical trials of such agents are discussed, as well as potential studies to consider in the future, given the lack of efficacy of one such monoclonal antibody in combination with cytotoxic chemotherapy in a first-line study in metastatic non–small-cell lung adenocarcinoma. Greater success with these agents clinically is expected when combining the agents with inhibitors of other cell signaling pathways in which cross-resistance has been observed. PMID:20975071

  17. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer.

    PubMed

    Maki, Robert G

    2010-11-20

    Insulin-like growth factors were discovered more than 50 years ago as mediators of growth hormone that effect growth and differentiation of bone and skeletal muscle. Interest of the role of insulin-like growth factors in cancer reached a peak in the 1990s, and then waned until the availability in the past 5 years of monoclonal antibodies and small molecules that block the insulin-like growth factor 1 receptor. In this article, we review the history of insulin-like growth factors and their role in growth, development, organism survival, and in cancer, both epithelial cancers and sarcomas. Recent developments regarding phase I to II clinical trials of such agents are discussed, as well as potential studies to consider in the future, given the lack of efficacy of one such monoclonal antibody in combination with cytotoxic chemotherapy in a first-line study in metastatic non-small-cell lung adenocarcinoma. Greater success with these agents clinically is expected when combining the agents with inhibitors of other cell signaling pathways in which cross-resistance has been observed. PMID:20975071

  18. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival. PMID:26943480

  19. Body Size in Early Life and Adult Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3

    PubMed Central

    Poole, Elizabeth M.; Tworoger, Shelley S.; Hankinson, Susan E.; Schernhammer, Eva S.; Pollak, Michael N.; Baer, Heather J.

    2011-01-01

    Body size in early life has been associated with breast cancer risk. This may be partly mediated through the insulin-like growth factor (IGF) pathway. The authors assessed whether birth weight, body fatness at ages 5 and 10 years, and body mass index (BMI; weight (kg)/height (m)2) at age 18 years were associated with plasma concentrations of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 in 6,520 women aged 32–70 years at blood draw from the Nurses’ Health Study (1990–2006) and Nurses’ Health Study II (1997–2005). Birth weight, body fatness in childhood, and BMI at age 18 years were inversely associated with adult IGF-1 levels. For example, IGF-1 levels were 11.9% lower in women who reported being heaviest at age 10 years than in those who were leanest at age 10 (P-trend < 0.0001). Further, women who reported their birth weight as ≥10 pounds (≥4.5 kg) (vs. <5.5 pounds (<2.5 kg)) had 7.9% lower IGF-1 levels (P-trend = 0.002). Women whose BMI at age 18 years was ≥30 (vs. <20) had 14.1% lower IGF-1 levels (P-trend < 0.0001). Similar inverse associations were observed for insulin-like growth factor binding protein 3. These observations did not vary by adult BMI or menopausal status at blood draw. These findings suggest that altered IGF-1 levels in adulthood may be a mechanism through which early-life body size influences subsequent breast cancer risk. PMID:21828371

  20. Role of Insulin-like Growth Factor Binding Protein-3 in Allergic Airway Remodeling

    PubMed Central

    Veraldi, Kristen L.; Gibson, Bethany T.; Yasuoka, Hidekata; Myerburg, Michael M.; Kelly, Elizabeth A.; Balzar, Silvana; Jarjour, Nizar N.; Pilewski, Joseph M.; Wenzel, Sally E.; Feghali-Bostwick, Carol A.

    2009-01-01

    Rationale: The hallmarks of allergic asthma are airway inflammation, obstruction, and remodeling. Airway remodeling may lead to irreversible airflow obstruction with increased morbidity and mortality. Despite advances in the treatment of asthma, the mechanisms underlying airway remodeling are still poorly understood. We reported that insulin-like growth factor (IGF) binding proteins (IGFBPs) contribute to extracellular matrix deposition in idiopathic pulmonary fibrosis; however, their contribution to airway remodeling in asthma has not been established. Objectives: We hypothesized that IGFBP-3 is overexpressed in asthma and contributes to airway remodeling. Methods: We evaluated levels of IGFBP-3 in tissues and bronchoalveolar lavage fluid from patients with asthma at baseline and 48 hours after allergen challenge, in reparative epithelium in an in vitro wounding assay, and in conditioned media from cytokine- and growth factor–stimulated primary epithelial cells. Measurements and Main Results: IGFBP-3 levels and distribution were evaluated by Western blot, ELISA, and immunofluorescence. IGFBP-3 is increased in vivo in the airway epithelium of patients with asthma compared with normal control subjects. The concentration of IGFBP-3 is increased in the bronchoalveolar lavage fluid of patients with asthma after allergen challenge, its levels are increased in reparative epithelium in an in vitro wounding assay and in the conditioned medium of primary airway epithelial cell cultures stimulated with IGF-I. Conclusions: Our results suggest that one mechanism of allergic airway remodeling is through the secretion of the profibrotic IGFBP-3 from IGF-I–stimulated airway epithelial cells during allergic inflammation. PMID:19608721

  1. The insulin-like growth factor system in normal mammary gland function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factors (IGF) are now known to play an important role in normal mammary gland development and have been implicated as risk factors in the etiology of breast cancer. Studies in genetically engineered mouse models have demonstrated that the IGF system acts within the mammary epithe...

  2. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    PubMed Central

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming. PMID:20921199

  3. Low fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, the nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in normal individuals are not well-defined. The purpose of this study was to determine the ...

  4. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  5. Measuring Growth Hormone and Insulin-like Growth Factor-I in Infants: What is Normal?

    PubMed Central

    Hawkes, Colin Patrick; Grimberg, Adda

    2014-01-01

    The role of growth hormone (GH) and insulin-like growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements. PMID:24575549

  6. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  7. Skeletal effects of growth hormone and insulin-like growth factor-I therapy.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2016-09-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  8. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer

    PubMed Central

    Akkiprik, Mustafa; Feng, Yumei; Wang, Huamin; Chen, Kexin; Hu, Limei; Sahin, Aysegul; Krishnamurthy, Savitri; Ozer, Ayse; Hao, Xishan; Zhang, Wei

    2008-01-01

    The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics. PMID:18710598

  9. Myoferlin is required for insulin-like growth factor response and muscle growth

    PubMed Central

    Demonbreun, Alexis R.; Posey, Avery D.; Heretis, Konstantina; Swaggart, Kayleigh A.; Earley, Judy U.; Pytel, Peter; McNally, Elizabeth M.

    2010-01-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.—Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth. PMID:20008164

  10. Growth hormone and insulin-like growth factor I in a Sydney Olympic gold medallist.

    PubMed

    Armanini, D; Faggian, D; Scaroni, C; Plebani, M

    2002-04-01

    An Italian athlete who won a gold medal at the Sydney Olympic Games was studied. She was accused of doping after the finding of high levels of plasma growth hormone (GH) before the Games. She was studied firstly under stressed and then under unstressed conditions. In the first study, GH was measured every 20 minutes for one hour; it was above the normal range in all blood samples, whereas insulin-like growth factor I (IGF-I) was normal. In the second study, GH progressively returned to accepted normal levels; IGF-I was again normal. It was concluded that the normal range for GH in athletes must be reconsidered for doping purposes, because athletes are subject to stress and thus to wide variations in GH levels. PMID:11916901

  11. Growth hormone, insulin-like growth factor-1 and the aging brain.

    PubMed

    Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L; Yan, Han; Sonntag, William E

    2015-08-01

    Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan. PMID:25300732

  12. NKX3.1 activates expression of insulin-like growth factor binding protein-3 to mediate insulin-like growth factor-I signaling and cell proliferation.

    PubMed

    Muhlbradt, Erin; Asatiani, Ekaterina; Ortner, Elizabeth; Wang, Antai; Gelmann, Edward P

    2009-03-15

    NKX3.1 is a homeobox gene that codes for a haploinsufficient prostate cancer tumor suppressor. NKX3.1 protein levels are down-regulated in the majority of primary prostate cancer tissues. NKX3.1 expression in PC-3 cells increased insulin-like growth factor binding protein-3 (IGFBP-3) mRNA expression 10-fold as determined by expression microarray analysis. In both stably and transiently transfected PC-3 cells and in LNCaP cells, NKX3.1 expression increased IGFBP-3 mRNA and protein expression. In prostates of Nkx3.1 gene-targeted mice Igfbp-3 mRNA levels correlated with Nkx3.1 copy number. NKX3.1 expression in PC-3 cells attenuated the ability of insulin-like growth factor-I (IGF-I) to induce phosphorylation of type I IGF receptor (IGF-IR), insulin receptor substrate 1, phosphatidylinositol 3-kinase, and AKT. The effect of NKX3.1 on IGF-I signaling was not seen when cells were exposed to long-R3-IGF-I, an IGF-I variant peptide that does not bind to IGFBP-3. Additionally, small interfering RNA-induced knockdown of IGFBP-3 expression partially reversed the attenuation of IGF-IR signaling by NKX3.1 and abrogated NKX3.1 suppression of PC-3 cell proliferation. Thus, there is a close relationship in vitro and in vivo between NKX3.1 and IGFBP-3. The growth-suppressive effects of NKX3.1 in prostate cells are mediated, in part, by activation of IGFBP-3 expression. PMID:19258508

  13. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    PubMed

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development. PMID:26108887

  14. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    SciTech Connect

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of {sup 125}I-IGF-I was specific for IGF-I with anIC{sub 50} of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, {sup 125}I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy.

  15. Paravertebral fascial massage promotes brain development of neonatal rats via the insulin-like growth factor 1 pathway☆

    PubMed Central

    Wen, Zhongqiu; Zeng, Wenqin; Dai, Jingxing; Zhou, Xin; Yang, Chun; Duan, Fuhua; Liu, Yufeng; Yang, Huiying; Yuan, Lin

    2012-01-01

    Massage in traditional Chinese medicine can promote body and brain development of premature and normal newborn infants. In the present study, neonatal rats (1 day old) underwent paravertebral fascial massage (15 consecutive days), followed by subcutaneous injection of insulin-like growth factor 1 receptor antagonist, JB1 (9 consecutive days). Paravertebral fascial massage significantly increased insulin-like growth factor 1 expression and cell proliferation in the subventricular zone of the lateral ventricle and dentate gyrus of the hippocampus. However, JB1 inhibited this increase. Results suggest that paravertebral fascial massage can promote brain development of neonatal rats via the insulin-like growth factor 1 pathway. PMID:25722713

  16. The influence of nutrition on the insulin-like growth factor system and the concentrations of growth hormone, glucose, insulin, gonadotropins and progesterone in ovarian follicular fluid and plasma from adult female horses (Equus caballus)

    PubMed Central

    2014-01-01

    Background Feed intake affects the GH-IGF system and may be a key factor in determining the ovarian follicular growth rate. In fat mares, the plasma IGF-1 concentration is high with low GH and a quick follicular growth rate, in contrast to values observed in thin mares. Nothing is known regarding the long-term effects of differential feed intake on the IGF system. The objective of this experiment was to quantify IGFs, IGFBPs, GH, glucose, insulin, gonadotropin and progesterone (P4) in blood and in preovulatory follicular fluid (FF) in relation to feeding levels in mares. Methods Three years prior to the experiment, Welsh Pony mares were assigned to a restricted diet group (R, n = 10) or a well-fed group (WF, n = 9). All mares were in good health and exhibited differences in body weight and subcutaneous fat thickness. Follicular development was scanned daily and plasma was also collected daily. Preovulatory FF was collected by ultrasound-guided follicular aspiration. Hormone levels were assayed in FF and plasma with a validated RIA. Results According to scans, the total number of follicles in group R was 53% lower than group WF. Insulin and IGF-1 concentrations were higher in WF than in R mares. GH and IGF-2 concentrations were lower in plasma from WF mares than from R mares, but the difference was not significant in FF. The IGFBP-2/IGFBP-3 ratio in FF was not affected by feeding but was dramatically increased in R mare plasma. No difference in gonadotropin concentration was found with the exception of FSH, which was higher in the plasma of R mares. On the day of puncture, P4 concentrations were not affected by feeding but were higher in preovulatory FF than in plasma. Conclusions The bioavailability of IGF-1 or IGF-2, represented by the IGFBP2/IGFBP3 ratio, is modified by feed intake in plasma but not in FF. These differences partially explain the variability in follicular growth observed between well-fed mares and mares on restricted diets. PMID:25078409

  17. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  18. Characterization of insulin-like growth factor-binding proteins from sheep thyroid cells.

    PubMed

    Bachrach, L K; Liu, F R; Burrow, G N; Eggo, M C

    1989-12-01

    The insulin-like growth factors (IGFs) are bound by specific, high affinity binding proteins. Distinct classes of IGF-binding proteins have been described in human serum, amniotic fluid, cerebrospinal fluid, and conditioned medium from cultured cells. Sheep thyroid cells produce IGF-binding proteins under hormonal regulation. Cells grown without or with standard medium supplements (transferrin, glycyl-histidyl-lysine, hydrocortisone, somatostatin, insulin, and TSH) released binding proteins with apparent mol wt of 23, 29, and 32 kDa on Western ligand blot (nonreduced). Binding proteins from these cells appeared as 21, 26, 34, 36, and 41 kDa bands when cross-linked to [125I]IGF-I under reducing conditions. The addition of epidermal growth factor (EGF) or phorbol esters, thyroid cell mitogens stimulated the production of larger binding proteins with mol wt of 40-44 and 48-52 by ligand blot and cross-linking methods, respectively. Deglycosylation of conditioned medium cross-linked to [125I]IGF-I with endoglycosidase-F did not alter the size of the smaller binding proteins, but reduced EGF-stimulated binding proteins to 36-40 kDa. Similarly, tunicamycin treatment, which inhibits glycosylation, reduced only the size of this larger binding protein species. Polyclonal antisera directed against the human amniotic fluid binding protein (BP-28) immunoprecipitated the 32 kDa sheep thyroid binding protein seen on ligand blot and the cross-linked binding protein at 36-38 kDa. Antibody against the major human serum binding protein (BP-53) recognized only the larger EGF-stimulated binding proteins. In contrast to sheep thyroid cells, rat FRTL5 thyroid cells produced no detectable IGF-binding proteins. We conclude that the predominant binding proteins produced by sheep thyroid cells under standard culture conditions are non-glycosylated and immunoreact with antiserum directed against BP-28. EGF and phorbol esters stimulate production of larger glycosylated binding proteins

  19. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia.

    PubMed

    Wang, Zongwei; Olumi, Aria F

    2011-01-01

    Diabetes significantly increases the risk of benign prostatic hyperplasia (BPH) and low urinary tract symptoms (LUTS). The major endocrine aberration in connection with the metabolic syndrome is hyperinsulinemia. Insulin is an independent risk factor and a promoter of BPH. Insulin resistance may change the risk of BPH through several biological pathways. Hyperinsulinemia stimulates the liver to produce more insulin-like growth factor (IGF), another mitogen and an anti-apoptotic agent which binds insulin receptor/IGF receptor and stimulates prostate growth. The levels of IGFs and IGF binding proteins (IGFBPs) in prostate tissue and in blood are associated with BPH risk, with the regulation of circulating androgen and growth hormone. Stromal-epithelial interactions play a critical role in the development and growth of the prostate gland and BPH. Previously, we have shown that the expression of c-Jun in the fibroblastic stroma can promote secretion of IGF-I, which stimulates prostate epithelial cell proliferation through activating specific target genes. Here, we will review the epidemiologic, clinical, and molecular findings which have evaluated the relation between diabetes and development of BPH. PMID:21536370

  20. THE EPENDYMAL ROUTE FOR INSULIN-LIKE GROWTH FACTOR-1 GENE THERAPY IN THE BRAIN

    PubMed Central

    Hereñú, Claudia B.; Sonntag, William E.; Morel, Gustavo R.; Portiansky, Enrique L.; Goya, Rodolfo G.

    2009-01-01

    Intracerebroventricular administration of the peptide insulin-like growth factor-1 (IGF-1) has been shown to be an effective neuroprotective strategy in the brain of different animal models, a major advantage being the achievement of high concentrations of IGF-1 in the brain without altering serum levels of the peptide. In order to exploit this therapeutic approach further, we used high performance recombinant adenoviral (RAd) vectors expressing their transgene under the control of the potent mouse cytomegalovirus immediate early (mCMV) promoter, to transduce brain ependymal cells with high efficiency and to achieve effective release of transgenic IGF-1 into the cerebrospinal fluid (CSF). We constructed RAd vectors expressing either the chimeric protein (TK/GFP)fus (green fluorescent protein fused to HSV1 thymidine kinase) or the cDNA encoding rat IGF-1, both driven by the mCMV promoter. The vectors were injected into the lateral ventricles of young rats and chimeric GFP expression in brain sections was assessed by fluorescence microscopy. The ependymal cell marker vimentin was detected by immunofluorescence and nuclei were labeled with the DNA dye DAPI. Blood and CSF samples were drawn at different times post vector injection. In all cerebral ventricles, vimentin immunoreactive cells of the ependyma were predominantly transduced by RAd-(TK/GFP)fus, showing nuclear and cytoplasmic expression of the transgene. For tanycytes (TK/GFP)fus expression was evident in their cytoplasmic processes as they penetrated deep into the hypothalamic parenchyma. Intracerebroventricular injection of RAd-IGF-1 induced high levels of IGF-1 in the CSF but not in serum. We conclude that the ependymal route constitutes an effective approach for implementing experimental IGF-1 gene therapy in the brain. PMID:19531373

  1. Diverse Roles of Growth Hormone and Insulin-Like Growth Factor-1 in Mammalian Aging: Progress and Controversies

    PubMed Central

    Csiszar, Anna; de Cabo, Raphael; Ferrucci, Luigi; Ungvari, Zoltan

    2012-01-01

    Because the initial reports demonstrating that circulating growth hormone and insulin-like growth factor-1 decrease with age in laboratory animals and humans, there have been numerous studies related to the importance of these hormones for healthy aging. Nevertheless, the role of these potent anabolic hormones in the genesis of the aging phenotype remains controversial. In this chapter, we review the studies demonstrating the beneficial and deleterious effects of growth hormone and insulin-like growth factor-1 deficiency and explore their effects on specific tissues and pathology as well as their potentially unique effects early during development. Based on this review, we conclude that the perceived contradictory roles of growth hormone and insulin-like growth factor-1 in the genesis of the aging phenotype should not be interpreted as a controversy on whether growth hormone or insulin-like growth factor-1 increases or decreases life span but rather as an opportunity to explore the complex roles of these hormones during specific stages of the life span. PMID:22522510

  2. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  3. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma.

    PubMed

    Lee, Hyun; Kim, So Ri; Oh, Youngman; Cho, Seong Ho; Schleimer, Robert P; Lee, Yong Chul

    2014-04-01

    Insulin-like growth factor (IGF)-I has been recognized to play critical roles in the pathogenesis of asthma, whereas IGF-binding protein (IGFBP)-3 blocks crucial physiologic manifestations of asthma. IGF-I enhances subepithelial fibrosis, airway inflammation, airway hyperresponsiveness, and airway smooth muscle hyperplasia by interacting with various inflammatory mediators and complex signaling pathways, such as intercellular adhesion molecule-1, and the hypoxia-inducible factor/vascular endothelial growth factor axis. On the other hand, IGFBP-3 decreases airway inflammation and airway hyperresponsiveness through IGFBP-3 receptor-mediated activation of caspases, which subsequently inhibits NF-κB signaling pathway. It also inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial growth factor axis via IGF-I-dependent and/or IGF-I-independent mechanisms. This Translational Review summarizes the role of IGF-I and IGFBP-3 in the context of allergic airway disease, and discusses the therapeutic potential of various strategies targeting the IGF-I and IGFBP-3 signaling pathways for the management of asthma. PMID:24219511

  4. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    SciTech Connect

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-11-05

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study /sup 32/P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A/sup +/) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A/sup +/) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.

  5. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  6. Characterization of insulin-like growth factor I and epidermal growth factor receptors in meningioma

    SciTech Connect

    Kurihara, M.; Tokunaga, Y.; Tsutsumi, K.; Kawaguchi, T.; Shigematsu, K.; Niwa, M.; Mori, K. )

    1989-10-01

    Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10(-10) M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms.

  7. Analysis of the extent of unfolding of denatured insulin-like growth factor.

    PubMed Central

    Chang, J. Y.; Märki, W.; Lai, P. H.

    1999-01-01

    Insulin-like growth factor (IGF-1) contains three disulfide bonds. In the presence of denaturant and thiol catalyst, IGF-1 shuffles its native disulfide bonds and denatures to form a mixture of scrambled isomers. The composition of scrambled IGF varies under different denaturing conditions. Among the 14 possible scrambled IGF isomers, the yield of the beads-form isomer is shown to be directly proportional to the strength of the denaturing condition. This paper demonstrates a new approach to quantify the extent of unfolding of the denatured protein. PMID:10422834

  8. Insulin-like growth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells.

    PubMed

    Nickerson, T; Huynh, H; Pollak, M

    1997-08-28

    Insulin-like growth factors (IGFs) are known to have potent antiapoptotic activity. The antiestrogen ICI 182,780 (ICI) is a potent inhibitor of MCF7 human breast cancer cell growth and has recently been reported to act as an antiproliferative agent in part via upregulation of expression of insulin-like growth factor binding proteins (IGFBPs) -3 and -5, which attenuate the bioactivity of IGFs in many experimental systems. We show here that ICI and IGFBP-3 induce apoptosis in MCF7 cells. Treatment of MCF7 cells with 10 nM ICI or 36 nM recombinant human IGFBP. 3 for 72 hours increased apoptosis approximately 3.5-fold relative to control as quantitated by a cell death ELISA which measures DNA fragmentation. Long R3 IGF-I, an IGF-I analogue with greatly reduced affinity for IGFBPs yet similar affinity for IGF-I receptors, was a more potent inhibitor of IGFBP-3-induced and ICI-induced apoptosis than IGF-I. These results suggest that IGFBP-3 enhances apoptosis by reducing bioavailability of ligands for the IGF-I receptor and suggest that modulation of IGFBP-3 expression by ICI contributes to apoptosis induced by this compound. More generally, the data suggest that IGFBPs are regulators of apoptosis. PMID:9299428

  9. Serum concentrations of insulin-like growth factor-I and insulin-like growth factor binding protein-2 and -3 in eight hoofstock species.

    PubMed

    Govoni, Kristen E; Goodman, Danielle; Maclure, Rebecca M; Penfold, Linda M; Zinn, Steven A

    2011-01-01

    The somatotropic axis, which includes growth hormone, insulin-like growth factor (IGF)-I, and IGF binding proteins (IGFBP), is involved in the regulation of growth and metabolism. Measures of the somatotropic axis can be predictive of nutritional status and growth rate that can be utilized to identify nutritional status of individual animals. Before the somatotropic axis can be a predictive tool, concentrations of hormones of the somatotropic axis need to be established in healthy individuals. To begin to establish these data, we quantified IGF-I, IGFBP-2, and IGFBP-3 in males and females of eight threatened hoofstock species at various ages. Opportunistic blood samples were collected from Bos javanicus (Java banteng), Tragelaphus eurycerus isaaci (bongo), Gazella dama ruficollis (addra gazelle), Taurotragus derbianus gigas (giant eland), Kobus megaceros (Nile lechwe), Hippotragus equines cottoni (roan antelope), Ceratotherium simum simum (white rhinoceros), and Elephas maximus (Asian elephant). Serum IGF-I and IGFBPs were determined by radioimmunoassay and ligand blot, respectively. Generally, IGF-I and IGFBP-3 were greater in males, and IGFBP-2 was greater in females. In banteng (P = 0.08) and male Nile lechwe (P < 0.05), IGF-I increased with age, but decreased in rhinoceros (P = 0.07) and female Nile lechwe (P < 0.05). In banteng, IGFBP-3 was greater (P < 0.01) in males. In elephants (P < 0.05) and antelope (P = 0.08), IGFBP-2 were greater in females. Determination of concentrations of hormones in the somatotropic axis in healthy animals makes it possible to develop models that can identify the nutritional status of these threatened hoofstock species. PMID:20853408

  10. Antepartal insulin-like growth factor 1 and insulin-like growth factor binding protein 2 concentrations are indicative of ketosis in dairy cows.

    PubMed

    Piechotta, M; Mysegades, W; Ligges, U; Lilienthal, J; Hoeflich, A; Miyamoto, A; Bollwein, H

    2015-05-01

    A study involving a small number of cows found that the concentrations of insulin-like growth hormone 1 (IGF1) may be a useful predictor of metabolic disease. Further, IGF1 may provide also a pathophysiological link to metabolic diseases such as ketosis. The objective of the current study was to test whether the low antepartal total IGF1 or IGF1 binding protein (IGFBP) concentrations might predict ketosis under field conditions. Clinical examinations and blood sampling were performed antepartum (262-270 d after artificial insemination) on 377 pluriparous pregnant Holstein Friesian cows. The presence of postpartum diseases were recorded (ketosis, fatty liver, displacement of the abomasum, hypocalcemia, mastitis, retention of fetal membranes, and clinical metritis or endometritis), and the concentrations of IGF1, IGFBP2, IGFBP3, and nonesterified fatty acids were measured. Cows with postpartum clinical ketosis had lower IGF1 concentrations antepartum than healthy cows. The sensitivity of antepartal IGF1 as a marker for postpartum ketosis was 0.87, and the specificity was 0.43; a positive predictive value of 0.91 and a negative predictive value of 0.35 were calculated. The cows with ketosis and retained fetal membranes had lower IGFBP2 concentrations compared with the healthy cows. It can be speculated that lower IGF1 production in the liver during late pregnancy may increase growth hormone secretions and lipolysis, thereby increasing the risk of ketosis. Lower IGFBP2 concentrations may reflect the suppression of IGFBP2 levels through higher growth hormone secretion. In conclusion, compared with nonesterified fatty acids as a predictive parameter, IGF1 and IGFBP2 may represent earlier biomarkers of inadequate metabolic adaptation to the high energy demand required postpartum. PMID:25704973

  11. Emerging role of insulin-like growth factor-binding protein 7 in hepatocellular carcinoma.

    PubMed

    Akiel, Maaged; Rajasekaran, Devaraja; Gredler, Rachel; Siddiq, Ayesha; Srivastava, Jyoti; Robertson, Chadia; Jariwala, Nidhi Himanshu; Fisher, Paul B; Sarkar, Devanand

    2014-01-01

    Hepatocellular carcinoma (HCC) is a vicious and highly vascular cancer with a dismal prognosis. It is a life-threatening illness worldwide that ranks fifth in terms of cancer prevalence and third in cancer deaths. Most patients are diagnosed at an advanced stage by which time conventional therapies are no longer effective. Targeted molecular therapies, such as the multikinase inhibitor sorafenib, provide a modest increase in survival for advanced HCC patients and display significant toxicity. Thus, there is an immense need to identify novel regulators of HCC that might be targeted effectively. The insulin-like growth factor (IGF) axis is commonly abnormal in HCC. Upon activation, the IGF axis controls metabolism, tissue homeostasis, and survival. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted protein of a family of low-affinity IGF-binding proteins termed "IGFBP-related proteins" that have been identified as a potential tumor suppressor in HCC. IGFBP7 has been implicated in regulating cellular proliferation, senescence, and angiogenesis. In this review, we provide a comprehensive discussion of the role of IGFBP7 in HCC and the potential use of IGFBP7 as a novel biomarker for drug resistance and as an effective therapeutic strategy. PMID:27508172

  12. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer

    PubMed Central

    Nurwidya, Fariz; Andarini, Sita; Takahashi, Fumiyuki; Syahruddin, Elisna; Takahashi, Kazuhisa

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance. PMID:27418865

  13. Human insulin-like growth factor II leader 2 mediates internal initiation of translation.

    PubMed Central

    Pedersen, Susanne K; Christiansen, Jan; Hansen, Thomas v O; Larsen, Martin R; Nielsen, Finn C

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear. Here, we show that leader 2 mRNA is translated efficiently in an eIF4E-independent manner. In a bicistronic vector system, the 411 nt leader 2 was capable of internal initiation via a phylogenetically conserved internal ribosome entry site (IRES), located in the 3' half of the leader. The IRES is composed of an approx. 120 nt ribosome recruitment element, followed by an 80 nt spacer region, which is scanned by the ribosomal pre-initiation complex. Since cap-dependent translation is down-regulated during cell division, leader 2 might facilitate a continuous IGF-II production in rapidly dividing cells during development. PMID:11903044

  14. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  15. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice

    PubMed Central

    Pascual-Lucas, Maria; Viana da Silva, Silvia; Di Scala, Marianna; Garcia-Barroso, Carolina; González-Aseguinolaza, Gloria; Mulle, Christophe; Alberini, Cristina M; Cuadrado-Tejedor, Mar; Garcia-Osta, Ana

    2014-01-01

    Insulin-like growth factor 2 (IGF2) was recently found to play a critical role in memory consolidation in rats and mice, and hippocampal or systemic administration of recombinant IGF2 enhances memory. Here, using a gene therapy-based approach with adeno-associated virus (AAV), we show that IGF2 overexpression in the hippocampus of aged wild-type mice enhances memory and promotes dendritic spine formation. Furthermore, we report that IGF2 expression decreases in the hippocampus of patients with Alzheimer's disease, and this leads us to hypothesize that increased IGF2 levels may be beneficial for treating the disease. Thus, we used the AAV system to deliver IGF2 or IGF1 into the hippocampus of the APP mouse model Tg2576 and demonstrate that IGF2 and insulin-like growth factor 1 (IGF1) rescue behavioural deficits, promote dendritic spine formation and restore normal hippocampal excitatory synaptic transmission. The brains of Tg2576 mice that overexpress IGF2 but not IGF1 also show a significant reduction in amyloid levels. This reduction probably occurs through an interaction with the IGF2 receptor (IGF2R). Hence, IGF2 and, to a lesser extent, IGF1 may be effective treatments for Alzheimer's disease. PMID:25100745

  16. Transcriptional and posttranslational regulation of insulin-like growth factor binding protein-3 by Akt3

    PubMed Central

    Jin, Quanri; Lee, Hyo-Jong; Min, Hye-Young; Smith, John Kendal; Hwang, Su Jung; Whang, Young Mi; Kim, Woo-Young; Kim, Yeul Hong; Lee, Ho-Young

    2014-01-01

    Insulin-like growth factor (IGF)-dependent and -independent antitumor activities of insulin-like growth factor binding protein-3 (IGFBP-3) have been proposed in human non-small cell lung cancer (NSCLC) cells. However, the mechanism underlying regulation of IGFBP-3 expression in NSCLC cells is not well understood. In this study, we show that activation of Akt, especially Akt3, plays a major role in the mRNA expression and protein stability of IGFBP-3 and thus antitumor activities of IGFBP-3 in NSCLC cells. When Akt was activated by genomic or pharmacologic approaches, IGFBP-3 transcription and protein stability were decreased. Conversely, suppression of Akt increased IGFBP-3 mRNA levels and protein stability in NSCLC cell lines. Characterization of the effects of constitutively active form of each Akt subtype (HA-Akt-DD) on IGFBP-3 expression in NSCLC cells and a xenograft model indicated that Akt3 plays a major role in the Akt-mediated regulation of IGFBP-3 expression and thus suppression of Akt effectively enhances the antitumor activities of IGFBP-3 in NSCLC cells with Akt3 overactivation. Collectively, these data suggest a novel function of Akt3 as a negative regulator of IGFBP-3, indicating the possible benefit of a combined inhibition of IGFBP-3 and Akt3 for the treatment of patients with NSCLC. PMID:24942865

  17. Mecasermin rinfabate: insulin-like growth factor-I/insulin-like growth factor binding protein-3, mecaserimin rinfibate, rhIGF-I/rhIGFBP-3.

    PubMed

    2005-01-01

    Insmed is developing mecasermin rinfabate, a recombinant complex of insulin-like growth factor-I (rhIGF-I) and binding protein-3 (rhIGFBP-3) [insulin-like growth factor-I/insulin-like growth factor binding protein-3, rhIGF-I/rhIGFBP-3, SomatoKine], for a number of metabolic and endocrine indications. In the human body, IGF-I circulates in the blood bound to a binding protein-3 (IGFBP-3), which regulates the delivery of IGF-I to target tissues, and particular proteases clip them apart in response to stresses and release IGF-I as needed. IGF-I, a naturally occurring hormone, is necessary for normal growth and metabolism. For the treatment of IGF-I deficiency, it is desirable to administer IGF-I bound to IGFBP-3 to maintain the normal equilibrium of these proteins in the blood. Mecasermin rinfabate (rhIGF-I/rhIGFBP-3) mimics the effects of the natural protein complex in the bloodstream and would augment the natural supply of these linked compounds. The most advanced indication in development of mecasermin rinfabate is the treatment of severe growth disorders due to growth hormone insensitivity syndrome (GHIS), also called Laron syndrome. GHIS is a genetic condition in which patients do not produce adequate quantities of IGF because of a failure to respond to the growth hormone signal. This results in a slower growth rate and short stature. Mecasermin rinfabate also has potential as replacement therapy for IGF-I, which may become depleted in indications such as major surgery, organ damage/failure, traumatic injury, cachexia and severe burn trauma. It also has potential for the treatment of osteoporosis. Mecasermin rinfabate was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on 1 June 2000. Insmed and Avecia of the UK have signed an agreement for manufacturing mecasermin rinfabate and its components, rhIGF-1 and rhIGFBP-3. CGMP clinical production of mecasermin rinfabate

  18. The Proliferating Role of Insulin and Insulin-Like Growth Factors in Cancer

    PubMed Central

    Gallagher, Emily Jane; LeRoith, Derek

    2010-01-01

    Epidemiological studies have reported an increased risk of cancer in those with type 2 diabetes (T2DM) and obesity, related in part to hyperinsulinemia, secondary to insulin resistance. Hyperinsulinemia leads to increased insulin-like growth factor-1 (IGF-I) expression. In fact, increased insulin, IGF-I and IGF-II levels are associated with tumor growth in vitro, in animal models and in epidemiological studies in humans. Herein, we discuss insulin, IGF-I and IGF-II, their interaction with the insulin receptor (IR) and IGF-I receptor (IGF-IR), and their signaling pathways and regulation as it pertains to tumor growth. We explain how these pathways have been deciphered by in vitro and in vivo studies and how they are being exploited in the development of targeted cancer therapies. PMID:20663687

  19. Acute alterations in growth hormone-insulin-like growth factor axis in humans injected with endotoxin.

    PubMed

    Lang, C H; Pollard, V; Fan, J; Traber, L D; Traber, D L; Frost, R A; Gelato, M C; Prough, D S

    1997-07-01

    The purpose of the present study was to characterize the acute changes in the insulin-like growth factor (IGF) system in humans after administration of endotoxin (lipopolysaccharide; LPS). Escherichia coli LPS (4 ng/kg) was injected intravenously into healthy adults, and serial blood samples were collected for the next 5 h; subjects injected with saline served as time-matched controls. LPS administration resulted in a gradual decrease in the total extractable IGF-I concentration, which was reduced by approximately 20% over the final 2 h of the experiment; levels of free IGF-I were not significantly altered. LPS also produced a marked but transient elevation in growth hormone (GH) concentration. IGF-binding protein (BP)-1 levels were elevated more than fivefold 2 h after LPS injection, and thereafter levels gradually returned toward baseline. IGFBP-2 concentration also increased after LPS injection, but the maximal increase (approximately 50% above basal) was observed during the final 2 h of the protocol. In contrast, IGFBP-3 levels did not vary over the period examined in response to LPS, and there was no apparent increase in number of BP-3 proteolytic fragments. Cortisol levels were increased early and remained two- to threefold above baseline throughout the protocol. No significant alterations in serum concentration of glucose or insulin were noted. LPS also produced an early elevation in tumor necrosis factor and a later increase in interleukin-6. These data indicate that the acute changes in the GH-IGF axis in humans in response to LPS are comparable with those observed in humans in other traumatic conditions and in animal models of endotoxemia and infection. PMID:9249574

  20. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  1. Reduced insulin/insulin-like growth factor signaling decreases translation in Drosophila and mice

    PubMed Central

    Essers, Paul; Tain, Luke S.; Nespital, Tobias; Goncalves, Joana; Froehlich, Jenny; Partridge, Linda

    2016-01-01

    Down-regulation of insulin/insulin-like growth factor signaling (IIS) can increase lifespan in C. elegans, Drosophila and mice. In C. elegans, reduced IIS results in down-regulation of translation, which itself can extend lifespan. However, the effect of reduced IIS on translation has yet to be determined in other multicellular organisms. Using two long-lived IIS models, namely Drosophila lacking three insulin-like peptides (dilp2-3,5−/−) and mice lacking insulin receptor substrate 1 (Irs1−/−), and two independent translation assays, polysome profiling and radiolabeled amino acid incorporation, we show that reduced IIS lowers translation in these organisms. In Drosophila, reduced IIS decreased polysome levels in fat body and gut, but reduced the rate of protein synthesis only in the fat body. Reduced IIS in mice decreased protein synthesis rate only in skeletal muscle, without reducing polysomes in any tissue. This lowered translation in muscle was independent of Irs1 loss in the muscle itself, but a secondary effect of Irs1 loss in the liver. In conclusion, down-regulation of translation is an evolutionarily conserved response to reduced IIS, but the tissues in which it occurs can vary between organisms. Furthermore, the mechanisms underlying lowered translation may differ in mice, possibly associated with the complexity of the regulatory processes. PMID:27452396

  2. Reduced insulin/insulin-like growth factor signaling decreases translation in Drosophila and mice.

    PubMed

    Essers, Paul; Tain, Luke S; Nespital, Tobias; Goncalves, Joana; Froehlich, Jenny; Partridge, Linda

    2016-01-01

    Down-regulation of insulin/insulin-like growth factor signaling (IIS) can increase lifespan in C. elegans, Drosophila and mice. In C. elegans, reduced IIS results in down-regulation of translation, which itself can extend lifespan. However, the effect of reduced IIS on translation has yet to be determined in other multicellular organisms. Using two long-lived IIS models, namely Drosophila lacking three insulin-like peptides (dilp2-3,5(-/-)) and mice lacking insulin receptor substrate 1 (Irs1(-/-)), and two independent translation assays, polysome profiling and radiolabeled amino acid incorporation, we show that reduced IIS lowers translation in these organisms. In Drosophila, reduced IIS decreased polysome levels in fat body and gut, but reduced the rate of protein synthesis only in the fat body. Reduced IIS in mice decreased protein synthesis rate only in skeletal muscle, without reducing polysomes in any tissue. This lowered translation in muscle was independent of Irs1 loss in the muscle itself, but a secondary effect of Irs1 loss in the liver. In conclusion, down-regulation of translation is an evolutionarily conserved response to reduced IIS, but the tissues in which it occurs can vary between organisms. Furthermore, the mechanisms underlying lowered translation may differ in mice, possibly associated with the complexity of the regulatory processes. PMID:27452396

  3. Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation.

    PubMed

    Forbes, Karen; Shah, Vinit K; Siddals, Kirk; Gibson, J Martin; Aplin, John D; Westwood, Melissa

    2015-01-01

    The rapid rise in obesity, metabolic syndrome and type 2 diabetes is one of the major healthcare problems of the Western world. Affected individuals are often treated with statins (3-hydroxy-3-methylglutaryl co-enzyme A [HMG CoA] reductase inhibitors) to reduce circulating cholesterol levels and the risk of developing cardiovascular disease; given the evolving demographic profile of these conditions, such drugs are increasingly prescribed to women of reproductive age. We have previously shown that exposure of placental tissue to statins inhibits the action of insulin-like growth factors (IGF)-I and -II which are key regulators of trophoblast proliferation and placental development. N-linked glycans in the IGF receptor, IGF1R, influence its presentation at the cell surface. This study aimed to determine whether statins, which are known to affect N-glycosylation, modulate IGF1R function in placenta. Treatment of first trimester villous tissue explants with statins (pravastatin or cerivastatin) or inhibitors of N-glycosylation (tunicamycin, deoxymannojirimycin or castanospermine) altered receptor distribution in trophoblast and attenuated proliferation induced by IGF-I or IGF-II (Ki67; P < 0.05, n = 5). Decreased binding of Phaseolus vulgaris lectin and phytohaemagglutinin to IGF1R immunoprecipitated from treated explants demonstrated reduced levels of complex N-linked glycans. Co-incubation of tissue explants with statins and farnesyl pyrophosphate (which increases the supply of dolichol intermediates), prevented statin-mediated disruption of IGF1R localization and reversed the negative effect on IGF-mediated trophoblast proliferation. These data suggest that statins attenuate IGF actions in the placenta by inhibiting N-linked glycosylation and subsequent expression of mature IGF1R at the placental cell surface. PMID:25304981

  4. Doxorubicin Impairs the Insulin-Like Growth Factor-1 System and Causes Insulin-Like Growth Factor-1 Resistance in Cardiomyocytes

    PubMed Central

    Fabbi, Patrizia; Spallarossa, Paolo; Garibaldi, Silvano; Barisione, Chiara; Mura, Marzia; Altieri, Paola; Rebesco, Barbara; Monti, Maria Gaia; Canepa, Marco; Ghigliotti, Giorgio; Brunelli, Claudio; Ameri, Pietro

    2015-01-01

    Background Insulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes. Methods and Results Besides inducing apoptosis, concentrations of doxorubicin comparable to those observed in patients after bolus infusion (0.1-1 µM) caused a progressive decrease in IGF-1R and increase in IGFBP-3 expression. Exogenous IGF-1 was capable to rescue cardiomyocytes from apoptosis triggered by 0.1 and 0.5 µM, but not 1 µM doxorubicin. The loss of response to IGF-1 was paralleled by a significant reduction in IGF-1 availability and signaling, as assessed by free hormone levels in conditioned media and Akt phosphorylation in cell lysates, respectively. Doxorubicin also dose-dependently induced p53, which is known to repress the transcription of IGF1R and induce that of IGFBP3. Pre-treatment with the p53 inhibitor, pifithrin-α, prevented apoptosis and the changes in IGF-1R and IGFBP-3 elicited by doxorubicin. The decrease in IGF-1R and increase in IGFBP-3, as well as apoptosis, were also antagonized by pre-treatment with the antioxidant agents, N-acetylcysteine, dexrazoxane, and carvedilol. Conclusions Doxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity. PMID:25955698

  5. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor–binding protein 3?

    PubMed Central

    Zielinska, Hanna A; Bahl, Amit; Holly, Jeff MP; Perks, Claire M

    2015-01-01

    Evidence indicates that for most human cancers the problem is not that gene mutations occur but is more dependent upon how the body deals with damaged cells. It has been estimated that only about 1% of human cancers can be accounted for by unmistakable hereditary cancer syndromes, only up to 5% can be accounted for due to high-penetrance, single-gene mutations, and in total only 5%–15% of all cancers may have a major genetic component. The predominant contribution to the causation of most sporadic cancers is considered to be environmental factors contributing between 58% and 82% toward different cancers. A nutritionally poor lifestyle is associated with increased risk of many cancers, including those of the breast. As nutrition, energy balance, macronutrient composition of the diet, and physical activity levels are major determinants of insulin-like growth factor (IGF-I) bioactivity, it has been proposed that, at least in part, these increases in cancer risk and progression may be mediated by alterations in the IGF axis, related to nutritional lifestyle. Localized breast cancer is a manageable disease, and death from breast cancer predominantly occurs due to the development of metastatic disease as treatment becomes more complicated with poorer outcomes. In recent years, epithelial-to-mesenchymal transition has emerged as an important contributor to breast cancer progression and malignant transformation resulting in tumor cells with increased potential for migration and invasion. Furthermore, accumulating evidence suggests a strong link between components of the IGF pathway, epithelial-to-mesenchymal transition, and breast cancer mortality. Here, we highlight some recent studies highlighting the relationship between IGFs, IGF-binding protein 3, and epithelial-to-mesenchymal transition. PMID:25632238

  6. Insulin-Like Growth Factor System in Cancer: Novel Targeted Therapies

    PubMed Central

    Brahmkhatri, Varsha P.; Prasanna, Chinmayi; Atreya, Hanudatta S.

    2015-01-01

    Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies. PMID:25866791

  7. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus

    PubMed Central

    Lewitt, Moira S.; Dent, Mairi S.; Hall, Kerstin

    2014-01-01

    The insulin-like growth factor (IGF) system, acting in concert with other hormone axes, is important in normal metabolism. In obesity, the hyperinsulinaemia that accompanies peripheral insulin resistance leads to reduced growth hormone (GH) secretion, while total IGF-I levels are relatively unchanged due to increased hepatic GH sensitivity. IGF-binding protein (IGFBP)-1 levels are suppressed in relation to the increase in insulin levels in obesity and low levels predict the development of type 2 diabetes several years later. Visceral adiposity and hepatic steatosis, along with a chronic inflammation, contribute to the IGF system phenotype in individuals with metabolic syndrome and type 2 diabetes mellitus, including changes in the normal inverse relationship between IGFBP-1 and insulin, with IGFBP-1 concentrations that are inappropriately normal or elevated. The IGF system is implicated in the vascular and other complications of these disorders and is therefore a potential therapeutic target. PMID:26237614

  8. Specific immunoradiometric assay of insulin-like growth factor I with use of monoclonal antibodies.

    PubMed

    Scott, M G; Cuca, G C; Petersen, J R; Lyle, L R; Burleigh, B D; Daughaday, W H

    1987-11-01

    We identified two monoclonal antibodies that bind spatially distinct epitopes on insulin-like growth factor I (IGF-I). Using these two antibodies, we developed a simultaneous, two-site immunoradiometric assay (IRMA) specific for IGF-I. This IRMA has no detectable cross reactivity with insulin, proinsulin, prolactin, or somatotropin, and less than 2% crossreactivity with IGF-II. The assay response varies linearly with IGF-I concentrations of 0-800 micrograms/L in serum; the detection limit is about 10 micrograms/L. A comparison of 26 IGF-I serum values from the IRMA and from a previously reported IGF-I specific RIA gave a correlation coefficient of 0.96 with no substantial bias (slope = 1.10). IGF-I values for serum, as an aid in assessing growth abnormalities, are easily (only three pipetting steps) obtained in less than 4 h. PMID:2445506

  9. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma

    PubMed Central

    El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab

    2016-01-01

    The insulin-like growth factor (IGF) signaling pathway is an important pathway in the process of hepatocarcinogenesis, and the IGF network is clearly dysregulated in many cancers and developmental abnormalities. In hepatocellular carcinoma (HCC), only a minority of patients are eligible for curative treatments, such as tumor resection or liver transplant. Unfortunately, there is a high recurrence of HCC after surgical tumor removal. Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems. In this review, we shed lights on the regulation of members of the IGF axis, mainly by microRNAs in HCC. MicroRNAs in HCC attempt to halt the aberrant expression of the IGF network, and a single microRNA can have multiple downstream targets in one or more signaling pathways. Targeting microRNAs is a relatively new approach for identifying an efficient radical cure for HCC. PMID:26973407

  10. The Anti-angiogenic Peptide, Loop 6, Binds Insulin-like Growth Factor-1 Receptor*

    PubMed Central

    Fernandez, Cecilia A.; Roy, Roopali; Lee, Sunyoung; Yang, Jiang; Panigrahy, Dipak; Van Vliet, Krystyn J.; Moses, Marsha A.

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs), the endogenous inhibitors of matrix metalloproteinases, have been shown to possess biological functions that are independent of their ability to inhibit matrix metalloproteinases. We have previously shown that the C-terminal domain of TIMP-2 and, in particular, Loop 6 inhibit capillary endothelial cell proliferation and angiogenesis both in vitro and in vivo. To elucidate the mechanism by which Loop 6 inhibits angiogenesis, we sought to determine whether its biological effects were the result of a known TIMP-2 protein-protein interaction or of a receptor-mediated event. In this study, we identify insulin-like growth factor-1 receptor as a binding partner of Loop 6/TIMP-2 and characterize this interaction on the endothelial cell surface and the consequences of this interaction on downstream receptor signaling. PMID:20940305

  11. Insulin-like growth factors and their potential role in cardiac epigenetics.

    PubMed

    Iosef Husted, Cristiana; Valencik, Maria

    2016-08-01

    Cardiovascular disease (CVD) constitutes a major public health threat worldwide, accounting for 17.3 million deaths annually. Heart disease and stroke account for the majority of healthcare costs in the developed world. While much has been accomplished in understanding the pathophysiology, molecular biology and genetics underlying the diagnosis and treatment of CVD, we know less about the role of epigenetics and their molecular determinants. The impact of environmental changes and epigenetics in CVD is now emerging as critically important in understanding the origin of disease and the development of new therapeutic approaches to prevention and treatment. This review focuses on the emerging role of epigenetics mediated by insulin like-growth factors-I and -II in major CVDs such as heart failure, cardiac hypertrophy and diabetes. PMID:27061217

  12. Insulin-like growth factor-II: possible local growth factor in pheochromocytoma.

    PubMed

    Gelato, M C; Vassalotti, J

    1990-11-01

    Pheochromocytomas, neural crest tumors, express an abundance of insulin-like growth factor-II (IGF-II). To assess further the potential for IGF-II to play an autocrine role for these tumors, we measured 1) IGF-II content by RRA in 7 pheochromocytomas and peripheral blood in these patients, 2) IGF-II receptors by Western analysis, and 3) characterized the tumor binding proteins by ligand blot studies. IGF-II levels in the tumors varied from 2.8-41 micrograms/g. Chromatography revealed that 60% of the peptide eluted as a large mol wt form of IGF-II (8.7-10 kDa); the remainder coeluted with mature peptide (7.5 kDa). This was in contrast to IGF-II levels in normal adrenal tissue (0.225 +/- 0.005 micrograms/g) or another neural crest-derived tumor, medullary carcinoma of the thyroid (0.63 +/- 0.02 micrograms/g). Serum IGF-II levels in the 7 patients with pheochromocytoma (720 +/- 71 ng/mL) were similar to those in 35 normal controls (762 +/- 69 ng/mL). Radiolabeled IGF-II (9 +/- 1%) and IGF-I (20 +/- 2%) bound specifically to pheochromocytoma membranes. Western analysis of these membranes using a specific antiserum directed against the type II receptor demonstrated a band at 210 kDa. Affinity cross-linking studies with [125I]IGF-I demonstrated a specific band at 140 kDa. Ligand blot analysis was performed on the void volume pools from the Sephadex G-75 column and demonstrated bands at about 30 and 25 kDa. In conclusion, these data 1) confirm that pheochromocytomas have increased levels of IGF-II; 2) demonstrate that despite high IGF-II concentrations in the tumors, peripheral levels are not elevated, suggesting that very little tumoral IGF-II is released into the circulation, unlike catecholamines; 3) demonstrate the presence of IGF-II and IGF-I receptors; 4) describe binding protein species similar to those present in other tissues. Thus, the presence of high levels of IGF-II and both type I and type II receptors suggests that IGF II may act through both receptors to

  13. Insulin-like growth factor I is required for vessel remodeling in the adult brain

    PubMed Central

    Lopez-Lopez, C.; LeRoith, D.; Torres-Aleman, I.

    2004-01-01

    Although vascular dysfunction is a major suspect in the etiology of several important neurodegenerative diseases, the signals involved in vessel homeostasis in the brain are still poorly understood. We have determined whether insulin-like growth factor I (IGF-I), a wide-spectrum growth factor with angiogenic actions, participates in vascular remodeling in the adult brain. IGF-I induces the growth of cultured brain endothelial cells through hypoxiainducible factor 1α and vascular endothelial growth factor, a canonical angiogenic pathway. Furthermore, the systemic injection of IGF-I in adult mice increases brain vessel density. Physical exercise that stimulates widespread brain vessel growth in normal mice fails to do so in mice with low serum IGF-I. Brain injury that stimulates angiogenesis at the injury site also requires IGF-I to promote perilesion vessel growth, because blockade of IGF-I input by an anti-IGF-I abrogates vascular growth at the injury site. Thus, IGF-I participates in vessel remodeling in the adult brain. Low serum/brain IGF-I levels that are associated with old age and with several neurodegenerative diseases may be related to an increased risk of vascular dysfunction. PMID:15210967

  14. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion.

    PubMed

    Wanderling, Sherry; Simen, Birgitte B; Ostrovsky, Olga; Ahmed, Noreen T; Vogen, Shawn M; Gidalevitz, Tali; Argon, Yair

    2007-10-01

    Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94-/- embryos die on day 7 of gestation, fail to develop mesoderm, primitive streak, or proamniotic cavity. grp94-/- ES cells grow in culture and are capable of differentiation into cells representing all three germ layers. However, these cells do not differentiate into cardiac, smooth, or skeletal muscle. Differentiation cultures of mutant ES cells are deficient in secretion of insulin-like growth factor II and their defect can be complemented with exogenous insulin-like growth factors I or II. The data identify insulin-like growth factor II as one developmentally important protein whose production depends on the activity of GRP94. PMID:17634284

  15. Genetic polymorphisms of insulin-like growth factor 1 and insulin-like growth factor binding protein 3, xenoestrogen, phytoestrogen, and premenopausal breast cancer

    PubMed Central

    Li, H.; Zhao, M.; Wang, Q.; Liu, L.; Qi, Y.N.; Li, J.Y.

    2016-01-01

    Background Previous studies suggest a combined effect of insulin-like growth factor 1 (igf-1) and igf binding protein 3 (igfbp-3) gene polymorphisms, xenoestrogen, and phytoestrogen on the igf-1 signalling pathway and serum concentrations in the igf system, which are associated with premenopausal breast cancer (bca) risk. Methods Between 2010 and 2012, our study recruited 140 premenopausal bca patients and 160 community-based premenopausal control subjects. Participants were surveyed about oral contraceptive (oc) use, dietary habits, and other bca risk factors. TaqMan assays were used to determine igf-1 rs1520220 and igfbp-3 rs2854744 genotypes. Daily intakes of energy-adjusted soy isoflavones (easis) were calculated by the residual method. Multivariate logistic regression was applied to estimate the adjusted odds ratios (ors) and 95% confidence intervals (cis) of the igf-1 rs1520220 and igfbp-3 rs2854744 genotypes, oc use, and intake of easis. Stratified analyses were performed to detect the gene–environment combined effect, and multivariate logistic regression was used to estimate interaction coefficients (iors) by the multiplicative model, with 95% cis. The delta method was used to calculate interaction coefficients by the additive model [relative excess risk of interaction (reri), attributable proportions of interaction (apis)] and 95% cis. Results The igf-1 and igfbp-3 genotypes, oc use, and easis were not found to be associated with bca risk (p > 0.05). Stratified analysis showed that the risk of bca was markedly increased in women carrying the igfbp-3C allele and using ocs compared with women either carrying the igfbp-3C allele or using ocs (or: 3.02; 95% ci: 1.04 to 8.79). The interaction coefficients ior, reri, and api were 4.89 (95% ci: 1.09 to 21.90), 2.42 (95% ci: −0.76 to 5.61), and 0.80 (95% ci: 0.46 to 1.67) respectively. Conclusions The igfbp-3 rs2854744 polymorphism and oc use might synergistically increase premenopausal bca risk. PMID:26966408

  16. Insulin-like growth factor- I and factors affecting it in thalassemia major

    PubMed Central

    Soliman, Ashraf T.; Sanctis, Vincenzo De; Elalaily, Rania; Yassin, Mohamed

    2015-01-01

    Despite improvement of blood transfusion regimens and iron chelation therapy growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis still occur in good number of thalassemic patients. Decreased IGF-1 secretion occurs in the majority of the thalassemic patients particularly those with growth and pubertal delay. Many factors contribute to this decreased synthesis of IGF-I including disturbed growth hormone (GH) - insulin-like growth factor - I (IGF-I) axis. The possible factors contributing to low IGF-I synthesis in thalassemia and the possible interaction between low IGF-I secretion and the occurrence of these complications is discussed in this mini-review. Improvement of IGF-I secretion in thalassemic patients should be intended to improve linear growth and bone mineral accretion in thalassemic patients. This can be attained through adequate correction of anemia and proper chelation, nutritional supplementation (increasing caloric intake), correction of vitamin D and zinc deficiencies, induction of puberty and correction of hypogonadism at the proper time and treating GH deficiency. This review paper provides a summary of the current state of knowledge regarding IGF-I and factors affecting it in patients with thalassaemia major (TM). Search on PubMed and reference lists of articles with the term ‘IGF-I, GH, growth, thalassemia, thyroxine, anemia, vitamin D, and zinc’ was carried out. A hundred and forty-eight articles were found and used in the write up and the data analyzed was included in this report. PMID:25729686

  17. Growth-stimulatory monoclonal antibodies against human insulin-like growth factor I receptor.

    PubMed

    Xiong, L; Kasuya, J; Li, S L; Kato, J; Fujita-Yamaguchi, Y

    1992-06-15

    Monoclonal antibodies (mAbs) against purified human placental insulin-like growth factor I (IGF-I) receptors were prepared and characterized. Three IgG mAbs were specific for the human IGF-I receptor and displayed negligible crossreactivity with the human insulin receptor. They stimulated 125I-labeled IGF-I (125I-IGF-I) or 125I-IGF-II binding to purified human placental IGF-I receptors and to IGF-I receptors expressed in NIH 3T3 cells in contrast to the well-studied mAb alpha IR-3, which inhibits 125I-IGF-I or 125I-IGF-II binding to both forms of IGF-I receptors. The mAbs introduced in this study stimulated DNA synthesis in NIH 3T3 cells expressing human IGF-I receptors approximately 1.5-fold above the basal level and the IGF-I- or IGF-II-stimulated level. In contrast, alpha IR-3 inhibited both basal and IGF-I or IGF-II-stimulated DNA synthesis by approximately 30%. Inhibition of IGF-II-stimulated DNA synthesis by alpha IR-3 was as potent as its inhibition of IGF-I-stimulated DNA synthesis, although IGF-II binding to the IGF-I receptors was not inhibited by IGF-II as potently as was IGF-I. With the purified IGF-I receptors, both inhibitory and stimulatory mAbs were shown to activate autophosphorylation of the IGF-I receptor beta subunit and to induce microaggregation of the receptors. These results suggest that conformational changes resulting from receptor dimerization in the presence of either type of mAb may affect the signal-transducing function of the IGF-I receptor differently. These additional mAbs and alpha IR-3 immunoprecipitated nearly 90% of IGF-I binding activity from Triton X-100-solubilized human placental membranes, indicating that IGF-I receptor reactive with these mAbs is the major form of the IGF-I receptor in human placenta. PMID:1319060

  18. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...

  19. Effect of feed deprivation and insulin-like growth hormone on indices of protein degradation in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor-I (IGF-I) is a hormone that promotes growth by both increasing protein synthesis and decreasing protein degradation. This study utilizes a comparative slaughter approach to determine the effect of feed deprivation and IGF-I treatment on weight loss and indices of protein ...

  20. Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors.

    PubMed

    Simmons, J G; Pucilowska, J B; Lund, P K

    1999-04-01

    Paracrine and autocrine actions of the insulin-like growth factors (IGFs) are inferred by local expression within the bowel. CCD-18Co cells, IEC-6 cells, and immunoneutralization were used to analyze whether IGFs have direct autocrine or paracrine effects on proliferation of cultured intestinal fibroblasts and epithelial cells. Growth factor expression was analyzed by ribonuclease protection assay and RT-PCR. Extracellular matrix (ECM) was analyzed for effects on cell proliferation. CCD-18Co cells express IGF-II mRNAs and low levels of IGF-I mRNA. Conditioned medium from CCD-18Co cells (CCD-CM) stimulated proliferation of IEC-6 and CCD-18Co cells. Neutralization of IGF immunoreactivity in CCD-CM reduced but did not abolish this effect. RT-PCR and immunoneutralization demonstrated that other growth factors contribute to mitogenic activity of CCD-CM. Preincubation of CCD-CM with ECM prepared from IEC-6 or CCD-18Co cells reduced its mitogenic activity. ECM from CCD-18Co cells enhanced growth factor-dependent proliferation of IEC-6 cells. IEC-6 cell ECM inhibited IGF-I action on CCD-18Co cells. We conclude that IGF-II is a potent autocrine mitogen for intestinal fibroblasts. IGF-II interacts with other fibroblast-derived growth factors and ECM to stimulate proliferation of intestinal epithelial cells in a paracrine manner. PMID:10198323

  1. Regulation of cardiac autophagy by insulin-like growth factor 1.

    PubMed

    Troncoso, Rodrigo; Díaz-Elizondo, Jessica; Espinoza, Sandra P; Navarro-Marquez, Mario F; Oyarzún, Alejandra P; Riquelme, Jaime A; Garcia-Carvajal, Ivonne; Díaz-Araya, Guillermo; García, Lorena; Hill, Joseph A; Lavandero, Sergio

    2013-07-01

    Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress. PMID:23671040

  2. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  3. The Role of Insulin-Like Growth Factor-I in the Physiopathology of Hearing

    PubMed Central

    Murillo-Cuesta, Silvia; Rodríguez-de la Rosa, Lourdes; Cediel, Rafael; Lassaletta, Luis; Varela-Nieto, Isabel

    2011-01-01

    Insulin-like growth factor-I (IGF-I) belongs to the family of polypeptides of insulin, which play a central role in embryonic development and adult nervous system homeostasis by endocrine, autocrine, and paracrine mechanisms. IGF-I is fundamental for the regulation of cochlear development, growth, and differentiation, and its mutations are associated with hearing loss in mice and men. Low levels of IGF-I have been shown to correlate with different human syndromes showing hearing loss and with presbyacusis. Animal models are fundamental to understand the genetic, epigenetic, and environmental factors that contribute to human hearing loss. In the mouse, IGF-I serum levels decrease with aging and there is a concomitant hearing loss and retinal degeneration. In the Igf1−/− null mouse, hearing loss is due to neuronal loss, poor innervation of the sensory hair cells, and age-related stria vascularis alterations. In the inner ear, IGF-I actions are mediated by intracellular signaling networks, RAF, AKT, and p38 MAPK protein kinases modulate the expression and activity of transcription factors, as AP1, MEF2, FoxM1, and FoxP3, leading to the regulation of cell cycle and metabolism. Therapy with rhIGF-I has been approved in humans for the treatment of poor linear growth and certain neurodegenerative diseases. This review will discuss these findings and their implications in new IGF-I-based treatments for the protection or repair of hearing loss. PMID:21845174

  4. Serum and seminal plasma insulin-like growth factor-1 in male infertility

    PubMed Central

    Lee, Hyo Serk; Park, Yong-Seog; Lee, Joong Shik

    2016-01-01

    Objective Growth hormone and its mediator, insulin-like growth factor-1 (IGF-1), have been suggested to exert gonadotropic actions in both humans and animals. The present study was conducted to assess the relationship between serum IGF-1 concentration, seminal plasma concentration, and sperm parameter abnormalities. Methods A total of 79 men were enrolled in this study from December 2011 to July 2012 and were prospectively analyzed. Patient parameters analyzed included age, body mass index, smoking status, urological history, and fertility history. Patients were divided into four groups based on their semen parameters: normal (A, n=31), abnormal sperm motility (B, n=12), abnormal sperm morphology (C, n=20), and two or more abnormal parameters (D, n=16). Patient seminal plasma and serum IGF-1 concentrations were determined. Results Patient baseline characteristics were not significantly different between any of the groups. The serum IGF-1 levels in groups B, C, and D were significantly lower than the levels in group A; however, the seminal plasma IGF-1 levels were not significantly different between any of the groups. Conclusion Men with abnormal sperm parameters had significantly lower levels of serum IGF-1 compared with men with normal sperm parameters. Seminal plasma IGF-1 levels, however, did not differ significantly between the groups investigated here. Further investigations will be required to determine the exact mechanisms by which growth hormone and IGF-1 affect sperm quality. PMID:27358827

  5. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells.

    PubMed

    Chand, Hitendra S; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S; Randell, Scott H; Tesfaigzi, Yohannes

    2012-05-01

    Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702

  6. Regulation of insulin-like growth factor-I in skeletal muscle and muscle cells.

    PubMed

    Frost, R A; Lang, C H

    2003-03-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are potent regulators of muscle mass. Transgenic mice that over-express these proteins exhibit dramatically enlarged skeletal muscles. In contrast, malnutrition, critical illness, sepsis, and aging are all associated with a dramatic reduction in muscle mass and function. The circulating concentration of IGF-I and the expression of IGF-I in skeletal muscle are also reduced during catabolic states. Consequently, GH has been used clinically to increase lean body mass in patients with muscle wasting. Likewise, delivery of IGF-I specifically into muscle has been proposed as a genetic therapy for muscle disorders. A better understanding of the regulation of IGF-I expression in skeletal muscle and muscle cells is therefore of importance. Yet, our knowledge in this area has been limited by a lack of GH responsive muscle cells. In addition the IGF-I gene spans over 90 kb of genomic DNA and it exhibits a very complex regulatory pattern. This review will summarize our knowledge of the control of muscle mass by GH, IGF-I, anabolic steroids, exercise and other growth enhancing hormones. We will also highlight recent advances in the regulation of IGF-I and signal transducers and activators of transcription (Stats) by GH. A special emphasis will be placed on the interaction of IGF-I and proinflammatory cytokines in skeletal muscle and muscle cells. PMID:12621363

  7. The expression and role of insulin-like growth factor II in malignant hemangiopericytomas.

    PubMed

    Pavelić, K; Spaventi, S; Gluncić, V; Matejcić, A; Pavicić, D; Karapandza, N; Kusić, Z; Lukac, J; Dohoczky, C; Cabrijan, T; Pavelić, J

    1999-12-01

    Hemangiopericytoma is a rare soft tissue tumor originating from contractile pericapillary pericytes. To address the issue of molecular genetic events that participate in genesis and progression of hemangiopericytoma we analyzed insulin-like growth factor (IGF) II and IGF I receptor in 29 tumors collected from a human tumor bank network. Seven of these tumors were associated with severe hypoglycemia; six were retroperitoneal and one was located in the leg. Of 22 tumors tested 12 (54.5%) exhibited IGF II mRNA, while almost 90% (17 of 19) of hemangiopericytomas exhibited IGF I receptor mRNA. Sera from some patients whose tumors expressed IGF II mRNA contained elevated levels of IGF II. Removal of the tumor eliminated most of the IGF II immunoreactivity from the sera. The potential role of IGF II as a growth-promoting factor was examined on three malignant primary hemangiopericytoma cell cultures. Extracellular addition of IGF II significantly enhanced cell proliferation in a dose-dependent manner. Antisense oligodeoxynucleotides that specifically inhibit IGF II mRNA, at a concentration of 40 or 80 micrograms/ml, inhibited the growth of hemangiopericytoma cells significantly, by 40%. Simultaneous administration of antisense deoxyoligonucleotides to both IGF II and IGF I receptor inhibited tumor cell proliferation by even 80%. Our data suggest that tumor cells produce IGF II, and that this in turn stimulates their proliferation by autocrine mechanisms. PMID:10682323

  8. Effects of growth hormone and insulin-like growth factor I on muscle in mouse models of human growth disorders.

    PubMed

    Clark, Ryan P; Schuenke, Mark; Keeton, Stephanie M; Staron, Robert S; Kopchick, John J

    2006-01-01

    The precise effects of growth hormone (GH) and insulin-like growth factor I (IGF-I) on muscle development and physiology are relatively unknown. Furthermore, there have been conflicting reports on the effects of GH/IGF-I on muscle. Distinguishing the direct effects of GH versus those of IGF-I is problematic, but animal models with altered GH/IGF-I action could help to alleviate some of the conflicting results and help to determine the independent actions of GH and IGF-I. The phenotypes of several mouse models, namely the GH receptor-gene-disrupted (GHR -/-) mouse and a variety of IGF-I -/- mice, are summarized, which ultimately will aid our understanding of this complex area. PMID:17259718

  9. Insulin-like growth factor binding protein-3 in preterm infants with retinopathy of prematurity

    PubMed Central

    Gharehbaghi, Manizheh Mostafa; Peirovifar, Ali; Sadeghi, Karim; Mostafidi, Haleh

    2012-01-01

    Background: Retinopathy of prematurity (ROP) is the main cause of visual impairment in preterm newborn infants. Objective: This study was conducted to determine whether insulin-like growth factor binding protein -3 (IGFBP-3) is associated with proliferative ROP and has a role in pathogenesis of the disease in premature infants. Materials and Methods: A total of 71 preterm infants born at or before 32 weeks of gestation participated in this study. Studied patients consisted of 41 neonates without vaso-proliferative findings of ROP as the control group and 30 preterm infants with evidence of severe ROP in follow up eye examination as the case group. Blood samples obtained from these infants 6-8 weeks after birth and blood levels of IGFBP-3 were measured using enzyme-linked immunosorbent assay (ELISA). Results: The mean gestation age and birth weight of the studied patients were 28.2±1.6 weeks and 1120.7±197 gram in the case group and 28.4±1.6 weeks and 1189.4±454 gram in the control group (P=0.25 and P=0.44 respectively). The infants in the case group had significantly lower Apgar score at first and 5 min after birth. Insulin-like growth factor binding protein -3 (IGFBP-3) was significantly lower in the patients with proliferative ROP than the patients without ROP [592.5±472.9 vs. 995.5±422.2 ng/ml (P=0.009)]. Using a cut-off point 770.45 ng/ml for the plasma IGFBP-3, we obtained a sensitivity of 65.9% and a specificity of 66.7% in the preterm infants with vasoproliferative ROP. Conclusion: Our data demonstrated that the blood levels IGFBP-3 was significantly lower in the patients with ROP and it is suspected that IGFBP-3 deficiency in the premature infants may have a pathogenetic role in proliferative ROP. PMID:23202391

  10. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke.

    PubMed

    Lioutas, Vasileios-Arsenios; Alfaro-Martinez, Freddy; Bedoya, Francisco; Chung, Chen-Chih; Pimentel, Daniela A; Novak, Vera

    2015-08-01

    Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood-brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS. PMID:26040423

  11. Targeted Selected Reaction Monitoring Mass Spectrometric Immunoassay for Insulin-like Growth Factor 1

    PubMed Central

    Niederkofler, Eric E.; Phillips, David A.; Krastins, Bryan; Kulasingam, Vathany; Kiernan, Urban A.; Tubbs, Kemmons A.; Peterman, Scott M.; Prakash, Amol; Diamandis, Eleftherios P.; Lopez, Mary F.; Nedelkov, Dobrin

    2013-01-01

    Insulin-like growth factor 1 (IGF1) is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM) mode. The resulting quantitative mass spectrometric immunoassay (MSIA) exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories. PMID:24278387

  12. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  13. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis.

    PubMed

    Kim, Hyo Jung; Cha, Jiyoung Y; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-Woo

    2016-01-01

    Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223-276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868

  14. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    PubMed Central

    Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.

    2011-01-01

    Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361

  15. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis

    PubMed Central

    Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo

    2016-01-01

    Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868

  16. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    PubMed Central

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  17. INADEQUATE COPPER INTAKE REDUCES SERUM INSULIN-LIKE GROWTH FACTOR-1 (IGF-1) AND BONE STRENGTH IN GROWING RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effects of graded intakes of zinc (Zn) and copper (Cu) on serum insulin-like growth-factor-1 (IGF-1) concentration and bone quality in growing rats. Using a 3x4 factorial design, weanling, male Sprague Dawley rats were randomly assigned to 12 groups (n=7 per group) and were ...

  18. Effects of butyrate on the expression of insulin-like growth factor binding proteins in bovine kidney epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium butyrate induces cell cycle arrest and apoptosis in bovine kidney epithelial cells primarily via down-regulating cell cycle-related gene expression and enhancing expression of pro-apoptotic genes. The insulin-like growth factor (IGF) system plays an essential role in these processes as well a...

  19. In Vitro Actions of Insulin-like Growth Factor-I on Ovarian Follicle Maturation in White Perch (Morone americana)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies of follicle maturation in temperate basses showed that insulin-like growth factor (IGF)-I and -II can induce meiotic resumption, indicated by germinal vesicle breakdown (GVBD), and oocyte maturational competence (OMC), the ability to respond to the maturation-inducing hormone (MIH, ...

  20. Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...

  1. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    SciTech Connect

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  2. Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer

    SciTech Connect

    Saji, M.; Tsushima, T.; Isozaki, O.; Murakami, H.; Ohba, Y.; Sato, K.; Arai, M.; Mariko, A.; Shizume, K.

    1987-08-01

    The interaction of insulin-like growth factor I (IGF-I) with porcine thyroid cells cultured in monolayer was studied. Specific binding of (/sup 125/I)iodo-IGF-I to thyroid cells was a reversible process dependent on the time and temperature of incubation. A steady state was achieved in 18 h at 4 C and averaged 14.2 +/- 2% (mean +/- SD)/10(6) cells. Binding of (/sup 125/I)iodo-IGF-I was inhibited by unlabeled IGF-I; half-maximal inhibition occurred at concentrations of 2-5 ng/ml. Multiplication-stimulating activity (rat IGF-II) and pork insulin had relative potencies of 1:20 and 1:300 compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with a Ka of 4.3 X 10(10) M-1, 49,000 binding sites were estimated per cell. Affinity cross-linking and autoradiography demonstrated the presence of type I IGF receptors. Thyroid cells also had specific receptors for insulin, but specific binding of (/sup 125/I)iodoinsulin was much lower than that of (/sup 125/I)iodo-IGF-I. Preincubation of thyroid cells with IGF-I or insulin caused a concentration-dependent decrease in (/sup 125/I)iodo-IGF-I binding due to an apparent loss of receptors. Preincubation with epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, or TSH did not alter subsequent binding of (/sup 125/I)iodo-IGF-I. Low concentrations of IGF-I stimulated DNA synthesis and proliferation of thyroid cells and acted synergistically with epidermal growth factor. Multiplication-stimulating activity and insulin had relative potencies in stimulating DNA synthesis comparable to their abilities to inhibit the binding of (/sup 125/I)iodo-IGF-I to thyroid cells.

  3. Multiple Signaling Pathways of the Insulin-Like Growth Factor 1 Receptor in Protection from Apoptosis

    PubMed Central

    Peruzzi, Francesca; Prisco, Marco; Dews, Michael; Salomoni, Paolo; Grassilli, Emanuela; Romano, Gaetano; Calabretta, Bruno; Baserga, Renato

    1999-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R), activated by its ligands, protects several cell types from a variety of apoptotic injuries. The main signaling pathway for IGF-1R-mediated protection from apoptosis has been previously elucidated and rests on the activation of phosphatidylinositol 3-kinase, Akt/protein kinase B, and the phosphorylation and inactivation of BAD, a member of the Bcl-2 family of proteins. In 32D cells (a murine hemopoietic cell line devoid of insulin receptor substrate 1 [IRS-1]), the IGF-1R activates alternative pathways for protection from apoptosis induced by withdrawal of interleukin-3. One of these pathways leads to the activation of mitogen-activated protein kinase, while a third pathway results in the mitochondrial translocation of Raf and depends on the integrity of a group of serines in the C terminus of the receptor that are known to interact with 14.3.3 proteins. All three pathways, however, result in BAD phosphorylation. The presence of multiple antiapoptotic pathways may explain the remarkable efficacy of the IGF-1R in protecting cells from apoptosis. PMID:10490655

  4. Insulin-like growth factor-I aerosol formulations for pulmonary delivery.

    PubMed

    Germershaus, Oliver; Schultz, Isabel; Lühmann, Tessa; Beck-Broichsitter, Moritz; Högger, Petra; Meinel, Lorenz

    2013-09-01

    Injectable insulin-like growth factor-1 (IGF-I) is therapeutically deployed for severe IGF-I deficiency and clinically explored for various other indications such as muscle wasting disease. In the present study, liquid IGF-I formulations for pulmonal application were screened with regard to buffer type (acetate, citrate, histidine, and succinate), sodium chloride concentration (50-150 mM), and pH value (4.5-6.5). Methionine 59 oxidation (Met(o)) was observed in acetate buffer along with reducible dimer and trimer formation at low pH. Oxidation correlated with formation of covalent, reducible aggregates, and complete loss of potency was observed for severely aggregated samples. Bioactivity was partly retained in cases where complete oxidation but limited aggregation was found. In contrast, IGF-I integrity was preserved in histidine buffer during accelerated stability. After delivery from air-jet or vibrating-mesh nebulizers, limited Met(o) formation and no aggregation was observed. Nebulization performance regarding aerosol output rate, mass median aerodynamic diameter, and fine particle fraction for liquid IGF-I formulation was comparable to 0.9% sodium chloride reference, confirming the suitability for pulmonal application. In conclusion, different IGF-I liquid formulations were studied and compositions were identified maintaining bioactivity and chemical stability throughout storage at accelerated conditions for up to 4 months as well as compatibility with air-jet and vibrating-mesh nebulizers. PMID:23958318

  5. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    SciTech Connect

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A. )

    1991-06-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats.

  6. Insulin and Insulin-Like Growth Factor Resistance in Alcoholic Neurodegeneration

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming; Cohen, Ariel C.; Sheedy, Donna; Harper, Clive; Wands, Jack R.

    2012-01-01

    Background Chronic alcohol feeding of adult Long Evans rats causes major central nervous system abnormalities that link neuronal loss and impaired acetylcholine homeostasis to ethanol inhibition of insulin and insulin-like growth factor (IGF) signaling and increased oxidative stress. Objectives We now characterize the integrity of insulin and IGF signaling mechanisms and assess molecular indices of neurodegeneration in the cerebellar vermis and anterior cingulate gyrus of human alcoholics. Results Alcoholic cerebella had increased neuronal loss, gliosis, lipid peroxidation, and DNA damage relative to control. Quantitative RT-PCR studies demonstrated reduced expression of insulin, insulin receptor and IGF-II receptor in the anterior cingulate, and reduced expression of insulin, IGF-I, and their corresponding receptors in the vermis. Competitive equilibrium binding assays revealed significantly reduced specific binding to the insulin, IGF-I, and IGF-II receptors in both the anterior cingulate and vermis of alcoholic brains. These effects of chronic alcohol abuse were associated with significantly reduced expression of choline acetyltransferase, which is needed for acetylcholine biosynthesis. Conclusions The results suggest that alcoholic neurodegeneration in humans is associated with insulin and IGF resistance with attendant impairment of neuronal survival mechanisms and acetylcholine homeostasis. PMID:18616667

  7. Insulin-like Growth Factor 1 Signaling Axis Meets p53 Genome Protection Pathways

    PubMed Central

    Werner, Haim; Sarfstein, Rive; LeRoith, Derek; Bruchim, Ilan

    2016-01-01

    Clinical, epidemiological, and experimental evidence indicate that the insulin-like growth factors (IGFs) are important mediators in the biochemical chain of events that lead from a phenotypically normal to a neoplastic cell. The IGF1 receptor (IGF1R), which mediates the biological actions of IGF1 and IGF2, exhibits potent pro-survival and antiapoptotic activities. The IGF1R is highly expressed in most types of cancer and is regarded as a promising therapeutic target in oncology. p53 is a transcription factor with tumor suppressor activity that is usually activated in response to DNA damage and other forms of cellular stress. On the basis of its protective activities, p53 is commonly regarded as the guardian of the genome. We provide evidence that the IGF signaling axis and p53 genome protection pathways are tightly interconnected. Wild-type, but not mutant, p53 suppresses IGF1R gene transcription, leading to abrogation of the IGF signaling network, with ensuing cell cycle arrest. Gain-of-function, or loss-of-function, mutations of p53 in tumor cells may disrupt its inhibitory activity, thus generating oncogenic molecules capable of transactivating the IGF1R gene. The interplay between the IGF1 and p53 pathways is also of major relevance in terms of metabolic regulation, including glucose transport and glycolysis. A better understanding of the complex physical and functional interactions between these important signaling pathways will have major basic and translational relevance. PMID:27446805

  8. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  9. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    SciTech Connect

    Li, Yangxin . E-mail: Yangxin_li@yahoo.com; Yu, XiYong . E-mail: yuxycn@hotmail.com; Lin, ShuGuang; Li, XiaoHong; Zhang, Saidan; Song, Yao-Hua

    2007-05-11

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies.

  10. The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders.

    PubMed

    Costales, Jesse; Kolevzon, Alexander

    2016-04-01

    Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584

  11. Functionally significant insulin-like growth factor I receptor mutations in centenarians

    PubMed Central

    Suh, Yousin; Atzmon, Gil; Cho, Mi-Ook; Hwang, David; Liu, Bingrong; Leahy, Daniel J.; Barzilai, Nir; Cohen, Pinchas

    2008-01-01

    Rather than being a passive, haphazard process of wear and tear, lifespan can be modulated actively by components of the insulin/insulin-like growth factor I (IGFI) pathway in laboratory animals. Complete or partial loss-of-function mutations in genes encoding components of the insulin/IGFI pathway result in extension of life span in yeasts, worms, flies, and mice. This remarkable conservation throughout evolution suggests that altered signaling in this pathway may also influence human lifespan. On the other hand, evolutionary tradeoffs predict that the laboratory findings may not be relevant to human populations, because of the high fitness cost during early life. Here, we studied the biochemical, phenotypic, and genetic variations in a cohort of Ashkenazi Jewish centenarians, their offspring, and offspring-matched controls and demonstrated a gender-specific increase in serum IGFI associated with a smaller stature in female offspring of centenarians. Sequence analysis of the IGF1 and IGF1 receptor (IGF1R) genes of female centenarians showed overrepresentation of heterozygous mutations in the IGF1R gene among centenarians relative to controls that are associated with high serum IGFI levels and reduced activity of the IGFIR as measured in transformed lymphocytes. Thus, genetic alterations in the human IGF1R that result in altered IGF signaling pathway confer an increase in susceptibility to human longevity, suggesting a role of this pathway in modulation of human lifespan. PMID:18316725

  12. Chronic ethanol feeding inhibits plasma levels of insulin-like growth factor-1

    SciTech Connect

    Sonntag, W.E.; Boyd, R.L.

    1988-01-01

    The purpose of this study was to determine whether the generalized catabolic effects of chronic ethanol may be associated with a decline in plasma of insulin-like growth factor-1 (IGF-1). Male Sprague-Dawley rats were fed a liquid diet containing 5% ethanol or pair-fed a diet made isocaloric with maltose-dextrin. Animals were maintained on this diet for either 12 days or 4.5 months. Another groups of animals were fed control diet ad libitum for 2 weeks. After 12 days of feeding, plasma concentrations of IGF-1 in ad libitum fed rats were 771 +/- 41 ng/ml which was greater than concentrations in either pair-fed or ethanol-fed rats. After 4.5 months of feeding, plasma levels of IGF-1 in ad libitum and pair-fed rats were similar to the 12 day study. However, a significant decrease in plasma levels of IGF-1 was observed in ethanol-fed animals over the 4.5 month period. Results of a similar study in rats fed a high-fat diet for 4.5 months were similar to those found with the low-fat diet.

  13. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer.

    PubMed

    Heidegger, Isabel; Massoner, Petra; Sampson, Natalie; Klocker, Helmut

    2015-10-28

    Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in males. In recent years, several new targeting agents have been introduced for the treatment of advanced stages of the disease. However, development of resistance limits the efficacy of new drugs and there is a further need to develop additional novel treatment approaches. One of the most investigated targets in cancer research is the insulin-like growth factor (IGF) axis, whose receptors are overexpressed in several cancer entities including PCa. In preclinical studies in PCa, targeting of the IGF axis receptors showed promising anti-tumor effects. Currently available data on clinical studies do not meet the expectations for this new treatment approach. In this review we provide a summary of preclinical and clinical studies on the IGF axis in PCa including treatment with monoclonal antibodies and tyrosine kinase inhibitors. Moreover, we summarize preliminary results from ongoing studies and discuss limitations and side effects of the substances used. We also address the role of the IGF axis in the biomarkers setting including IGF-binding proteins and genetic variants. PMID:26231734

  14. Insulin-Like Growth Factor Binding Protein-4 as a Marker of Chronic Lupus Nephritis

    PubMed Central

    Han, Jie; Ye, Yujin; Singh, Sandeep; Zhou, Jinchun; Li, Yajuan; Ding, Huihua; Li, Quan-zhen; Zhou, Xin; Putterman, Chaim; Saxena, Ramesh; Mohan, Chandra

    2016-01-01

    Kidney biopsy remains the mainstay of Lupus Nephritis (LN) diagnosis and prognostication. The objective of this study is to identify non-invasive biomarkers that closely parallel renal pathology in LN. Previous reports have demonstrated that serum Insulin-like growth factor binding protein 4 (IGFBP-4) was increased in diabetic nephropathy in both animal models and patients. We proceeded to assess if IGFBP4 could be associated with LN. We performed ELISA using the serum of 86 patients with LN. Normal healthy adults (N = 23) and patients with other glomerular diseases (N = 20) served as controls. Compared to the healthy controls or other glomerular disease controls, serum IGFBP-4 levels were significantly higher in the patients with LN. Serum IGFBP-4 did not correlate well with systemic lupus erythematosus disease activity index (SLEDAI), renal SLEDAI or proteinuria, but it did correlate with estimated glomerular filtration rate (R = 0.609, P < 0.0001). Interestingly, in 18 patients with proliferative LN whose blood samples were obtained at the time of renal biopsy, serum IGFBP-4 levels correlated strongly with the chronicity index of renal pathology (R = 0.713, P < 0.001). IGFBP-4 emerges a potential marker of lupus nephritis, reflective of renal pathology chronicity changes. PMID:27019456

  15. Insulin-like Growth Factor: Current Concepts and New Developments in Cancer Therapy

    PubMed Central

    King, Erin R.; Wong, Kwong-Kwok

    2013-01-01

    The insulin-like growth factor (IGF) family and the IGF-1 receptor (IGF-1R) play an important role in cancer. This intricate and complex signaling pathway provides many opportunities for therapeutic intervention, and several novel therapeutics aimed at the IGF-1R, particularly monoclonal antibodies and small molecule tyrosine kinase inhibitors, are under clinical investigation. This article provides a patent overview of the IGF signaling pathway and its complexity, addresses the justification for the use of IGF-1R-targeted therapy, and reviews the results of in vivo and in vitro novel therapeutics. Over the past year, the completion of several phase I, II, and III trials have provided interesting new information about the clinical activity of these novel compounds, particularly CP-751,871, IMC-A12, R1507, AMG-479, AVE-1642, MK-0646, XL-228, OSI-906, and BMS-754807. We review the important preliminary results from clinical trials with these compounds and conclude with a discussion about future therapeutic efforts. PMID:21875414

  16. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    PubMed Central

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed. PMID:22761272

  17. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease

    PubMed Central

    Bilbao, Daniel; Luciani, Luisa; Johannesson, Bjarki; Piszczek, Agnieszka; Rosenthal, Nadia

    2014-01-01

    The recent precipitous rise in autoimmune diseases is placing an increasing clinical and economic burden on health systems worldwide. Current therapies are only moderately efficacious, often coupled with adverse side effects. Here, we show that recombinant human insulin-like growth factor-1 (rhIGF-1) stimulates proliferation of both human and mouse regulatory T (Treg) cells in vitro and when delivered systemically via continuous minipump, it halts autoimmune disease progression in mouse models of type 1 diabetes (STZ and NOD) and multiple sclerosis (EAE) in vivo. rhIGF-1 administration increased Treg cells in affected tissues, maintaining their suppressive properties. Genetically, ablation of the IGF-1 receptor specifically on Treg cell populations abrogated the beneficial effects of rhIGF-1 administration on the progression of multiple sclerotic symptoms in the EAE model, establishing a direct effect of IGF-1 on Treg cell proliferation. These results establish systemically delivered rhIGF-1 as a specific, effective stimulator of Treg cell action, underscoring the clinical feasibility of manipulating natural tolerance mechanisms to suppress autoimmune disease. PMID:25339185

  18. Insulin-like growth factor 2 rescues aging-related memory loss in rats.

    PubMed

    Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M

    2016-08-01

    Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. PMID:27318130

  19. Insulin-like growth factor (IGF) and IGF binding protein gene expression in multicystic renal dysplasia.

    PubMed

    Matsell, D G; Bennett, T; Armstrong, R A; Goodyer, P; Goodyer, C; Han, V K

    1997-01-01

    Multicystic dysplastic kidney disease is the most common form of renal dysplasia that leads to ESRD in children. This study describes the histopathological changes of multicystic dysplasia that occur from early fetal life to the postnatal period. At 14 wk gestation, early cystic enlargement of various segments of the nephron have been identified, in addition to a displaced metanephric blastema adjacent to zones of normal nephrogenesis. At later stages, the predominant features include cyst enlargement with marked fibromuscular collars, architectural disorganization, and replacement of the interstitium with a disarray of mesenchymal tissue. This study investigated the expression of the mRNA encoding the insulin-like growth factors (IGF) and IGF binding proteins (IGFBP) and have demonstrated IGF-II, IGFBP-2, and IGFBP-3 to be altered. Apart from their expression in the displaced metanephric blastema, both IGF-II and IGFBP-2 were overexpressed in abnormal tissue elements in all kidneys from fetal to postnatal life. IGF-II gene expression was localized to mesenchymal tissue, specifically in the periductal fibromuscular collars. IGFBP-2 mRNA was found to be expressed exclusively in the cyst epithelia of all cysts at all ages studied, whereas IGFBP-3 mRNA was absent from these epithelia. This study details the failure of normal IGF expression in the development of multicystic renal dysplasia and suggests a role for the IGF system in the progressive histopathological changes of this disorder. PMID:9013452

  20. Canine pancreatic islet cell tumours secreting insulin-like growth factor type 2: a rare entity.

    PubMed

    Finotello, R; Ressel, L; Arvigo, M; Baroni, G; Marchetti, V; Romanelli, G; Burrow, R; Mignacca, D; Blackwood, L

    2016-06-01

    Insulin-like growth factor type II (IGF-II) is the main cause of non-islet cell tumour hypoglycaemia (NICTH) and insulin is thought to be the only factor causing hypoglycaemia in insulinomas. However, two case reports of pancreatic neuroendocrine tumours (PNETs) producing IGF-II have been previously published: a human and a canine patient. In this study, we investigated clinical, histopathological, immunohistochemical and ultrastructural features, and biological behaviour of canine pancreatic IGF-II-omas, a subgroup of PNETs that has not been previously characterized. Case records of 58 dogs with confirmed PNETs and hypoglycaemia were reviewed: six patients were affected by IGF-II-omas. Surgery was performed in all cases and two dogs had metastases. Four patients remained alive and in remission at 370, 440, 560 and 890 days post-diagnosis; two died of non-tumour-related causes. IGF-II-omas can be differentiated from insulinomas through hypoinsulinaemia, IGF-II positive and insulin negative immunostaining. The prevalence of this neoplasia is low, accounting for just 6% of PNETs. PMID:24428588

  1. Association of insulin-like growth factor-1 polymorphisms with high myopia in the Chinese population

    PubMed Central

    Zhuang, Wenjuan; Li, Zili; Sheng, Xunlun; Zhao, Jingjing; Li, Shanshan; Yang, Xueqiu; Xiang, Wei; Rong, Weining; Liu, Yani; Zhang, Fangxia

    2012-01-01

    Purpose The purpose of this study was to determine whether genetic variants in the insulin-like growth factor-1 (IGF-1) gene were associated with high myopia in the Chinese population. Methods A case-control association study of 421 unrelated Chinese patients with high myopia and 401 control subjects matched in ethnicity and gender was undertaken. Genomic DNA was prepared from peripheral blood. All individuals were genotyped for 7 tag single nucleotide polymorphisms (tSNPs) across the IGF-1 gene region. Genotypic distribution was tested for Hardy–Weinberg equilibrium. The genotype and allele frequencies were evaluated using the χ2 tests. Bonferroni corrections for multiple comparisons were performed. Results The polymorphism of rs12423791 showed positive association with extreme myopia (pallel=0.006 and pallel1 recessive model=0.004, respectively) after Bonferroni correction for multiple testing and the haplotype GC of rs5742629-rs12423791 was also associated with extreme myopia (p=0.033) after 50,000 permutations for multiple comparisons. Conclusions The polymorphism of rs12423791 in IGF-1 may be associated with extreme myopia in the Chinese population and should be investigated further. PMID:22509095

  2. Clinical implications of insulin-like growth factor 1 system in early-stage cervical cancer

    PubMed Central

    Huang, Y-F; Shen, M-R; Hsu, K-F; Cheng, Y-M; Chou, C-Y

    2008-01-01

    This study was aimed to identify the expression and the correlation of insulin-like growth factor-1 (IGF-1) system and their prognostic impacts in cervical cancer. Seventy-two patients with early-stage cervical cancer were eligible. We obtained the serum levels of total IGF-1 and IGF binding protein-3 (IGFBP-3) by enzyme-linked immunosorbent assay and the expression of IGF-1 receptor (IGF-1R) in cancerous tissue by immuno-fluorescent (IF) stains. The 5-year recurrence-free and overall survival rates were significantly lower (P=0.003 and P=0.01, respectively) among patients with high-grade expression of tissue IGF-1R, compared with those with low-grade expression. After adjustment for other factors, preoperative serum total IGF-1 or IGFBP-3 levels failed to predict cancer death and recurrence. High-grade expression of IGF-1R and elevated preoperative squamous cell carcinoma antigen level were independent predictors of both death and recurrence, and combination of both factors could further help identify the subgroup of patients at higher death risk. The IF staining indicates the colocalisation of IGF-1 and IGF-1R in the cancerous tissues, whereas the IGF-1R expression is not correlated with circulating levels of IGF-1 or IGFBP-3. In early-stage cervical cancer, IGF-1 system may have a paracrine or autocrine function and the adverse impacts on prognosis by IGF-1R overexpression are implicated. PMID:18781172

  3. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion.

    PubMed Central

    Buerke, M; Murohara, T; Skurk, C; Nuss, C; Tomaselli, K; Lefer, A M

    1995-01-01

    In the present study, the cardioprotective effects of insulin-like growth factor I (IGF-I) were examined in a murine model of myocardial ischemia reperfusion (i.e., 20 min + 24 hr). IGF-I (1-10 micrograms per rat) administered 1 hr prior to ischemia significantly attenuated myocardial injury (i.e., creatine kinase loss) compared to vehicle (P < 0.001). In addition, cardiac myeloperoxidase activity, an index of neutrophil accumulation, in the ischemic area was significantly attenuated by IGF-I (P < 0.001). This protective effect of IGF-I was not observed with des-(1-3)-IGF-I. Immunohistochemical analysis of ischemic-reperfused myocardial tissue demonstrated markedly increased DNA fragmentation due to programmed cell death (i.e., apoptosis) compared to nonischemic myocardium. Furthermore, IGF-I significantly attenuated the incidence of myocyte apoptosis after myocardial ischemia and reperfusion. Therefore, IGF-I appears to be an effective agent for preserving ischemic myocardium from reperfusion injury and protects via two different mechanisms--inhibition of polymorphonuclear leukocyte-induced cardiac necrosis and inhibition of reperfusion-induced apoptosis of cardiac myocytes. Images Fig. 5 PMID:7644533

  4. Monoallelic expression of the insulin-like growth factor-2 gene in ovarian cancer.

    PubMed Central

    Yun, K.; Fukumoto, M.; Jinno, Y.

    1996-01-01

    Genomic imprinting is defined as a gamete-specific modification causing differential expression of the two alleles of a gene in somatic cells and is becoming increasingly recognized as playing an important role in a number of human diseases including cancer. We have reported that the loss of the insulin-like growth factor-2 (IGF2) gene imprinting results in the deregulation of both IGF2 alleles, which may contribute to the onset of Wilms tumor. It is important to see whether such abnormal genomic imprinting is implicated in the etiology of common adulthood cancers. In the present study we have examined the expression level and imprinting status of the IGF2 gene in human ovaries and ovarian cancers. We confirm that IGF2 is significantly expressed in ovaries and ovarian cancers. In normal ovaries, both surface epithelium and the ovary proper demonstrate monoallelic IGF2 expression. Among 27 tumors, all 11 heterozygous for the IGF2 locus show monoallelic IGF2 expression (2 of them are proven to be from the paternal allele). The data suggest that the increased IGF2 gene expression in ovarian cancer may be achieved by a mechanism other than loss of imprinting. Images Figure 1 Figure 2 Figure 3 PMID:8644850

  5. Lifestyle factors and insulin-like growth factor 1 levels among elderly men.

    PubMed

    Signorello, L B; Kuper, H; Lagiou, P; Wuu, J; Mucci, L A; Trichopoulos, D; Adami, H O

    2000-06-01

    Insulin-like growth factor 1 (IGF-1) is a potentially important determinant of disease; hence epidemiological identification of factors that influence circulating IGF-1 is merited. We therefore analysed data collected in Greece to determine the relationship between anthropometric, lifestyle and dietary variables and serum levels of IGF-1 among elderly men. We identified 51 men with prostate cancer, 50 men with benign prostatic hyperplasia, and 52 apparently healthy elderly men (controls), all matched for age (+/- 1 year). These 153 men provided blood specimens and were interviewed using a validated lifestyle and food frequency questionnaire. We performed multivariate linear regression to identify potential predictors of circulating IGF-1. After controlling for age, body mass index, smoking habits, alcohol drinking and coffee consumption, each 5 cm increase in height predicted a 13.0% increase in IGF-1 (95% CI 0.4-27.2%) among the controls and a 11.3% increase in IGF-1 (95% CI 4.5-18.6%) among the entire study group. None of the investigated dietary factors (total fat, carbohydrate, protein, dairy products, tomatoes, calcium) were strongly related to IGF-1 levels. The positive association between IGF-1 and height integrates the empirical evidence linking IGF-1 and height with prostate cancer risk. PMID:10954256

  6. N-Acetylgalactosaminyltransferase 14, a novel insulin-like growth factor binding protein-3 binding partner

    SciTech Connect

    Wu, Chen; Yao, Guangyin; Zou, Minji; Chen, Guangyu; Wang, Min; Liu, Jingqian; Wang, Jiaxi; Xu, Donggang . E-mail: xudg@nic.bmi.ac.cn

    2007-06-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is known to inhibit cell proliferation and induce apoptosis in IGF-dependent and IGF-independent manners, but the mechanism underlying IGF-independent effects is not yet clear. In a yeast two-hybrid assay, IGFBP-3 was used as the bait to screen a human fetal liver cDNA library for it interactors that may potentially mediate IGFBP-3-regulated functions. N-Acetylgalactosaminyltransferase 14 (GalNAc-T14), a member of the GalNAc-Tases family, was identified as a novel IGFBP-3 binding partner. This interaction involved the ricin-type beta-trefoil domain of GalNAc-T14. The interaction between IGFBP-3 and GalNAc-T14 was reconfirmed in vitro and in vivo, using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assays. Our findings may provide new clues for further study on the mechanism behind the IGF-independent effects of IGFBP-3 promoting apoptosis. The role of GalNAc-T14 as an intracellular mediator of the effects of IGFBP-3 need to be verified in future studies.

  7. A candidate targeting molecule of insulin-like growth factor-I receptor for gastrointestinal cancers

    PubMed Central

    Adachi, Yasushi; Yamamoto, Hiroyuki; Ohashi, Hirokazu; Endo, Takao; Carbone, David P; Imai, Kohzoh; Shinomura, Yasuhisa

    2010-01-01

    Advances in molecular research in cancer have brought new therapeutic strategies into clinical usage. One new group of targets is tyrosine kinase receptors, which can be treated by several strategies, including small molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Aberrant activation of growth factors/receptors and their signal pathways are required for malignant transformation and progression in gastrointestinal (GI) carcinomas. The concept of targeting specific carcinogenic receptors has been validated by successful clinical application of many new drugs. Type I insulin-like growth factor (IGF) receptor (IGF-IR) signaling potently stimulates tumor progression and cellular differentiation, and is a promising new molecular target in human malignancies. In this review, we focus on this promising therapeutic target, IGF-IR. The IGF/IGF-IR axis is an important modifier of tumor cell proliferation, survival, growth, and treatment sensitivity in many malignant diseases, including human GI cancers. Preclinical studies demonstrated that downregulation of IGF-IR signals reversed the neoplastic phenotype and sensitized cells to anticancer treatments. These results were mainly obtained through our strategy of adenoviruses expressing dominant negative IGF-IR (IGF-IR/dn) against gastrointestinal cancers, including esophagus, stomach, colon, and pancreas. We also summarize a variety of strategies to interrupt the IGFs/IGF-IR axis and their preclinical experiences. Several mAbs and TKIs targeting IGF-IR have entered clinical trials, and early results have suggested that these agents have generally acceptable safety profiles as single agents. We summarize the advantages and disadvantages of each strategy and discuss the merits/demerits of dual targeting of IGF-IR and other growth factor receptors, including Her2 and the insulin receptor, as well as other alternatives and possible drug combinations. Thus, IGF-IR might be a candidate for a molecular

  8. Size at birth and plasma insulin-like growth factor-1 concentrations.

    PubMed Central

    Fall, C H; Pandit, A N; Law, C M; Yajnik, C S; Clark, P M; Breier, B; Osmond, C; Shiell, A W; Gluckman, P D; Barker, D J

    1995-01-01

    OBJECTIVE--To test the hypothesis that reduced fetal growth leads to altered plasma insulin-like growth factor-1 (IGF-1) concentrations in childhood. DESIGN--A follow up study of 4 year old children whose birth weights were recorded, and of 7 year old children whose weight, length, head circumference, and placental weight were measured at birth. SETTING--Pune, India, and Salisbury, England. SUBJECTS--200 children born during October 1987 to April 1989 in the King Edward Memorial Hospital, Pune, weighing over 2.0 kg at birth and not requiring special care, and 244 children born during July 1984 to February 1985 in the Salisbury Health District and still living there. MAIN OUTCOME MEASURE--Plasma IGF-1 concentrations. RESULTS--In both groups of children, and consistent with findings in other studies, plasma IGF-1 concentrations were higher in taller and heavier children, and higher in girls than boys. Allowing for sex and current size, concentrations were inversely related to birth weight (Pune p = 0.002; Salisbury p = 0.003). Thus at any level of weight or height, children of lower birth weight had higher IGF-1 concentrations. The highest concentrations were in children who were below average birth weight and above average weight or height when studied. Systolic blood pressures were higher in children with higher IGF-1 concentrations (Pune p = 0.01; Salisbury p = 0.04). CONCLUSIONS--Children of lower birth weight develop higher circulating concentrations of IGF-1 than expected for their height and weight. This is consistent with the hypothesis that under-nutrition in utero leads to reprogramming of the IGF-1 axis. The increase of plasma IGF-1 concentrations in low birthweight children may also be linked to postnatal catch-up growth. High IGF-1 concentrations may be one of the mechanisms linking reduced fetal growth and high blood pressure in later life. PMID:7492190

  9. [Effect of insulin and insulin-like growth factor-1 on vascular smooth muscle cells].

    PubMed

    Saneshige, S; Shigehiro, K

    1997-07-01

    Non-insulin-dependent diabetes mellitus, obesity, and essential hypertension are associated with hyperinsulinemia that results from insulin resistance and insulin has been reported to accelerate atherosclerosis. We studied the effects of insulin and insulin-like growth factor-1 (IGF-1) on the growth of porcine vascular smooth muscle cells and on the synthesis of extracellular matrix. The cells were cultured 3-8 changes of Dulbecco's modified Eagle's medium (DMEM) with 10% FCS. Subconfulent cells were put in wells 1 x 10(4) or 1 x 10(5) cells/well in DMEM with or without insulin or IGF-1. The number of cells was counted, and protein and DNA synthesis, expression of genes for collagen alpha1(1), and collagen synthesis were measured. Insulin (0, 16, and 160 nM) and IGF-1 (0, 1, 31, and 13.1 nM) increased number of cells by 50% and 40%, in a dose-dependent manner. Protein and DNA synthesis were also increased by insulin (3.8 and 3.0 times) and by IGF-1 (3.9 and 1.8 time). Collaged protein synthesis was increased 2.3-fold by IGF-1 at 13.1 nM, and insulin (16,000 nM) caused a 26.5-fold increase. Levels of collagen alpha1(1) mRNA were also increased by both insulin and IGF-1. These results suggest that insulin and IGF-1 can cause vascular hyperplasia associated with increased collagen synthesis, which indicates that insulin, IGF-1, or both may have an important role in vascular growth. PMID:9388374

  10. Application of insulin-like growth factor-1 in the treatment of inner ear disorders.

    PubMed

    Yamamoto, Norio; Nakagawa, Takayuki; Ito, Juichi

    2014-01-01

    Sensorineural hearing loss (SNHL) is considered an intractable disease, given that hair and supporting cells (HCs and SCs) of the postnatal mammalian cochlea are unable to regenerate. However, with progress in regenerative medicine in the 21st century, several innovative approaches for achieving regeneration of inner ear HCs and SCs have become available. These methods include stem cell transplantation, overexpression of specific genes, and treatment with growth factors. Insulin-like growth factor-1 (IGF-1) is one of the growth factors that are involved in the development of the inner ear. Treatment with IGF-1 maintains HC numbers in the postnatal mammalian cochlea after various types of HC injuries, with activation of two major pathways downstream of IGF-1 signaling. In the aminoglycoside-treated neonatal mouse cochlear explant culture, promotion of the cell-cycle in SCs as well as inhibition of HC apoptosis was observed in the IGF-1-treated group. Activation of downstream molecules was observed in SCs and, in turn, SCs contribute to the maintenance of HC numbers. Using comprehensive analysis of the gene expression, the candidate effector molecules of the IGF-1 signaling pathway in the protection of HCs were identified as Netrin1 and Gap43. Based on these studies, a clinical trial has sought to investigate the effects of IGF-1 on SNHL. Sudden SNHL (SSHL) that was refractory to systemic steroids was treated with IGF-1 in a gelatin hydrogel and the outcome was compared with a historical control of hyperbaric oxygen therapy. The proportion of patients showing hearing improvement was significantly higher in the IGF-1-treatment group at 24 weeks after treatment than in the control group. A randomized clinical trial is ongoing to compare the effect of IGF-1 treatment with that of intra-tympanic steroids for SSHL that is refractory to systemic steroids. PMID:25309440

  11. Coordinate Control of Muscle Cell Survival by Distinct Insulin-like Growth Factor Activated Signaling Pathways

    PubMed Central

    Lawlor, Margaret A.; Rotwein, Peter

    2000-01-01

    Peptide growth factors control diverse cellular functions by regulating distinct signal transduction pathways. In cultured myoblasts, insulin-like growth factors (IGFs) stimulate differentiation and promote hypertrophy. IGFs also maintain muscle cell viability. We previously described C2 skeletal muscle lines lacking expression of IGF-II. These cells did not differentiate, but underwent progressive apoptotic death when incubated in differentiation medium. Viability could be sustained and differentiation enabled by IGF analogues that activated the IGF-I receptor; survival was dependent on stimulation of phosphatidylinositol 3-kinase (PI3-kinase). We now find that IGF action promotes myoblast survival through two distinguishable PI3-kinase–regulated pathways that culminate in expression of the cyclin-dependent kinase inhibitor, p21. Incubation with IGF-I or transfection with active PI3-kinase led to rapid induction of MyoD and p21, and forced expression of either protein maintained viability in the absence of growth factors. Ectopic expression of MyoD induced p21, and inhibition of p21 blocked MyoD-mediated survival, thus defining one PI3-kinase–dependent pathway as leading first to MyoD, and then to p21 and survival. Unexpectedly, loss of MyoD expression did not impede IGF-mediated survival, revealing a second pathway involving activation by PI3-kinase of Akt, and subsequent induction of p21. Since inhibition of p21 caused death even in the presence of IGF-I, these results establish a central role for p21 as a survival factor for muscle cells. Our observations also define a MyoD-independent pathway for regulating p21 in muscle, and demonstrate that distinct mechanisms help ensure appropriate expression of this key protein during differentiation. PMID:11121430

  12. Modulation of the insulin-like growth factor system by chronic alcohol feeding.

    PubMed

    Lang, C H; Fan, J; Lipton, B P; Potter, B J; McDonough, K H

    1998-06-01

    Insulin-like growth factor (IGF)-I is a potent anabolic agent that plays an important role in regulating muscle protein balance. Alterations in one or more of the various components of the IGF system may be in part responsible for the muscle wasting that accompanies chronic alcohol consumption. The purpose of the present study was to characterize changes in the growth hormone-IGF axis produced by chronic alcohol consumption in rats. After 8 weeks of alcohol feeding, the IGF-I concentration was decreased in plasma (31%) as well as in the liver and skeletal muscle (40-50%), compared with pair-fed control animals. In addition, alcohol consumption decreased IGF-I mRNA abundance in liver and muscle (approximately 50%). IGF-I content in duodenum and kidney, however, was not altered by alcohol feeding. Concomitantly, the relative concentration of IGF binding protein (IGFBP)-1 was increased in plasma, liver, and muscle of alcohol-fed rats, compared with control values. In contrast, no changes in the plasma concentrations of IGFBP-2, -3, or -4 were detected in alcohol-fed rats at this time point Previous studies have indicated that elevations in glucocorticoids or decreases in insulin or growth hormone might be responsible for the decrease in IGF-I and/or the increase in IGFBP-1 in other catabolic conditions. However, there was no difference in the plasma concentrations of these hormones between alcohol-fed and control animals in this study. These data indicate that chronic alcohol feeding in rats decreases IGF-I and increases IGFBP-1 in the circulation and in skeletal muscle and that these changes appear to be independent of changes in classical hormonal regulators of the IGF system. The observed alterations in the IGF system are consistent with a reduction in the anabolic actions of IGF-I induced by chronic alcohol consumption. PMID:9660307

  13. Application of insulin-like growth factor-1 in the treatment of inner ear disorders

    PubMed Central

    Yamamoto, Norio; Nakagawa, Takayuki; Ito, Juichi

    2014-01-01

    Sensorineural hearing loss (SNHL) is considered an intractable disease, given that hair and supporting cells (HCs and SCs) of the postnatal mammalian cochlea are unable to regenerate. However, with progress in regenerative medicine in the 21st century, several innovative approaches for achieving regeneration of inner ear HCs and SCs have become available. These methods include stem cell transplantation, overexpression of specific genes, and treatment with growth factors. Insulin-like growth factor-1 (IGF-1) is one of the growth factors that are involved in the development of the inner ear. Treatment with IGF-1 maintains HC numbers in the postnatal mammalian cochlea after various types of HC injuries, with activation of two major pathways downstream of IGF-1 signaling. In the aminoglycoside-treated neonatal mouse cochlear explant culture, promotion of the cell-cycle in SCs as well as inhibition of HC apoptosis was observed in the IGF-1-treated group. Activation of downstream molecules was observed in SCs and, in turn, SCs contribute to the maintenance of HC numbers. Using comprehensive analysis of the gene expression, the candidate effector molecules of the IGF-1 signaling pathway in the protection of HCs were identified as Netrin1 and Gap43. Based on these studies, a clinical trial has sought to investigate the effects of IGF-1 on SNHL. Sudden SNHL (SSHL) that was refractory to systemic steroids was treated with IGF-1 in a gelatin hydrogel and the outcome was compared with a historical control of hyperbaric oxygen therapy. The proportion of patients showing hearing improvement was significantly higher in the IGF-1-treatment group at 24 weeks after treatment than in the control group. A randomized clinical trial is ongoing to compare the effect of IGF-1 treatment with that of intra-tympanic steroids for SSHL that is refractory to systemic steroids. PMID:25309440

  14. The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat

    PubMed Central

    Brohus, Malene; Gorbunova, Vera; Faulkes, Chris G.; Overgaard, Michael T.; Conover, Cheryl A.

    2015-01-01

    Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process. PMID:26694858

  15. The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat.

    PubMed

    Brohus, Malene; Gorbunova, Vera; Faulkes, Chris G; Overgaard, Michael T; Conover, Cheryl A

    2015-01-01

    Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process. PMID:26694858

  16. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    SciTech Connect

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  17. Low serum Insulin Like Growth Factor - 1 in patients with Stress Urinary Incontinence

    PubMed Central

    Ozbek, Emin; Otunctemur, Alper; Sahin, Suleyman; Ozcan, Levent; Dursun, Murat; Polat, Emrecan; Tulubas, Feti; Cekmen, Mustafa

    2016-01-01

    ABSTRACT Objective: SUI, involuntary loss of urine, occurs when intra abdominal pressure exceeds urethral pressure in women. Recent animal study has shown that there are therapeutic effects of Insulin-like growth factors (IGF-1) on stress urinary incontinence in rats with simulated childbirth trauma. IGF-1 is an important mediator of cell growth, differentiation and transformation in various tissues and stimulates fibroblast proliferation and enhances collagen synthesis. The purpose of the current study was to determine the association between IGF-1 levels and SUI. Materials and Methods: All patients were evaluated for SUI and divided into two groups: 116 women with SUI and 76 women without SUI. Diagnosis of SUI was based on the International Consultation on Incontinence Questionnaire-Short Form (ICIQSF). Levels of IGF-1 were measured in serum by enzyme-linked immunosorbent assay. The relationship between IGF-1 levels and SUI in patients was evaluated statisticaly. Results: The mean age of patients wiyh SUI was 49.9±8.6 and 48.7±7.8 in control group. Plasma IGF-1 levels were significantly lower in SUI than in control group (106.5±26.4 and 133.3±37.1ng/mL, respectively, P <0.001). Body mass indexes were higher in women with SUI than women without SUI. Conclusion: In this study lower serum IGF-1 levels were found to be associated with SUI. Serum IGF-1 level appears to be a specific predictor of SUI, and it may be used in early prediction of SUI in female population. PMID:27564291

  18. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    SciTech Connect

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.; Simske, S.J.; Zimmerman, R.J.

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}

  19. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. PMID:26074086

  20. Radioimmunoassay for insulin-like growth factor II (IGF-II).

    PubMed

    Asakawa, K; Hizuka, N; Takano, K; Fukuda, I; Sukegawa, I; Demura, H; Shizume, K

    1990-10-01

    Insulin-like growth factor II (IGF-II) levels in human plasma were measured in physiological and pathological conditions by radioimmunoassay (RIA) with biosynthetic IGF-II. This RIA was specific for IGF-II and cross-reactivity with IGF-I was 1%. The sensitivity was 15 pg/tube with 50% displacement at 50 pg/tube. The intra- and inter-assay coefficients of variation for IGF-II were 6.3 and 9.3%, respectively. The plasma IGF-II levels in normal adults, patients with hypopituitarism and patients with active acromegaly were 589.6 +/- 15.8, 800.9 +/- 45.6 and 330.3 +/- 24.3 ng/ml, respectively. After human growth hormone (hGH) treatment in hypopituitarism, IGF-II slightly increased, but not significantly. After adenomectomy in patients with acromegaly, IGF-II significantly decreased. These data indicate that IGF-II concentrations in plasma were partially GH dependent. This GH dependency was less than that of IGF-I. IGF-II was low in patients with anorexia nervosa and with liver cirrhosis and high in patients with renal failure. In two cases with extrapancreatic tumor-associated hypoglycemia, plasma IGF-II was increased to 1123.8 and 843.5 ng/ml, and returned to normal after tumor resection. These data showed that IGF-II was partly dependent on GH and nutritional conditions and that IGF-II was the most likely cause of some cases of hypoglycemia with extrapancreatic tumor. This specific and sensitive RIA of IGF-II would be useful in evaluating its physiological and pathological role in plasma and tissue. PMID:2086202

  1. Defining the pathway to insulin-like growth factor system targeting in cancer

    PubMed Central

    Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The insulin-like growth factors (IGFs; IGF-1 and IGF-2) play central roles in cell growth, differentiation, survival, transformation and metastasis. The biologic effects of the IGFs are mediated by the IGF-1 receptor (IGF-1R), a receptor tyrosine kinase with homology to the insulin receptor (IR). Dysregulation of the IGF system is well recognized as a key contributor to the progression of multiple cancers, with IGF-1R activation increasing the tumorigenic potential of breast, prostate, lung, colon and head and neck squamous cell carcinoma (HNSCC). Despite this relationship, targeting the IGF-1R has only recently undergone development as a molecular cancer therapeutic. As it has taken hold, we are witnessing a robust increase and interest in targeting the inhibition of IGF-1R signaling. This is accentuated by the list of over 30 drugs, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) that are under evaluation as single agents or in combination therapies [1]. The IGF binding proteins (IGFBPs) represent the third component of the IGF system consisting of a class of six soluble secretory proteins. They represent a unique class of naturally occurring IGF antagonists that bind to and sequester IGF-1 and IGF-2, inhibiting their access to the IGF-1R. Due to their dual targeting of the IGFs without affecting insulin action, the IGFBPs are an untapped “third” class of IGF-1R inhibitors. In this commentary, we highlight some of the significant aspects of and prospects for targeting the IGF-1R and describe what the future may hold. PMID:20599789

  2. Expression, purification, and in vitro characterization of recombinant salmon insulin-like growth factor-II.

    PubMed

    Wilkinson, Ryan J; Elliott, Phillip; Carragher, John F; Francis, Geoffrey

    2004-06-01

    The insulin-like growth factors, IGF-I and IGF-II, are single chain polypeptides, which are structurally related to proinsulin and promote proliferation and differentiation of cells in many vertebrate species. Previous attempts to produce recombinant salmon IGF-II (rsIGF-II) were compromised by low expression levels and co-purification of incorrectly cleaved protein with the authentic recombinant product. In this study, a gene containing the coding region for Atlantic salmon (Salmo salar) IGF-II was cloned into a modified pET32a expression vector and transformed into Escherichia coli BL21 trxB (DE3) cells. Upon growth and induction (with IPTG) of the transformant, recombinant salmon IGF-II (rsIGF-II) was expressed as an insoluble, 28kDa thioredoxin.sIGF-II fusion protein linked by a protease cleavage motif (trx.FAHY.sIGF-II) in inclusion bodies. The inclusion bodies were subsequently solubilized and the fusion protein was purified by Ni-affinity chromatography. Recombinant IGF-II (7.8kDa) was then released from the fusion partner using H64A subtilisin BPN' protease and purified by reversed-phase HPLC. Homogeneity of the final recombinant product was confirmed by N-terminal amino acid sequencing, ion-spray mass spectrometry, SDS-polyacrylamide gel electrophoresis, and analytical reversed-phase HPLC. The biological activity of rsIGF-II was demonstrated in cultured rat L6 myoblasts and was found to be approximately 9- and 5-fold less potent than recombinant human IGF-I and recombinant salmon IGF-I, respectively, a result similar to that demonstrated previously with other recombinant fish IGF-II's in non-homologous cell lines. PMID:15135411

  3. Insulin-like growth factor-I receptor signaling blockade combined with radiation.

    PubMed

    Allen, Gregory W; Saba, Corey; Armstrong, Eric A; Huang, Shyh-Min; Benavente, Sergio; Ludwig, Dale L; Hicklin, Daniel J; Harari, Paul M

    2007-02-01

    Signaling through the insulin-like growth factor-I receptor (IGF-IR) is implicated in cellular proliferation, apoptosis, carcinogenesis, metastasis, and resistance to cytotoxic cancer therapies. Targeted disruption of IGF-IR signaling combined with cytotoxic therapy may therefore yield improved anticancer efficacy over conventional treatments alone. In this study, a fully human anti-IGF-IR monoclonal antibody A12 (ImClone Systems, Inc., New York, NY) is examined as an adjunct to radiation therapy. IGF-IR expression is shown for a diverse cohort of cell lines, whereas targeted IGF-IR blockade by A12 inhibits IGF-IR phosphorylation and activation of the downstream effectors Akt and mitogen-activated protein kinase. Anchorage-dependent proliferation and xenograft growth is inhibited by A12 in a dose-dependent manner, particularly for non-small cell lung cancer lines. Clonogenic radiation survival of H226 and H460 cells grown under anchorage-dependent conditions is impaired by A12, demonstrating a radiation dose-enhancing effect for IGF-IR blockade. Postradiation anchorage-independent colony formation is inhibited by A12 in A549 and H460 cells. In the H460 xenograft model, combining A12 and radiation significantly enhances antitumor efficacy compared with either modality alone. These effects may be mediated by promotion of radiation-induced, double-stranded DNA damage and apoptosis as observed in cell culture. In summary, these results validate IGF-IR signal transduction blockade as a promising strategy to improve radiation therapy efficacy in human tumors, forming a basis for future clinical trials. PMID:17283150

  4. Association between insulin-like growth factor-1 and cognitive functions in alcohol-dependent patients.

    PubMed

    Han, Changwoo; Kim, Dai Jin; Bae, Hwallip; Won, Sung-Doo; Lee, Hae Kook

    2014-11-01

    Studies in alcohol-dependent patients show that cognitive function can be influenced by chronic use of alcohol. Alcohol is a known neurotoxin that induces neurodegeneration in the brain. Although there are various causes of cognitive deficiency in alcohol-dependent patients, in this study we focus on the role of corticosteroids. The hypothalamus-pituitary-adrenal system (i.e., the HPA axis) plays a part in the control of corticosteroids. Recent studies show that insulin-like growth factor-1 (IGF-1) reflects the status of growth hormones under the action of the HPA axis. Therefore, IGF-1 is a potential indicator that reflects activity of the HPA axis, and a biomarker that may reflect the decline of cognitive function associated with alcohol-induced hypercortisolism. The purposes of this study are to identify an association between cognitive function and IGF-1, and to investigate IGF as the biological marker of cognitive decline in alcohol-dependent patients. Forty alcohol-dependent patients were selected as the subjects of this study. IGF-1 was measured through an enzyme-linked immunosorbent assay (ELISA). Clinical features were examined using the Korean version of the alcohol dependence scale (ADS-K). Cognitive functions were measured using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Comparative analysis was utilized to identify an association between CERAD measurement items and IGF-1. Alcohol-dependent patients demonstrated stable performance of most of the CERAD measures. Among the measures of the CERAD, only trail making test A showed a correlation to IGF-1. Compared to trail making test B, trail making test A is assumed to reflect basic cognitive functions including psychomotor speed, visual search and sequencing in alcohol-dependent patients, regardless of demographic characteristics such as the level of education of patients. Therefore, IGF-1 seems to play an important role in detecting the decline of basic cognitive functions in

  5. Impact of insulin like growth factor-1 in development of coronary artery ectasia

    PubMed Central

    Akturk, Ibrahim Faruk; Biyik, Ismail; Yalcin, Ahmet Arif; Isiksacan, Nilgun; Celik, Omer; Ozturk, Derya; Erturk, Mehmet

    2014-01-01

    Coronary artery ectasia (CAE) is characterized by inappropriate dilatation of the coronary vasculature. The mechanisms of CAE are not well known. Insulin-like growth factor-1 (IGF-1) may make endothelial cells and smooth muscle cells more sensitive to the effects of growth hormone. In the present study, we hypothesized that IGF-1 may have an impact on the formation of ectasia and aneurysm in arterial system, and aimed to investigate the associations between the presence of CAE and serum IGF-1 levels in patients undergoing coronary angiography. The study included 2.980 subjects undergoing elective diagnostic coronary angiography. We selected 40 patients diagnosed with CAE as CAE group and 44 subjects with absolutely normal coronary arteries were assigned as normal control group. IGF-1 levels were measured in both groups of patients. Groups were similar in terms of age, sex and coronary artery disease risk factors. The serum IGF-1 levels were significantly higher in CAE patients with 109.64±54.64 ng/mL than in controls with 84.76±34.01 ng/mL (p=0.016). HDL levels were lower in ectasia group with 41.5±10.7 mg/dL than controls with 47.7±10.4 mg/dL (p=0.018). By means of logistic regression analysis, high IGF-1 and low HDL levels were found to be independent risk factors for the presence of CAE (p<0.02, p<0.016, respectively). The study revealed that there was a positive correlation between serum IGF-1 levels and presence of CAE, and high IGF-1 levels and low HDL levels were independent risk factors for the presence of CAE. Future studies are needed to confirm these results. PMID:25428678

  6. Alterations in the insulin-like growth factor system in trauma patients.

    PubMed

    Wojnar, M M; Fan, J; Frost, R A; Gelato, M C; Lang, C H

    1995-04-01

    The aim of the present study was to elucidate changes in the growth hormone (GH)-insulin-like growth factor (IGF) axis in trauma patients throughout their stay in the surgical intensive care unit (SICU). The first venous blood sample was obtained within 24 h after admission to the SICU and before the start of nutritional support; the last sample was obtained within 24 h of each patient's discharge from the SICU. All patients were receiving nutritional support at this later time. Control subjects were healthy volunteers, matched for age and sex and fasted approximately 18 h before blood sampling. GH in trauma patients was increased 25-fold on the first day and was still elevated > or = 5-fold on the last day. Trauma decreased circulating levels of both IGF-I (50-60%) and IGF-II (33-45%) throughout the duration of the patients' stay in the SICU. A sustained reduction in plasma IGF-binding protein (BP)-3 (55-75%) was observed in trauma patients throughout the protocol. In contrast, IGFBP-1 levels increased more than threefold during this same period. Furthermore, IGFBP-1 in these patients had undergone posttranslational modification and existed primarily in a highly phosphorylated form. Blood, collected from a cohort (n = 3) of these patients within 24 h of their discharge from the hospital, indicated that IGF-I and IGF-II were still reduced (30%) and that the decrease in IGFBP-3 and the elevation in IGFBP-1 were still evident at this time.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537472

  7. Functional alterations of type I insulin-like growth factor receptor in placenta of diabetic rats.

    PubMed Central

    Hauguel-de Mouzon, S; Louizeau, M; Girard, J

    1992-01-01

    The presence of type I insulin-like growth factor (IGF-I) receptors on placental membranes led to the hypothesis that these receptors might play a critical role in the rapid growth of this organ. Diabetes induces feto-placental overgrowth, but it is not known whether it modifies IGF-I receptor activity in fetal and/or placental tissues. To answer this question, we have partially purified and characterized placental receptors from normal and streptozotocin-induced diabetic rats. In normal rats, binding of 125I-IGF-I to a 140 kDa protein corresponding to the alpha subunit of the receptor was observed in cross-linking experiments performed under reducing conditions. Stimulation by IGF-I induces the autophosphorylation of a 105 kDa phosphoprotein representing the beta subunit of the receptor. In rats made hyperglycaemic and insulinopenic by streptozotocin injection on day 1 of pregnancy, placental IGF-I receptor-binding parameters were not different from controls on day 20 of pregnancy. In contrast, the autophosphorylation and kinase activity of IGF-I receptors of diabetic rats were increased 2-3-fold in the basal state and after IGF-I stimulation. The present study indicates that the rat placental IGF-I receptor possesses structural characteristics similar to that reported for fetal-rat muscle, and suggests that the high-molecular-mass beta subunit could represent a type of receptor specifically expressed during prenatal development. In addition, it clearly demonstrates that diabetes induces functional alterations in IGF-I receptor kinase activity that may play a major role in the placental overgrowth in diabetic pregnancy. Images Fig. 1 Fig. 3 Fig. 5 PMID:1445271

  8. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    NASA Astrophysics Data System (ADS)

    Bateman, Ted A.; Ayers, Reed A.; Spetzler, Michael L.; Simske, Steven J.; Zimmerman, Robert J.

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton et al., 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid et al., 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19-29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes.

  9. Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels.

    PubMed

    Florine, Emily M; Miller, Rachel E; Liebesny, Paul H; Mroszczyk, Keri A; Lee, Richard T; Patwari, Parth; Grodzinsky, Alan J

    2015-02-01

    Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix

  10. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis

    PubMed Central

    Beattie, James; Allan, Gordon J.; Lochrie, Jennifer D.; Flint, David J.

    2006-01-01

    The six members of the insulin-like growth factor-binding protein family (IGFBP-1–6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells. PMID:16526944

  11. Insulin-like growth factor 1, glycation and bone fragility: implications for fracture resistance of bone.

    PubMed

    Sroga, Grażyna E; Wu, Ping-Cheng; Vashishth, Deepak

    2015-01-01

    Despite our extensive knowledge of insulin-like growth factor 1 (IGF1) action on the growing skeleton, its role in skeletal homeostasis during aging and age-related development of certain diseases is still unclear. Advanced glycation end products (AGEs) derived from glucose are implicated in osteoporosis and a number of diabetic complications. We hypothesized that because in humans and rodents IGF1 stimulates uptake of glucose (a glycation substrate) from the bloodstream in a dose-dependent manner, the decline of IGF1 could be associated with the accumulation of glycation products and the decreasing resistance of bone to fracture. To test the aforementioned hypotheses, we used human tibial posterior cortex bone samples to perform biochemical (measurement of IGF1, fluorescent AGEs and pentosidine (PEN) contents) and mechanical tests (crack initiation and propagation using compact tension specimens). Our results for the first time show a significant, age-independent association between the levels of IGF1 and AGEs. Furthermore, AGEs (fAGEs, PEN) predict propensity of bone to fracture (initiation and propagation) independently of age in human cortical bone. Based on these results we propose a model of IGF1-based regulation of bone fracture. Because IGF1 level increases postnatally up to the juvenile developmental phase and decreases thereafter with aging, we propose that IGF1 may play a protective role in young skeleton and its age-related decline leads to bone fragility and an increased fracture risk. Our results may also have important implications for current understanding of osteoporosis- and diabetes-related bone fragility as well as in the development of new diagnostic tools to screen for fragile bones. PMID:25629402

  12. Recombinant insulin-like growth factor-1 activates satellite cells in the mouse urethral rhabdosphincter

    PubMed Central

    2013-01-01

    Background The goal of this study is to demonstrate the efficacy of a new method for the treatment of urinary incontinence by stimulation of urethral rhabdosphincter satellite cells. We show that satellite cells do exist in the sphincter muscle of retired male mice breeders by staining for c-Met, a satellite cell specific protein. Once activated by recombinant mouse Insulin-like Growth Factor-1(rIgf-1), the satellite cells develop into muscle cells within the rhabdosphincter thereby potentially strengthening it. Methods 20 μl (1 μg/μl) of rIgf-1 was surgically injected directly into the urethral wall of retired male mouse breeders. Mice injected with phosphate buffered saline (PBS) were used as controls. 4 weeks later, urethras were harvested and serially-sectioned through the sphincter for routine hematoxylin-eosin staining as well as immunohistochemical staining with satellite cell specific anti-c-Met antibody and proliferation specific anti-Ki-67 antibody. Results Anti-c-Met antibody positive cells (c-Met+) were identified in the rhabdosphincter. c-Met+ cells increased by 161.8% relative to controls four weeks after rIGF-1 injection. Anti- Ki-67 antibody positive cells were identified and characterized as cells with centrally located nuclei in striated muscle bundles of rIGF-1 treated animals. Conclusions Satellite cells in the mouse rhabdosphincter can be activated by rIGF-1 treatment, which subsequently are incorporated into existing skeletal muscle bundles. Using this approach, the rhabdosphincter can be induced to regenerate and potentially strengthen via satellite cell activation and likely improve urinary continence. PMID:24279352

  13. Insulin-Like Growth Factor 1, Glycation and Bone Fragility: Implications for Fracture Resistance of Bone

    PubMed Central

    Sroga, Grażyna E.; Wu, Ping-Cheng; Vashishth, Deepak

    2015-01-01

    Despite our extensive knowledge of insulin-like growth factor 1 (IGF1) action on the growing skeleton, its role in skeletal homeostasis during aging and age-related development of certain diseases is still unclear. Advanced glycation end products (AGEs) derived from glucose are implicated in osteoporosis and a number of diabetic complications. We hypothesized that because in humans and rodents IGF1 stimulates uptake of glucose (a glycation substrate) from the bloodstream in a dose-dependent manner, the decline of IGF1 could be associated with the accumulation of glycation products and the decreasing resistance of bone to fracture. To test the aforementioned hypotheses, we used human tibial posterior cortex bone samples to perform biochemical (measurement of IGF1, fluorescent AGEs and pentosidine (PEN) contents) and mechanical tests (crack initiation and propagation using compact tension specimens). Our results for the first time show a significant, age-independent association between the levels of IGF1 and AGEs. Furthermore, AGEs (fAGEs, PEN) predict propensity of bone to fracture (initiation and propagation) independently of age in human cortical bone. Based on these results we propose a model of IGF1-based regulation of bone fracture. Because IGF1 level increases postnatally up to the juvenile developmental phase and decreases thereafter with aging, we propose that IGF1 may play a protective role in young skeleton and its age-related decline leads to bone fragility and an increased fracture risk. Our results may also have important implications for current understanding of osteoporosis- and diabetes-related bone fragility as well as in the development of new diagnostic tools to screen for fragile bones. PMID:25629402

  14. Insulin-like Growth Factor 1-mediated Hyperthermia Involves Anterior Hypothalamic Insulin Receptors*

    PubMed Central

    Sanchez-Alavez, Manuel; Osborn, Olivia; Tabarean, Iustin V.; Holmberg, Kristina H.; Eberwine, James; Kahn, C. Ronald; Bartfai, Tamas

    2011-01-01

    The objective is to investigate the role of insulin-like growth factor 1 (IGF-1) in the regulation of core body temperature. Sequencing cDNA libraries from individual warm-sensitive neurons from the preoptic area (POA) of the hypothalamus, a region involved in the central control of thermoregulation, identified neurons that express both IGF-1 receptor (IGF-1R) and insulin receptor transcripts. The effects of administration of IGF-1 into the POA was measured by radiotelemetry monitoring of core temperature, brown adipose tissue (BAT) temperature, metabolic assessment, and imaging of BAT by positron emission tomography of 2-[18F]fluoro-2-deoxyglucose uptake combined with computed tomography. IGF-1 injection into the POA caused dose-dependent hyperthermia that could be blocked by pretreatment with the IGF-1R tyrosine kinase inhibitor, PQ401. The IGF-1-evoked hyperthermia involved activation of brown adipose tissue and was accompanied by a switch from glycolysis to fatty acid oxidation as a source of energy as shown by lowered respiratory exchange ratio. Transgenic mice that lack neuronal insulin receptor expression in the brain (NIRKO mice) were unable to mount the full hyperthermic response to IGF-1, suggesting that the IGF-1 mediated hyperthermia is partly dependent on expression of functional neuronal insulin receptors. These data indicate a novel thermoregulatory role for both IGF-1R and neuronal insulin receptors in IGF-1 activation of BAT and hyperthermia. These central effects of IGF-1 signaling may play a role in regulation of metabolic rate, aging, and the risk of developing type 2 diabetes. PMID:21330367

  15. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors.

    PubMed

    Sanchez-Alavez, Manuel; Osborn, Olivia; Tabarean, Iustin V; Holmberg, Kristina H; Eberwine, James; Kahn, C Ronald; Bartfai, Tamas

    2011-04-29

    The objective is to investigate the role of insulin-like growth factor 1 (IGF-1) in the regulation of core body temperature. Sequencing cDNA libraries from individual warm-sensitive neurons from the preoptic area (POA) of the hypothalamus, a region involved in the central control of thermoregulation, identified neurons that express both IGF-1 receptor (IGF-1R) and insulin receptor transcripts. The effects of administration of IGF-1 into the POA was measured by radiotelemetry monitoring of core temperature, brown adipose tissue (BAT) temperature, metabolic assessment, and imaging of BAT by positron emission tomography of 2-[(18)F]fluoro-2-deoxyglucose uptake combined with computed tomography. IGF-1 injection into the POA caused dose-dependent hyperthermia that could be blocked by pretreatment with the IGF-1R tyrosine kinase inhibitor, PQ401. The IGF-1-evoked hyperthermia involved activation of brown adipose tissue and was accompanied by a switch from glycolysis to fatty acid oxidation as a source of energy as shown by lowered respiratory exchange ratio. Transgenic mice that lack neuronal insulin receptor expression in the brain (NIRKO mice) were unable to mount the full hyperthermic response to IGF-1, suggesting that the IGF-1 mediated hyperthermia is partly dependent on expression of functional neuronal insulin receptors. These data indicate a novel thermoregulatory role for both IGF-1R and neuronal insulin receptors in IGF-1 activation of BAT and hyperthermia. These central effects of IGF-1 signaling may play a role in regulation of metabolic rate, aging, and the risk of developing type 2 diabetes. PMID:21330367

  16. Insulin-Like Growth Factor 1 Mitigates Hematopoietic Toxicity After Lethal Total Body Irradiation

    SciTech Connect

    Zhou, Dunhua; Deoliveira, Divino; Kang, Yubin; Choi, Seung S.; Li, Zhiguo; Chao, Nelson J.; Chen, Benny J.

    2013-03-15

    Purpose: To investigate whether and how insulin-like growth factor 1 (IGF-1) mitigates hematopoietic toxicity after total body irradiation. Methods and Materials: BALB/c mice were irradiated with a lethal dose of radiation (7.5 Gy) and treated with IGF-1 at a dose of 100 μg/dose intravenously once a day for 5 consecutive days starting within 1 hour after exposure. Survival and hematopoietic recovery were monitored. The mechanisms by which IGF-1 promotes hematopoietic recovery were also studied by use of an in vitro culture system. Results: IGF-1 protected 8 of 20 mice (40%) from lethal irradiation, whereas only 2 of 20 mice (10%) in the saline control group survived for more than 100 days after irradiation. A single dose of IGF-1 (500 μg) was as effective as daily dosing for 5 days. Positive effects were noted even when the initiation of treatment was delayed as long as 6 hours after irradiation. In comparison with the saline control group, treatment with IGF-1 significantly accelerated the recovery of both platelets and red blood cells in peripheral blood, total cell numbers, hematopoietic stem cells, and progenitor cells in the bone marrow when measured at day 14 after irradiation. IGF-1 protected both hematopoietic stem cells and progenitor cells from radiation-induced apoptosis and cell death. In addition, IGF-1 was able to facilitate the proliferation and differentiation of nonirradiated and irradiated hematopoietic progenitor cells. Conclusions: IGF-1 mitigates radiation-induced hematopoietic toxicity through protecting hematopoietic stem cells and progenitor cells from apoptosis and enhancing proliferation and differentiation of the surviving hematopoietic progenitor cells.

  17. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk

    PubMed Central

    Shi, Joy; Aronson, Kristan J.; Grundy, Anne; Kobayashi, Lindsay C.; Burstyn, Igor; Schuetz, Johanna M.; Lohrisch, Caroline A.; SenGupta, Sandip K.; Lai, Agnes S.; Brooks-Wilson, Angela; Spinelli, John J.; Richardson, Harriet

    2016-01-01

    Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case–control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology. PMID:27376028

  18. Nutritional and prognostic significance of insulin-like growth factor 1 in patients with liver cirrhosis.

    PubMed

    Caregaro, L; Alberino, F; Amodio, P; Merkel, C; Angeli, P; Plebani, M; Bolognesi, M; Gatta, A

    1997-03-01

    Most of the traditional parameters for nutrition assessment have important limitations in patients with chronic liver disease. Insulin-like growth factor 1 (IGF-1) has been found to be regulated by nutrition and proposed as a nutritional marker. Its nutritional significance in patients with liver cirrhosis, however, has not been investigated. Serum IGF-1 as well as traditional anthropometric, visceral, and immunologic parameters were evaluated in 64 hospitalized cirrhotics, followed up clinically for 2 y. IGF-1Z-score averaged -2.16 +/- 1.08 and inversely correlated with Child-Pugh score (P < 0.01), the most reliable composite score reflecting the severity of liver disease. IGF-1Z-score was not different in patients with or without signs of energy malnutrition, as defined by values of midarm muscle circumference (MAMC) and/or triceps skinfold (TSF) < 5th percentile. Moreover, IGF-1Z-score did not correlate with MAMC or TSF. Despite its correlation with all visceral proteins, the reduction of IGF-1 was much greater and more frequent than that of visceral proteins. Patients with IGF-1Z-score < median values (-2.5) showed lower long-term survival rates compared with patients with IGF-1Z-score > -2.5 (P < 0.01). These data indicate that serum IGF-1 is not related to energy malnutrition in cirrhotic patients, while it appears to be a good predictor of survival and an early marker of liver dysfunction. Multiple factors, most of which are related to the severity of the liver disease, may contribute to the reduction of IGF-1. This multifactorial pathogenesis probably accounts for its prognostic significance. PMID:9131676

  19. Immunohistochemical localization of components of the insulin-like growth factor system in human permanent teeth.

    PubMed

    Götz, Werner; Heinen, Michael; Lossdörfer, Stefan; Jäger, Andreas

    2006-05-01

    There is growing evidence that the insulin-like growth factor (IGF) system plays an important role in the biology of oro-dento-facial tissues and organs, including the development, homeostasis and regeneration of the periodontium. To obtain basic data on the occurrence and distribution of IGF components in human permanent teeth we immunohistochemically investigated 25 extracted, decalcified and paraffin-embedded teeth using mono and polyclonal antibodies against the ligands IGF-I and -II, the IGF1 receptor (IGF1R) and all six IGF binding proteins (IGFBP-1 to -6). In the extracellular matrix (ECM) of the adhering periodontal ligament (PDL), immunoreactivity for IGF-I, -II and IGFBP-1 and -6 was observed. PDL fibroblasts showed immunostaining for the IGF1R. For the cementum, in the acellular cementum only IGF-II could be detected, while outer cementum layers with inserting Sharpey's fibers reacted with all antibodies applied except for IGFBP-4 and -6. In the pulp, mainly fibrotic areas and areas around denticles were immunoreactive for IGF-I, IGFBP-1, -3, -5 and -6. Predentin and odontoblastic processes were stained for IGF-I and IGFBP-3. The spatially oriented occurrence of components of the IGF system in human permanent teeth indicates that specific functions of the IGFs may be localized in particular tissue compartments. In the cementum, several IGF components were found indicating roles in tissue homeostasis or attachment. The PDL may function as a reservoir for IGFs probably bound to ECM components. PDL fibroblasts could then respond in a paracrine manner. In the pulp, the IGF system may be involved in odontoblast biology, fibrosis and denticle formation. PMID:16321360

  20. Insulin-like growth factor binding protein production and regulation in fetal rat lung cells.

    PubMed

    Price, W A; Moats-Staats, B M; D'Ercole, A J; Stiles, A D

    1993-04-01

    Insulin-like growth factor binding proteins (IGFBPs) are expressed in lung from early in gestation and may modulate IGF-stimulated fetal lung cell proliferation and/or differentiation. To begin to define IGFBP production and regulation in lung cells during development, we prepared primary cultures of 19 day gestation fetal rat lung fibroblasts and epithelial cells and identified IGFBPs secreted into medium. Ligand blot analysis of conditioned media (CM) from both cell types demonstrated IGFBP bands of approximately 39,000-45,000, 32,000, 24,000, and 22,000 M(r). These migration characteristics allowed the identification of the 39,000-45,000 M(r) bands as IGFBP-3 and the 24,000 M(r) band as IGFBP-4, while Western immunoblot analyses localized IGFBP-2 to the 32,000 M(r) band and IGFBP-5 to the 22,000 M(r) band. Polymerase chain reaction amplification of cDNAs generated by reverse transcription of fibroblast and epithelial cell RNA using specific oligodeoxynucleotide primers for IGFBPs 1 through 6, demonstrated the presence of amplified products for IGFBP-2, -3, -4, -5, and -6. In both cell types, IGFBP-2 and -3 production was sustained during 48 h of incubation in serum-free medium, whereas IGFBP-4 abundance increased only during the first 6 to 12 h of incubation. CM from fibroblasts and epithelial cells plated at low densities contained a high abundance of IGFBP-2 per microgram cellular DNA compared with cells at higher densities. In contrast, IGFBP-3 and -4 abundance normalized to cell DNA did not change with differing cell densities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682822

  1. The insulin-like growth factor-1 gene is associated with cerebral infarction in Japanese subjects.

    PubMed

    Aoi, Noriko; Nakayama, Tomohiro; Soma, Masayoshi; Kosuge, Kotoko; Haketa, Akira; Sato, Mikano; Sato, Naoyuki; Hinohara, Shigeaki; Doba, Nobutakh; Asai, Satoshi

    2012-10-01

    Atherosclerosis leads to cerebral infarction (CI) and the insulin/insulin-like growth factor-1 (IGF1) signaling pathway plays an important role in this process during adult life. The purpose of this study was to investigate the relationship between the human IGF1 gene and CI in the Japanese population via a case-control study that also included a separate analysis of the two gender groups. A total of 155 CI patients and 316 controls were genotyped for six single nucleotide polymorphisms (SNPs) of the human IGF1 gene (rs2162679, rs7956547, rs2288378, rs2072592, rs978458 and rs6218). All data were analyzed for three separate groups: the total subjects, men and women. The logistic regression analysis revealed that the GG + AG variant of rs2162679 (P = 0.047), the AA + GA variant of rs2072592 (P = 0.005) and the CC + TC variant of rs6218 (P = 0.015) exhibited a protective effect for CI in the total subject group. For the women and the total subjects groups, the overall distribution of the haplotype established by rs7956547-rs978458 was significantly different between the CI patients and the non-CI subjects. For the total subjects, the frequency of the T-G haplotype (rs7956547-rs978458) was also significantly higher (P = 0.034), whereas the frequency of the T-A haplotype (rs7956547-rs978458) was significantly lower (P = 0.008) in the CI patients versus the non-CI subjects. For women, the frequency of the T-A haplotype (rs7956547-rs978458) was significantly lower (P = 0.021) in the CI patients as compared with the non-CI subjects. The specific SNPs and haplotypes can be utilized as genetic markers for CI resistance or CI risk. PMID:23121326

  2. Repopulation of the atrophied thymus in diabetic rats by insulin-like growth factor I

    SciTech Connect

    Binz, K.; Joller, P.; Froesch, P.; Binz, H.; Zapf, J.; Froesch, E.R. )

    1990-05-01

    Atrophy of the thymus is one of the consequences of severe insulin deficiency. The authors describe here that the weight and the architecture of the thymus of diabetic rats is restored towards normal not only by insulin but also by insulin-like growth factor I (IGF-I) treatment. In contrast to insulin, this effect of IGF-I occurs despite persisting hyperglycemia and adrenal hyperplasia. They also investigated the in vivo effect of IGF-I on replication and differentiation of thymocytes from streptozotocin-induced diabetic rats. Thymocytes from diabetic rats incorporated less ({sup 3}H)thymidine than did thymocytes from healthy rats. Insulin, as well as IGF-I treatment of diabetic rats increased ({sup 3}H)thymidine incorporation by thymocytes. Flow cytometry of thymocytes labeled with monoclonal antibodies revealed a decreased expression of the Thy-1 antigen in diabetic rats compared with control rats. In addition, a major deficiency of thymocytes expressing simultaneously the W3/25 and the Ox8 antigens was observed. These changes were restored towards normal by insulin as well as by IGF-I treatment. The antibody response to a T cell-dependent antigen (bovine serum albumin) was comparable in normal and diabetic rats. They conclude that IGF-I has important effects on the thymocyte number and the presence of CD4{sup +}/CD8{sup +} immature cells in the thymus of diabetic rats despite persisting hyperglycemia. However, helper T-cell function for antibody production appears to be preserved even in the severely diabetic state.

  3. Effect of endogenous insulin-like growth factor and stem cell factor on diabetic colonic dysmotility

    PubMed Central

    Wang, Yun; Xu, Xin-Yu; Tang, Yu-Rong; Yang, Wei-Wei; Yuan, Yu-Feng; Ning, Yue-Ji; Yu, Yin-Juan; Lin, Lin

    2013-01-01

    AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were randomly divided into two groups: control group and streptozotocin-induced diabetic group. After 8 wk of streptozotocin administration, colonic motility function and contractility of circular muscle strips were measured. The expression of endogenous IGF-1 and SCF was tested in colonic tissues. Colonic smooth muscle cells were cultured from normal adult rats. IGF-1 siRNA transfection was used to investigate whether SCF expression was affected by endogenous IGF-1 expression in smooth muscle cells, and IGF-1 induced SCF expression effects were studied. The effect of high glucose on the expression of endogenous IGF-1 and SCF was also investigated. RESULTS: Diabetic rats showed prolonged colonic transit time (252 ± 16 min vs 168 ± 9 min, P < 0.01) and weakness of circular muscle contraction (0.81 ± 0.09 g vs 2.48 ± 0.23 g, P < 0.01) compared with the control group. Endogenous IGF-1 and SCF protein expression was significantly reduced in the diabetic colonic muscle tissues. IGF-1 and SCF mRNA expression also showed a paralleled reduction in diabetic rats. In the IGF-1 siRNA transfected smooth muscle cells, SCF mRNA and protein expression was significantly decreased. IGF-1 could induce SCF expression in a concentration and time-dependent manner, mainly through the extracellular-signal-regulated kinase 1/2 signal pathway. High glucose inhibited endogenous IGF-1 and SCF expression and the addition of IGF-1 to the medium reversed the SCF expression. CONCLUSION: Myopathy may resolve in colonic motility dysfunction in diabetic rats. Deficiency of endogenous IGF-1 in colonic smooth muscle cells leads to reduction of SCF expression. PMID:23745035

  4. Mxi1 regulates cell proliferation through insulin-like growth factor binding protein-3

    SciTech Connect

    Ko, Je Yeong; Yoo, Kyung Hyun; Lee, Han-Woong; Park, Jong Hoon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Mxi1 regulates cell proliferation. Black-Right-Pointing-Pointer Expression of IGFBP-3 is regulated by Mxi1. Black-Right-Pointing-Pointer Inactivation of Mxi1 reduces IGFBP-3 expression in vitro and in vivo. -- Abstract: Mxi1, a member of the Myc-Max-Mad network, is an antagonist of the c-Myc oncogene and is associated with excessive cell proliferation. Abnormal cell proliferation and tumorigenesis are observed in organs of Mxi1-/- mice. However, the Mxi1-reltaed mechanism of proliferation is unclear. The present study utilized microarray analysis using Mxi1 mouse embryonic fibroblasts (MEFs) to identify genes associated with cell proliferation. Among these genes, insulin-like growth factor binding protein-3 (IGFBP-3) was selected as a candidate gene for real-time PCR to ascertain whether IGFBP-3 expression is regulated by Mxi1. Expression of IGFBP-3 was decreased in Mxi1-/- MEFs and Mxi1-/- mice, and the gene was regulated by Mxi1 in Mxi1 MEFs. Furthermore, proliferation pathways related to IGFBP-3 were regulated in Mxi1-/- mice compared to Mxi1+/+ mice. To determine the effect of Mxi1 inactivation on the induction of cell proliferation, a proliferation assay is performed in both Mxi1 MEFs and Mxi1 mice. Cell viability was regulated by Mxi1 in Mxi1 MEFs and number of PCNA-positive cells was increased in Mxi1-/- mice compared to Mxi1+/+ mice. Moreover, the IGFBP-3 level was decreased in proliferation defect regions in Mxi1-/- mice. The results support the suggestion that inactivation of Mxi1 has a positive effect on cell proliferation by down-regulating IGFBP-3.

  5. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    SciTech Connect

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye; Peng, Zhen-yu; Yu, Min; Liu, Zhao-qian; Chen, Fang-ping

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  6. Insulin-Like Growth Factor-1 Preserves Salivary Gland Function After Fractionated Radiation

    SciTech Connect

    Limesand, Kirsten H.; Avila, Jennifer L.; Victory, Kerton; Chang, Hui-Hua; Shin, Yoon Joo; Grundmann, Oliver; Klein, Rob R.

    2010-10-01

    Purpose: Radiotherapy for head-and-neck cancer consists of fractionated radiation treatments that cause significant damage to salivary glands leading to chronic salivary gland dysfunction with only limited prevention and treatment options currently available. This study examines the feasibility of IGF-1 in preserving salivary gland function following a fractionated radiation treatment regimen in a pre-clinical model. Methods and Materials: Mice were exposed to fractionated radiation, and salivary gland function and histological analyses of structure, apoptosis, and proliferation were evaluated. Results: In this study, we report that treatment with fractionated doses of radiation results in a significant level of apoptotic cells in FVB mice after each fraction, which is significantly decreased in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Salivary gland function is significantly reduced in FVB mice exposed to fractionated radiation; however, myr-Akt1 transgenic mice maintain salivary function under the same treatment conditions. Injection into FVB mice of recombinant insulin-like growth factor-1 (IGF-1), which activates endogenous Akt, suppressed acute apoptosis and preserved salivary gland function after fractionated doses of radiation 30 to 90 days after treatment. FVB mice exposed to fractionated radiation had significantly lower levels of proliferating cell nuclear antigen-positive salivary acinar cells 90 days after treatment, which correlated with a chronic loss of function. In contrast, FVB mice injected with IGF-1 before each radiation treatment exhibited acinar cell proliferation rates similar to those of untreated controls. Conclusion: These studies suggest that activation of IGF-1-mediated pathways before head-and-neck radiation could modulate radiation-induced salivary gland dysfunction and maintain glandular homeostasis.

  7. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk.

    PubMed

    Shi, Joy; Aronson, Kristan J; Grundy, Anne; Kobayashi, Lindsay C; Burstyn, Igor; Schuetz, Johanna M; Lohrisch, Caroline A; SenGupta, Sandip K; Lai, Agnes S; Brooks-Wilson, Angela; Spinelli, John J; Richardson, Harriet

    2016-01-01

    Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case-control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology. PMID:27376028

  8. Meta-Analysis of Serum Insulin-Like Growth Factor 1 in Alzheimer’s Disease

    PubMed Central

    Forstenpointner, Julia; Zheng, Wenhua; Feng, Zhong-Ping

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) serum levels have been reported to be altered in Alzheimer’s disease patients, and it was suggested that the changes in IGF-1 serum level may play a role in disease pathology and progression. However, this notion remained controversial due to conflicting findings. We conducted a meta-analysis to determine the relationship between IGF-1 serum levels and Alzheimer’s disease. We searched the databases PUBMED, Ovid SP, and Cochrane library for relevant studies. The primary data analyzed was serum IGF-1 from Alzheimer’s disease subjects and controls. Pooled weighted mean difference using a random effects model was used to determine the relationship between serum levels and disease state. Nine studies were included in the meta-analysis compromising a total of 1639 subjects. The pooled weighted mean difference was -2.27ng/ml (95% CI: [-22.221, 17.66]) with a P value of 0.82. Thus our finding did not show clear relationship between low IGF-1 and Alzheimer’s disease subjects. We did not find evidence of publication bias by analyzing a funnel plot as well as Egger’s and Begg’s tests. While eight out of the nine studies included in this meta-analysis detected a statistically significant increase or decrease in serum levels of IGF-1 in Alzheimer’s disease subjects, the analysis as a whole did not show a significant trend in either direction. Thus, IGF-1 level is likely a critical personalized factor. A large database of clinical trials is required for better understanding the relationship between IGF-1 levels and Alzheimer’s disease. PMID:27227831

  9. Insulin-Like Growth Factor-1 Levels in Term Newborns with Hypoxic-Ischemic Encephalopathy.

    PubMed

    Umran, Raid M R; Al-Tahir, Mahir; Jagdish, Desai; Chouthai, Nitin

    2016-06-01

    Objective This study aims to evaluate the correlation of changes in serum insulin-like growth factor-1 (IGF-1) levels with the clinical staging of hypoxic-ischemic encephalopathy (HIE) in term newborns. Study Design A prospective study of 29 newborns with HIE (stage I = 15, stage II + III = 14) and 28 healthy term newborns as the control group was performed in the neonatal intensive care unit. IGF-1 levels were obtained within 6 hours after birth from HIE and control groups and again on day 3 from HIE group. HIE was classified using the Sarnat staging I to III. Results IGF-1 levels were significantly lower in the HIE group than in the control group (p = 0.024). It was lower in the HIE stage II to III group compared with HIE stage I group at birth (p < 0.0001) and on day 3 (p = 0.009). The mean IGF-1 levels were significantly higher on day 3 than on day 1 among stage II to III HIE (p = 0.006) and it was inversely correlated with staging (R =  - 0.475, p = 0.009). There was a significant correlation between IGF-1 levels and Apgar score at 5 (R = 0.39, p = 0.042) and 10 minutes (R = 0.38, p = 0.035). Conclusions IGF-1 was lower in HIE and inversely correlated with clinical staging. It was increased with clinical improvement in the subsequent days. PMID:26849563

  10. Effects of Insulin-like Growth Factor-1 on Development of Somatic Cell Cloned Bovine Embryos.

    PubMed

    Qu, Pengxiang; Li, Yanyan; Deng, Tengfei; Jia, Dan; Qing, Suzhu; Su, Jianmin; Zhang, Yong; Wang, Yongsheng

    2016-06-01

    The aim of this study was to assess the effect of insulin-like growth factor-1 (IGF-1) on the developmental competence of somatic cell nuclear transfer (SCNT) bovine embryos. First, the expression levels of IGF-1 receptor (IGF-1R) and IGF-1 in the oocytes and embryos of different developmental stages were examined. Then the effects of exogenous IGF-1 on the development of SCNT embryos were evaluated both in vitro and in vivo. The results showed that IGF-1 was not expressed in both IVF and SCNT embryos, whereas IGF-1R could be detected throughout the preimplantation stages in both protein and mRNA levels. Also, exogenous IGF-1 had no obvious impact on the developmental competence of IVF embryos. However, it could improve the developmental competence of SCNT embryos in terms of blastocyst developmental rate (31.3% vs. 43.2%, p < 0.05), total cell number (93.0 ± 9.9 vs. 101.0 ± 9.8, p < 0.05), ratio of inner cell mass (ICM) to trophectoderm (TE) (0.29 ± 0.006 vs. 0.39 ± 0.005, p < 0.05), and apoptosis index in day 7 blastocysts (2.5 ± 0.22 vs. 8.7 ± 0.41, p < 0.05) compared to the control group. Although no statistical difference in pregnancy rate and birth rate was observed after embryo transfer, there was an upward tendency in both examined terms in the IGF-1-supplemented group when compared with the control group. In conclusion, the present study showed that supplementing exogenous IGF-1 to the culture medium has an obvious positive effect on the development competence of SCNT embryos. PMID:27135251

  11. Evolution of insulin-like growth factor (IGF) function: production and characterization of recombinant hagfish IGF.

    PubMed

    Upton, Z; Francis, G L; Chan, S J; Steiner, D F; Wallace, J C; Ballard, F J

    1997-01-01

    While there is considerable structural evidence that insulin-like growth factors (IGFs) share a long evolutionary history, little is known about the conservation of IGF function. In order to address this, we have made recombinant hagfish IGF, hence allowing characterization of an IGF from a representative of the primitive vertebrate class, Agnatha. The production of recombinant hagfish IGF has been complicated by a number of factors including the requirement of a longer leader peptide for fusion protein expression, reduced solubility of the protein, as well as problems in the refolding procedure. However, we were able to produce a small quantity of hagfish IGF with an N-terminal glycine addition which is biologically active. Furthermore, N-terminal amino acid sequencing and mass spectrometry confirm that we have produced hagfish IGF. In vitro assessment of recombinant hagfish IGF in cultured cells indicates that hagfish IGF indeed shares functional properties with mammalian IGFs. Thus, hagfish IGF stimulates protein synthesis in rat myoblasts, but 20- and 5-fold more peptide, respectively, is required to achieve the same half-maximal responses as with human IGF-I (hIGF-I) or IGF-II (hIGF-II). Hagfish IGF also competes for binding to the type-1 IGF receptor present both on rat myoblasts and on salmon embryo fibroblasts, though with somewhat lower affinity than either hIGF-I or hIGF-II. However, studies investigating binding to the IGF-II-specific type-2 receptor suggest that hagfish IGF may in fact be more closely related to IGF-I than to IGF-II. These results indicate that motifs important for functions associated with mammalian IGFs appear to have evolved prior to the Agnathans diverging from the main line of vertebrate evolution 550 million years ago. Accordingly, we now have functional as well as structural evidence that the IGFs have a long evolutionary history. PMID:9000470

  12. Insulin-like growth factor I and the development of colorectal neoplasia in acromegaly.

    PubMed

    Jenkins, P J; Frajese, V; Jones, A M; Camacho-Hubner, C; Lowe, D G; Fairclough, P D; Chew, S L; Grossman, A B; Monson, J P; Besser, G M

    2000-09-01

    Patients with acromegaly are at increased risk of colorectal neoplasia and, by analogy with high-risk nonacromegalic patients, may require regular colonoscopic screening. However, it is unknown whether the risk is equal in all patients or whether some should be regarded as carrying a particularly high risk. The aims of this study were: 1) to establish the natural history of colorectal neoplasia in acromegaly; 2) to establish which patients are at increased risk of developing neoplasia; and 3) to elucidate the influence of insulin-like growth factor I (IGF-I) in adenoma formation. A prospective colonoscopic evaluation of the development of new premalignant adenomas in the colon was performed in 66 patients with biochemically proven acromegaly who had previously undergone colonoscopic screening and removal of all visible polyps. Twenty-five patients (38%) had a total of 37 polyps detected at the second colonoscopy: nine (14%) had at least one adenoma, and 18 (27%) had one or more hyperplastic polyps (2 patients had both). The development of new adenomas, but not hyperplastic polyps, was associated both with elevated serum IGF-I (P < 0.005) and, to a lesser extent, with a previous adenoma at the original colonoscopy (P < 0.07). In summary, patients with acromegaly and in whom serum IGF-I remains elevated and/or who have had a previous adenoma should be regarded as having an especially high risk for the development of subsequent colorectal neoplasia. Serum IGF-I seems to be implicated in the development of colorectal neoplasia in acromegaly, although the exact mechanisms remain uncertain. PMID:10999811

  13. Effect of exogenous insulin on plasma and follicular insulin-like growth factor I, insulin-like growth factor binding protein activity, follicular oestradiol and progesterone, and follicular growth in superovulated Angus and Brahman cows.

    PubMed

    Simpson, R B; Chase, C C; Spicer, L J; Vernon, R K; Hammond, A C; Rae, D O

    1994-11-01

    Angus (n = 14) and Brahman (n = 14) cows were used to evaluate the effects of insulin administered concomitantly with FSH in a superovulation regimen. Cows were allotted to four pen replicates by treatment and breed, and received FSH (i.m.) twice a day for 5 consecutive days (first day of injections = day 0 of study) plus concomitant administration of either saline (control) or long-acting bovine insulin (0.25 iu kg-1 body mass; s.c.). Blood samples were collected at intervals of 6 h during the injection period and analysed for plasma insulin, glucose, insulin-like growth factor I (IGF-I) and IGF-I binding protein (IGFBP) activity. Cows were ovariectomized on day 5. The number and diameter of follicles were recorded. Follicular fluid was aspirated for determination of IGF-I, IGFBP activity, oestradiol and progesterone. Mean plasma concentration of glucose was lower in insulin-treated than in control cows averaged over days 1-5 (56 +/- 3 versus 82 +/- 3 mg dl-1; P < 0.01). Plasma concentration of IGF-I and IGFBP activity were not affected (P > 0.10) by treatment, but were higher in Brahman than in Angus cows (IGF-I: 41 +/- 6 versus 19 +/- 6 ng ml-1, P < 0.05; IGFBP activity: 17.5 +/- 0.4 versus 15.8 +/- 0.04% (10 microliters)-1; P < 0.03). Insulin treatment did not affect the number of small (1.0-3.9 mm), medium (4.0-7.9 mm) or large (> or = 8.0 mm) follicles. Brahman cows had a greater (P < 0.01) number of medium and total follicles (19.4 +/- 2.5 and 60.5 +/- 5.5, respectively) than did Angus cows (7.5 +/- 2.6 and 30.5 +/- 5.6, respectively). Diameter of large follicles was greater in insulin-treated than in control cows (11.4 +/- 0.2 versus 10.6 +/- 0.1 mm; P < 0.05). Follicular fluid IGF-I concentration in large follicles was higher in insulin-treated Brahman cows (60 +/- 2 ng ml-1) than in control Brahman cows (37 +/- 2 ng ml-1), but was lower in insulin-treated Angus cows (31 +/- 3 ng ml-1) than in control Angus cows (38 +/- 2 ng ml-1; treatment x breed

  14. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons

    PubMed Central

    Giuffrida, Maria L.; Tomasello, Marianna F.; Pandini, Giuseppe; Caraci, Filippo; Battaglia, Giuseppe; Busceti, Carla; Di Pietro, Paola; Pappalardo, Giuseppe; Attanasio, Francesco; Chiechio, Santina; Bagnoli, Silvia; Nacmias, Benedetta; Sorbi, Sandro; Vigneri, Riccardo; Rizzarelli, Enrico; Nicoletti, Ferdinando; Copani, Agata

    2015-01-01

    ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice. PMID:26300732

  15. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  16. Binding between Insulin-like Growth Factor 1 and Insulin-like Growth Factor-binding Protein 3 Is Not Influenced by Glucose or 2-Deoxy-d-glucose

    PubMed Central

    Mireuta, Matei; Hancock, Mark A.; Pollak, Michael

    2011-01-01

    A recent report (Zhong, D., Xiong, L., Liu, T., Liu, X., Liu, X., Chen, J., Sun, S. Y., Khuri, F. R., Zong, Y., Zhou, Q., and Zhou, W. (2009) J. Biol. Chem. 284, 23225–23233) details that 2-deoxy-d-glucose (2-DG), a well known inhibitor of glycolysis and a candidate antineoplastic agent, also induces insulin-like growth factor 1 receptor (IGF-1R) signaling through the inhibition of insulin-like growth factor 1-insulin-like growth factor-binding protein 3 (IGF-1-IGFBP-3) complex formation. Zhong et al. hypothesized that disrupted IGF-1/IGFBP-3 binding by 2-DG led to increased free IGF-1 concentrations and, consequently, activation of IGF-1R downstream pathways. Because their report suggests unprecedented off-target effects of 2-DG, this has profound implications for the fields of metabolism and oncology. Using ELISA, surface plasmon resonance, and novel “intensity-fading” mass spectrometry, we now provide a detailed characterization of complex formation between IGF-1 and IGFBP-3. All three of these independent methods demonstrated that there was no effect of glucose or 2-DG on the interaction between IGF-1 and IGFBP-3. Furthermore, we show examples of 2-DG exposure associated with reduced rather than increased IGF-1R and AKT activation, providing further evidence against a 2-DG increase in IGF-1R activation by IGF-1-IGFBP-3 complex disruption. PMID:21388950

  17. Blood Lead Levels and Serum Insulin-Like Growth Factor 1 Concentrations in Peripubertal Boys

    PubMed Central

    Fleisch, Abby F.; Burns, Jane S.; Williams, Paige L.; Lee, Mary M.; Sergeyev, Oleg; Korrick, Susan A.

    2013-01-01

    Background: Childhood lead exposure has been associated with growth delay. However, the association between blood lead levels (BLLs) and insulin-like growth factor 1 (IGF-1) has not been characterized in a large cohort with low-level lead exposure. Methods: We recruited 394 boys 8–9 years of age from an industrial Russian town in 2003–2005 and followed them annually thereafter. We used linear regression models to estimate the association of baseline BLLs with serum IGF-1 concentration at two follow-up visits (ages 10–11 and 12–13 years), adjusting for demographic and socioeconomic covariates. Results: At study entry, median BLL was 3 μg/dL (range, < 0.5–31 μg/dL), most boys (86%) were prepubertal, and mean ± SD height and BMI z-scores were 0.14 ± 1.0 and –0.2 ± 1.3, respectively. After adjustment for covariates, the mean follow-up IGF-1 concentration was 29.2 ng/mL lower (95% CI: –43.8, –14.5) for boys with high versus low BLL (≥ 5 μg/dL or < 5 μg/dL); this difference persisted after further adjustment for pubertal status. The association of BLL with IGF-1 was stronger for mid-pubertal than prepubertal boys (p = 0.04). Relative to boys with BLLs < 2 μg/dL, adjusted mean IGF-1 concentrations decreased by 12.8 ng/mL (95% CI: –29.9, 4.4) for boys with BLLs of 3–4 μg/dL; 34.5 ng/mL (95% CI: –53.1, –16.0) for BLLs 5–9 μg/dL; and 60.4 ng/mL (95% CI: –90.9, –29.9) for BLLs ≥ 10 μg/dL. Conclusions: In peripubertal boys with low-level lead exposure, higher BLLs were associated with lower serum IGF-1. Inhibition of the hypothalamic–pituitary–growth axis may be one possible pathway by which lead exposure leads to growth delay. PMID:23632160

  18. Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells.

    PubMed

    Gentilini, A; Feliers, D; Pinzani, M; Woodruff, K; Abboud, S

    1998-02-01

    Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-beta (TGF-beta) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-beta stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-beta is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal

  19. Relationship between low-molecular-weight insulin-like growth factor-binding proteins, caspase-3 activity, and oocyte quality.

    PubMed

    Nicholas, B; Alberio, R; Fouladi-Nashta, A A; Webb, R

    2005-04-01

    Bovine follicular atresia is associated with the apoptosis of granulosa cells and the subsequent loss of oocyte competence through the reduction of cellular contact (e.g., gap junctions). Several components of the insulin-like growth factor (IGF) system are thought to affect follicular atresia. Whereas the IGF-binding proteins (IGFBPs) are present in varying quantities throughout follicular development, IGFBP-5 appears to be present only during atresia, in parallel with its regulation in other tissue remodeling systems. However, to our knowledge, no connection has yet been made between atresia, low-molecular-weight IGFBP content, and oocyte quality in the bovine ovary. Caspases are actively involved in ovarian follicular atresia, and apoptosis in antral follicles is caspase-3-dependent. Hence, the aim of the present study was to investigate the use of these factors in the assessment of oocyte quality and developmental potential. Oocytes were aspirated, morphologically classified, and individually matured in vitro. The follicular fluid and granulosa cells of these follicles were analyzed for IGFBP profile and caspase-3 activity, respectively. A significant correlation was found between the presence of low-molecular-weight IGFBPs in bovine follicular fluid and caspase-3 activity of granulosa cells isolated from individual follicles. The highest percentage of development to the blastocyst stage was observed in oocytes from slightly atretic follicles. This group of oocytes contained an equal proportion of oocytes at grades 1-3. These data demonstrate that low-molecular-weight IGFBP profile is a more reliable method than the traditional morphological assessment of oocytes and can be used as an effective marker of developmentally competent oocytes. Importantly, these results have implications for the use of noninvasive follicular fluid markers in the selection of competent oocytes to improve outcomes of in vitro fertilization. PMID:15564596

  20. Polymorphisms in the Insulin-Like Growth Factor Axis Are Associated with Gastrointestinal Cancer

    PubMed Central

    Ong, Jennie; Salomon, Jody; te Morsche, Rene H. M.; Roelofs, Hennie M. J.; Witteman, Ben J. M.; Dura, Polat; Lacko, Martin; Peters, Wilbert H. M.

    2014-01-01

    Introduction Numerous factors influence the development of gastrointestinal (GI) cancer. The insulin-like growth factor (IGF) axis plays a role in embryonic and postnatal growth and tissue repair. Elevated levels of IGFs, low levels of IGF binding proteins (IGFBPs) and over-expression of IGF receptor (IGFR-I) were associated with several stages of cancer. Here, the prevalence of the single nucleotide polymorphisms (SNPs) rs6214 in the IGF type I (IGF-I) gene and rs6898743 in the growth hormone receptor (GHR) gene in patients with GI cancer and controls was studied. Materials & Methods In this Dutch case-control study, DNA isolated from blood of 1,457 GI cancer patients; 438 patients with head and neck cancer (HNC), 475 with esophageal cancer (EC) and 544 with colorectal cancer (CRC) and 1,457 matched controls, was used to determine the rs6214 and rs6898743 genotypes by polymerase chain reaction. The association between these SNPs and GI cancer, HNC, esophageal adenocarcinoma (EAC), esophageal squamous-cell carcinoma (ESCC) and proximal or distal CRC was studied. Odds ratios (ORs) with 95% confidence interval (95% CI) were calculated via unconditional logistic regression. Results Overall for GI cancer, the ORs for SNPs rs6214 and rs6898743 were approximately 1.0 (p-value>0.05), using the most common genotypes GG as reference. An OR of 1.54 (95% CI, 1.05–2.27) was found for EC for genotype AA of rs6214. The ORs for EAC were 1.45 (95% CI, 1.04–2.01) and 1.71 (95% CI, 1.10–2.68), for genotypes GA and AA, respectively. Genotype GC of rs6898743 showed an OR of 0.47 (95% CI, 0.26–0.86) for ESCC. Conclusion The A allele of SNP rs6214 in the IGF-I gene was associated with EAC, and with HNC in women. The GC genotype of rs6898743 in the GHR gene was negatively associated with ESCC. PMID:24608110

  1. Low Insulin-Like Growth Factor-1 Level in Obesity Nephropathy: A New Risk Factor?

    PubMed Central

    Bancu, Ioana; Navarro Díaz, Maruja; Serra, Assumpta; Granada, Marisa; Lopez, Dolores; Romero, Ramon; Bonet, Josep

    2016-01-01

    Introduction IGF-1 (insulin-like growth factor-1) is a hormone involved in cell growth and other important processes. In the kidney, IGF-1 has a stimulating effect, increasing the blood flow and glomerular filtration rate. Although many experimental animal studies regarding the role of IGF-1 in the kidney have been conducted, few human studies are available in the literature. Obesity is a cause of renal failure, and several glomerular lesions associated with obesity have been described. However, no studies regarding the levels of IGF-1 in morbidly obese patients with renal injury associated with obesity have been conducted. Aim To determine the serum IGF-1 concentrations in morbidly obese patients with normal renal function but with different types of early obesity-related glomerular lesions and to evaluate the possible relationship between IGF-1 and the presence of renal lesions. Methods Eighty morbidly obese patients with renal biopsy, including 11 patients with no evidence of renal lesion, 17 patients with single glomerulomegaly, 21 patients with single podocyte hypertrophy, 10 patients with glomerulomegaly and podocyte hypertrophy, 5 patients with focal segmental hyalinosis, and 16 patients with increased mesangial matrix and/or mesangial proliferation, participated in this study. Biological parameters, including serum IGF-1 concentrations with the standard deviation score for age (SDS-IGF-1), were determined for all patients. Results Eighty patients (50 women and 30 men) with a mean BMI of 52.63 ± 8.71 and a mean age of 42.40 ± 9.45 years were included in this study. IGF-1, IGF-1 SDS and IGF-1BP3 levels according to the renal injury were compared (normal glomeruli: IGF-1 = 190.17 ± 72.46; glomerulomegaly: IGF-1 = 122.3 ± 50.05; podocyte hypertrophy: IGF-1 = 119.81 ± 60.34; focal segmental hyalinosis: IGF-1 170.98 ± 100.83, increased mesangial matrix and/or mesangial proliferation: IGF-1 117.73 ± 63.87). Statistically significant differences were

  2. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    PubMed

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  3. Regulation of insulin-like growth factor-binding protein messenger ribonucleic acid levels in sheep thyroid cells.

    PubMed

    Bachrach, L K; Eggo, M C; Burrow, G N; Liu, F; Tram, T; Powell, D R

    1991-04-01

    The insulin-like growth factors (IGFs) exist primarily bound to cell surface receptors or complexed to specific binding proteins (IGFBPs). The IGFBPs modulate the bioavailability of the IGFs and may enhance or inhibit IGF actions. Several distinct forms of IGFBPs have been described on the basis of size, immunological determinants, and distribution in biological fluids; the IGFBPs may differ as well in their biological function. Sheep thyroid cells produce IGFBPs under hormonal regulation. Cells grown in basal medium or with six-hormone (6H) medium supplements (transferrin, glycyl-histidyl-lysine, hydrocortisone, somatostatin, insulin, and TSH) release nonglycosylated BPs that migrate at 24, 27, 29, and 32 kDa on Western ligand blot. Cells cultured with the thyroid mitogens epidermal growth factor and phorbol ester release additional glycosylated IGFBPs of 40-44 kDa. Immunoprecipitation experiments indicate that 29- and 32-kDa IGFBPs are antigenically related to IGFBP-2, and the 40- to 44-kDa proteins are related to IGFBP-3. Using specific cDNA probes IGFBP-1, -2, and -3, we examined the regulation of IGFBP mRNA levels in sheep thyroid cultures. The rat IGFBP-2 cDNA probe hybridized to an approximately 1.6-kilobase mRNA species in cells under all culture conditions. However, IGFBP-3 mRNA was detectable only in epidermal growth factor- or phorbol ester-treated cells and appeared within 4 h, preceding the release of IGFBP-3 protein into the medium. The 6H additives, which stimulate differentiated function in thyroid cells, inhibited the mRNA levels of both IGFBP-2 and IGFBP-3. IGFBP-1 mRNA was not detectable. The distinct regulation of these IGFBPs suggest that they may play different biological roles in modulating thyroid physiology. PMID:1706262

  4. Endothelial cells express insulin-like growth factor-binding proteins 2 to 6.

    PubMed

    Moser, D R; Lowe, W L; Dake, B L; Booth, B A; Boes, M; Clemmons, D R; Bar, R S

    1992-11-01

    Cultured endothelial cells have been shown to produce insulin-like growth factor-binding proteins (IGFBPs); however, the identity of these BPs has not been defined. We now demonstrate that cultured bovine endothelial cells produce IGFBP2, IGFBP3, and IGFBP4 and have mRNA specific for IGFBP2, -3, -4, -5 and -6. DNA probes for bovine IGFBP2-6 were obtained by polymerase chain reaction (PCR) amplification of cDNA from bovine large vessel pulmonary artery and aortic endothelial cells as well as omental and periaortic fat microvessel cells, using oligonucleotide primers whose sequences were based on the reported cDNA sequences of IGFBP2-6. The PCR-derived probes were labeled with 32P and used for Northern blot analysis of RNAs obtained from the four bovine endothelial cell types. Transcripts corresponding to IGFBP2-6 were found in RNA from large vessel endothelial cells (bovine pulmonary artery and bovine aorta) and microvessel cells (periaortic and omental fat). The PCR-derived probe for IGFBP4 was used to screen a bovine pulmonary artery cDNA library for a full-length bovine IGFBP4 cDNA clone. One positive clone, containing a single EcoRI insert of approximately 2.0 kilobases, was selected for further characterization by DNA sequence analysis. This clone contained an open reading frame encoding a 258-amino acid protein that was 97% identical to human IGFBP4, 268 basepairs of 5'-untranslated region, and a longer 1044 basepairs of 3'-untranslated region. IGFBP4 protein was purified from bovine pulmonary artery-conditioned medium, shown to have N-terminal amino acid sequence DEAIHCPPCSEEKLARCR (identical to human IGFBP4) and to be secreted in glycosylated and nonglycosylated forms. Immunoblots further demonstrated that microvessel cells, at early passage, secrete predominantly IGFBP2 and IGFBP3, while large vessel cells, at early and late passages, secrete IGFBP3 and IGFBP4. Thus, cultured bovine endothelial cells synthesize and secrete IGFBP2, IGFBP3, and IGFBP4 and

  5. Circulating insulin-like growth factor-binding protein 3 as prognostic biomarker in liver cirrhosis

    PubMed Central

    Correa, Carina Gabriela; Colombo, Bruno da Silveira; Ronsoni, Marcelo Fernando; Soares e Silva, Pedro Eduardo; Fayad, Leonardo; Silva, Telma Erotides; Wildner, Letícia Muraro; Bazzo, Maria Luiza; Dantas-Correa, Esther Buzaglo; Narciso-Schiavon, Janaína Luz; Schiavon, Leonardo de Lucca

    2016-01-01

    AIM: To investigate the prognostic significance of insulin-like growth factor-binding protein 3 (IGFBP-3) in patients with cirrhosis. METHODS: Prospective study that included two cohorts: outpatients with stable cirrhosis (n = 138) and patients hospitalized for acute decompensation (n = 189). Development of complications, mortality or liver transplantation was assessed by periodical phone calls and during outpatient visits. The cohort of stable cirrhosis also underwent clinical and laboratory evaluation yearly (2013 and 2014) in predefined study visits. In patients with stable cirrhosis, IGFBP-3 levels were measured at baseline (2012) and at second re-evaluation (2014). In hospitalized subjects, IGFBP-3 levels were measured in serum samples collected in the first and in the third day after admission and stored at -80 °C. IGFBP-3 levels were measured by immunochemiluminescence. RESULTS: IGFBP-3 levels were lower in hospitalized patients as compared to outpatients (0.94 mcg/mL vs 1.69 mcg/mL, P < 0.001) and increased after liver transplantation (3.81 mcg/mL vs 1.33 mcg/mL, P = 0.008). During the follow-up of the stable cohort, 17 patients died and 11 received liver transplantation. Bivariate analysis showed that death or transplant was associated with lower IGFBP-3 levels (1.44 mcg/mL vs 1.74 mcg/mL, P = 0.027). The Kaplan-Meier transplant-free survival probability was 88.6% in patients with IGFBP-3 ≥ 1.67 mcg/mL and 72.1% for those with IGFBP3 < 1.67 mcg/mL (P = 0.015). In the hospitalized cohort, 30-d mortality was 24.3% and was independently associated with creatinine, INR, SpO2/FiO2 ratio and IGFBP-3 levels in the logistic regression. The 90-d transplant-free survival probability was 80.4% in patients with IGFBP-3 ≥ 0.86 mcg/mL and 56.1% for those with IGFBP3 < 0.86 mcg/mL (P < 0.001). CONCLUSION: Lower IGFBP-3 levels were associated with worse outcomes in patients with cirrhosis, and might represent a promising prognostic tool that can be incorporated in

  6. Serum insulin-like growth factor-I in diabetic retinopathy

    PubMed Central

    Tangpricha, Vin; Cleveland, Julia; Lynn, Michael J.; Ray, Robin; Srivastava, Sunil K.

    2011-01-01

    Purpose To assess the relationship between serum insulin-like growth factor I (IGF-I) and diabetic retinopathy. Methods This was a clinic-based cross-sectional study conducted at the Emory Eye Center. A total of 225 subjects were classified into four groups, based on diabetes status and retinopathy findings: no diabetes mellitus (no DM; n=99), diabetes with no background diabetic retinopathy (no BDR; n=42), nonproliferative diabetic retinopathy (NPDR; n=41), and proliferative diabetic retinopathy (PDR; n=43). Key exclusion criteria included type 1 diabetes and disorders that affect serum IGF-I levels, such as acromegaly. Subjects underwent dilated fundoscopic examination and were tested for hemoglobin A1c, serum creatinine, and serum IGF-I, between December 2009 and March 2010. Serum IGF-I levels were measured using an immunoassay that was calibrated against an international standard. Results Between the groups, there were no statistical differences with regards to age, race, or sex. Overall, diabetic subjects had similar serum IGF-I concentrations compared to nondiabetic subjects (117.6 µg/l versus 122.0 µg/l; p=0.497). There was no significant difference between serum IGF-I levels among the study groups (no DM=122.0 µg/l, no BDR=115.4 µg/l, NPDR=118.3 µg/l, PDR=119.1 µg/l; p=0.897). Among the diabetic groups, the mean IGF-I concentration was similar between insulin-dependent and non-insulin-dependent subjects (116.8 µg/l versus 118.2 µg/l; p=0.876). The univariate analysis of the IGF-I levels demonstrated statistical significance in regard to age (p=0.002, r=-0.20), body mass index (p=0.008, r=−0.18), and race (p=0.040). Conclusions There was no association between serum IGF-I concentrations and diabetic retinopathy in this large cross-sectional study. PMID:21921983

  7. Regulation of the insulin-like growth factor system by insulin in burn patients.

    PubMed

    Lang, C H; Fan, J; Frost, R A; Gelato, M C; Sakurai, Y; Herndon, D N; Wolfe, R R

    1996-07-01

    The aim of the present investigation was to determine whether there is a net uptake of insulin-like growth factor I (IGF-I) or IGF-binding proteins (IGFBPs) by the leg after burn injury and to elucidate the regulatory role of insulin exerted on this system under in vivo conditions in burn patients. Studies were performed on nine patients after burn injury (approximately 60% body surface area). Each patient was studied twice during a continuous infusion of a carbohydrate-rich enteral diet. Blood was collected simultaneously from the femoral artery and vein for the measurement of various elements of the IGF system after 7 days of enteral diet alone (basal period) and after 7 days of the enteral diet plus the infusion of insulin (insulin period). Data from these patients were compared to values in age-matched fed healthy volunteers. During the basal period, burn patients demonstrated a significant reduction in the venous concentration of IGF-I and an increase in both IGFBP-1 and -2 compared to control values. Insulin produced a significant 15% increase in the IGF-I concentration in burn patients, but decreased the circulating levels of IGFBP-1 by 50%. The IGF-I and IGFBP-1 concentrations at the end of the insulin period were still significantly different from those in control subjects. Burn patients also exhibited a marked reduction in intact IGFBP-3 and the acid-labile subunit under basal conditions, and these alterations were not reversed by insulin. Under basal conditions, all burn patients had a positive arterio-venous (A-V) difference for IGF-I across the leg. The A-V difference was increased 50% in response to insulin. The net uptake of IGF-I by the leg was 2.4 micrograms/min under basal conditions, and as leg blood flow also tended to increase in response to insulin, IGF-I uptake was elevated more than 3-fold during the insulin period. No A-V difference across the leg was detected for IGFBP-1, -2, or -3 in burn patients. In conclusion, burn injury in humans

  8. Serum Resistin and Insulin-Like Growth Factor-1 Levels in Patients with Hypothyroidism and Hyperthyroidism

    PubMed Central

    Eke Koyuncu, Ceren; Turkmen Yildirmak, Sembol; Temizel, Mustafa; Ozpacaci, Tevfik; Gunel, Pinar; Cakmak, Mustafa; Ozbanazi, Yüksel Gülen

    2013-01-01

    Introduction. The aim of this study was to evaluate the serum levels of resistin and insulin-like growth factor-1 (IGF-1) and and also the potential relationship between thyroid function and levels of resistin and IGF-1 in hypothyroid and hyperthyroid patients. Methods. Fifteen cases of hypothyroid (HT), 16 of subclinically hypothyroid (SCHT), 15 of hyperthyroid (HrT), 15 of subclinically hyperthyroid (SCHrT), and 17 healthy individuals have been included in the study. Serum resistin levels were measured using enzyme-linked immunosorbent assay and IGF-1 and thyroid stimulating hormone (TSH) levels by chemiluminescence method. Results. Resistin levels in total HT group were significantly higher than in controls (12.66 ± 6.04 and 8.45 ± 2.90 ng/mL, resp.). In SCHrT subgroup resistin levels were significantly higher than those of controls (14.88 ± 7.73 and 8.45 ± 2.90 ng/mL, resp.). IGF-1 levels were significantly lower in total HT than in total HrT and control groups (117.22 ± 52.03, 155.17 ± 51.67, and 184.00 ± 49.73 ng/mL, resp.). Furthermore IGF-1 levels in HT subgroup were significantly lower compared to controls (123.70 ± 44.03 and 184 ± 49.73 ng/mL, resp.). In SCHT subgroup IGF-1 levels were significantly lower than those of control and SCHrT groups (111.11 ± 59.35, 184.00 ± 49.73, and 166.60 ± 47.87 ng/mL, resp.). There were significant correlations between IGF-1 and TSH in HT subgroup and between resistin and TSH in total HrT group. Conclusion. It was concluded that increased resistin levels are directly related to thyroid dysfunction, and GH/IGF-1 axis is influenced in clinically or subclinically hypothyroidism patients. PMID:23533949

  9. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes.

    PubMed Central

    Lönnroth, P; Assmundsson, K; Edén, S; Enberg, G; Gause, I; Hall, K; Smith, U

    1987-01-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC50 for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells). However, the maximal incremental effect of insulin on IGF-II binding was reduced approximately 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced (t1/2, approximately 10 min), but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approximately equal to 10 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGF-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGF-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding. PMID:2954159

  10. Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease.

    PubMed

    Rodriguez, Santiago; Gaunt, Tom R; Day, Ian N M

    2007-08-01

    The human growth hormone gene (GH1) and the insulin-like growth factor 1 and 2 genes (IGF1 and IGF2) encode the central elements of a key pathway influencing growth in humans. This "growth pathway" also includes transcription factors, agonists, antagonists, receptors, binding proteins, and endocrine factors that constitute an intrincate network of feedback loops. GH1 is evolutionarily coupled with other genes in linkage disequilibrium in 17q24.2, and the same applies to IGF2 in 11p15.5. In contrast, IGF1 in 12q22-24.1 is not in strong linkage disequilibrium with neighbouring genes. Knowledge of the functional architecture of these regions is important for the understanding of the combined evolution and function of GH1, IGF2 and IGF1 in relation to complex diseases. A number of mutations accounting for rare Mendelian disorders have been described in GH-IGF elements. The constellation of genes in this key pathway contains potential candidates in a number of complex diseases, including growth disorders, metabolic syndrome, diabetes (notably IGF2BP2) cardiovascular disease, and central nervous system diseases, and in longevity, aging and cancer. We review these genes and their associations with disease phenotypes, with special attention to metabolic risk traits. PMID:17534663

  11. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency.

    PubMed

    Martín-Estal, I; de la Garza, R G; Castilla-Cortázar, I

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several biological activities, such as proliferation, mitochondrial protection, cell survival, tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and antiaging. This hormone plays an important role in embryological and postnatal states, being essential for normal foetal and placental growth and differentiation. During gestation, the placenta is one of the major sources of IGF-1, among other hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction (IUGR) is the second most frequent cause of perinatal morbidity and mortality, defined as the inability to achieve the expected weight for gestational age. Different studies have revealed that IUGR infants have placental dysfunction and low circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that IGF-1 deficiency in gestational state may be one of the major causes of foetal growth retardation. The aim of this review is to study the epidemiology, physiopathology and possible causes of IUGR. Also, it intends to study the possible role of the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be considered as a novel condition of IGF-1 deficiency and if its treatment with low doses of IGF-1 could be a suitable therapeutic strategy. PMID:26634242

  12. Heterogeneity of binding subunits of the human 150K insulin-like growth factor binding protein.

    PubMed

    Gelato, M C; Gaynes, L A; Greenstein, L A; Nissley, S P

    1990-04-01

    Models for the structure of the GH-dependent 150K insulin-like growth factor-binding protein (IGF-BP) complex include 1) a binding subunit of 40-60K mol wt associated with a larger nonbinding component, and 2) an oligomeric structure simply made up of six 25-28K monomeric IGF-BP complexes. To evaluate these alternative models we examined the IGF-binding characteristics and behavior on an SP-Sephadex ion exchange column of BP species identified by chemically cross-linking [125I]IGF-I and [125I]IGF-II. In addition, human serum was gel filtered on Sephadex G-200 in 0.05 M NH4HCO3, pH 8.0, and the 150K BP identified by binding of [125I]IGF-II to column fractions. When [125I]IGF-I or [125I]IGF-II was cross-linked to the 150K BP with disuccinimidyl suberate and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10-15%) and autoradiography, four specifically labeled complexes of 20K, 24K, 33K, and 47K mol wt were identified. We examined the IGF-binding characteristics of these species by cross-linking [125I]IGF-I and [125I]IGF-II after incubation in the presence of increasing concentrations of unlabeled IGF-I or IGF-II. Formation of the 24K complex was inhibited more potently by IGF-II than IGF-I, whereas the relative potency of IGF-I vs. IGF-II for inhibition of the formation of the other complexes depended upon whether [125I]IGF-II or [125I]IGF-I was used. When the 150K BP complex generated from gel filtration on Sephadex G-200 was acid stripped, the only species seen with chemical cross-linking of either [125I]IGF-I or [125I]IGF-II was the 47K complex. By both conventional competitive binding studies and cross-linking [125I]IGF-I and [125I]IGF-II after incubation with increasing concentrations of unlabeled IGF-I or IGF-II, the formation of the 47K complex was usually more potently inhibited by IGF-I than IGF-II. When Cohn fraction IV extract was chromatographed on a SP-Sephadex column (pH 3) and cross-linking performed on the flow-through, the 47K

  13. Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor-Binding Protein 3 in Relation to the Risk of Type 2 Diabetes Mellitus: Results From the EPIC-Potsdam Study.

    PubMed

    Drogan, Dagmar; Schulze, Matthias B; Boeing, Heiner; Pischon, Tobias

    2016-03-15

    Higher levels of insulin-like growth factor-binding protein 3 (IGFBP-3) might raise the risk of type 2 diabetes mellitus (T2DM) via binding of insulin-like growth factor 1 (IGF-1), an insulin-like hormone that is involved in glucose homeostasis. We investigated serum concentrations of IGF-1 and IGFBP-3 and their molar ratio in relation to T2DM incidence in a nested case-cohort study within the European Prospective Investigation Into Cancer and Nutrition-Potsdam Study. We included a randomly selected subcohort of persons without T2DM at the time of blood sampling (n = 2,269) and 776 individuals with incident T2DM identified between 1994 and 2005. For the highest quartile versus lowest, the multivariable-adjusted hazard rate ratios were 0.91 (95% confidence interval (CI): 0.68, 1.23; P for trend = 0.31) for IGF-1, 1.33 (95% CI: 1.00, 1.76; P for trend = 0.04) for IGFBP-3, and 0.77 (95% CI: 0.57, 1.03; P for trend = 0.03) for IGF-1:IGFBP-3 ratio. IGFBP-3 level remained positively associated with T2DM incidence-and the ratio of IGF-1 to IGFBP-3 was inversely related with T2DM incidence--in models that included adjustment for IGF-1 concentrations (P for trend < 0.05). Therefore, our findings do not confirm an association between total IGF-1 concentrations and risk of T2DM in the general study population, although higher IGFBP-3 levels might raise T2DM risk independent of IGF-1 levels. PMID:26880678

  14. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  15. Both epidermal growth factor and insulin-like growth factor receptors are dispensable for structural intestinal adaptation

    PubMed Central

    Sun, Raphael C.; Diaz-Miron, Jose L.; Choi, Pamela M.; Sommovilla, Joshua; Guo, Jun; Erwin, Christopher R.; Warner, Brad W.

    2015-01-01

    Purpose Intestinal adaptation structurally represents increases in crypt depth and villus height in response to small bowel resection (SBR). Previously, we found that neither epidermal growth factor receptor (EGFR) nor insulin-like growth factor 1 receptor (IGF1R) function was individually required for normal adaptation. In this study, we sought to determine the effect of disrupting both EGFR and IGF1R expression on resection-induced adaptation. Methods Intestinal-specific EGFR and IGF1R double knockout mice (EGFR/IGF1R-IKO) (n=6) and wild-type (WT) control mice (n=7) underwent 50% proximal SBR. On postoperative day (POD) 7, structural adaptation was scored by measuring crypt depth and villus height. Rates of crypt cell proliferation, apoptosis, and submucosal capillary density were also compared. Results After 50% SBR, normal adaptation occurred in both WT and EGFR/IGF1R-IKO. Rates of proliferation and apoptosis were no different between the two groups. The angiogenic response was less in the EGFR/IGF1R-IKO compared to WT mice. Conclusion Disrupted expression of EGFR and IGF1R in the intestinal epithelial cells does not affect resection-induced structural adaptation but attenuates angiogenesis after SBR. These findings suggest that villus growth is driven by receptors and pathways that occur outside the epithelial cell component, while angiogenic responses may be influenced by epithelial-endothelial crosstalk. PMID:25818318

  16. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  17. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system.

    PubMed

    Reinecke, M

    2010-04-01

    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections. PMID:20537012

  18. Intracellular signals involved in the effects of insulin-like growth factors and neuregulins on myofibre formation.

    PubMed

    Zorzano, Antonio; Kaliman, Perla; Gumà, Anna; Palacín, Manuel

    2003-02-01

    A number of extracellular factors are involved in the embryonic development of skeletal muscle and the muscle regeneration that is triggered in response to muscle damage. Some of them, such as insulin-like growth factors (IGFs), fibroblast growth factors (FGFs), hepatocyte growth factor (HGF), transforming growth factor (TGF)-like molecules, leukemia inhibitor factor (LIF) or platelet-derived growth factors (PDGFs), are involved in the activation of cell proliferation that operates before muscle differentiation. In addition, factors such as IGFs, neuregulins (NRGs), sonic hedgehog (Shh) or Wnt promote muscle differentiation. Here, we review the intracellular signals that are triggered in the myogenic effect of IGFs and neuregulin and we describe common pathways. A fuller understanding of the signalling pathways triggered by these factors may permit the design of new tools for muscle regeneration therapy. PMID:12464385

  19. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    SciTech Connect

    Sun Yunguang; Zheng Siyuan; Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J.; Carbone, David P.; Zhao Zhongming; Lu Bo

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  20. Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants.

    PubMed

    Cheung, Stanley C K; Sun, Samuel S M; Chan, Juliana C N; Tong, Peter C Y

    2009-12-01

    Human insulin-like growth factor binding protein-3 (hIGFBP-3) is a multifunctional protein which has high affinity for insulin-like growth factor-I (IGF-I). It combines with IGF-I to form a tertiary complex in circulation, thus regulating the activity of IGF-I. Furthermore, recombinant hIGFBP-3 (rhIGFBP-3) has been found to negatively regulate cell proliferation and induce apoptosis. In this study, we have established an efficient plant bioreactor platform for mass production of rhIGFBP-3. Different expression constructs, driven by the seed-specific phaseolin promoter, were designed and transformed into tobacco plant via Agrobacterium. To enhance protein expression level, the signal peptide (SP) and the C-terminal tetrapeptide AFVY of phaseolin were used to direct rhIGFBP-3 to protein storage vacuole (PSV) in tobacco seed for stable accumulation. Western blot analysis showed that rhIGFBP-3 was successfully synthesized in transgenic tobacco seeds, with the highest protein expression of 800 mug/g dry weight. The localization of rhIGFBP-3 in PSV was also evident by confocal immunofluorescence microscopy. Our results indicated that protein sorting sequences could benefit the expression level of rhIGFBP-3 and it is feasible to use plant as "bio-factory" to produce therapeutic recombinant proteins in large quantity. PMID:19504171

  1. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs

    PubMed Central

    Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.

    2012-01-01

    Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739

  2. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. PMID:25448590

  3. Involvement of Connective Tissue Growth Factor (CTGF) in Insulin-like Growth Factor-I (IGF1) Stimulation of Proliferation of a Bovine Mammary Epithelial Cell Line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin-like growth factor I (IGF1) plays an important role in mammary gland development and lactation in part by stimulating proliferation of the milk-producing epithelial cells. In this study, we used the bovine mammary epithelial cell line MAC-T cells as a model to understand the mechanism by whi...

  4. Insulin-like growth factor-binding protein-5 inhibits growth and induces differentiation of mouse osteosarcoma cells.

    PubMed

    Schneider, M R; Zhou, R; Hoeflich, A; Krebs, O; Schmidt, J; Mohan, S; Wolf, E; Lahm, H

    2001-10-26

    The precise role of insulin-like growth factor-binding protein-5 (IGFBP-5) in regulating the growth of tumor cells, especially of bone-derived malignant cells, is not well understood. We have investigated the biological activity of IGFBP-5 by transfecting OS/50-K8 mouse osteosarcoma cells with an expression vector containing the osteocalcin promoter and the complete mouse IGFBP-5 cDNA (OC-IGFBP-5). Overexpression of IGFBP-5 mRNA and secretion of increased amounts of bioactive protein in conditioned media were demonstrated in different clones. For the analysis of cell proliferation, three clones exhibiting high levels of IGFBP-5 expression were selected and compared to a mock clone and to nontransfected parental cells. IGFBP-5-secreting clones displayed reduced proliferation under both anchorage-dependent and -independent conditions (P < 0.05). The increase in proliferation observed in IGFBP-5-secreting clones after addition of exogenous IGF was significantly lower than that observed in mock-transfected or parental cells. A similar result was obtained with long[R3]IGF-I which has a low affinity for all IGFBPs, suggesting that the inhibitory effect of IGFBP-5 is only partially IGF-dependent. OC-IGFBP-5-transfected clones expressed significantly higher amounts of osteocalcin mRNA (P < 0.05) and secreted more osteocalcin protein than a mock clone or parental OS-50/K8 cells. Thus, part of the growth-inhibiting effect of IGFBP-5 may be due to an induction of differentiation in these cells. PMID:11606061

  5. Quantification of insulin-like growth factor-1 in dried blood spots for detection of growth hormone abuse in sport.

    PubMed

    Cox, Holly D; Rampton, Jessica; Eichner, Daniel

    2013-02-01

    There is significant evidence that athletes are using recombinant human growth hormone (rhGH) to enhance performance, and its use is banned by the World Anti-Doping Agency and professional sports leagues. Insulin-like growth factor-1 (IGF-1) is the primary mediator of growth hormone action and is used as a biomarker for the detection of rhGH abuse. The current biomarker-based method requires collection and expedited shipment of venous blood which is costly and may decrease the number of tests performed. Measurement of GH biomarkers in dried blood spots (DBS) would considerably simplify sample collection and shipping methods to allow testing of a greater number of samples regardless of location. A method was developed to quantify intact IGF-1 protein in DBS by liquid chromatography-tandem mass spectrometry. A step-wise acid-acetonitrile extraction was optimized to achieve a sensitive assay with a lower limit of quantification of 50 ng/mL. IGF-1 remained stable at room temperature for up to 8 days, which would allow shipment of DBS cards at ambient temperature. In a comparison between plasma concentrations of IGF-1 and concentrations measured from venous and finger prick DBS, there was good correlation and agreement, r(2) of 0.8551 and accuracy of 86-113 % for venous DBS and r(2) of 0.9586 and accuracy of 89-122 % for finger prick DBS. The method is intended for use as a rapid screening method for IGF-1 to be used in the biomarker method of rhGH abuse detection. PMID:23263515

  6. Effects of immune challenge on concentrations of serum insulin-like growth factor-I and growth performance in pigs.

    PubMed Central

    Hevener, W; Routh, P A; Almond, G W

    1999-01-01

    This study was designed to determine the long-term effects of repeated endotoxin treatment or immunization against human serum albumin on concentrations of serum insulin-like growth factor-I (IGF-I) and other indicators of growth performance in growing pigs. Thirty gilts (38.5 +/- 0.9 kg) were randomly assigned to 5 treatment groups (n = 6 animals/group): 1) lipopolysaccharide injections, 2) lipopolysaccharide pair-fed, 3) human serum albumin immunization, 4) human serum albumin pair-fed, and 5) control. Pigs in the lipopolysaccharide group were treated intramuscularly with lipopolysaccharide on Days 0-3. The pigs in the human serum albumin group were immunized with human serum albumin emulsified in Freund's adjuvant on Day 0 and administered a booster on Day 28. The lipopolysaccharide pair-fed pigs were matched by body weight and pair-wise fed with pigs treated with lipopolysaccharide. Similarly, human serum albumin pair-fed pigs were matched to human serum albumin immunized pigs. Serum IGF-I concentrations did not differ between or within groups. There was no difference in feed disappearance between groups prior to the initiation of treatments. The lipopolysaccharide group had a decrease (P = 0.013) in feed disappearance on Day 0 compared with control and human serum albumin groups. On Day 1, both lipopolysaccharide and human serum albumin groups differed (P < 0.05) from control. Average daily gain and total weight gain did not differ between groups; however, feed efficiency differed (P < 0.05) between lipopolysaccharide and control groups. Long-term effects of repeated endotoxin challenge or immunization on IGF-I concentrations and growth were not evident in the present study. This failure presumably was due to the development of endotoxin tolerance and a relatively innocuous vaccination against human serum albumin. PMID:10563236

  7. Oestrogen and insulin-like growth factors during the reproduction and growth of the tilapia Oreochromis niloticus and their interactions.

    PubMed

    Baroiller, Jean-François; D'Cotta, Helena; Shved, Natalia; Berishvili, Giorgi; Toguyeni, Aboubacar; Fostier, Alexis; Eppler, Elisabeth; Reinecke, Manfred

    2014-09-01

    Oestrogens and insulin-like growth factors (Igfs) play both a central role in the regulation of reproduction and growth and can interact especially in species showing a clear-cut sex-linked growth dimorphism (SGD) like in tilapia. Aromatase is essential in ovarian differentiation and oogenesis since it controls oestrogen synthesis. During tilapia sex differentiation, aromatase cyp19a1a expression increases from 9 days post-fertilization (dpf), resulting in high oestradiol level. High temperature, exogenous androgens or aromatase inhibitors override genetic sex differentiation inducing testes development through the suppression of cyp19a1a gene expression and aromatase activity. Supplementation with 17ß-oestradiol (E2) of gonadectomized juveniles induced a sustained and higher E2 plasma level than in intact or gonadectomized controls and both sexes showed reduced growth. Juvenile and mature females treated with the aromatase inhibitor 1,4,6-androstatriene-3,17-dione had 19% lower E2 plasma level compared to controls and they showed a 32% increased growth after 28 days of treatment. Altogether, these data suggest that E2 inhibits female growth leading to the SGD. Regarding Igf-1, mRNA and peptide appeared in liver at ∼ 4 dpf and then in organs involved in growth and metabolism, indicating a role in early growth, metabolism and organogenesis. Gonad igf-1 showed an early expression and the peptide could be detected at ∼ 7 dpf in somatic cells. It appeared in germ cells at the onset of ovarian (29 dpf) and testicular (52 dpf) meiosis. In testis, Igf-1 together with steroids may regulate spermatogenesis whereas in ovary it participates in steroidogenesis regulation. Igf-1 and Igf-2 promote proliferation of follicular cells and oocyte maturation. Igf-3 expression is gonad specific and localized in the ovarian granulosa or testicular interstitial cells. In developing gonads igf-3 is up-regulated in males but down-regulated in females. In contrast, bream Gh injections

  8. COMPLEMENT C5 REGULATES THE EXPRESSION OF INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS IN CHRONIC EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS

    PubMed Central

    Cudrici, Cornelia; Ito, Takahiro; Zafranskaia, Ekaterina; Weerth, Susanna; Rus, Violeta; Chen, Hegang; Niculescu, Florin; Soloviova, Katerina; Tegla, Cosmin; Gherman, Adrian; Raine, Cedric S.; Shin, Moon L.; Rus, Horea

    2008-01-01

    Complement activation plays a central role in autoimmune demyelination. To explore the possible effects of C5 on post-inflammatory tissue repair, we investigated the transcriptional profile induced by C5 in chronic experimental allergic encephalomyelitis (EAE) using oligonucleotide arrays. We used C5-deficient (C5-d) and C5-sufficient (C5-s) mice to compare the gene expression profile and we found that 390 genes were differentially regulated in C5-s mice as compared to C5-d mice during chronic EAE. Among them, a group of genes belonging to the family of insulin-like growth factor binding proteins (IGFBP) and transforming growth factor (TGF)-β3 were found most significantly differentially regulated by C5. The dysregulation of these genes suggests that these proteins might be responsible for the gliosis and lack of remyelination seen in C5-d mice with chronic EAE. PMID:18692252

  9. Insulin-like growth factor system in patients with HIV infection: effect of exogenous growth hormone administration.

    PubMed

    Mynarcik, D C; Frost, R A; Lang, C H; DeCristofaro, K; McNurlan, M A; Garlick, P J; Steigbigel, R T; Fuhrer, J; Ahnn, S; Gelato, M C

    1999-09-01

    The purpose of this study was to characterize changes in the levels of insulin-like growth factor-I (IGF-I) and IGF binding proteins (BP) 1, 2, and 3 in HIV-infected adults throughout the course of their disease, and to assess the responsiveness of the IGF system components to growth hormone (GH) administration (6 mg/day) for 2 weeks. Healthy control study subjects (n = 10) were compared with patients who were either HIV-positive (n = 9), had AIDS without weight loss (n = 13), or had AIDS with >10% weight loss (n = 6), all of whom had been free of acute illness for at least 3 months. Under basal conditions, fasting serum concentrations of epinephrine, norepinephrine, cortisol, glucagon, insulin, IGF-I, and IGFBP-3 were not significantly different among the four groups. The serum concentrations of IGFBP-1 and IGFBP-2 were significantly higher in AIDS patients with wasting than in the other three groups (p < .05). In addition, there was a statistically significant positive correlation between the levels of IGFBP- 1 (p = .004) and IGFBP-2 (p = .03) and the stage of disease. Following GH administration, the serum concentrations of insulin and IGF-I were increased in all groups (p < .05). In addition, the increases in insulin levels correlated with stage of disease (p = .004). The responses of the IGFBPs were more variable. GH administration significantly increased the levels of IGFBP-3 in all groups except the patients with AIDS wasting, whereas the levels of IGFBP-1 were significantly decreased in controls and AIDS patients. These results demonstrate that there is a continuum of both elevations in the IGFBPs and altered metabolic responsiveness in patients infected with HIV that increases with the severity of the disease. These data also demonstrate that AIDS patients, who are free from secondary infection, respond to administration of GH by significantly increasing hepatic IGF-I production. PMID:10534146

  10. Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects.

    PubMed

    Rollero, A; Murialdo, G; Fonzi, S; Garrone, S; Gianelli, M V; Gazzerro, E; Barreca, A; Polleri, A

    1998-01-01

    Basal growth hormone (GH) and insulin-like growth factor I (IGF-I) as well as GH responses to GH-releasing hormone (GHRH) were studied in 22 subjects (7 females, 15 males), aged between 65 and 86 years. The study was aimed at investigating the possible correlations between the age-dependent GH-IGF-I axis decline and the cognitive function - assessed by the Mini Mental State Examination (MMSE). The relationship between hormonal data, cognition and age, body weight, body mass index (BMI), some nutritional indices (triceps skinfolds, TSF, mid-arm circumference, MAC), and physical activity - quantified by the physical functioning index (PFI)--were also analyzed. GH basal levels were within the normal range, while GH responses to GHRH were blunted in most cases. GH peaks after GHRH were directly correlated with GH basal values. IGF-I serum levels were found to be in the lower part of the reference range for adult subjects or below it. GH responses to GHRH, but not GH and IGF-I basal levels, were inversely correlated with subject age. GH secretion areas after GHRH were inversely correlated with BMI, but no further correlations between GH data and clinical or nutritional parameters were found. MMSE values directly correlated with MAC and PFI values. IGF-I levels were directly correlated with MMSE scores, being lowered in patients with more advanced cognitive deterioration, and with MAC values--the decrease of which is thought to reflect protein caloric malnutrition--but not with body weight, BMI, TSF and PFI. MMSE-related protein caloric malnutrition and decreased physical activity possibly take part in affecting IGF- I function in subjects with mild cognitive impairment and, reciprocally, IGF-I decrement might affect neuronal function. PMID:9732206

  11. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  12. Enhanced Production of Insulin-like Growth Factor I Protein in Escherichia coli by Optimization of Five Key Factors

    PubMed Central

    Ranjbari, Javad; Babaeipour, Valiollah; Vahidi, Hossein; Moghimi, Hamidreza; Mofid, Mohammad Reza; Namvaran, Mohammad Mehdi; Jafari, Sevda

    2015-01-01

    Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. Up to now, E. coli expression system has been widely used as a host to produce rhIGF-1 with high yields. Batch cultures as non-continuous fermentations were carried out to overproduce rhIGF-I in E. coli. The major objective of this study is over- production of recombinant human insulin-like growth factor I (rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. In this study we investigated the effect of culture medium, induction temperature and amount of inducer on cell growth and IGF-1 production. Taguchi design of experiments (DOE) method was used as the statistical method. Analysis of experimental data showed that maximum production of rhIGF-I was occurred in 32y culture medium at 32 °C and 0.05 Mm IPTG. Under this condition, 0.694 g/L of rhIGF-I was produced as the inclusion bodies. Following optimization of these three factors, we have also optimized the amount of glucose and induction time in 5 liter top bench bioreactor. Full factorial design of experiment method was used for these two factors as the statistical method. 10 g/L and OD600=5 were selected as the optimum point of Glucose amount and induction time, respectively. Finally, we reached to a concentration of 1.26 g/L rhIGF-1 at optimum condition. PMID:26330880

  13. Enhanced Production of Insulin-like Growth Factor I Protein in Escherichia coli by Optimization of Five Key Factors.

    PubMed

    Ranjbari, Javad; Babaeipour, Valiollah; Vahidi, Hossein; Moghimi, Hamidreza; Mofid, Mohammad Reza; Namvaran, Mohammad Mehdi; Jafari, Sevda

    2015-01-01

    Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. Up to now, E. coli expression system has been widely used as a host to produce rhIGF-1 with high yields. Batch cultures as non-continuous fermentations were carried out to overproduce rhIGF-I in E. coli. The major objective of this study is over- production of recombinant human insulin-like growth factor I (rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. In this study we investigated the effect of culture medium, induction temperature and amount of inducer on cell growth and IGF-1 production. Taguchi design of experiments (DOE) method was used as the statistical method. Analysis of experimental data showed that maximum production of rhIGF-I was occurred in 32y culture medium at 32 °C and 0.05 Mm IPTG. Under this condition, 0.694 g/L of rhIGF-I was produced as the inclusion bodies. Following optimization of these three factors, we have also optimized the amount of glucose and induction time in 5 liter top bench bioreactor. Full factorial design of experiment method was used for these two factors as the statistical method. 10 g/L and OD600=5 were selected as the optimum point of Glucose amount and induction time, respectively. Finally, we reached to a concentration of 1.26 g/L rhIGF-1 at optimum condition. PMID:26330880

  14. Transforming growth factor-β, insulin-like growth factor I/insulin-like growth factor I receptor and vascular endothelial growth factor-A: Prognostic and predictive markers in triple-negative and non-triple-negative breast cancer

    PubMed Central

    BAHHNASSY, ABEER; MOHANAD, MARWA; SHAARAWY, SABRY; ISMAIL, MANAL F.; EL-BASTAWISY, AHMED; ASHMAWY, ABEER M.; ZEKRI, ABDEL-RAHMAN

    2015-01-01

    In the current study, the prognostic and predictive values of serum transforming growth factor-β1 (TGF-β1), insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) and vascular endothelial growth factor-A (VEGF-A) were evaluated in triple-negative and non-triple-negative breast cancer (TNBC and non-TNBC). The aim was to identify a group of serological biomarkers and to identify possible candidates for targeted therapy in patients with TNBC and non-TNBC. Protein levels of TGF-β1, IGF-I/IGF-IR and VEGF-A in the serum were measured in 43 TNBC, 53 non-TNBC and 20 normal control participants using quantitative ELISA assays. Results were correlated against standard prognostic factors, response to treatment and survival. TNBC was identified to be associated with poor prognosis and serum levels of VEGF-A and IGF/IGF-IR were significantly higher in the TNBC group compared with the non-TNBC group. IGF-IR and VEGF-A overexpression was observed to be correlated with TGF-β1 expression and all of the markers investigated were associated with metastasis and disease progression. In the multivariate analysis, VEGF-A, IGF-I and IGF-IR were observed to be independent predictors for overall survival, whereas TGF-β1 and lymph node status were identified as independent predictors for disease-free survival. The overall response rate was significantly lower in patients with TNBC and those with high levels of TGF-β1, IGF-I/IGF-IR and VEGF-A. In view of the present results, it was concluded that TGF-β1, IGF-I/IGF-IR and VEGF-A overexpression is associated with the presence of aggressive tumors, which exhibit an increased probability of metastasis, a poor response to treatment and reduced survival rate. This indicates that VEGF-A, IGF-IR and IGF-I have the potential to be used as surrogate biomarkers and are promising candidates for targeted therapy, particularly in patients with TNBC. PMID:25824321

  15. Differential Activation of Insulin Receptor Substrates 1 and 2 by Insulin-Like Growth Factor-Activated Insulin Receptors▿

    PubMed Central

    Denley, Adam; Carroll, Julie M.; Brierley, Gemma V.; Cosgrove, Leah; Wallace, John; Forbes, Briony; Roberts, Charles T.

    2007-01-01

    The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues. PMID:17325037

  16. MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor

    PubMed Central

    Xiao, Yao; Tian, Qinggang; He, Jiantai; Huang, Ming; Yang, Chao; Gong, Liansheng

    2016-01-01

    MicroRNAs (miRs) have been demonstrated to play key roles in the development and progression of hepatocellular carcinoma (HCC). However, the regulatory mechanism of miR-503 in HCC has not been fully uncovered. In this study, we found that miR-503 was significantly downregulated in HCC tissues compared to nontumorous liver tissues. Moreover, lower miR-503 levels were associated with the malignant progression of HCC, and the expression of miR-503 was also decreased in several common HCC cell lines compared to normal human liver cell line THLE-3. Overexpression of miR-503 inhibited proliferation but induced apoptosis of LM3 and HepG2 cells. Bioinformatical analysis and luciferase reporter assay further identified insulin-like growth factor 1 receptor (IGF-1R) as a novel target of miR-503 in 293T cells. Moreover, overexpression of miR-503 led to a significant decrease in the protein levels of IGF-1R, while knockdown of miR-503 enhanced its protein levels in LM3 and HepG2 cells. Besides, overexpression of IGF-1R reversed the effects of miR-503-mediated HCC cell proliferation and apoptosis, indicating that IGF-1R acts as a downstream effector of miR-503 in HCC cells. Furthermore, IGF-1R was found to be significantly upregulated in HCC tissues compared to nontumorous liver tissues. In addition, the mRNA levels of IGF-1R were inversely correlated to the miR-503 levels in the HCC tissues. Thus, we demonstrate that miR-503 inhibits the proliferation and induces the apoptosis of HCC cells, partly at least, by directly targeting IGF-1R, and suggest that IGF-1R may serve as a promising target for the treatment of HCC. PMID:27366090

  17. Response of isolated ruminant mammary arteries to the long R3 analogue of insulin-like growth factor I.

    PubMed

    Gow, I F

    2000-05-01

    Isolated mammary arteries from ruminants were used in a conventional organ bath system. Acetylcholine relaxed bovine but not ovine mammary arteries; both types responded to sodium nitroprusside. Noradrenaline (NA) caused a dose-dependent increase in generated tension. An analogue of insulin-like growth factor I (long R3-IGF-I) caused a rightward shift in the NA response curve in bovine vessels with intact endothelium (P < 0.02), and also in sheep arteries (P < 0.01). In bovine vessels, this effect was abolished when the endothelium was removed. The effect of long R3-IGF-I in bovine vessels was abolished by N -nitro-L-arginine methyl ester (L-NAME) an inhibitor of nitric oxide synthase, suggesting the effect of IGF-I on mammary arteries in vitro requires NO generation. PMID:10825414

  18. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  19. The emerging role of insulin-like growth factor 1 receptor (IGF1r) in gastrointestinal stromal tumors (GISTs)

    PubMed Central

    2010-01-01

    Recent years have seen a growing interest in insulin-like growth factor 1 receptor (IGF1R) in medical oncology. Interesting data have been reported also on IGF1r in gastrointestinal stromal tumors (GISTs) especially in children and in young adult patients whose disease does not harbour mutations on KIT and PDGFRA and are poorly responsive to conventional therapies. However, it is too early to reach conclusions on IGF1R as a novel therapeutic target in GIST because the receptor's biological role is still to be defined and the clinical significance in patients needs to be studied in larger studies. We update and comment the current literature on IGF1R in GISTs and discuss the future perspectives in this promising field. PMID:21078151

  20. Decrease of the insulin-like growth factor-1 bioavailability in spontaneously hypertensive rats with erectile dysfunction.

    PubMed

    Zhou, Z-Y; Cheng, S-P; Huang, H; Sun, Y-L; Xiao, S; Liu, R-H; Mao, F-J; Zhong, G-J; Huang, J-B; Pan, H

    2016-09-01

    We investigated the role of insulin-like growth factor-1 (IGF-1) in spontaneously hypertensive rats with erectile dysfunction. Firstly, we evaluated intracavernous pressure. The bioavailability of IGF-1 at both mRNA and protein levels were measured by quantitative real-time PCR and Western blot respectively. Then, cavernous cyclic guanosine monophosphate concentrations were detected by enzyme-linked immunosorbent assay. The cavernosal pressure was significantly decreased in the hypertensive and the propranolol treatment groups compared to the normal control group (P < 0.01). Cavernous IGF-1 bioavailability and the concentrations of cavernous cyclic guanosine monophosphate were both significantly decreased in the hypertensive and the propranolol treatment groups compared to the normal control group (P < 0.01). This study suggests that an obvious decrease in cavernous IGF-1 levels might play an important role in spontaneously hypertensive rats with erectile dysfunction. PMID:26762757

  1. Functional and Complementary Phosphorylation State Attributes of Human Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) Isoforms Resolved by Free Flow Electrophoresis

    PubMed Central

    Nissum, Mikkel; Shehab, Majida Abu; Sukop, Ute; Khosravi, Javad M.; Wildgruber, Robert; Eckerskorn, Christoph; Han, Victor K. M.; Gupta, Madhulika B.

    2009-01-01

    Fetal growth restriction (FGR) is a common disorder in which a fetus is unable to achieve its genetically determined potential size. High concentrations of insulin-like growth factor-binding protein-1 (IGFBP-1) have been associated with FGR. Phosphorylation of IGFBP-1 is a mechanism by which insulin-like growth factor-I (IGF-I) bioavailability can be modulated in FGR. In this study a novel strategy was designed to determine a link between IGF-I affinity and the concomitant phosphorylation state characteristics of IGFBP-1 phosphoisoforms. Using free flow electrophoresis (FFE), multiple IGFBP-1 phosphoisoforms in amniotic fluid were resolved within pH 4.43–5.09. The binding of IGFBP-1 for IGF-I in each FFE fraction was determined with BIAcore biosensor analysis. The IGF-I affinity (K) for different IGFBP-1 isoforms ranged between 1.12e−08 and 4.59e−07. LC-MS/MS characterization revealed four phosphorylation sites, Ser(P)98, Ser(P)101, Ser(P)119, and Ser(P)169, of which Ser(P)98 was new. Although the IGF-I binding affinity for IGFBP-1 phosphoisoforms across the FFE fractions did not correlate with phosphopeptide intensities for Ser(P)101, Ser(P)98, and Ser(P)169 sites, a clear association was recorded with Ser(P)119. Our data demonstrate that phosphorylation at Ser119 plays a significant role in modulating affinity of IGFBP-1 for IGF-I. In addition, an altered profile of IGFBP-1 phosphoisoforms was revealed between FGR and healthy pregnancies that may result from potential site-specific phosphorylation. This study provides a strong basis for use of this novel approach in establishing the linkage between phosphorylation of IGFBP-1 and FGR. This overall strategy will also be broadly applicable to other phosphoproteins with clinical and functional significance. PMID:19193607

  2. Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer.

    PubMed

    Kreiling, Jodi L; Montgomery, Michelle A; Wheeler, Joseph R; Kopanic, Jennifer L; Connelly, Christopher M; Zavorka, Megan E; Allison, Jenna L; Macdonald, Richard G

    2012-08-01

    Oligomerization of the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II. PMID:22681933

  3. A prospective study of insulin-like growth factor 1, its binding protein 3, and risk of endometriosis.

    PubMed

    Mu, Fan; Hankinson, Susan E; Schernhammer, Eva; Pollak, Michael N; Missmer, Stacey A

    2015-07-15

    Several retrospective case-control studies suggested that insulin-like growth factor 1 (IGF-1) or insulin-like growth factor binding protein 3 (IGFBP-3) was associated with endometriosis. However, results are inconsistent and no prospective study exists. We prospectively evaluated associations between plasma levels of IGF-1 and IGFBP-3 and laparoscopically confirmed endometriosis in a case-control study nested within the Nurses' Health Study II. Between blood collections in 1996-1999 and 2007, we ascertained 310 premenopausal women with incident endometriosis and 615 matched controls. We estimated incidence rate ratios and 95% confidence intervals using multivariable conditional logistic regression. We observed no statistically significant associations between endometriosis and IGF-1 (incidence rate ratio (IRR) = 0.88, 95% confidence interval (CI): 0.61, 1.27; Ptrend = 0.48), IGFBP-3 (IRR = 1.12, 95% CI: 0.80, 1.57; Ptrend = 0.51), and the IGF-1:IGFBP-3 molar ratio (IRR = 0.94, 95% CI: 0.66, 1.34; Ptrend = 0.64), comparing the top with the bottom tertile. IGF-1, IGFBP-3, and the molar ratio appeared to be positively associated with endometriosis risk among women aged <40 years at blood draw (IGF-1: IRR = 1.60, 95% CI: 0.86, 2.98; IGFBP-3: IRR = 1.85, 95% CI: 1.08, 3.16; IGF-1:IGFBP-3: IRR = 1.57, 95% CI: 0.85, 2.88) but not among women aged ≥40 years at blood draw (all Pheterogeneity ≤ 0.05). Overall, these data suggest that, if IGF-1 or IGFBP-3 plays a role in the etiology of endometriosis, it is minimal and perhaps only among younger women. PMID:26121987

  4. A Prospective Study of Insulin-Like Growth Factor 1, Its Binding Protein 3, and Risk of Endometriosis

    PubMed Central

    Mu, Fan; Hankinson, Susan E.; Schernhammer, Eva; Pollak, Michael N.; Missmer, Stacey A.

    2015-01-01

    Several retrospective case-control studies suggested that insulin-like growth factor 1 (IGF-1) or insulin-like growth factor binding protein 3 (IGFBP-3) was associated with endometriosis. However, results are inconsistent and no prospective study exists. We prospectively evaluated associations between plasma levels of IGF-1 and IGFBP-3 and laparoscopically confirmed endometriosis in a case-control study nested within the Nurses' Health Study II. Between blood collections in 1996–1999 and 2007, we ascertained 310 premenopausal women with incident endometriosis and 615 matched controls. We estimated incidence rate ratios and 95% confidence intervals using multivariable conditional logistic regression. We observed no statistically significant associations between endometriosis and IGF-1 (incidence rate ratio (IRR) = 0.88, 95% confidence interval (CI): 0.61, 1.27; Ptrend = 0.48), IGFBP-3 (IRR = 1.12, 95% CI: 0.80, 1.57; Ptrend = 0.51), and the IGF-1:IGFBP-3 molar ratio (IRR = 0.94, 95% CI: 0.66, 1.34; Ptrend = 0.64), comparing the top with the bottom tertile. IGF-1, IGFBP-3, and the molar ratio appeared to be positively associated with endometriosis risk among women aged <40 years at blood draw (IGF-1: IRR = 1.60, 95% CI: 0.86, 2.98; IGFBP-3: IRR = 1.85, 95% CI: 1.08, 3.16; IGF-1:IGFBP-3: IRR = 1.57, 95% CI: 0.85, 2.88) but not among women aged ≥40 years at blood draw (all Pheterogeneity ≤ 0.05). Overall, these data suggest that, if IGF-1 or IGFBP-3 plays a role in the etiology of endometriosis, it is minimal and perhaps only among younger women. PMID:26121987

  5. Nonparallel changes of growth hormone (GH) and insulin-like growth factor-I, insulin-like growth factor binding protein-3, and GH-binding protein, after craniospinal irradiation and chemotherapy

    SciTech Connect

    Nivot, S.; Adan, L.; Souberbielle, J.; Rappaport, R.; Brauner, R.; Benelli, C.; Clot, J.P.; Saucet, C.; Zucker, J.M.

    1994-03-01

    The authors studied the GH-insulin-like growth factor-I (IGF-I) axis serially over 24-36 months in six patients with medulloblastoma who underwent surgical removal of the tumor followed by craniospinal irradiation therapy for 6 weeks and then chemotherapy for 42 weeks. Eighteen and 24 months after beginning irradiation there was a decline in the peak GH secretory response to acute stimulation with arginine/insulin hypoglycemia. Six months after irradiation and during chemotherapy there was a transient decline in IGF-I, IGF binding protein-3 (IGFBP-3), and GH-BP values (respective mean values of 56.1 {+-} 9.0 ng/mL, 1.1 {+-} 0.2 {mu}g/mL, and 7.6 {+-} 3.3% of radioactivity as compared to time 0 values: 139 {+-} 15 ng/mL, 2.2 {+-} 0.2 {mu}g/mL, and 20.0 {+-} 4.0%, P < 0.001), although provoked GH secretion was normal at this time. The IGF-I, IGFBP-3, and GH-BP returned to pretreatment ranges by 12-36 months after initiation of the study. There was also a decline in body mass index and serum protein values at 6 months after irradiation in ligand and immunoblot analysis there was a decline in IGFBP-3 and an abnormal electrophoretic mobility of IGFBP-2 that were both normalized at 36 months. In one patient they observed a high level of IGFBP-3 proteolysis at this time. This study demonstrates that before the decrease of GH secretion in patients receiving cranial irradiation there is a transient phase of GH insensitivity that may be characteristic of the acute therapeutic phase including the chemotherapy. This partial insensitivity may explain the early growth retardation observed in these patients. 28 refs., 4 figs., 1 tab.

  6. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. PMID:24080228

  7. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. PMID:23747407

  8. OVEREXPRESSION OF DES(1-3) INSULIN-LIKE GROWTH FACTOR 1 IN THE MAMMARY GLANDS OF TRANSGENIC MICE DELAYS THE LOSS OF MILK PRODUCTION WITH PROLONGED LACTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During prolonged lactation, the mammary gland gradually loses the capacity to produce milk. In agricultural species, this decline can be slowed by administration of exogenous growth hormone (GH), which is believed to act through insulin-like growth factor 1 (IGF1). Our previous work demonstrated del...

  9. The influence of tropical adaptation on plasma concentrations of insulin-like growth factor-I in purebred and crossbred beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to determine whether tropical adaptation influences circulating concentrations of the growth-related hormone, insulin-like growth factor-I (IGF-I), 3-breed diallel matings were conducted using temperate Bos taurus (A; Angus), tropical Bos indicus (B; Brahman), and tropical Bos taurus (R...

  10. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    PubMed Central

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  11. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    PubMed

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  12. Synergistic interaction between insulin-like growth factors-I and -II in central regulation of pulsatile growth hormone secretion.

    PubMed

    Harel, Z; Tannenbaum, G S

    1992-08-01

    Insulin-like growth factor (IGF)-I and -II peptides, receptors, mRNAs, and binding proteins are widely distributed in the central nervous system (CNS), yet their physiological role in the brain remains largely unknown. While earlier in vivo studies in the rat suggested that IGF-I may participate in feedback regulation of GH secretion at a CNS level, the preparations used were only partially pure. The recent availability of purified recombinant IGF-I and -II peptides prompted us to reexamine the involvement of the IGFs in vivo in central regulation of pulsatile GH secretion. Five groups of free-moving adult male rats bearing chronic intracerebroventricular (icv) and intracardiac venous cannulae were icv administered IGF-I (in doses of 0.5, 2, 3, and 10 micrograms) or the acid-saline vehicle; an additional group received 1 microgram of the potent IGF-I analog, long R3 IGF-I. Spontaneous 6-h plasma GH secretory profiles were obtained from all groups. Vehicle-injected control animals exhibited the typical pulsatile pattern of GH secretion, with most peak GH values above 150 ng/ml and trough levels below 1.2 ng/ml. Central administration of IGF-I alone or long R3 IGF-I at all doses tested failed to alter the pulsatile pattern of GH release; there were no significant differences in GH peak amplitude, GH trough level, GH interpeak interval, or mean 6-h plasma GH level compared to those in vehicle-injected controls. In a second study, designed to determine the effects of central administration of IGF-I and IGF-II, in combination, icv injection of 1 microgram IGF-I and 1 microgram IGF-II resulted in a marked suppression in the amplitude of spontaneous GH secretory bursts approximately 3 h after injection; both GH pulse amplitude (43.5 +/- 5.6 vs. 130.6 +/- 14.6 ng/ml; P less than 0.001) and mean plasma GH level (16.3 +/- 1.9 vs. 35.2 +/- 1.8 ng/ml; P less than 0.001) were severely reduced 3-6 h after injection compared to those in vehicle-injected controls. These results

  13. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  14. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. PMID:27032617

  15. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  16. A mitogenic peptide amide encoded within the E peptide domain of the insulin-like growth factor IB prohormone.

    PubMed Central

    Siegfried, J M; Kasprzyk, P G; Treston, A M; Mulshine, J L; Quinn, K A; Cuttitta, F

    1992-01-01

    We have identified an amino acid sequence within the E peptide of the insulin-like growth factor IB (IGF-IB) precursor that is biologically active and designated this peptide insulin-like growth factor IB-(103-124) E1 amide (IBE1). Its existence was predicted by a flanking Gly-Lys-Lys-Lys, a signal sequence for sequential proteolytic cleavage and peptidyl C-terminal amidation. A synthetic analog of the predicted IBE1 peptide, designated Y-23-R-NH2, was generated with tyrosine added at position 0. This peptide at 2-20 nM had growth-promoting effects on both normal and malignant human bronchial epithelial cells. Y-23-R-NH2 bound to specific high-affinity receptors (Kd = 2.8 +/- 1.4 x 10(-11) M) present at 1-2 x 10(4) binding sites per cell. Ligand binding was not inhibited by recombinant insulin or recombinant IGF-I. Furthermore, a monoclonal antibody antagonist to the IGF-I receptor (alpha IR3) did not suppress the proliferative response induced by Y-23-R-NH2. In addition, C-terminal amidation was shown to be important in receptor recognition since the free-acid analog of IBE1 (Y-23-R-OH) did not effectively compete for binding and was not a potent agonist of proliferation. Immunoblot analysis of human lung tumor cell line extracts using an antibody raised against Y-23-R-NH2 detected a low molecular mass band of approximately 5 kDa, implying that a protein product is produced that has immunological similarity to IBE1. Extracts of human, mammalian, and avian livers analyzed on an immunoblot with the anti-Y-23-R-NH2 antibody contained proteins of approximately 21 kDa that were specifically recognized by the antiserum and presumably represent an IGF-I precursor molecule. This implies that in species where an IGF-I mRNA with homology to the human IGF-IB E domain has not yet been described, an alternate mRNA must be produced that contains a sequence similar to that of the midportion of the human IGF-IB E domain. Our findings demonstrate that IBE1 is a growth factor that

  17. Bone resorption facilitates osteoblastic bone metastatic colonization by cooperation of insulin-like growth factor and hypoxia.

    PubMed

    Kuchimaru, Takahiro; Hoshino, Takuya; Aikawa, Tomoya; Yasuda, Hisataka; Kobayashi, Tatsuya; Kadonosono, Tetsuya; Kizaka-Kondoh, Shinae

    2014-05-01

    Bone metastasis is a multistep process that includes cancer cell dissemination, colonization, and metastatic growth. Furthermore, this process involves complex, reciprocal interactions between cancer cells and the bone microenvironment. Bone resorption is known to be involved in both osteolytic and osteoblastic bone metastasis. However, the precise roles of the bone resorption in the multistep process of osteoblastic bone metastasis remain unidentified. In this study, we show that bone resorption plays important roles in cancer cell colonization during the initial stage of osteoblastic bone metastasis. We applied bioluminescence/X-ray computed tomography multimodal imaging that allows us to spatiotemporally analyze metastasized cancer cells and bone status in osteoblastic bone metastasis models. We found that treatment with receptor activator of factor-κB ligand (RANKL) increased osteoblastic bone metastasis when given at the same time as intracardiac injection of cancer cells, but failed to increase metastasis when given 4 days after cancer cell injection, suggesting that RANKL-induced bone resorption facilitates growth of cancer cells colonized in the bone. We show that insulin-like growth factor-1 released from the bone during bone resorption and hypoxia-inducible factor activity in cancer cells cooperatively promoted survival and proliferation of cancer cells in bone marrow. These results suggest a mechanism that bone resorption and hypoxic stress in the bone microenvironment cooperatively play an important role in establishing osteoblastic metastasis. PMID:24597654

  18. Effects of Type 1 Insulin-Like Growth Factor Receptor Silencing in a Human Adrenocortical Cell Line.

    PubMed

    Ribeiro, T C; Jorge, A A; Montenegro, L R; Almeida, M Q; Ferraz-de-Souza, B; Nishi, M Y; Mendonca, B B; Latronico, A C

    2016-07-01

    Type 1 insulin-like growth factor receptor (IGF-1R) is overexpressed in a variety of human cancers, including adrenocortical tumors. The aim of the work was to investigate the effects of IGF-1R downregulation in a human adrenocortical cell line by small interfering RNA (siRNA). The human adrenocortical tumor cell line NCI H295R was transfected with 2 specific IGF1R siRNAs (# 1 and # 2) and compared with untreated cells and a negative control siRNA. IGF1R expression was determined by quantitative reverse-transcription PCR (qRTPCR) and Western blot. The effects of IGF-1R downregulation on cell proliferation and apoptosis were assessed. IGF-1R levels were significantly decreased in cells treated with IGF-1R siRNA # 1 or # 2. Relative expression of IGF1R mRNA decreased approximately 50% and Western blot analysis revealed a 30% of reduction in IGF-1R protein. Downregulation of this gene resulted in 40% reduction in cell growth in vitro and 45% increase in apoptosis using siRNA # 2. These findings demonstrate that decreasing IGF-1R mRNA and protein expression in NCI H295R cells can partially inhibit adrenal tumor cell growth in vitro. Targeting IGF1R is a promising therapy for pediatric malignant adrenocortical tumor and can still be an option for adult adrenocortical cancer based on personalized genomic tumor profiling. PMID:27246621

  19. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma

    PubMed Central

    Luo, Li-Ling; Zhao, Lei; Wang, Ying-Xue; Tian, Xiao-Peng; Xi, Mian; Shen, Jing-Xian; He, Li-Ru; Li, Qiao-Qiao; Liu, Shi-Liang; Zhang, Peng; Xie, Dan; Liu, Meng-Zhong

    2015-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) plays an essential role in radiosensitivity of esophageal squamous cell carcinoma (ESCC). However, the underlying mechanism is not completely understood. Here, we observed that IGFBP-3 had favorable impact on the tumorigenicity of ESCC cells in nude mice by using an in vivo imaging system (IVIS) to monitor tumor growth treated with ionizing radiation (IR). Downregulation of IGFBP-3 expression enhanced tumor growth, inhibited anti-proliferative and apoptotic activity and result in IR resistance in vivo. Cell cycle antibody array suggested that silencing IGFBP-3 promoted transition from G0/G1 to S phase, perhaps though influencing Smad3 dephosphorylation and retinoblastoma protein (Rb) phosphorylation. Downregulation of P21 and P27, and upregulation of p-P27 (phospho-Thr187), cyclin-dependent kinase 2 (CDK2), and cyclin E1 might contribute to the G0/G1 to S phase transition promoted by IGFBP-3. Our results suggest that Smad3-P27/P21-cyclin E1/CDK2-phosphorylated retinoblastoma protein pathways might be involved in this IGFBP-3 mediated radiosensitivity transition in ESCC. PMID:26670461

  20. Insulin and insulin-like growth factors (IGFs) stimulate production of IGF-binding proteins by ovarian granulosa cells.

    PubMed

    Grimes, R W; Hammond, J M

    1992-08-01

    Ligand blot analysis of granulosa cell (GC)-conditioned culture medium revealed several easily measurable insulin-like growth factor (IGF)-binding proteins (IGFBPs), including IGFBP-3 [40-44 kilodaltons (kDa)] and IGFBP-2 (34 kDa). In the present study, IGF-I, in a dose-dependent manner, significantly stimulated the production of these IGFBPs. Insulin, but not IGF-II, mimicked IGF-I's action on IGFBP-3 and -2 production, but was less potent. The synthetic IGF, long R3-IGF-I, which has very low affinity for IGFBPs and only slightly reduced affinity for the IGF-I (type I) receptor, had significantly greater potency in stimulating IGFBP-3 and -2 production compared to IGF-I. Des-(1-3)-IGF-I had similar effects. IGF-I, IGF-II, and the IGF-I analogs, but not insulin, also induced production of an unidentified 30-kDa IGFBP not normally detectable in these cultures. However, in the presence of epidermal growth factor (which was without independent effect on the 30-kDa IGFBP), insulin also induced this 30-kDa IGFBP. By Northern analysis the expression of IGFBP-3 mRNA was found to be significantly stimulated by IGF-I. In summary, insulin stimulated IGFBP-3 and -2 production in a manner that mimics that of IGF-I and the more potent long R3-IGF-I. However, its low potency suggested that IGFBP production is regulated via the IGF-I (type I) receptor. The much higher potency of long R3-IGF-I compared to that of IGF-I suggests that the IGFBPs themselves modulate the action of IGFs by sequestering exogenous IGFs. Thus, one cellular response to IGF stimulation is the production of IGFBPs, which, in turn, reduce or negate the biological activity of the IGFs. The effects of insulin-like peptides are exerted at least in part by increasing levels of mRNA for specific BPs. PMID:1379161

  1. Expression of Recombinant Human Insulin-like Growth Factor Type 1 (rhIGF-1) in Escherichia coli

    PubMed Central

    Iranpoor, Hamidreza; Omidinia, Eskandar; Vatankhah, Venus; Gharanjik, Vahid; Shahbazi, Majid

    2015-01-01

    Background: Human insulin-like growth factor type 1 (hIGF-1) is a protein consisting of 70 amino acids (MW=7.6 kDa) and mainly synthesized by liver. Mecasermin (Trade name INCRELEX) is the synthetic form of the protein which is used as an effective treatment for particular disorders such as short stature, type 1 and 2 diabetes, and wound healing. Current study was aimed to investigate the expression of human insulin-like growth factor type1 in Escherichia coli (E. coli) BL21 (DE3) expression system in order to produce an active recombinant form of the protein. Methods: For the purpose of the study, firstly codon optimization was done for hIGF-1 gene, using bioinformatics databases. Then, the gene was synthesized and inserted in pET-24a vector by a cutting strategy included NdeI and BamHI-HF enzymes. In the next step, gene was run in agarose gel and purified. The constructed expression cassette was transformed into E. coli BL21 (DE3) cells through CaCl 2 heat shock method. Identification and confirmation of the transformed colonies were performed using screening PCR method. Synthesis of hIGF-1 was induced by IPTG. The expression in induced strains was analyzed by SDS-PAGE and western blotting techniques. Confirmation of cloning and IGF-1 expression cassette was carried out through genetic engineering procedures. Results: Analysis of transformed E. coli strain with SDS-PAGE and western blotting techniques confirmed that gene was expressed in host cells. Molecular weight of the expressed protein was estimated to be 7.6 kDa. Conclusion: hIGF-1 expression cassette for cloning and expression in E. coli was designed and the protein of interest was successfully induced and identified. In addition, E. coli BL21 (DE3) can be used as a suitable host for production of recombinant hIGF-1 and this technology has a potential to be localized. PMID:26306149

  2. Antepartal insulin-like growth factor concentrations indicating differences in the metabolic adaptive capacity of dairy cows

    PubMed Central

    Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich

    2014-01-01

    Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-Ihigh or IGF-Ilow), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-Ihigh cows compared to IGF-Ilow cows. Estradiol concentration tended to be greater in the IGF-Ilow group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study. PMID:24962413

  3. The effects of testosterone and insulin-like growth factor 1 on motor system form and function.

    PubMed

    Oki, Kentaro; Law, Timothy D; Loucks, Anne B; Clark, Brian C

    2015-04-01

    In this perspective article, we review the effects of selected anabolic hormones on the motoric system and speculate on the role these hormones may have on influencing muscle and physical function via their impact on the nervous system. Both muscle strength and anabolic hormone levels decline around middle age into old age over a similar time period, and several animal and human studies indicate that exogenously increasing anabolic hormones (e.g., testosterone and insulin-like growth factor-1 (IGF-1)) in aged subjects is positively associated with improved muscle strength. While most studies in humans have focused on the effects of anabolic hormones on muscle growth, few have considered the impact these hormones have on the motoric system. However, data from animals demonstrate that administering either testosterone or IGF-1 to cells of the central and peripheral motor system can increase cell excitability, attenuate atrophic changes, and improve regenerative capacity of motor neurons. While these studies do not directly indicate that changes in anabolic hormones contribute to reduced human performance in the elderly (e.g., muscle weakness and physical limitations), they do suggest that additional research is warranted along these lines. PMID:25681641

  4. 14-3-3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor.

    PubMed Central

    Furlanetto, R W; Dey, B R; Lopaczynski, W; Nissley, S P

    1997-01-01

    We have used a yeast two-hybrid system to identify proteins which bind to the cytosolic portion of the type 1 insulin-like growth factor (IGF) receptor (IGFIR) but not the insulin receptor (IR). This analysis identified 14-3-3beta and zeta proteins. 14-3-3beta also binds to the IGFIR but not the IR in vitro and 14-3-3-IGFIR complexes are present in insect cells overexpressing the IGFIR cytoplasmic domain. 14-3-3 proteins are substrates of the IGFIR in the yeast system and in vitro. The interaction of 14-3-3 with the IGFIR requires receptor-kinase activity and maps to the C-terminus of the receptor, but does not depend on tyrosine residues in this or the juxtamembrane regions. Instead, the binding maps to serine residue 1283 and requires phosphorylation of this residue. 14-3-3 proteins are phosphoserine-binding proteins which have been shown to interact directly with components of the mitogenic and apoptotic signalling pathways, suggesting that they participate in growth regulation. Our findings suggest that 14-3-3 proteins may play a role in IGFIR signal transduction and may contribute to the differences in IGF and IR signalling capabilities. PMID:9581554

  5. The effects of testosterone and insulin-like growth factor 1 on motor system form and function

    PubMed Central

    Oki, Kentaro; Law, Timothy D.; Loucks, Anne B.; Clark, Brian C.

    2016-01-01

    In this perspective article, we review the effects of selected anabolic hormones on the motoric system and speculate on the role these hormones may have on influencing muscle and physical function via their impact on the nervous system. Both muscle strength and anabolic hormone levels decline around middle age into old age over a similar time period, and several animal and human studies indicate that exogenously increasing anabolic hormones (e.g., testosterone and insulin-like growth factor-1 (IGF-1)) in aged subjects is positively associated with improved muscle strength. While most studies in humans have focused on the effects of anabolic hormones on muscle growth, few have considered the impact these hormones have on the motoric system. However, data from animals demonstrate that administering either testosterone or IGF-1 to cells of the central and peripheral motor system can increase cell excitability, attenuate atrophic changes, and improve regenerative capacity of motor neurons. While these studies do not directly indicate that changes in anabolic hormones contribute to reduced human performance in the elderly (e.g., muscle weakness and physical limitations), they do suggest that additional research is warranted along these lines. PMID:25681641

  6. Insulin-like growth factor-I (IGF-I) misuse in athletes and potential methods for detection.

    PubMed

    Guha, Nishan; Cowan, David A; Sönksen, Peter H; Holt, Richard I G

    2013-12-01

    To athletes, insulin-like growth factor-I (IGF-I) is an attractive performance-enhancing drug, particularly as an alternative to growth hormone (GH) because IGF-I mediates many of the anabolic actions of GH. IGF-I has beneficial effects on muscle protein synthesis and glycogen storage that could enhance performance in several sporting disciplines. Recombinant human IGF-I (rhIGF-I) is used in clinical practice, but a variety of IGF-I compounds and IGF-I analogues are also advertised on the internet and many have been available on the black market for several years. Although methods for detecting GH misuse are now well established and there have been several cases in which athletes have tested positive for GH, no test is yet in place for detecting IGF-I misuse. The GH-2004 research group has been investigating methods for detection of IGF-I misuse and a test is being developed on the basis of the principles of the successful GH-2000 marker method, in which markers from the IGF axis and markers of collagen and bone turnover are used to detect GH misuse. Commercial immunoassays for these markers have been validated for anti-doping purposes but new methods, including IGF-I measurement by use of mass spectrometry, should improve the performance of the tests and help in the detection of athletes who are doping with these peptide hormones. PMID:23934394

  7. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans.

    PubMed Central

    Hussain, M A; Schmitz, O; Mengel, A; Keller, A; Christiansen, J S; Zapf, J; Froesch, E R

    1993-01-01

    To elucidate the effects of insulin-like growth factor I (IGF-I) on fuel oxidation and insulin sensitivity, eight healthy subjects were treated with saline and recombinant human (IGF-I (10 micrograms/kg.h) during 5 d in a crossover, randomized fashion, while receiving an isocaloric diet (30 kcal/kg.d) throughout the study period. On the third and fourth treatment days, respectively, an L-arginine stimulation test and an intravenous glucose tolerance test were performed. A euglycemic, hyperinsulinemic clamp combined with indirect calorimetry and a glucose tracer infusion were performed on the fifth treatment day. IGF-I treatment led to reduced fasting and stimulated (glucose and/or L-arginine) insulin and growth hormone secretion. Basal and stimulated glucagon secretion remained unchanged. Intravenous glucose tolerance was unaltered despite reduced insulin secretion. Resting energy expenditure and lipid oxidation were both elevated, while protein oxidation was reduced, and glucose turnover rates were unaltered on the fifth treatment day with IGF-I as compared to the control period. Enhanced lipolysis was reflected by elevated circulating free fatty acids. Moreover, insulin-stimulated oxidative and nonoxidative glucose disposal (i.e., insulin sensitivity) were enhanced during IGF-I treatment. Thus, IGF-I treatment leads to marked changes in lipid and protein oxidation, whereas, at the dose used, carbohydrate metabolism remains unaltered in the face of reduced insulin levels and enhanced insulin sensitivity. Images PMID:8227340

  8. Erythropoietin promotes peripheral nerve regeneration in rats by upregulating expression of insulin-like growth factor-1

    PubMed Central

    Wang, Wei; Li, Dongsheng; Li, Qing; Wang, Lei; Bai, Guang; Yang, Tao; Li, Qiang; Zhu, Zhitu

    2015-01-01

    Introduction Erythropoietin (EPO) has been shown to have beneficial effects on peripheral nerve damage, but its mechanism of action remains incompletely understood. In this study we hypothesized that EPO promotes peripheral nerve repair via neurotrophic factor upregulation. Material and methods Thirty adult male Wistar rats were employed to establish a sciatic nerve injury model. They were then randomly divided into two groups to be subjected to different treatment: 0.9% saline (group A) and 5000 U/kg EPO (group B). The walking behavior of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by electron microscopy. The expression of insulin-like growth factor-1 (IGF-1) in the injured sciatic nerves was detected by immunohistochemical analysis. Results Compared to saline treatment, EPO treatment led to the growth of myelin sheath, the recovery of normal morphology of axons and Schwann cells, and higher density of myelinated nerve fibers. Erythropoietin treatment promoted the recovery of SFI in the injured sciatic nerves. In addition, EPO treatment led to increased IGF-1 expression in the injured sciatic nerves. Conclusions Erythropoietin may promote peripheral nerve repair in a rat model of sciatic nerve injury through the upregulation of IGF-1 expression. These findings reveal a novel mechanism underlying the neurotrophic effects of EPO. PMID:25995763

  9. Influence of tropical adaptation on plasma insulin-like growth factor-I and residual feed intake in purebred and crossbred beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if plasma concentrations of insulin-like growth factor-I (IGF-I) differed among heifers and steers produced from three-breed diallel matings using temperate and tropically adapted breeds of cattle in Brooksville, FL. Additionally, for steers only, body w...

  10. The Effect of Insulin and Insulin-Like Growth Factors on Hippocampus- and Amygdala-Dependent Long-Term Memory Formation

    ERIC Educational Resources Information Center

    Stern, Sarah A.; Chen, Dillon Y.; Alberini, Cristina M.

    2014-01-01

    Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or…

  11. Molecular characterization and sex-specific tissue expression of prolactin, somatolactin and insulin-like growth factor-I in yellow perch (Perca flavescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cDNA sequence encoding prolactin (PRL), somatolactin (SL) and insulin-like growth factor-I (IGF-I) genes of the yellow perch were obtained using cloning and sequencing techniques. Brain, pituitary, gill, heart, liver, stomach, kidney, spleen, muscle and gonad tissues were analyzed from both mal...

  12. Effects of insulin-like growth factor-I, insulin, and leucine on protein turnover and pathways that regulate ubiquitin ligase expression in rainbow trout primary myocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of four day old rainbow trout myocytes. Supplementing media with 100 nM IGF-I inc...

  13. Interaction of AIM with insulin-like growth factor-binding protein-4.

    PubMed

    You, Qiang; Wu, Yan; Yao, Nannan; Shen, Guannan; Zhang, Ying; Xu, Liangguo; Li, Guiying; Ju, Cynthia

    2015-09-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two‑hybrid screening, the present study uncovered that AIM binds to insulin‑like growth factor binding protein‑4 (IGFBP‑4). AIM interaction with IGFBP‑4, as well as IGFBP‑2 and ‑3, but not with IGFBP‑1, ‑5 and ‑6, was further confirmed by co‑immunoprecipitation (co‑IP) using 293 cells. The binding activity and affinity between AIM and IGFBP‑4 in vitro were analyzed by co‑IP and biolayer interferometry. Serum depletion‑induced cellular apoptosis was attenuated by insulin‑like growth factor‑I (IGF‑I), and this effect was abrogated by IGFBP‑4. Of note, in the presence of AIM, the inhibitory effect of IGFBP‑4 on the anti‑apoptosis function of IGF‑I was attenuated, possibly through binding of AIM with IGFBP‑4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP‑2, ‑3 and ‑4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353

  14. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling

    PubMed Central

    Yang, Shasha; Deng, Huacong; Zhang, Qunzhou; Xie, Jing; Zeng, Hui; Jin, Xiaolong; Ling, Zixi; Shan, Qiaoyun; Liu, Momo; Ma, Yuefei; Tang, Juan; Wei, Qianping

    2016-01-01

    Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication. PMID:26986757

  15. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  16. Insulin-like growth factor-I modulates monocyte adhesion to EAhy 926 endothelial cells

    PubMed Central

    MOTANI, ALYKHAN; FORSTER, LOUISE; TULL, SAMANTHA; ÄNGGÅRD, ERIK E.; FERNS, GORDON A.A.

    1996-01-01

    IGF-I is a ubiquitous growth factor, found in platelets and elaborated by many other cell types. It is thought to be involved in several pathophysiological processes including embryonic development, angiogenesis and wound healing. We report that the adherence of human peripheral blood monocytes to an endothelial cell line (EAhy 926) is inhibited in a dose and time-dependent manner by pre-incubating the endothelial cells with IGF-I (P < 0.001). Monocyte adhesion was inhibited 17.9 ± 1.9% by IGF-I at a dose of 1000 ng/ml (P < 0.01). In contrast, IGF-I had no significant effect on monocyte adherence to plastic. The inhibitory effects of IGF-I were reversed by co-incubating the endothelial cells with the nitric oxide synthase inhibitor, L-NAME. These data suggest that the effects of IGF-I are mediated by the release of nitric oxide from the endothelial cells. PMID:8664144

  17. Insulin-like growth factor-I modulates monocyte adhesion to EAhy 926 endothelial cells.

    PubMed

    Motani, A; Forster, L; Tull, S; Anggård, E E; Ferns, G A

    1996-02-01

    IGF-I is a ubiquitous growth factor, found in platelets and elaborated by many other cell types. It is thought to be involved in several pathophysiological processes including embryonic development, angiogenesis and wound healing. We report that the adherence of human peripheral blood monocytes to an endothelial cell line (EAhy 926) is inhibited in a dose and time-dependent manner by pre-incubating the endothelial cells with IGF-I (P < 0.001). Monocyte adhesion was inhibited 17.9 +/- 1.9% by IGF-I at a dose of 1000 ng/ml (P < 0.01). In contrast, IGF-I had no significant effect on monocyte adherence to plastic. The inhibitory effects of IGF-I were reversed by co-incubating the endothelial cells with the nitric oxide synthase inhibitor, L-NAME. These data suggest that the effects of IGF-I are mediated by the release of nitric oxide from the endothelial cells. PMID:8664144

  18. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival.

    PubMed

    Neff, N T; Prevette, D; Houenou, L J; Lewis, M E; Glicksman, M A; Yin, Q W; Oppenheim, R W

    1993-12-01

    Treatment of chick embryos in ovo with IGF-I during the period of normal, developmentally regulated neuronal death (embryonic days 5-10) resulted in a dose-dependent rescue of a significant number of lumbar motoneurons from degeneration and death. IGF-II and two variants of IGF-I with reduced affinity for IGF binding proteins, des(1-3) IGF-I and long R3 IGF-I, also elicited enhanced survival of motoneurons equal to that seen in IGF-I-treated embryos. IGF-I did not enhance mitogenic activity in motoneuronal populations when applied to embryos during the period of normal neuronal proliferation (E2-5). Treatment of embryos with IGF-I also reduced two types of injury-induced neuronal death. Following either deafferentation or axotomy, treatment of embryos with IGF-I rescued approximately 75% and 50%, respectively, of the motoneurons that die in control embryos as a result of these procedures. Consistent with the survival-promoting activity on motoneurons in ovo, IGF-I, -II, and des(1-3) IGF-I elevated choline acetyltransferase activity in embryonic rat spinal cord cultures, with des(1-3) IGF-I demonstrating 2.5 times greater potency than did IGF-I. A single addition of IGF-I at culture initiation resulted in the maintenance of 80% of the initial ChAT activity for up to 5 days, during which time ChAT activity in untreated control cultures fell to 9%. In summary, these results demonstrate clear motoneuronal trophic activity for the IGFs. These findings, together with previous reports that IGFs are synthesized in muscle and may participate in motoneuron axonal regeneration and sprouting, indicate that these growth factors may have an important role in motoneuron development, maintenance, and recovery from injury. PMID:8301266

  19. Prognostic significance of serum insulin-like growth factor-1 in patients with hepatocellular carcinoma following transarterial chemoembolization

    PubMed Central

    LIU, SHENG; LIU, YANHUA; JIANG, XUEWEN

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an effective survival factor that is involved in the development and progression of various tumors. The aim of the present study was to investigate whether baseline serum IGF-1 levels are associated with time to progression (TTP) and overall survival (OS) in patients with hepatocellular carcinoma (HCC) who have undergone transarterial chemoembolization (TACE). A total of 145 patients with HCC who underwent TACE as an initial treatment were enrolled in the study. Baseline serum IGF-1 levels were detected using enzyme-linked immunosorbent assay (ELISA) kits. The patients were followed up for a median follow-up period of 47 months (range, 10.6–69.3 months). During the follow-up, 98 patients (76.6%) experienced disease progression and 59 patients (46.1%) succumbed. The serum IGF-1 level was found to be significantly associated with hepatitis infection status, Child-Pugh class, bilirubin level, tumor size and nodularity, vascular invasion and the Barcelona Clinic Liver Cancer (BCLC) stage. Multivariate analysis was conducted, which indicated that BCLC stage, vascular invasion and serum IGF-1 were independent risk factors for disease progression. When clinical factors were examined as potential independent risk factors for OS, only advanced BCLC stage and low serum IGF-1 levels were found to be significantly associated with poorer OS. These results suggest that serum IGF-1 may serve as a predictor of the prognosis of patients with HCC undergoing TACE. PMID:26893654

  20. Inhibition of Type I Insulin-Like Growth Factor Receptor Signaling Attenuates the Development of Breast Cancer Brain Metastasis

    PubMed Central

    Saldana, Sandra M.; Lee, Heng-Huan; Lowery, Frank J.; Khotskaya, Yekaterina B.; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S.; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system. PMID:24039934

  1. A Concerted Action Of Estradiol And Insulin Like Growth Factor I Underlies Sex Differences In Mood Regulation By Exercise

    PubMed Central

    Munive, Victor; Santi, Andrea; Torres-Aleman, Ignacio

    2016-01-01

    Mood homeostasis present sexually dimorphic traits which may explain sex differences in the incidence of mood disorders. We explored whether diverse behavioral-setting components of mood may be differentially regulated in males and females by exercise, a known modulator of mood. We found that exercise decreases anxiety only in males. Conversely, exercise enhanced resilience to stress and physical arousal, two other important components of mood, only in females. Because exercise increases brain input of circulating insulin-like growth factor I (IGF-I), a potent modulator of mood, we explored whether sex-specific actions of exercise on mood homeostasis relate to changes in brain IGF-I input. We found that exercise increased hippocampal IGF-I levels only in cycling females. Underlying mechanism involved activation of estrogen (E2) receptors in brain vessels that led to increased uptake of serum IGF-I as E2 was found to stimulate IGF-I uptake in brain endothelial cells. Indeed, modulatory effects of exercise on mood were absent in female mice with low serum IGF-I levels or after either ovariectomy or administration of an E2 receptor antagonist. These results suggest that sex-specific brain IGF-I responses to physiological stimuli such as exercise contribute to dimorphic mood homeostasis that may explain sex differences in affective disorders. PMID:27170462

  2. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages

    PubMed Central

    Batista-Silva, L. R.; Rodrigues, Luciana Silva; Vivarini, Aislan de Carvalho; Costa, Fabrício da Mota Ramalho; Mattos, Katherine Antunes de; Costa, Maria Renata Sales Nogueira; Rosa, Patricia Sammarco; Toledo-Pinto, T. G.; Dias, André Alves; Moura, Danielle Fonseca; Sarno, Euzenir Nunes; Lopes, Ulisses Gazos; Pessolani, Maria Cristina Vidal

    2016-01-01

    Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis. PMID:27282338

  3. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma.

    PubMed

    Kuhn, Deborah J; Berkova, Zuzana; Jones, Richard J; Woessner, Richard; Bjorklund, Chad C; Ma, Wencai; Davis, R Eric; Lin, Pei; Wang, Hua; Madden, Timothy L; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Wang, Michael; Thomas, Sheeba K; Shah, Jatin J; Weber, Donna M; Orlowski, Robert Z

    2012-10-18

    Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic. PMID:22932796

  4. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  5. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  6. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages.

    PubMed

    Batista-Silva, L R; Rodrigues, Luciana Silva; Vivarini, Aislan de Carvalho; Costa, Fabrício da Mota Ramalho; Mattos, Katherine Antunes de; Costa, Maria Renata Sales Nogueira; Rosa, Patricia Sammarco; Toledo-Pinto, T G; Dias, André Alves; Moura, Danielle Fonseca; Sarno, Euzenir Nunes; Lopes, Ulisses Gazos; Pessolani, Maria Cristina Vidal

    2016-01-01

    Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis. PMID:27282338

  7. Systemically delivered insulin-like growth factor-I enhances mesenchymal stem cell-dependent fracture healing

    PubMed Central

    MYERS, TIMOTHY J.; YAN, YUN; GRANERO-MOLTO, FROILAN; WEIS, JARED A.; LONGOBARDI, LARA; LI, TIESHI; LI, YING; CONTALDO, CLARA; OZKHAN, HUSEYIN; SPAGNOLI, ANNA

    2013-01-01

    In this study, we examined the effectiveness of systemic subcutaneous delivery of recombinant Insulin-like growth factor (IGF)-I concurrently with primary cultured bone marrow-derived mesenchymal stem cell (MSC) transplant on fracture repair. We found that the fracture callus volume increased in mice with a stabilized tibia fracture that received IGF-I + MSC when compared with that in either untreated or MSC alone treated mice. In evaluating the callus tissue components, we found that the soft and new bone tissue volumes were significantly increased in IGF-I + MSC recipients. Histological and in-situ hybridization analyses confirmed a characteristic increase of newly forming bone in IGF-I + MSC recipients and that healing progressed mostly through endochondral ossification. The increase in soft and new bone tissue volumes correlated with increased force and toughness as determined by biomechanical testing. In conclusion, MSC transplant concurrent with systemic delivery of IGF-I improves fracture repair suggesting that IGF-I + MSC could be a novel therapeutic approach in patients who have inadequate fracture repair. PMID:22559791

  8. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  9. The effects of spaceflight and Insulin-like Growth Factor-1 on the T-cell and macrophage populations

    SciTech Connect

    Pecaut, M.J.; Simske, S.J.; Fleshner, M.; Zimmerman, R.

    1997-01-01

    Twelve Sprague-Dawley rats were flown aboard the Space Shuttle Endeavor (STS-77) to study the effects of microgravity-induced stress on the immunoskeletal system. Sixteen rats were used as simultaneous vivarium ground controls during the ten day mission. Osmotic pumps, half of which contained Insulin-like Growth Factor-1 (IGF-1, provided by Chiron), were surgically implanted (subcutaneous) into the rats prior to launch in an attempt to counter any stress effects. On the day of landing, the rats were sacrificed and dissected. Splenocytes and thymocytes were labeled with antibodies against CD4, CD8, CD11b, and TCR for flow cytometry. The percentage of splenic cytotoxic/suppressor (TCR+/CD8+) T-cells increased significantly (by 118{percent}) in spaceflight. There were also decreases in splenic helper (TCR+/CD4+) T-cells and (CD11b+) macrophages (by 33{percent} and 38{percent}, respectively). Together, these results suggest the stress of spaceflight could cause a significant decrease in the ability of rats to mount an immune response. The effects of IGF-1 on cell population distributions were negligible for both flight and vivarium ground controls. However, there were significant differences in spleen and thymus masses suggesting that while IGF-1 did not effect population distributions, the drug may have caused an increase in population size. {copyright} {ital 1997 American Institute of Physics.}

  10. Melatonin Mediates Monochromatic Light-induced Insulin-like Growth Factor 1 Secretion of Chick Liver: Involvement of Membrane Receptors.

    PubMed

    Li, Suqi; Cao, Jing; Wang, Zixu; Dong, Yulan; Wang, Wenli; Chen, Yaoxing

    2016-07-01

    Monochromatic lights influenced the proliferation and differentiation of skeletal satellite cells in broilers by the enhancement of insulin-like growth factor 1 (IGF-1) secretion. However, whether melatonin (MEL)-mediated monochromatic lights influenced the IGF-1 secretion remains unclear. Newly hatched broilers, including intact, sham operation and pinealectomy groups, were exposed to blue (BL), green (GL), red (RL) and white light (WL) from a light-emitting diode system for 14 days. The results showed that GL effectively promoted the secretion of MEL and IGF-1, the expression of proliferating cell nuclear antigen and MEL receptor subtypes Mel1a, Mel1b and Mel1c in the liver compared to BL and RL in vivo. Moreover, those was a positive correlation between MEL and IGF-1 (r = 0.834). After pinealectomy, however, these parameters declined, and there were no differences between GL and other monochromatic light treatments. In vitro, exogenous MEL increased hepatocyte proliferation and IGF-1 secretion. Meanwhile, the MEL enhancements were suppressed by prazosin (selective Mel1c antagonist), followed by luzindole (nonselective Mel1a/Mel1b antagonist), but not suppressed by 4-phenyl-2-propionamideotetralin (selective Mel1b antagonist). These findings demonstrated that MEL mediated the monochromatic light-induced secretion of IGF-1 in chicks' livers by Mel1c and that Mel1a may be involved in this process. PMID:27128575

  11. Activation of insulin-like growth factor 1 receptor in patients with non-small cell lung cancer.

    PubMed

    Kim, Jin-Soo; Kim, Edward S; Liu, Diane; Lee, J Jack; Behrens, Carmen; Lippman, Scott M; Hong, Waun Ki; Wistuba, Ignacio I; Lee, Euni; Lee, Ho-Young

    2015-06-30

    According to previous reports demonstrating the implication of insulin-like growth factor receptor (IGF-1R) signaling in non-small cell lung cancer (NSCLC), in this study, the potential prognostic values of IGF-1R expression/activation were analyzed. The expression and activation of IGF-1R were evaluated in two tissue microarray (TMA) sets from NSCLC patients (N = 352 for TMA I, and N = 353 for TMA II). Alterations in IGF-1R protein or mRNA expression in NSCLC patients were evaluated using publicly available data from The Cancer Genome Atlas (TCGA). We found that membranous and cytoplasmic IGF-1R expressions were significantly associated with squamous cell carcinoma (SCC) in both of the TMAs. Analysis of the TCGA data revealed increased mRNA levels in NSCLC patients, which was significantly associated with reductions in overall survival (OS) (median survival 26.51 vs. 47.77 months, P = 0.017) and disease-free survival (median survival 17.44 vs. 37.65 months, P = 0.045) only in NSCLC patients with adenocarcinoma (ADC). These data suggest that IGF-1R is activated in patients with NSCLC, particularly those with SCC. IGF-1R mRNA expression is a potential prognostic factor in patients with NSCLC, especially those with ADC. Further studies are warranted to investigate the prognostic value of IGF-1R in NSCLC patients. PMID:25944691

  12. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    SciTech Connect

    Irminger, J.C.; Rosen, K.M.; Humble, R.E.; Villa-Komaroff, L.

    1987-09-01

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end.

  13. A Genome-Inspired DNA Ligand for Affinity Capture of Insulin and Insulin-like Growth Factor-2

    PubMed Central

    Xiao, Junfeng; Carter, Jennifer A.; Frederick, Kimberley A.; McGown, Linda B.

    2009-01-01

    The insulin-linked polymorphic region (ILPR) of the human insulin gene contains tandem repeats of similar G-rich sequences, some of which form intramolecular G-quadruplex structures in vitro. Previous work showed affinity binding of insulin to an intramolecular G-quadruplex formed by ILPR variant a. Here we report on interactions of insulin and the highly homologous insulin-like growth factor 2 (IGF-2) with ILPR variants a, h and i. Circular dichroism indicated intramolecular G-quadruplex formation for variants a and h. Affinity MALDI mass spectrometry and surface plasmon resonance were used to compare protein capture and binding strengths. Insulin and IGF-2 exhibited high binding affinity for variants a and h but not i, indicating the involvement of intramolecular G-quadruplexes. Interaction between insulin and variant a was unique in the appearance of two binding interactions with KD~10−13 M and KD~10−7 M, which was not observed for insulin with variant h (KD~10−8 M) or IGF-2 with either variant (KD’s~10−9 D M). The results provide a basis for design of DNA binding ligands for insulin and IGF-2 and support a new approach to discovery of DNA affinity binding ligands based on genome-inspired sequences rather than the traditional combinatorial selection route to aptamer discovery. PMID:19391177

  14. Interaction between cyclooxygenase-2 and insulin-like growth factor in breast cancer: A new field for prevention and treatment

    PubMed Central

    TAROMARU, GIULIANA CÁSSIA MORRONE; DE OLIVEIRA, VILMAR MARQUES; SILVA, MARIA ANTONIETA LONGO GALVÃO; MONTOR, WAGNER RICARDO; BAGNOLI, FABIO; RINALDI, JOSÉ FRANCISCO; AOKI, TSUTOMU

    2011-01-01

    The objective of this study was to evaluate the correlation between cyclooxygenase-2 (COX-2) and markers of cell proliferation and apoptosis, including, Bcl-2, Bax, Ki-67 and the type I insulin-like growth factor (IGF) receptor (IGF1-R) in ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC), present in the same surgical specimen. A total of 110 cases were evaluated using tissue microarrays. Cases were classified in scores from 0 to 3 according to pre-defined methods. The results showed that the positivity rates were COX-2 in 87% of cases in DCIS and IDC; Bcl-2 in 55% of cases in DCIS and IDC; Bax in 23% of cases in IDC and 19% in DCIS, IGF-1 in 24% of cases in DCIS and IDC; and Ki-67 in 81% of cases in DCIS and IDC. We also observed a positive correlation between the expression of COX-2 and IGF1-R (p=0.045). Our results demonstrate a positive correlation between the expression of COX-2 and IGF1-R in DCIS and IDC, demonstrating that they are involved in breast cancer carcinogenesis. Further studies are required to prove the effectiveness of COX-2 and IGF1-R inhibitors for the prevention and treatment of breast cancer, as well as to explain their mechanism of action. PMID:22740976

  15. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity.

    PubMed

    Dyer, Adam H; Vahdatpour, Cyrus; Sanfeliu, Albert; Tropea, Daniela

    2016-06-14

    Insulin-Like Growth Factor 1 (IGF-1) is a phylogenetically ancient neurotrophic hormone with crucial roles to play in CNS development and maturation. Recently, IGF-1 has been shown to have potent effects on cellular neuroplasticity. Neuroplasticty refers to the adaptive changes made by the CNS in the face of changing functional demands and is crucial in processes such as learning and memory. IGF-1, signaling through its glycoprotein receptor (IGF-1R), and canonical signaling pathways such as the PI3K-Akt and Ras-Raf-MAP pathways, has potent effects on cellular neuroplasticity in the CNS. In the present review, the role of IGF-1 in brain development is reviewed, followed by a detailed discussion of the role played by IGF in cellular neuroplasticity in the CNS. Findings from models of perturbed and reparative plasticity detailing the role played by IGF-1 are discussed, followed by the electrophysiological, structural and functional evidence supporting this role. Finally, the post-lesion and post-injury roles played by IGF-1 are briefly evaluated. We discuss the putative neurobiology underlying these changes, reviewing recent evidence and highlighting areas for further research. PMID:27038749

  16. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma

    PubMed Central

    Kuhn, Deborah J.; Berkova, Zuzana; Jones, Richard J.; Woessner, Richard; Bjorklund, Chad C.; Ma, Wencai; Davis, R. Eric; Lin, Pei; Wang, Hua; Madden, Timothy L.; Wei, Caimiao; Baladandayuthapani, Veerabhadran; Wang, Michael; Thomas, Sheeba K.; Shah, Jatin J.; Weber, Donna M.

    2012-01-01

    Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)–1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA–mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bor-tezomib. Importantly, OSI-906 in combination with bortezomib also overcame bor-tezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic. PMID:22932796

  17. Insulin-like growth factor-I as a candidate metabolic biomarker: military relevance and future directions for measurement.

    PubMed

    Nindl, Bradley C

    2009-03-01

    Insulin-like growth factor (IGF)-I is a ubiquitous peptide hormone involved in a host of critical physiological processes (e.g., protein synthesis and glucose homeostasis) and has been suggested to be a biomarker reflecting health and metabolic status. In most cases (muscle, bone, tendon, body composition, and cognitive function), elevated IGF-I concentrations are considered beneficial; however, cancer remains a notable exception. While the fact that both increased and decreased IGF-I can be considered reflective of favorable and beneficial health outcomes may appear as a paradox, it is important to emphasize that, in both cases, measured IGF-I concentrations do offer important insight into physiological processes. The effects of military operational field training on the circulating IGF-I system are discussed within the context of novel measurement technologies that (1) are field expedient and (2) provide more meaningful information. Prospective experimental approaches involving physical activity that sample and measure IGF-I in the body's various biocompartments will provide greater insight into the complex role that IGF-I possesses. Minimally invasive technologies that are field expedient, cost-effective, and allow for continuous and real-time feedback will have the greatest likelihood of being adapted and used in military environments. PMID:20144370

  18. Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability

    PubMed Central

    Wang, Y.; Buggia-Prévot, V.; Zavorka, M. E.; Bleackley, R. C.; MacDonald, R. G.; Thinakaran, G.

    2015-01-01

    Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability. PMID:25939386

  19. Activation-dependent expression of the insulin-like growth factor binding protein-2 in human lymphocytes.

    PubMed Central

    Föll, J L; Dannecker, L; Zehrer, C; Hettmer, S; Berger, J; Elmlinger, M; Niethammer, D; Ranke, M B; Dannecker, G E

    1998-01-01

    The expression of the insulin-like growth factor binding protein-2 (IGFBP-2) was assayed in mononuclear cells originating from different organs of the immune system. All mononuclear cells studied did express IGFBP-2, but the expression level was found to be dependent on the cell type and origin of the cell. T cells showed a higher expression of IGFBP-2 mRNA than did B cells, and CD34+ stem cells expressed IGFBP-2 mRNA at a high level. Expression was highest in bone marrow and thymus. Stimulation of peripheral mononuclear cells resulted in a marked increase of IGFBP-2 mRNA and also intracellular IGFBP-2, as analysed by fluorescence staining. This increase parallels the increase of other known T-cell activation markers. Furthermore, the increase of intracellular IGFBP-2 seems to precede T-cell blast formation and all T cells in active phases of the cell cycle have high levels of IGFBP-2. Our results provide a basis for further investigations on the contribution of the IGF-system to the regulation of T-cell proliferation and differentiation. IGFBP-2, in particular, may have an important influence in the regulation of T-cell activation and proliferation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:9741338

  20. Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast.

    PubMed Central

    Mutter, G L; Stewart, C L; Chaponot, M L; Pomponio, R J

    1993-01-01

    Human uniparental gestations such as gynogenetic ovarian teratomas and androgenetic complete hydatidiform moles provide a model to evaluate the integrity of parent-specific gene expression--i.e., imprinting--in the absence of a complementary parental genetic contribution. We studied expression, in these tissues, of the oppositely imprinted genes H19, which is an embryonic nontranslated RNA, and insulin-like growth factor type 2 (IGF2). Normal gestations only express H19 from the maternal allele and express IGF2 from the paternal allele, whereas neither is expressed from the maternal genome of gynogenetic gestations, and both are expressed from the paternal genome of androgenetic gestations. Coexpression of H19 and IGF2 in the androgenetic tissues was in a single population of cells, mononuclear trophoblast--the same cell type expressing these genes in biparental placentas. These results demonstrate that a biparental genome may be required for expression of the reciprocal IGF2/H19 imprint. Alternatively, biparental expression may be a normal feature of some imprinted genes in specific cell types. Additional experiments with other imprinted genes will clarify whether this reflects global failure of the imprinting process or a change specific to the IGF2/H19 locus. Images Figure 1 Figure 2 Figure 3 PMID:7692725

  1. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma.

    PubMed Central

    Zhan, S; Shapiro, D N; Helman, L J

    1994-01-01

    The insulin-like growth factor II (IGF2) gene is exclusively silent at the maternal allele in the mouse as well as in normal human tissues and is expressed at a high level in rhabdomyosarcoma (RMS). We report here that the normally imprinted allele of the IGF2 gene is activated in RMS tumors as well as in one RMS cell line. Since overexpression of IGF2 has been shown to be important in the pathogenesis of RMS, our data suggest that loss of imprinting (LOI) may lead to overexpression of IGF2 and play an important role in the onset of RMS. Furthermore, embryonal RMS usually has loss of heterozygosity (LOH) with paternal disomy of the IGF2 locus. One informative embryonal RMS tumor evaluated in this study was heterozygous at the IGF2 allele and had LOI, raising the possibility that LOI may be the functional equivalent of LOH in this tumor with both events leading to overexpression of IGF2. Images PMID:8040287

  2. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine

    PubMed Central

    Ge, Rong-Ti; Mo, Li-Hua; Wu, Ruijin; Liu, Jiang-Qi; Zhang, Huan-Ping; Liu, Zhigang; Liu, Zhanju; Yang, Ping-Chang

    2015-01-01

    The pathogenesis of some chronic inflammation such as inflammatory bowel disease is unclear. Insulin-like growth factor-1 (IGF1) has active immune regulatory capability. This study aims to investigate into the mechanism by which IGF1 modulates the monocyte (Mo) properties to inhibit immune inflammation in the intestine. In this study, the production of IGF1 by intestinal epithelial cells was evaluated by real time RT-PCR and Western blotting. Mos were analyzed by flow cytometry. A mouse colitis model was created with trinitrobenzene sulfonic acid. The results showed that mouse IECs produced IGF1, which could be up regulated by exposure to CpG-ODN (CpG-oligodeoxynueleotides) in the culture. Culture the CpG-ODN-primed IEC cells and Mos or exposure of Mos to IGF1 in the culture induced the Mos to express IL-10. The IGF1-primed Mos showed the immune suppressive effect on inhibiting the immune inflammation in the mouse colon. In conclusion, the IGF1-primed Mos are capable of suppressing immune inflammation in the intestine. PMID:25588622

  3. A Concerted Action Of Estradiol And Insulin Like Growth Factor I Underlies Sex Differences In Mood Regulation By Exercise.

    PubMed

    Munive, Victor; Santi, Andrea; Torres-Aleman, Ignacio

    2016-01-01

    Mood homeostasis present sexually dimorphic traits which may explain sex differences in the incidence of mood disorders. We explored whether diverse behavioral-setting components of mood may be differentially regulated in males and females by exercise, a known modulator of mood. We found that exercise decreases anxiety only in males. Conversely, exercise enhanced resilience to stress and physical arousal, two other important components of mood, only in females. Because exercise increases brain input of circulating insulin-like growth factor I (IGF-I), a potent modulator of mood, we explored whether sex-specific actions of exercise on mood homeostasis relate to changes in brain IGF-I input. We found that exercise increased hippocampal IGF-I levels only in cycling females. Underlying mechanism involved activation of estrogen (E2) receptors in brain vessels that led to increased uptake of serum IGF-I as E2 was found to stimulate IGF-I uptake in brain endothelial cells. Indeed, modulatory effects of exercise on mood were absent in female mice with low serum IGF-I levels or after either ovariectomy or administration of an E2 receptor antagonist. These results suggest that sex-specific brain IGF-I responses to physiological stimuli such as exercise contribute to dimorphic mood homeostasis that may explain sex differences in affective disorders. PMID:27170462

  4. Loss of imprinting of the insulin-like growth factor II gene in mouse hepatocellular carcinoma cell lines.

    PubMed

    Ooasa, T; Karasaki, H; Kanda, H; Nomura, K; Kitagawa, T; Ogawa, K

    1998-12-01

    We investigated expression of insulin-like growth factor II (Igf2) in primary cultured hepatocytes, liver epithelial (LE) cell lines derived from normal hepatocytes, and hepatocellular carcinoma (HCC) cell lines from crosses between C3H/HeJ (C3H) and Mus musculus molossinus mice (MSM). Igf2 mRNA was detected by reverse transcriptase-polymerase chain reaction in primary cultured hepatocytes from 5 d after the start of cultivation and in all 12 LE and 16 HCC cell lines. Analysis of the untranslated region of Igf2 exon 6, which contains polymorphic CA repeats, revealed that 13 of the 16 HCC cell lines had biallelic expression, whereas monoallelic expression was retained in the primary cultured hepatocytes and all 12 LE cell lines. The Igf2 transcripts contained exons 1-3 in all the HCC cell lines but only exons 2 and 3 in cultures of hepatocytes and LE cell lines, indicating difference in promoter use. However, the biallelic HCC cell lines did not have larger amounts of Igf2 mRNA and protein than did the monoallelic lines, suggesting that loss of imprinting may not be directly related to the level of Igf2 expression. PMID:9869454

  5. The effects of spaceflight and Insulin-like Growth Factor-1 on the T-cell and macrophage populations

    NASA Astrophysics Data System (ADS)

    Pecaut, Michael J.; Simske, Steve J.; Fleshner, Monika; Zimmerman, Robert

    1997-01-01

    Twelve Sprague-Dawley rats were flown aboard the Space Shuttle Endeavor (STS-77) to study the effects of microgravity-induced stress on the immunoskeletal system. Sixteen rats were used as simultaneous vivarium ground controls during the ten day mission. Osmotic pumps, half of which contained Insulin-like Growth Factor-1 (IGF-1, provided by Chiron), were surgically implanted (subcutaneous) into the rats prior to launch in an attempt to counter any stress effects. On the day of landing, the rats were sacrificed and dissected. Splenocytes and thymocytes were labeled with antibodies against CD4, CD8, CD11b, and TCR for flow cytometry. The percentage of splenic cytotoxic/suppressor (TCR+/CD8+) T-cells increased significantly (by 118%) in spaceflight. There were also decreases in splenic helper (TCR+/CD4+) T-cells and (CD11b+) macrophages (by 33% and 38%, respectively). Together, these results suggest the stress of spaceflight could cause a significant decrease in the ability of rats to mount an immune response. The effects of IGF-1 on cell population distributions were negligible for both flight and vivarium ground controls. However, there were significant differences in spleen and thymus masses suggesting that while IGF-1 did not effect population distributions, the drug may have caused an increase in population size.

  6. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    PubMed Central

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  7. Influence of static magnetic fields combined with human insulin-like growth factor 1 on human satellite cell cultures.

    PubMed

    Birk, Richard; Sommer, J Ulrich; Haas, Dominik; Faber, Anne; Aderhold, Christoph; Schultz, Johannes D; Hoermann, Karl; Stern-Straeter, Jens

    2014-01-01

    Tissue engineering represents a promising research field, targeting the creation of new functional muscle tissue in vitro. The aim of the present study was to show the influence of static magnetic fields (SMF) and insulin-like growth factor-1 (IGF1), as enhancing stimuli on human satellite cell cultures, which are preferred sources of stem cells in engineering skeletal muscle tissue. To detect effects on myogenic maturation and proliferation, AlamarBlue® proliferation, assay and semi-quantitative reverse transcription-polymerase chain reaction of following markers was performed: desmin (DES), myogenic factor-5 (MYF5), myogenic differentiation antigen-1 (MYOD1), myogenin (MYOG), myosin heavy chain (MYH) and α1 actin (ACTA1). As a distinct marker of differentiation, immunohistochemical staining and fusion index determination was performed on satellite cell cultures stimulated with IGF1 and IGF1-plus-SMF with an intensity of 80 mT. Proliferation was increased by additional SMF application to IGF1-stimulated cell cultures on the first day of myogenesis. Relative gene expression of measured markers was increased by IGF1 application in the first days of myogenesis except for ACTA1. Additional SMF application enhanced this effect. Nevertheless we were unable to demonstrate the formation of contractile muscle tissue. Immunhistochemical staining verified muscle origin and all markers were displayed. PMID:25189891

  8. Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms.

    PubMed

    Flannery, Clare A; Rowzee, Anne M; Choe, Gina H; Saleh, Farrah L; Radford, Caitlin C; Taylor, Hugh S; Wood, Teresa L

    2016-04-01

    The biological activity of insulin and the insulin-like growth factor (IGF) ligands, IGF-I and IGF-II, is based in part on the relative abundance and distribution of their target receptors: the insulin receptor (IR) splice variants A (IR-A) and B (IR-B) and IGF 1 receptor (IGF-1R). However, the relative quantity of all three receptors in human tissues has never been measured together on the same scale. Due to the high homology between insulin receptor (IR)-A and IR-B proteins and lack of antibodies that discern the two IR splice variants, their mRNA sequence is the most reliable means of distinguishing between the receptors. Hence, highly specific primers for IR-A, IR-B, and IGF-1R mRNA were designed to accurately detect all three receptors by quantitative RT-PCR and enable direct quantification of relative receptor expression levels. A standard concentration curve of cDNA from each receptor was performed. Assay specificity was tested using competition assays and postamplification analysis by gel electrophoresis and cloning. Forward and reverse primer concentrations were optimized to ensure equal efficiencies across primer pairs. This assay enables a specific molecular signature of IGF/insulin signaling receptors to be assayed in different tissues, cell types, or cancers. PMID:26862994

  9. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth

    PubMed Central

    Rogan, Mark P.; Reznikov, Leah R.; Pezzulo, Alejandro A.; Gansemer, Nicholas D.; Samuel, Melissa; Prather, Randall S.; Zabner, Joseph; Fredericks, Douglas C.; McCray, Paul B.; Welsh, Michael J.; Stoltz, David A.

    2010-01-01

    People with cystic fibrosis (CF) exhibit growth defects. That observation has been attributed, in part, to decreased insulin-like growth factor 1 (IGF1) levels, and the reduction has been blamed on malnutrition and pulmonary inflammation. However, patients with CF already have a reduced weight at birth, a manifestation not likely secondary to poor nutrition or inflammation. We found that, like humans, CF pigs were smaller than non-CF littermates and had lower IGF1 levels. To better understand the basis of IGF1 reduction, we studied newborn pigs and found low IGF1 levels within 12 h of birth. Moreover, humerus length and bone mineral content were decreased, consistent with less IGF1 activity in utero. These findings led us to test newborn humans with CF, and we found that they also had reduced IGF1 levels. Discovering lower IGF1 levels in newborn pigs and humans indicates that the decrease is not solely a consequence of malnutrition or pulmonary inflammation and that loss of cystic fibrosis transmembrane conductance regulator function has a more direct effect. Consistent with this hypothesis, we discovered reduced growth hormone release in organotypic pituitary slice cultures of newborn CF pigs. These findings may explain the long-standing observation that CF newborns are smaller than non-CF babies and why some patients with good clinical status fail to reach their growth potential. The results also suggest that measuring IGF1 levels might be of value as a biomarker to predict disease severity or the response to therapeutics. Finally, they raise the possibility that IGF1 supplementation beginning in infancy might be beneficial in CF. PMID:21059918

  10. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth.

    PubMed

    Rogan, Mark P; Reznikov, Leah R; Pezzulo, Alejandro A; Gansemer, Nicholas D; Samuel, Melissa; Prather, Randall S; Zabner, Joseph; Fredericks, Douglas C; McCray, Paul B; Welsh, Michael J; Stoltz, David A

    2010-11-23

    People with cystic fibrosis (CF) exhibit growth defects. That observation has been attributed, in part, to decreased insulin-like growth factor 1 (IGF1) levels, and the reduction has been blamed on malnutrition and pulmonary inflammation. However, patients with CF already have a reduced weight at birth, a manifestation not likely secondary to poor nutrition or inflammation. We found that, like humans, CF pigs were smaller than non-CF littermates and had lower IGF1 levels. To better understand the basis of IGF1 reduction, we studied newborn pigs and found low IGF1 levels within 12 h of birth. Moreover, humerus length and bone mineral content were decreased, consistent with less IGF1 activity in utero. These findings led us to test newborn humans with CF, and we found that they also had reduced IGF1 levels. Discovering lower IGF1 levels in newborn pigs and humans indicates that the decrease is not solely a consequence of malnutrition or pulmonary inflammation and that loss of cystic fibrosis transmembrane conductance regulator function has a more direct effect. Consistent with this hypothesis, we discovered reduced growth hormone release in organotypic pituitary slice cultures of newborn CF pigs. These findings may explain the long-standing observation that CF newborns are smaller than non-CF babies and why some patients with good clinical status fail to reach their growth potential. The results also suggest that measuring IGF1 levels might be of value as a biomarker to predict disease severity or the response to therapeutics. Finally, they raise the possibility that IGF1 supplementation beginning in infancy might be beneficial in CF. PMID:21059918

  11. Association of insulin and insulin-like growth factors with Barrett’s oesophagus

    PubMed Central

    Greer, Katarina B; Thompson, Cheryl L; Brenner, Lacie; Bednarchik, Beth; Dawson, Dawn; Willis, Joseph; Grady, William M; Falk, Gary W; Cooper, Gregory S; Li, Li; Chak, Amitabh

    2013-01-01

    Background It is postulated that high serum levels of insulin and insulin growth factor 1 (IGF-1) mediate obesity-associated carcinogenesis. The relationship of insulin, IGF-1 and IGF binding proteins (IGFBP) with Barrett’s oesophagus (BO) has not been well examined. Methods Serum levels of insulin and IGFBPs in patients with BO were compared with two separate control groups: subjects with gastro-oesophageal reflux disease (GORD) and screening colonoscopy controls. Fasting insulin, IGF-1 and IGFBPs were assayed in the serum of BO cases (n = 135), GORD (n = 135) and screening colonoscopy (n = 932) controls recruited prospectively at two academic hospitals. Logistic regression was used to estimate the risk of BO. Results Patients in the highest tertile of serum insulin levels had an increased risk of BO compared with colonoscopy controls (adjusted OR 2.02, 95% CI 1.15 to 3.54) but not compared with GORD controls (adjusted OR 1.55, 95% CI 0.76 to 3.15). Serum IGF-1 levels in the highest tertile were associated with an increased risk of BO (adjusted OR 4.05, 95% CI 2.01 to 8.17) compared with the screening colonoscopy control group but were not significantly different from the GORD control group (adjusted OR 0.57, 95% CI 0.27 to 1.17). IGFBP-1 levels in the highest tertile were inversely associated with a risk of BO in comparison with the screening colonoscopy controls (adjusted OR 0.11, 95% CI 0.05 to 0.24) but were not significantly different from the GORD control group (adjusted OR 1.04, 95% CI 0.49 to 2.16). IGFBP-3 levels in the highest tertile were inversely associated with the risk of BO compared with the GORD controls (OR 0.36, 95% CI 0.16 to 0.81) and also when compared with the colonoscopy controls (OR 0.40, 95% CI 0.20 to 0.79). Conclusions These results provide support for the hypothesis that the insulin/IGF signalling pathways have a role in the development of BO. PMID:21930730

  12. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors. PMID:1802921

  13. The Effects of Insulin-Like Growth Factor-1 Gene Therapy and Cell Transplantation on Rat Acute Wound Model

    PubMed Central

    Talebpour Amiri, Fereshteh; Fadaei Fathabadi, Fatemeh; Mahmoudi Rad, Mahnaz; Piryae, Abbas; Ghasemi, Azar; Khalilian, Alireza; Yeganeh, Farshid; Mosaffa, Nariman

    2014-01-01

    Background: Wound healing is a complex process. Different types of skin cells, extracellular matrix and variety of growth factors are involved in wound healing. The use of recombinant growth factors in researches and production of skin substitutes are still a challenge. Objectives: Much research has been done on the effects of gene therapy and cell therapy on wound healing. In this experimental study, the effect of insulin-like growth factor (IGF-1) gene transfer in fibroblast cells was assessed on acute dermal wound healing. Materials and Methods: Fibroblasts were cultured and transfected with IGF-1. Lipofectamine 2000 was used as a reagent of transfection. Transgene expression levels were measured by the enzyme linked immunosorbent assay (ELISA). To study in vivo, rats (weighing 170-200 g) were randomly divided into three groups (five/group) and full-thickness wounds were created on the dorsum region. Suspensions of transfected fibroblast cells were injected into the wound and were compared with wounds treated with native fibroblast cells and normal saline. For the microscopic examination, biopsy was performed on day seven. Results: In vitro, the maximum expression of IGF1 (96.95 pg/mL) in transfected fibroblast cells was 24 hours after gene transfer. In vivo, it was clear that IGF-1 gene therapy caused an increase in the number of keratinocyte cells during the wound healing process (mean of group A vs. group B with P value = 0.01, mean of group A vs. group C with P value = 0.000). Granulation of tissue formation in the transfected fibroblast group was more organized when compared with the normal saline group and native fibroblast cells. Conclusions: This study indicated that the optimization of gene transfer increases the expression of IGF-1. High concentrations of IGF-1, in combination with cell therapy, have a significant effect on wound healing. PMID:25558384

  14. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    SciTech Connect

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael . E-mail: michael.pollak@mcgill.ca

    2005-11-04

    PTEN is a tumor suppressor gene whose loss of function is observed in {approx}40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN.

  15. Hepatic insulin-like growth-factor binding protein (igfbp) responses tofood restriction in Atlantic salmon smolts

    USGS Publications Warehouse

    Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen

    2016-01-01

    The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.

  16. Insulin receptor isoform A and insulin-like growth factor II as additional treatment targets in human osteosarcoma.

    PubMed

    Avnet, Sofia; Sciacca, Laura; Salerno, Manuela; Gancitano, Giovanni; Cassarino, Maria Francesca; Longhi, Alessandra; Zakikhani, Mahvash; Carboni, Joan M; Gottardis, Marco; Giunti, Armando; Pollak, Michael; Vigneri, Riccardo; Baldini, Nicola

    2009-03-15

    Despite the frequent presence of an insulin-like growth factor I receptor (IGFIR)-mediated autocrine loop in osteosarcoma (OS), interfering with this target was only moderately effective in preclinical studies. Here, we considered other members of the IGF system that might be involved in the molecular pathology of OS. We found that, among 45 patients with OS, IGF-I and IGFBP-3 serum levels were significantly lower, and IGF-II serum levels significantly higher, than healthy controls. Increased IGF-II values were associated with a decreased disease-free survival. After tumor removal, both IGF-I and IGF-II levels returned to normal values. In 23 of 45 patients, we obtained tissue specimens and found that all expressed high mRNA level of IGF-II and >IGF-I. Also, isoform A of the insulin receptor (IR-A) was expressed at high level in addition to IGFIR and IR-A/IGFIR hybrids receptors (HR(A)). These receptors were also expressed in OS cell lines, and simultaneous impairment of IGFIR, IR, and Hybrid-Rs by monoclonal antibodies, siRNA, or the tyrosine kinase inhibitor BMS-536924, which blocks both IGFIR and IR, was more effective than selective anti-IGFIR strategies. Also, anti-IGF-II-siRNA treatment in low-serum conditions significantly inhibited MG-63 OS cells that have an autocrine circuit for IGF-II. In summary, IGF-II rather than IGF-I is the predominant growth factor produced by OS cells, and three different receptors (IR-A, HR(A), and IGFIR) act complementarily for an IGF-II-mediated constitutive autocrine loop, in addition to the previously shown IGFIR/IGF-I circuit. Cotargeting IGFIR and IR-A is more effective than targeting IGF-IR alone in inhibiting OS growth. PMID:19258511

  17. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories.

    PubMed

    Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M

    2016-07-01

    The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. PMID:27181752

  18. Genetic Association of Insulin-like Growth Factor-1 Polymorphisms with High-Grade Myopia in an International Family Cohort

    PubMed Central

    Metlapally, Ravikanth; Ki, Chang-Seok; Li, Yi-Ju; Tran-Viet, Khanh-Nhat; Abbott, Diana; Malecaze, Francois; Calvas, Patrick; Mackey, David A.; Rosenberg, Thomas; Paget, Sandrine; Guggenheim, Jeremy A.

    2010-01-01

    Purpose. Evidence from human myopia genetic mapping studies (MYP3 locus), modulated animal models, and observations of glycemic control in humans suggests that insulin-like growth factor (IGF)-1 plays a role in the control of eye growth. This study was conducted to determine whether IGF-1 polymorphisms are associated with myopia in a large, international dataset of Caucasian high-grade myopia pedigrees. Methods. Two hundred sixty-five multiplex families with 1391 subjects participated in the study. IGF-1 genotyping was performed with 13 selected tag single nucleotide polymorphisms (SNPs) using allelic discrimination assays. A family-based pedigree disequilibrium test (PDT) was performed to test for association. Myopia status was defined using sphere (SPH) or spherical equivalent (SE), and analyses assessed the association of (1) high-grade myopia (≤ −5.00 D), and (2) any myopia (≤ −0.50 D) with IGF-1 markers. Results were declared significant at P ≤ 0.0038 after Bonferroni correction. Q values that take into account multiple testing were also obtained. Results. In all, three SNPs—rs10860860, rs2946834, and rs6214—were present at P < 0.05. SNP rs6214 showed positive association with both the high-grade– and any-myopia groups (P = 2 × 10−3 and P = 2 × 10−3, respectively) after correction for multiple testing. Conclusions. The study supports a genetic association between IGF-1 and high-grade myopia. These findings are in line with recent evidence in an experimental myopia model showing that IGF-1 promotes ocular growth and axial myopia. IGF-1 may be a myopia candidate gene for further investigation. PMID:20435602

  19. Elevated Serum Insulin-Like Growth Factor 1 Levels in Patients with Neurological Remission after Traumatic Spinal Cord Injury.

    PubMed

    Moghaddam, Arash; Sperl, André; Heller, Raban; Kunzmann, Kevin; Graeser, Viola; Akbar, Michael; Gerner, Hans Jürgen; Biglari, Bahram

    2016-01-01

    After traumatic spinal cord injury, an acute phase triggered by trauma is followed by a subacute phase involving inflammatory processes. We previously demonstrated that peripheral serum cytokine expression changes depend on neurological outcome after spinal cord injury. In a subsequent intermediate phase, repair and remodeling takes place under the mediation of growth factors such as Insulin-like Growth Factor 1 (IGF-1). IGF-1 is a promising growth factor which is thought to act as a neuroprotective agent. Since previous findings were taken from animal studies, our aim was to investigate this hypothesis in humans based on peripheral blood serum. Forty-five patients after traumatic spinal cord injury were investigated over a period of three months after trauma. Blood samples were taken according to a fixed schema and IGF-1 levels were determined. Clinical data including AIS scores at admission to the hospital and at discharge were collected and compared with IGF-1 levels. In our study, we could observe distinct patterns in the expression of IGF-1 in peripheral blood serum after traumatic spinal cord injury regardless of the degree of plegia. All patients showed a marked increase of levels seven days after injury. IGF-1 serum levels were significantly different from initial measurements at four and nine hours and seven and 14 days after injury, as well as one, two and three months after injury. We did not detect a significant correlation between fracture and the IGF-1 serum level nor between the quantity of operations performed after trauma and the IGF-1 serum level. Patients with clinically documented neurological remission showed consistently higher IGF-1 levels than patients without neurological remission. This data could be the base for the establishment of animal models for further and much needed research in the field of spinal cord injury. PMID:27447486

  20. Elevated Serum Insulin-Like Growth Factor 1 Levels in Patients with Neurological Remission after Traumatic Spinal Cord Injury

    PubMed Central

    Moghaddam, Arash; Sperl, André; Heller, Raban; Kunzmann, Kevin; Graeser, Viola; Akbar, Michael; Gerner, Hans Jürgen; Biglari, Bahram

    2016-01-01

    After traumatic spinal cord injury, an acute phase triggered by trauma is followed by a subacute phase involving inflammatory processes. We previously demonstrated that peripheral serum cytokine expression changes depend on neurological outcome after spinal cord injury. In a subsequent intermediate phase, repair and remodeling takes place under the mediation of growth factors such as Insulin-like Growth Factor 1 (IGF-1). IGF-1 is a promising growth factor which is thought to act as a neuroprotective agent. Since previous findings were taken from animal studies, our aim was to investigate this hypothesis in humans based on peripheral blood serum. Forty-five patients after traumatic spinal cord injury were investigated over a period of three months after trauma. Blood samples were taken according to a fixed schema and IGF-1 levels were determined. Clinical data including AIS scores at admission to the hospital and at discharge were collected and compared with IGF-1 levels. In our study, we could observe distinct patterns in the expression of IGF-1 in peripheral blood serum after traumatic spinal cord injury regardless of the degree of plegia. All patients showed a marked increase of levels seven days after injury. IGF-1 serum levels were significantly different from initial measurements at four and nine hours and seven and 14 days after injury, as well as one, two and three months after injury. We did not detect a significant correlation between fracture and the IGF-1 serum level nor between the quantity of operations performed after trauma and the IGF-1 serum level. Patients with clinically documented neurological remission showed consistently higher IGF-1 levels than patients without neurological remission. This data could be the base for the establishment of animal models for further and much needed research in the field of spinal cord injury. PMID:27447486

  1. Hepatic insulin-like growth-factor binding protein (igfbp) responses to food restriction in Atlantic salmon smolts.

    PubMed

    Breves, Jason P; Phipps-Costin, Silas K; Fujimoto, Chelsea K; Einarsdottir, Ingibjörg E; Regish, Amy M; Björnsson, Björn Thrandur; McCormick, Stephen D

    2016-07-01

    The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon (Salmo salar). Fish were fasted for 3 or 10days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3days and condition factor by 10days. Plasma Gh, cortisol, and thyroxine (T4) were not altered in response to fasting, whereas Igf1 and 3,5,3'-triiodo-l-thyronine (T3) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1, -1b2, -2a, -2b1 and -2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10days of fasting. Fasting did not alter hepatic igf1 or igf2; however, muscle igf1 was diminished by 10days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na(+)/K(+)-ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism. PMID:27210270

  2. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors.

    PubMed Central

    Daughaday, W H; Kapadia, M

    1989-01-01

    We reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated "big IGF-II." We now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Saphadex G-200. Normally about 75% of IGFs are carried as a ternary complex of 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result. PMID:2771956

  3. Significance of abnormal serum binding of insulin-like growth factor II in the development of hypoglycemia in patients with non-islet-cell tumors

    SciTech Connect

    Daughaday, W.H.; Kapadia, M. )

    1989-09-01

    The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex of 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.

  4. Several insulin-like growth factor-I analogues and complexes of insulin-like growth factors-I and -II with insulin-like growth factor-binding protein-3 fail to mimic the effect of growth hormone upon lactation in the rat.

    PubMed

    Flint, D J; Tonner, E; Beattie, J; Gardner, M

    1994-02-01

    Lactation was suppressed in rats using a combined treatment of bromocriptine (to reduce prolactin concentrations) and a specific antiserum to rat GH administered twice daily for 2 days. When milk production had ceased, as determined by litter weight loss and the absence of milk in the stomachs of pups, attempts were made to reinitiate lactation using prolactin, GH, insulin-like growth factor-I (IGF-I) precomplexed to recombinant human IGF-binding protein-3 (hIGFBP-3) or IGF-I plus IGF-II precomplexed to hIGFBP-3. Despite the fact that all treatments except prolactin led to increases in serum IGFs and IGFBP-3, only prolactin and GH provoked the reinitiation of milk production as determined by increased litter weight gain, milk in the stomach of pups and a significant increase in the weight of the mammary glands. Since the mammary gland has been shown to produce IGFBPs which may inhibit IGF action we also tested three IGF-I analogues, R3-IGF-I, Long-IGF-I and Long-R3-IGF-I. R3-IGF-I has a single amino acid substitution (Glu to Arg) at position 3 whereas Long-IGF-I has a 13 amino acid N-terminal extension. These modifications dramatically reduce the ability of these analogues to bind to IGFBPs although they remain active at the IGF-I receptor. Such IGF analogues would therefore be expected to be active irrespective of the production of inhibitory IGFBPs. However, none was effective in reinitiating lactation, even at doses which have been shown to be biologically effective in terms of nitrogen retention.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7513341

  5. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1.

    PubMed

    Yen, Yi-Chen; Hsiao, Jenn-Ren; Jiang, Shih Sheng; Chang, Jeffrey S; Wang, Ssu-Han; Shen, Ying-Ying; Chen, Chung-Hsing; Chang, I-Shou; Chang, Jang-Yang; Chen, Ya-Wen

    2015-12-01

    Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions. PMID:26540630

  6. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ).

    PubMed

    Shen, Xinchun; Xi, Gang; Wai, Christine; Clemmons, David R

    2015-05-01

    Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it

  7. Prospective study of insulin-like growth factor-I, insulin-like growth factor-binding protein 3, genetic variants in the IGF1 and IGFBP3 genes and risk of coronary artery disease

    PubMed Central

    Ricketts, Sally L; Rensing, Katrijn L; Holly, Jeff M; Chen, Li; Young, Elizabeth H; Luben, Robert; Ashford, Sofie; Song, Kijoung; Yuan, Xin; Dehghan, Abbas; Wright, Benjamin J; Waterworth, Dawn M; Mooser, Vincent; Waeber, Gérard; Vollenweider, Peter; Epstein, Stephen E; Burnett, Mary S; Devaney, Joseph M; Hakonarson, Hakon H; Rader, Daniel J; Reilly, Muredach P; Danesh, John; Thompson, Simon G; Dunning, Alison M; van Duijn, Cornelia M; Samani, Nilesh J; McPherson, Ruth; Wareham, Nicholas J; Khaw, Kay-Tee; Boekholdt, S Matthijs; Sandhu, Manjinder S

    2011-01-01

    Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations. PMID:21915365

  8. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1

    PubMed Central

    Jiang, Shih Sheng; Chang, Jeffrey S.; Wang, Ssu-Han; Shen, Ying-Ying; Chen, Chung-Hsing; Chang, I-Shou; Chang, Jang-Yang; Chen, Ya-Wen

    2015-01-01

    Frequent metastasis to the cervical lymph nodes leads to poor survival of patients with oral squamous cell carcinoma (OSCC). To understand the underlying mechanisms of lymph node metastasis, two sublines were successfully isolated from cervical lymph nodes of nude mice through in vivo selection, and identified as originating from poorly metastatic parental cells. These two sublines specifically metastasized to cervical lymph nodes in 83% of mice, whereas OEC-M1 cells did not metastasize after injection into the oral cavity. After gene expression analysis, we identified insulin-like growth factor binding protein 3 (IGFBP3) as one of the significantly up-regulated genes in the sublines in comparison with their parental cells. Consistently, meta-analysis of the public microarray datasets and IGFBP3 immunohistochemical analysis revealed increased both levels of IGFBP3 mRNA and protein in human OSCC tissues when compared to normal oral or adjacent nontumorous tissues. Interestingly, the up-regulated IGFBP3 mRNA expression was significantly associated with OSCC patients with lymph node metastasis. IGFBP3 knockdown in the sublines impaired and ectopic IGFBP3 expression in the parental cells promoted migration, transendothelial migration and lymph node metastasis of orthotopic transplantation. Additionally, ectopic expression of IGFBP3 with an IGF-binding defect sustained the IGFBP3-enhanced biological functions. Results indicated that IGFBP3 regulates metastasis-related functions of OSCC cells through an IGF-independent mechanism. Furthermore, exogenous IGFBP3 was sufficient to induce cell motility and extracellular signal-regulated kinase (ERK) activation. The silencing of integrin β1 was able to impair exogenous IGFBP3-mediated migration and ERK phosphorylation, suggesting a critical role of integrin β1 in IGFBP3-enchanced functions. PMID:26540630

  9. Cloning and expression of full-length human insulin-like growth factor binding protein 3 (IGFBP3) in the Escherichia coli

    PubMed Central

    Khodadadi, Emad; Panjepour, Mojtaba; Abbasian, Mahdi; Broujeni, Zahra Khalili; Mofid, Mohammad Reza

    2015-01-01

    Background: The effect of the growth hormone on target cells is mediated by the insulin-like growth factor 1 (IGF-1). IGF-1 binds to the insulin-like growth factor binding proteins (IGFBPs) in blood and biological fluids. Considering the important application of IGBP3 as a drug component, in this research we cloned and expressed the full-length IGFBP3 in the pET-11a vector and BL21 (DE3) expression host. Materials and Methods: First the sequence encoding of IGFBP3 was designed based on the amino acid sequence of the protein and then by codon optimization, in order to ensure the maximum expression in Escherichia coli. In the next step, the synthetic DNA encoding IGFBP3 was inserted into the pUC57 vector, at the appropriate restriction sites and then subcloned in the pET-11a expression vector in the same restriction sites. The constructed vector was transformed to E. coli BL21 as an expression host and induced in the presence of IPTG for expression of the IGFBP3 protein. Protein expression was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Results: Double digestion of the new plasmid (pET-11a -IGBP3) with NdeI and BamHI showed two bands in 873 bp and 5700 bp. To study the accurate cloning procedure, the plasmid was sequenced and its authenticity was confirmed. Also the expected protein band (31.6 kDa) was observed in SDS-PAGE analysis. Conclusion: DNA fragment encoding the full-length IGFBP3 protein was accurately cloned in the pET-11a expression vector and the recombinant plasmid transformed to E. coli BL21 (DE3) expression host. Results of the SDS-PAGE analysis verified that recombinant IGFBP3 (31.6 kDa) are successfully expressed under the control of T7 promoter. As we shown pET-11a can be successfully used for expression of the IGFBP3 protein. PMID:25878991

  10. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus).

    PubMed

    Meng, Zhen; Hu, Peng; Lei, Jilin; Jia, Yudong

    2016-09-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are important regulators of vertebrate growth and development. This study characterized the mRNA expressions of igf-i and igf-ii during turbot (Scophthalmus maximus) metamorphosis to elucidate the possible regulatory role of the IGF system in flatfish metamorphosis. Results showed that the mRNA levels of igf-i significantly increased at the early-metamorphosis stage and then gradually decreased until metamorphosis was completed. By contrast, mRNA levels of igf-ii significantly increased at the pre-metamorphosis stage and then substantially decreased during metamorphosis. Meanwhile, the whole-body thyroxine (T4) levels varied during larval metamorphosis, and the highest value was observed in the climax-metamorphosis. The mRNA levels of igf-i significantly increased and decreased by T4 and thiourea (TU, inhibitor of endogenous thyroid hormone) during metamorphosis, respectively. Conversely, the mRNA levels of igf-ii remained unchanged. Furthermore, TU significantly inhibited the T4-induced mRNA up-regulation of igf-i during metamorphosis. The whole-body thyroxine (T4) levels were significantly increased and decreased by T4 and TU during metamorphosis, respectively. These results suggested that igf-i and igf-ii may play different functional roles in larval development stages, and igf-i may have a crucial function in regulating the early metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGF system to control flatfish metamorphosis and contribute to the improvement of broodstock management for larvae. PMID:27255364

  11. Insulin-like growth factor I (IGF-I) and its receptor (IGF-1R) in the rat anterior pituitary.

    PubMed

    Eppler, Elisabeth; Jevdjovic, Tanja; Maake, Caroline; Reinecke, Manfred

    2007-01-01

    Few and controversial results exist on the cellular sites of insulin-like growth factor (IGF)-I synthesis and the type 1 IGF receptor (IGF-1R) in mammalian anterior pituitary. Thus, the present study analysed IGF-I and the IGF-1R in rat pituitary. Reverse transcription-polymerase chain reaction revealed IGF-I and IGF-1R mRNA expression in pituitary. The sequences of both were identical to the corresponding sequences in other rat organs. In situ hybridization localized IGF-I mRNA in endocrine cells. The majority of the growth hormone (GH) cells and numerous adrenocorticotropic hormone (ACTH) cells exhibited IGF-1R-immunoreactivity at the cell membrane. At lower densities, IGF-1 receptors were also present at the other hormone-producing cell types, indicating a physiological impact of IGF-I for all endocrine cells. IGF-I-immunoreactivity was located constantly in almost all ACTH-immunoreactive cells. At the ultrastructural level, IGF-I-immunoreactivity was confined to secretory granules in co-existence with ACTH-immunoreactivity, indicating a concomitant release of both hormones. Occasionally, IGF-I-immunoreactivity was detected in an interindividually varying number of GH cells. In some individuals, weak IGF-I-immunoreactions were also detected also in follicle-stimulating hormone and luteinizing hormone cells. Thus, IGF-I seems to be produced as a constituent in ACTH cells, possibly indicating its particular importance in stress response. Generally, IGF-I from the endocrine cells may regulate synthesis and/or release of hormones in an autocrine/paracrine manner as well as prevent apoptosis and stimulate proliferation. Production of IGF-I in GH cells may depend on the physiological status, most likely the serum IGF-I level. IGF-I released from GH cells may suppress GH synthesis and/or release by an autocrine feedback mechanism in addition to the endocrine route. PMID:17241280

  12. Insulin-like growth factor-I mRNA and peptide in the human anterior pituitary.

    PubMed

    Jevdjovic, T; Bernays, R L; Eppler, E

    2007-05-01

    The pituitary is the central organ regulating virtually all endocrine processes, and pathologies of the pituitary cause manifold adverse effects. Because insulin-like growth factor (IGF)-I appears to be involved in tumour pathogenesis, progression, and persistence, and only few data exist on the cellular synthesis sites of IGF-I, the present study aims to create a basis for further research on pituitary adenomas by investigating the presence of IGF-I in the human pituitary using reverse transcriptase-polymerase chain reaction, in situ hybridisation, immunohistochemistry and immunocytochemistry. IGF-I was expressed in the pituitary, and gene sequence analysis revealed a sequence identical to that found in human liver. The distribution pattern of IGF-I mRNA found by in situ hybridisation corresponded to that of IGF-I peptide in immunohistochemistry. In all pituitary samples investigated, IGF-I-immunoreactivity occurred in almost all adrenocorticotrophic hormone (ACTH)-immunoreactive cells. Occasionally, an interindividually varying number of growth hormone (GH) and, infrequently, follicle-stimulating hormone and luteinising hormone cells contained IGF-I-immunoreactivity but none was detected in supporting cells. At the ultrastructural level, IGF-I-immunoreactivity was confined to secretory granules in coexistence with ACTH- or GH-immunoreactivity, respectively, indicating a concomitant release of the hormones. Thus, in humans, IGF-I appears to be a constituent in ACTH cells whereas its production in GH-producing and gonadotrophic cells may depend on the physiological status (e.g. serum IGF-I level, age or reproductive phase). It is assumed that locally produced IGF-I plays a crucial role in the regulation of endocrine cells by autocrine/paracrine mechanisms in addition to the endocrine route. PMID:17425608

  13. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease.

    PubMed

    McGinley, Lisa M; Sims, Erika; Lunn, J Simon; Kashlan, Osama N; Chen, Kevin S; Bruno, Elizabeth S; Pacut, Crystal M; Hazel, Tom; Johe, Karl; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. PMID:26744412

  14. Action of long(R3)-insulin-like growth factor-1 on protein metabolism in beef heifers.

    PubMed

    Hill, R A; Hunter, R A; Lindsay, D B; Owens, P C

    1999-05-01

    Insulin-like growth factor-1 (IGF-1) is perhaps the most important endogenous factor controlling growth. Most studies to date in livestock have shown that IGF-1 has greatest efficacy when animals are in a catabolic state. We have determined the effects of an i.v. infusion of the IGF-1 analog Long(R3)-IGF-1 on protein metabolism in beef heifers that were slowly losing liveweight because of restricted feeding. There was a tendency for both whole-body protein and skeletal muscle protein to be conserved in Long(R3)-IGF-1-treated heifers. Long(R3)-IGF-1 administration markedly reduced the plasma concentrations of all amino acids measured and glucose. There was a significant change in the profile differences of endogenous plasma IGF-1 concentrations during the 8-hr infusion period, with plasma IGF-1 decreasing sharply in the test group. There was a significant difference in mean profiles for plasma IGF-2 between the test and control groups. Overall, plasma IGF-2 for the control group decreased only slightly over time (about 40 ng/ml), whereas the test group decreased dramatically (by about 140 ng/ml). Increased plasma concentrations of a 31-32-kDa IGF-binding protein (possibly IGF-binding protein-1) in the treated group was detected by radioligand blot. We found that Long(R3)-IGF-1 infusion tended to preserve whole-body and muscle protein in beef heifers on a low-quality diet, and suggest that further investigation of this treatment may provide an alternative approach to reducing weight loss during the dry season. PMID:10370861

  15. Molecular predictors of sensitivity to the insulin-like growth factor 1 receptor inhibitor Figitumumab (CP-751,871).

    PubMed

    Pavlicek, Adam; Lira, Maruja E; Lee, Nathan V; Ching, Keith A; Ye, Jingjing; Cao, Joan; Garza, Scott J; Hook, Kenneth E; Ozeck, Mark; Shi, Stephanie T; Yuan, Jing; Zheng, Xianxian; Rejto, Paul A; Kan, Julie L C; Christensen, James G

    2013-12-01

    Figitumumab (CP-751,871), a potent and fully human monoclonal anti-insulin-like growth factor 1 receptor (IGF1R) antibody, has been investigated in clinical trials of several solid tumors. To identify biomarkers of sensitivity and resistance to figitumumab, its in vitro antiproliferative activity was analyzed in a panel of 93 cancer cell lines by combining in vitro screens with extensive molecular profiling of genomic aberrations. Overall response was bimodal and the majority of cell lines were resistant to figitumumab. Nine of 15 sensitive cell lines were derived from colon cancers. Correlations between genomic characteristics of cancer cell lines with figitumumab antiproliferative activity revealed that components of the IGF pathway, including IRS2 (insulin receptor substrate 2) and IGFBP5 (IGF-binding protein 5), played a pivotal role in determining the sensitivity of tumors to single-agent figitumumab. Tissue-specific differences among the top predictive genes highlight the need for tumor-specific patient selection strategies. For the first time, we report that alteration or expression of the MYB oncogene is associated with sensitivity to IGF1R inhibitors. MYB is dysregulated in hematologic and epithelial tumors, and IGF1R inhibition may represent a novel therapeutic opportunity. Although growth inhibitory activity with single-agent figitumumab was relatively rare, nine combinations comprising figitumumab plus chemotherapeutic agents or other targeted agents exhibited properties of synergy. Inhibitors of the ERBB family were frequently synergistic and potential biomarkers of drug synergy were identified. Several biomarkers of antiproliferative activity of figitumumab both alone and in combination with other therapies may inform the design of clinical trials evaluating IGF1R inhibitors. PMID:24107449

  16. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II.

    PubMed

    Sung, Chul-Hoon; Im, Hee-Jung; Park, Nahee; Kwon, Yeojung; Shin, Sangyun; Ye, Dong-Jin; Cho, Nam-Hyeon; Park, Young-Shin; Choi, Hyung-Kyoon; Kim, Donghak; Chun, Young-Jin

    2013-11-25

    Human steroid sulfatase (STS) plays an important role in regulating the formation of biologically active estrogens and may be a promising target for treating estrogen-mediated carcinogenesis. The molecular mechanism of STS gene expression, however, is still not clear. Growth factors are known to increase STS activity but the changes in STS expression have not been completely understood. To determine whether insulin-like growth factor (IGF)-II can induce STS gene expression, the effects of IGF-II on STS expression were studied in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that IGF-II treatment significantly increased the expression of STS mRNA and protein in concentration- and time-dependent manners. To understand the signaling pathway by which IGF-II induces STS gene expression, the effects of specific PI3-kinase/Akt and NF-κB inhibitors were determined. When the cells were treated with IGF-II and PI3-kinase/Akt inhibitors, such as LY294002, wortmannin, or Akt inhibitor IV, STS expression induced by IGF-II was significantly blocked. Moreover, we found that NF-κB inhibitors, such as MG-132, bortezomib, Bay 11-7082 or Nemo binding domain (NBD) binding peptide, also strongly prevented IGF-II from inducing STS gene expression. We assessed whether IGF-II activates STS promoter activity using transient transfection with a luciferase reporter. IGF-II significantly stimulated STS reporter activity. Furthermore, IGF-II induced expression of 17β-hydroxysteroid dehydrogenase (HSD) 1 and 3, whereas it reduced estrone sulfotransferase (EST) gene expression, causing enhanced estrone and β-estradiol production. Taken together, these results strongly suggest that IGF-II induces STS expression via a PI3-kinase/Akt-NF-κB signaling pathway in PC-3 cells and may induce estrogen production and estrogen-mediated carcinogenesis. PMID:24055520

  17. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival

    PubMed Central

    Schlueter, Peter J.; Sang, Xianpeng; Duan, Cunming; Wood, Antony W.

    2007-01-01

    Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways. PMID:17362906

  18. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation.

    PubMed

    Tillmann, V; Shalet, S M; Price, D A; Wales, J K; Pennells, L; Soden, J; Gill, M S; Whatmore, A J; Clayton, P E

    1998-01-01

    The relationship between peak growth hormone (GH), insulin-like growth factor I (IGF-I), IGF-I binding protein 3 (IGFBP-3) and IGFBP-3 protease activity was studied in 28 children and adolescents undergoing investigation of pituitary function 0.4-14.2 years after cranial or craniospinal irradiation for the treatment of CNS tumours distant from the hypothalamic-pituitary axis (n = 16) or prophylaxis against CNS leukaemia (n = 12). Seven out of 15 patients with GH deficiency (GHD) (defined as a peak GH concentration <7.5 ng/ml in a stimulation test) had IGF-I <-2 standard deviation score (SDS). None of the 28 patients had serum IGFBP-3 concentrations measured by radioimmunoassay (RIA) <-1.5 SDS with no difference between those with and without GHD. IGFBP-3 concentrations measured by RIA were strongly correlated to IGFBP-3 band density on Western ligand blot (WLB) (r = 0.71; p < 0.0001). IGFBP-3 protease activity was negatively correlated to IGFBP-3 by RIA (r = -0.55; p < 0.01) and to IGFBP-3 by WLB (r = -0.51; p < 0.01). Twenty-two patients had normal IGFBP-3 protease activity (<30% of the activity in pregnancy serum) indicating that serum IGFBP-3 protease activity does not account for the normal levels of IGFBP-3 in RIA. Low serum IGF-I but normal IGFBP-3 concentrations and in the majority normal IGFBP-3 protease activity was found in patients in the years after CNS irradiation. Neither serum IGF-I nor IGFBP-3 can be used as a reliable index of the development of radiation-induced GHD. PMID:9701699

  19. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  20. Insulin-like growth factor-1 content and pattern of expression correlates with histopathologic grade in diffusely infiltrating astrocytomas.

    PubMed Central

    Hirano, H.; Lopes, M. B.; Laws, E. R.; Asakura, T.; Goto, M.; Carpenter, J. E.; Karns, L. R.; VandenBerg, S. R.

    1999-01-01

    Studies of experimental tumorigenesis have strongly implicated signaling of the insulin-like growth factor 1 (IGF-1) as a key component in astrocytic neoplasia; however, its role in the growth of low-grade and malignant human tumors is not well understood. Correlative analyses of IGF-1, p53, and Ki-67 (MIB-1) immunohistochemistry and IGF-1 receptor (IGF-1R) mRNA expression were performed to examine the cellular pattern of IGF-1 signaling in 39 cases of astrocytoma (World Health Organization grades II-IV). Tumor cells expressing IGF-1 and IGF-1R were present in all tumor grades. The proportion of tumor cells that expressed IGF-1 correlated with both histopathologic grade and Ki-67 labeling indices, while expression of IGF-1R mRNA correlated with Ki-67 indices. In cases where stereotactic tissue sampling could be identified with a specific tumor area by neuroimaging features, the numbers of IGF-1 immunoreactive cells correlated with the tumor zones of highest cellularity and Ki-67 labeling. In glioblastomas, the localization of IGF-1 immunoreactivity was notable for several features: frequent accentuation in the perivascular tumor cells surrounding microvascular hyperplasia; increased levels in reactive astrocytes at the margins of tumor infiltration; and selective expression in microvascular cells exhibiting endothelial/pericytic hyperplasia. IGF-1R expression was particularly prominent in tumor cells adjacent to both microvascular hyperplasia and palisading necrosis. These data suggest that IGF-1 signaling occurs early in astroglial tumorigenesis in the setting of cell proliferation. The distinctive correlative patterns of IGF-1 and IGF-1R expression in glioblastomas also suggest that IGF-1 signaling has an association with the development of malignant phenotypes related to aberrant angiogenesis and invasive tumor interactions with reactive brain. PMID:11550306

  1. Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF

    PubMed Central

    Taya, Shinichiro; Inagaki, Naoyuki; Sengiku, Hiroaki; Makino, Hiroshi; Iwamatsu, Akihiro; Urakawa, Itaru; Nagao, Kenji; Kataoka, Shiro; Kaibuchi, Kozo

    2001-01-01

    Insulin-like growth factor (IGF)-1 plays crucial roles in growth control and rearrangements of the cytoskeleton. IGF-1 binds to the IGF-1 receptor and thereby induces the autophosphorylation of this receptor at its tyrosine residues. The phosphorylation of the IGF-1 receptor is thought to initiate a cascade of events. Although various signaling molecules have been identified, they appear to interact with the tyrosine-phosphorylated IGF-1 receptor. Here, we identified leukemia-associated Rho guanine nucleotide exchange factor (GEF) (LARG), which contains the PSD-95/Dlg/ZO-1 (PDZ), regulator of G protein signaling (RGS), Dbl homology, and pleckstrin homology domains, as a nonphosphorylated IGF-1 receptor-interacting molecule. LARG formed a complex with the IGF-1 receptor in vivo, and the PDZ domain of LARG interacted directly with the COOH-terminal domain of IGF-1 receptor in vitro. LARG had an exchange activity for Rho in vitro and induced the formation of stress fibers in NIH 3T3 fibroblasts. When MDCKII epithelial cells were treated with IGF-1, Rho and its effector Rho-associated kinase (Rho-kinase) were activated and actin stress fibers were enhanced. Furthermore, the IGF-1–induced Rho-kinase activation and the enhancement of stress fibers were inhibited by ectopic expression of the PDZ and RGS domains of LARG. Taken together, these results indicate that IGF-1 activates the Rho/Rho-kinase pathway via a LARG/IGF-1 receptor complex and thereby regulates cytoskeletal rearrangements. PMID:11724822

  2. Coevolution of insulin-like growth factors, insulin and their receptors and binding proteins in New World Monkeys.

    PubMed

    Wallis, Michael

    2015-08-01

    Previous work has shown that the evolution of both insulin-like growth factor 1 (IGF1) and insulin shows an episode of accelerated change on the branch leading to New World Monkeys (NWM). Here the possibility that this is accompanied by a corresponding episode of accelerated evolution of IGF1 receptor (IGF1R), insulin receptor (IR) and/or IGF binding proteins (IGFBPs) was investigated. Analysis of receptor sequences from a range of primates and some non-primate mammals showed that accelerated evolution did indeed occur on this branch in the case of IGF1R and IR, but not for the similar insulin receptor-related receptor (IRRR) which does not bind insulin or IGF1. Marked accelerated evolution on this branch was also seen for some IGFBPs, but not the mannose 6-phosphate/IGF2 receptor or epidermal growth factor receptor. The rate of evolution slowed before divergence of the lineages leading to the NWM for which sequences are available (Callithrix and Saimiri). For the IGF1R and IR, the accelerated evolution was most marked for the extracellular domains (ectodomains). Application of the branch-site method showed dN/dS ratios significantly greater than 1.0 for both receptor ectodomains and for IGFBP1, and allowed identification of residues likely to have been subject to selection. These residues were concentrated in the N-terminal half of the IGF1R ectodomain but the C-terminal half of the IR ectodomain, which could have implications for the formation of hybrid receptors. Overall the results suggest that adaptive coevolution of IGF1, insulin and their receptors and some IGFBPs occurred during the evolution of NWM. For the most part, the residues that change on this branch could not be associated with specific functional aspects (ligand binding, receptor dimerization, glycosylation) and the physiological significance of this coevolution remains to be established. PMID:26072449

  3. Insulin-like growth factor II blocks apoptosis of N-myc2-expressing woodchuck liver epithelial cells.

    PubMed Central

    Yang, D; Faris, R; Hixson, D; Affigne, S; Rogler, C E

    1996-01-01

    N-myc2 and insulin-like growth factor II (IGF-II) are coordinately overexpressed in the great majority of altered hepatic foci, which are the earliest precancerous lesions observed in the liver of woodchuck hepatitis virus carrier woodchucks, and these genes continue to be overexpressed in hepatocellular carcinomas (HCCs). We have investigated the function of these genes in woodchuck hepatocarcinogenesis by using a woodchuck liver epithelial cell line (WC-3). WC-3 cells react positively with a monoclonal antibody (12.8.5) against woodchuck oval cells, suggesting a lineage relationship with oval cells. Overexpression of N-myc2 in three WC-3 cell lines caused their morphological transformation and increased their growth rate and saturation density in medium containing 10% serum. Removal of serum from the medium increased cell death of the N-myc2-expressing lines, whereas cell death in control lines was minimal. The death of N-myc2-expressing WC-3 cells was accompanied by nucleosomal fragmentation of cellular DNA, and DAPI (4',6-diamidino-2-phenylindole) staining revealed condensation and fragmentation of the nuclei, suggesting that N-myc2-expressing WC-3 cells undergo apoptosis in the absence of serum. In colony regression assays, conducted in the absence of serum, control colonies were stable, while N-myc2-expressing colonies regressed to various degrees. Addition of recombinant human IGF-II to the serum-free medium blocked both cell death and colony regression in all the N-myc2-expressing lines. Therefore, coordinate overexpression of N-myc2 and IGF-II in woodchuck altered hepatic foci may allow cells which otherwise might die to survive and progress to hepatocellular carcinoma. PMID:8709253

  4. Impact of Insulin Resistance on Insulin-Like Growth Factor-1/Insulin Like Growth Factor-Binding Protein-3 Axis and on Early Weight Gain in Small for Gestational Age Infants

    PubMed Central

    Dizdarer, Ceyhun; Korkmaz, Hüseyin Anıl; Büyükocak, Özlem Murat; Tarancı, Selda Mohan; Çoban, Ayşe

    2013-01-01

    Objective: To assess insulin-like growth factor-1 (IGF-1)/IGF-binding protein-3 (IGFBP-3) axis and insulin resistance (IR) and the relationship of these parameters with growth in appropriate for gestational age (AGA) and small for gestational age (SGA) infants at birth and in early infancy. Methods: Postnatal blood samples for measurement of glucose, insulin, IGF-1, and IGFBP-3 were taken from 60 infants (30 AGA and 30 SGA) at birth and at one, three, and six months of age. Both SGA and AGA infants were divided into two groups: growing well and not growing well. Blood glucose, insulin, IGF-1, and IGFBP-3 values were assessed in all infants. Results: Homeostasis model assessment-IR (HOMA-IR) values in well-growing SGA infants in the third and sixth months were found to be higher than in not well-growing SGA infants (3.9±0.8 vs. 1.0±0.3 at 3 months and 3.3±0.9 vs. 2.4±0.9 at 6 months, p<0.05). IGF-1 levels in well-growing SGA infants at 3 and 6 months were found to be higher than those in not well-growing SGA infants (83.80±44.50 vs. 73.50±17.60 ng/mL at 3 months and 95.12±50.74 vs. 87.67±22.91 ng/mL at 6 months, p<0.05). The IGF-1 values were significantly lower in well-growing SGA infants than in well-growing AGA infants (83.80±44.50 vs. 103.31±30.81 ng/mL at 3 months and 95.12±50.74 vs. 110.87±26.44 ng/mL at 6 months, p<0.05). Conclusions: This study demonstrates the effects of accelerated early infant growth on IGF-1/IGFBP-3 axis in SGA-born infants. Conflict of interest:None declared. PMID:23748063

  5. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation.

    PubMed

    Cho, Young-Lai; Hur, Sung-Mo; Kim, Ji-Yoon; Kim, Ji-Hee; Lee, Dong-Keon; Choe, Jongeon; Won, Moo-Ho; Ha, Kwon-Soo; Jeoung, Dooil; Han, Sanghwa; Ryoo, Sungwoo; Lee, Hansoo; Min, Jeong-Ki; Kwon, Young-Guen; Kim, Dong-Hyun; Kim, Young-Myeong

    2015-01-01

    Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE(-/-) mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca(2+)/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature. PMID:25391655

  6. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    PubMed

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-01

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability. PMID:15745952

  7. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation.

    PubMed

    Kessler, Sonja M; Laggai, Stephan; Van Wonterg, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  8. Insulin-like Growth Factor 1 and Adiponectin and Associations with Muscle Deficits, Disease Characteristics, and Treatments in Rheumatoid Arthritis

    PubMed Central

    Baker, Joshua F.; Von Feldt, Joan Marie; Mostoufi-Moab, Sogol; Kim, Woojin; Taratuta, Elena; Leonard, Mary B.

    2016-01-01

    Objective Rheumatoid arthritis (RA) is associated with low muscle mass and density. The objective of our study was to evaluate associations between 2 serum biomarkers [insulin-like growth factor 1 (IGF-1) and adiponectin] and skeletal muscle in RA. Methods Whole-body dual energy X-ray absorptiometry measures of the appendicular lean mass index (ALMI; kg/m2) and total fat mass index (kg/m2), as well as the peripheral quantitative computed tomography measures of the lower leg muscle and fat cross-sectional area (CSA; cm2) and muscle density (an index of fat infiltration) were obtained from 50 participants with RA, ages 18–70 years. Multivariable linear regression analyses evaluated associations between body composition and levels of adiponectin and IGF-1, adjusted for age, sex, and adiposity. Results Greater age was associated with higher adiponectin (p = 0.06) and lower IGF-1 (p = 0.004). Eight subjects had IGF-1 levels below the reference range for their age and sex. These subjects had significantly lower ALMI and muscle CSA in multivariable models. Lower IGF-1 levels were associated with greater clinical disease activity and severity, as well as low ALMI, muscle CSA, and muscle density (defined as 1 SD below normative mean). After adjusting for age and sex, greater adiponectin levels were associated with lower BMI (p = 0.02) as well as lower ALMI, and lower muscle CSA, independent of adiposity (p < 0.05). Only greater Health Assessment Questionnaire scores were significantly associated with lower adiponectin levels. Conclusion Low IGF-1 and greater adiponectin levels are associated with lower muscle mass in RA. Lower IGF-1 levels were seen in subjects with greater disease activity and severity. PMID:26329340

  9. Insulin-like growth factor-1- and interleukin-6-related gene variation and risk of multiple myeloma

    PubMed Central

    Birmann, Brenda M.; Tamimi, Rulla M.; Giovannucci, Edward; Rosner, Bernard; Hunter, David J.; Kraft, Peter; Mitsiades, Constantine; Anderson, Kenneth C.; Colditz, Graham A.

    2009-01-01

    Insulin-like growth factor (IGF)-1 and interleukin (IL)-6 promote the proliferation and survival of multiple myeloma cells. Variation in genes related to IGF-1 and IL-6 signaling may influence susceptibility to multiple myeloma. To assess their etiologic role, we examined the association of 70 tagging single nucleotide polymorphisms (SNP) in seven IGF-1 and three IL-6 pathway genes with multiple myeloma risk in two prospective cohorts, the Nurses' Health Study and Health Professionals Follow-up Study. Among participants who provided DNA specimens, we identified 58 women and 24 men with multiple myeloma and matched two controls per case. We used multivariable logistic regression models to assess the association of the SNPs or tagged haplotypes with multiple myeloma risk. Several SNPs had suggestive associations with multiple myeloma based on large odds ratios (OR), although corresponding omnibus p-values were not more than nominally significant (i.e., at p<0.05). These SNPs included rs1801278 in the gene encoding insulin receptor substrate-1 (IRS1; C/T v. C/C genotypes; OR=4.3, 95% confidence interval (CI)=1.5-12.1), and three IL-6 receptor SNPs: rs6684439 (T/T v. C/C: 2.9, 1.2-7.0), rs7529229 (C/C v. T/T; 2.5, 1.1-6.0), and rs8192284 (C/C v. A/A; 2.5, 1.1-6.0). Additional SNPs in genes encoding IGF-1, IGF binding protein-2, IRS2, and gp130 also demonstrated suggestive associations with multiple myeloma risk. We conducted a large number of statistical tests, and the findings may be due to chance. Nonetheless, the data are consistent with the hypothesis that IGF-1- and IL-6-related gene variation influences susceptibility to multiple myeloma and warrant confirmation in larger populations. PMID:19124510

  10. Histomorphometric, physical, and mechanical effects of spaceflight and insulin-like growth factor-I on rat long bones.

    PubMed

    Bateman, T A; Zimmerman, R J; Ayers, R A; Ferguson, V L; Chapes, S K; Simske, S J

    1998-12-01

    Previous experiments have shown that skeletal unloading resulting from exposure to microgravity induces osteopenia in rats. In maturing rats, this is primarily a function of reduced formation, rather than increased resorption. Insulin-like growth factor-I (IGF-I) stimulates bone formation by increasing collagen synthesis by osteoblasts. The ability of IGF-I to prevent osteopenia otherwise caused by spaceflight was investigated in 12 rats flown for 10 days aboard the Space Shuttle, STS-77. The effect IGF-I had on cortical bone metabolism was generally anabolic. For example, humerus periosteal bone formation increased a significant 37.6% for the spaceflight animals treated with IGF-I, whereas the ground controls increased 24.7%. This increase in humeral bone formation at the periosteum is a result of an increased percent mineralizing perimeter (%Min.Pm), rather than mineral apposition rate (MAR), for both spaceflight and ground control rats. However, IGF-I did inhibit humerus endocortical bone formation in both the spaceflight and ground control rats (38.1% and 39.2%, respectively) by limiting MAR. This effect was verified in a separate ground-based study. Similar histomorphometric results for spaceflight and ground control rats suggest that IGF-I effects occur during normal weight bearing and during spaceflight. Microhardness measurements of the newly formed bone indicate that the quality of the bone formed during IGF-I treatment or spaceflight was not adversely altered. Spaceflight did not consistently change the structural (force-deflection) properties of the femur or humerus when tested in three-point bending. IGF-I significantly increased femoral maximum and fracture strength. PMID:9855461

  11. Chemical heterogeneity as a result of hydroxylamine cleavage of a fusion protein of human insulin-like growth factor I.

    PubMed Central

    Canova-Davis, E; Eng, M; Mukku, V; Reifsnyder, D H; Olson, C V; Ling, V T

    1992-01-01

    Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent. Images Fig. 2. PMID:1637301

  12. Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.

    1992-01-01

    Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.

  13. Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients

    PubMed Central

    Yu, Jessie Z; Warycha, Melanie A; Christos, Paul J; Darvishian, Farbod; Yee, Herman; Kaminio, Hideko; Berman, Russell S; Shapiro, Richard L; Buckley, Michael T; Liebes, Leonard F; Pavlick, Anna C; Polsky, David; Brooks, Peter C; Osman, Iman

    2008-01-01

    Background Different Insulin-like Growth Factor Binding Proteins (IGFBPs) have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression. Methods The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56) prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG) between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients. Results Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01) A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09). However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients. Conclusion Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients. PMID:19025658

  14. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults.

    PubMed

    Burke, Darren G; Candow, Darren G; Chilibeck, Philip D; MacNeil, Lauren G; Roy, Brian D; Tarnopolsky, Mark A; Ziegenfuss, Tim

    2008-08-01

    The purpose of this study was to compare changes in muscle insulin-like growth factor-I (IGF-I) content resulting from resistance-exercise training (RET) and creatine supplementation (CR). Male (n=24) and female (n=18) participants with minimal resistance-exercise-training experience (=1 year) who were participating in at least 30 min of structured physical activity (i.e., walking, jogging, cycling) 3-5 x/wk volunteered for the study. Participants were randomly assigned in blocks (gender) to supplement with creatine (CR: 0.25 g/kg lean-tissue mass for 7 days; 0.06 g/kg lean-tissue mass for 49 days; n=22, 12 males, 10 female) or isocaloric placebo (PL: n=20, 12 male, 8 female) and engage in a whole-body RET program for 8 wk. Eighteen participants were classified as vegetarian (lacto-ovo or vegan; CR: 5 male, 5 female; PL: 3 male, 5 female). Muscle biopsies (vastus lateralis) were taken before and after the intervention and analyzed for IGF-I using standard immunohistochemical procedures. Stained muscle cross-sections were examined microscopically and IGF-I content quantified using image-analysis software. Results showed that RET increased intramuscular IGF-I content by 67%, with greater accumulation from CR (+78%) than PL (+54%; p=.06). There were no differences in IGF-I between vegetarians and nonvegetarians. These findings indicate that creatine supplementation during resistance-exercise training increases intramuscular IGF-I concentration in healthy men and women, independent of habitual dietary routine. PMID:18708688

  15. Relationship between insulin-like growth factor I, dehydroepiandrosterone sulfate and proresorptive cytokines and bone density in cystic fibrosis

    PubMed Central

    Binello, E.; LeBoff, M. S.; Wohl, M. E.; Rosen, C. J.; Colin, A. A.

    2011-01-01

    Introduction Patients with cystic fibrosis (CF) are known to be at risk for early osteoporosis, and the mechanisms that mediate bone loss are still being delineated. The aim of the present investigation was to investigate if a correlation exists in these patients between skeletal measurements by dual-energy x-ray absorptiometry (DXA) and two anabolic factors, dehydroepiandrosterone (DHEA) and insulin-like growth factor I (IGF-I), and proresorptive factors such as the cytokines interleukin-1β, tumor necrosis factor α, and interleukin-6. Methods We studied 32 outpatients (18 females; mean age: 26.2 ± 7.9 years) at a tertiary care medical center. The subjects had venous samples obtained, underwent anthropometric and bone mineral density (BMD) measurements, and completed a health survey. Serum IGF-I concentrations were below the age-adjusted mean in 78% of the participants, and DHEA sulfate (DHEAS) concentrations were low in 72%. Serum concentrations of all cytokines were on the low side of normal; nonetheless, there was a modest inverse correlation between IL-1β and BMD at all sites. Results In univariate analyses, IGF-I and DHEAS were significant correlates of BMD or bone mineral content. In final multivariate models controlling for anthropometric and other variables of relevance to bone density, only IGF-I was identified as a significant independent skeletal predictor. While alterations in DHEAS, IGF-I, and specific cytokines may contribute to skeletal deficits in patients with CF, of these factors a low IGF-I concentration appears to be most strongly correlated with BMD. Conclusions These findings may have therapeutic implications for enhancing bone density in these patients. PMID:16541207

  16. Exogenous Estrogen as Mediator of Racial Differences in Bioactive Insulin-Like Growth Factor-I Levels Among Postmenopausal Women

    PubMed Central

    Vitolins, Mara Z.; Paskett, Electra D.; Chang, Shine

    2015-01-01

    Background. The role of exogenous estrogen use in racial differences in insulin-like growth factor-I (IGF-I) levels which affect cancer risk is unclear. We investigated whether the relationship between race and circulating bioactive IGF-I proteins was mediated by exogenous estrogen and the extent to which exogenous estrogen influenced the race–IGF-I relationship in postmenopausal women. Methods. This cross-sectional study included 636 white and 133 African American postmenopausal women enrolled in an ancillary study of the Women’s Health Initiative Observational Study. To assess exogenous estrogen use (nonusers [n = 262] vs users [n = 507]) as a mediator of the race–IGF-I relationship, we used the Baron–Kenny method and an estimation of the proportional change in the odd ratios for IGF-I levels on race plus a bootstrapping test for the significance of the mediation effect. Results. Compared with white women, African American women were more likely to have high IGF-I levels and less likely to use exogenous estrogen. After accounting for race, estrogen nonusers had higher IGF-I levels than estrogen users did. Among oral contraceptive ever users, exogenous estrogen had a strong mediation effect (67%; p = .018) in the race–IGF-I relationship. In the women with a history of hypertension, exogenous estrogen explained racial differences in IGF-I levels to a modest degree (23%; p = .029). Conclusions. Exogenous estrogen use has a potentially important role in disparities in IGF-I bioactivity between postmenopausal African American and white women. A history of oral contraceptive use and hypertension may be part of the interconnected hormonal pathways related to racial differences in IGF-I levels. PMID:25238773

  17. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  18. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  19. Insulin-like growth factor-1 receptor immunoreactive cells are selectively maintained in the paraventricular hypothalamus of calorically restricted mice.

    PubMed

    Saeed, O; Yaghmaie, F; Garan, S A; Gouw, A M; Voelker, M A; Sternberg, H; Timiras, P S

    2007-02-01

    The mammalian lifespan is dramatically extended by both caloric restriction (CR) and insulin-like growth factor-1 (IGF-1) suppression. Both interventions involve neuroendocrine alterations directed by the hypothalamus. Yet, it remains unclear whether CR exerts its affects by altering central IGF-1 sensitivity. With this question in mind, we investigated the influence of CR and normal aging on hypothalamic IGF-1 sensitivity, by measuring the changes in IGF-1 receptor (IGF-1R) populations. Taking IGF-1 receptor (IGF-1R) immunoreactivity as an index of sensitivity to IGF-1, we counted IGF-1R immunoreactive and non-immunoreactive cells in the paraventricular nucleus (PVN) of Young-ad libitum fed (Young-Al, 6 weeks old), Old-ad libitum fed (Old-Al, 22 months old), and old calorically restricted (Old-CR, 22 months old) female B6D2F1 mice. An automated imaging microscopy system (AIMS) was used to generate cell counts for each cross-section of PVN hypothalamus. Ad libitum fed mice show a 37% reduction in IGF-1R immunoreactive cells and a 12% reduction in the total cell population of the PVN with aging. In comparison, caloric-restricted mice show a 33% reduction in IGF-1R immunoreactive cells and a notable 24% decrease in the total cell population with aging. This selective maintenance of IGF-1R expressing cells coupled with the simultaneous loss of non-immunoreactive cells, results in a higher percentage of IGF-1R immunoreactive cells in the PVNs of CR mice. Thus, the decline in the percentage of IGF-1 sensitive cells in the PVN with age is attenuated by CR. PMID:17194562

  20. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation.

    PubMed

    Hégarat, Nadia; Novopashina, Darya; Fokina, Alesya A; Boutorine, Alexandre S; Venyaminova, Alya G; Praseuth, Danièle; François, Jean-Christophe

    2014-03-01

    Inhibition of insulin-like growth factor I (IGF-I) signaling is a promising antitumor strategy and nucleic acid-based approaches have been investigated to target genes in the pathway. Here, we sought to modulate IGF-I transcriptional activity using triple helix formation. The IGF-I P1 promoter contains a purine/pyrimidine (R/Y) sequence that is pivotal for transcription as determined by deletion analysis and can be targeted with a triplex-forming oligonucleotide (TFO). We designed modified purine- and pyrimidine-rich TFOs to bind to the R/Y sequence. To monitor TFO binding, we developed a fluorescence-based gel-retardation assay that allowed independent detection of each strand in three-stranded complexes using end-labeling with Alexa 488, cyanine (Cy)3 and Cy5 fluorochromes. We characterized TFOs for their ability to inhibit restriction enzyme activity, compete with DNA-binding proteins and inhibit IGF-I transcription in reporter assays. TFOs containing modified nucleobases, 5-methyl-2'-deoxycytidine and 5-propynyl-2'-deoxyuridine, specifically inhibited restriction enzyme cleavage and formed triplexes on the P1 promoter fragment. In cells, deletion of the R/Y-rich sequence led to 48% transcriptional inhibition of a reporter gene. Transfection with TFOs inhibited reporter gene activity to a similar extent, whereas transcription from a mutant construct with an interrupted R/Y region was unaffected, strongly suggesting the involvement of triplex formation in the inhibitory mechanisms. Our results indicate that nuclease-resistant TFOs will likely inhibit endogenous IGF-I gene function in cells. PMID:24423253

  1. Pharmacokinetics and pharmacodynamics of figitumumab, a monoclonal antibody targeting the insulin-like growth factor 1 receptor, in healthy participants.

    PubMed

    Yin, Donghua; Sleight, Barbara; Alvey, Christine; Hansson, Arne G; Bello, Akintunde

    2013-01-01

    This study determined the pharmacokinetics (PK) of figitumumab and its effects on insulin-like growth factor (IGF) axis-related biomarkers, following a single intravenous dose (10 [n = 16] and 20 [n = 12] mg/kg) in healthy adults. Serial blood sampling for PK and biomarkers was conducted up to 84 days postdose. A dose increase from 10 to 20 mg/kg led to 1.9- and 2.4-fold increases in mean C(max) and AUC∞, respectively. Median disposition half-life was 21.1 and 27.8 days at 10 and 20 mg/kg, respectively. At 10 and 20 mg/kg, figitumumab increased total IGF-1, free IGF-1, IGF binding protein (IGFBP)-3, and insulin by 4.1- and 4.8-, 8.3- and 12.1-, 2.4- and 2.9-, and 7.3- and 9.8-fold, respectively; increases were sustained throughout the 84-day period. There was a slight and transient elevation in IGF-2. Mean plasma glucose increased by 18% and 16% at 10 and 20 mg/kg, respectively. Most treatment-related adverse events were mild in severity; the most common included dry eye (n = 9) and ocular hyperemia (n = 9) in the 20-mg/kg group. No antidrug antibodies were detected. Overall, figitumumab (10 or 20 mg/kg) demonstrated PK properties typical of IgG2 antibodies and produced substantial and sustained increases in IGF-1 (total and free), IGFBP-3, and insulin. PMID:23400740

  2. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    SciTech Connect

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.; Pessin, J.E.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.

  3. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I.

    PubMed

    Zoidis, E; Ghirlanda-Keller, C; Schmid, C

    2011-02-01

    Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts. PMID:21076856

  4. Aggravation of post-ischemic liver injury by overexpression of insulin-like growth factor binding protein 3

    PubMed Central

    Zhou, Lu; Koh, Hyoung-Won; Bae, Ui-Jin; Park, Byung-Hyun

    2015-01-01

    Insulin-like growth factor-1 (IGF-1) is known to inhibit reperfusion-induced apoptosis. IGF-binding protein-3 (IGFBP-3) is the major circulating carrier protein for IGF-1 and induces apoptosis. In this study, we determined if IGFBP-3 was important in the hepatic response to I/R. To deliver IGFBP-3, we used an adenovirus containing IGFBP-3 cDNA (AdIGFBP-3) or an IGFBP-3 mutant devoid of IGF binding affinity but retaining IGFBP-3 receptor binding ability (AdIGFBP-3GGG). Mice subjected to I/R injury showed typical patterns of hepatocellular damage. Protein levels of IGFBP-3 were increased after reperfusion and showed a positive correlation with the extent of liver injury. Prior injection with AdIGFBP-3 aggravated liver injury: serum aminotransferases, prothrombin time, proinflammatory cytokines, hepatocellular necrosis and apoptosis, and neutrophil infiltration were markedly increased compared to control mice. A decrease in antioxidant potential and an upregulation of NADPH oxidase might have caused these aggravating effects of IGFBP-3. Experiments using HepG2 cells and N-acetylcysteine-pretreated mice showed a discernible effect of IGFBP-3 on reactive oxygen species generation. Lastly, AdIGFBP-3 abolished the beneficial effects of ischemic preconditioning and hypothermia. Mice treated with AdIGFBP-3GGG exhibited effects similar to those of AdIGFBP-3, suggesting a ligand-independent effect of IGFBP-3. Our results suggest IGFBP-3 as an aggravating factor during hepatic I/R injury. PMID:26073647

  5. Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention among premenopausal women.

    PubMed

    Maskarinec, Gertraud; Takata, Yumie; Murphy, Suzanne P; Franke, Adrian A; Kaaks, Rudolph

    2005-09-01

    Soya foods may protect against the development of breast cancer. Insulin-like growth factor (IGF)-1 is under investigation as a possible link between nutrition and cancer. We examined the effect of soya foods on circulating IGF-1 and IGF binding protein (BP)-3 levels among 196 healthy premenopausal women in a 2-year randomised nutritional trial. The intervention group consumed two daily servings of soya foods including tofu, soya milk, soya nuts and soya protein powder (equivalent to 50 mg isoflavones and 5-22 g soya protein per serving); the controls maintained their regular diet. Five serum samples at baseline, 3, 6, 12, and 24 months were collected in the morning during the luteal phase and analysed for IGF-1 and IGFBP-3 by double-antibody ELISA. We applied mixed models to investigate the intervention effect and predictors of serum levels while considering the repeated measurement design. Adherence with the study regimen was high and dropout rates were acceptable. Randomisation resulted in similar mean IGF-1 and IGFBP-3 levels by group. We did not observe a significant intervention effect on IGF-1, IGFBP-3, and their molar ratio during the entire study period. However, urinary isoflavone excretion during the study period was positively associated with IGF-1 (P=0.04) and the IGF-1:IGFBP-3 ratio (P=0.06). The effect was consistent over time. Adding soya foods to the diet of premenopausal women does not appear to lower serum levels of IGF-1 and IGFBP-3; if anything, the greater protein intake from soya may lead to a small increase in IGF-1 serum levels. PMID:16176606

  6. Postoperative Insulin-Like Growth Factor 1 Levels Reflect the Graft’s Function and Predict Survival after Liver Transplantation

    PubMed Central

    Mocchegiani, Federico; Coletta, Martina; Brugia, Marina; Montalti, Roberto; Fava, Giammarco; Taccaliti, Augusto; Risaliti, Andrea; Vivarelli, Marco

    2015-01-01

    Background The reduction of insulin-like growth factor 1 (IGF-1) plasma levels is associated with the degree of liver dysfunction and mortality in cirrhotic patients. However, little research is available on the recovery of the IGF-1 level and its prognostic role after liver transplantation (LT). Methods From April 2010 to May 2011, 31 patients were prospectively enrolled (25/6 M/F; mean age±SEM: 55.2±1.4 years), and IGF-1 serum levels were assessed preoperatively and at 15, 30, 90, 180 and 365 days after transplantation. The influence of the donor and recipient characteristics (age, use of extended criteria donor grafts, D-MELD and incidence of early allograft dysfunction) on hormonal concentration was analyzed. The prognostic role of IGF-1 level on patient survival and its correlation with routine liver function tests were also investigated. Results All patients showed low preoperative IGF-1 levels (mean±SEM: 29.5±2.1), and on postoperative day 15, a significant increase in the IGF-1 plasma level was observed (102.7±11.7 ng/ml; p<0.0001). During the first year after LT, the IGF-1 concentration remained significantly lower in recipients transplanted with older donors (>65 years) or extended criteria donor grafts. An inverse correlation between IGF-1 and bilirubin serum levels at day 15 (r = -0.3924, p = 0.0320) and 30 (r = -0.3894, p = 0.0368) was found. After multivariate analysis, early (within 15 days) IGF-1 normalization [Exp(b) = 3.913; p = 0.0484] was the only prognostic factor associated with an increased 3-year survival rate. Conclusion IGF-1 postoperative levels are correlated with the graft’s quality and reflect liver function. Early IGF-1 recovery is associated with a higher 3-year survival rate after LT. PMID:26186540

  7. MicroRNA-1 regulates the proliferation of vascular smooth muscle cells by targeting insulin-like growth factor 1.

    PubMed

    Liu, Kun; Ying, Zhang; Qi, Xia; Shi, Ying; Tang, Qiang

    2015-09-01

    The aim of this study was to investigate the role of microRNAs (miRNAs or miRs) in vascular smooth muscle cell (VSMC) proliferation and to elucidate the underlying molecular mechanisms. In a previous study, using microarray analysis, differentially expressed miRNAs were identified in primary VSMCs isolated from the medial layer of the thoracic aorta obtained from spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats. Among others, miR-1 was identified to be downregulated in VSMCs from SHRs. Thus, in the present study, we focused on miR-1, the downregulation of which was confirmed by RT-qPCR and western blot analysis in VSMCs isolated from SHRs. We identified insulin-like growth factor 1 (IGF1) as a potential target gene of miR-1, and we subsequently validated IGF1 as a target gene of miR-1 by luciferase assay. The results revealed that the exogenous overexpression of miR-1 significantly suppressed the expression of IGF1. Additionally, we demonstrated that the downregulation of IGF1 by the introduction of miR-1 attenuated the proliferation of the VSMCs, suggesting that IGF1 is a target gene of miR-1 and that the effects of miR-1 are mediated through IGF1. In conclusion, the findings of our study demonstrate that miR-1 is significantly downregulated in VSMCs and that it is an important regulator of cell proliferation. Therefore, IGF1 may be involved in the regulation of VSMC proliferation by targeting miR-1. PMID:26166810

  8. Interaction of Insulin-like Growth Factor-binding Protein-3 and BAX in Mitochondria Promotes Male Germ Cell Apoptosis

    PubMed Central

    Jia, Yue; Lee, Kuk-Wha; Swerdloff, Ronald; Hwang, David; Cobb, Laura J.; Sinha Hikim, Amiya; Lue, Yan He; Cohen, Pinchas; Wang, Christina

    2010-01-01

    Germ cell apoptosis is crucial for spermatogenesis and can be triggered by various stimuli, including intratesticular hormone deprivation. This study proposes a role for insulin-like growth factor binding protein-3 (IGFBP-3) in male germ cell apoptosis. Groups of adult Sprague-Dawley male rats received one of the following treatments for 5 days: (i) daily intratesticular (IT) injections with saline (control); (ii) a single subcutaneous injection of the gonadotropin-releasing hormone antagonist (GnRH-A), acyline, on day 1 and a daily IT injection of saline; (iii) daily IT injection of IGFBP-3; and (iv) a GnRH-A injection on day 1 and a daily IT injection of IGFBP-3. Germ cell apoptosis increased significantly after IGFBP-3 or GnRH-A treatment which was further enhanced by the combined treatment. After co-immunoprecipitation with BAX antibody, IGFBP-3 association with BAX was demonstrated in total and mitochondrial fractions but not in the cytosol of testis extracts. BAX-associated IGFBP-3 expression was increased in mitochondria after treatment compared with control, which was confirmed by an IGFBP-3 enzyme-linked immunosorbent assay. Dot blot studies further validated the BAX-IGFBP-3 binding in vitro. IGFBP-3 as well as BAX induced release of cytochrome c and DIABLO from isolated testicular mitochondria in vitro. IGFBP-3, when combined with an ineffective dose of BAX, triggered release of these proteins from isolated mitochondria at a 4-fold lower dose than IGFBP-3 alone. Our data demonstrate that the IGFBP-3 and BAX interaction activates germ cell apoptosis via the mitochondria-dependent pathway. This represents a novel pathway regulating germ call homeostasis that may have significance for male fertility and testicular disease. PMID:19887447

  9. Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle.

    PubMed

    Barton, Elisabeth R

    2006-06-01

    Insulin-like growth factor I (IGF-I) is a critical protein for skeletal muscle development and regeneration. Its ability to promote skeletal muscle hypertrophy has been demonstrated by several methods. Alternative splicing of the Igf-1 gene does not affect the mature IGF-I protein but does produce different E peptide extensions, which have been reported to modify the potency of IGF-I. Viral-mediated delivery of murine IGF-IA and IGF-IB into skeletal muscle of 2-wk-old and 6-mo-old mice was utilized to compare the effects of the isoforms on muscle mass. In young mice, tissue content of IGF-I protein was significantly higher in rAAV-treated muscles than control muscles at 1, 2, and 4 mo postinjection. Viral injection of IGF-IB produced two- to sevenfold more IGF-I than rAAVIGF-IA. Hypertrophy was observed 2 and 4 mo postinjection, where both rAAVIGF-IA and rAAVIGF-IB were equally effective in increasing muscle mass. These results suggest that there is a threshold of IGF-I production necessary to promote muscle hypertrophy in young growing animals regardless of isoform. In 6-mo-old animals, only rAAVIGF-IA produced significant increases in muscle size, even though increased IGF-I content was observed after injection of both isoforms. Therefore, the ability for IGF-IB to promote muscle hypertrophy is only effective in growing animals, suggesting that the bioavailability of this isoform or its receptor affinity diminishes with age. PMID:16439513

  10. Effect of antipsychotic treatment on Insulin-like Growth Factor-1 and cortisol in schizophrenia: a longitudinal study.

    PubMed

    Venkatasubramanian, Ganesan; Chittiprol, Seetharamaiah; Neelakantachar, Narendran; Shetty, Taranath; Gangadhar, Bangalore N

    2010-06-01

    Neurodevelopmental pathogenesis of schizophrenia might be mediated by abnormalities in Insulin-like Growth Factor-1 (IGF-1). Developmental disturbances like obstetric complications, by themselves, as well as through the resultant hypercortisolemia due to hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, can lead to deficient IGF-1 level. The relevance of IGF-1-Cortisol interactions in schizophrenia, especially in the context of antipsychotic treatment, is yet to be explored. In this study, thirty-three antipsychotic-naïve schizophrenia patients (13-men) were examined for serum IGF-1 and cortisol levels at baseline and after 3months of antipsychotic treatment. For baseline analyses, the patients were compared with 33 healthy controls matched for age, sex, socio-economic status, and physical activity. Symptoms were assessed using Scale for Assessment of Positive Symptoms (SAPS) and Scale for Assessment of Negative Symptoms (SANS). At baseline, schizophrenia patients had significantly lower levels of IGF-1 [t=4.6; p<0.0001] and higher levels of cortisol [t=3.9; p=0.0002] in comparison with healthy controls. Following treatment, IGF-1 level increased significantly [t=4.5; p<0.0001] whereas cortisol decreased significantly [t=2.5; p=0.02] in patients. There was a significant positive correlation between magnitude of increase in IGF-1 level and the magnitude of reduction in cortisol level [r=0.52; p=0.002]. Also, the greater the increase in IGF-1 the greater was the reduction in SAPS score [r=0.39; p=0.02]. Our study findings demonstrate that antipsychotic treatment can result in significant elevation of serum IGF-1 possibly mediated by reduction in cortisol levels. These observations suggest a possible link between HPA axis abnormalities and IGF-1 deficits in the neurodevelopmental pathogenesis of schizophrenia. PMID:20226630

  11. Specific Activation of Insulin-like Growth Factor-1 Receptor by Ginsenoside Rg5 Promotes Angiogenesis and Vasorelaxation*

    PubMed Central

    Cho, Young-Lai; Hur, Sung-Mo; Kim, Ji-Yoon; Kim, Ji-Hee; Lee, Dong-Keon; Choe, Jongeon; Won, Moo-Ho; Ha, Kwon-Soo; Jeoung, Dooil; Han, Sanghwa; Ryoo, Sungwoo; Lee, Hansoo; Min, Jeong-Ki; Kwon, Young-Guen; Kim, Dong-Hyun; Kim, Young-Myeong

    2015-01-01

    Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature. PMID:25391655

  12. Maturation of the Myogenic Program Is Induced by Postmitotic Expression of Insulin-Like Growth Factor I

    PubMed Central

    Musarò, Antonio; Rosenthal, Nadia

    1999-01-01

    The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC–IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, β-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC–IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of β1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program. PMID:10082578

  13. Dephosphorylation of human insulin-like growth factor I (IGF-I) receptors by membrane-associated tyrosine phosphatases.

    PubMed Central

    Peraldi, P; Hauguel-de Mouzon, S; Alengrin, F; Van Obberghen, E

    1992-01-01

    The insulin-like growth factor-I (IGF-I) receptor exhibits structural and functional similarities to the insulin receptor. Although the regulation of the insulin-receptor tyrosine kinase has been extensively investigated, the mechanisms involved in phosphorylation/dephosphorylation of the IGF-I receptor have received only little attention. To obtain a better understanding of the mode of IGF-I action, we have investigated the effects of protein phosphotyrosine phosphatases (PTPases) on the phosphorylation status of the IGF-I receptor. The dephosphorylation of the human IGF-I receptor by membrane-associated tyrosine phosphatases was studied by an immuno-enzymic assay based on the recognition of phosphotyrosine residues by anti-phosphotyrosine antibodies. Using intact IGF-I receptors as substrates, we show that they could be completely dephosphorylated by different cellular PTPases. Three pieces of evidence indicate that receptor dephosphorylation takes place on phosphotyrosine, i.e. the inhibition profile of phosphatase activity by zinc and vanadate, its absolute requirement for thiol compounds and the diminution of [32P]phosphotyrosine labelling of the beta subunit assessed by SDS/PAGE and phosphoamino acid analysis. Tyrosine kinase activity and autophosphorylation of the IGF-I receptor were decreased in a dose-dependent manner by PTPases, indicating that partial dephosphorylation of the receptor was associated with a decrease in its intrinsic activity. The sensitivity of the activated human IGF-I receptor to dephosphorylation on tyrosine leads to the speculation that IGF-I receptor activity might be regulated by mechanisms such as those described for the insulin receptor. Further investigation of the pathways of IGF-I receptor dephosphorylation will contribute to define the role(s) of PTPases in the overall mechanism of IGF-I signalling. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1322128

  14. Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes.

    PubMed Central

    Mora, S; Kaliman, P; Chillarón, J; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    1. The heterologous expression of glucose transporters GLUT4 and GLUT1 in Xenopus oocytes has been shown to cause a differential targeting of these glucose-carrier isoforms to cellular membranes and a distinct induction of glucose transport activity. In this study we have evaluated the effect of insulin and insulin-like growth factor I (IGF-I) on glucose uptake and glucose transporter distribution in Xenopus oocytes expressing mammalian GLUT4 and GLUT1 glucose carriers. 2. Insulin and IGF-I stimulated 2-deoxyglucose uptake in GLUT4-expressing oocytes, but not in GLUT1-expressing oocytes or in water-injected oocytes. The stimulatory effect of insulin and IGF-I on 2-deoxyglucose uptake in GLUT4-expressing oocytes occurred via activation of the IGF-I receptor. 3. Subcellular-fractionation studies indicated that insulin and IGF-I stimulated translocation of GLUT4 to the cell surface of the oocyte. 4. Incubation of intact oocytes with insulin stimulated phosphatidylinositol 3-kinase activity, an effect that was blocked by the additional presence of wortmannin. Furthermore, wortmannin totally abolished the insulin-induced stimulation of 2-deoxyglucose uptake in GLUT4-expressing oocytes. 5. In this study, both the insulin-induced GLUT4 carrier translocation and GLUT4-dependent insulin-stimulated glucose transport have been reconstituted in the Xenopus oocyte. These observations, together with the fact that wortmannin, as found in adipocytes, inhibits insulin-stimulated glucose transport in oocytes, suggest that the heterologous expression of GLUT4 in oocytes is a useful experimental model by which to study the cell biology of insulin-induced GLUT4 translocation. Images Figure 2 Figure 3 PMID:7575481

  15. Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes.

    PubMed

    Mora, S; Kaliman, P; Chillarón, J; Testar, X; Palacín, M; Zorzano, A

    1995-10-01

    1. The heterologous expression of glucose transporters GLUT4 and GLUT1 in Xenopus oocytes has been shown to cause a differential targeting of these glucose-carrier isoforms to cellular membranes and a distinct induction of glucose transport activity. In this study we have evaluated the effect of insulin and insulin-like growth factor I (IGF-I) on glucose uptake and glucose transporter distribution in Xenopus oocytes expressing mammalian GLUT4 and GLUT1 glucose carriers. 2. Insulin and IGF-I stimulated 2-deoxyglucose uptake in GLUT4-expressing oocytes, but not in GLUT1-expressing oocytes or in water-injected oocytes. The stimulatory effect of insulin and IGF-I on 2-deoxyglucose uptake in GLUT4-expressing oocytes occurred via activation of the IGF-I receptor. 3. Subcellular-fractionation studies indicated that insulin and IGF-I stimulated translocation of GLUT4 to the cell surface of the oocyte. 4. Incubation of intact oocytes with insulin stimulated phosphatidylinositol 3-kinase activity, an effect that was blocked by the additional presence of wortmannin. Furthermore, wortmannin totally abolished the insulin-induced stimulation of 2-deoxyglucose uptake in GLUT4-expressing oocytes. 5. In this study, both the insulin-induced GLUT4 carrier translocation and GLUT4-dependent insulin-stimulated glucose transport have been reconstituted in the Xenopus oocyte. These observations, together with the fact that wortmannin, as found in adipocytes, inhibits insulin-stimulated glucose transport in oocytes, suggest that the heterologous expression of GLUT4 in oocytes is a useful experimental model by which to study the cell biology of insulin-induced GLUT4 translocation. PMID:7575481

  16. Insulin-like growth factor 1 is not associated with high myopia in a large Japanese cohort

    PubMed Central

    Miyake, Masahiro; Nakanishi, Hideo; Nakata, Isao; Akagi-Kurashige, Yumiko; Tsujikawa, Akitaka; Moriyama, Muka; Ohno-Matsui, Kyoko; Mochizuki, Manabu; Yamada, Ryo; Matsuda, Fumihiko; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate whether genetic variations in the insulin-like growth factor 1 (IGF-1) gene are associated with high myopia in Japanese. Methods A total of 1,339 unrelated Japanese patients with high myopia (axial length ≥26 mm in both eyes) and two independent control groups were evaluated (334 cataract patients without high myopia and 1,194 healthy Japanese individuals). The mean axial length (mm±SD) in the case group was 29.18±1.85 mm, and the mean spherical equivalent (D±SD) of the phakic eyes was −12.69±4.54 D. We genotyped five tagging single nucleotide polymorphisms (SNPs) in IGF-1: rs6214, rs978458, rs5742632, rs12423791, and rs2162679. Chi-square tests for trend, multivariable logistic regression, and haplotype regression analysis were conducted. Results We found no significant association between the IGF-1 SNPs and high or extreme myopia (axial length ≥28 mm in both eyes, 837 subjects) in the additive model, even when compared with the cataract and general population controls, with or without adjustments for age and sex. The evaluation using dominant and recessive models also did not reveal any significant associations. The haplotype analysis with a variable-sized sliding-window strategy also showed a lack of association of IGF-1 SNPs with high or extreme myopia. Conclusions The results of the present study using a Japanese subset do not support the proposal that the IGF-1 gene determines susceptibility to high or extreme myopia in Caucasians and Chinese. Further studies are needed to confirm our reports in other populations and to identify the underlying genetic determinants of these ocular pathological conditions. PMID:23734076

  17. Serum insulin-like growth factor-1 levels in females and males in different cervical vertebral maturation stages

    PubMed Central

    Gupta, Shreya; Deoskar, Anuradha; Gupta, Puneet; Jain, Sandhya

    2015-01-01

    OBJECTIVE: The aim of this cross sectional study was to assess serum insulin-like growth factor-1 (IGF-1) levels in female and male subjects at various cervical vertebral maturation (CVM) stages. MATERIAL AND METHODS: The study sample consisted of 60 subjects, 30 females and 30 males, in the age range of 8-23 years. For all subjects, serum IGF-1 level was estimated from blood samples by means of chemiluminescence immunoassay (CLIA). CVM was assessed on lateral cephalograms using the method described by Baccetti. Serum IGF-1 level and cervical staging data of 30 female subjects were included and taken from records of a previous study. Data were analyzed by Kruska-Wallis and Mann Whitney test. Bonferroni correction was carried out and alpha value was set at 0.003. RESULTS: Peak value of serum IGF-1 was observed in cervical stages CS3 in females and CS4 in males. Differences between males and females were observed in mean values of IGF-1 at stages CS3, 4 and 5. The highest mean IGF-1 levels in males was observed in CS4 followed by CS5 and third highest in CS3; whereas in females the highest mean IGF-1 levelswas observed in CS3 followed by CS4 and third highest in CS5. Trends of IGF-1 in relation to the cervical stages also differed between males and females. The greatest mean serum IGF-1 value for both sexes was comparable, for females (397 ng/ml) values were slightly higher than in males (394.8 ng/ml). CONCLUSIONS: Males and females showed differences in IGF-1 trends and levels at different cervical stages. PMID:25992990

  18. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation

    PubMed Central

    Kessler, Sonja M.; Laggai, Stephan; Van Wonterghem, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E.; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K.

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  19. The serum insulin-like growth factor-II/mannose-6-phosphate receptor in normal and diabetic pregnancy.

    PubMed

    Gelato, M C; Rutherford, C; San-Roman, G; Shmoys, S; Monheit, A

    1993-08-01

    The extracellular domain of the insulin-like growth factor-II/mannose-6-phosphate (IGF-II/Man-6-P) receptor is present in the circulation of several species including man. The purpose of the present study was to establish whether this truncated receptor is present in higher concentrations in fetal sera compared with adult sera and whether the metabolic status of the individual alters serum concentrations of this protein. Nondiabetic and diabetic pregnant women were studied throughout gestation, and at term fetal cord sera were obtained. Levels of IGF-I increased throughout pregnancy in normal and diabetic women. IGF-II levels significantly increased during the third trimester in both groups and levels of IGF-I and IGF-II were significantly elevated in fetal cord samples from diabetic women only. Serum samples were gel-filtered on Sephadex G-200, and column fractions were assayed for binding of radiolabeled IGF-II and IGF-I. There was specific binding (SB) of IGF-II in the void volume fractions in all samples examined. Normal women had 3% +/- 0.5% SB, whereas in cord sera SB was 5% +/- 0.7% and in pregnant sera 10% +/- 2%. There was no difference in SB in fetal cord or pregnant samples from normal and diabetic women. In addition, there was a peak of binding activity of both IGF-I and -II in gamma-globulin and postalbumin fractions of the columns in pregnant and nonpregnant women, but only in postalbumin fractions in fetal cord samples.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8345808

  20. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells.

    PubMed

    Tsukahara, H; Gordienko, D V; Tonshoff, B; Gelato, M C; Goligorsky, M S

    1994-02-01

    Several lines of evidence indicate that insulin-like growth factor-I (IGF-I) is a potent mediator of vasodilation. To elucidate the mechanism and site of action of IGF-I, we performed continuous monitoring of nitric oxide (NO) release from endothelial cells using a highly-sensitive amperometric NO-sensor. Two types of cultured cells were used: human umbilical vein endothelial cells and immortalized rat renal interlobar artery endothelial cells. In separate experiments, [Ca2+]i changes in response to IGF-I were measured spectrofluorometrically in fura-2-loaded cells. Stimulation with IGF-I resulted in a rapid, dose-dependent increase in [NO] as detected by the NO-probe positioned 1 mm above the monolayers, followed by a sustained elevation lasting for at least five minutes. The effect of IGF-I was significantly suppressed by pretreatment with anti-IGF-I antibody, suggesting that it was specific for IGF-I. NG-nitro-L-arginine methyl ester, an inhibitor of NO synthesis, significantly blunted responses to IGF-I, but dexamethasone preincubation did not reduce the IGF-I-induced release of NO. These results indicate that the observed IGF-I-induced release of NO is a result of activation of the constitutive, rather than the inducible type of NO synthase in endothelial cells. Genistein, a tyrosine kinase inhibitor, resulted in a profound suppression of the IGF-I-induced release of NO. IGF-I did not affect [Ca2+]i in either type of cells. Therefore, IGF-I-induced NO production by both types of endothelial cells is mediated via a tyrosine kinase-dependent mechanism.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7513035

  1. Repeated Insulin-Like Growth Factor 1 Treatment in a Patient with Rett Syndrome: A Single Case Study

    PubMed Central

    Pini, Giorgio; Scusa, M. Flora; Benincasa, Alberto; Bottiglioni, Ilaria; Congiu, Laura; Vadhatpour, Cyrus; Romanelli, Anna Maria; Gemo, Ilaria; Puccetti, Chetti; McNamara, Rachel; O’Leary, Seán; Corvin, Aiden; Gill, Michael; Tropea, Daniela

    2014-01-01

    Rett syndrome (RTT) is a devastating neurodevelopmental disorder that has no cure. Patients show regression of acquired skills, motor, and speech impairment, cardio-respiratory distress, microcephaly, and stereotyped hand movements. The majority of RTT patients display mutations in the gene that codes for the Methyl-CpG binding protein 2 (MeCP2), which is involved in the development of the central nervous system, especially synaptic and circuit maturation. Thus, agents that promote brain development and synaptic function are good candidates for ameliorating the symptoms of RTT. In particular, insulin-like growth factor 1 (IGF1) and its active peptide (1–3) IGF1 cross the Blood Brain Barrier, and therefore are ideal treatments for RTT Indeed, both (1–3) IGF1 and IGF1 treatment significantly ameliorates RTT symptoms in a mouse model of the disease In a previous study, we established that IGF1 is safe and well tolerated on Rett patients. In this open label clinical case study, we assess the safety and tolerability of IGF1 administration in two cycles of the treatment. Before and after each cycle, we monitored the clinical and blood parameters, autonomic function, and social and cognitive abilities, and we found that IGF1 was well tolerated each time and did not induce any side effect, nor it interfered with the other treatments that the patient was undergoing. We noticed a moderate improvement in the cognitive, social, and autonomic abilities of the patient after each cycle but the benefits were not retained between the two cycles, consistent with the pre-clinical observation that treatments for RTT should be administered through life. We find that repeated IGF1 treatment is safe and well tolerated in Rett patients but observed effects are not retained between cycles. These results have applications to other pathologies considering that IGF1 has been shown to be effective in other disorders of the autism spectrum. PMID:24918098

  2. Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats

    PubMed Central

    Alemdar, Celil; Yücel, İstemi; Erbil, Barış; Erdem, Havva; Atiç, Ramazan; Özkul, Emin

    2016-01-01

    Background: The common purpose of almost all methods used to treat the osteochondral injuries is to produce a normal cartilage matrix. However current methods are not sufficient to provide a normal cartilage matrix. For that reason, researchers have studied to increase the effectiveness of this methods using chondrogenic and chondroprotective molecules in recent experimental studies. Insulin-like growth factor-1 (IGF-1) and hyaluronic acid (HA) are two important agents used in this field. This study compared the effects of IGF-1 and HA in an experimental osteochondral defect in rat femora. Materials and Methods: The rats were divided into three groups (n = 15 per group) as follows: The IGF-1 group, HA group, and control group. An osteochondral defect of a diameter of 1.5 mm and a depth of 2 mm was created on the patellar joint side of femoral condyles. The IGF-1 group received an absorbable gelatin sponge soaked with 15 μg/15 μl of IGF-1, and the HA group received an absorbable gelatin sponge soaked with 80 μg HA. The control group received only an absorbable gelatin sponge. Rats were sacrificed at the 6th week, and the femur condyles were evaluated histologically. Results: According to the total Mankin scale, there was a statistically significant difference between IGF-1 and HA groups and between IGF-1 and control groups. There was also a significant statistical difference between HA and control groups. Conclusion: It was shown histopathologically that IGF-1 is an effective molecule for osteochondral lesions. Although it is weaker than IGF-1, HA also strengthened the repair tissue. PMID:27512224

  3. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  4. UVB-induced Senescence in Human Keratinocytes Requires a Functional Insulin-like Growth Factor-1 Receptor and p53

    PubMed Central

    Lewis, Davina A.; Yi, Qiaofang; Travers, Jeffrey B.

    2008-01-01

    To cope with the frequent exposure to carcinogenic UV B (UVB) wavelengths found in sunlight, keratinocytes have acquired extensive protective measures to handle UVB-induced DNA damage. Recent in vitro and epidemiological data suggest one these protective mechanisms is dependent on the functional status of the insulin-like growth factor-1 receptor (IGF-1R) signaling network in keratinocytes. During the normal UVB response, ligand-activated IGF-1Rs protect keratinocytes from UVB-induced apoptosis; however, as a consequence, these keratinocytes fail to proliferate. This adaptive response of keratinocytes to UVB exposure maintains the protective barrier function of the epidermis while ensuring that UVB-damaged keratinocytes do not replicate DNA mutations. In contrast, when keratinocytes are exposed to UVB in the absence of IGF-1R activation, the keratinocytes are more sensitive to UVB-induced apoptosis, but the surviving keratinocytes retain the capacity to proliferate. This aberrant UVB response represents flawed protection from UVB damage potentially resulting in the malignant transformation of keratinocytes. Using normal human keratinocytes grown in vitro, we have demonstrated that activation of the IGF-1R promotes the premature senescence of UVB-irradiated keratinocytes through increased generation of reactive oxygen species (ROS) and by maintaining the expression of the cyclin-dependent kinase inhibitor p21CDKN1A. Furthermore, IGF-1R–dependent UVB-induced premature senescence required the phosphorylation of p53 serine 46. These data suggest one mechanism of keratinocyte resistance to UVB-induced carcinogenesis involves the induction of IGF-1R–dependent premature senescence. PMID:18216278

  5. PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II.

    PubMed

    Tse, Margaret C L; Vong, Queenie P; Cheng, Christopher H K; Chan, King Ming

    2002-05-01

    Insulin-like growth factor-II (IGF-II) is a member of a growth factor family related to fetal growth in mammals but its physiological role has not been clearly identified in fish. In teleosts, the basic mechanism of the growth hormone (GH)-IGF axis is known to be operative but in a different manner. For instance, IGF-I exhibits GH dependence whereas for IGF-II, its GH dependence varies in different fish species. In this study, we used polymerase chain reaction (PCR) to obtain a common carp IGF-II (ccIGF-II) cDNA fragment and methods of rapid amplification of cDNA ends (RACEs) to obtain a full-length ccIGF-II sequence. The ccIGF-II encodes for a predicted amino acid sequence showing identities of 70.6%, 68.7%, 63.4% and 35% in comparison with salmon, barramundi, tilapia and human IGF-II, respectively. The nucleotide identity between the open reading frame (ORF) of the ccIGF-II and ccIGF-I cDNA sequence is only 36.2%. Distribution of ccIGF-II mRNA levels in common carp tissues was also studied; ccIGF-II expressed in hepatopancreas, heart, and many other tissues in adult carps are similar to the levels of ccIGF-I except in gills and testis. ccIGF-II levels were significantly higher than that of ccIGF-I in most juvenile tissues except in hepatopancreas, where ccIGF-I was higher (threefold) than that of ccIGF-II. The levels of ccIGF-I were also higher than ccIGF-II in carp larvae, from pre-hatched stage to day 30 post-hatching. Injection of porcine GH (pGH) increased the IGF-I and IGF-II mRNA levels in the hepatopancreas and brain of juvenile carps. However, hepatic IGF-I mRNA levels were induced more than IGF-II by pGH, whereas ccIGF-II levels gave a higher response than IGF-I in the brain in response to GH induction. PMID:12020820

  6. An Open-Label Trial of Recombinant Human Insulin-Like Growth Factor-I/Recombinant Human Insulin-Like Growth Factor Binding Protein-3 (rhIGF-1/rhIGFBP-3) in Myotonic Dystrophy Type 1

    PubMed Central

    Heatwole, Chad R.; Eichinger, Katy J.; Friedman, Deborah I.; Hilbert, James E.; Jackson, Carlayne E.; Logigian, Eric L.; Martens, William B.; McDermott, Michael P.; Pandya, Shree K.; Quinn, Christine; Smirnow, Alexis M.; Thornton, Charles A.; Moxley, Richard T.

    2012-01-01

    Objective To evaluate the safety and tolerability of recombinant human insulin-like growth factor-1 (rhIGF-1) complexed with IGF binding protein-3 (rhIGF-1/rhIGFBP-3) in patients with myotonic dystrophy type 1 (DM1). Design Open-label dose-escalation clinical trial. Setting University medical center. Participants Fifteen moderately affected ambulatory participants with genetically-proven DM1. Intervention Participants received escalating dosages of subcutaneous rhIGF-1/rhIGFBP-3 over 24 weeks followed by a 16 week washout period. Outcome Measures Serial assessments of safety, muscle mass, muscle function, and metabolic state were performed. The primary outcome variable was the ability of participants to complete 24 weeks on rhIGF-1/rhIGFBP-3 treatment. Results All participants tolerated rhIGF-1/rhIGFBP-3. There were no significant changes in muscle strength or functional outcomes measures. Lean body muscle mass measured by dual energy x-ray absorptiometry increased by 1.95 kg (p=0.0007) after treatment. Participants also experienced a mean reduction in triglyceride levels of 47 mg/dL (p=0.002), a mean increase in HDL levels of 5.0 mg/dL (p=0.03), a mean reduction in HbA1c of 0.15% (p=0.03), and a mean increase in testosterone level (in men) of 203 ng/dL (p=0.002) while on rhIGF-1/rhIGFBP-3. Mild reactions at the injection site occurred (n=9 participants), as did mild transient hypoglycemia (n=3), lightheadedness (n=2), and transient papilledema (n=1). Conclusions rhIGF-1/rhIGFBP-3 treatment was generally well tolerated in DM1. rhIGF-1/rhIGFBP-3 was associated with increased lean body mass and improvements in metabolism, but not with increased muscle strength or function. Larger randomized controlled trials would be needed to further evaluate the efficacy and safety of this medication in patients with neuromuscular disease. PMID:20837825

  7. Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy

    PubMed Central

    2011-01-01

    Background Caused by Mycobacterium leprae (ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems. Methods In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-α) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method. Results The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF

  8. Determination of free insulin-like growth factor-I in human serum: comparison of ultrafiltration and direct immunoradiometric assay.

    PubMed

    Frystyk, J; Ivarsen, P; Støving, R K; Dall, R; Bek, T; Hagen, C; Ørskov, H

    2001-04-01

    Two fundamentally different methods are currently used for the determination of free insulin-like growth factor-I (IGF-I): ultrafiltration by centrifugation (UF) and direct immunoradiometric assay (IRMA). The aim was to evaluate a commercial IRMA (DSL, Webster, TX, USA) and to compare it with UF. In the IRMA it is recommended that samples be incubated for 2 h at 5;C. When comparing samples (n = 8) incubated for 1 and 2 h, levels increased by 27 +/- 5% (P< 0.0001). When incubating samples at 22;C instead of 5;C, levels increased by 192 +/- 32% (P< 0.0001). Addition of IGF-binding protein-1 (IGFBP-1) to normal sera (n = 6) dose-dependently decreased ultrafiltered free IGF-I only (P< 0.0007). Similarly, UF was more sensitive than IRMA to addition of IGFBP-2 (P< 0.05). In healthy subjects (n = 35) IRMA yielded 20% higher levels than UF (1.09 +/- 0.09 vs 0.91 +/- 0.12 microg/L; P< 0.0001). IRMA and UF yielded similar results in healthy subjects treated with IGF-I (n = 5) or growth hormone (n = 7) and in acromegalic patients (n = 6) before and after somatostatin analogue treatment. However, marked differences were observed in conditions with elevated IGFBP-1 and -2. In type-1 diabetics (n = 23) ultrafiltered free IGF-I was more reduced than IRMA free IGF-I (38 +/- 9 vs 76 +/- 7% of matched controls (n = 13); P< 0.0001). In patients with chronic renal failure (n = 25), IRMA free IGF-I was identical to control levels (n = 13), whereas ultrafiltered free IGF-I was decreased by 51 +/- 7% (P< 0.0001). Similarly, women with anorexia nervosa (n = 9) studied before and after weight gain showed significant changes in ultrafiltered free IGF-I only (P< 0.03). In conclusion, IRMA was not very robust with respect to variations in sample incubation and this may bias results. IRMA generally yielded higher levels than UF, in accordance with the knowledge that IRMA measures free plus readily dissociable IGF-I. IRMA was less affected than UF by added IGFBP-1 and -2, and reductions in free

  9. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor-1 receptor signaling.

    PubMed

    Tsai, An-Chi; Pan, Shiow-Lin; Lai, Chin-Yu; Wang, Chih-Ya; Chen, Chien-Chih; Shen, Chien-Chang; Teng, Che-Ming

    2011-07-01

    Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10⁻⁸ M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer. PMID:20951021

  10. A randomized, placebo-controlled trial of combined insulin-like growth factor I and low dose growth hormone therapy for wasting associated with human immunodeficiency virus infection.

    PubMed

    Lee, P D; Pivarnik, J M; Bukar, J G; Muurahainen, N; Berry, P S; Skolnik, P R; Nerad, J L; Kudsk, K A; Jackson, L; Ellis, K J; Gesundheit, N

    1996-08-01

    Loss of body mass, or wasting, is a major cause of morbidity and a contributor to mortality in human immunodeficiency virus-1 (HIV-1) infection. Dietary supplements and appetite adjuvants have had limited effectiveness in treating this condition. GH and insulin-like growth factor I (IGF-I) have been shown to be anabolic in many catabolic conditions, and limited data suggest similar efficacy in HIV wasting. In addition, it appears that GH and IGF-I may have complementary anabolic effects with opposing glucoregulatory effects. We report results from a 12-week randomized, placebo-controlled trial of combination recombinant human GH (rhGH; Nutropin; 0.34 mg, sc, twice daily) and rhIGF-I (5.0 mg, sc, twice daily) in individuals with HIV wasting and without active opportunistic infection, cancer, or gastrointestinal disease. A total of 142 subjects (140 males and 2 females) were randomized using a 2:1, double blind treatment scheme and assigned to receive either active treatment or placebo injections. Eighty subjects completed the 12-week protocol. Nutritional intake and demographic and clinical characteristics did not differ between the groups at any study time point. At 3 weeks, the treatment group had a significantly larger weight increase (P = 0.0003), but this difference was not observed at any later time point. Similarly, fat-free mass, calculated from skinfold measurements, increased transiently in the treatment group at 6 weeks (P = 0.002). No significant differences in isokinetic muscle strength or endurance testing or in quality of life were observed between the groups. Resting heart rate was significantly higher in the treatment group at each time point post-baseline. GH and IGF-binding protein-3 levels did not change; however, IGF-I levels were higher in the treatment group at 6 and 12 weeks. There were no significant between-group differences in any of the measured biochemical or immunological parameters. rhGH plus rhIGF-I treatment was associated with an

  11. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    PubMed Central

    Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  12. Effects of insulin and insulin-like growth factors on proliferation of rat ovarian theca-interstitial cells.

    PubMed

    Duleba, A J; Spaczynski, R Z; Olive, D L; Behrman, H R

    1997-04-01

    Hyperplasia of the theca-interstitial (T-I) compartment, such as observed in polycystic ovary syndrome, is associated with ovarian dysfunction. Yet the mechanisms regulating proliferation of T-I cells are virtually unknown. This study was an investigation of the effects of insulin and insulin-like growth factors (IGF-I and IGF-II) on proliferation of rat T-I cells. Purified T-I cells were incubated in chemically defined media. Insulin (1-100 nM) and both IGFs (0.3-30 nM) dose-dependently stimulated DNA synthesis as determined by radiolabeled thymidine incorporation assay. IGF-I was most potent with EC50 = 1.4 +/- 0.4 nM, while IGF-II had EC50 = 4.3 +/- 0.18 nM and insulin had EC50 = 8.4 +/- 3.9 nM. The maximal effects of all three treatments were comparable. A combination of IGF-I at 10 nM (a concentration producing a near-maximal effect) with insulin or IGF-II resulted in DNA synthesis comparable to that achieved by IGF-I alone. IGF-I mutants with decreased affinity to IGF-binding proteins (IGFBPs)-long R3-IGF-I and des(1-3)IGF-I-produced greater effects on DNA synthesis than did IGF-I. The effects of insulin and IGFs on cell proliferation were confirmed by counting the steroidogenically active cells (stained positive for 3 beta-hydroxysteroid dehydrogenase [3 beta-HSD]) and steroidogenically inactive cells (3 beta-HSD negative). The number of steroidogenically active T-I cells was increased by insulin (by 3.7-fold, p < 0.001), IGF-I (by 3.2-fold, p < 0.001), and IGF-II (by 2.1-fold, p < 0.001). The number of steroidogenically inactive cells was not significantly altered. These findings indicate that 1) insulin- and IGF-dependent synthesis of DNA by T-I cells is stimulated via a common pathway, probably via type I IGF receptors; 2) endogenous IGFBPs may modify the effects of IGF-I; and 3) the increased DNA synthesis is reflected by an increase in the number of steroidogenically active cells. Insulin and the IGFs may play a role in the regulation of proliferation

  13. ImmunoPET Imaging of Insulin-Like Growth Factor 1 Receptor in a Subcutaneous Mouse Model of Pancreatic Cancer

    PubMed Central

    2016-01-01

    The role of insulin-like growth factor-1 receptor (IGF-1R) in cancer tumorigenesis was established decades ago, yet there are limited studies evaluating the imaging and therapeutic properties of anti-IGF-1R antibodies. Noninvasive imaging of IGF-1R may allow for optimized patient stratification and monitoring of therapeutic response in patients. Herein, this study reports the development of a Zirconium-89 (89Zr)-labeled anti-IGF-1R antibody (89Zr-Df-1A2G11) for PET imaging of pancreatic cancer. Successful chelation and radiolabeling of the antibody resulted in a highly stable construct that could be used for imaging IGF-1R expressing tumors in vivo. Western blot and flow cytometry studies showed that MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines expressed high, moderate, and low levels of IGF-1R, respectively. These three pancreatic cancer cell lines were subcutaneously implanted into mice. By employing the PET imaging technique, the tumor accumulation of 89Zr-Df-1A2G11 was found to be dependent on the level of IGF-1R expression. Tumor accumulation of 89Zr-Df-1A2G11 was 8.24 ± 0.51, 5.80 ± 0.54, and 4.30 ± 0.42 percentage of the injected dose (%ID/g) in MIA PaCa-2, BxPC-3, and AsPC-1-derived tumor models at 120 h postinjection, respectively (n = 4). Biodistribution studies and ex vivo immunohistochemistry confirmed these findings. In addition, 89Zr-labeled nonspecific human IgG (89Zr-Df-IgG) displayed minimal uptake in IGF-1R positive MIA PaCa-2 tumor xenografts (3.63 ± 0.95%ID/g at 120 h postinjection; n = 4), demonstrating that 89Zr-Df-1A2G11 accumulation was highly specific. This study provides initial evidence that our 89Zr-labeled IGF-1R-targeted antibody may be employed for imaging a wide range of malignancies. Antibodies may be tracked in vivo for several days to weeks with 89Zr, which may enhance image contrast due to decreased background signal. In addition, the principles outlined in this study can be employed for identifying patients

  14. Associations between Genetic Polymorphisms of Insulin-like Growth Factor Axis Genes and Risk for Age-Related Macular Degeneration

    PubMed Central

    Chiu, Chung-Jung; Conley, Yvette P.; Gorin, Michael B.; Gensler, Gary; Lai, Chao-Qiang; Shang, Fu; Taylor, Allen

    2011-01-01

    Purpose. To investigate whether insulin-like growth factor (IGF) axis genes, together with a novel dietary risk factor, the dietary glycemic index (dGI), and body mass index (BMI) affect the risk for age-related macular degeneration (AMD). Methods. This case–control study involved 962 subjects originally recruited through the Age-Related Eye Disease Study (AREDS) Genetic Repository. After those with missing covariates or invalid calorie intake (n = 23), diabetes (n = 59), and non-Caucasian race (n = 16) were excluded, 864 participants were used, including 209 AREDS category 1 participants (control group), 354 category 2 or 3 participants (drusen group), and 301 category 4 participants (advanced AMD group). A total of 25 single-nucleotide polymorphisms (SNPs) selected from IGF-1 (n = 9), IGF-2 (n = 1), IGF binding protein 1 (IGFBP1; n = 3), IGFBP3 (n = 3), acid-labile subunit of IGFBP (IGFALS; n = 2), IGF1 receptor (IGF1R; n = 4), and IGF2R (n = 3) were genotyped. SNP-AMD associations were measured with genotype, allele χ2 tests and Armitage's trend test. Odds ratios (OR), 95% confidence intervals (CIs), and SNP-exposure interactions were evaluated by multivariate logistic regression. Results. One SNP (rs2872060) in IGF1R revealed a significant association with advanced AMD (P-allele = 0.0009, P-trend = 0.0008; the significance level was set at 0.05/25 = 0.002 for multiple comparisons). The risk allele (G) in the heterozygous and homozygous states (OR, 1.67 and 2.93; 95% CI, 1.03–2.71 and 1.60–5.36, respectively) suggests susceptibility and an additive effect on AMD risk. Further stratification analysis remained significant for both neovascularization (OR, 1.49 and 2.61; 95% CI, 0.90–2.48 and 1.39–4.90, respectively) and geographic atrophy (OR, 2.57 and 4.52; 95% CI, 0.99–6.71 and 1.49–13.74, respectively). The G allele interaction analysis with BMI was significant for neovascularization (P = 0.042) but not for geographic atrophy (P = 0.47). No

  15. Insulin-like growth factor binding protein-1 levels are increased in patients with IgA nephropathy

    SciTech Connect

    Tokunaga, Koki; Uto, Hirofumi; Takami, Yoichiro; Mera, Kumiko; Nishida, Chika; Yoshimine, Yozo; Fukumoto, Mayumi; Oku, Manei; Sogabe, Atsushi; Nosaki, Tsuyoshi; Moriuchi, Akihiro; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito

    2010-08-20

    Research highlights: {yields} IGFBP-1 mRNA over express in kidneys obtained from mice model of IgA nephropathy. {yields} Serum IGFBP-1 levels are high in patients with IgA nephropathy. {yields} Serum IGFBP-1 levels correlate with renal function and the severity of renal injury. -- Abstract: The mechanisms underlying the pathogenesis of immunoglobulin A (IgA) nephropathy (IgAN) are not well understood. In this study, we examined gene expression profiles in kidneys obtained from mice with high serum IgA levels (HIGA mice), which exhibit features of human IgAN. Female inbred HIGA, established from the ddY line, were used in these experiments. Serum IgA levels, renal IgA deposition, mesangial proliferation, and glomerulosclerosis were increased in 32-week-old HIGA mice in comparison to ddY animals. By microarray analysis, five genes were observed to be increased by more than 2.5-fold in 32-week-old HIGA in comparison to 16-week-old HIGA; these same five genes were decreased more than 2.5-fold in 32-week-old ddY in comparison to 16-week-old ddY mice. Of these five genes, insulin-like growth factor (IGF) binding protein (IGFBP)-1 exhibited differential expression between these mouse lines, as confirmed by quantitative RT-PCR. In addition, serum IGFBP-1 levels were significantly higher in patients with IgAN than in healthy controls. In patients with IgAN, these levels correlated with measures of renal function, such as estimated glomerular filtration rate (eGFR), but not with sex, age, serum IgA, C3 levels, or IGF-1 levels. Pathologically, serum IGFBP-1 levels were significantly associated with the severity of renal injury, as assessed by mesangial cell proliferation and interstitial fibrosis. These results suggest that increased IGFBP-1 levels are associated with the severity of renal pathology in patients with IgAN.

  16. Characterization of insulin-like growth factor-binding proteins secreted by isolated sheep thyroid epithelial cells.

    PubMed

    Wang, J F; Becks, G P; Buckingham, K D; Hill, D J

    1990-06-01

    We have characterized the insulin-like growth factor-binding proteins (IGF-BPs) released by isolated sheep thyroid epithelial cells. Thyroid follicles were isolated with collagenase and cultured in Coon's modified F-12 M (0H medium) supplemented with insulin, cortisol, transferrin, glycyl-histidyl-lysine and somatostatin (5H medium) and TSH (6H medium). Conditioned 0H medium specifically bound both 125I-labelled IGF-I and -II, although binding capacity was reduced following acid-gel filtration to separate endogenous IGF-BP complexes, suggesting some destruction of BPs. The binding of 125I-labelled IGF-I or -II to conditioned (0H) medium was progressively displaced by increasing amounts of unlabelled homologous peptides, while fractionation on concanavalin A-Sepharose showed that the IGF-BPs consisted of both glycoprotein and non-glycoprotein components. The molecular sizes of the IGF-BPs were resolved by separation of 0H medium on SDS-PAGE and ligand blot analysis with 125I-labelled IGF-I or -II. Conditioned medium contained four specific binding species for IGF-II of 19, 30, 38 and 46 kDa; all but the smallest also binding radiolabelled IGF-I. Prior fractionation on concanavalin A-Sepharose showed that the 46 kDa binding species was a glycoprotein. Competition studies with increasing concentrations of unlabelled IGF-I or -II during ligand blotting suggested that the 46 and 30 kDa binding species had a greater affinity for IGF-II than IGF-I, while the 38 kDa had a greater relative affinity for IGF-I. Incubation of cells in 5H medium reduced the abundance of the 46 kDa binding protein, while incubation in 6H medium decreased the release of all binding protein species. Results show that isolated thyroid follicles released several forms of IGF-BP with differing relative affinities for IGF-I and -II. Gross changes seen in the presence of BPs between 0H, 5H and 6H media suggest acute hormonal control of release. PMID:1695663

  17. Epigenetic modulation of insulin-like growth factor-II overexpression by hepatitis B virus X protein in hepatocellular carcinoma

    PubMed Central

    Liu, Xu You; Tang, Shao Hui; Wu, Sheng Lan; Luo, Yu Hong; Cao, Ming Rong; Zhou, Hong Ke; Jiang, Xiang Wu; Shu, Jian Chang; Bie, Cai Qun; Huang, Si Min; Zheng, Zhan Hong; Gao, Fei

    2015-01-01

    Hepatitis B virus X protein (HBx) is involved in the pathogenesis of hepatocellular carcinoma (HCC). Overexpression of the transcripts from the P3 and P4 promoters of the insulin-like growth factor-II (IGF-II) gene is observed in HCC. The present study investigated the involvement of HBx in IGF-II overexpression and its epigenetic regulation. Firstly, the effects of HBx on P3 and P4 mRNA expression, the methylation status of the P3 and P4 promoters, and MBD2 expression were analyzed in human HCC cells and HCC samples. Next, interaction between HBx and MBD2 or CBP/p300 was assessed by co-immunoprecipitation, and HBx-mediated binding of MBD2 and CBP/p300 to the P3 and P4 promoters and the acetylation of the corresponding histones H3 and H4 were evaluated by quantitative chromatin immunoprecipitation. Finally, using siRNA knockdown, we investigated the roles of MBD2 and CBP/p300 in IGF-II overexpression and its epigenetic regulation. Our results showed that HBx promotes IGF-II expression via inducing the hypomethylation of the P3 and P4 promoters, and that HBx increases MBD2 expression, directly interacts with MBD2 and CBP/p300, and elevates their recruitment to the hypomethylated P3 and P4 promoters with increased acetylation levels of the corresponding histones H3 and H4. Further results showed that endogenous MBD2 and CBP/p300 are necessary for HBx-induced IGF-II overexpression and that CBP/p300 presence and CBP/p300-mediated acetylation of histones H3 and H4 are partially required for MBD2 binding and its demethylase activity. These data suggest that HBx induces MBD2-HBx-CBP/p300 complex formation via interaction with MBD2 and CBP/p300, which contributes to the hypomethylation and transcriptional activation of the IGF-II-P3 and P4 promoters and that CBP/p300-mediated acetylation of histones H3 and H4 may be a rate-limiting step for the hypomethylation and activation of these two promoters. This study provides an alternative mechanism for understanding the

  18. Differential tissue regulation of insulin-like growth factor-I content and binding proteins after endotoxin.

    PubMed

    Fan, J; Molina, P E; Gelato, M C; Lang, C H

    1994-04-01

    The purpose of the present study was to investigate the regulation of plasma and tissue levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-1, -2, and -3 (IGFBP-1, -2, and -3) in rats injected with Escherichia coli lipopolysaccharide (LPS), a component of the outer cell wall of gram-negative bacteria. When injected iv into conscious overnight fasted rats, plasma IGF-I levels were initially decreased within 1 h, maximally depressed at 4 h, and still only 35-45% of control values at 24 h. GH levels were reduced as early as 30 min after LPS, averaged 80-90% of control values between 1-4 h, but had returned to basal levels by 24 h. The magnitude and duration of these changes were similar regardless of whether 100 or 10 micrograms/100 g BW (LD20 and LD0, respectively) LPS were injected. Plasma levels of IGFBP-1 and a 28K mol wt BP (BP-28K) were elevated 2- to 3-fold 4 h after LPS treatment, whereas IGFBP-3 and -2 levels were unchanged. The elevation in plasma IGFBP-1 and IGFBP-28K was observed as early as 1 h and was sustained for up to 24 h after LPS treatment. IGF-I levels were decreased 30-50% in liver, pituitary, and skeletal muscle, unchanged in brain, and elevated 5-fold in kidney in response to LPS. Of the tissues sampled, IGFBP-3 and -2 were selectively elevated in liver after LPS treatment. IGFBP-1 was increased in liver, muscle, and kidney in response to LPS. The level of the 28,000 mol wt BP was increased in liver (83%) and not changed in muscle or brain. These data indicate that LPS produces both rapid and sustained alterations in circulating levels of GH, IGF-I, and IGFBPs. Furthermore, there were marked tissue-specific changes in levels of IGF-I and IGFBPs. LPS-induced changes in plasma and tissue IGFBP-3 were not regulated by changes in GH, and changes in insulin could not explain the alterations in IGFBP-1 and -2. These results suggest that after the injection of LPS, changes in IGF-I and IGFBP levels are regulated by a mechanism

  19. The insulin-like growth factor II/mannose-6-phosphate receptor is present in monkey serum.

    PubMed

    Gelato, M C; Kiess, W; Lee, L; Malozowski, S; Rechler, M M; Nissley, P

    1988-10-01

    We recently reported that the insulin-like growth factor II (IGF-II)/mannose-6-phosphate (Man-6-P) receptor is present in fetal and postnatal rat serum and that its serum content declined dramatically postnatally between days 20 and 40 . We now provide evidence that the IGF-II/Man-6-P receptor is also present in monkey serum. Serum was gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was greatest in cord serum and decreased with age. Competitive binding studies with [125I]IGF-II and the void volume pools from monkey serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. Radiolabeled IGF-I did not bind specifically to the void volume pools. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from monkey cord serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of monkey serum. A band of approximately the same size as that found with human fibroblast members (approximately 215 K without dithiothreitol) was detected. The IGF-II/Man-6-P receptor band was more intense in cord serum than in the postnatal samples. When cord serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/L acetic acid to separate binding components from free IGF, and IGF-II was measured by RRA, approximately 20% of the circulating IGF-II was found to be associated with this IGF-II/Man-6-P receptor in monkey serum. We conclude that the IGF-II/Man-6-P receptor present in serum may be a significant carrier for IGF-II in the monkey

  20. The insulin-like growth factor II/mannose-6-phosphate receptor is present in fetal and maternal sheep serum.

    PubMed

    Gelato, M C; Rutherford, C; Stark, R I; Daniel, S S

    1989-06-01

    A large mol wt binding protein for insulin-like growth factor II (IGF-II) has been described in fetal sheep serum. We now provide evidence to demonstrate that this binding protein is the IGF-II/mannose-6-phosphate (Man-6-P) receptor. Serum and plasma were gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was increased in fetal serum as well as maternal serum and dramatically decreased in the nonpregnant adult. Competitive binding studies with [125I]IGF-II and the void volume pools from fetal and maternal sheep serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. There was no specific binding of [125I]IGF-I to the void volume pools of either fetal or maternal samples. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from fetal and maternal sheep serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of fetal, maternal, uterine vein, and adult sheep serum; a band of approximately 210K (without dithiothreitol) was seen. The IGF-II/Man-6-P receptor band was more intense in fetal serum than in either maternal or adult nonpregnant sheep serum. There was also increased binding of [125I]IGF-II in the 40K region of the Sephadex G-200 column fractions in the maternal serum compared to that in serum from nonpregnant adult ewes. When fetal, maternal, and adult nonpregnant sheep serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/liter acetic acid to separate bound from free IGF, and IGF-II was

  1. The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows.

    PubMed

    Murney, R; Stelwagen, K; Wheeler, T T; Margerison, J K; Singh, K

    2015-08-01

    In dairy cows, short-term changes in milking frequency (MF) in early lactation have been shown to produce both an immediate and a long-term effect on milk yield. The effect of MF on milk yield is controlled locally within mammary glands and could be a function of changes in either number or activity of secretory mammary epithelial cells (MEC). Insulin-like growth factor I (IGF-I) signaling is one candidate factor that could mediate these effects, as it can be controlled locally within mammary glands. Both MEC number and activity can be affected by IGF-I signaling by activating the phosphoinositide 3-kinase (PI3K)/Akt and extracellular-signal-regulated kinase (ERK)1/2 pathways. To investigate the relationship between MF and IGF-I signaling, udder halves of 17 dairy cows were milked either 4 times a day (4×) or once a day (1×) for 14 d in early lactation. On d 14, between 3 and 5 h following milking, mammary biopsies were obtained from 10 cows from both udder halves, and changes in the expression of genes associated with IGF-I signaling and the activation of the PI3K/Akt and ERK1/2 pathways were measured. The mRNA abundance of IGF type I receptor, IGF binding protein (IGFBP)-3, and IGFBP-5 were lower following 4× milking relative to 1× milking. However, the mRNA abundance of IGF-I was not affected by MF. Both IGFBP3 and IGFBP5 are thought to inhibit IGF-I; therefore, decreases in their mRNA abundance may serve to stimulate the IGF-I signal in the 4×-milked mammary gland. The activation of PI3K/Akt pathway was lower in response to 4× milking relative to 1×, and the activation of the ERK1/2 was unaffected by MF, suggesting that they do not mediate the effects of MF. PMID:26074231

  2. ImmunoPET Imaging of Insulin-Like Growth Factor 1 Receptor in a Subcutaneous Mouse Model of Pancreatic Cancer.

    PubMed

    England, Christopher G; Kamkaew, Anyanee; Im, Hyung-Jun; Valdovinos, Hector F; Sun, Haiyan; Hernandez, Reinier; Cho, Steve Y; Dunphy, Edward J; Lee, Dong Soo; Barnhart, Todd E; Cai, Weibo

    2016-06-01

    The role of insulin-like growth factor-1 receptor (IGF-1R) in cancer tumorigenesis was established decades ago, yet there are limited studies evaluating the imaging and therapeutic properties of anti-IGF-1R antibodies. Noninvasive imaging of IGF-1R may allow for optimized patient stratification and monitoring of therapeutic response in patients. Herein, this study reports the development of a Zirconium-89 ((89)Zr)-labeled anti-IGF-1R antibody ((89)Zr-Df-1A2G11) for PET imaging of pancreatic cancer. Successful chelation and radiolabeling of the antibody resulted in a highly stable construct that could be used for imaging IGF-1R expressing tumors in vivo. Western blot and flow cytometry studies showed that MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines expressed high, moderate, and low levels of IGF-1R, respectively. These three pancreatic cancer cell lines were subcutaneously implanted into mice. By employing the PET imaging technique, the tumor accumulation of (89)Zr-Df-1A2G11 was found to be dependent on the level of IGF-1R expression. Tumor accumulation of (89)Zr-Df-1A2G11 was 8.24 ± 0.51, 5.80 ± 0.54, and 4.30 ± 0.42 percentage of the injected dose (%ID/g) in MIA PaCa-2, BxPC-3, and AsPC-1-derived tumor models at 120 h postinjection, respectively (n = 4). Biodistribution studies and ex vivo immunohistochemistry confirmed these findings. In addition, (89)Zr-labeled nonspecific human IgG ((89)Zr-Df-IgG) displayed minimal uptake in IGF-1R positive MIA PaCa-2 tumor xenografts (3.63 ± 0.95%ID/g at 120 h postinjection; n = 4), demonstrating that (89)Zr-Df-1A2G11 accumulation was highly specific. This study provides initial evidence that our (89)Zr-labeled IGF-1R-targeted antibody may be employed for imaging a wide range of malignancies. Antibodies may be tracked in vivo for several days to weeks with (89)Zr, which may enhance image contrast due to decreased background signal. In addition, the principles outlined in this study can be employed for

  3. Effect of transgenic human insulin-like growth factor-1 on spinal motor neurons following peripheral nerve injury

    PubMed Central

    GU, JIAXIANG; LIU, HONGJUN; ZHANG, NAICHEN; TIAN, HENG; PAN, JUNBO; ZHANG, WENZHONG; WANG, JINGCHENG

    2015-01-01

    The aim of the present study was to observe the protective effect of exogenous human insulin-like growth factor-1 (hIGF-1) on spinal motor neurons, following its local transfection into an area of peripheral nerve injury. A total of 90 male Wistar rats that had been established as sciatic nerve crush injury models were randomly divided into three groups: hIGF-1 treatment, sham-transfected control and blank control groups. The different phases of hIGF-1 expression were observed in the spinal cord via postoperative immunostaining and the apoptosis of motor neurons was observed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. Pathological changes of the motor neurons and Nissl bodies within cell bodies were observed via Marsland and Luxol fast blue double staining, while changes in the neuropil of the spinal cord anterior horn were investigated via ultrastructural observation. It was found that hIGF-1, locally transfected into an area of peripheral nerve injury, was expressed in the spinal anterior horn following axoplasmic transport; the peak hIGF-1 expression occurred approximately a week following transfection. The number of apoptotic spinal cord motor neurons observed in the hIGF-1 treatment group was fewer than that in the sham-transfected and blank control groups at days 7, 14 and 21 following transfection (P<0.01). Furthermore, the quantity of motor neuron cells in the anterior horn of the spinal cord in the hIGF-1 treatment group was higher compared with those in the sham-transfected and blank control groups at days 2, 7, 14 and 28 following transfection (P<0.01). The degenerative changes of Nissl bodies within the cytoplasm of the hIGF-1 treatment group were less severe compared with those of the sham-transfected and blank control groups. At day 56 following transfection, the spinal anterior horn neuropil ultrastructure in the hIGF-1 treatment group was generally normal, while the sham-transfected and blank control

  4. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.

  5. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes

    PubMed Central

    Song, Cheng-Jun; Yang, Zhen-Jun; Tang, Qi-Feng; Chen, Zhi-Hong

    2015-01-01

    This study investigated the effects of sericin on the testicular growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in rats with type 2 diabetes mellitus. Forty rats were randomly assigned to normal control, type 2 diabetes mellitus, sericin and metformin treated groups. Type 2 diabetes was established by repeated intraperitoneal injection of streptozotocin, and identified by blood glucose ≥16.7 mmol/L at 1 week. The diabetic rats were given no other treatment, these rats in the sericin group were intragastrically perfused with 2.4 g/kg sericin and the metformin treated rats were intragastrically perfused with 55.33 mg/kg Metformin daily for 35 consecutive days. Enzyme-linked immunosorbent assays were used to determine serum testosterone, growth hormone and IGF-1 levels. Immunohistochemical staining, western blotting and reverse transcription-PCR were used to determine testicular growth hormone, growth hormone receptor and IGF-1 expression. The sericin significantly reduced serum growth hormone levels, downregulated growth hormone expression, increased serum testosterone and IGF-1 levels, and upregulated testicular growth hormone receptor and IGF-1 expression. Moreover, there were no significant differences in any of the parameters between the sericin and metformin treated groups. These findings indicated that sericin improved spermatogenic function through regulating the growth hormone/IGF-1 axis, thereby protecting reproductive function against diabetes-induced damage. PMID:26379831

  6. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes.

    PubMed

    Song, Cheng-Jun; Yang, Zhen-Jun; Tang, Qi-Feng; Chen, Zhi-Hong

    2015-01-01

    This study investigated the effects of sericin on the testicular growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in rats with type 2 diabetes mellitus. Forty rats were randomly assigned to normal control, type 2 diabetes mellitus, sericin and metformin treated groups. Type 2 diabetes was established by repeated intraperitoneal injection of streptozotocin, and identified by blood glucose ≥16.7 mmol/L at 1 week. The diabetic rats were given no other treatment, these rats in the sericin group were intragastrically perfused with 2.4 g/kg sericin and the metformin treated rats were intragastrically perfused with 55.33 mg/kg Metformin daily for 35 consecutive days. Enzyme-linked immunosorbent assays were used to determine serum testosterone, growth hormone and IGF-1 levels. Immunohistochemical staining, western blotting and reverse transcription-PCR were used to determine testicular growth hormone, growth hormone receptor and IGF-1 expression. The sericin significantly reduced serum growth hormone levels, downregulated growth hormone expression, increased serum testosterone and IGF-1 levels, and upregulated testicular growth hormone receptor and IGF-1 expression. Moreover, there were no significant differences in any of the parameters between the sericin and metformin treated groups. These findings indicated that sericin improved spermatogenic function through regulating the growth hormone/IGF-1 axis, thereby protecting reproductive function against diabetes-induced damage. PMID:26379831

  7. Novel insulin-like growth factor-methotrexate covalent conjugate inhibits tumor growth in vivo at lower dosage than methotrexate alone.

    PubMed

    McTavish, Hugh; Griffin, Robert J; Terai, Kaoru; Dudek, Arkadiusz Z

    2009-06-01

    The insulin-like growth factor receptor is overexpressed on many types of cancer cells and has been implicated in metastasis and resistance to apoptosis. We report here the development of a novel covalent conjugate that contains the antifolate drug methotrexate coupled to an engineered variant of insulin-like growth factor-1 (IGF-1), long-R3-IGF-1, which was designed to target methotrexate to tumor cells that overexpress the membrane IGF-1 receptor. The IGF-methotrexate conjugate was found to contain at least 4 methotrexate molecules per IGF-1 protein. The IGF-methotrexate conjugate bound to MCF7 breast cancer cells with greater than 3.3-fold higher affinity than unconjugated long-R3-IGF-1 in a competition binding assay against radiolabeled wild-type IGF-1. Compared with free methotrexate, the IGF-methotrexate conjugate required slightly higher concentrations to inhibit the in vitro growth of the human prostate cancer cell line LNCaP. In vivo, however, in a mouse xenograft model using LNCaP cells, the IGF-methotrexate conjugate was more effective than free methotrexate even at a 6.25-fold lower molar dosage. Similarly, MCF7 xenografts were inhibited more effectively by the IGF-methotrexate conjugate than free methotrexate, even at a 4-fold lower molar dosage. Our results suggest that the targeting of the IGF receptor on tumor cells and tumor-related tissues with IGF-chemotherapy conjugates may substantially increase the specific drug localization and therapeutic effect in the tumor. PMID:19446281

  8. Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers

    PubMed Central

    Anh, Nguyen Thi Lan; Kunhareang, Sajee; Duangjinda, Monchai

    2015-01-01

    Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in PS×KM chickens. For PS×KT populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers. PMID:26580435

  9. Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers.

    PubMed

    Anh, Nguyen Thi Lan; Kunhareang, Sajee; Duangjinda, Monchai

    2015-12-01

    Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in PS×KM chickens. For PS×KT populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers. PMID:26580435

  10. An insulin-like growth factor found in hepatopancreas implicates carbohydrate metabolism of the blue crab Callinectes sapidus.

    PubMed

    Chung, J Sook

    2014-04-01

    Hyperglycemia that is caused by the release of crustacean hyperglycemic hormone (CHH) from the sinus gland to hemolymph is one of the hallmark physiological phenomena, occurring in decapod crustaceans experiencing stressful conditions. However, the mechanism(s) by which such elevated glucose levels return to resting levels is still unknown. Interestingly, noted is a difference in the clearance rate of hemolymph glucose between adult females and adult males of the blue crab, Callinectes sapidus: the former with more rapid clearance than the latter. The presence of an endogenous-insulin-like molecule is suggested in C. sapidus because an injection of bovine insulin, significantly reduces the levels of hemolymph glucose that were previously elevated by emersion stress or the glucose injection. Using 5' and 3' RACE, the full-length cDNA of an insulin-like molecule is isolated from the hepatopancreas of an adult female C. sapidus and shows the same putative sequence of an insulin-like androgenic gland factor (IAG) but differs in 5' and 3' UTR sequences. A knock-down study using five injections of double-stranded RNA of CasIAG-hep (dsRNA-CasIAG-hep, 10μg/injection) over a 10-day period reduces CasIAG-hep expression by ∼50%. The levels of hemolymph glucose are also kept higher in dsRNA-CasIAG-hep injected group than those treated with dsRNA-green fluorescent protein (dsRNA-IAG-hep) or saline. Most importantly, the hepatopancreas of dsRNA-CasIAG-hep injected animals contains amounts of carbohydrate (glucose, trehalose, and glycogen) significantly lower than those of control groups, indicating that the function of CasIAG-hep in carbohydrate metabolism in crustaceans is similar to carbohydrate metabolism in vertebrates. PMID:24503150

  11. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    SciTech Connect

    Salem, M.A.M.; Phares, C.K.

    1986-03-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate (U-/sup 14/C)glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10/sup 5/ cells/ml) were incubated with either (/sup 125/I)insulin or (/sup 125/I)hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and /sup 14/C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro.

  12. Proteolytic degradation of insulin-like growth factor (IGF)-binding protein-3 by porcine ovarian granulosa cells in culture: regulation by IGF-I.

    PubMed

    Grimes, R W; Hammond, J M

    1994-01-01

    Porcine ovarian granulosa cells in culture secrete glycosylated insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3), which inhibits gonadotropin and IGF action in the ovary. Synthesis of IGFBP-3 is stimulated by IGF-I and attenuated by gonadotropin. The purpose of the present study was to determine whether IGFBP-3 levels were also regulated via proteolysis. Exogenously added nonglycosylated recombinant human IGFBP-3 (rhIGFBP-3) was significantly degraded over time by a soluble serine-specific protease, similar to plasmin, in control cultures and those treated with FSH, insulin, or several other classes of hormones. In contrast, degradation was greatly attenuated by the IGFs. Degraded rhIGFBP-3 exhibited much reduced affinity for [125I]IGF-II, suggesting that degradation could make available IGFs for cellular interaction. The mechanism of IGFBP-3 protease inhibition by IGFs is unclear. Mediation by IGF receptors is unlikely, as insulin at a dose that activated both insulin and type I IGF receptors did not alter intrinsic degradation of IGFBP-3 (as does IGF). Additionally, IGF-I attenuation of IGFBP-3 degradation was not inhibited by antagonism of receptor action with a tyrosine kinase inhibitor. Further, IGF-I inhibited degradation in cell-free conditioned medium. Direct stabilization of IGFBP-3 via binding of IGFs was suggested from these results. However, long R3 IGF-I attenuated IGFBP-3 degradation even though it has low affinity for IGFBPs. Inhibition of the protease by IGFs is also possible. We conclude that IGFs inhibit the degradation of exogenous nonglycosylated rhIGFBP-3. If active in vivo, this may serve to increase endogenous IGFBP-3 levels in follicular fluid. PMID:7506209

  13. Differential steroidogenic response of subpopulations of porcine granulosa cells to insulin-like growth factor-1 (IGF-1) or IGF-1 analogs.

    PubMed

    Howard, H J; Ford, J J

    1994-07-01

    Two experiments were conducted to examine responses of porcine granulosa cells to insulin-like growth factor-1 (IGF-1) or IGF-1 analogs (des [1-3] and Long R3) that have reduced affinity for IGF-binding proteins (IGFBP). Both experiments evaluated estradiol and IGFBP production by granulosa cells after separation of cells into subpopulations that maintain long-term estradiol production in vitro (tightly bound) and those that do not (weakly associated). Granulosa cells were obtained from medium-sized follicles (4-6 mm) at random stages of the estrous cycle in experiment 1 and from the 10 largest follicles per ovary at 0 or 48 h after weaning in experiment 2. Follicle diameter and follicular fluid estradiol concentrations increased with time after weaning (p < 0.05). Tightly bound cells produced more estradiol than weakly associated cells at 24-120 h of culture in experiment 1 and from 0 to 48 h in experiment 2 (p < 0.05). In tightly bound but not weakly associated cells, IGF-1 stimulated estradiol production. The IGF analogs were more potent stimulators than IGF-1 in experiment 1 (p < 0.05); and in experiment 2, this response was restricted to cells collected at 48 h after weaning. Conversely, tightly bound cells obtained at 0 h after weaning responded similarly to IGF-1 and des (1-3). During the final 48 h of culture, weakly associated cells produced greater quantities of 28-30-kDa IGFBP than did tightly bound cells in response to IGF-1 or analogs (both experiments; p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7522591

  14. Insulin-like growth factor-I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats.

    PubMed

    Pardo, Joaquín; Uriarte, Maia; Cónsole, Gloria M; Reggiani, Paula C; Outeiro, Tiago F; Morel, Gustavo R; Goya, Rodolfo G

    2016-08-01

    In rats, learning and memory performance decline during aging, which makes this rodent species a suitable model to evaluate therapeutic strategies of potential value for correcting age-related cognitive deficits. Some of these strategies involve neurotrophic factors like insulin-like growth factor-I (IGF-I), a powerful neuroprotective molecule in the brain. Here, we implemented 18-day long intracerebroventricular (ICV) IGF-I gene therapy in 28 months old Sprague-Dawley female rats, and assessed spatial memory performance in the Barnes maze. We also studied hippocampal morphology using an unbiased stereological approach. Adenovectors expressing the gene for rat IGF-I or the reporter DsRed were used. Cerebrospinal fluid (CSF) samples were taken and IGF-I levels determined by radioimmunoassay. At the end of the study, IGF-I levels in the CSF were significantly higher in the experimental group than in the DsRed controls. After treatment, the IGF-I group showed a significant improvement in spatial memory accuracy as compared with DsRed counterparts. In the dentate gyrus (DG) of the hippocampus, the IGF-I group showed a higher number of immature neurons than the DsRed controls. The treatment increased hippocampal astrocyte branching and reduced their number in the hippocampal stratum radiatum. We conclude that the ependymal route is an effective approach to increase CSF levels of IGF-I and that this strategy improves the accuracy of spatial memory in aging rats. The favorable effect of the treatment on DG neurogenesis and astrocyte branching in the stratum radiatum may contribute to improving memory performance in aging rats. PMID:27188415

  15. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation.

    PubMed

    Qiu, Jia; Ma, Xiao-Li; Wang, Xin; Chen, Hong; Huang, Bing-Ren

    2012-02-01

    Insulin-like growth factor binding protein-6 (IGFBP-6) is a member of the insulin-like growth factor binding protein family, which has both Insulin-like growth factor-dependent and independent effects on cell growth. In previous studies, we have shown that recombinant IGFBP-6 could be translocated into the cell nucleus. But the effect in the nucleus of IGFBP-6 is not clear. In the present study, we use multiple methodologies including Glutathione S-transferase pull-down assay, co-immunoprecipitation, fluorescence resonance energy transfer to demonstrate that IGFBP-6 can directly interact with thyroid hormone receptor alpha 1 (TRα1) in vitro and in vivo. We also demonstrate that the DNA-binding domains and Ligand-binding domains of TRα1 and N-terminal domains and C-terminal domains of IGFBP-6 are involved in the interaction. This interaction also can block the formation of TR: retinoid X receptor heterodimers. Furthermore, immunofluorescence co-localization studies show IGFBP-6 and TRα1 could co-localize in the nucleus of the cells. Reporter gene experiment shows that IGFBP-6 negatively regulates the growth hormone promoter activity induced by ligand activated TRα1. Moreover, real-time RT-PCR demonstrates that IGFBP-6 could inhibit the osteocalcin mRNA transcription induced by Triiodothyronine (3,3',5-Triiodo-L-thyronine, T3) in osteoblastic cells. Finally, alkaline phosphatase activity was significantly decreased in osteoblastic cells when the cells were transfected with IGFBP-6 in the presence of T3. In conclusion, these studies provide evidence that overexpression of IGFBP-6 suppresses osteoblastic differentiation regulated by TR in the present of T3. PMID:21997736

  16. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  17. Long [R3] insulin-like growth factor-I reduces growth, plasma growth hormone, IGF binding protein-3 and endogenous IGF-I concentrations in pigs.

    PubMed

    Dunaiski, V; Dunshea, F R; Walton, P E; Goddard, C

    1997-12-01

    Growth hormone (GH) improves growth performance in the pig. Analogues of insulin-like growth factor-I (IGF-I) that bind poorly to IGF binding proteins (IGFBP) stimulate growth in the rat but, in contrast, inhibit growth in the pig. This study was designed to determine the effect of IGF peptides alone or in combination with porcine GH (pGH) on growth characteristics and plasma hormone concentrations in finisher pigs. A four-day infusion of Long [R3] IGF-I (LR3IGF-I; 180 micrograms/kg/day) decreased the average daily gain, food intake, and plasma IGFBP-3, IGF-I and insulin concentrations. The mean plasma GH concentration was decreased by 23% and the area under the GH peaks was reduced by 60%. Co-administration of pGH (30 micrograms/kg/day) with LR3IGF-I had no interactive effect on growth performance, and plasma insulin, IGFBP-3 and IGF-I concentrations remained suppressed. The area under the GH peaks was not restored with this combination treatment although mean plasma GH concentrations were elevated in all animals receiving pGH. Infusion of IGF-I (180 micrograms/kg/day) decreased plasma insulin and mean GH concentrations but had no significant effect on IGFBP-3 concentrations. Average daily gain and feed intake were not changed by IGF-I treatment. A combination of IGF-I and pGH injection (30 micrograms/kg/day) increased plasma IGFBP-3 concentrations but plasma insulin levels remained suppressed. Plasma glucose levels were unaffected by any treatment. The study demonstrates that both IGF-I and LR3IGF-I suppress plasma GH concentrations in finisher pigs. This, in turn, may be responsible for the reduction in the plasma concentration of IGF-I, IGFBP-3 and insulin seen in LR3IGF-I-treated animals. The decrease in these parameters may contribute to the inhibitory effect of LR3IGF-I on growth performance in the pig. PMID:9488001

  18. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone

    PubMed Central

    Sheng, Matilda H. C.; Lau, K. H. William

    2014-01-01

    The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibroblast growth factor (FGF)-23. Osteocytes secrete large amounts of insulin-like growth factor (IGF)-I in bone. Although IGF-I produced locally by other bone cells, such as osteoblasts and chondrocytes, has been shown to play important regulatory roles in bone turnover and developmental bone growth, the functional role of osteocyte-derived IGF-I in the bone and mineral metabolism has not been investigated and remains unclear. However, results of recent studies in osteocyte Igf1 conditional knockout transgenic mice have suggested potential regulatory roles of osteocyte-derived IGF-I in various aspects of bone and mineral metabolism. In this review, evidence supporting a regulatory role for osteocyte-derived IGF-I in the osteogenic response to mechanical loading, the developmental bone growth, the bone response to dietary calcium depletion and repletion, and in fracture repair is discussed. A potential coordinated regulatory relationship between the effect of osteocyte-derived IGF-I on bone size and the internal organ size is also proposed. PMID:24707466

  19. Endocrine and metabolic changes in neonatal calves in response to growth hormone and long-R3-insulin-like growth factor-I administration.

    PubMed

    Hammon, H; Blum, J W

    1998-01-01

    Postnatal growth is primarily controlled by growth hormone (GH) and insulin-like growth factor-I (IGF-I). We have studied effects of recombinant bovine GH (rbGH) and Long-R3-insulin-like growth factor-I (Long-R3-IGF-I) on metabolic and endocrine characteristics of neonatal calves. Group GrC (control) was fed colostrum as first meal and then milk replacer up to day 7. Groups GrIGFf, GrIGFi and GrGH were fed as GrC. In group GrIGFf, Long-R3-IGF-I (50 micrograms/[kg x day], twice daily for 7 days) was fed together with colostrum or milk replacer and in group GrIGFi, Long-R3-IGF-I (50 micrograms/[kg x day], twice daily for 7 days) was injected subcutaneously at times of feeding. Calves of group GrGH were injected rbGH (1 mg/[kg x day, s.c.], twice daily for 7 days) at times of feeding. While orally administered Long-R3-IGF-I had no effects, subcutaneously administered Long-R3-IGF-I lowered plasma glucose and insulin concentrations (p < 0.05). In group GrGH, day-2 postprandial plasma insulin concentrations were increased more than in Long-R3-IGF-I-treated groups (p < 0.05) and day-2 postprandial prolactin responses were greater in group GrGH than in controls (p < 0.05). Other traits (lactic acid, nonesterified fatty acids, glucagon, cortisol, thyroxine and 3.5.3'-triiodothyronine) exhibited age-dependent changes, but were not significantly affected by rbGH or Long-R3-IGF-I. The study shows, that parenteral, but not oral, Long-R3-IGF-I affects plasma glucose and insulin concentrations, and that rbGH transiently influences plasma prolactin concentrations in neonatal calves. PMID:9483305

  20. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction.

    PubMed

    Watson, Carole S; Bialek, Peter; Anzo, Makoto; Khosravi, Javad; Yee, Siu-Pok; Han, Victor K M

    2006-03-01

    IGF binding protein-1 (IGFBP-1) inhibits the mitogenic actions of the IGFs. Circulating IGFBP-1 is elevated in newborns and experimental animals with fetal growth restriction (FGR). To establish a causal relationship between high circulating IGFBP-1 and FGR, we have generated transgenic mice using the mouse alpha-fetoprotein gene promoter to target overexpression of human IGFBP-1 (hIGFBP-1) in the fetal liver. These transgenic mice (AFP-BP1) expressed hIGFBP-1 mainly in the fetal hepatocytes, starting at embryonic d 14.5 (E14.5), with lower levels in the gut. The expression peaked at 1 wk postnatally (plasma concentration, 474 +/- 34 ng/ml). At birth, AFP-BP1 pups were 18% smaller [weighed 1.34 +/- 0.02 g compared with 1.62 +/- 0.04 g for wild type (WT); P < 0.05], and they did not demonstrate any postnatal catch-up growth. The placentas of the AFP-BP1 mice were larger than WT from E16.5 onwards (150 +/- 12 for AFP-BP1 vs. 100 +/- 5 mg for WT at E16.5; P < 0.05). Thus, this model of FGR is associated with a larger placenta, but without postnatal catch-up growth. Overall, these data clearly demonstrate that high concentrations of circulating IGFBP-1 are sufficient to cause FGR. PMID:16293667

  1. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  2. Rat milk and dietary long arginine3 insulin-like growth factor I promote intestinal growth of newborn rat pups.

    PubMed

    Staley, M D; Gibson, C A; Herbein, J F; Grosvenor, C E; Baumrucker, C R

    1998-10-01

    Newborn rat pups were artificially reared by the pup in cup (PIC) method to determine whether dietary long arginine3 IGF-I (long R3 IGF-I), an IGF-I analog with high receptor affinity and low IGF binding protein (IGFBP) affinity, had efficacy on intestinal growth. IGF effects are mediated by IGFBP and receptor interactions, hence dietary-induced changes in intestinal IGF-II receptor patterns and IGFBP-3 message levels were investigated. Intestinal micrographs of pups fed rat milk replacer (RMR) for 3 d showed flattened villi with low cell counts and appeared similar to newborn intestines. Mother-fed (MF) controls and long R3 IGF-I-fed pups showed increased villi height and cell counts when compared with RMR pups, with long R3 IGF-I fed pups showing the greatest increase. At birth IGF-II-specific binding was not uniform in the intestine; specific binding was higher in the proximal intestinal section than in the distal intestinal section. However, after 3 d of MF treatment, specific binding had reversed and the distal section showed higher IGF-II-specific binding. Three days of RMR feeding did not change IGF-II-specific binding from that of the newborn pup. An IGFBP-3 message was identified in intestinal epithelium by in situ hybridization. Northern analysis of IGFBP-3 message showed a decline over time, but the change was not influenced by dietary treatments. In summary, milk-borne growth factors have the potential to affect intestinal growth within 3 d of treatment. PMID:9773839

  3. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats.

    PubMed

    Hernández, Horacio; Flores, José Alfredo; Delgadillo, José Alberto; Fernández, Ilda G; Flores, Manuel de Jesús; Mejía, Ángel; Elizundia, José Manuel; Bedos, Marie; Ponce, José Luis; Ramírez, Sergio

    2016-04-01

    This study was designed to determine whether any relationship exists between exposure to artificial long days, milk yield, maternal plasma insulin-like growth factor 1 (IGF-1) levels, and kid growth rate in goats. One group of lactating goats was maintained under naturally decreasing day length (control group; n = 19), while in another one, they were kept under artificial long days (LD group; n = 19). Milk yield was higher in goats from the LD group than that in the control group (P < 0.05). Maternal IGF-1 levels at day 57 of lactation were higher (P < 0.05) in goats from the LD group than the levels in the control group and were positively correlated with the total milk yields per goat at days 43 and 57 of lactation (r = 0.77 and r = 0.84, respectively; P < 0.01). Daily weight gain at week 4 was higher (P < 0.01) in kids from the LD group than that in kids from the control group and was correlated with total and average IGF-1 maternal levels (r = 0.60 and r = 0.60, P < 0.05). It was concluded that submitting lactating goats to artificial long days increases milk yield, plasma IGF-1 maternal levels and the growth rate of the kids. PMID:26261065

  4. Induction of Hair Growth by Insulin-Like Growth Factor-1 in 1,763 MHz Radiofrequency-Irradiated Hair Follicle Cells

    PubMed Central

    Jo, Seong Jin; Cho, A-Ri; Jeon, Soon-Ik; Choi, Hyung-Do; Kim, Kyu Han; Park, Gun-Sik; Pack, Jeong-Ki; Kwon, Oh Sang; Park, Woong-Yang

    2011-01-01

    Radiofrequency (RF) radiation does not transfer high energy to break the covalent bonds of macromolecules, but these low energy stimuli might be sufficient to induce molecular responses in a specific manner. We monitored the effect of 1,763 MHz RF radiation on cultured human dermal papilla cells (hDPCs) by evaluating changes in the expression of cytokines related to hair growth. The expression of insulin-like growth factor-1 (IGF-1) mRNA in hDPCs was significantly induced upon RF radiation at the specific absorption rate of 10 W/kg, which resulted in increased expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL-2) and cyclin D1 (CCND1) proteins and increased phosphorylation of MAPK1 protein. Exposure to 10 W/kg RF radiation 1 h per day for 7 days significantly enhanced hair shaft elongation in ex vivo hair organ cultures. In RF-exposed follicular matrix keratinocytes in the hair bulb, the expression of Ki-67 was increased, while the signal for terminal deoxynucleotidyl transferase dUTP nick end labeling was reduced. From these results, we suggest that 1,763 MHz RF exposure stimulates hair growth in vitro through the induction of IGF-1 in hDPCs. PMID:22164296

  5. Thyrotropin inhibits while insulin, epidermal growth factor and tetradecanoyl phorbol acetate stimulate insulin-like growth factor binding protein secretion from sheep thyroid cells.

    PubMed

    Eggo, M C; Bachrach, L K; Brown, A L; Burrow, G N

    1991-01-01

    Six insulin-like growth factor binding proteins (IGFBP) have been identified in the conditioned medium from sheep thyroid cells cultured under serum-free conditions. IGFBPs of 32, 28, 23 and 19 kDa were secreted by cells cultured for 14 days in serum-free and hormone-free medium. The constitutive secretion of IGFBP was inhibited by thyrotropin (TSH, 0.3 mU per mL). The effect was most marked on the secretion of the 28 kDa BP. High insulin concentrations stimulated the secretion of this IGFBP. The stimulatory effects of insulin were inhibited by TSH. Growth hormone treatment decreased the secretion of the 28 kDa protein. Tetradecanoylphorbol-13 acetate (TPA) and epidermal growth factor (EGF) both of which stimulate thyroid cell growth but inhibit differentiated function, markedly stimulated IGFBP secretion and induced the appearance of a 46 and a 150 kDa IGFBP. The effects of EGF and TPA were not identical. A rat IGFBP-2 cDNA reacted with sheep thyroid RNA of approximate size 1.6 kb. TPA treatment increased IGFBP-2 mRNA. Other hormones used to enhance differentiation and growth in thyroid cells in culture i.e. transferrin, somatostatin, cortisol and glycyl-histidyl-lysine acetate had no marked effects on IGFBP secretion nor on TSH-dependent, insulin-mediated iodide uptake and organification and cell growth. We show a correlation between secretion of high molecular weight IGFBP with enhanced growth but decreased function. Conversely, we find a correlation between decreased secretion of the 28 kDa BP and increased growth and function. PMID:1722684

  6. Early origins of heart disease: low birth weight and the role of the insulin-like growth factor system in cardiac hypertrophy.

    PubMed

    Wang, Kimberley C W; Botting, Kimberley J; Padhee, Monalisa; Zhang, Song; McMillen, I Caroline; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L

    2012-11-01

    Epidemiological studies indicate that poor growth before birth is associated with left ventricular hypertrophy and an increased risk of death from heart disease later in life. In fetal life, the insulin-like growth factor (IGF) system has been implicated in physiological growth of the heart, whereas in postnatal life IGFs can be involved in both physiological and pathological cardiac hypertrophy. A reduction in substrate supply in fetal life, resulting in chronic hypoxaemia and intrauterine growth restriction, results in increased cardiac IGF-1R, IGF-2 and IGF-2R gene expression; and there is also evidence for a role of the IGF-2 receptor in the ensuing cardiac hypertrophy. The persistent high level of cardiac IGF-2R gene expression from fetal to postnatal life may be due to epigenetic changes in key cardiac hypertrophy regulatory pathways. PMID:22774980

  7. Association of the insulin-like growth factor binding protein 3 (IGFBP-3) polymorphism with longevity in Chinese nonagenarians and centenarians.

    PubMed

    He, Yong-Han; Lu, Xiang; Yang, Li-Qin; Xu, Liang-You; Kong, Qing-Peng

    2014-11-01

    Human lifespan is determined greatly by genetic factors and some investigations have identified putative genes implicated in human longevity. Although some genetic loci have been associated with longevity, most of them are difficult to replicate due to ethnic differences. In this study, we analyzed the association of 18 reported gene single nucleotide polymorphisms (SNPs) with longevity in 1075 samples consisting of 567 nonagenarians/centenarians and 508 younger controls using the GenomeLab SNPstream Genotyping System. Our results confirm the association of the forkhead box O3 (FOXO3) variant (rs13217795) and the ATM serine/threonine kinase (ATM) variant (rs189037) genotypes with longevity (p=0.0075 and p=0.026, using the codominant model and recessive model, respectively). Of note is that we first revealed the association of insulin-like growth factor binding protein 3 (IGFBP-3) gene polymorphism rs11977526 with longevity in Chinese nonagenarians/centenarians (p=0.033 using the dominant model and p=0.035 using the overdominant model). The FOXO3 and IGFBP-3 form important parts of the insulin/insulin-like growth factor-1 signaling pathway (IGF-1) implicated in human longevity, and the ATM gene is involved in sensing DNA damage and reducing oxidative stress, therefore our results highlight the important roles of insulin pathway and oxidative stress in the longevity in the Chinese population. PMID:25553725

  8. Insulin-like Growth Factor 1 Differentially Affects Lithium Sensitivity of Lymphoblastoid Cell Lines from Lithium Responder and Non-responder Bipolar Disorder Patients.

    PubMed

    Milanesi, Elena; Hadar, Adva; Maffioletti, Elisabetta; Werner, Haim; Shomron, Noam; Gennarelli, Massimo; Schulze, Thomas G; Costa, Marta; Del Zompo, Maria; Squassina, Alessio; Gurwitz, David

    2015-07-01

    Bipolar disorder (BD) is a chronic psychiatric illness with an unknown etiology. Lithium is considered the cornerstone in the management of BD, though about 50-60 % of patients do not respond sufficiently to chronic treatment. Insulin-like growth factor 1 (IGF1) has been identified as a candidate gene for BD susceptibility, and its low expression has been suggested as a putative biomarker for lithium unresponsiveness. In this study, we examined the in vitro effects of insulin-like growth factor 1 (IGF-1) on lithium sensitivity in lymphoblastoid cell lines (LCLs) from lithium responder (R) and non-responder (NR) bipolar patients. Moreover, we evaluated levels of microRNA let-7c, a small RNA predicted to target IGF1. We found that exogenous IGF-1 added to serum-free media increased lithium sensitivity selectively in LCLs from NR BD patients. However, no significant differences were observed when comparing let-7c expression in LCLs from R vs. NR BD patients. Our data support a key role for IGF-1 in lithium resistance/response in the treatment of bipolar disorder. PMID:25740013

  9. Acute and long-term genotoxicity of deltamethrin to insulin-like growth factors and growth hormone in rainbow trout.

    PubMed

    Aksakal, Ercüment; Ceyhun, Saltuk Buğrahan; Erdoğan, Orhan; Ekinci, Deniz

    2010-11-01

    We report here the acute and long-term influences of deltamethrin on the expression of IGF-I, IGF-II and GH-I in rainbow trout muscles. We treated rainbow trouts with different concentrations of deltamethrin (0.25 microg/L, 1 microg/L and 2.5 microg/L) and observed the alterations in mRNA expression levels of IGF-I, IGF-II and GH-I at different time intervals (at 6th, 12th, 24th, 48th, 72nd hours and 30th day). The mRNA levels significantly decreased with increasing deltamethrin concentrations for acute administration. Interestingly, a significant recovery in GH-I expression was seen after the 72nd hour up to 30th day while no significant differences were observed for IGF-I and IGF-II between the same time intervals. Here we demonstrate that deltamethrin exposure decreases the expression of IGF-I, IGF-II and GH-I in rainbow trout which might cause undesirable outcomes not only in growth, but also in development and reproduction. PMID:20647053

  10. Urinary insulin-like growth factor-II excretion in healthy infants and children with normal and abnormal growth.

    PubMed

    Quattrin, T; Albini, C H; Sportsman, C; Shine, B J; MacGillivray, M H

    1993-10-01

    The output of urinary IGF-II was measured by RIA in 12-h overnight urine samples obtained from 22 preterm and 15 full-term infants, 40 normal children, 18 children with growth hormone (GH) deficiency, and 25 patients with idiopathic short stature. GH deficiency was defined as a peak to GH provocative tests < or = 9.9 micrograms/L during two provocative tests. The authenticity of urinary IGF-II was confirmed by size exclusion chromatography. Statistical analysis was performed by one-way analysis of variance using the Student Neuman-Keuls test to detect intergroup differences at the level of p < 0.05. The preterm and full-term infants excreted significantly higher amounts of urinary IGF-II (18.4 +/- 1.7 and 5.7 +/- 1.0 pmol/kg, respectively) compared with normal children (2.4 +/- 0.25 pmol/kg; p < 0.001). The output of urinary IGF-II in preterm infants was greater than that observed in full-term infants (F = 84.7, p < 0.001). The control children excreted significantly more IGF-II (2.4 +/- 0.2 pmol/kg) than children with GH deficiency (0.9 +/- 0.1 pmol/kg) or idiopathic short stature (1.0 +/- 0.1 pmol/kg; F = 13.5; p < 0.001). Analysis of urinary IGF-II excretion based on creatinine output yielded similar results. Data on urinary IGF-I and GH previously published were correlated and compared with the excretion pattern of urinary IGF-II.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8255673

  11. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain.

    PubMed

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22(-/-) cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. PMID:27083047

  12. Effects of somatostatin on the growth hormone-insulin-like growth factor axis and seawater adaptation of rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Poppinga, J.; Kittilson, J.; McCormick, S.D.; Sheridan, M.A.

    2007-01-01

    Growth hormone (GH) has been shown to contribute to the seawater (SW) adaptability of euryhaline fish both directly and indirectly through insulin-like growth factor-1 (IGF-1). This study examined the role of somatostatin-14 (SS-14), a potent inhibitor of GH, on the GH-IGF-1 axis and seawater adaptation. Juvenile rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with SS-14 or saline and transferred to 20??ppt seawater. A slight elevation in plasma chloride levels was accompanied by significantly reduced gill Na+, K+-ATPase activity in SS-14-treated fish compared to control fish 12??h after SW transfer. Seawater increased hepatic mRNA levels of GH receptor 1 (GHR 1; 239%), GHR 2 (48%), and IGF-1 (103%) in control fish 12??h after transfer. Levels of GHR 1 (155%), GHR 2 (121%), IGF-1 (200%), IGF-1 receptor A (IGFR1A; 62%), and IGFR1B (157%) increased in the gills of control fish 12??h after transfer. SS-14 abolished or attenuated SW-induced changes in the expression of GHR, IGF-1, and IGFR mRNAs in liver and gill. These results indicate that SS-14 reduces seawater adaptability by inhibiting the GH-IGF-1 axis. ?? 2007 Elsevier B.V. All rights reserved.

  13. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain

    PubMed Central

    Terauchi, Akiko; Johnson-Venkatesh, Erin M; Bullock, Brenna; Lehtinen, Maria K; Umemori, Hisashi

    2016-01-01

    Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22-/- cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus. DOI: http://dx.doi.org/10.7554/eLife.12151.001 PMID:27083047

  14. Changes in tissue levels of growth hormone, insulin-like growth factor-I, and somatostatin in the femurs of hind-limb immobilized rats.

    PubMed

    Suliman, I A; Elhassan, A M; Adem, A; El-Bakri, N K; Lindgren, J U

    2001-04-01

    Immobilization of an extremity causes skeletal muscle atrophy and a dramatic increase in bone resorption. Growth hormone (GH) is known to play an important role in bone remodeling mediated in part by local insulin-like growth factor-I (IGF-I). In this study, we investigated changes in the levels of GH and IGF-I peptide in bone extracts from the femur after hind-limb immobilization for 5 days, 2, 4, and 8 weeks. The levels of somatostatin, which interacts with GH, were also measured in the bone extracts. GH levels increased after 8 weeks of hind-limb immobilization whereas the IGF-I concentrations increased after 2 weeks, but returned to control levels at 4 weeks, and decreased after 8 weeks of immobilization. The somatostatin levels in the bone extracts increased only after 8 weeks of hind-limb immobilization. Our findings suggest that, after hind-limb immobilization, changes in the concentrations of GH, IGF-I, and somatostatin in bone may mediate bone resorption either directly or through interaction with other factors. PMID:11372951

  15. The effect of ovariectomy and ovarian steroid treatment on growth hormone and insulin-like growth factor-I levels in the rat femur.

    PubMed

    Suliman, I A; El-Bakri, N K; Adem, A; Mustafa, A; Lindgren, J U

    2001-11-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are known to play an important role in bone metabolism. The regulation of plasma levels of GH and IGF-I by ovarian steroids is well known, however, their effect on local GH and IGF-I is still unclear. In this study, we investigated the effect of ovariectomy and ovarian steroid treatment on the femur GH and IGF-I levels as well as on bone density in the rat. Nine month-old rats were ovariectomized (OVX) or sham-operated (SHAM) and 9 weeks after the surgery they were treated with daily s.c. injections of either 17beta-estradiol (OVX + E), progesterone (OVX + P), or vehicle (OVX + V) for another 10 weeks. GH and IGF-I levels in the femur extracts were measured by specific radioimmunoassay (RIA). Ovariectomy decreased GH and had no effect on IGF-I levels. Estradiol treatment increased femur GH and IGF-I levels compared to SHAM rats. Progesterone restored GH and increased IGF-I levels. Ovariectomy decreased, estrogen restored and progesterone partially restored femur bone density. Our results demonstrate that ovariectomy and ovarian steroids modulate the levels of GH and IGF-I in the bone of aged OVX rats. However, these effects appear to be limited to supraphysiological concentrations of estradiol and progesterone. PMID:11780998

  16. Adult-Onset Deficiency in Growth Hormone and Insulin-Like Growth Factor-I Alters Oligodendrocyte Turnover in the Corpus Callosum

    PubMed Central

    Hua, Kun; Forbes, M. Elizabeth; Lichtenwalner, Robin J.; Sonntag, William E.; Riddle, David R.

    2009-01-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) provide trophic support during development and also appear to influence cell structure, function and replacement in the adult brain. Recent studies demonstrated effects of the GH/IGF-I axis on adult neurogenesis, but it is unclear whether the GH/IGF-I axis influences glial turnover in the normal adult brain. In the current study we used a selective model of adult-onset GH and IGF-I deficiency to evaluate the role of GH and IGF-I in regulating glial proliferation and survival in the adult corpus callosum. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete via twice daily injections of GH starting at postnatal day 28 (P28), approximately the age at which GH pulse amplitude increases in developing rodents. GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Quantitative analyses revealed that adult-onset GH/IGF-I deficiency decreased cell proliferation in the white matter and decreased the survival of newborn oligodendrocytes. These findings are consistent with the hypothesis that aging-related changes in the GH/IGF-I axis produce deficits in ongoing turnover of oligodendrocytes, which may contribute to aging-related cognitive changes and deficits in remyelination after injury. PMID:19115393

  17. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I

    PubMed Central

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-01-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. [BMB Reports 2015; 48(9): 501-506] PMID:25644636

  18. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Sato, Katsuaki; Takemoto, Toshiki; Iwasaki, Takuya; Mitsudomi, Tetsuya

    2014-08-15

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR-TKI, erlotinib, has been shown in lung cancer patients with the wild-type EGFR. Numerous molecular mechanisms that cause acquired resistance to EGFR-TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild-type EGFR. We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib-resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin-like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP-AEW541, an IGF1R-TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild-type EGFR. PMID:24458568

  19. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    PubMed

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. PMID:25644636

  20. Further insights into the insulin-like growth factor-I system of bony fish pituitary with special emphasis on reproductive phases and social status.

    PubMed

    Shved, Natallia; Baroiller, Jean-François; Eppler, Elisabeth

    2009-04-01

    Insulin-like growth factor (IGF)-I, which is crucially involved in fish growth, differentiation, and reproduction, occurs in tilapia pituitary. IGF-I peptide, which is probably produced in hypothalamic perikarya, is present in axons of the neurohypophysis, and IGF-I mRNA and peptide are present in the adenohypophysis in adrenocorticotrophic hormone cells, melanocyte-stimulating hormone cells, with interindividual differences in growth hormone cells, and, starting with puberty, in gonadotrophic hormone (GTH) cells. Subordinate males showed a high IGF-I but a lower beta-luteinizing hormone expression, while in dominant males the opposite was found. IGF-I from the GTH cells may act as auto/paracrine regulators of GTH cell proliferation and enhance GTH synthesis and release during puberty and reproduction, depending on the social status. PMID:19456403

  1. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor

    PubMed Central

    Emanuel, Stuart L; Engle, Linda J; Chao, Ginger; Zhu, Rong-Rong; Cao, Carolyn; Lin, Zheng; Yamniuk, Aaron; Hosbach, Jennifer; Brown, Jennifer; Fitzpatrick, Elizabeth; Gokemeijer, Jochem; Morin, Paul; Morse, Brent; Carvajal, Irvith M; Fabrizio, David; Wright, Martin C; Das Gupta, Ruchira; Gosselin, Michael; Cataldo, Daniel; Ryseck, Rolf P; Doyle, Michael L; Wong, Tai W; Camphausen, Raymond T; Cload, Sharon T; Marsh, H Nicholas; Gottardis, Marco M

    2011-01-01

    Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 µM for the parental clone. Individual optimized Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy. PMID:21099371

  2. Regulation of insulin-like growth factor (IGF)-binding protein expression by growth factors and cytokines alters IGF-mediated proliferation of postnatal lung fibroblasts.

    PubMed

    Price, Wayne A

    2004-06-01

    Postnatal day 5 is the beginning of septation and the peak of postnatal fibroblast proliferation. The author and colleagues studied fibroblasts from this developmental time period to determine factors that regulate cell proliferation. Exposure of cells to insulin-like growth factor (IGF)-I for 48 hours increased cell number whereas exposure to epithelial growth factor (EGF), platelet-derived growth factor (PDGF)-BB, fibroblast growth factor (FGF)-7, FGF-2, tumor necrosis factor-alpha (TNF-alpha), or interleukin (L)-1beta did not alter cell number. Long[R3]IGF-I (a synthetic IGF analog with reduced affinity for IGF-binding proteins [IGFBPs]) was more potent than IGF-I, with half-maximal stimulation at a dose of 0.6 nM for long[R3]IGF-I compared to 1.5 nM for IGF-I, suggesting that IGFBPs in the conditioned medium (CM) inhibit IGF activity. Addition of exogenous IGFBP-3 inhibited the IGF-stimulated increase in cell number. Addition of IGFBP-4 did not alter IGF activity because IGF-I stimulated proteolysis of IGFBP-4. The expression of mRNA for PAPP-A (a known IGFBP-4 protease) suggests that the clearance of IGFBP-4 is mediated by pregnancy-associated plasma protein (PAPP)-A. Exposure of cells to TNF-alpha or IL-1beta increased IGFBP-3 mRNA abundance and IGFBP-3 protein in CM. PDGF-BB and IL-1beta increased IGFBP-4 protein abundance and PDGF-BB and dibutyryl cAMP increased IGFBP-4 mRNA. The increase in CM IGFBP-3 following TNF-alpha exposure blocked IGF-mediated cell proliferation, suggesting that the growth factor- and cytokine-mediated changes in IGFBP abundance regulate postnatal fibroblast cell proliferation. PMID:15204833

  3. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  4. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon.

    PubMed

    Bower, Neil I; Johnston, Ian A

    2010-01-01

    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed. PMID:20559434

  5. Expression of insulin-like growth factors (IGFs), their receptors and IGF binding protein-3 in normal, benign and malignant smooth muscle tissues.

    PubMed Central

    Van der Ven, L. T.; Roholl, P. J.; Gloudemans, T.; Van Buul-Offers, S. C.; Welters, M. J.; Bladergroen, B. A.; Faber, J. A.; Sussenbach, J. S.; Den Otter, W.

    1997-01-01

    To assess the role of insulin-like growth factors (IGFs) in growth and transformation of normal (myometrium) and tumorous smooth muscle cell (SMC) tissues, in situ hybridization (ISH) analysis for insulin-like growth factor I and II (IGF-I and IGF-II) mRNAs was combined with detection of IGF peptides, their receptors and IGF binding protein-3 (IGFBP-3). mRNAs for both IGFs were detected in smooth muscle cells in normal, benign and malignant SMC tissues, together with the IGF peptides, both IGF receptors and IGFBP-3. This suggests an autocrine role for both IGFs. Leiomyomas had higher IGF-I peptide levels and higher levels of type I IGF receptors than myometrium, supporting the idea that IGFs play a role in the growth and transformation of these tumours. Low-grade leiomyosarcomas contained more IGF-II mRNAs than myometrium and leiomyoma, fewer type II IGF/mannose 6-phosphate receptors and less IGFBP-3 than myometrium and, in addition, fewer IGF-I mRNAs and type I IGF receptors than leiomyoma. Intermediate- and high-grade leiomyosarcomas had intermediate levels of IGF-II mRNAs and peptide, ranging between those in myometrium and low-grade leiomyosarcomas. Thus, growth and transformation of leiomyosarcomas may be regulated by IGF-II, although more markedly in low-grade than in high-grade leiomyosarcomas. In conclusion, the various categories of SMC tissues are associated with a distinct expression pattern of the IGF system. This suggests that each category of SMC tumours arises as a distinct entity and that there is no progression of transformation in these tissues. Images Figure 1 Figure 2 Figure 4 PMID:9184179

  6. Crystallization and preliminary X-ray analysis of the complexes between a Fab and two forms of human insulin-like growth factor II

    PubMed Central

    Newman, Janet; Cohen, Edward H.; Cosgrove, Leah; Kopacz, Kris; Dransfield, Daniel T.; Adams, Timothy E.; Peat, Thomas S.

    2009-01-01

    Elevated expression of insulin-like growth factor II (IGF-II) is frequently observed in a variety of human malignancies, including breast, colon and liver cancer. As IGF-II can deliver a mitogenic signal through both the type 1 insulin-like growth factor receptor (IGF-IR) and an alternately spliced form of the insulin receptor (IR-A), neutralizing the biological activity of this growth factor directly is an attractive therapeutic option. One method of doing this would be to find antibodies that bind tightly and specifically to the peptide, which could be used as protein therapeutics to lower the peptide levels in vivo and/or to block the peptide from binding to the IGF-IR or IR-A. To address this, Fabs were selected from a phage-display library using a biotinylated precursor form of the growth factor known as IGF-IIE as a target. Fabs were isolated that were specific for the E-­domain C-terminal extension and for mature IGF-II. Four Fabs selected from the library were produced, complexed with IGF-II and set up in crystallization trials. One of the Fab–IGF-II complexes (M64-F02–IGF-II) crystallized readily, yielding crystals that diffracted to 2.2 Å resolution and belonged to space group P212121, with unit-cell parameters a = 50.7, b = 106.9, c = 110.7 Å. There was one molecule of the complete complex in the asymmetric unit. The same Fab was also crystallized with a longer form of the growth factor, IGF-IIE. This complex crystallized in space group P212121, with unit-cell parameters a = 50.7, b = 107, c = 111.5 Å, and also diffracted X-rays to 2.2 Å resolution. PMID:19724140

  7. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity.

    PubMed

    Martin, Janet L; Lin, Mike Z; McGowan, Eileen M; Baxter, Robert C

    2009-09-18

    We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 approximately 2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the "missing link" mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3. PMID:19633297

  8. Decreased serum insulin-like growth factor-I associated with growth failure in newborn lambs with experimental cyanotic heart disease.

    PubMed Central

    Bernstein, D; Jasper, J R; Rosenfeld, R G; Hintz, R L

    1992-01-01

    To determine whether chronic hypoxemia results in alterations in endocrine function that may contribute to growth failure, we measured growth hormone (GH), somatomedins (insulin-like growth factors I and II, IGF-I and IGF-2), hepatic growth hormone receptors, and circulating IGF-binding proteins IGFBP-3 and IGFBP-2 in 12 newborn lambs with surgically created pulmonic stenosis and atrial septal defect, and in 10 controls. During chronic hypoxemia (oxygen saturation of 60-74% for 2 wk), weight gain was 60% of control (hypoxemic, 135 +/- 20 vs. control, 216 +/- 26 g/d, P less than 0.02). IGF-I was decreased by 43% (hypoxemic 253.6 +/- 29.3 SE vs. control 448.0 +/- 75.5 ng/ml, P = 0.01), whereas GH was unchanged (19.9 +/- 5.1 vs. 11.9 +/- 3.0 ng/ml, NS). The increase in IGF-1 was associated with a decrease in IGFBP-3 (hypoxemic, 5.09 +/- 1.25 vs. control, 11.2 +/- 1.08 arbitrary absorbency units per mm (Au.mm), P less than 0.01), and increase in IGFBP-2 (0.47 +/- 0.03 vs. 0.19 +/- 0.13 Au.mm, P less than 0.05), but no significant downregulation of hepatic GH receptors (hypoxemic, 106.1 +/- 20.1 vs. control, 147.3 +/- 25.9 fmol/mg, NS). Thus, chronic hypoxemia in the newborn is associated with a decrease in IGF-I and IGFBP-3 in the face of normal GH. This suggests peripheral GH unresponsiveness, similar to protein-calorie malnutrition or GH receptor deficiency dwarfism, but mediated at a level distal to the hepatic GH receptor. Images PMID:1372914

  9. Insulin Like Growth Factor 2 Expression in the Rat Brain Both in Basal Condition and following Learning Predominantly Derives from the Maternal Allele

    PubMed Central

    Ye, Xiaojing; Kohtz, Amy; Pollonini, Gabriella; Riccio, Andrea; Alberini, Cristina M.

    2015-01-01

    Insulin like growth factor 2 (Igf2) is known as a maternally imprinted gene involved in growth and development. Recently, Igf2 was found to also be regulated and required in the adult rat hippocampus for long-term memory formation, raising the question of its allelic regulation in adult brain regions following experience and in cognitive processes. We show that, in adult rats, Igf2 is abundantly expressed in brain regions involved in cognitive functions, like hippocampus and prefrontal cortex, compared to the peripheral tissues. In contrast to its maternal imprinting in peripheral tissues, Igf2 is mainly expressed from the maternal allele in these brain regions. The training-dependent increase in Igf2 expression derives proportionally from both parental alleles, and, hence, is mostly maternal. Thus, Igf2 parental expression in the adult rat brain does not follow the imprinting rules found in peripheral tissues, suggesting differential expression regulation and functions of imprinted genes in the brain. PMID:26495851

  10. Cytokines modulate the sensitivity of human fibroblasts to stimulation with insulin-like growth factor-I (IGF-I) by altering endogenous IGF-binding protein production.

    PubMed

    Yateman, M E; Claffey, D C; Cwyfan Hughes, S C; Frost, V J; Wass, J A; Holly, J M

    1993-04-01

    Human dermal fibroblasts produce a number of insulin-like growth factor-binding proteins (IGFBPs) including the main circulating form, IGFBP-3. It has been suggested that the regulation of IGFBP secretion may play a major role in modulating insulin-like growth factor (IGF) bioactivity. We have quantified the effects of two cytokines, transforming growth factor-beta 1 (TGF-beta 1) and tumour necrosis factor-alpha (TNF-alpha) which have opposing actions on fibroblast IGFBP-3 production, and examined their subsequent role in IGF-I mitogenesis. TGF-beta 1 caused a dose-dependent increase in IGFBP-3 in serum-free fibroblast-conditioned media. TGF-beta 1 (1 microgram/l) resulted in immunoreactive IGFBP-3 levels reaching 286.5 +/- 22.4% of control after 20 h, the increase being confirmed by Western ligand blot. TNF-alpha caused a dose-dependent decrease in fibroblast IGFBP-3 secretion, 1 microgram TNF-alpha/l reducing IGFBP-3 levels to 32.1 +/- 11.% of control. This effect was not due to cytotoxicity and was not cell-density-dependent. Fibroblast proliferation was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric cytochemical bioassay. The addition of IGF-I resulted in dose-dependent growth stimulation after 48 h, the effective range being 20-100 micrograms/l. The IGF-I analogue Long-R3-IGF-I which has little affinity for the IGFBPs was approximately 20-fold more potent in this assay, and was unaffected by exogenous IGFBP-3.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684061

  11. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and Insulin-like Growth Factor-1

    PubMed Central

    Słuczanowska-Głąbowska, Sylwia; Kucia, Magda; Bartke, Andrzej; Laszczyńska, Maria; Ratajczak, Mariusz Z.

    2016-01-01

    Introduction Overexpression of growth hormone (GH) leads to increase in Insulin-Like Growth Factor-I (IGF-I) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotrophic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. Material and methods The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. Results We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morphological observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpression of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. Conclusion Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone. PMID:26348370

  12. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function

    PubMed Central

    Daniell, Henry; Ruiz, Gricel; Denes, Bela; Sandberg, Laurence; Langridge, William

    2009-01-01

    Background Transgenic chloroplasts are potential bioreactors for recombinant protein production, especially for achievement of high levels of protein expression and proper folding. Production of therapeutic proteins in leaves provides transgene containment by elimination of reproductive structures. Therefore, in this study, human Insulin like Growth Factor-1 is expressed in transgenic chloroplasts for evaluation of structural identity and function. Results Expression of the synthetic Insulin like Growth Factor 1 gene (IGF-1s, 60% AT) was observed in transformed E. coli. However, no native IGF-1 gene (IGF-1n, 41% AT) product was detected in the western blots in E. coli. Site-specific integration of the transgenes into the tobacco chloroplast genome was confirmed after transformation using PCR. Southern blot analysis confirmed that the transgenic lines were homoplasmic. The transgenic plant lines had IGF-1s expression levels of 11.3% of total soluble protein (TSP). The IGF-1n plants contained 9.5% TSP as IGF-1n, suggesting that the chloroplast translation machinery is more flexible than E. coli in codon preference and usage. The expression of IGF-1 was increased up to 32% TSP under continuous illumination by the chloroplast light regulatory elements. IgG-Sepharose affinity column chromatographic separation of Z domain containing chloroplast derived IGF-1 protein, single and two dimensional electrophoresis methods and mass spectrometer analysis confirmed the identity of human IGF-1 in transgenic chloroplasts. Two spots analyzed from 2-D focusing/phoresis acrylamide gel showed the correct amino acid sequence of human IGF-1 and the S. aureus Z-tag. Cell proliferation assays in human HU-3 cells demonstrated the biological activity of chloroplast derived IGF-1 even in the presence of the S. aureus Z tag. Conclusion This study demonstrates that the human Insulin like Growth Factor-1 expressed in transgenic chloroplasts is identical to the native protein and is fully

  13. The Clinical Significance of the Insulin-Like Growth Factor-1 Receptor Polymorphism in Non-Small-Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation

    PubMed Central

    Liu, Tu-Chen; Hsieh, Ming-Ju; Liu, Ming-Che; Chiang, Whei-Ling; Tsao, Thomas Chang-Yao; Yang, Shun-Fa

    2016-01-01

    The insulin-like growth factor 1 (IGF1) signaling pathway mediates multiple cancer cell biological processes. IGF1 receptor (IGF1R) expression has been used as a reporter of the clinical significance of non-small-cell lung carcinoma (NSCLC). However, the association between IGF1R genetic variants and the clinical utility of NSCLC positive for epidermal growth factor receptor (EGFR) mutation is not clear. The current study investigated the association between the IGF1R genetic variants, the occurrence of EGFR mutations, and clinicopathological characteristics in NSCLC patients. A total of 452 participants, including 362 adenocarcinoma lung cancer and 90 squamous cell carcinoma lung cancer patients, were selected for analysis of IGF1R genetic variants (rs7166348, rs2229765, and rs8038415) using real-time polymerase chain reaction (PCR)genotyping. The results indicated that GA + AA genotypes of IGF1R rs2229765 were significantly associated with EGFR mutation in female lung adenocarcinoma patients (odds ratio (OR) = 0.39, 95% confidence interval (CI) = 0.17–0.87). Moreover, The GA + AA genotype IGF1R rs2229765 was significantly associated with EGFR L858R mutation (p = 0.02) but not with the exon 19 in-frame deletion. Furthermore, among patients without EGFR mutation, those who have at least one polymorphic A allele of IGF1R rs7166348 have an increased incidence of lymph node metastasis when compared with those patients homozygous for GG (OR, 2.75; 95% CI, 1.20–2.31). Our results showed that IGF1R genetic variants are related to EGFR mutation in female lung adenocarcinoma patients and may be a predictive factor for tumor lymph node metastasis in Taiwanese patients with NSCLC. PMID:27213344

  14. The effect of recombinant human growth hormone and insulin-like growth factor-1 on the mitochondrial function and viability of peripheral blood mononuclear cells in vitro.

    PubMed

    Keane, James; Tajouri, Lotti; Gray, Bon

    2015-02-01

    This study investigated whether the putative physiological benefits induced by growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are countered at supra-physiological concentrations because of an augmentation in the production of mitochondrial-derived free radicals with a subsequent increase in oxidative damage, compromising mitochondrial function. To test this hypothesis, peripheral blood mononuclear cells were incubated for 4 h with either recombinant human GH (rhGH) (range = 0.25-100 μg/L) or recombinant IGF-1 (rIGF-1) (range = 100-600 μg/L) and along with control samples were subsequently analyzed by flow cytometry for the determination of cellular viability, mitochondrial membrane potential (Δψm), mitochondrial superoxide (O2(-)) generation, and mitochondrial permeability transition pore (mtPTP) activity. Results showed levels of mitochondrial O2(-) generation to be significantly reduced compared with control samples (lymphocytes: 21.5 ± 1.6 AU; monocytes: 230.2 ± 9.8 AU) following rhGH treatment at both concentrations of 5 μg/L (13.5 ± 1.3 AU, P ≤ 0.05) and 10 μg/L (12.3 ± 1.5 AU, P ≤ 0.05) in lymphocytes and at 10 μg/L (153.4 ± 11.4 AU, P ≤ 0.05) in monocytes. However, no significant effect was found at either higher rhGH concentrations or following treatment with any concentration of rIGF-1. In addition, neither of the 2 hormones had any significant effect on Δψm, mtPTP activity, or on cellular viability. In conclusion, physiological concentrations of rhGH elicited a protective cellular effect through the reduction of oxidative free radicals within mitochondria. This antioxidant effect was diminished at supra-physiological concentrations but not to a level that would elicit disruption of mitochondrial function. PMID:25531671

  15. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model

    PubMed Central

    Park, Seok Joo; Chung, Yoon Hee; Lee, Jeong Hyun; Dang, Duy-Khanh; Nam, Yunsung; Jeong, Ji Hoon; Kim, Yong Sun; Nabeshima, Toshitaka

    2014-01-01

    Background It has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH)/insulin-like growth factor-1 (IGF-1). Methods In this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice. Results The GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt)/phospho-glycogen synthase kinase3β (p-GSK3β), phospho-extracellular signal-related kinase (p-ERK), and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK), Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist. Conclusion The results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation. PMID:25309793

  16. Seasonal regulation of the growth hormone-insulin-like growth factor-I axis in the American black bear (Ursus americanus).

    PubMed

    Blumenthal, Stanley; Morgan-Boyd, Rebecca; Nelson, Ralph; Garshelis, David L; Turyk, Mary E; Unterman, Terry

    2011-10-01

    The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den. PMID:21730258

  17. Expression and clinical significance of epidermal growth factor receptor and insulin-like growth factor receptor 1 in patients with ampullary adenocarcinoma.

    PubMed

    Xia, Michelle; Overman, Michael J; Rashid, Asif; Chatterjee, Deyali; Wang, Hua; Katz, Matthew H; Fleming, Jason B; Lee, Jeffery E; Varadhachary, Gauri R; Wolff, Robert A; Wang, Huamin

    2015-09-01

    Epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor 1 (IGF-1R) play important roles in cell proliferation, antiapoptosis, angiogenesis, and metastasis and have been used for targeted therapies for patients with advanced colorectal and lung cancers. However, the expression and function of EGFR and IGF-1R in ampullary adenocarcinoma (AA) have not been examined in detail. We examined the expression of EGFR and IGF-1R in 106 AA patients at our institution using tissue microarrays and immunohistochemistry. The results were correlated with the clinicopathological parameters and survival. Overexpression of EGFR and IGF-1R was detected in 18 (17%) and 26 (25%) of AAs, respectively. Patients with EGFR-high tumors had shorter overall survival (mean, 109.8 ± 22.3 months) than those patients whose tumors were EGFR-low in overall study population (mean, 164.2 ± 10.6 months; P = .04). Overexpression of EGFR correlated with poor overall survival in patients with intestinal-type AA (P = .01) but not in those with pancreaticobiliary-type AAs (P = .47). In multivariate analysis, EGFR overexpression was an independent prognostic factor for overall survival (P = .02). In addition, we found that overexpression of IGF-1R correlated with AAs of pancreaticobiliary histology. No additional correlation between the expression of EGFR or IGF-1R and other clinicopathological factors was observed in our patient population. Our study demonstrates that EGFR and IGF-1R appear to be overexpressed in a subset of AAs and that strong membranous expression of EGFR is an independent predictor for overall survival in patients with AA. EGFR and IGF-1R represent potential therapeutic targets for treatment of patient with AAs. PMID:26165226

  18. The Clinical Significance of the Insulin-Like Growth Factor-1 Receptor Polymorphism in Non-Small-Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation.

    PubMed

    Liu, Tu-Chen; Hsieh, Ming-Ju; Liu, Ming-Che; Chiang, Whei-Ling; Tsao, Thomas Chang-Yao; Yang, Shun-Fa

    2016-01-01

    The insulin-like growth factor 1 (IGF1) signaling pathway mediates multiple cancer cell biological processes. IGF1 receptor (IGF1R) expression has been used as a reporter of the clinical significance of non-small-cell lung carcinoma (NSCLC). However, the association between IGF1R genetic variants and the clinical utility of NSCLC positive for epidermal growth factor receptor (EGFR) mutation is not clear. The current study investigated the association between the IGF1R genetic variants, the occurrence of EGFR mutations, and clinicopathological characteristics in NSCLC patients. A total of 452 participants, including 362 adenocarcinoma lung cancer and 90 squamous cell carcinoma lung cancer patients, were selected for analysis of IGF1R genetic variants (rs7166348, rs2229765, and rs8038415) using real-time polymerase chain reaction (PCR)genotyping. The results indicated that GA + AA genotypes of IGF1R rs2229765 were significantly associated with EGFR mutation in female lung adenocarcinoma patients (odds ratio (OR) = 0.39, 95% confidence interval (CI) = 0.17-0.87). Moreover, The GA + AA genotype IGF1R rs2229765 was significantly associated with EGFR L858R mutation (p = 0.02) but not with the exon 19 in-frame deletion. Furthermore, among patients without EGFR mutation, those who have at least one polymorphic A allele of IGF1R rs7166348 have an increased incidence of lymph node metastasis when compared with those patients homozygous for GG (OR, 2.75; 95% CI, 1.20-2.31). Our results showed that IGF1R genetic variants are related to EGFR mutation in female lung adenocarcinoma patients and may be a predictive factor for tumor lymph node metastasis in Taiwanese patients with NSCLC. PMID:27213344

  19. Serum Levels of Vascular Endothelial Growth Factor and Insulin-like Growth Factor Binding Protein-3 in Obstructive Sleep Apnea Patients: Effect of Continuous Positive Airway Pressure Treatment

    PubMed Central

    Archontogeorgis, Kostas; Nena, Evangelia; Papanas, Nikolaos; Xanthoudaki, Maria; Hatzizisi, Olga; Kyriazis, Georgios; Tsara, Venetia; Maltezos, Efstratios; Froudarakis, Marios; Steiropoulos, Paschalis

    2015-01-01

    Background and Aim: Hypoxia, a major feature of obstructive sleep apnea (OSA), modifies Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) levels, which contribute to atherogenesis and occurrence of cardiovascular (CV) events. We assessed and compared serum levels of VEGF and IGFBP-3 in newly diagnosed OSA patients and controls, to explore associations with anthropometric and sleep parameters and to study the effect of continuous positive airway pressure (CPAP) treatment on these levels. Materials and Methods: Serum levels of VEGF and IGFBP-3 were measured in 65 OSA patients and 31 age- and body mass index- matched controls. In OSA patients, measurements were repeated after 6 months of CPAP therapy. All participants were non-smokers, without any comorbidities or systemic medication use. Results: At baseline, serum VEGF levels in OSA patients were higher compared with controls (p<0.001), while IGFBP-3 levels were lower (1.41±0.56 vs. 1.61±0.38 μg/ml, p=0.039). VEGF levels correlated with apnea-hypopnea index (r=0.336, p=0.001) and oxygen desaturation index (r=0.282, p=0.007). After 6 months on CPAP treatment, VEGF levels decreased in OSA patients (p<0.001), while IGFBP-3 levels increased (p<0.001). Conclusion: In newly diagnosed OSA patients, serum levels of VEGF are elevated, while IGFBP-3 levels are low. After 6 months of CPAP treatment these levels change. These results may reflect an increased CV risk in untreated OSA patients, which is ameliorated after CPAP therapy. PMID:27006717

  20. Insulin-like growth factor I and risk of epithelial invasive ovarian cancer by tumour characteristics: results from the EPIC cohort

    PubMed Central

    Ose, J; Fortner, R T; Schock, H; Peeters, P H; Onland-Moret, N C; Bueno-de-Mesquita, H B; Weiderpass, E; Gram, I T; Overvad, K; Tjonneland, A; Dossus, L; Fournier, A; Baglietto, L; Trichopoulou, A; Benetou, V; Trichopoulos, D; Boeing, H; Masala, G; Krogh, V; Matiello, A; Tumino, R; Popovic, M; Obón-Santacana, M; Larrañaga, N; Ardanaz, E; Sánchez, M-J; Menéndez, V; Chirlaque, M-D; Travis, R C; Khaw, K-T; Brändstedt, J; Idahl, A; Lundin, E; Rinaldi, S; Kuhn, E; Romieu, I; Gunter, M J; Merritt, M A; Riboli, E; Kaaks, R

    2015-01-01

    Background: Prospective studies on insulin-like growth factor I (IGF-I) and epithelial ovarian cancer (EOC) risk are inconclusive. Data suggest risk associations vary by tumour characteristics. Methods: We conducted a nested case–control study in the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate IGF-I concentrations and EOC risk by tumour characteristics (n=565 cases). Multivariable conditional logistic regression models were used to estimate associations. Results: We observed no association between IGF-I and EOC overall or by tumour characteristics. Conclusions: In the largest prospective study to date was no association between IGF-I and EOC risk. Pre-diagnostic serum IGF-I concentrations may not influence EOC risk. PMID:25349976

  1. Expression of hepatic mRNAs for insulin-like growth factors-I and -II during the development of hypothyroid rats.

    PubMed

    Gallo, G; de Marchis, M; Voci, A; Fugassa, E

    1991-12-01

    The effect of thyroid status on the expression of insulin-like growth factors-I and -II mRNAs in the liver of developing rats has been investigated. Northern blot analyses of the specific mRNA demonstrated the presence of four IGF-II mRNA species which were strongly expressed in fetal liver and progressively declined after birth, becoming undetectable after week 3. This decrease was markedly delayed in the liver of hypothyroid rats. In addition, expression of IGF-I mRNA, absent in fetal liver, began during week 1 after birth and progressively increased with age. This increase was markedly delayed in the liver of hypothyroid rats. The data suggest that thyroid hormones regulate rat development via the co-ordinate expression of hepatic IGF-II and IGF-I mRNAs. PMID:1783883

  2. Induction of apoptosis by laminarin, regulating the insulin-like growth factor-IR signaling pathways in HT-29 human colon cells

    PubMed Central

    PARK, HEE-KYOUNG; KIM, IN-HYE; KIM, JOONGKYUN; NAM, TAEK-JEONG

    2012-01-01

    In recent years, algae have been highlighted as potential sources of anticancer agents. Laminarin is a molecule found in marine brown algae that has potentially beneficial biological activities. However, these activities have not been investigated. In the present study, we examined the effects of laminarin on HT-29 cells and analyzed its effect on the insulin-like growth factor (IGF-IR) signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays revealed that laminarin induced cell death in a dose-dependent manner. Western blotting showed that laminarin decreased mitogen-activated protein kinases (MAPK) and ERK phosphorylation. Decreased proliferation depended on IGF-IR, which was associated with the downregulation of MAPK/ERK. These results are important for understanding the roles of IGF-IR in colon cancer cell tumorigenesis, and suggest that laminarin shows activity against human colon cancer. PMID:22859258

  3. Cellular localization and expression of insulin-like growth factors (IGFs) and IGF binding proteins within the epiphyseal growth plate of the ovine fetus: possible functional implications.

    PubMed

    de los Rios, P; Hill, D J

    1999-04-01

    The insulin-like growth factors (IGFs) are important in the regulation of normal fetal musculoskeletal growth and development, and their actions have been shown to be modulated by IGF binding proteins (IGFBPs). Because the anatomical distribution of IGFBPs is likely to dictate IGF bioavailability, we determined the cellular distribution and expression of IGF-I, IGF-II, and IGFBP-1 to IGFBP-6 in epiphyseal growth plates of the fetal sheep, using immunocytochemistry and in situ hybridization. Little mRNA for IGF-I was detectable within the growth plates, but mRNA for IGF-II was abundant in germinal and proliferative chondrocytes, although absent from some differentiating chondrocytes and hypertrophic cells. Immunohistochemistry for IGF-I and IGF-II showed a presence of both peptides in all chondrocyte zones, including hypertrophic cells. Immunoreactive IGFBP-2 to -5 were localized within the germinal and proliferative zones of chondrocytes, but little immunoreactivity was present within the columns of differentiating cells. IGFBP immunoreactivity again appeared in hypertrophic chondrocytes. IGFBP mRNA in chondrocytes of the epiphyseal growth plate was below the detectable limit of in situ hybridization. However, low levels of mRNAs for IGFBP-2 to -6 were detected by the reverse transcriptase polymerase chain reaction. A co-localization of IGFBPs with IGF peptides in intact cartilage suggests that they may regulate IGF bioavailability and action locally. To test this hypothesis, monolayer cultures of chondrocytes were established from the proliferative zone of the growth plate, and were found to release immunoreactive IGF-II and to express mRNAs encoding IGFBP-2 to -6. Exogenous IGFBP-3, -4, and -5 had an inhibitory action on IGF-II-dependent DNA synthesis. IGFBP-2 had a biphasic effect, potentiating IGF-II action at low concentrations but inhibiting DNA synthesis at equimolar or greater concentrations relative to IGF-II. Long R3 IGF-I, which has a reduced binding

  4. Effects of peroral insulin and glucose on circulating insulin-like growth factor-I, its binding proteins and thyroid hormones in neonatal calves

    PubMed Central

    Kirovski, Danijela; Lazareviæ, M.; Baričević-Jones, Ivona; Nediæ, Olgica; Masnikosa, Romana; Nikolić, Judith Anna

    2008-01-01

    There is disagreement in the literature about the ability of neonatal calves to absorb perorally administered insulin. This study evaluated the absorption of a bolus of insulin administered alone or with an energy souce and its effects on the circulating insulin-like growth factor system and thyroid hormones in newborn Holstein-Friesian calves. Within 1 h of dosing, mean serum insulin and triiodothyronine (T3) concentrations had increased considerably, whether the insulin was applied alone (n = 4) or together with glucose (n = 4), accompanied by marked hypoglycemia. No significant changes were observed in control calves (n = 4) given the vehicle solution. Increased serum glucose and T3 concentrations with no change in insulinemia occurred in a 4th group of calves given glucose alone. At 32 h of age and after 3 meals of colostrum there were no differences in glycemia, insulinemia, or proteinemia among the 4 groups of calves examined. Mean serum insulin-like