Code System for Fluid-Structure Interaction Analysis.
Energy Science and Technology Software Center (ESTSC)
2001-05-30
Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less
Methods for simulation-based analysis of fluid-structure interaction.
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.
Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See
2010-01-01
This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.
Fluid-structure interaction analysis of deformation of sail of 30-foot yacht
NASA Astrophysics Data System (ADS)
Bak, Sera; Yoo, Jaehoon; Song, Chang Yong
2013-06-01
Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.
Generalized fictitious methods for fluid-structure interactions: Analysis and simulations
NASA Astrophysics Data System (ADS)
Yu, Yue; Baek, Hyoungsu; Karniadakis, George Em
2013-07-01
We present a new fictitious pressure method for fluid-structure interaction (FSI) problems in incompressible flow by generalizing the fictitious mass and damping methods we published previously in [1]. The fictitious pressure method involves modification of the fluid solver whereas the fictitious mass and damping methods modify the structure solver. We analyze all fictitious methods for simplified problems and obtain explicit expressions for the optimal reduction factor (convergence rate index) at the FSI interface [2]. This analysis also demonstrates an apparent similarity of fictitious methods to the FSI approach based on Robin boundary conditions, which have been found to be very effective in FSI problems. We implement all methods, including the semi-implicit Robin based coupling method, in the context of spectral element discretization, which is more sensitive to temporal instabilities than low-order methods. However, the methods we present here are simple and general, and hence applicable to FSI based on any other spatial discretization. In numerical tests, we verify the selection of optimal values for the fictitious parameters for simplified problems and for vortex-induced vibrations (VIV) even at zero mass ratio ("for-ever-resonance"). We also develop an empirical a posteriori analysis for complex geometries and apply it to 3D patient-specific flexible brain arteries with aneurysms for very large deformations. We demonstrate that the fictitious pressure method enhances stability and convergence, and is comparable or better in most cases to the Robin approach or the other fictitious methods.
Wang, Guorong; Zhong, Lin; He, Xia; Lei, Zhongqing; Hu, Gang; Li, Rong; Wang, Yunhai
2015-01-01
The influence of spring stiffness and valve quality on the motion behaviors of reciprocating plunger pump discharge valves was investigated by fluid structure interaction (FSI) simulation and experimental analysis. The mathematical model of the discharge valve motion of a 2000-fracturing pump was developed and the discrete differential equations were solved according to FSI and results obtained by ANDINA software. Results indicate that spring stiffness influences the maximum lift, the opening resistance and shut-off lag angle, as well as the fluid velocity of the clearance, the impact stress and the volume efficiency of the pump valve in relation to the valve quality. An optimal spring stiffness parameter of 14.6 N/mm was obtained, and the volumetric efficiency of the pumping valve increased by 4‰ in comparison to results obtained with the original spring stiffness of 10.09N/mm. The experimental results indicated that the mathematical model and FSI method could provide an effective approach for the subsequent improvement of valve reliability, volumetric efficiency and lifespan. PMID:26488290
Wang, Guorong; Zhong, Lin; He, Xia; Lei, Zhongqing; Hu, Gang; Li, Rong; Wang, Yunhai
2015-01-01
The influence of spring stiffness and valve quality on the motion behaviors of reciprocating plunger pump discharge valves was investigated by fluid structure interaction (FSI) simulation and experimental analysis. The mathematical model of the discharge valve motion of a 2000-fracturing pump was developed and the discrete differential equations were solved according to FSI and results obtained by ANDINA software. Results indicate that spring stiffness influences the maximum lift, the opening resistance and shut-off lag angle, as well as the fluid velocity of the clearance, the impact stress and the volume efficiency of the pump valve in relation to the valve quality. An optimal spring stiffness parameter of 14.6 N/mm was obtained, and the volumetric efficiency of the pumping valve increased by 4‰ in comparison to results obtained with the original spring stiffness of 10.09N/mm. The experimental results indicated that the mathematical model and FSI method could provide an effective approach for the subsequent improvement of valve reliability, volumetric efficiency and lifespan. PMID:26488290
A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2014-01-01
A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.
Nonlinear multiple-discipline analysis of conjugate heat transfer and fluid-structure interaction
NASA Astrophysics Data System (ADS)
Weaver, Michael A.
Single-discipline analysis approaches often utilize linearized descriptions of coupled system physics from other disciplines. When this level of approximation is inadequate for the purposes of the analysis, nonlinear governing equations for the separate physical disciplines must be introduced, thus producing a multiple-discipline analysis. The multiple-discipline approach can provide a deeper understanding of the underlying system physics, and can reveal deficiencies in systems designed by single-discipline means. An advantageous way to examine a nonlinear multiple-discipline system is the partitioned method, where each discipline subdomain is formulated and discretized separately, allowing separate modular solvers for each set of discretized equations. Avoiding ad hoc approaches, a unified approach is developed here and applied to analysis of conjugate heat transfer in an arc-heater wind tunnel nozzle, and fluid-structure interaction of a segmented solid rocket motor inhibitor. The specific systems examined represent actual hardware designed by single-discipline methods. The nonlinear effects present in the wind tunnel nozzle problem include separated, viscous fluid flow, forced-convection boiling, and flow-dependent heat transfer properties. Nonlinear effects present in the solid rocket motor inhibitor problem include large structural deformation, and separated, viscous fluid flow. Steady-state results obtained for the nozzle problem show distributions for wall temperature, fluid temperatures, and heat flux, as well as coolant flow field and recirculation patterns. These results indicate a design deficiency in the nozzle cooling system. For the inhibitor problem, steady and unsteady fields of stress, strain, and displacement are obtained for the structural components, accompanied by velocity and pressure fields for the surrounding gas flow. The large stress values present in the solid propellant suggest a possible mode for motor failure, and beckon examination of
NASA Astrophysics Data System (ADS)
Hu, F. F.; Chen, T.; Wu, D. Z.; Wang, L. Q.
2013-12-01
The internal flow evolution of the pump was induced with impeller movement. In various conditions, the peak load on centrifugal blade under the change of rotational speed or flow rate was also changed. It would cause an error when inertia load with a safety coefficient (that was difficult to ascertain) was applied in structure design. In order to accurately analyze the impeller stress under various conditions and improve the reliability of pump, based on a mixed flow pump model, the stress distribution characteristic was analyzed under different flow rates and rotational speeds. Based on a three-dimensional calculation model including impeller, guide blade, inlet and outlet, the three-dimension incompressible turbulence flow in the centrifugal pump was simulated by using the standard k-epsilon turbulence model. Based on the sequentially coupled simulation approach, a three-dimensional finite element model of impeller was established, and the fluid-structure interaction method of the blade load transfer was discussed. The blades pressure from flow simulation, together with inertia force acting on the blade, was used as the blade loading on solid surface. The Finite Element Method (FEM) was used to calculate the stress distribution of the blade respectively under inertia load, or fluid load, or combined load. The results showed that the blade stress changed with flow rate and rotational speed. In all cases, the maximum stress on the blade appeared on the pressure side near the hub, and the maximum static stress increased with the decreasing of the flow rate and the increasing of rotational speed. There was a big difference on the static stress when inertia load, fluid load and combined loads was applied respectively. In order to more accurately calculate the stress distribution, the structure analysis should be conducted due to combined loads. The results could provide basis for the stress analysis and structure optimization of pump.
Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Harris, Robert E.
2014-01-01
Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor
Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis
NASA Astrophysics Data System (ADS)
Shangguan, Wen-Bin; Lu, Zhen-Hua
2004-08-01
Hydraulic engine mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter (LP) model is a traditional model for modelling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, a fluid-structure interaction (FSI) finite element analysis (FEA) method and a non-linear FEA technology are used to determine the system parameters, and a fully coupled FSI model is developed for modelling the static and lower-frequency performance of an HEM. A FSI FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and the decoupler of an HEM. A non-linear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a free decoupler is performed based on the FSI model and the LP model along with the estimated system parameters, and again the simulation results are compared with experimental data. The calculated time histories of some variables in the model, such as the pressure in the upper chamber, the displacement of the free decoupler and the volume flow through the inertia track and the decoupler, under different excitations, elucidate the working mechanism of the HEM. The pressure distribution calculated with the FSI model in the chambers of the HEM validates the assumption that the pressure distribution in the upper and lower chamber is uniform in the LP model. The work conducted in the paper demonstrates that the methods for estimating the system parameters in the LP model and the FSI model for modelling HEM are effective, with which the dynamic characteristic analysis and design optimization of an HEM can be performed before its prototype development, and this
Optimization and analysis of centrifugal pump considering fluid-structure interaction.
Zhang, Yu; Hu, Sanbao; Zhang, Yunqing; Chen, Liping
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction
Hu, Sanbao
2014-01-01
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690
Fluid-structure interaction analysis of the left coronary artery with variable angulation.
Dong, Jingliang; Sun, Zhonghua; Inthavong, Kiao; Tu, Jiyuan
2015-01-01
The aim of this study is to elucidate the correlation between coronary artery branch angulation, local mechanical and haemodynamic forces at the vicinity of bifurcation. Using a coupled fluid-structure interaction (FSI) modelling approach, five idealized left coronary artery models with various angles ranging from 70° to 110° were developed to investigate the influence of branch angulations. In addition, one CT image-based model was reconstructed to further demonstrate the medical application potential of the proposed FSI coupling method. The results show that the angulation strongly alters its mechanical stress distribution, and the instantaneous wall shear stress distributions are substantially moderated by the arterial wall compliance. As high tensile stress is hypothesized to cause stenosis, the left circumflex side bifurcation shoulder is indicated to induce atherosclerotic changes with a high tendency for wide-angled models. PMID:24897936
Embedded Interface with Discontinuous Lagrange Multipliers for Fluid-Structure Interaction Analysis
NASA Astrophysics Data System (ADS)
Gomes, H. C.; Pimenta, P. M.
2015-03-01
This work addresses some issues in the embedded interface method for the conjoined interface between fluid and structure domains in two-dimensional Fluid-Structure Interaction (FSI) coupled problems. Our approach uses Lagrange multipliers to enforce the kinematic condition along the interface between the non-matching overlapping meshes of the structural and fluid fields in an alternative to the usual Arbitrary Lagrangian Eulerian (ALE) approaches. The main idea of our work is to discretize the embedded interface independently of the fluid and solid mesh, using discontinuous interpolating functions. The purpose of this is to avoid numerical instabilities and to simplify the implementation. In order to illustrate the method's applicability, steady and unsteady simulations of incompressible viscous flow with a moving interface as well as FSI problems involving large structural displacements were performed.
Two way fluid structure interaction analysis of a valveless micropump by CFD
NASA Astrophysics Data System (ADS)
Cǎlimǎnescu, Ioan; Dumitrache, Constantin L.; Grigorescu, Lucian
2015-02-01
In the microfluid control system, a valve-less micropump is a necessary component. It has the ability to pump a wide variety of fluids automatically and accurately on a micro scale. The dynamic characteristics of a valve-less micropump influence the performance of the microfluid control system. Consequently, it is of great importance to be able to accurately predict the dynamic characteristics of micropumps for appropriate design and usage of the microfluid control system. In this paper, we describe a corrugated diaphragm valveless micropump approached from the Computational Fluid Dynamics point of view in which the Fluid Structure Interaction is based on the Two Way principle, meaning that the diaphragm is moving and the fluid (water like fluid) is sucked from the inlet and pushed back to the outlet using the nozzle effect. The technical solution of micropumps without valves is a very clever idea to replace the custom valves with nozzles, with the same effect but virtually without any components beside the inlet and the outlet nozzles. The paperwork is demonstrating via a complex simulation involving the structural-fluid interaction the nozzle effects and the functioning of this kind of micropumps.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
NASA Astrophysics Data System (ADS)
Kim, Young-Cheol; Lee, D. H.; Chung, T. Y.; Ham, D. Y.; Kim, Y. B.
A torsional tuned damper is usually used in order to reduce the torsional vibration of the crank shaft system in marine diesel engines. The damper consists of leaf springs, fluid chambers, fluid channels, and intermediate masses. The leaf springs provide the stiffening force to the shaft system, and the fluid chambers and channels give the damping force. In this paper, FSI (fluid-structure interaction) analysis by using FEM is carried out for the calculation of the stiffness and damping coefficients of the designed damper. The numerical calculation result about the equivalent damping coefficients is compared to the value obtained from a simple damping simulation model.
NASA Astrophysics Data System (ADS)
Kim, Dae-Kwan; Lee, Jun-Seong; Han, Jae-Hung
2009-07-01
The sweep-back effect of a flexible flapping wing is investigated through fluid-structure interaction analysis. The aeroelastic analysis is carried out by using an efficient fluid-structure interaction analysis tool, which is based on the modified strip theory and the flexible multibody dynamics. To investigate the sweep-back effect, the aeroelastic analysis is performed on various sweep-back wing models defined by sweep-chord ratio and sweep-span ratio, and then the sweep-back effect on the aerodynamic performance is discussed. The aeroelastic results of the sweep-back wing analysis clearly confirm that the sweep-back angle can help a flexible flapping wing to generate greater twisting motion, resulting in the aerodynamic improvement of thrust and input power for all flapping-axis angle regimes. The propulsive efficiency can also be increased by the sweep-back effect. The sweep angle of a flapping wing should be considered as an important design feature for artificial flexible flapping wings.
NASA Astrophysics Data System (ADS)
Emamzadeh, Seyed Shahab; Ahmadi, Mohammad Taghi; Mohammadi, Soheil; Biglarkhani, Masoud
2015-07-01
In this paper, an investigation into the propagation of far field explosion waves in water and their effects on nearby structures are carried out. For the far field structure, the motion of the fluid surrounding the structure may be assumed small, allowing linearization of the governing fluid equations. A complete analysis of the problem must involve simultaneous solution of the dynamic response of the structure and the propagation of explosion wave in the surrounding fluid. In this study, a dynamic adaptive finite element procedure is proposed. Its application to the solution of a 2D fluid-structure interaction is investigated in the time domain. The research includes: a) calculation of the far-field scatter wave due to underwater explosion including solution of the time-depended acoustic wave equation, b) fluid-structure interaction analysis using coupled Euler-Lagrangian approach, and c) adaptive finite element procedures employing error estimates, and re-meshing. The temporal mesh adaptation is achieved by local regeneration of the grid using a time-dependent error indicator based on curvature of pressure function. As a result, the overall response is better predicted by a moving mesh than an equivalent uniform mesh. In addition, the cost of computation for large problems is reduced while the accuracy is improved.
Acoustics of Fluid-Structure Interactions
NASA Astrophysics Data System (ADS)
Howe, M. S.
1998-08-01
Acoustics of Fluid-Structure Interactions addresses an increasingly important branch of fluid mechanics--the absorption of noise and vibration by fluid flow. This subject, which offers numerous challenges to conventional areas of acoustics, is of growing concern in places where the environment is adversely affected by sound. Howe presents useful background material on fluid mechanics and the elementary concepts of classical acoustics and structural vibrations. Using examples, many of which include complete worked solutions, he vividly illustrates the theoretical concepts involved. He provides the basis for all calculations necessary for the determination of sound generation by aircraft, ships, general ventilation and combustion systems, as well as musical instruments. Both a graduate textbook and a reference for researchers, Acoustics of Fluid-Structure Interactions is an important synthesis of information in this field. It will also aid engineers in the theory and practice of noise control.
NASA Astrophysics Data System (ADS)
Lee, Chi-Seung; Cho, Jin-Rae; Kim, Wha-Soo; Noh, Byeong-Jae; Kim, Myung-Hyun; Lee, Jae-Myung
2013-03-01
In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.
Aziz, M S Abdul; Abdullah, M Z; Khor, C Y
2014-01-01
An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183(°)C) < T < 643.15 K (370(°)C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638
Abdul Aziz, M. S.; Abdullah, M. Z.; Khor, C. Y.
2014-01-01
An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) < T < 643.15 K (370°C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638
Kelly, S C; O'Rourke, M J
2010-01-01
This work reports on the implementation and validation of a two-system, single-analysis, fluid-structure interaction (FSI) technique that uses the finite volume (FV) method for performing simulations on abdominal aortic aneurysm (AAA) geometries. This FSI technique, which was implemented in OpenFOAM, included fluid and solid mesh motion and incorporated a non-linear material model to represent AAA tissue. Fully implicit coupling was implemented, ensuring that both the fluid and solid domains reached convergence within each time step. The fluid and solid parts of the FSI code were validated independently through comparison with experimental data, before performing a complete FSI simulation on an idealized AAA geometry. Results from the FSI simulation showed that a vortex formed at the proximal end of the aneurysm during systolic acceleration, and moved towards the distal end of the aneurysm during diastole. Wall shear stress (WSS) values were found to peak at both the proximal and distal ends of the aneurysm and remain low along the centre of the aneurysm. The maximum von Mises stress in the aneurysm wall was found to be 408kPa, and this occurred at the proximal end of the aneurysm, while the maximum displacement of 2.31 mm occurred in the centre of the aneurysm. These results were found to be consistent with results from other FSI studies in the literature. PMID:20923114
MACKEY, T.C.
2006-03-14
M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh heights
NASA Astrophysics Data System (ADS)
Čanić, Sunčica; Mikelić, Andro; Tambača, Josip
2005-12-01
We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newtonian fluid through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier-Stokes equations are used to model the flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membrane and the curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid-structure interaction problem in the limit when the ratio between the radius and the length of the tube, ɛ, tends to zero. We obtain the reduced equations that are of Biot type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the viscoelastic nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of the fluid-structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed experimental validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laboratory at the Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major applications include blood flow through large human arteries. To cite this article: S. Čanić et al., C. R. Mecanique 333 (2005).
Fluid/structure interactions. Internal flows
NASA Astrophysics Data System (ADS)
Weaver, D. S.
1991-05-01
Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.
Ghaemi, Roza Vaez; Vahidi, Bahman; Sabour, Mohammad Hossein; Haghighipour, Nooshin; Alihemmati, Zakieh
2016-03-01
Although effects of biochemical modulation of stem cells have been widely investigated, only recent advances have been made in the identification of mechanical conditioning on cell signaling pathways. Experimental investigations quantifying the micromechanical environment of mesenchymal stem cells (MSCs) are challenging while computational approaches can predict their behavior due to in vitro stimulations. This study introduces a 3D cell-specific finite element model simulating large deformations of MSCs. Here emphasizing cell mechanical modulation which represents the most challenging multiphysics phenomena in sub-cellular level, we focused on an approach attempting to elicit unique responses of a cell under fluid flow. Fluorescent staining of MSCs was performed in order to visualize the MSC morphology and develop a geometrically accurate model of it based on a confocal 3D image. We developed a 3D model of a cell fixed in a microchannel under fluid flow and then solved the numerical model by fluid-structure interactions method. By imposing flow characteristics representative of vigorous in vitro conditions, the model predicts that the employed external flow induces significant localized effective stress in the nucleo-cytoplasmic interface and average cell deformation of about 40%. Moreover, it can be concluded that a lower strain level is made in the cell by the oscillatory flow as compared with steady flow, while same ranges of effective stress are recorded inside the cell in both conditions. The deeper understanding provided by this study is beneficial for better design of single cell in vitro studies. PMID:26333040
Solving Fluid Structure Interaction Problems with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.
Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S
2016-04-01
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices. PMID:26183963
Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation
NASA Astrophysics Data System (ADS)
Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.
2014-06-01
The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.
Simulating Pediatric Ventricular Assist Device Operation Using Fluid Structure Interaction
NASA Astrophysics Data System (ADS)
Long, Chris; Bazilevs, Yuri; Marsden, Alison
2012-11-01
Ventricular Assist Devices (VADs) provide mechanical circulatory support to patients in heart failure. They are primarily used to extend life until cardiac transplant, but also show promise as a ``bridge-to-recovery'' device in pediatric patients. Commercially available pediatric pumps are pulsatile displacement pumps, with two distinct chambers for air and blood separated by a thin, flexible membrane. The air chamber pneumatically drives the membrane, which drives blood through the other chamber via displacement. The primary risk factor associated with these devices is stroke or embolism due to thrombogenesis in the blood chamber, occurring in as many as 40% of patients. Our goal is to perform simulations that accurately model the hemodynamics of the device, as well as the non-linear membrane buckling. We apply a finite-element based fluid solver, with an Arbitrary Lagrangian-Eulerian (ALE) framework to account for mesh motion. Isogeometric Analysis with a Kirchhoff-Love shell formulation is used on the membrane, and two distinct fluid subdomains are used for the air and blood chambers. The Fluid Structure Interaction (FSI) problem is solved simultaneously, using a Matrix Free method to model the interactions at the fluid-structure boundary. Methods and results are presented.
Fluid Structure Interaction Simulations of Pediatric Ventricular Assist Device Operation
NASA Astrophysics Data System (ADS)
Long, Chris; Marsden, Alison; Bazilevs, Yuri
2011-11-01
Pediatric ventricular assist devices (PVADs) are used for mechanical circulatory support in children with failing hearts. They can be used to allow the heart to heal naturally or to extend the life of the patient until transplant. A PVAD has two chambers, blood and air, separated by a flexible membrane. The air chamber is pressurized, which drives the membrane and pumps the blood. The primary risk associated with these devices is stroke or embolism from thrombogenesis. Simulation of these devices is difficult due to a complex coupling of two fluid domains and a thin membrane, requiring fluid-structure interaction modeling. The goal of this work is to accurately simulate the hemodynamics of a PVAD. We perform FSI simulations using an Arbitrary Lagrangian-Eulerian (ALE) finite element framework to account for large motions of the membrane and the fluid domains. The air, blood, and membrane are meshed as distinct subdomains, and a method for non-matched discretizations at the fluid-structure interface is presented. The use of isogeometric analysis to model the membrane mechanics is also discussed, and the results of simulations are presented.
Fluid structure interaction in electrohydraulic servovalve: a finite element approach
NASA Astrophysics Data System (ADS)
Hiremath, Somashekhar S.; Singaperumal, M.
2010-01-01
Electrohydraulic servovalves (EHSV) promise unique application opportunities and high performance, unmatched by other drive technologies. Typical applications include aerospace, robotic manipulators, motion simulators, injection molding, CNC machines and material testing machines. EHSV available are either a flapper/nozzle type or a jet pipe type. In the present paper an attempt has been made to study the dynamics of jet pipe EHSV with built-in mechanical feedback using Finite Element Method (FEM). In jet pipe EHSV, the dynamics of spool greatly depends on pressure recovery and hence the fluid flow at spool ends. The effect of pressure recovery on spool dynamics is studied using FEM by creating the fluid-structure-interaction. The mechanical parts were created using general purpose finite elements like shell, beam, and solid elements while fluid cavities were created using hydrostatic fluid elements. The analysis was carried out using the commercially available FE code ABAQUS. The jet pipe and spool dynamics are presented in the paper.
Fluid structure interaction in electrohydraulic servovalve: a finite element approach
NASA Astrophysics Data System (ADS)
Hiremath, Somashekhar S.; Singaperumal, M.
2009-12-01
Electrohydraulic servovalves (EHSV) promise unique application opportunities and high performance, unmatched by other drive technologies. Typical applications include aerospace, robotic manipulators, motion simulators, injection molding, CNC machines and material testing machines. EHSV available are either a flapper/nozzle type or a jet pipe type. In the present paper an attempt has been made to study the dynamics of jet pipe EHSV with built-in mechanical feedback using Finite Element Method (FEM). In jet pipe EHSV, the dynamics of spool greatly depends on pressure recovery and hence the fluid flow at spool ends. The effect of pressure recovery on spool dynamics is studied using FEM by creating the fluid-structure-interaction. The mechanical parts were created using general purpose finite elements like shell, beam, and solid elements while fluid cavities were created using hydrostatic fluid elements. The analysis was carried out using the commercially available FE code ABAQUS. The jet pipe and spool dynamics are presented in the paper.
Discrete Data Transfer Technique for Fluid-Structure Interaction
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2007-01-01
This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.
Fluid Structure Interaction in a Turbine Blade
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.
2004-01-01
An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.
MACKEY, T.C.
2006-03-14
M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis
Optimal Force Generation with Fluid-Structure Interactions
NASA Astrophysics Data System (ADS)
Peng, Diing-wen
Typical computational and experimental methods are unsuitable for studying large scale optimization problems involving complex fluid structure interactions, primarily due to their time-consuming nature. A novel experimental approach is proposed here that provides a high-fidelity and efficient alternative to discover optimal parameters arising from the passive interaction between structural elasticity and fluid dynamic forces. This approach utilizes motors, force transducers, and active controllers to emulate the effects of elasticity, eliminating the physical need to replace structural components in the experiment. A clustering genetic algorithm is then used to tune the structural parameters to achieve desired optimality conditions, resulting in approximated global optimal regions within the search bound. A prototype fluid-structure interaction experiment inspired by the lift generation of flapping wing insects is presented to highlight the capabilities of this approach. The experiment aims to maximize the average lift on a sinusoidally translating plate, by optimizing the damping ratio and natural frequency of the plate's elastic pitching dynamics. Reynolds number, chord length, and stroke length are varied between optimizations to explore their relationships to the optimal structural parameters. The results reveal that only limited ranges of stroke lengths are conducive to lift generation; there also exists consistent trends between optimal stroke length, natural frequency, and damping ratio. The measured lift, pitching angle, and torque on the plate for optimal scenarios exhibit the same frequency as the translation frequency, and the phase angles of the optimal structural parameters at this frequency are found to be independent of the stroke length. This critical phase can be then characterized by a linear function of the chord length and Reynolds number. Particle image velocimetry measurements are acquired for the kinematics generated with optimal and
Fluid-structure Interaction Simulations of Deformable Soft Tissue
NASA Astrophysics Data System (ADS)
Borazjani, Iman
2011-11-01
Soft tissue interacts with the surrounding fluid environment in many biological and biomedical applications. Simulating such an interaction is quite challenging due to the large non-linear deformations of tissue, flow pulsatility, transition to turbulence, and non-linear fluid-structure interaction. We have extended our previous three-dimensional fluid-structure interaction (FSI) framework for rigid bodies (Borazjani, Ge, and Sotiropoulos, Journal of Computational Physics, 2008) to deformable soft tissue by coupling our incompressible Navier-Stokes solver for fluids with a non-linear large deformation finite element method for soft tissue. We use Fung-type constitutive law for the soft tissue that can capture the stress-strain behavior of the tissue. The FSI solver adopts a strongly-coupled partitioned approach that is stabilized with under-relaxation and Aitken acceleration technique. We validate our solvers against the experimental data for tissue valves and elastic tubes. We show the capabilities of our solver by simulating the fluid-structure interaction of tissue valves implanted in the aortic positions and elastic collapsible tubes. This work was partly supported by the Center for Computational Research at the University at Buffalo.
MACKEY TC; RINKER MW; ABATT FG
2007-02-14
Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.
NASA Astrophysics Data System (ADS)
Ju, Yaping; Liu, Hui; Yao, Ziyun; Xing, Peng; Zhang, Chuhua
2015-11-01
Up to present, there have been no studies concerning the application of fluid-structure interaction (FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics (CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics (CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Fluid-structure interaction of solid rocket motor inhibitors
NASA Astrophysics Data System (ADS)
Roach, R. L.; Gramoll, K.; Weaver, M.; Flandro, G. A.
1992-07-01
The deformation of solid rocket motor inhibitor material due to loads imposed by the gas flow is studied in this effort. The flow field is computed around an infinitely stiff inhibitor using a Navier-Stokes solution procedure which provides the stress distributions on the inhibitor. These stresses are then fed into a structural finite element analysis code, ANSYS to determine the deflection based on these stresses and a realistic stiffness. The deformed shape is fed back into the Navier-Stokes solution procedure and a new grid and stress distribution are obtained. The process continues until the inhibitor deflection becomes fixed or periodic. While this is a somewhat crude approach, the availability of the two codes without modifications provide a tempting way to take a first look at a fluid-structure interaction problem and to help in the design of truly coupled approach. The geometry used is typical of those found in large solid rocket boosters of the type used on the Space Shuttle system and the Titan III series.
Fluid-Structure Interactions with Flexible and Rigid Bodies
NASA Astrophysics Data System (ADS)
Daily, David Jesse
Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting
A self-excited flapper from fluid-structure interaction
NASA Astrophysics Data System (ADS)
Curet, Oscar M.; Breuer, Kenneth S.
2010-11-01
The flexible nature of lifting and propulsive surfaces is a common characteristic of aquatic and aerial locomotion in animals. These surfaces may not only move actively, but also passively or with a combination of both. What is the nature of this passive movement? What is the role of this passive motion on force generation, efficiency and muscle control? Here, we present results using a simple wing model with two degrees of freedom designed to study passive flapping, and fluid-structure interaction. The wing is composed of a flat plate with a hinged trailing flap. The wing is cantilevered to the main body to enable a flapping motion with a well-defined natural frequency. We test the wing model in a wind tunnel. At low speed the wing is stationary. Above a critical velocity the trailing wing section starts to oscillate, generating an oscillating lift force on the wing. This oscillating lift force results on a self-excited flapping motion of the wing. We measure the kinematics and the forces generated by the wing as a function of flow velocity and stiffness of the cantilever. Comparisons with aeroelasticity theory will be presented as well as details of the fluid-structure interactions.
Development of a Fluid Structures Interaction Test Technique for Fabrics
NASA Technical Reports Server (NTRS)
Zilliac, Gregory G.; Heineck, James T.; Schairer, Edward T.; Mosher, Robert N.; Garbeff, Theodore Joseph
2012-01-01
Application of fluid structures interaction (FSI) computational techniques to configurations of interest to the entry, descent and landing (EDL) community is limited by two factors - limited characterization of the material properties for fabrics of interest and insufficient experimental data to validate the FSI codes. Recently ILC Dover Inc. performed standard tests to characterize the static stress-strain response of four candidate fabrics for use in EDL applications. The objective of the tests described here is to address the need for a FSI dataset for CFD validation purposes. To reach this objective, the structural response of fabrics was measured in a very simple aerodynamic environment with well controlled boundary conditions. Two test series were undertaken. The first series covered a range of tunnel conditions and the second focused on conditions that resulted in fabric panel buckling.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Shock-driven fluid-structure interaction for civil design
Wood, Stephen L; Deiterding, Ralf
2011-11-01
The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering. Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.
Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2011-01-01
A research program to provide physical insight into disk-gap-band parachute operation in the supersonic regime on Mars was conducted. The program included supersonic wind tunnel tests, computational fluid dynamics and fluid structure interaction simulations. Specifically, the nature and cause of the "area oscillation" phenomenon were investigated to determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high resolution diagnostic techniques were used to interrogate the flow and generate validation datasets. The results of flow visualization, particle image velocimetry, load measurements, and photogrammetric reconstruction will be presented. Implications to parachute design, use, and verification will also be discussed.
Fluid-structure interaction of reticulated porous wings
NASA Astrophysics Data System (ADS)
Strong, Elizabeth; Jawed, Mohammad; Reis, Pedro
Insects of the orders Neuroptera and Hymenoptera locomote via flapping flight with reticulated wings that have porous structures that confers them with remarkable lightweight characteristics. Yet these porous wings still perform as contiguous plates to provide the necessary aerodynamic lift and drag required for flight. Even though the fluid flow past the bulk of these insects may be in high Reynolds conditions, viscosity can dominate over inertia in the flow through the porous sub-features. Further considering the flexibility of these reticulated wings yields a highly nonlinear fluid-structure interaction problem. We perform a series of dynamically-scaled precision model experiments to gain physical insight into this system. Our experiments are complemented with computer simulations that combine the Discrete Elastic Rods method and a model for the fluid loading that takes into account the `leakiness' through the porous structure. Our results are anticipated to find applications in micro-air vehicle aerodynamics.
Reduced order modeling of fluid/structure interaction.
Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert
2009-11-01
This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.
Computational modeling of fluid structural interaction in arterial stenosis
NASA Astrophysics Data System (ADS)
Bali, Leila; Boukedjane, Mouloud; Bahi, Lakhdar
2013-12-01
Atherosclerosis affects the arterial blood vessels causing stenosis because of which the artery hardens resulting in loss of elasticity in the affected region. In this paper, we present: an approach to model the fluid-structure interaction through such an atherosclerosis affected region of the artery, The blood is assumed as an incompressible Newtonian viscous fluid, and the vessel wall was treated as a thick-walled, incompressible and isotropic material with uniform mechanical properties. The numerical simulation has been studied in the context of The Navier-Stokes equations for an interaction with an elastic solid. The study of fluid flow and wall motion was initially carried out separately, Discretized forms of the transformed wall and flow equations, which are coupled through the boundary conditions at their interface, are obtained by control volume method and simultaneously to study the effects of wall deformability, solutions are obtained for both rigid and elastic walls. The results indicate that deformability of the wall causes an increase in the time average of pressure drop, but a decrease in the maximum wall shear stress. Displacement and stress distributions in the wall are presented.
Not Available
1984-10-01
STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structure response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.
Bicuspid aortic valve hemodynamics: a fluid-structure interaction study
NASA Astrophysics Data System (ADS)
Chandra, Santanu; Seaman, Clara; Sucosky, Philippe
2011-11-01
The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.
Immersed boundary methods for simulating fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Yang, Xiaolei
2014-02-01
Fluid-structure interaction (FSI) problems commonly encountered in engineering and biological applications involve geometrically complex flexible or rigid bodies undergoing large deformations. Immersed boundary (IB) methods have emerged as a powerful simulation tool for tackling such flows due to their inherent ability to handle arbitrarily complex bodies without the need for expensive and cumbersome dynamic re-meshing strategies. Depending on the approach such methods adopt to satisfy boundary conditions on solid surfaces they can be broadly classified as diffused and sharp interface methods. In this review, we present an overview of the fundamentals of both classes of methods with emphasis on solution algorithms for simulating FSI problems. We summarize and juxtapose different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier-Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies. We also present recent results from the application of such methods to study a wide range of problems, including vortex-induced vibrations, aquatic swimming, insect flying, human walking and renewable energy. Limitations of such methods and the need for future research to mitigate them are also discussed.
Fluid-structure interactions in compressible cavity flows
NASA Astrophysics Data System (ADS)
Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell W.; Henfling, John F.; Mayes, Randall L.
2015-06-01
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. The streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. The largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
Fluid-Structure Interactions and Microparticle Transport in Pulmonary Alveoli
NASA Astrophysics Data System (ADS)
Ghadiali, Samir
2005-11-01
The transport of micron-size particles in the lung has important implications for both respiratory disorders and drug delivery systems. During breathing, the expansion of pulmonary alveoli produces sub-ambient pressures that draw airflow into the lung. The fate of inhaled microparticles during breathing will depend on both particle properties and the complex transient flow fields generated by alveolar wall motion. In this study, fluid-structure interaction (FSI) models are used to evaluate the effects of breathing rates, particle size, tissue viscoelasticity and surface tension forces on microparticle transport. In addition to fluid and solid dynamic equations, these models solve a particle equation of motion that includes both Brownian diffusion and gravitational terms. Our results indicate that Brownian diffusion is the dominant mechanism of transport for particles smaller than one micron and that the elastic properties of alveolar tissues can significantly affect particle deposition. Particles larger than 0.5 microns also experience significant gravitational sedimentation, while convection forces become increasingly dominant for larger particles and faster breathing rates. These results may be useful in designing improved drug delivery systems and in establishing new threshold levels for exposure to viral agents. Supported by the NSF and Parker B. Francis Foundation.
Simulation and modeling techniques for parachute fluid-structure interactions
NASA Astrophysics Data System (ADS)
Stein, Keith Robert
This thesis is on advanced flow simulation and modeling techniques for fluid-structure interactions (FSI) encountered in parachute systems. The main fluid dynamics solver is based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation of the Navier-Stokes equations of incompressible flows. The DSD/SST formulation, which was introduced earlier for flow computations involving moving boundaries and interfaces, gives us the capability to handle parachute structural deformations. The structural dynamics solver is based on a total Lagrangian finite element formulation of the equilibrium equations for a "tension structure" composed of membranes, cables, and concentrated masses. The fluid and structure are coupled iteratively within a nonlinear iteration loop, with multiple nonlinear iterations improving the convergence of the coupled system. Unstructured mesh generation and mesh moving techniques for handling of parachute deformations are developed and/or adapted to address the challenges posed by the coupled problem. The FSI methodology was originally implemented on the Thinking Machines CM-5 supercomputer and is now actively used on the CRAY T3E-1200. Applications to a variety of round and cross parachutes used by the US Army are presented, and different stages of the parachute operations, including inflation and terminal descent, are modeled.
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less
Winzen, A; Roidl, B; Schröder, W
2016-04-01
Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures. PMID:27033298
A semi-implicit level set method for multiphase flows and fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri; Maitre, Emmanuel
2016-06-01
In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1992-01-01
As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem.
A Finite Element Procedure for Calculating Fluid-Structure Interaction Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Chargin, Mladen; Gartmeier, Otto
1990-01-01
This report is intended to serve two purposes. The first is to present a survey of the theoretical background of the dynamic interaction between a non-viscid, compressible fluid and an elastic structure is presented. Section one presents a short survey of the application of the finite element method (FEM) to the area of fluid-structure-interaction (FSI). Section two describes the mathematical foundation of the structure and fluid with special emphasis on the fluid. The main steps in establishing the finite element (FE) equations for the fluid structure coupling are discussed in section three. The second purpose is to demonstrate the application of MSC/NASTRAN to the solution of FSI problems. Some specific topics, such as fluid structure analogy, acoustic absorption, and acoustic contribution analysis are described in section four. Section five deals with the organization of the acoustic procedure flowchart. Section six includes the most important information that a user needs for applying the acoustic procedure to practical FSI problems. Beginning with some rules concerning the FE modeling of the coupled system, the NASTRAN USER DECKs for the different steps are described. The goal of section seven is to demonstrate the use of the acoustic procedure with some examples. This demonstration includes an analytic verification of selected FE results. The analytical description considers only some aspects of FSI and is not intended to be mathematically complete. Finally, section 8 presents an application of the acoustic procedure to vehicle interior acoustic analysis with selected results.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1989-01-01
The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1991-01-01
The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.
Asanuma, Tatsuya; Higashikuni, Yasutomi; Yamashita, Hiroshi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo
2013-01-01
Simulation studies have been performed in attempts to elucidate the signifi cance of shear and tissue stresses in the progression and rupture of coronary artery plaques, but few studies have analyzed both stresses simultaneously. We analyzed the distributions of shear stress and tissue stress in a model of coronary artery plaque based on intravascular ultrasound data by fluid-structure interaction finite element analysis under physiological pressure and flow. As shown in previous studies, the region of peak shear stress was observed at the proximal side of the plaque where flow velocity was high but its value was at most 10 Pa. On the other hand, 1000-10,000 times greater tissue stress was located in the stenotic region but the location of peak tissue stress was different from that of shear stress. We also found that stenting not only stabilizes the stented segment but also reduces the stress in the adjacent region. Fluid-structure interaction analysis revealed discordance in the distribution of shear and tissue stresses. These two stresses exert distinct influences on the coronary plaque, rupture of which may occur where tissue stress exceeds the plaque strength, which is weakened by pathological processes triggered by shear stress. PMID:23428927
NASA Astrophysics Data System (ADS)
Goldgruber, Markus; Shahriari, Shervin; Zenz, Gerald
2015-11-01
To reduce the natural hazard risks—due to, e.g., earthquake excitation—seismic safety assessments are carried out. Especially under severe loading, due to maximum credible or the so-called safety evaluation earthquake, critical infrastructure, as these are high dams, must not fail. However, under high loading local failure might be allowed as long as the entire structure does not collapse. Hence, for a dam, the loss of sliding stability during a short time period might be acceptable if the cumulative displacements after an event are below an acceptable value. This performance is not only valid for gravity dams but also for rock blocks as sliding is even more imminent in zones with higher seismic activity. Sliding modes cannot only occur in the dam-foundation contact, but also in sliding planes formed due to geological conditions. This work compares the qualitative possible and critical displacements for two methods, the well-known Newmark's sliding block analysis and a Fluid-Foundation-Structure Interaction simulation with the finite elements method. The results comparison of the maximum displacements at the end of the seismic event of the two methods depicts that for high friction angles, they are fairly close. For low friction angles, the results are differing more. The conclusion is that the commonly used Newmark's sliding block analysis and the finite elements simulation are only comparable for high friction angles, where this factor dominates the behaviour of the structure. Worth to mention is that the proposed simulation methods are also applicable to dynamic rock wedge problems and not only to dams.
Analysis of fluid-structural instability in water
Piccirillo, N.
1997-02-01
Recent flow testing of stainless steel hardware in a high pressure/high temperature water environment produced an apparent fluid-structural instability. The source of instability was investigated by studying textbook theory and by performing NASTRAN finite element analyses. The modal analyses identified the mode that was being excited, but the flutter instability analysis showed that the design is stable if minimal structural damping is present. Therefore, it was suspected that the test hardware was the root cause of the instability. Further testing confirmed this suspicion.
A mixed time integration method for large scale acoustic fluid-structure interaction
Christon, M.A.; Wineman, S.J.; Goudreau, G.L.; Foch, J.D.
1994-07-18
The transient, coupled, interaction of sound with structures is a process in which an acoustic fluid surrounding an elastic body contributes to the effective inertia and elasticity of the body. Conversely, the presence of an elastic body in an acoustic medium influences the behavior of propagating disturbances. This paper details the application of a mixed explicit-implicit time integration algorithm to the fully coupled acoustic fluidstructure interaction problem. Based upon a dispersion analysis of the semi-discrete wave equation a second-order, explicit scheme for solving the wave equation is developed. The combination of a highly vectorized, explicit, acoustic fluid solver with an implicit structural code for linear elastodynamics has resulted in a simulation tool, PING, for acoustic fluid-structure interaction. PING`s execution rates range from 1{mu}s/Element/{delta}t for rigid scattering to 10{mu}s/Element/{delta}t for fully coupled problems. Several examples of PING`s application to 3-D problems serve in part to validate the code, and also to demonstrate the capability to treat complex geometry, acoustic fluid-structure problems which require high resolution meshes.
Fluid Structural Analysis of Urine Flow in a Stented Ureter
Gómez-Blanco, J. Carlos; Martínez-Reina, F. Javier; Cruz, Domingo; Pagador, J. Blas; Sánchez-Margallo, Francisco M.; Soria, Federico
2016-01-01
Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach. PMID:27127535
Kelly, Sinead; O'Rourke, Malachy
2012-04-01
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given
Fluid-structure interaction in axially symmetric models of abdominal aortic aneurysms.
Fraser, K H; Li, M-X; Lee, W T; Easson, W J; Hoskins, P R
2009-02-01
Abdominal aortic aneurysm disease progression is probably influenced by tissue stresses and blood flow conditions and so accurate estimation of these will increase understanding of the disease and may lead to improved clinical practice. In this work the blood flow and tissue stresses in axially symmetric aneurysms are calculated using a complete fluid-structure interaction as a benchmark for calculating the error introduced by simpler calculations: rigid walled for the blood flow, homogeneous pressure for the tissue stress, as well as one-way-coupled interactions. The error in the peak von Mises stress in a homogeneous pressure calculation compared with a fluid-structure interaction calculation was less than 3.5 per cent for aneurysm diameters up to 7 cm. The error in the mean wall shear stress, in a rigid-walled calculation compared with a fluid-structure interaction calculation, varied from 30 per cent to 60 per cent with increasing aneurysm diameter. These results suggest that incorporation of the fluid-structure interaction is unnecessary for purely mechanical modelling, with the aim of evaluating the current rupture probability. However, for more complex biological modelling, perhaps with the aim of predicting the progress of the disease, where accurate estimation of the wall shear stress is essential, some form of fluid-structure interaction is necessary. PMID:19278197
MACKEY, T.C.
2007-02-16
The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed in support of the
Santee, G.E. Jr.; Chang, F.H.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Belytschko, T.B.
1982-11-01
This report, the third in a series of reports for RP-1065, describes the final step in the stepwise approach for developing the three-dimensional, nonlinear, fluid-structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The final step in the methodology implements enhancements and special modifications to the STEALTH 3D computer program and the WHAMSE 3D computer program. After describing the enhancements, the individual and the coupled computer programs are assessed by comparing calculational results with either analytical solutions or with experimental data. The coupled 3D STEALTH/WHAMSE computer program is then applied to the simulation of HDR Test V31.1 to further assess the program and to investigate the role that fluid-structure interaction plays in the hydrodynamic loading of reactor internals during subcooled blowdown.
Fluid-structure interaction modeling of wind turbines: simulating the full machine
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Bazilevs, Yuri
2012-12-01
In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.
NASA Astrophysics Data System (ADS)
Bazilevs, Yuri; Hsu, M.-C.; Benson, D. J.; Sankaran, S.; Marsden, A. L.
2009-12-01
The Fontan procedure is a surgery that is performed on single-ventricle heart patients, and, due to the wide range of anatomies and variations among patients, lends itself nicely to study by advanced numerical methods. We focus on a patient-specific Fontan configuration, and perform a fully coupled fluid-structure interaction (FSI) analysis of hemodynamics and vessel wall motion. To enable physiologically realistic simulations, a simple approach to constructing a variable-thickness blood vessel wall description is proposed. Rest and exercise conditions are simulated and rigid versus flexible vessel wall simulation results are compared. We conclude that flexible wall modeling plays an important role in predicting quantities of hemodynamic interest in the Fontan connection. To the best of our knowledge, this paper presents the first three-dimensional patient-specific fully coupled FSI analysis of a total cavopulmonary connection that also includes large portions of the pulmonary circulation.
Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors
Curtis, Franklin G; Ekici, Kivanc; Freels, James D
2011-01-01
The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.
1988-01-01
In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state.
NASA Astrophysics Data System (ADS)
Korobenko, Artem
During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.
Desbonnets, Quentin; Broc, Daniel
2012-07-01
It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier
Fluid-Structure interaction modeling in deformable porous arteries
NASA Astrophysics Data System (ADS)
Zakerzadeh, Rana; Zunino, Paolo
2015-11-01
A computational framework is developed to study the coupling of blood flow in arteries interacting with a poroelastic arterial wall featuring possibly large deformations. Blood is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes equations and the arterial wall consists of a thick material which is modeled as a Biot system that describes the mechanical behavior of a homogeneous and isotropic elastic skeleton, and connecting pores filled with fluid. Discretization via finite element method leads to the system of nonlinear equations and a Newton-Raphson scheme is adopted to solve the resulting nonlinear system through consistent linearization. Moreover, interface conditions are imposed on the discrete level via mortar finite elements or Nitsche's coupling. The discrete linearized coupled FSI system is solved by means of a splitting strategy, which allows solving the Navier-Stokes and Biot equations separately. The numerical results investigate the effects of proroelastic parameters on the pressure wave propagation in arteries, filtration of incompressible fluids through the porous media, and the structure displacement. The fellowship support from the Computational Modeling & Simulation PhD program at University of Pittsburgh for Rana Zakerzadeh is gratefully acknowledged.
Stability of Numerical Interface Conditions for Fluid/Structure Interaction
Banks, J W; Sjogreen, B
2009-08-13
In multi physics computations, where a compressible fluid is coupled with a linearly elastic solid, it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the fluid and the solid. In a numerical scheme, there are many ways that the velocity- and stress-continuity can be enforced in the discrete approximation. This paper performs a normal mode analysis to investigate the stability of different numerical interface conditions for a model problem approximated by upwind type of finite difference schemes. The analysis shows that depending on the ratio of densities between the solid and the fluid, some numerical interface conditions are stable up to the maximal CFL-limit, while other numerical interface conditions suffer from a severe reduction of the stable CFL-limit. The paper also presents a new interface condition, obtained as a simplified charcteristic boundary condition, that is proved to not suffer from any reduction of the stable CFL-limit. Numerical experiments in one space dimension show that the new interface condition is stable also for computations with the non-linear Euler equations of compressible fluid flow coupled with a linearly elastic solid.
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
Modeling fluid structure interaction with shape memory alloy actuated morphing aerostructures
NASA Astrophysics Data System (ADS)
Oehler, Stephen D.; Hartl, Darren J.; Turner, Travis L.; Lagoudas, Dimitris C.
2012-04-01
The development of efficient and accurate analysis techniques for morphing aerostructures incorporating shape memory alloys (SMAs) continues to garner attention. These active materials have a high actuation energy density, making them an ideal replacement for conventional actuation mechanisms in morphing structures. However, SMA components are often exposed to the same highly variable environments experienced by the aeroelastic assemblies into which they are incorporated. This is motivating design engineers to consider modeling fluidstructure interaction for prescribing dynamic, solution-dependent boundary conditions. This work presents a computational study of a particular morphing aerostructure with embedded, thermally actuating SMA ribbons and demonstrates the effective use of fluid-structure interaction modeling. A cosimulation analysis is utilized to determine the surface deflections and stress distributions of an example aerostructure with embedded SMA ribbons using the Abaqus Finite Element Analysis (FEA) software suite, combined with an Abaqus Computational Fluid Dynamics (CFD) processor. The global FEA solver utilizes a robust user-defined material subroutine which contains an accurate three-dimensional SMA constitutive model. Variations in the ambient fluid environment are computed using the CFD solver, and fluid pressure is mapped into surface distributed loads. Results from the analysis are qualitatively validated with independently obtained data from representative flow tests previously conducted on a physical prototype of the same aerostructure.
NASA Astrophysics Data System (ADS)
Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2013-04-01
Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Einstein, Daniel R.; Del Pin, Facundo; Jiao, Xiangmin; Kuprat, Andrew P.; Carson, James P.; Kunzelman, Karyn S.; Cochran, Richard P.; Guccione, Julius M.; Ratcliffe, Mark B.
2009-01-01
SUMMARY The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, mitral regurgitation can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid-flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid-structure interaction model of the left heart is not trivial; it requires a careful characterization of the in-vivo cardiac geometry, tissue parameterization though inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, automatic grid-generation algorithms that are capable of accurately discretizing the cardiac geometry, innovations in image analysis, competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this manuscript, we profile our work toward a comprehensive fluid-structure interaction model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, fluid-structure interaction and validation. PMID:20454531
Numerical simulation of the fluid-structure interaction between air blast waves and soil structure
NASA Astrophysics Data System (ADS)
Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad
2014-03-01
Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.
NASA Astrophysics Data System (ADS)
Jang, Gang-Won; Chang, Se-Myong; Gim, Gyun-Ho
2013-07-01
An analysis of fluid-structure interaction is presented for incompressible and inviscid flow in a channel bounded by symmetric cantilever beams. Small deflections of the beams and no flows normal to the beams are assumed, thus allowing the governing equations to be defined using quasi-one-dimensional pressure and flow velocity distribution; pressure and velocity are assumed to be uniform across the cross section of the channel. The steady-state solution of the present problem is analytically derived by the linearization of the governing equations. The solution is shown to consist of infinite modes, which is verified by comparing with numerical solutions obtained by the finite element method. The nonlinear effect in the steady-state solution is modeled by numerical method to estimate the error due to linearization. However, only a few leading modes are physically significant owing to the effects of flow compressibility and viscosity. The analytic solutions of the fluid-structure interaction are also presented for dynamic problems assuming harmonic vibration. The steady-state and stationary initial conditions are used, and the equilibrium frequency is determined to minimize the residual error of Euler equation. The fluid-structure interaction is characterized by a phase difference and distortion of waveform shape in the time history of the boundary velocity.
Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL
Curtis, Franklin G; Ekici, Kivanc; Freels, James D
2013-01-01
The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. Due to different physical properties of the new fuel and changes to the internal fuel plate design, the current safety basis must be re-evaluated through rigorous computational analyses. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational fluid dynamics and fluid-structure interaction simulations have only recently become feasible due to improved numerical algorithms and advancements in computing technology. For many reasons including the already built-in fluid-structure interaction module, COMSOL has been chosen for this complex problem. COMSOL's ability to solve multiphysics problems using a fully-coupled and implicit solution algorithm is crucial in obtaining a stable and accurate solution. Our initial findings show that COMSOL can accurately model such problems due to its ability to closely couple the fluid dynamics and the structural dynamics problems.
Three Dimensional Viscous Finite Element Formulation For Acoustic Fluid Structure Interaction
Cheng, Lei; White, Robert D.; Grosh, Karl
2010-01-01
A three dimensional viscous finite element model is presented in this paper for the analysis of the acoustic fluid structure interaction systems including, but not limited to, the cochlear-based transducers. The model consists of a three dimensional viscous acoustic fluid medium interacting with a two dimensional flat structure domain. The fluid field is governed by the linearized Navier-Stokes equation with the fluid displacements and the pressure chosen as independent variables. The mixed displacement/pressure based formulation is used in the fluid field in order to alleviate the locking in the nearly incompressible fluid. The structure is modeled as a Mindlin plate with or without residual stress. The Hinton-Huang’s 9-noded Lagrangian plate element is chosen in order to be compatible with 27/4 u/p fluid elements. The results from the full 3d FEM model are in good agreement with experimental results and other FEM results including Beltman’s thin film viscoacoustic element [2] and two and half dimensional inviscid elements [21]. Although it is computationally expensive, it provides a benchmark solution for other numerical models or approximations to compare to besides experiments and it is capable of modeling any irregular geometries and material properties while other numerical models may not be applicable. PMID:20174602
Fluid-structure interaction in abdominal aortic aneurysms: Structural and geometrical considerations
NASA Astrophysics Data System (ADS)
Mesri, Yaser; Niazmand, Hamid; Deyranlou, Amin; Sadeghi, Mahmood Reza
2015-08-01
Rupture of the abdominal aortic aneurysm (AAA) is the result of the relatively complex interaction of blood hemodynamics and material behavior of arterial walls. In the present study, the cumulative effects of physiological parameters such as the directional growth, arterial wall properties (isotropy and anisotropy), iliac bifurcation and arterial wall thickness on prediction of wall stress in fully coupled fluid-structure interaction (FSI) analysis of five idealized AAA models have been investigated. In particular, the numerical model considers the heterogeneity of arterial wall and the iliac bifurcation, which allows the study of the geometric asymmetry due to the growth of the aneurysm into different directions. Results demonstrate that the blood pulsatile nature is responsible for emerging a time-dependent recirculation zone inside the aneurysm, which directly affects the stress distribution in aneurismal wall. Therefore, aneurysm deviation from the arterial axis, especially, in the lateral direction increases the wall stress in a relatively nonlinear fashion. Among the models analyzed in this investigation, the anisotropic material model that considers the wall thickness variations, greatly affects the wall stress values, while the stress distributions are less affected as compared to the uniform wall thickness models. In this regard, it is confirmed that wall stress predictions are more influenced by the appropriate structural model than the geometrical considerations such as the level of asymmetry and its curvature, growth direction and its extent.
Active noise control - Piezoceramic actuators in fluid/structure interaction models
NASA Technical Reports Server (NTRS)
Banks, H. T.; Fang, W.; Smith, R. C.
1991-01-01
A model for a 2-D acoustic cavity with a flexible boundary (a beam) controlled via piezoceramic patches producing bending moments in the beam is considered. The associated control problem for this fluid/structure interaction system to reduce the acoustic pressure in the cavity involves unbounded control inputs. Approximation methods in the context of an LQR state space formulation are discussed, and numerical results are presented to demonstrate the effectiveness of this approach in computing feedback controls for noise reduction.
Numerical simulation of fluid-structure interaction for axial flow blade based on weak coupling
NASA Astrophysics Data System (ADS)
Zheng, X. B.; Guo, P. C.; Luo, X. Q.
2012-11-01
Numerical simulation of three-dimensional flow in whole flow passage of axial flow hydraulic turbine was conducted based on the Reynolds-averaged N-S equations and the standard k-ε model. Stress analysis of axial flow blade were carried on by elasticity unsteady FEM. The fluid domain and solid domain were calculated by sequential iteration. Based on weak coupling technology, the fluid-structure interaction analysis of the axial flow blade was conducted. Instantaneous flow field characteristic and stress distribution on blade were analyzed. According to the comparing with the results of pure flow numerical simulation, the pressure difference between press side and suction side increases after considering the FSI, to a certain extent, which will worsen cavitations performance of the blade. Meanwhile, stress distribution on the blades do not change significantly, but the maximum stress value increases markedly, and the maximum displacement reduces slightly. The research demonstrates that the FSI not only changes the distribution of the flow field in blade area, but also have a greater impact on the stress of the blades.
Cheng, Rui; Lai, Yong G.; Chandran, Krishnan B.
2005-01-01
The wall shear stress induced by the leaflet motion during the valve-closing phase has been implicated with thrombus initiation with prosthetic valves. Detailed flow dynamic analysis in the vicinity of the leaflets and the housing during the valve-closure phase is of interest in understanding this relationship. A three-dimensional unsteady flow analysis past bileaflet valve prosthesis in the mitral position is presented incorporating a fluid-structure interaction algorithm for leaflet motion during the valve-closing phase. Arbitrary Lagrangian–Eulerian method is employed for incorporating the leaflet motion. The forces exerted by the fluid on the leaflets are computed and applied to the leaflet equation of motion to predict the leaflet position. Relatively large velocities are computed in the valve clearance region between the valve housing and the leaflet edge with the resulting relatively large wall shear stresses at the leaflet edge during the impact-rebound duration. Negative pressure transients are computed on the surface of the leaflets on the atrial side of the valve, with larger magnitudes at the leaflet edge during the closing and rebound as well. Vortical flow development is observed on the inflow (atrial) side during the valve impact-rebound phase in a location central to the leaflet and away from the clearance region where cavitation bubbles have been visualized in previously reported experimental studies. PMID:15636108
Analytical and experimental study on the fluid structure interaction during air blast loading
NASA Astrophysics Data System (ADS)
Wang, Erheng; Wright, Jefferson; Shukla, Arun
2011-12-01
A new fluid-structure interaction model that considers high gas compressibility is developed using the Rankine-Hugoniot relations. The impulse conservation between the gas and structure is utilized to determine the reflected pressure profile from the known incident pressure profile. The physical parameters of the gas such as the shock front velocity, gas density, local sound velocity, and gas particle velocity as well as the impulse transmitted onto the structure are also evaluated. A series of one-dimensional shock loading experiments on free standing monolithic aluminum plates were conducted using a shock tube to validate the proposed model. The momentum was evaluated using high speed digital imagery. The experimental peak reflected pressure, the reflected pressure profile, and the momentum transmitted onto the plate were compared with the predicted results. The comparisons show that the gas's compressibility significantly affects the fluid structure interaction behavior, and the new model can predict more accurate results than existing models. The effect of factors, such as the areal density of a plate and the peak incident pressure on momentum transfer are also discussed using the present model. Moreover, the maximum achievable momentum and the fluid structure interaction time are defined and calculated.
Analyse et caracterisation d'interactions fluide-structure instationnaires en grands deplacements
NASA Astrophysics Data System (ADS)
Cori, Jean-Francois
rigid oscillating airfoil on deforming meshes, for flow induced vibrations of a flexible strip and for a self-propulsed flapping airfoil indicate that the stability of the proposed approach is always observed even with large time steps, spurious oscillations on the structure are avoided without any damping and the high order accuracy of the IRK schemes is maintained. We have applied our powerful FSI framework on three interesting applications, with a detailed dimensional analysis to obtain their characteristic parameters. Firstly, we have studied the vibrational characteristics of a well-documented fluid-structure interaction case : a flexible strip fixed behind a rigid square cylinder. Our results compare favorably with previous works. The accuracy of the IRK time integrators (even for the pressure field of incompressible flow), their unconditional stability and their non-dissipative nature produced results revealing new, never previously reported, higher frequency structural forces weakly coupled with the fluid. Secondly, we have explored the propulsive and power extraction characteristics of rigid and flexible flapping airfoils. For the power extraction, we found an excellent agreement with literature results. A parametric study indicates the optimal motion parameters to get high propulsive efficiencies. An optimal flexibility seems to improve power extraction efficiency. Finally, a survey on flapping propulsion has given initial results for a self-propulsed airfoil and has opened a new way of studying propulsive efficiency. (Abstract shortened by UMI.)
Felippa, Carlos A.; Sprague, Michael A.; Ross, Michael R.; Park, K. C.
2008-11-01
This paper is a sequel on the topic of localized Lagrange multipliers (LLM) for applications of fluid-structure interaction (FSI) between finite-element models of an acoustic fluid and an elastic structure. The prequel paper formulated the spatial-discretization methods, the LLM interface treatment, the time-marching partitioned analysis procedures, and the application to 1D benchmark problems. Here, we expand on formulation aspects required for successful application to more realistic 2D and 3D problems. Additional topics include duality relations at the fluid-structure interface, partitioned vibration analysis, reduced-order modeling, handling of curved interface surfaces, and comparison of LLM with other coupling methods. Emphasis is given to non-matching fluid-structure meshes. We present benchmark examples that illustrate the benefits and drawbacks of competing interface treatments. Realistic application problems involving the seismic response of two existing dams are considered. These include 2D modal analyses of the Koyna gravity dam, transient-response analyses of that dam with and without reduced-order modeling, incorporation of nonlinear cavitation effects, and the 3D transient-response analysis of the Morrow Point arch dam.
Experimental and numerical study on a laminar fluid-structure interaction reference test case
NASA Astrophysics Data System (ADS)
Gomes, J. Pereira; Yigit, S.; Lienhart, H.; Schäfer, M.
2011-01-01
With the rapid development of numerical codes for fluid-structure interaction computations, the demand for validation test cases increases. In this paper we present a comparison between numerical and experimental results for such a fluid-structure interaction reference test case. The investigated structural model consists of an aluminum front cylinder with an attached thin metal plate and a rear mass at the trailing edge. All the structure is free to rotate around the axle mounted in the center of the front cylinder. The model's geometry and mechanical properties are chosen in such a way as to attain a self-exciting periodical swiveling movement when exposed to a uniform laminar flow. Reproducibility of the coupled fluid-structure motion is the key criterion for the selection of the model in order to permit an accurate reconstruction of the results in the time-phase space. The Reynolds number of the tests varies up to 270 and within that range the structure undergoes large deformations and shows a strong nonlinear behavior. It also presents two different self-excitation mechanisms depending on the flow velocity. Hence, challenging tasks arise for both the numerical solution algorithm and the experimental measurements. To account for the two different excitation mechanisms observed on increasing the speed of the flow, results for two different velocities are considered: the first at 1.07 m/s (Re=140) and the second at 1.45 m/s (Re=195). The comparisons presented in this paper are carried out on the basis of the time trace of the front body angle, trailing edge coordinates, structure deformation and the time-phase resolved flow velocity field. They reveal very good agreement in some of the fluid-structure interaction modes whereas in others deficiencies are observed that need to be analyzed in more detail.
A vorticity based approach to handle the fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Farahbakhsh, Iman; Ghassemi, Hassan; Sabetghadam, Fereidoun
2016-02-01
A vorticity based approach for the numerical solution of the fluid-structure interaction problems is introduced in which the fluid and structure(s) can be viewed as a continuum. Retrieving the vorticity field and recalculating a solenoidal velocity field, specially at the fluid-structure interface, are the kernel of the proposed algorithm. In the suggested method, a variety of constitutive equations as a function of left Cauchy-Green deformation tensor can be applied for modeling the structure domain. A nonlinear Mooney-Rivlin and Saint Venant-Kirchhoff model are expressed in terms of the left Cauchy-Green deformation tensor and the presented method is able to model the behavior of a visco-hyperelastic structure in the incompressible flow. Some numerical experiments, with considering the neo-Hookean model for structure domain, are executed and the results are validated via the available results from literature.
A Parallel Monolithic Approach for Fluid-Structure Interaction in a Cerebral Aneurysm
NASA Astrophysics Data System (ADS)
Sahin, Mehmet; Eken, Ali
2014-11-01
A parallel fully-coupled approach has been developed for the fluid-structure interaction problem in a cerebral artery with aneurysm. An Arbitrary Lagrangian-Eulerian formulation based on the side-centered unstructured finite volume method is employed for the governing incompressible Navier-Stokes equations and the classical Galerkin finite element formulation is used to discretize the constitutive law for the Saint Venant-Kirchhoff material in a Lagrangian frame for the solid domain. The time integration method for the structure domain is based on the energy conserving mid-point method while the second-order backward difference is used within the fluid domain. The resulting large-scale algebraic linear equations are solved using a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains. The parallel implementation of the present fully coupled unstructured fluid-structure solver is based on the PETSc library. The proposed numerical algorithm is initially validated for several classical benchmark problems and then applied to a more complicated problem involving unsteady pulsatile blood flow in a cerebral artery with aneurysm as a realistic fluid-structure interaction problem encountered in biomechanics. The authors acknowledge financial support from Turkish National Scientific and Technical Research Council through Project Number 112M107.
NASA Astrophysics Data System (ADS)
Kwon, Y. W.; Violette, M. A.; McCrillis, R. D.; Didoszak, J. M.
2012-12-01
The objective of this study is to examine the Fluid Structure Interaction (FSI) effect on transient dynamic response and failure of sandwich composite structures under impact loading. The primary sandwich composite used in this study consisted of a 6.35 mm balsa core and a multi-ply symmetrical plain weave 6 oz E-glass skin. Both clamped sandwich composite plates and beams were studied using a uniquely designed vertical drop-weight testing machine. There were three impact conditions on which these experiments focused. The first of these conditions was completely dry (or air surrounded) testing. The second condition was completely water submerged. The final condition was also a water submerged test with air support at the backside of the plates. The tests were conducted sequentially, progressing from a low to high drop height to determine the onset and spread of damage to the sandwich composite when impacted with the test machine. The study showed the FSI effect on sandwich composite structures is very critical such that impact force, strain response, and damage size are generally much greater with FSI under the same impact condition. As a result, damage initiates at much lower impact energy conditions with the effect of FSI. Neglecting to account for FSI effects on sandwich composite structures results in very non-conservative analysis and design. Additionally, it was observed that the damage location changed for sandwich composite beams with the effect of FSI.
Determining an Effective Shear Modulus in Tubular Organs for Fluid-Structure Interaction
NASA Astrophysics Data System (ADS)
Chisena, Robert; Brasseur, James; Costanzo, Francesco; Gregersen, Hans; Zhao, Jingbo
2014-11-01
Fluid-structure interaction (FSI) is central to the mechanics of fluid-filled tubular organs such as the intestine and esophagus. The motions of fluid chyme are driven by a muscularis wall layer of circular and longitudinal muscle fibers. The coupled motions of the fluid and elastic solid phases result from a local balance between active and passive muscle stress components, fluid pressure, and fluid viscous stresses. Model predictions depend on the passive elastic response of the muscularis layer, which is typically parameterized with an average isotropic elastic modulus (EM), currently measured in vivo and in vitro with estimates for total hoop stress within a distension experiment. We have shown that this approach contains serious error due to the overwhelming influence of incompressibility on the hydrostatic component. We present a new approach in which an effective shear modulus, containing only deviatoric contributions, is measured to overcome this serious error. Using in vitro measurements from pig intestines, we compare our new approach to the current method, showing vastly different predictions. We will also report on our current analysis which aims to determine the influence of residual stress on the EM measurements and comment on it use in FSI simulations.
Fluid-Structure Interaction Modeling of the Reefed Stages of the Orion Spacecraft Main Parachutes
NASA Astrophysics Data System (ADS)
Boswell, Cody W.
Spacecraft parachutes are typically used in multiple stages, starting with a "reefed" stage where a cable along the parachute skirt constrains the diameter to be less than the diameter in the subsequent stage. After a certain period of time during the descent, the cable is cut and the parachute "disreefs" (i.e. expands) to the next stage. Computing the parachute shape at the reefed stage and fluid-structure interaction (FSI) modeling during the disreefing involve computational challenges beyond those we have in FSI modeling of fully-open spacecraft parachutes. These additional challenges are created by the increased geometric complexities and by the rapid changes in the parachute geometry. The computational challenges are further increased because of the added geometric porosity of the latest design, where the "windows" created by the removal of panels and the wider gaps created by the removal of sails compound the geometric and flow complexity. Orion spacecraft main parachutes will have three stages, with computation of the Stage 1 shape and FSI modeling of disreefing from Stage 1 to Stage 2 being the most challenging. We present the special modeling techniques we devised to address the computational challenges and the results from the computations carried out. We also present the methods we devised to calculate for a parachute gore the radius of curvature in the circumferential direction. The curvature values are intended for quick and simple engineering analysis in estimating the structural stresses.
Chen, Chao; Ma, Ming; Jin, Kai; Liu, Jefferson Zhe; Shen, Luming; Zheng, Quanshui; Xu, Zhiping
2011-10-01
We investigate here water flow passing a single-walled carbon nanotube (CNT), through analysis based on combined atomistic and continuum mechanics simulations. The relation between drag coefficient C(D) and Reynolds number Re is obtained for a wide range of flow speed u from 5 to 600 m/s. The results suggest that Stokes law for creep flow works well for small Reynolds numbers up to 0.1 (u ≈ 100 m/s), and indicates a linear dependence between drag force and flow velocity. Significant deviation is observed at elevated Re values, which is discussed by considering the interfacial slippage, reduction of viscosity due to friction-induced local heating, and flow-induced structural vibration. We find that interfacial slippage has a limited contribution to the reduction of the resistance, and excitations of low-frequency vibration modes in the carbon nanotube play an important role in energy transfer between water and carbon nanotubes, especially at high flow speeds where drastic enhancement of the carbon nanotube vibration is observed. The results reported here reveal nanoscale fluid-structure interacting mechanisms, and lay the ground for rational design of nanofluidics and nanoelectromechanical devices operating in a fluidic environment. PMID:22181268
Fluid-structure Interaction of Rigid and Flexible Wings in Ground Effect
NASA Astrophysics Data System (ADS)
Bleischwitz, Robert; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Inspired by trawling bats, combining flexible membrane wings and the vicinity of the ground, an experimental wind tunnel study is conducted at Re = 56,000 to determine the fluid-structure-ground interaction of rectangular, perimeter reinforced low aspect ratio (AR = 2) membrane wings in free flight and ground effect conditions. The pitch angle is varied between 10° <= α <=25° . Flexible membrane wings are compared with rigid flat plates. Instantaneous lift and drag forces are simultaneously recorded with membrane and flow dynamics (Digital-Image-Correlation + Particle-Image-Velocimetry). The focus of this study involves coupling effects of membrane mode shapes (chordwise + spanwise) and flow structures changing with angle of attack and height over ground. A POD analysis of the flow, membrane vibrations and forces should help to identify aerodynamic beneficial vibration shapes and their impact on flow features such as leading edge and tip vortices. The knowledge is seen to be essential for efficient usage of MAVs with membrane wings in and out of ground effect. PhD student.
Deiterding, Ralf; Wood, Stephen L
2013-01-01
We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.
NASA Astrophysics Data System (ADS)
Zhang, Lingjie; Qian, Zuoqin; Deng, Jun; Yin, Yuting
2015-09-01
A numerical simulation and experimental study of heat transfer, fluid flow and fins mechanical property on plate-fin heat exchanger has been presented in this paper. The methods used in this study are experiment, CFD analysis, fluid-structure interaction and finite element method. An air-oil wind tunnel is established for this experiment. The temperature difference, pressure drop, streamlines are obtained in overall model, and the heat transfer coefficient, j/ f factor, temperature and stress distribution of plate-fin body are obtained in different fin thickness and fin offset. The prediction from the CFD simulation shows reasonably good agreement with the experimental results.
On the necessity of modelling fluid-structure interaction for stented coronary arteries.
Chiastra, Claudio; Migliavacca, Francesco; Martínez, Miguel Ángel; Malvè, Mauro
2014-06-01
Although stenting is the most commonly performed procedure for the treatment of coronary atherosclerotic lesions, in-stent restenosis (ISR) remains one of the most serious clinical complications. An important stimulus to ISR is the altered hemodynamics with abnormal shear stresses on endothelial cells generated by the stent presence. Computational fluid dynamics is a valid tool for studying the local hemodynamics of stented vessels, allowing the calculation of the wall shear stress (WSS), which is otherwise not directly possible to be measured in vivo. However, in these numerical simulations the arterial wall and the stent are considered rigid and fixed, an assumption that may influence the WSS and flow patterns. Therefore, the aim of this work is to perform fluid-structure interaction (FSI) analyses of a stented coronary artery in order to understand the effects of the wall compliance on the hemodynamic quantities. Two different materials are considered for the stent: cobalt-chromium (CoCr) and poly-l-lactide (PLLA). The results of the FSI and the corresponding rigid-wall models are compared, focusing in particular on the analysis of the WSS distribution. Results showed similar trends in terms of instantaneous and time-averaged WSS between compliant and rigid-wall cases. In particular, the difference of percentage area exposed to TAWSS lower than 0.4Pa between the CoCr FSI and the rigid-wall cases was about 1.5% while between the PLLA cases 1.0%. The results indicate that, for idealized models of a stented coronary artery, the rigid-wall assumption for fluid dynamic simulations appears adequate when the aim of the study is the analysis of near-wall quantities like WSS. PMID:24607760
Frequency modelling and solution of fluid-structure interaction in complex pipelines
NASA Astrophysics Data System (ADS)
Xu, Yuanzhi; Johnston, D. Nigel; Jiao, Zongxia; Plummer, Andrew R.
2014-05-01
Complex pipelines may have various structural supports and boundary conditions, as well as branches. To analyse the vibrational characteristics of piping systems, frequency modelling and solution methods considering complex constraints are developed here. A fourteen-equation model and Transfer Matrix Method (TMM) are employed to describe Fluid-Structure Interaction (FSI) in liquid-filled pipes. A general solution for the multi-branch pipe is proposed in this paper, offering a methodology to predict frequency responses of the complex piping system. Some branched pipe systems are built for the purpose of validation, indicating good agreement with calculated results.
Variable transfer methods for fluid-structure interaction computations with staggered solvers
NASA Astrophysics Data System (ADS)
Vaassen, J. M.; Klapka, I.; Leonard, B.; Hirsch, C.
2009-09-01
This paper intends to study methods that have been tested to transfer variables from one skin mesh to another (the two meshes being nonconform) in order to compute fluid-structure interaction (FSI) problems with staggered solvers. The methods are a contact elements method developed by Stam, and different radial basis functions methods. The structure code is OOFELIE® developed at Open-Engineering (Belgium) and the fluid code is FINETM/Hexa developed at Numeca International (Belgium). The paper presents the performances of the methods on a simple variable transfer, and testcases that have been performed with the solver developed by the two companies.
Kemp, I; Dellimore, K; Rodriguez, R; Scheffer, C; Blaine, D; Weich, H; Doubell, A
2013-09-01
Experiments performed on a 19 mm diameter bioprosthetic valve were used to successfully validate the fluid-structure interaction (FSI) simulation of an aortic valve at 72 bpm. The FSI simulation was initialized via a novel approach utilizing a Doppler sonogram of the experimentally tested valve. Using this approach very close quantitative agreement (≤12.5%) between the numerical predictions and experimental values for several key valve performance parameters, including the peak systolic transvalvular pressure gradient, rapid valve opening time and rapid valve closing time, was obtained. The predicted valve leaflet kinematics during opening and closing were also in good agreement with the experimental measurements. PMID:23907849
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
NASA Astrophysics Data System (ADS)
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
FLUID-STRUCTURE INTERACTION MODELS OF THE MITRAL VALVE: FUNCTION IN NORMAL AND PATHOLOGIC STATES
Kunzelman, K. S.; Einstein, Daniel R.; Cochran, R. P.
2007-08-29
Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyze the roles of individual components, and evaluate proposed surgical repair. We developed the first three-dimensional, finite element (FE) computer model of the mitral valve including leaflets and chordae tendineae, however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here our latest results for normal function and specific pathologic changes using a fluid-structure interaction (FSI) model. Normal valve function was first assessed, followed by pathologic material changes in collagen fiber volume fraction, fiber stiffness, fiber splay, and isotropic stiffness. Leaflet and chordal stress and strain, and papillary muscle force was determined. In addition, transmitral flow, time to leaflet closure, and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in-vivo and in-vitro data. Further, pathologic material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly noninvasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathologic valves in a clinical and educational
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-10
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2010-01-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the
An enhanced Immersed Structural Potential Method for fluid-structure interaction
NASA Astrophysics Data System (ADS)
Gil, A. J.; Arranz Carreño, A.; Bonet, J.; Hassan, O.
2013-10-01
Within the group of immersed boundary methods employed for the numerical simulation of fluid-structure interaction problems, the Immersed Structural Potential Method (ISPM) was recently introduced (Gil et al., 2010) [1] in order to overcome some of the shortcomings of existing immersed methodologies. In the ISPM, an incompressible immersed solid is modelled as a deviatoric strain energy functional whose spatial gradient defines a fluid-structure interaction force field in the Navier-Stokes equations used to resolve the underlying incompressible Newtonian viscous fluid. In this paper, two enhancements of the methodology are presented. First, the introduction of a new family of spline-based kernel functions for the transfer of information between both physics. In contrast to classical IBM kernels, these new kernels are shown not to introduce spurious oscillations in the solution. Second, the use of tensorised Gaussian quadrature rules that allow for accurate and efficient numerical integration of the immersed structural potential. A series of numerical examples will be presented in order to demonstrate the capabilities of the enhanced methodology and to draw some key comparisons against other existing immersed methodologies in terms of accuracy, preservation of the incompressibility constraint and computational speed.
A Monolithic Algorithm for High Reynolds Number Fluid-Structure Interaction Simulations
NASA Astrophysics Data System (ADS)
Lieberknecht, Erika; Sheldon, Jason; Pitt, Jonathan
2013-11-01
Simulations of fluid-structure interaction problems with high Reynolds number flows are typically approached with partitioned algorithms that leverage the robustness of traditional finite volume method based CFD techniques for flows of this nature. However, such partitioned algorithms are subject to many sub-iterations per simulation time-step, which substantially increases the computational cost when a tightly coupled solution is desired. To address this issue, we present a finite element method based monolithic algorithm for fluid-structure interaction problems with high Reynolds number flow. The use of a monolithic algorithm will potentially reduce the computational cost during each time-step, but requires that all of the governing equations be simultaneously cast in a single Arbitrary Lagrangian-Eulerian (ALE) frame of reference and subjected to the same discretization strategy. The formulation for the fluid solution is stabilized by implementing a Streamline Upwind Galerkin (SUPG) method, and a projection method for equal order interpolation of all of the solution unknowns; numerical and programming details are discussed. Preliminary convergence studies and numerical investigations are presented, to demonstrate the algorithm's robustness and performance. The authors acknowledge support for this project from the Applied Research Laboratory Eric Walker Graduate Fellowship Program.
Childress, Emily M; Kleinstreuer, Clement
2014-03-01
Direct targeting of solid tumors with chemotherapeutic drugs and/or radioactive microspheres can be a treatment option which minimizes side-effects and reduces cost. Briefly, computational analysis generates particle release maps (PRMs) which visually link upstream particle injection regions in the main artery with associated exit branches, some connected to tumors. The overall goal is to compute patient-specific PRMs realistically, accurately, and cost-effectively, which determines the suitable radial placement of a micro-catheter for optimal particle injection. Focusing in this paper on new steps towards realism and accuracy, the impact of fluid-structure interaction on direct drug-targeting is evaluated, using a representative hepatic artery system with liver tumor as a test bed. Specifically, the effect of arterial wall motion was demonstrated by modeling a two-way fluid-structure interaction analysis with Lagrangian particle tracking in the bifurcating arterial system. Clearly, rapid computational evaluation of optimal catheter location for tumor-targeting in a clinical application is very important. Hence, rigid-wall cases were also compared to the flexible scenario to establish whether PRMs generated when based on simplifying assumptions could provide adequate guidance towards ideal catheter placement. It was found that the best rigid (i.e., time-averaged) geometry is the physiological one that occurs during the diastolic targeting interval. PMID:24048712
A stable second-order scheme for fluid-structure interaction with strong added-mass effects
NASA Astrophysics Data System (ADS)
Liu, Jie; Jaiman, Rajeev K.; Gurugubelli, Pardha S.
2014-08-01
In this paper, we present a stable second-order time accurate scheme for solving fluid-structure interaction problems. The scheme uses so-called Combined Field with Explicit Interface (CFEI) advancing formulation based on the Arbitrary Lagrangian-Eulerian approach with finite element procedure. Although loosely-coupled partitioned schemes are often popular choices for simulating FSI problems, these schemes may suffer from inherent instability at low structure to fluid density ratios. We show that our second-order scheme is stable for any mass density ratio and hence is able to handle strong added-mass effects. Energy-based stability proof relies heavily on the connections among extrapolation formula, trapezoidal scheme for second-order equation, and backward difference method for first-order equation. Numerical accuracy and stability of the scheme is assessed with the aid of two-dimensional fluid-structure interaction problems of increasing complexity. We confirm second-order temporal accuracy by numerical experiments on an elastic semi-circular cylinder problem. We verify the accuracy of coupled solutions with respect to the benchmark solutions of a cylinder-elastic bar and the Navier-Stokes flow system. To study the stability of the proposed scheme for strong added-mass effects, we present new results using the combined field formulation for flexible flapping motion of a thin-membrane structure with low mass ratio and strong added-mass effects in a uniform axial flow. Using a systematic series of fluid-structure simulations, a detailed analysis of the coupled response as a function of mass ratio for the case of very low bending rigidity has been presented.
Gross, M.B.
1984-10-01
STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structural response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.
Numerical simulation of fluid/structure interaction phenomena in viscous dominated flows
NASA Astrophysics Data System (ADS)
Tran, Hai Duong
2001-12-01
The accurate prediction of buffet boundaries is essential in modern military aircraft and suspension bridge design in order to avoid the potentially disastrous consequences of unsteady loads. The design of lightweight structures and thermal protection systems for supersonic and hypersonic vehicles depends on the accurate prediction of the aerothermal loads, the structural temperatures and their gradients, and the structural deformations and stresses. Despite their bounded nature, limit-cycle oscillations can exhibit important amplitudes which affect the fatigue life of aircraft structures. Therefore, the main objective of this thesis is to develop and design an integrated multidisciplinary computational methodology for the analyses of the coupled responses exhibited by these phenomena. To simulate fluid/structure interaction problems in turbulent flows, we formulate the k--epsilon turbulence model and Reichardt's wall law in ALE form for dynamic meshes. This law is used with the generalized boundary conditions on k and epsilon of Jaeger and Dhatt and allows a closer integration to the wall compared to standard logarithmic laws and boundary conditions on k and epsilon. In order to apply the methodology to buffeting problems dominated by vortex shedding, we validate our solution approach on the square cylinder benchmark problem. There, we stress the minimization of numerical dissipation induced by an upwinding scheme, and apply our methodology to the aeroelastic stability analysis of a sectional dynamic model of the Tacoma Narrows Bridge. Then, we extend the three field formulation of aeroelasticity to a four-field formulation of aerothermoelasticity for the analysis of aerodynamic heating on structures. With a k--epsilon model, the time-averaged Navier-Stokes equations are integrated up to a distance delta from the real wall. This gap creates a problem for the transmission of the structural temperature to the fluid system. To resolve this problem, we exchange the
Wang, C.Y.; Zeuch, W.R.
1982-01-01
This paper describes an arbitrary Lagrangian-Eulerian method for analyzing fluid-structure interactions in fast-reactor containment with complex internal structures. The fluid transient can be calculated either implicitly or explicitly, using a finite-difference mesh with vertices that may be moved with the fluid (Lagrangian), held fixed (Eulerian), or moved in any other prescribed manner (hybrid Lagrangian Eulerian). The structural response is computed explicitly by two nonlinear, elastic-plastic finite-element modules formulated in corotational coordinates. Interaction between fluid and structure is accounted for by enforcing the interface boundary conditions. The method has convincing advantages in treating complicated phenomena such as flow through perforated structures, large material distortions, flow around corners and irregularities, and highly contorted fluid boundaries. Several sample problems are given to illustrate the effectiveness of this arbitrary Lagrangian-Eulerian method.
NASA Technical Reports Server (NTRS)
Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon
2010-01-01
Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.
1991-01-01
The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.
Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon
NASA Astrophysics Data System (ADS)
Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad
2015-11-01
A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.
Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Fernholz, Christian M.; Robinson, Jay H.
1996-01-01
MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.
NASA Astrophysics Data System (ADS)
Chen, Zheng-Shou; Kim, Wu-Joan
2012-03-01
This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid-structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid-structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.
1988-01-01
Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.
Strongly coupled partitioned approach for fluid structure interaction in free surface flows
NASA Astrophysics Data System (ADS)
Facci, Andrea Luigi; Ubertini, Stefano
2016-06-01
In this paper we describe and validate a methodology for the numerical simulation of the fluid structure interaction in free surface flows. Specifically, this study concentrates on the vertical impact of a rigid body on the water surface, (i.e. on the hull slamming problem). The fluid flow is modeled through the volume of fluid methodology, and the structure dynamics is described by the Newton's second law. An iterative algorithm guarantees the tight coupling between the fluid and solid solvers, allowing the simulations of lightweight (i.e. buoyant) structures. The methodology is validated comparing numerical results to experimental data on the free fall of different rigid wedges. The correspondence between numerical results and independent experimental findings from literature evidences the reliability and the accuracy of the proposed approach.
A Phase-Field Method for Simulating Fluid-Structure Interactions in Multi-Phase Flow
NASA Astrophysics Data System (ADS)
Zheng, Xiaoning; Karniadakis, George
2015-11-01
We investigate two-phase flow instabilities by numerical simulations of fluid structure interactions in two-phase flow. The first case is a flexible pipe conveying two fluids, which exhibits self-sustained oscillations at high Reynolds number and tension related parameter. Well-defined two-phase flow patterns, i.e., slug flow and bubbly flow, are observed. The second case is external two-phase cross flow past a circular cylinder, which induces a Kelvin-Helmholtz instability due to density stratification. We solve the Navier-Stokes equation coupled with the Cahn-Hilliard equation and the structure equation in an arbitrary Lagrangian Eulerian (ALE) framework. For the fluid solver, a spectral/hp element method is employed for spatial discretization and backward differentiation for time discretization. For the structure solver, a Galerkin method is used in Lagrangian coordinates for spatial discretization and the Newmark- β scheme for time discretization.
The Effectiveness of the Perfectly Matched Layer in Fluid-Structure Interaction Problems
NASA Astrophysics Data System (ADS)
Zhang, Lucy; Yang, Jubiao
2015-11-01
It is well recognized that spurious reflections on computational domain boundaries can have contamination of the flow field when solving fluid and/or wave equations. The effects are even more pronounced in fluid-structure interaction (FSI) problems, since the solid responses may be distorted due to the contaminated flow field. In this work, we implemented the perfectly matched layer (PML) technique and applied it in our fully-coupled immersed finite element method (IFEM), where Navier-Stokes equations are solved in the fluid domain with finite element method. With PML included as an absorbing layer it successfully absorbs outgoing waves from the interior of the computational domain and therefore keeps them from reflecting back from the computational boundary. Validation cases are shown to demonstrate the effectiveness of the PML in pure computational fluid dynamics cases, and then followed by FSI problems.
Nonlinear fluid/structure interaction relating a rupture-disc pressure-relief device. [LMFBR
Hsieh, B.J.; Kot, C.A.; Shin, Y.W.; Youngdahl, C.K.
1983-01-01
Rupture disc assemblies are used in piping network systems as a pressure-relief device. The reverse-buckling type is chosen for application in a liquid metal fast breeder reactor. This assembly is used successfully in systems in which the fluid is highly compressible, such as air; the opening up of the disc by the knife setup is complete. However, this is not true for a liquid system; it had been observed experimentally that the disc may open up only partially or not at all. Therefore, to realistically understand and represent a rupture disc assembly in a liquid environment, the fluid-structure interactions between the liquid medium and the disc assembly must be considered. The methods for analyzing the fluid and the disc and the mechanism interconnecting them are presented. The fluid is allowed to cavitate through a column-cavitation model and the disc is allowed to become plastically deformed through the classic Von Mises' yield criteria, when necessary.
Ferman, M.A.
1994-12-31
A collection of some highlights of the Author`s experiences with nonlinear dynamics in analyses and tests of Panels and Membranes encountered over the past 40 years is given. The primary focus is placed on a major block of his work since the early 70`s, involving work with fluid-structure interaction with Panels and Membranes, and with efforts in Acoustic Fatigue of Panels. While the Author had encountered nonlinear problems throughout Ins career involving flutter, vibration in general, and dynamic thrust instability; it was the more recent work with panels and membranes that greatly expanded his experience. This was triggered by the advent of highly maneuverable aircraft, powered by large powerful, noisy engines, and new materials in the mid 70`s. The significance of nonlinearity for these applications is most obvious from the results shown here-it simply cannot be ignored for optimal, safe design.
An immersed-shell method for modelling fluid-structure interactions.
Viré, A; Xiang, J; Pain, C C
2015-02-28
The paper presents a novel method for numerically modelling fluid-structure interactions. The method consists of solving the fluid-dynamics equations on an extended domain, where the computational mesh covers both fluid and solid structures. The fluid and solid velocities are relaxed to one another through a penalty force. The latter acts on a thin shell surrounding the solid structures. Additionally, the shell is represented on the extended domain by a non-zero shell-concentration field, which is obtained by conservatively mapping the shell mesh onto the extended mesh. The paper outlines the theory underpinning this novel method, referred to as the immersed-shell approach. It also shows how the coupling between a fluid- and a structural-dynamics solver is achieved. At this stage, results are shown for cases of fundamental interest. PMID:25583857
Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials
Casadei, Filippo; Bertoldi, Katia
2014-01-21
The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.
Numerical simulations of fluid-structure interactions in single-reed mouthpieces.
da Silva, Andrey Ricardo; Scavone, Gary P; van Walstijn, Maarten
2007-09-01
Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with an oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably from the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. PMID:17927439
Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries
NASA Astrophysics Data System (ADS)
Radtke, Lars; Larena-Avellaneda, Axel; Debus, Eike Sebastian; Düster, Alexander
2016-06-01
We present a partitioned approach to fluid-structure interaction problems arising in analyses of blood flow in arteries. Several strategies to accelerate the convergence of the fixed-point iteration resulting from the coupling of the fluid and the structural sub-problem are investigated. The Aitken relaxation and variants of the interface quasi-Newton -least-squares method are applied to different test cases. A hybrid variant of two well-known variants of the interface quasi-Newton-least-squares method is found to perform best. The test cases cover the typical boundary value problem faced when simulating the fluid-structure interaction in arteries, including a strong added mass effect and a wet surface which accounts for a large part of the overall surface of each sub-problem. A rubber-like Neo Hookean material model and a soft-tissue-like Holzapfel-Gasser-Ogden material model are used to describe the artery wall and are compared in terms of stability and computational expenses. To avoid any kind of locking, high-order finite elements are used to discretize the structural sub-problem. The finite volume method is employed to discretize the fluid sub-problem. We investigate the influence of mass-proportional damping and the material model chosen for the artery on the performance and stability of the acceleration strategies as well as on the simulation results. To show the applicability of the partitioned approach to clinical relevant studies, the hemodynamics in a pathologically deformed artery are investigated, taking the findings of the test case simulations into account.
Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries
NASA Astrophysics Data System (ADS)
Radtke, Lars; Larena-Avellaneda, Axel; Debus, Eike Sebastian; Düster, Alexander
2016-02-01
We present a partitioned approach to fluid-structure interaction problems arising in analyses of blood flow in arteries. Several strategies to accelerate the convergence of the fixed-point iteration resulting from the coupling of the fluid and the structural sub-problem are investigated. The Aitken relaxation and variants of the interface quasi-Newton -least-squares method are applied to different test cases. A hybrid variant of two well-known variants of the interface quasi-Newton-least-squares method is found to perform best. The test cases cover the typical boundary value problem faced when simulating the fluid-structure interaction in arteries, including a strong added mass effect and a wet surface which accounts for a large part of the overall surface of each sub-problem. A rubber-like Neo Hookean material model and a soft-tissue-like Holzapfel-Gasser-Ogden material model are used to describe the artery wall and are compared in terms of stability and computational expenses. To avoid any kind of locking, high-order finite elements are used to discretize the structural sub-problem. The finite volume method is employed to discretize the fluid sub-problem. We investigate the influence of mass-proportional damping and the material model chosen for the artery on the performance and stability of the acceleration strategies as well as on the simulation results. To show the applicability of the partitioned approach to clinical relevant studies, the hemodynamics in a pathologically deformed artery are investigated, taking the findings of the test case simulations into account.
NASA Astrophysics Data System (ADS)
Wang, Chunbai; Mitra, Ambar K.
2016-01-01
Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.
Helical waves and non-linear dynamics of fluid/structure interactions in a tube row
Moon, F.C.; Thothadri, M.
1997-12-31
The goal of this study has been to investigate low-dimensional models for fluid-structure dynamics of flow across a row of cylindrical tubes. Four principle results of this experimental-theoretical study are discussed. (i) Experimental evidence has shown that the dynamic instability of the tube row is a subcritical Hopf bifurcation. (ii) The critical flow velocity decreases as the number of flexible cylinders increases. (iii) The linear model exhibits coupled helical wave solutions in the tube dynamics. (iv) A nonlinear model of the tube motions shows a complex subcritical Hopf bifurcation with a secondary bifurcation to a torus or quasi-periodic oscillation. In this analysis the tools of center manifolds, normal forms and numerical simulation are used.
Sensitivity Analysis of Left Ventricle with Dilated Cardiomyopathy in Fluid Structure Simulation
Chan, Bee Ting; Abu Osman, Noor Azuan; Lim, Einly; Chee, Kok Han; Abdul Aziz, Yang Faridah; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates
2013-01-01
Dilated cardiomyopathy (DCM) is the most common myocardial disease. It not only leads to systolic dysfunction but also diastolic deficiency. We sought to investigate the effect of idiopathic and ischemic DCM on the intraventricular fluid dynamics and myocardial wall mechanics using a 2D axisymmetrical fluid structure interaction model. In addition, we also studied the individual effect of parameters related to DCM, i.e. peak E-wave velocity, end systolic volume, wall compliance and sphericity index on several important fluid dynamics and myocardial wall mechanics variables during ventricular filling. Intraventricular fluid dynamics and myocardial wall deformation are significantly impaired under DCM conditions, being demonstrated by low vortex intensity, low flow propagation velocity, low intraventricular pressure difference (IVPD) and strain rates, and high-end diastolic pressure and wall stress. Our sensitivity analysis results showed that flow propagation velocity substantially decreases with an increase in wall stiffness, and is relatively independent of preload at low-peak E-wave velocity. Early IVPD is mainly affected by the rate of change of the early filling velocity and end systolic volume which changes the ventriculo:annular ratio. Regional strain rate, on the other hand, is significantly correlated with regional stiffness, and therefore forms a useful indicator for myocardial regional ischemia. The sensitivity analysis results enhance our understanding of the mechanisms leading to clinically observable changes in patients with DCM. PMID:23825628
Sensitivity analysis of left ventricle with dilated cardiomyopathy in fluid structure simulation.
Chan, Bee Ting; Abu Osman, Noor Azuan; Lim, Einly; Chee, Kok Han; Abdul Aziz, Yang Faridah; Abed, Amr Al; Lovell, Nigel H; Dokos, Socrates
2013-01-01
Dilated cardiomyopathy (DCM) is the most common myocardial disease. It not only leads to systolic dysfunction but also diastolic deficiency. We sought to investigate the effect of idiopathic and ischemic DCM on the intraventricular fluid dynamics and myocardial wall mechanics using a 2D axisymmetrical fluid structure interaction model. In addition, we also studied the individual effect of parameters related to DCM, i.e. peak E-wave velocity, end systolic volume, wall compliance and sphericity index on several important fluid dynamics and myocardial wall mechanics variables during ventricular filling. Intraventricular fluid dynamics and myocardial wall deformation are significantly impaired under DCM conditions, being demonstrated by low vortex intensity, low flow propagation velocity, low intraventricular pressure difference (IVPD) and strain rates, and high-end diastolic pressure and wall stress. Our sensitivity analysis results showed that flow propagation velocity substantially decreases with an increase in wall stiffness, and is relatively independent of preload at low-peak E-wave velocity. Early IVPD is mainly affected by the rate of change of the early filling velocity and end systolic volume which changes the ventriculo:annular ratio. Regional strain rate, on the other hand, is significantly correlated with regional stiffness, and therefore forms a useful indicator for myocardial regional ischemia. The sensitivity analysis results enhance our understanding of the mechanisms leading to clinically observable changes in patients with DCM. PMID:23825628
NASA Astrophysics Data System (ADS)
Guo, Shuai; Xu, Jinglei; Mo, Jianwei; Gu, Rui; Pang, Lina
2015-07-01
Splitter plate plays an important role in a turbine-based combined-cycle (TBCC) exhaust system during the mode transition phase when turbojet engine and ramjet engine operate simultaneously. Dissimilar pressure distribution on both sides of the plate has a potential origin in the aeroelastic coupling, which is an interesting topic while few research works have devoted to that aspect. To better understand the aeroelastic behavior of the plate and the corresponding dynamic flow features, an integrated fluid-structure interaction simulation is conducted under one particular operation condition during mode transition phase in the TBCC exhaust system. A finite-volume-based CFD solver FLUENT is adopted to solve the unsteady Reynolds average Navier-Stokes equations. ABAQUS, a finite-element-method-based CSD solver, is employed to compute the plate elastic deformation. A two-way interaction between the fluid and the structure is accomplished by the mesh-based parallel-code coupling interface (MpCCI) in a loosely-coupled manner. The accuracy of the coupling procedure is validated for the flutter of a flat plate in supersonic flow. Then, features of steady flow field of the TBCC exhaust system are discussed, followed by the investigation of the aeroelastic phenomenon of the splitter plate and the evolution process of the flow field pattern. Finally, performances variation of the exhaust system is obtained and discussed. The results show that the plate vibrates with decaying amplitude and reaches a dynamic stable state eventually. The thrust, lift and pitch moment of the TBCC exhaust system are increased by 0.68%, 2.82% and 5.86%, respectively, compared with the corresponding values in steady state which does not take into account the fluid-structure interaction effects. The analysis reveals the importance of considering the fluid-structure interaction effects in designing the splitter plate in the TBCC exhaust system and demonstrates the availability of the present coupled
Nonlinear fluid-structure interaction in a flexible shelter under blast loading
NASA Astrophysics Data System (ADS)
Chun, Sangeon
Recently, numerous flexible structures have been employed in various fields of industry. Loading conditions sustained by these flexible structures are often not described well enough for engineering analyses even though these conditions are important. Here, a flexible tent with an interior Collective Protection System, which is subjected to an explosion, is analyzed. The tent protects personnel from biological and chemical agents with a pressurized liner inside the tent as an environmental barrier. Field tests showed unexpected damage to the liner, and most of the damage occurred on tent's leeward side. To solve this problem, various tests and analyses have been performed, involving material characteristics of the liner, canvas, and zip seals, modeling of the blast loading over the tent and inside the tent, and structural response of the tent to the blast loading as collaborative research works with others. It was found that the blast loading and the structural response can not be analyzed separately due to the interaction between the flexible structure and the dynamic pressure loading. In this dissertation, the dynamic loadings imposed on both the interior and the exterior sides of the tent structure due to the airblasts and the resulting dynamic responses were studied. First, the blast loadings were obtained by a newly proposed theoretical method of analytical/empirical models which was developed into a FORTRAN program. Then, a numerical method of an iterative Fluid-Structure Interaction using Computational Fluid Dynamics and Computational Structural Dynamics was employed to simulate the blast wave propagation inside and outside the flexible structure and to calculate the dynamic loads on it. All the results were compared with the field test data conducted by the Air Force Research Laboratory. The experimental pressure data were gathered from pressure gauges attached to the tent surfaces at different locations. The comparison showed that the proposed methods can
Kanyanta, V; Ivankovic, A; Karac, A
2009-08-01
Fluid-structure interaction (FSI) numerical models are now widely used in predicting blood flow transients. This is because of the importance of the interaction between the flowing blood and the deforming arterial wall to blood flow behaviour. Unfortunately, most of these FSI models lack rigorous validation and, thus, cannot guarantee the accuracy of their predictions. This paper presents the comprehensive validation of a two-way coupled FSI numerical model, developed to predict flow transients in compliant conduits such as arteries. The model is validated using analytical solutions and experiments conducted on polyurethane mock artery. Flow parameters such as pressure and axial stress (and precursor) wave speeds, wall deformations and oscillating frequency, fluid velocity and Poisson coupling effects, were used as the basis of this validation. Results show very good comparison between numerical predictions, analytical solutions and experimental data. The agreement between the three approaches is generally over 95%. The model also shows accurate prediction of Poisson coupling effects in unsteady flows through flexible pipes, which up to this stage have only being predicted analytically. Therefore, this numerical model can accurately predict flow transients in compliant vessels such as arteries. PMID:19482285
A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress
NASA Astrophysics Data System (ADS)
Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi
2014-11-01
A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.
Developing a cyber-physical fluid dynamics facility for fluid-structure interaction studies
NASA Astrophysics Data System (ADS)
Mackowski, Andrew W.; Williamson, Charles H. K.
2011-07-01
In fluid-structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of a physical system, comprises a fluid and a mechanical actuator, and a cyber system, taking the form of a computer-based force-feedback controller. This arrangement allows us to impose mass-spring-damping parameters in virtual space and in up to six degrees of freedom. [A similar concept, in one degree of freedom, was pioneered by a group at MIT (see Hover et al., 1998), in studies of vortex-induced vibration of cables.] Although the use of a cyber-physical system has clear advantages over using a purely physical experiment, there are serious challenges to overcome in the design of the governing control system. Our controller, based on a discretization of Newton's laws, makes it straightforward to add and modify any kind of nonlinear, time-varying, or directional force: it is virtually specified but imposed on a physical object. We implement this idea in both a first-generation and a second-generation facility. In this paper, we present preliminary applications of this approach in flow-structure interactions.
NASA Astrophysics Data System (ADS)
Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui
2015-11-01
Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).
Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction
NASA Astrophysics Data System (ADS)
Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi
2013-10-01
A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.
Numerical simulation of fluid-structure interaction with the volume penalization method
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Sesterhenn, Jörn
2015-01-01
We present a novel scheme for the numerical simulation of fluid-structure interaction problems. It extends the volume penalization method, a member of the family of immersed boundary methods, to take into account flexible obstacles. We show how the introduction of a smoothing layer, physically interpreted as surface roughness, allows for arbitrary motion of the deformable obstacle. The approach is carefully validated and good agreement with various results in the literature is found. A simple one-dimensional solid model is derived, capable of modeling arbitrarily large deformations and imposed motion at the leading edge, as it is required for the simulation of simplified models for insect flight. The model error is shown to be small, while the one-dimensional character of the model features a reasonably easy implementation. The coupled fluid-solid interaction solver is shown not to introduce artificial energy in the numerical coupling, and validated using a widely used benchmark. We conclude with the application of our method to models for insect flight and study the propulsive efficiency of one and two wing sections.
Use of the SCIRun PSE for Coupled Fluid-Structure Analysis
NASA Technical Reports Server (NTRS)
Cheung, Christopher; Guruswamy, Guru P.
2003-01-01
The objective of this paper is to investigate the use of Problem Solving Environments (PSE) for tightly coupled fluid-structure control analysis of aerospace vehicles. The topics include: 1) Background; 2) The SCIRun PSE; 3) Projects Done with SCIRun; 4) Research Procedures; 5) Installtion; 6) Installation Problems on NAS; 7) Module Development; 8) Module Testing Framework; 9) Time Testing of SCIRun; and 10) Time Test Results. This paper is in viewgraph form.
Neidlin, Michael; Sonntag, Simon J; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Kaufmann, Tim A S
2016-04-01
Neurological complications often occur during cardiopulmonary bypass (CPB). Hypoperfusion of brain tissue due to diminished cerebral autoregulation (CA) and thromboembolism from atherosclerotic plaque reduce the cerebral oxygen supply and increase the risk of perioperative stroke. To improve the outcome of cardiac surgeries, patient-specific computational fluid dynamic (CFD) models can be used to investigate the blood flow during CPB. In this study, we establish a computational model of CPB which includes cerebral autoregulation and movement of aortic walls on the basis of in vivo measurements. First, the Baroreflex mechanism, which plays a leading role in CA, is represented with a 0-D control circuit and coupled to the 3-D domain with differential equations as boundary conditions. Additionally a two-way coupled fluid-structure interaction (FSI) model with CA is set up. The wall shear stress (WSS) distribution is computed for the whole FSI domain and a comparison to rigid wall CFD is made. Constant flow and pulsatile flow CPB is considered. Rigid wall CFD delivers higher wall shear stress values than FSI simulations, especially during pulsatile perfusion. The flow rates through the supraaortic vessels are almost not affected, if considered as percentages of total cannula output. The developed multiphysic multiscale framework allows deeper insights into the underlying mechanisms during CPB on a patient-specific basis. PMID:26908181
Fluid-structure interaction in water-filled thin pipes of anisotropic composite materials
NASA Astrophysics Data System (ADS)
You, Jeong Ho; Inaba, K.
2013-01-01
The effects of elastic anisotropy in piping materials on fluid-structure interaction are studied for water-filled carbon-fiber reinforced thin plastic pipes. When an impact is introduced to water in a pipe, there are two waves traveling at different speeds. A primary wave corresponding to a breathing mode of pipe travels slowly and a precursor wave corresponding to a longitudinal mode of pipe travels fast. An anisotropic stress-strain relationship of piping materials has been taken into account to describe the propagation of primary and precursor waves in the carbon-fiber reinforced thin plastic pipes. The wave speeds and strains in the axial and hoop directions are calculated as a function of carbon-fiber winding angles and compared with the experimental data. As the winding angle increases, the primary wave speed increases due to the increased stiffness in the hoop direction, while the precursor wave speed decreases. The magnitudes of precursor waves are much smaller than those of primary waves so that the effect of precursor waves on the deformation of pipe is not significant. The primary wave generates the hoop strain accompanying the opposite-signed axial strain through the coupling compliance of pipe. The magnitude of hoop strain induced by the primary waves decreases with increasing the winding angle due to the increased hoop stiffness of pipe. The magnitude of axial strain is small at low and high winding angles where the coupling compliance is small.
Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E
2013-04-01
Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress. PMID:23519534
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.
2016-04-01
Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.
NASA Astrophysics Data System (ADS)
Tricerri, Paolo; Dedè, Luca; Deparis, Simone; Quarteroni, Alfio; Robertson, Anne M.; Sequeira, Adélia
2015-03-01
This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemodynamics for idealized geometries of healthy cerebral arteries modeled by both nonlinear isotropic and anisotropic material constitutive laws. In particular, it focuses on an anisotropic model initially proposed for cerebral arteries to characterize the activation of collagen fibers at finite strains. In the current work, this constitutive model is implemented for the first time in the context of an FSI formulation. In this framework, we investigate the influence of the material model on the numerical results and, in the case of the anisotropic laws, the importance of the collagen fibers on the overall mechanical behavior of the tissue. With this aim, we compare our numerical results by analyzing fluid dynamic indicators, vessel wall displacement, Von Mises stress, and deformations of the collagen fibers. Specifically, for an anisotropic model with collagen fiber recruitment at finite strains, we highlight the progressive activation and deactivation processes of the fibrous component of the tissue throughout the wall thickness during the cardiac cycle. The inclusion of collagen recruitment is found to have a substantial impact on the intramural stress, which will in turn impact the biological response of the intramural cells. Hence, the methodology presented here will be particularly useful for studies of mechanobiological processes in the healthy and diseased vascular wall.
Nonlinear fluid/structure interaction relating a rupture-disc pressure-relief device
Hsieh, B.J.; Kot, C.A.; Shin, Y.W.; Youngdahi, C.K.
1983-01-01
Rupture disc assemblies are used in piping network systems as pressure-relief devices. The reverse-buckling type discs are chosen for application in heat transport systems of liquid metal fast breeder reactors. When the pressure on the disc is of sufficient magnitude and duration, the disc develops large displacement, is consequently torn open by a cutting-knife setup and thus relieves the excess pressure. Such disc assemblies are used very successfully in systems in which the fluid is highly compressible, e.g., air; the opening of the disc by the knife setup is complete. However, this is not true for a liquid system; in this case it has been observed experimentally that the disc may open up only partially or not at all. Therefore, to understand and realistically represent a rupture disc assembly in a liquid environment, the fluid-structure interactions between the liquid medium and the disc assembly must be considered. In this paper, methods for analyzing the fluid and the disc and the mechanism interconnecting them are presented. When necessary the fluid is allowed to cavitate through a column separation model and the disc can become plastically deformed using the classic Von Mises' yield criteria.
From video to computation of biological fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.
2016-04-01
This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.
Partitioned fluid-structure interaction scheme for bodies with high flexibility
NASA Astrophysics Data System (ADS)
Fitzgerald, Timothy; Vanella, Marcos; Balaras, Elias; Balachandran, Balakumar
2013-11-01
There are many interesting problems involving fluid-structure interaction (FSI) systems such as flapping wings in micro-air-vehicles. In order to better understand these systems, high-fidelity simulation tools are needed to do the following: (i) fully capture the physics and (ii) provide a basis to construct low-fidelity models used in design. Here, a novel FSI strategy is introduced, through which a large scale fluids solver is combined with a solver for solids with high flexibility. The Navier-Stokes equations for incompressible flow are discretized by using standard central finite differences on a staggered mesh. The fluid domain is spatially decomposed through the use of the FLASH modeling framework. The solid body is discretized via geometrically exact Total Lagrangian finite elements. A novel hyperelastic material law that extends the engineering stress-strain law to finite deformations and arbitrary rotations is also implemented. The Lagrangian body is embedded in the Cartesian fluid grid by immersed boundary methods. The time marching predictor-corrector coupling procedure is based on the use of Adams methods for the fluid and the Generalized- α method for the body. We will present examples of flexible oscillating plates and a flapping Manduca Sexta wing.
Computational 3D fluid-structure interaction for the aortic valve
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Chen, Ye; Sun, Wei
2015-11-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems. A typical example is the heart valves. Accurate and efficient numerical approaches for modeling such systems are still lacking. In this work, we report a successful case of combining an immersed-boundary flow solver with a nonlinear finite-element solid-dynamics solver, both in-house programs, specifically for three-dimensional simulations. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-dynamics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We have performed several benchmarking cases to validate the FSI solver. Application to the native aortic valve will be demonstrated. Supported by the NSF grant (CBET-1066962).
NASA Astrophysics Data System (ADS)
Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues
2012-03-01
Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity.
GPU-accelerated model for fast, three-dimensional fluid-structure interaction computations.
Nita, Cosmin; Itu, Lucian; Mihalef, Viorel; Sharma, Puneet; Rapaka, Saikiran
2015-08-01
In this paper we introduce a methodology for performing one-way Fluid-Structure interaction (FSI), i.e. where the motion of the wall boundaries is imposed. We use a Graphics Processing Unit (GPU) accelerated Lattice-Boltzmann Method (LBM) implementation and present an efficient workflow for embedding the moving geometry, given as a set of polygonal meshes, in the LBM computation. The proposed method is first validated in a synthetic experiment: a vessel which is periodically expanding and contracting. Next, the evaluation focuses on the 3D Peristaltic flow problem: a fluid flows inside a flexible tube, where a periodic wave-like deformation produces a fluid motion along the centerline of the tube. Different geometry configurations are used and results are compared against previously published solutions. The efficient approach leads to an average execution time of approx. one hour per computation, whereas 50% of it is required for the geometry update operations. Finally, we also analyse the effect of changing the Reynolds number on the flow streamlines: the flow regime is significantly affected by the Reynolds number. PMID:26736424
A penalty-projection algorithm for a monolithic fluid-structure interaction solver
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.
2016-05-01
In this paper we propose a new iterative penalty-projection algorithm for a monolithic fluid-structure interaction solver. Projection methods, that split the computation of the velocity from the pressure, are very popular in fluid dynamics since the boundary errors generated by the projection method are localized mainly near the boundary layers where the incorrect pressure boundary conditions are imposed. However, when solid regions are taken into account, the pressure projected field cannot satisfy fully coupled boundary constraints imposed on external solid surfaces such as stress-free conditions, and, due to the rigidity of the medium, the boundary errors propagate deeply in the interior. In order to reduce the projection errors we propose a one-step penalty-projection method in the fluid domain and an iterative penalty-projection method in the solid region. This technique decouples the pressure-velocity degrees of freedom and, as a consequence, the computational cost. In order to verify the accuracy and robustness of the proposed method we compare the results between this splitting velocity-pressure algorithm and the coupled one. These numerical results show stability and robustness of the proposed algorithm with a strong reduction of the computational effort.
Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method
NASA Astrophysics Data System (ADS)
Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.
2016-09-01
An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.
NASA Astrophysics Data System (ADS)
Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.
2014-11-01
Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Boben, Joseph; Kostov, Nikolay; Boswell, Cody; Buscher, Austin
2013-12-01
To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the flow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The flow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
A numerical method for confined unsteady flows related to fluid-structure interactions
NASA Astrophysics Data System (ADS)
Belanger, Francois
1991-02-01
This thesis elaborates three aspects in the field of flow-induced vibrations associated with annular geometries. A method to find the unsteady fluid forces on a cylinder oscillating in annular turbulent flow is developed by considering the superposition of the turbulent fluctuating quantities on potential flow. The theory is compared with experiments. Then, the unsteady fluid forces acting on the vibrating cylinder walls of nonuniform annular configurations are computed by a method which performs the accurate time integration of the Navier-Stokes equations. It is the extension for unsteady flows of the method of artificial compressibility used for steady flows. A time-discretization of the momentum equation using a three-point-backward implicit scheme is introduced, and the addition of pseudo-time derivative terms to the semidiscretized equations, including artificial compressibility in the continuity equation, allows the use of time-marching solution techniques thereafter. Finally, the integration method used for the Navier-Stokes equations is combined with the equation governing the dynamical behavior of a structure in order to perform the fluid-structure stability analysis of this system in the time domain.
A New Modular Approach for Tightly Coupled Fluid/Structure Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru
2003-01-01
Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
NASA Astrophysics Data System (ADS)
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
NASA Astrophysics Data System (ADS)
Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.
2016-04-01
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.
Fluid{Structure Interaction Modeling of Modified-Porosity Parachutes and Parachute Clusters
NASA Astrophysics Data System (ADS)
Boben, Joseph J.
To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the ow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The ow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models. We also present the FSI computations we carried out for a single, subscale modified-porosity parachute.
An investigation of the fluid-structure interaction of piston/cylinder interface
NASA Astrophysics Data System (ADS)
Pelosi, Matteo
The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.
Advanced computational techniques for incompressible/compressible fluid-structure interactions
NASA Astrophysics Data System (ADS)
Kumar, Vinod
2005-07-01
Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.
Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness
Scotti, Christine M; Shkolnik, Alexander D; Muluk, Satish C; Finol, Ender A
2005-01-01
Background Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm rupture. Utilizing a computational approach, the biomechanical environment of virtual AAAs can be evaluated to study the affects of asymmetry and wall thickness on this stress, two parameters that contribute to increased risk of aneurysm rupture. Methods Ten virtual aneurysm models were created with five different asymmetry parameters ranging from β = 0.2 to 1.0 and either a uniform or variable wall thickness to study the flow and wall dynamics by means of fully coupled fluid-structure interaction (FSI) analyses. The AAA wall was designed to have a (i) uniform 1.5 mm thickness or (ii) variable thickness ranging from 0.5 – 1.5 mm extruded normally from the boundary surface of the lumen. These models were meshed with linear hexahedral elements, imported into a commercial finite element code and analyzed under transient flow conditions. The method proposed was then compared with traditional computational solid stress techniques on the basis of peak wall stress predictions and cost of computational effort. Results The results provide quantitative predictions of flow patterns and wall mechanics as well as the effects of aneurysm asymmetry and wall thickness heterogeneity on the estimation of peak wall stress. These parameters affect the magnitude and distribution of Von Mises stresses; varying wall thickness increases the maximum Von Mises stress by 4 times its uniform thickness counterpart. A pre-peak systole retrograde flow was observed in the AAA sac for all models, which is due to the elastic energy stored in the compliant arterial wall and the expansion force of the artery
Bhattacharyya, S K; Premkumar, R
2003-12-01
In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers. PMID:14714787
NASA Astrophysics Data System (ADS)
Bhattacharyya, S. K.; Premkumar, R.
2003-12-01
In a domain method of solution of exterior scalar wave equation, the radiation condition needs to be imposed on a truncation boundary of the modeling domain. The Bayliss, Gunzberger, and Turkel (BGT) boundary dampers, which require a circular cylindrical and spherical truncation boundaries in two-(2D) and three-(3D)-dimensional problems, respectively, have been particularly successful in the analysis of scattering and radiation problems. However, for an elongated body, elliptical (2D) or spheroidal (3D) truncation boundaries have potential to reduce the size of modeling domain and hence computational effort. For harmonic problems, such extensions of the first- and second-order BGT dampers are available in the literature. In this paper, BGT dampers in both elliptical and spheroidal coordinate systems have been developed for transient problems involving acoustic radiation as well as fluid-structure interaction and implemented in the context of finite-element method based upon unsymmetric pressure-displacement formulation. Applications to elongated radiators and shells are reported using several numerical examples with excellent comparisons. It is demonstrated that significant computational economy can be achieved for elongated bodies with the use of these dampers.
Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih
2016-02-01
Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. PMID:26701867
Wong, Kelvin K. L.; Thavornpattanapong, Pongpat; Cheung, Sherman C. P.; Tu, Jiyuan
2013-01-01
Added-mass instability is known to be an important issue in the partitioned approach for fluid-structure interaction (FSI) solvers. Despite the implementation of the implicit approach, convergence of solution can be difficult to achieve. Relaxation may be applied to improve this implicitness of the partitioned algorithm, but this commonly leads to a significant increase in computational time. This is because the critical relaxation factor that allows stability of the coupling tends to be impractically small. In this study, a mathematical analysis for optimizing numerical performance based on different time integration schemes that pertain to both the fluid and solid accelerations is presented. The aim is to determine the most efficient configuration for the FSI architecture. Both theoretical and numerical results suggest that the choice of time integration schemes has a significant influence on the stability of FSI coupling. This concludes that, in addition to material and its geometric properties, the choice of time integration schemes is important in determining the stability of the numerical computation. A proper selection of the associated parameters can improve performance considerably by influencing the condition of coupling stability. PMID:24222785
NASA Astrophysics Data System (ADS)
Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi
2007-08-01
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.
NASA Technical Reports Server (NTRS)
Macneal, R. H.; Citerley, R.; Chargin, M.
1980-01-01
A method of fluid-structure coupling which provides symmetrical matrix equations of standard form solved by existing finite element computer programs is presented. The method postulates that the uncoupled vibration modes of the fluid or the structure be calculated before the coupled analysis. A numerical solution of vibration modes in an axisymmetric container demonstrated that a static approximation to higher order fluid modes can improve the accuracy of dynamic response computations using modal methods.
NASA Astrophysics Data System (ADS)
Hsu, Ming-Chen; Kamensky, David; Xu, Fei; Kiendl, Josef; Wang, Chenglong; Wu, Michael C. H.; Mineroff, Joshua; Reali, Alessandro; Bazilevs, Yuri; Sacks, Michael S.
2015-06-01
This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro
2014-03-01
In this paper, a numerical method for the modeling of shallow waters interacting with slender elastic structures is presented. The fluid domain is modeled through the lattice Boltzmann method, while the solid domain is idealized by corotational beam finite elements undergoing large displacements. Structure dynamics is predicted by using the time discontinuous Galerkin method and the fluid-structure interface conditions are handled by the Immersed Boundary method. An explicit coupling strategy to combine the adopted numerical methods is proposed and its effectiveness is tested by computing the error in terms of the energy that is artificially introduced at the fluid-solid interface.
NASA Astrophysics Data System (ADS)
Tian, Ruijun
Two typical unsteady fluid-structure interaction problems have been investigated in the present study. One of them was about actively plunged flexible hydrofoil; the other was about gravity-driven falling plates in water. Real-time velocity field and dynamic response on the moving objects were measured to study these unsteady and highly nonlinear problems. For a long time, scientists have believed that bird and insect flight benefits greatly from the flexibility and morphing facility of their wings via flapping motion. A significant advantage flexible wing models have over quasi-steady rigid wing models is a much higher lift generation capability. Both experimental and computational studies have shown that the leading and trailing edge vortexes (LEV and TEV) play a major role in the efficient generation of such unconventionally high lift force. In this study, two NACA0012 miniature hydrofoils, one flexible and the other rigid, were actively plunged at various frequencies in a viscous glycerol-water solution to study the influence of flexibility. Two-dimensional, phase-locked particle image velocimetry (PIV) measurements were conducted to investigate the temporal and spacial development of LEVs and TEVs. Simultaneous measurements of lift and thrust forces were recorded to reveal the relationship between hydrodynamic force and the evolution of the surrounding flow field. Results from the flexible hydrofoil were compared to those from the rigid one in order to quantitatively analyze the effects of flexibility. The second problem focused on fluid-structure interaction of gravity driven falling plates. Falling leaves and paper cards in air has drawn plenty of research interest in the past decades to investigate the interaction between the fluid flow and the falling object. In this research, time-resolved PIV were employed to experimentally visualize the flow field evolution around the gravity-driven falling plates. The plates were made of different materials with
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.; Pozzetti, G.
2015-11-01
In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.
NASA Astrophysics Data System (ADS)
Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.
2016-02-01
We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.
NASA Astrophysics Data System (ADS)
Frei, S.; Richter, T.; Wick, T.
2016-09-01
In this work, we develop numerical schemes for mechano-chemical fluid-structure interactions with long-term effects. We investigate a model of a growing solid interacting with an incompressible fluid. A typical example for such a situation is the formation and growth of plaque in blood vessels. This application includes two particular difficulties: First, growth may lead to very large deformations, up to full clogging of the fluid domain. We derive a simplified set of equations including a fluid-structure interaction system coupled to an ODE model for plaque growth in Arbitrary Lagrangian Eulerian (ALE) coordinates and in Eulerian coordinates. The latter novel technique is capable of handling very large deformations up to contact. The second difficulty stems from the different time scales: while the dynamics of the fluid demand to resolve a scale of seconds, growth typically takes place in a range of months. We propose a temporal two-scale approach using local small-scale problems to compute an effective wall stress that will enter a long-scale problem. Our proposed techniques are substantiated with several numerical tests that include comparisons of the Eulerian and ALE approaches as well as convergence studies.
NASA Astrophysics Data System (ADS)
Baek, Hyoungsu; Karniadakis, George Em
2012-01-01
We develop, analyze and validate a new method for simulating fluid-structure interactions (FSIs), which is based on fictitious mass and fictitious damping in the structure equation. We employ a partitioned method for the fluid and structure motions in conjunction with sub-iteration and Aitken relaxation. In particular, the use of such fictitious parameters requires sub-iterations in order to reduce the induced error in addition to the local temporal truncation error. To this end, proper levels of tolerance for terminating the sub-iteration procedure have been obtained in order to recover the formal order of temporal accuracy. For the coupled FSI problem, these fictitious terms have a significant effect, leading to better convergence rate and hence substantially smaller number of sub-iterations. Through analysis we identify the proper range of these parameters, which we then verify by corresponding numerical tests. We implement the method in the context of spectral element discretization, which is more sensitive than low-order methods to numerical instabilities arising in the explicit FSI coupling. However, the method we present here is simple and general and hence applicable to FSI based on any other discretization. We demonstrate the effectiveness of the method in applications involving 2D vortex-induced vibrations (VIV) and in 3D flexible arteries with structural density close to blood density. We also present 3D results for a patient-specific aneurysmal flow under pulsatile flow conditions examining, in particular, the sensitivity of the results on different values of the fictitious parameters.
NASA Astrophysics Data System (ADS)
Elmekawy, Ahmed M. Nagib M.
When turbulent flow generates unsteady differential pressure over an aircraft's structure, this may generate buffeting, a random oscillation of the structure. The buffet phenomenon is observed on a wide range of fighter aircraft, especially fighters with twin-tail. More research is needed to better understand the physics behind the vortical flow over a delta wing and the subsequent tail buffet. This dissertation reports the modeling and simulation of a steady-state one-way fluid-structure interaction for the tail buffet problem observed on a F/A-18 fighter. The time-averaged computational results are compared to available experimental data. Next, computations are extended to simulate an unsteady two-way fluid-structure interaction problem of the tail buffet of a F/A-18 fighter. For the modeling herein, a commercial software ANSYS version 14.0, is employed. For the fluid domain, the unsteady Reynolds-averaged Navier Stokes (URANS) equations with different turbulent models are utilized. The first turbulence model selected is the modified Spalart-Allmaras model (SARRC) with a strain-vorticity based production and curvature treatment. The second turbulence model selected is the Non-linear Eddy Viscosity Model (NLEVM) based on the Wilcox k--o model. This model uses the formulation of an explicit algebraic Reynolds stress model. The structural simulation is conducted by a finite element analysis model with shell elements. Both SARRC and NLEVM turbulence models are in ANSYS software. The experimental data used for validation were conducted on a simplified geometry: a 0.3 Mach number flow past a 76-deg delta wing pitched to 30-deg. Two vertical tails were placed downstream of the delta wing. The present work is the first ever study of the tail buffet problem of the F/A-18 fighter with two-way fluid-structure interaction using the two advanced turbulence models. The steady-state, time-averaged, one-way fluid-structure interaction case of the present investigation indicates
NASA Astrophysics Data System (ADS)
Westervelt, Andrea; Erath, Byron
2013-11-01
Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.
NASA Astrophysics Data System (ADS)
Du, Yang; Tu, Shan; Wang, Hongjuan
Two-way sequential fluid-structure interaction method was used to analyze and discuss the characteristics of unsteady fluid-structure interaction of the complex flow channel of a steam turbine ball type control valve. Research indicates that when the pressure ratio changes as a sine wave, its flow rate occurs a sine wave change, and the maximum flow rate value of 57.46kg•s-1 occurs in the minimum pressure ratio condition. The longitudinal force of the structure domain decreases with the reduction of the pressure ratio, and points to the opposite direction of the flow. The lateral force increases with the decrease of the pressure ratio, and points to the opposite direction of the flow. The maximum value of deformation and force of the structure domain changes consistently with the pressure ratio fluctuation. The maximum value of the structure domain stress is 28.67MPa, which is far less than the yield strength of the structure material, and the maximum deformation value is 3.25um.
Salimi, S; Park, S Simon; Freiheit, T
2011-09-01
The vibration characteristics of shell structures such as eyes have been shown to vary with intraocular pressure (IOP). Therefore, vibration characteristics of the eye have the potential to provide improved correlation to IOP over traditional IOP measurements. As background to examine an improved IOP correlation, this paper develops a finite element model of an eye subject to vibration. The eye is modeled as a shell structure filled with inviscid pressurized fluid in which there is no mean flow. This model solves a problem of a fluid with coupled structural interactions of a generally spherically shaped shell system. The model is verified by comparing its vibrational characteristics with an experimental modal analysis of an elastic spherical shell filled with water. The structural dynamic effects due to change in pressure of the fluid are examined. It is shown that the frequency response of this fluid-solid coupled system has a clear increase in natural frequency as the fluid pressure rises. The fluid and structure interaction is important for accurate prediction of system dynamics. This model is then extended to improve its accuracy in modeling the eye by including the effect of the lens to study corneal vibration. The effect of biomechanical parameters such as the thicknesses of different parts of the eye and eye dimensions in altering measured natural frequencies is investigated and compared to the influence of biomechanical parameters in Goldmann applanation tonometry models. The dynamic response of the eye is found to be less sensitive to biomechanical parameters than the applanation tonometry model. PMID:22010744
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Moorman, Creighton; Wright, Samuel; Christopher, Jason; Tezduyar, Tayfun E.
2009-10-01
The stabilized space-time fluid-structure interaction (SSTFSI) technique was applied to arterial FSI problems soon after its development by the Team for Advanced Flow Simulation and Modeling. The SSTFSI technique is based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation and is supplemented with a number of special techniques developed for arterial FSI. The special techniques developed in the recent past include a recipe for pre-FSI computations that improve the convergence of the FSI computations, using an estimated zero-pressure arterial geometry, Sequentially Coupled Arterial FSI technique, using layers of refined fluid mechanics mesh near the arterial walls, and a special mapping technique for specifying the velocity profile at inflow boundaries with non-circular shape. In this paper we introduce some additional special techniques, related to the projection of fluid-structure interface stresses, calculation of the wall shear stress (WSS), and calculation of the oscillatory shear index. In the test computations reported here, we focus on WSS calculations in FSI modeling of a patient-specific middle cerebral artery segment with aneurysm. Two different structural mechanics meshes and three different fluid mechanics meshes are tested to investigate the influence of mesh refinement on the WSS calculations.
NASA Astrophysics Data System (ADS)
Avalos, George; Triggiani, Roberto
A 2-d or 3-d fluid-structure interaction model in its linear form is considered, for which semigroup well-posedness (with explicit generator) was recently established in [G. Avalos, R. Triggiani, The coupled PDE-system arising in fluid-structure interaction. Part I: Explicit semigroup generator and its spectral properties, in: Fluids and Waves, in: Contemp. Math., vol. 440, Amer. Math. Soc., 2007, pp. 15-55; G. Avalos, R. Triggiani, The coupled PDE-system arising in fluid-structure interaction. Part II: Uniform stabilization with boundary dissipation at the interface, Discrete Contin. Dyn. Syst., in press]. This is a system which couples at the interface the linear version of the Navier-Stokes equations with the equations of linear elasticity (wave-like). In this paper, we establish a backward uniqueness theorem for such a parabolic-hyperbolic coupled PDE system. If { is the (contraction) s.c. semigroup describing its evolution on the finite energy space H, then ey=0 for some T>0 and y∈H, implies y=0. This property has implications in establishing unique continuation and controllability properties, as in the case of thermoelastic equations [M. Eller, I. Lasiecka, R. Triggiani, Simultaneous exact/approximate boundary controllability of thermoelastic plates with variable coefficient, in: Marcel Dekker Lect. Notes Pure Appl. Math., vol. 216, February 2001, pp. 109-230, invited paper for the special volume entitled Shape Optimization and Optimal Designs, J. Cagnol, J.P. Zolesio (Eds). (Preliminary version is in invited paper in: A.V. Balakrishnan (Ed.), Semigroup of Operators and Applications, Birkhäuser, 2000, pp. 335-351.); M. Eller, I. Lasiecka, R. Triggiani, Simultaneous exact/approximate boundary controllability of thermoelastic plates with variable thermal coefficient and moment control, J. Math. Anal. Appl. 251 (2000) 452-478; M. Eller, I. Lasiecka, R. Triggiani, Simultaneous exact/approximate boundary controllability of thermoelastic plates with variable
Debris flow impact on mitigation barriers: a new method for particle-fluid-structure interactions
NASA Astrophysics Data System (ADS)
Marchelli, Maddalena; Pirulli, Marina; Pudasaini, Shiva P.
2016-04-01
Channelized debris-flows are a type of mass movements that involve water-charged, predominantly coarse-grained inorganic and organic material flowing rapidly down steep confined pre-existing channels (Van Dine, 1985). Due to their rapid movements and destructive power, structural mitigation measures have become an integral part of counter measures against these phenomena, to mitigate and prevent damages resulting from debris-flow impact on urbanized areas. In particular, debris barriers and storage basins, with some form of debris-straining structures incorporated into the barrier constructed across the path of a debris-flow, have a dual role to play: (1) to stimulate deposition by presenting a physical obstruction against flow, and (2) to guarantee that during normal conditions stream water and bedload can pass through the structure; while, during and after an extreme event, the water that is in the flow and some of the fine-grained sediment can escape. A new method to investigate the dynamic interactions between the flowing mass and the debris barrier is presented, with particular emphasis on the effect of the barrier in controlling the water and sediment content of the escaping mass. This aspect is achieved by implementing a new mechanical model into an enhanced two-phase dynamical mass flow model (Pudasaini, 2012), in which solid particles mixture and viscous fluid are taken into account. The complex mechanical model is defined as a function of the energy lost during impact, the physical and geometrical properties of the debris barrier, separate but strongly interacting dynamics of boulder and fluid flows during the impact, particle concentration distribution, and the slope characteristics. The particle-filtering-process results in a large variation in the rheological properties of the fluid-dominated escaping mass, including the substantial reduction in the bulk density, and the inertial forces of the debris-flows. Consequently, the destructive power and run
NASA Astrophysics Data System (ADS)
Ross, Mike R.
This thesis presents a new coupling method for treating the interaction of an acoustic fluid with a flexible structure, with emphasis on handling spatially non-matching meshes. It is based on the Localized Lagrange Multiplier (LLM) method. A frame is introduced as a "mediator" or "information relay" device between the fluid and the structure at the interaction surface. The frame is discretized in terms of kinematic variables. A Lagrange multiplier field is introduced between the frame and the structure, and another one between the frame and the fluid. The function of the multiplier pair is weak enforcement of kinematic continuity. This configuration completely decouples the structure and fluid models, because each model communicates to the frame through node collocated multipliers and not directly to each other. In order to assure proper communication, energy formulations of the fluid and structure models are in terms of displacements and associated time derivatives. A novel transformation of the fluid displacement model into a fluid displacement potential model enforces the irrotational condition of the acoustic fluid. This transformation reduces the number of degrees of freedom in two and three-dimensions and is suitable for both vibration and transient analyses. The LLM method facilitates the construction of separate discretizations using different mesh generation programs, as well as use of customized time integration methods. To advance the solution in time, the LLM coupling method is combined with a partitioned solution procedure. The time-stepping computations are organized in a way that eliminates the traditional prediction step characteristic of staggered solution procedures. This is accomplished by solving for the interface variables: Lagrange multipliers and frame states, and then feeding this solution back to the coupled components. This sequence forestalls the well-known stability degradation caused by prediction, yet it retains the desirable
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Zhao, Peng; Zhang, Wendong
2015-04-01
The MEMS vector hydrophone developed by the North University of China has advantages of high Signal to Noise Ratio, ease of array integration, etc. However, the resonance frequency of the MEMS device in the liquid is different from that in the air due to the fluid-structure interaction (FSI). Based on the theory of Fluid-Solid Coupling, a generalized distributed mass attached on the micro-structure has been found, which results in the resonance frequency of the microstructure in the liquid being lower than that in the air. Then, an FSI simulation was conducted by ANSYS software. Finally, the hydrophone was measured by using a shaking table and a vector hydrophone calibration system respectively. Results show that, due to the FSI, the resonance frequency of the MEMS devices of the bionic vector hydrophone in the liquid declines approximately 30% compared to the case in the air.
NASA Astrophysics Data System (ADS)
Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.
2015-12-01
To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.
Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils
NASA Astrophysics Data System (ADS)
Rojratsirikul, P.; Wang, Z.; Gursul, I.
2010-04-01
Aerodynamic characteristics of two-dimensional membrane airfoils were experimentally investigated in a wind tunnel. The effects of the membrane pre-strain and excess length on the unsteady aspects of the fluid-structure interaction were studied. The deformation of the membrane as a function of angle of attack and free-stream velocity was measured using a high-speed camera. These measurements were complemented by the measurements of unsteady velocity field with a high frame-rate Particle Image Velocimetry (PIV) system as well as smoke visualization. Membrane airfoils with excess length exhibit higher vibration modes, earlier roll-up of vortices, and smaller separated flow regions, whereas the membranes with pre-strain generally behave more similarly to a rigid airfoil. Measured frequencies of the membrane vibrations suggest a possible coupling with the wake instabilities at high incidences for all airfoils.
Paiedoussis, M.P. . Dept. of Mechanical Engineering)
1993-02-01
This lecture has a dual purpose: (1) to present, in outline, the research on a couple of interesting topics in fluid-structure interaction; and (2) to show that, although this research was undertaken with little or no practical application in mind, unexpected uses and applications materialized ten or twenty years subsequently. The two topics of research chosen are (a) stability of pipes conveying fluid, and (b) stability of cylinders in axial flow. The applications and uses range from a marine propulsion system, to research on emphysema, to understanding and modeling of flow-induced vibration and leakage-flow-induced instabilities in power-generating equipment, and to the dynamics of deep-water risers.
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1998-01-01
This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.
Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.
2011-01-01
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S
2012-01-10
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
On the coupling between fluid flow and mesh motion in the modelling of fluid structure interaction
NASA Astrophysics Data System (ADS)
Dettmer, Wulf G.; Perić, Djordje
2008-12-01
Partitioned Newton type solution strategies for the strongly coupled system of equations arising in the computational modelling of fluid solid interaction require the evaluation of various coupling terms. An essential part of all ALE type solution strategies is the fluid mesh motion. In this paper, we investigate the effect of the terms which couple the fluid flow with the fluid mesh motion on the convergence behaviour of the overall solution procedure. We show that the computational efficiency of the simulation of many fluid solid interaction processes, including fluid flow through flexible pipes, can be increased significantly if some of these coupling terms are calculated exactly.
A fluid-structure interaction model with interior damping and delay in the structure
NASA Astrophysics Data System (ADS)
Peralta, Gilbert
2016-03-01
A coupled system of partial differential equations modeling the interaction of a fluid and a structure with delay in the feedback is studied. The model describes the dynamics of an elastic body immersed in a fluid that is contained in a vessel, whose boundary is made of a solid wall. The fluid component is modeled by the linearized Navier-Stokes equation, while the solid component is given by the wave equation neglecting transverse elastic force. Spectral properties and exponential or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay parameter are established using a generalized Lax-Milgram method.
Fluid-structure interaction of two bodies in an inviscid fluid
NASA Astrophysics Data System (ADS)
Tchieu, A. A.; Crowdy, D.; Leonard, A.
2010-10-01
The interaction of two arbitrary bodies immersed in a two-dimensional inviscid fluid is investigated. Given the linear and angular velocities of the bodies, the solution of the potential flow problem with zero circulation around both bodies is reduced to the determination of a suitable Laurent series in a conformally mapped domain that satisfies the boundary conditions. The potential flow solution is then used to determine the force and moment acting on each body by using generalized Blasius formulas. The current formulation is applied to two examples. First, the case of two rigid circular cylinders interacting in an unbounded domain is investigated. The forces on two cylinders with prescribed motion (forced-forced) is determined and compared to previous results for validation purposes. We then study the response of a single "free" cylinder due to the prescribed motion of the other cylinder (forced-free). This forced-free situation is used to justify the hydrodynamic benefits of drafting in aquatic locomotion. In the case of two neutrally buoyant circular cylinders, the aft cylinder is capable of attaining a substantial propulsive force that is the same order of magnitude of its inertial forces. Additionally, the coupled interaction of two cylinders given an arbitrary initial condition (free-free) is studied to show the differences of perfect collisions with and without the presence of an inviscid fluid. For a certain range of collision parameters, the fluid acts to deflect the cylinder paths just enough before the collision to drastically affect the long time trajectories of the bodies. In the second example, the flapping of two plates is explored. It is seen that the interactions between each plate can cause a net force and torque at certain instants in time, but for idealized sinusoidal motions in irrotational potential flow, there is no net force and torque acting at the system center.
Numerical simulation of fluid-structure interactions with stabilized finite element method
NASA Astrophysics Data System (ADS)
Sváček, Petr
2016-03-01
This paper is interested to the interactions of the incompressible flow with a flexibly supported airfoil. The bending and the torsion modes are considered. The problem is mathematically described. The numerical method is based on the finite element method. A combination of the streamline-upwind/Petrov-Galerkin and pressure stabilizing/Petrov-Galerkin method is used for the stabilization of the finite element method. The numerical results for a three-dimensional problem of flow over an airfoil are shown.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1990-01-01
A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.
Development of an integrated BEM for hot fluid-structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1988-01-01
One of the most difficult problems in engine structural component durability analysis is the determination of the temperatures and fluxes in the structural components directly in contact with the hot gas flow path. Currently there exists no rational analytical or numerical technique which can effectively deal with this problem. Since the temperature distribution in the structural components are strongly influenced by both the fluid flow and the deformation as well as the cooling system in the structure, the only effective way to deal with this problem is to develop an integrated solid mechanics, fluid mechanics and heat transfer analysis for this problem. Herein, the Boundary Element Method (BEM) is chosen as the basic analysis tool principally because the definition of quantities like fluxes, temperatures, displacements, and velocities are very precise on a boundary based discretization scheme. One fundamental difficulty is that a BEM analysis requires a considerable amount of analytical work which is not present in other numerical methods. During the past year, all of this analytical work was completed and a two dimensional, general purpose code was written. A portion of the work is summarized.
The use of the plane wave fluid-structure interaction loading approximation in NASTRAN
NASA Technical Reports Server (NTRS)
Dawson, R. L.
1991-01-01
The Plane Wave Approximation (PWA) is widely used in finite element analysis to implement the loading generated by an underwater shock wave. The method required to implement the PWA in NASTRAN is presented along with example problems. A theoretical background is provided and the limitations of the PWA are discussed.
A case study of the fluid structure interaction of a Francis turbine
NASA Astrophysics Data System (ADS)
Müller, C.; Staubli, T.; Baumann, R.; Casartelli, E.
2014-03-01
The Francis turbine runners of the Grimsel 2 pump storage power plant showed repeatedly cracks during the last decade. It is assumed that these cracks were caused by flow induced forces acting on blades and eventual resonant runner vibrations lead to high stresses in the blade root areas. The eigenfrequencies of the runner were simulated in water using acoustic elements and compared to experimental data. Unsteady blades pressure distribution determined by a transient CFD simulation of the turbine were coupled to a FEM simulation. The FEM simulation enabled analyzing the stresses in the runner and the eigenmodes of the runner vibrations. For a part-load operating point, transient CFD simulations of the entire turbine, including the spiral case, the runner and the draft tube were carried out. The most significant loads on the turbine runner resulted from the centrifugal forces and the fluid forces. Such forces effect temporally invariant runner blades loads, in contrast rotor stator interaction or draft tube instabilities induce pressure fluctuations which cause the temporally variable forces. The blades pressure distribution resulting from the flow simulation was coupled by unidirectional-harmonic FEM simulation. The dominant transient blade pressure distribution of the CFD simulation were Fourier transformed, and the static and harmonic portion assigned to the blade surfaces in the FEM model. The evaluation of the FEM simulation showed that the simulated part load operating point do not cause critical stress peaks in the crack zones. The pressure amplitudes and frequencies are very small and interact only locally with the runner blades. As the frequencies are far below the modal frequencies of the turbine runner, resonant vibrations obviously are not excited.
Wang, C.Y.
1993-06-01
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
Wang, C.Y.
1993-01-01
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
NASA Astrophysics Data System (ADS)
Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.
2008-02-01
This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Feist, Christ; Ruehl, Kelley; Guala, Michele; Sotiropoulos, Fotis
2014-11-01
A series of experiments reproducing a floating wind turbine in operational sea conditions, conducted in the St. Anthony Falls Lab. wave facility, are employed to validate the capabilities of the recently developed FSI-Levelset-CURVIB method of Calderer, Kang and Sotiropoulos (JCP 2014) to accurately predict turbine-wave interactions. The numerical approach is based on solving the Navier-Stokes equations coupled with the level set method, which is capable of carrying out LES of two-phase flows (air and water) with complex floating structures and waves. The investigated floating turbine is a 1:100 Froude scaled version of the 13.2 MW prototype designed by Sandia National Lab; it is installed on a cylindrical barge style platform which is restricted to move with two degrees of freedom, heave and pitch in the vertical plane defined by the direction of the propagating 2D waves. The computed turbine kinematics as well as the free surface elevation results are compared with the experimental data for different free decay tests and wave conditions representative of the Maine and the Pacific North West coasts. The comparison shows promising results indicating the validity of the model for simulating operational floating turbines. This work is supported by the US Department of Energy (DE-EE0005482), the University of Minnesota IREE program, and the Minnesota Supercomputing Institute.
Bukač, Martina; Čanić, Sunčica
2013-04-01
Recent in vivo studies, utilizing ultrasound contour and speckle tracking methods, have identified significant longitudinal displacements of the intima-media complex, and viscoelastic arterial wall properties over a cardiac cycle. Existing computational models that use thin structure approximations of arterial walls have so far been limited to models that capture only radial wall displacements. The purpose of this work is to present a simple fluid-struture interaction (FSI) model and a stable, partitioned numerical scheme, which capture both longitudinal and radial displacements, as well as viscoelastic arterial wall properties. To test the computational model, longitudinal displacement of the common carotid artery and of the stenosed coronary arteries were compared with experimental data found in literature, showing excellent agreement. We found that, unlike radial displacement, longitudinal displacement in stenotic lesions is highly dependent on the stenotic geometry. We also showed that longitudinal displacement in atherosclerotic arteries is smaller than in healthy arteries, which is in line with the recent in vivo measurements that associate plaque burden with reduced total longitudinal wall displacement. This work presents a first step in understanding the role of longitudinal displacement in physiology and pathophysiology of arterial wall mechanics using computer simulations. PMID:23458302
Montanino, A; Fortunato, A; Angelillo, M
2016-07-01
In this paper, we study the fluid-structure interaction in a weakened basilar artery. The aim is to study how the wall shear stress changes in space and time because of the weakening, because spatial and temporal changes are thought to be possible causes of aneurysm and vascular deseases. The arterial wall, in its natural configuration, is modeled as a hyperelastic cylinder, inhomogeneous along its axis, in order to simulate the axis-symmetric weakening. The fluid is studied exploiting a recent approach for quasi-one-dimensional flows in slowly varying ducts, which allows to write the averaged equations of mass and energy balance on the basis of the velocity profile in a straight duct. The unknowns are the wall pressure, the average velocity, and the wall radial displacement. The problem is solved in two parts: first, the stationary non-linear coupled problem is solved, and an intermediate configuration is obtained. Then, we study the variation of the basic unknowns about the intermediate configuration, considering time dependence over the cardiac cycles. The results suggest that, with a 10% reduction of the main elastic modulus, the shear stress in the weakened zone changes its sign and doubles the maximum stress value detected in the healthy zone. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26446301
NASA Astrophysics Data System (ADS)
Yang, Jubiao; Krane, Michael; Zhang, Lucy
2013-11-01
Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.
NASA Astrophysics Data System (ADS)
Zhang, Xing; Zhu, Xiaojue
2012-11-01
We present an improved immersed boundary method for the simulation of fluid structure interaction (FSI) of a slender body. Our numerical method is based on the one proposed by Wang and Zhang (J. Comput. Phys. 30:3479-3499, 2011). Although an accurate prediction of total force can be achieved by using this method, unphysical spatial oscillation is observed in the force distribution. This oscillation is detrimental to the prediction of structure response in FSI. In this work, several modifications are made to improve this method. Firstly, the implicit forcing is replaced by an explicit forcing. Secondly, a more consistent way of computing each component of the forcing on a staggered mesh is proposed. Thirdly, for a slender body of zero thickness, the discrete delta-function with a ``negative-tail'' is adopted for the interpolation at the endpoints. Numerical simulations are performed to test the efficacy of the modifications. It is found that the measures taken successfully reduce the oscillation and the results obtained agree well with those from the literatures. This work was supported by NSFC 10872201.
NASA Astrophysics Data System (ADS)
Chang, Gary Han; Modarres-Sadeghi, Yahya
2015-11-01
In this work, a reduced-order model (ROM) is constructed to study fluid-structure interaction of thin shell structures conveying fluid. The method of snapshot Proper Orthogonal Decomposition (POD) is used to construct the reduced-order bases based on a series of CFD results, which then are improved using a QR-factorization technique to satisfy the various boundary conditions in physiological flow problems. In the process, two sets of POD modes are extracted: those due to the shell wall's motion and those due to the pulsatile flow. The Modal Assurance Criterion (MAC) technique is used for selecting the final POD modes used in the reduced-order model. The structure model is solved by Galerkin's method and the FSI coupling is done by adapting a coupled momentum method. The results show that the dynamic behavior of thin shells conveying fluid is closely related to the distribution of the shell's Gaussian curvature, the existence of imperfections and the physiological flow conditions. This method can effectively construct a computationally efficient FSI model, which allows us to examine a wide range of parameters which exist in real-life physiological problems.
NASA Astrophysics Data System (ADS)
Le, Trung Bao; Sotiropoulos, Fotis
2013-07-01
We develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use this model to drive the fluid-structure interaction (FSI) between the ensuing blood flow and a mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta configuration. The kinematic model is of lumped type and employs a cell-based, FitzHugh-Nagumo framework to simulate the motion of the LV wall in response to an excitation wavefront propagating along the heart wall. The emerging large-scale LV wall motion exhibits complex contractile mechanisms that include contraction (twist) and expansion (untwist). The kinematic model is shown to yield global LV motion parameters that are well within the physiologic range throughout the cardiac cycle. The FSI between the leaflets of the mechanical heart valve and the blood flow driven by the dynamic LV wall motion and mitral inflow is simulated using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, 2007; Borazjani et al., 2008) [1,2] implemented in conjunction with a domain decomposition approach. The computed results show that the simulated flow patterns are in good qualitative agreement with in vivo observations. The simulations also reveal complex kinematics of the valve leaflets, thus, underscoring the need for patient-specific simulations of heart valve prosthesis and other cardiac devices.
NASA Astrophysics Data System (ADS)
Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent
2016-04-01
Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.
NASA Astrophysics Data System (ADS)
Chang, Siyuan; Luo, Haoxiang; Novaleski, Carolyn; Rousseau, Bernard
2014-11-01
A subject-specific computational model has been developed to simulate flow-induced vocal fold vibration for evoked rabbit phonation. A freshly excised larynx was scanned using micro magnetic resonance imaging. Images were segmented to identify the vocal fold tissue and lumen surface. The 3D fluid-structure interaction (FSI) model was then constructed with experimentally measured flow parameters as input. The tissue deformation is assumed to be finite, and a previously developed FSI solver is used to simulate the coupled flow and nonlinear tissue mechanics. In addition, a one-dimensional flow model based on heuristic estimate of the flow separation point is used as an efficient tool to guide the full 3D simulation. This low-order model is motivated by presence of uncertainties in the tissue properties and boundary conditions, and it has proven to be very useful in our study. Similarities and differences in the vibration characteristics of the vocal fold predicted by these two models will be discussed.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
Le, Trung Bao; Sotiropoulos, Fotis
2012-01-01
We develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use this model to drive the fluid-structure interaction (FSI) between the ensuing blood flow and a mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta configuration. The kinematic model is of lumped type and employs a cell-based, FitzHugh-Nagumo framework to simulate the motion of the LV wall in response to an excitation wavefront propagating along the heart wall. The emerging large-scale LV wall motion exhibits complex contractile mechanisms that include contraction (twist) and expansion (untwist). The kinematic model is shown to yield global LV motion parameters that are well within the physiologic range throughout the cardiac cycle. The FSI between the leaflets of the mechanical heart valve and the blood flow driven by the dynamic LV wall motion and mitral inflow is simulated using the curvilinear immersed boundary (CURVIB) method [1, 2] implemented in conjunction with a domain decomposition approach. The computed results show that the simulated flow patterns are in good qualitative agreement with in vivo observations. The simulations also reveal complex kinematics of the valve leaflets, thus, underscoring the need for patient-specific simulations of heart valve prosthesis and other cardiac devices. PMID:23729841
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Kapila, A. K.; Schwendeman, D. W.
2016-01-01
We describe an added-mass partitioned (AMP) algorithm for solving fluid-structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian-Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid-solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.
NASA Astrophysics Data System (ADS)
Gilmanov, Anvar; Le, Trung Bao; Sotiropoulos, Fotis
2015-11-01
We present a new numerical methodology for simulating fluid-structure interaction (FSI) problems involving thin flexible bodies in an incompressible fluid. The FSI algorithm uses the Dirichlet-Neumann partitioning technique. The curvilinear immersed boundary method (CURVIB) is coupled with a rotation-free finite element (FE) model for thin shells enabling the efficient simulation of FSI problems with arbitrarily large deformation. Turbulent flow problems are handled using large-eddy simulation with the dynamic Smagorinsky model in conjunction with a wall model to reconstruct boundary conditions near immersed boundaries. The CURVIB and FE solvers are coupled together on the flexible solid-fluid interfaces where the structural nodal positions, displacements, velocities and loads are calculated and exchanged between the two solvers. Loose and strong coupling FSI schemes are employed enhanced by the Aitken acceleration technique to ensure robust coupling and fast convergence especially for low mass ratio problems. The coupled CURVIB-FE-FSI method is validated by applying it to simulate two FSI problems involving thin flexible structures: 1) vortex-induced vibrations of a cantilever mounted in the wake of a square cylinder at different mass ratios and at low Reynolds number; and 2) the more challenging high Reynolds number problem involving the oscillation of an inverted elastic flag. For both cases the computed results are in excellent agreement with previous numerical simulations and/or experiential measurements. Grid convergence tests/studies are carried out for both the cantilever and inverted flag problems, which show that the CURVIB-FE-FSI method provides their convergence. Finally, the capability of the new methodology in simulations of complex cardiovascular flows is demonstrated by applying it to simulate the FSI of a tri-leaflet, prosthetic heart valve in an anatomic aorta and under physiologic pulsatile conditions.
Molony, David S; Callanan, Anthony; Kavanagh, Eamon G; Walsh, Michael T; McGloughlin, Tim M
2009-01-01
Background Abdominal aortic aneurysms (AAA) are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI) is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined. Methods Pre-op, Post-op and Follow-up models were reconstructed from CT scans of a single patient and FSI simulations were performed on each model. The FSI approach involved coupling Abaqus and Fluent via a third-party software - MpCCI. Aneurysm wall stress and compliance were investigated as well as the drag force acting on the stent-graft. Results Aneurysm wall stress was reduced from 0.38 MPa before surgery to a value of 0.03 MPa after insertion of the stent-graft. Higher stresses were seen in the aneurysm neck and iliac legs post-operatively. The compliance of the aneurysm was also reduced post-operatively. The peak Post-op axial drag force was found to be 4.85 N. This increased to 6.37 N in the Follow-up model. Conclusion In a patient-specific case peak aneurysm wall stress was reduced by 92%. Such a reduction in aneurysm wall stress may lead to shrinkage of the aneurysm over time. Hence, post-operative stress patterns may help in determining the likelihood of aneurysm shrinkage post EVAR. Post-operative remodelling of the aneurysm may lead to increased drag forces. PMID:19807909
Numerical Analysis of Stress on Pump Blade by One-Way Coupled Fluid-Structure Simulation
NASA Astrophysics Data System (ADS)
Kobayashi, Katsutoshi; Ono, Shigeyoshi; Harada, Ichiro; Chiba, Yoshimasa
A mixed-flow pump with an unshrouded impeller was computed by a one-way coupled fluid-structure simulation to evaluate a prediction accuracy of stress and analyze a flow pattern which caused the largest stress. The stress occurring around a blade root was predicted by a numerical simulation and compared with an experimental one. Five flow rates, Q/Qbep=0,40,70,100 and 120% were simulated and the predicted stresses at all flow rates agreed with the experimental ones within -11˜+6% accuracy. The largest stress occurred around a blade root on a pressure side of blade surface at all flow rates. The stress became largest at 70% flow rate. A flow pattern around the blade was analyzed to investigate how the largest stress occurred at 70% flow rate. It was found in this study that a flow separation occurred around a leading edge on a suction side of blade surface at 70% flow rate and the largest load was acting on an outside region of blade.
NASA Astrophysics Data System (ADS)
Orchini, A.; Mazzino, A.; Guerrero, J.; Festa, R.; Boragno, C.
2013-09-01
Linear stability analysis of an elastically anchored flat plate in a uniform flow is investigated both analytically and numerically. The analytical formulation explicitly takes into account the effect of the wake on the plate by means of Theodorsen's theory. Three different parameters non-trivially rule the observed dynamics: mass density ratio between plate and fluid, spring elastic constant, and distance between the plate center of mass and the spring anchor point on the plate. We found relationships between these parameters which rule the transition between stable equilibrium and fluttering. The shape of the resulting marginal curve has been successfully verified by high Reynolds number numerical simulations. Finally, the limiting case corresponding to a simply supported rigid rod is also analyzed and the resulting flapping instability traced back to a simple resonance condition. Our findings are of interest in applications related to energy harvesting by fluid-structure interaction, a problem that has recently attracted a great deal of attention. The main aim in that context is to identify the optimal physical/geometrical system configuration leading to large sustained motion, which is the source of energy one aims to extract.
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Subramanian K. R. S.; Singh, Reetu; Bhethanabotla, Venkat R.
2010-11-01
Biosensors typically operate in liquid media for detection of biomarkers and suffer from fouling resulting from nonspecific binding of protein molecules to the device surface. In the current work, using a coupled field finite element fluid-structure interaction simulation, we have identified that fluid motion induced by high intensity sound waves, such as those propagating in these sensors, can lead to the efficient removal of the nonspecifically bound proteins thereby eliminating sensor fouling. We present a computational analysis of the acoustic-streaming phenomenon induced biofouling elimination by surface acoustic-waves (SAWs) propagating on a lithium niobate piezoelectric crystal. The transient solutions generated from the developed coupled field fluid solid interaction model are utilized to predict trends in acoustic-streaming induced forces for varying design parameters such as voltage intensity, device frequency, fluid viscosity, and density. We utilize these model predictions to compute the various interaction forces involved and thereby identify the possible mechanisms for removal of nonspecifically-bound proteins. For the range of sensor operating conditions simulated, our study indicates that the SAW motion acts as a body force to overcome the adhesive forces of the fouling proteins to the device surface whereas the acoustic-streaming induced hydrodynamic forces prevent their reattachment. The streaming velocity fields computed using the finite element models in conjunction with the proposed particle removal mechanism were used to identify the optimum conditions that lead to improved removal efficiency. We show that it is possible to tune operational parameters such as device frequency and input voltage to achieve effective elimination of biofouling proteins in typical biosensing media. Our simulation results agree well with previously reported experimental observations. The findings of this work have significant implications in designing reusable
Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick
2016-01-01
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations’ outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798
Bavo, Alessandra M; Rocatello, Giorgia; Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick
2016-01-01
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798
NASA Astrophysics Data System (ADS)
Li, Qiang; Yu, Guichang; Liu, Shulian; Zheng, Shuiying
2012-09-01
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approach is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the journal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
NASA Astrophysics Data System (ADS)
Becker, P.; Idelsohn, S. R.; Oñate, E.
2015-06-01
This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.
Barker, Andrew T. Cai Xiaochuan
2010-02-01
We introduce and study numerically a scalable parallel finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier-Stokes equations are used to model the fluid and coupled to an incompressible linear elastic model for the blood vessel walls. Our method features an unstructured dynamic mesh capable of modeling complicated geometries, an arbitrary Lagrangian-Eulerian framework that allows for large displacements of the moving fluid domain, monolithic coupling between the fluid and structure equations, and fully implicit time discretization. Simulations based on blood vessel geometries derived from patient-specific clinical data are performed on large supercomputers using scalable Newton-Krylov algorithms preconditioned with an overlapping restricted additive Schwarz method that preconditions the entire fluid-structure system together. The algorithm is shown to be robust and scalable for a variety of physical parameters, scaling to hundreds of processors and millions of unknowns.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Injae; Choi, Haecheon
2015-11-01
We present a weak coupling approach for the fluid-structure interaction using a discrete-forcing immersed boundary method. The incompressible Navier-Stokes equations and the motion of a solid body are based on the Eulerian and Lagrangian coordinates, respectively. A semi-implicit Euler method is applied to the governing equation of a solid body for obtaining provisional position and velocity of a solid body prior to implicitly solving each governing equation. Then, both equations are implicitly solved to obtain a sufficiently large computational time step size. The present weak-coupling approach shows a second-order temporal accuracy and stable solutions for the problems with a low density ratio (fluid to solid) without requiring an iterative method. With the present method, we simulate several fluid-structure interaction problems including the flows around a freely vibrating circular cylinder, a flexible beam attached to a circular cylinder, a flapping flag, a flexible plate, and an elastic vocal fold. The results obtained agree well with those from previous studies. All the simulations are conducted at maximum CFL numbers of 1.0-1.5. Supported by NRF-2012M2A8A4055647 and NRF-2014M3C1B1033848.
NASA Astrophysics Data System (ADS)
Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.
2015-12-01
Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.
NASA Astrophysics Data System (ADS)
Wu, Yuqi; Cai, Xiao-Chuan
2014-02-01
Due to the rapid advancement of supercomputing hardware, there is a growing interest in parallel algorithms for modeling the full three-dimensional interaction between the blood flow and the arterial wall. In [4], Barker and Cai developed a parallel framework for solving fluid-structure interaction problems in two dimensions. In this paper, we extend the idea to three dimensions. We introduce and study a parallel scalable domain decomposition method for solving nonlinear monolithically coupled systems arising from the discretization of the coupled system in an arbitrary Lagrangian-Eulerian framework with a fully implicit stabilized finite element method. The investigation focuses on the robustness and parallel scalability of the Newton-Krylov algorithm preconditioned with an overlapping additive Schwarz method. We validate the proposed approach and report the parallel performance for some patient-specific pulmonary artery problems. The algorithm is shown to be scalable with a large number of processors and for problems with millions of unknowns.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1994-01-01
Strong interactions can occur between the flow about an aerospace vehicle and its structural components resulting in several important aeroelastic phenomena. These aeroelastic phenomena can significantly influence the performance of the vehicle. At present, closed-form solutions are available for aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for aeroelasticity involving complex nonlinear flows with shock waves, vortices, flow separations, and aerodynamic heating, computational methods are still under development. These complex aeroelastic interactions can be dangerous and limit the performance of aircraft. Examples of these detrimental effects are aircraft with highly swept wings experiencing vortex-induced aeroelastic oscillations, transonic regime at which the flutter speed is low, aerothermoelastic loads that play a critical role in the design of high-speed vehicles, and flow separations that often lead to buffeting with undesirable structural oscillations. The simulation of these complex aeroelastic phenomena requires an integrated analysis of fluids and structures. This report presents a summary of the development, applications, and procedures to use the multidisciplinary computer code ENSAERO. This code is based on the Euler/Navier-Stokes flow equations and modal/finite-element structural equations.
NASA Astrophysics Data System (ADS)
Peng, Jifeng; Dabiri, John O.
2007-11-01
This paper presents an approach to quantify the unsteady fluid forces, moments and mass transport generated by swimming animals, based on measurements of the surrounding flow field. These goals are accomplished within a framework that is independent of the vorticity field, making it unnecessary to directly resolve boundary layers on the animal, body vortex interactions, or interactions among vortex lines in the wake. Instead, the method identifies Lagrangian coherent structures in the flow, whose dynamics in flows with compact vorticity are shown to be well approximated by potential flow concepts, especially the Kirchhoff and deformation potentials from deformable body theory. Examples of the application of these methods are given for pectoral fin locomotion of the bluegill sunfish and undulatory swimming of jellyfish, and the methods are validated by analysis of a canonical starting vortex ring flow. The transition to a Lagrangian approach toward animal swimming measurements suggests the possibility of implementing recently developed particle tracking (vis-à-vis DPIV) techniques for fully three-dimensional measurements of animal swimming.
NASA Astrophysics Data System (ADS)
Thompson, W. E.
The behavior of fluids, gas, and mechanical components in turbomachinery is investigated. The prediction of aerodynamically induced vibrations in turbomachinery blading is described, and the measurement of aerodynamic work during fan flutter and the calculation of the vibration of an elastically mounted cylinder from experimental forced oscillation data are discussed. Attention is given to tangential vibration of integral turbine blades due to partial admission and to the effects of an annular fluid on the critical speed of a rotating shaft. The analysis of rotordynamic coefficients for convergent-tapered annular seals is examined and results of studies of fluid forces on a whirling centrifugal impeller in a vaneless diffuser are reported. Finally, the potential interaction between a centrifugal impeller and a vaned diffuser and the excitation of compressor/duct are examined.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Bell, W. C.; Pandurangan, B.; Glomski, P. S.
2011-08-01
To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.
Plunkett, Pat; Hu, Jonathan; Siefert, Christopher; Atzberger, Paul J.
2014-08-07
We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid–structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation–dissipation balance condition to develop compatible stochastic driving fields for our discretization. We also perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs–Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O(N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Furthermore, our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications.