Science.gov

Sample records for fluidized bed agglomeration

  1. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  2. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  3. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J. ); Kothari, M.; Hariri, H.; Arastoopour, H. )

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  4. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J.; Kothari, M.; Hariri, H.; Arastoopour, H.

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  5. Review of ash agglomeration in fluidized bed gasifiers

    SciTech Connect

    Matulevicius, E.S.; Golan, L.P.

    1984-07-01

    The purpose of this study is to review the data and mathematical models which describe the phenomena involved in the agglomeration of ash in fluidized bed coal gasifiers (FBG). Besides highlighting the data and theoretical models, this review lists areas where there is a lack of information regarding the actual mechanisms of agglomeration. Also, potential areas for further work are outlined. The work is directed at developing models of agglomeration which could be included in computer codes describing fluidized bed gasifier phenomena, e.g., FLAG and CHEMFLUB which have been developed for the US Department of Energy. 134 references, 24 figures, 13 tables.

  6. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  7. Analysis of atmospheric fluidized bed combustion agglomerates. Final report

    SciTech Connect

    Perkins, D. III; Brekke, D.W.; Karner, F.R.

    1984-04-01

    Chemical and textural studies of AFBC agglomerates have revealed detailed information regarding the mechanisms of agglomeration. The formation of agglomerates in a silica sand bed can be described by a four step process: initial ash coatings of quartz grains; thickening of ash coatings and the formation of nodules; cementation of nodules to each other by a sulfated aluminosilicate matrix; and partial or complete melting of eutectic compositions to produce a sticky glass phase between grains and along fractures. Once agglomeration has begun, large scale solidification and restricted flow within the bed will lead to hot spots, wholesale melting and further agglomeration which ultimately forces a shutdown. Standard operating temperatures during normal AFBC runs come quite close to, or may actually exceed, the minimum temperatures for eutectic melting of the silicate phases in the coal and standard bed materials. The partially melted material may be expected to lead to the formation of dense, sticky areas within the bed, and the formation of hot spots which further exacerbate the problem. Ultimately, large scale bed agglomeration will result. Attempts to eliminate agglomeration by removal of sodium via an ion exchange process have yielded encouraging results. A second approach, used to raise melting temperatures within the bed, has been to use bed materials that may react with low-temperature minerals to produce high-temperature refractory phases such as mullite or other alkali and alkali-earth alumino-silicates.

  8. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  9. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  10. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed

    SciTech Connect

    Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem

    2005-12-01

    Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

  11. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  12. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  13. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. PMID:20980143

  14. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  15. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  16. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  17. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    PubMed

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred. PMID:22329155

  18. Preparation of sustained release matrix pellets by melt agglomeration in the fluidized bed: influence of formulation variables and modelling of agglomerate growth.

    PubMed

    Pauli-Bruns, Anette; Knop, Klaus; Lippold, Bernhard C

    2010-03-01

    The one-step preparation of sustained release matrix pellets, using a melting procedure in a fluidized bed apparatus, was tested in a 2(3) full factorial design of experiments, using microcrystalline wax as lipophilic binder, theophylline as model drug and talc as additional matrix forming agent. The three influence parameters were (A) size of binder particles, (B) fraction of theophylline in solid particles and (C) fraction of microcrystalline wax in formulation. The response variables were agglomerate size and size distribution, dissolution time, agglomerate crush resistance, sphericity, yield and porosity. Nearly spherical pellets comprising a smooth, closed surface could be obtained with the used method, exhibiting the hollow core typical for the immersion and layering mechanism. The reproducibility was very good concerning all responses. The size of agglomerates is proportional to the size of the binder particles, which serve as cores for pellet formation in the molten state in the fluidized bed. Additionally, the agglomerate size is influenced by the volume of the solid particles in relation to the binder particles, with more solid particles leading to larger agglomerates and vice versa. Dissolution times vary in a very wide range, resulting from the interplay between amount of drug in relation to the meltable matrix substance microcrystalline wax and the non-meltable matrix substance talc. The change of binder particle size does not lead to a structural change of the matrix; both dissolution times and porosity are not significantly altered. Agglomerate crush resistance is low due to the hollow core of the pellets. However, it is significantly increased if the volume fraction of microcrystalline wax in the matrix is high, which means that the matrix is mechanically better stabilized. A theoretical model has been established to quantitatively explain agglomerate growth and very good accordance of the full particle size distributions between predicted and

  19. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  20. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  1. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  2. Fluidized bed quenching technology

    SciTech Connect

    Reynoldson, R.

    1996-12-31

    The use of fluidized beds for quenching ferrous materials is outlined and compared with the more traditional techniques commonly used in the heat treatment industry. The use of fluidized bed quenching to control distortion of metal parts is also discussed. A case study is provided to illustrate a practical application of fluidized bed quenching.

  3. Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

    1996-02-01

    The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

  4. Multidimensional nature of fluidized nanoparticle agglomerates.

    PubMed

    de Martín, Lilian; Bouwman, Wim G; van Ommen, J Ruud

    2014-10-28

    We show that fluidized nanoparticle agglomerates are hierarchical fractal structures with three fractal dimensions: one characterizing sintered aggregates formed during nanoparticle synthesis, one that is also found in stored agglomerates and represents unbroken agglomerates, and one describing the large agglomerates broken during fluidization. This has been possible by using spin-echo small-angle neutron scattering-a relatively novel technique that, for the first time, allowed to characterize in situ the structure of fluidized nanoparticle agglomerates from 21 nm to ∼20 μm. The results show that serial agglomeration mechanisms in the gas phase can generate nanoparticle clusters with different fractal dimensions, contradicting the common approach that considers fluidized nanoparticle agglomerates as single fractals, in analogy to the agglomerates formed by micron-sized particles. This work has important implications for the fluidization field but also has a wider impact. Current studies deal with the formation and properties of clusters where the building blocks are particles and the structure can be characterized by only one fractal dimension. However, fluidized nanoparticle agglomerates are low-dimensional clusters formed by higher-dimensional clusters that are formed by low-dimensional clusters. This multifractality demands a new type of multiscale model able to capture the interplay between different scales. PMID:25313446

  5. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  6. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  7. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  8. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  9. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  10. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  11. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1992-04-07

    This patent describes a method of incinerating a fuel containing difficult to remove tramp comprising wire. It comprises placing of a fluid bed within a downwardly and inwardly tapered centrally hollow air distributor disposed within a lower portion of a vessel; introducing fuel comprising combustible material and tramp comprising wire into the fluid bed; incinerating the combustible material in the fluid bed accommodating downward migration within the fluid bed of the wire without a central obstruction to such migration; in the course of performing the incinerating step, fluidizing the bed solely by introducing inwardly at several tiered locations directed air into the bed only around the tapered periphery along the lower portion of the vessel from a plurality of inwardly and downwardly parallel sites as causing the bed material and tramp to migrate downwardly and inwardly without central bed obstruction toward a discharge site.

  12. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  13. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  14. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  16. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  17. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  18. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  19. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  20. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  1. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  2. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  3. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  4. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  5. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  6. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  7. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  8. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  9. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  10. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  11. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Phase 2, Final report, May 1, 1983-July 31, 1984

    SciTech Connect

    1987-09-15

    KRW Energy Systems Inc. is engaged in the development of a pressurized, fluidized-bed, gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-Btu fuel gas from a variety of fossilized, carbonaceous feedstocks for electrical power generation, substitute natural gas, chemical feedstocks, and industrial fuels. This report covers Phase II of the contract period (May 1, 1983 to July 31, 1984) and is a continuation of the work performed in 1983 and reported in the Phase I final report, FE-19122-30. Included is work performed in fiscal 1983 to 1984 on PDU testing, process analysis, cold flow scaleup facility, process and component engineering and design, and laboratory support studies.

  12. Capacitively-Heated Fluidized Bed

    NASA Technical Reports Server (NTRS)

    Mchale, E. J.

    1982-01-01

    Fluidized-bed chamber in which particles in bed are capacitively heated produces high yields of polycrystalline silicon for semiconductor devices. Deposition of unrecoverable silicon on chamber wall is reduced, and amount of recoverable silicon depositing on seed particles in bed is increased. Particles also have a size and density suitable for direct handling without consolidation, unlike silicon dust produced in heated-wall chambers.

  13. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  14. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  15. Fluidized-Bed Reactor System

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1985-01-01

    Gas pyrolysis in hot fluidized beds minimized by use of selectively filtered radiation and parabolic cavity. Reactor is parabolic cavity of two or more axes in which light emanating from one axis bounces off walls of cavity and passes through object axis to heat sample.

  16. Review: granulation and fluidized beds

    SciTech Connect

    Kono, H.

    1981-01-01

    The history of granulation techniques is very long; however, the systematic study of the granulation phenomenon began only after 1950. The first, distinguished paper treating the fundamental binding mechanism of granules was published by Rumpf in 1958. Although there are several binding forces, the discussion in this paper is confined to granulation involving the capillary energy of a liquid-particle system. This technique has been applied widely and successfully to various fields of powder technology because of its advantages of simplicity and economy (ref. 2). Granules with diameters larger than 5 mm can be prepared efficiently by rotating-type granulators, such as a pan or a trommel (ref. 3, 4, 5). On the other hand, the purpose of fluidized-bed granulators (hereafter abbreviated as FBG) is to produce small granules with diameters from 0.3 to 3 mm (ref. 6). Because it contains a small amount of liquid, a fluidized-bed granulator has a fluidization state differing significantly from that of an ordinary fluidized bed. The dispersion of liquid and powder in the bed plays an important role in the granulation mechanism. This mechanism is compared to that of pan granulators, and the differences in characteristics are discussed.

  17. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Third quarter progress report FY-1984, April 1-June 30, 1984

    SciTech Connect

    Not Available

    1986-01-31

    The overall objective of the KRW coal gasification program is to demonstrate the viability of the KRW pressurized, fluidized-bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) modifications to the PDU; (3) cold flow scaleup facility; (4) advanced process design and analysis; and (5) laboratory support studies. For laboratory support studies, coal and/or char fines from Wyoming Sub C, Western Kentucky, Republic of South Africa (RSA), and Pittsburgh seam coals processed in the PDU were characterized for reactivity on a thermogravimetric analyzer. The average relative reactivity of the fines (-120 x +140 mesh) was found to be nearly the same as that for larger size distribution (18 x 60 mesh, -1.0 + 0.25 mm). This is consistent with the observations of studies reported in literature on carbon gasification reactions.

  18. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  19. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect

    1982-10-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  20. Fluidized bed reactor utilizing a plate support and method of operating the reactor

    SciTech Connect

    Korenberg, J.

    1984-10-09

    A bed support, and a fluidizing bed reactor incorporating the bed support, the bed support including a horizontal support surface with a centrally disposed conduit for removing tramp material and/or agglomerated material from the reactor. The horizontal support surface has fluidizing air source jet nozzles for directing pressurized air toward the area above the conduit. In a first embodiment, the conduit has downwardly diverging walls. In a second embodiment, the horizontal support surface further includes a bar grate having central fluidizing air source jet nozzles positioned within the conduit. The method of operating the fluidized bed reactor includes directing pressurized air at an angle to the horizontal support surface both for fluidizing the bed and for moving the tramp material and/or agglomerated material toward the conduit for removal from the reactor through the conduit.

  1. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  2. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  3. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  4. Incipient fluidization condition for a centrifugal fluidized bed

    SciTech Connect

    Fan, L.T.; Chang, C.C.; Takahashi, T.; Tanaka, Z.; Yu, Y.S.

    1985-06-01

    A model has been proposed for the condition of incipient fluidization in a centrifugal fluidized bed. The model is based on the balance between the overall forces, including the centrifugal and fluid frictional forces, exerted on the fluidized particles and the overall effective weight of the particles. Equations have been derived from the model for predicting the critical fluidizing velocity and the maximum pressure differential (or pressure drop) through the centrifugal bed. A series of experiments was carried out with different solid particles, bed rotational speeds, and bed heights. The resultant data for the critical fluidizing velocity and the maximum pressure drop of the bed indicate that the proposed model is valid and the derived equations are of practical use.

  5. Fluidized-Bed Reactor With Zone Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1989-01-01

    Deposition of silicon on wall suppressed. In new fluidized bed, silicon seed particles heated in uppermost zone of reactor. Hot particles gradually mix with lower particles and descend through fluidized bed. Lower wall of vessel kept relatively cool. Because silane enters at bottom and circulates through reactor pyrolized to silicon at high temperatures, silicon deposited on particles in preference wall. Design of fluidized bed for production of silicon greatly reduces tendency of silicon to deposit on wall of reaction vessel.

  6. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    PubMed

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition. PMID:26407346

  7. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  8. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters have been made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  9. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  10. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  11. Scaling of pressurized fluidized beds

    SciTech Connect

    Guralnik, S.; Glicksman, L.R.

    1994-10-01

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  12. Fluidization onset and expansion of gas-solid fluidized beds

    SciTech Connect

    Jones, O.C.; Shin, T.S.

    1984-08-01

    A simple, mass conservation-based, kinematic model is presented for accurately predicting both the onset of fluidization and the degree of (limit of) bed expansion in bubbling gas-solid fluidized beds. The model is consistant with inception correlations exisiting in the literature. Since the method has a sound physical basis, it might be expected to provide scaling between laboratory-scale fluidized beds and large-scale systems. This scaling ability, however, remains to be demonstrated as does the application to pressurized systems and where the terminal Reynolds numbers exceed 1000, (Archimedes numbers over about 3.2 x 10/sup 5/).

  13. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  14. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  15. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  16. Modeling of fluidized bed silicon deposition process

    NASA Technical Reports Server (NTRS)

    Kim, K.; Hsu, G.; Lutwack, R.; PRATURI A. K.

    1977-01-01

    The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown.

  17. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect

    Srinivasan, M.N.

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  18. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  19. Investigation on Agropellet Combustion in the Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Isemin, R. L.; Konayahin, V. V.; Kuzmin, S. N.; Zorin, A. T.; Mikhalev, A. V.

    Agricultural wastes (straw, sunflower or millet husk, etc.) are difficult to use as fuel because of low bulk density and relatively big ash content with a low melting point. It is possible to produce agropellets of agricultural wastes which are suggested to combust in a fluidized bed of pellets alone, their char particles and ash. The characteristics of the process of fluidization of agropellets are investigated at room temperature. The experiments on agropellet combustion in a fluidized bed are carried out in an experimental set-up. The results of the experiments have shown that in such a bed the pellets produced of straw and millet husk combust with the same rate as those of wood though the latter contain 8.76 - 19.4 times less ash. The duration of combustion of the same portion of straw pellets in a fluidized bed is 3.74 - 7.01 times less than the duration of combustion of cut straw in a fixed bed. Besides, the movement of agropellets prevents agglomeration and slagging of a boiler furnace.

  20. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  1. Fluidized bed combustion of coal

    NASA Astrophysics Data System (ADS)

    Tatebayashi, J.; Okada, Y.; Yano, K.; Takada, T.; Handa, K.

    The effect of various parameters on combustion efficiency, desulfurization efficiency and NO emission in fluidized bed combustion of coal were investigated by using two test combustors whose sectional areas were 200 mm and 500 mm square. It has been revealed that by employing two-stage combustion and setting the primary air ratio, secondary air injection height and other parameters to optimum levels, NO emission can be greatly reduced while barely impairing combustion efficiency or desulfurization efficiency. Also, NO emission of less than 50 ppm and desulfurization efficiency of as high as 93% were achieved. These results have ensured good prospects for the development of a coal combustion boiler system which can satisfy the strictest environmental protection regulations, without installing special desulfurization and de-NO(X) facilities.

  2. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  3. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  4. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  5. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  6. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  7. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1980-10-01

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  8. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of working in support of development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali m...

  9. SUPPORTIVE STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of studies supporting the development of atmospheric and pressurized fluidized-bed combustion (FBC) of coal. It includes laboratory and bench-scale studies to provide needed information on combustion optimization, regeneration process development, solid w...

  10. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  11. TECHNOLOGY OVERVIEW: CIRCULATING FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report summarizes the current technical status of circulating fluidized-bed combustion (CFBC). Companies that are involved in investigating this technology and/or developing commercial systems are discussed, along with system descriptions and available cost information. CFBC ...

  12. Fluidized-bed development at JPL

    NASA Technical Reports Server (NTRS)

    Hsu, G.

    1986-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized bed reactor (FBR) was investigated as a low cost, high throughput method to produce high purity polysilicon for solar cell applications. The emphasis of the research is fundamental understanding of fluidized bed silicon deposition. The mechanisms involved were modeled as a six-path process: heterogeneous deposition; homogeneous decomposition; coalescence; coagulation; scavenging; and chemical vapor deposition growth on fines.

  13. Gas fluidized-bed stirred media mill

    SciTech Connect

    Sadler, III, Leon Y.

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  14. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  15. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  16. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  17. Wear prediction in a fluidized bed

    SciTech Connect

    Boyle, E.J.; Rogers, W.A.

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  18. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  19. Particle pressures in fluidized beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  20. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  1. Fluidized-bed biological nitrogen removal

    SciTech Connect

    Hosaka, Yukihisa; Minami, Takeshi; Nasuno, Sai )

    1991-08-01

    This article describes a compact process for nitrogen removal developed in Japan. It does not require the large amounts of land of current denitrification processes. The process uses a three-phase fluidized bed of granular anthracite to which the nitrifying bacteria adhere and are fluidized by the activated sludge in the reactor. The process was developed in response to the need for nitrogen and phosphorus removal from waste water to prevent the eutrophication of Tokyo Bay, Japan.

  2. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  3. Spatiotemporal dynamics of a shallow fluidized bed.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Clark, D. K.

    2000-12-05

    An experimental and theoretical study of the dynamics of an air-fluidized thin granular layer is presented. Near the threshold of instability, the system exhibits critical behavior with remarkably long transient dynamics. Above the threshold of fluidization the system undergoes a Hopf bifurcation as the layer starts to oscillate at a certain frequency due to a feedback between the layer dilation and the airflow rate. Based on our experimental data, we formulate a the simple dynamical model which describes the transition in a shallow fluidized bed.

  4. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  5. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  6. Burning waste with FBC. [Fluidized Bed Combustion

    SciTech Connect

    Salaff, S.

    1991-11-01

    This article examines fluidized bed combustion as a method of choice for disposing for waste economically and within the bounds of rigid environmental standards. The topics discussed in the article include technology scaleup, wood and fossil wastes, municipal and hospital wastes, fuel flexibility, and a sidebar on the fluidized bed combustion technology. The waste fuels of major interest are various low grade liquid and solid residues from the coal, oil, forest products and automotive industries, as well as post-harvest biomass and municipal refuse.

  7. Fluidized bed coal desulfurization. Final Report

    SciTech Connect

    Ravindram, M.

    1983-08-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  8. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  9. Test study of salty paper mill waste in a bubbling fluidized bed combustor

    SciTech Connect

    Wu, S.; Sellakumar, K.M.; Chelian, P.K.; Bleice, C.; Shaw, I.

    1999-07-01

    Foster Wheeler Pyropower Inc. has supplied a 73.7 kg/s bubbling fluidized bed boiler to MacMillan Bloedel's Powell River paper mill (now Pacifica Paper). The BFB boiler was designed to fire a fuel mixture of a mill effluent sludge and a hog fuel (bark) that is contaminated with seawater. Due to its very high alkali content and low ash content, the fuel is prone to cause problems such as agglomeration in the fluidized bed. Foster Wheeler and MacMillan Bloedel took a proactive approach to quantify likely problems and to identify solutions. A 200 hour-long test program was carried out at Foster Wheeler Development Corporation in Livingston, New Jersey with the Powell River feedstock. This paper provides the project background, an outline of the test facility, test matrix, fuel and bed material characteristics, followed by a test process overview. A summary of fuel alkali related agglomeration mechanism in fluidized bed is also included. The paper offers further observations on in-bed alkali accumulation as well as examinations of different types of bed material agglomerates found during the tests. A recommended boiler operating strategy for preventing agglomeration in the BFB boiler developed based on the test results is described. These recommendations have been successfully implemented during the start up of the boiler. The boiler has been in operation since November 1997. Boiler performance tests completed in April 1998 have demonstrated all guaranteed process conditions.

  10. Velocity Fluctuations in Gas-Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres

  11. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  12. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  13. FBC: Gaining acceptance. [Fluidized Bed Combustion

    SciTech Connect

    Gawlicki, S.M.

    1991-04-01

    This article addresses the growing acceptance of fluidized bed combustion as a technology appropriate for use in dual-purpose power plants. The article reviews projects for cogeneration in California, a demonstration plant sponsored by the US Department of Energy in Ohio (this plant also incorporates combined cycle operation), and an electric power/greenhouse project in Pennsylvania.

  14. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  15. Fluidized-bed-fired industrial boilers

    SciTech Connect

    Leon, A.M.; McCoy, D.E.

    1981-01-01

    E. Keeler Company and Dorr-Oliver, Inc. have joined to design, market and manufacture atmospheric fluidized-bed-fired boilers. The first contract, called Shamokin, was a 23,400 lb/hr unit fired with anthracite culm having a heating value of 4000 Btu/lb and 67% ash. The Department of Energy sponsored this plant as a demonstration project. Boiler erection is nearly complete and start-up is scheduled for mid-1981. In conjunction with the Shamokin project, a line of fluidized-bed-fired boilers to 250,000 lb/hr has been developed for conventional solid fuels. The development of fluidized-bed-fired, industrial boilers is in its very early stages. At this point, it is not possible for any manufacturer to claim extensive operating experience with any particular design under the varied applications normal to industrial watertube boilers. Many different designs and approaches will develop over the next few years and until there has been some operating experience, it is not possible to evaluate just what share of the future industrial boiler market will utilize fluidized-bed firing.

  16. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  17. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  18. Fluidized bed electrowinning of copper. Final report

    SciTech Connect

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  19. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  20. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FLUIDIZED BED COMBUSTION

    EPA Science Inventory

    The report documents the results of an assessment of fluidized bed combustors (FBCs) to minimize air emissions from municipal waste combustors (MWCs). Objectives of the assessment were to identify the population of existing and planned refuse fired FBC facilities in the U.S., exa...

  1. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  2. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  3. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  4. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  5. Particle pressures in fluidized beds. Annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.

    1994-03-01

    Campbell and Wang (1991) showed that the particle pressures in gas-fluidized beds were largely generated by the passage of bubbles. In particular, they showed that the average particle pressure exerted on the side walls scaled with the average size of the bubble. This immediately brings to mind two questions: (1) what is it about bubbles that leads to particle pressure generation and (2) would there be measurable particle pressures in liquid-fluidized beds which, while unstable, do not bubble? This project is largely aimed at answering these two questions. To attack the first problem, the authors have built a two-dimensional gas-fluidized bed into which bubbles may be injected and the distribution of particle-pressure measured. For the latter, other experiments are being performed in liquid fluidized beds. However, it soon became apparent that the particle pressures generated in the liquid beds are extremely small. This has pointed that phase of the research in two directions. The first is the design and construction of a third, and more sensitive, from of the particle pressure transducer. The second approach arose from reflection on what ultimately was the utility of the current research. This led to the development of a generic stability model, in which all modeled terms are left unspecified. From analyzing this model, they have developed an experimental plan that, by measuring the characteristics of voidage disturbances and comparing with the theory, will allow them to back out appropriate values for the modeled terms. The results will not only yield insight into the particle pressure, but also of the fluid drag. The latter results may be used to evaluate common models for these terms.

  6. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  7. Fines in fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Hogle, R.; Rohatgi, N.; Morrison, A.

    1984-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized-bed reactor is investigated as a low-cost, high-throughput method to produce high-purity polysilicon for solar-cell applications. Studies of fines, particles 0.1-10 microns diam, initiated from homogeneous decomposition in the reactor were conducted using 2 and 6-in-diam fluidized beds. The studies show functional dependences of fines elutriation on silane feed concentration, temperature, gas velocity, and bubble size. The observation that the fines elutriation is generally below 10 percent of the silicon-in-silane feed is attributed to scavenging by large particles in an environment of less free space for homogeneous nucleation. Preliminary results suggest that, with proper conditions and distributor design, high-silane-concentration (over 50 percent SiH4 in H2) feed may be used.

  8. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  9. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  10. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  11. Recycle device for circulating fluidized bed boilers

    SciTech Connect

    Wang, Q.; Luo, Z.Y.; Li, X.T.; Cheng, F.; Ni, M.J.; Cen, K.

    1997-12-31

    Because the pressure at the outlet of a separator is lower than that at an inlet of a furnace, a recycle device is one of the most important components of circulating fluidized bed boilers for handling circulating ash. Although it has been extensively used in circulating fluidized bed boilers, its properties have not yet been well understood. Many experiments have been conducted for a kind of recycle device and the operational properties were obtained. The experimental results show that the structure of the recycle device and aeration conditions have a strong influence on the solid flow rate and operational stability of the recycle device. The authors will discuss the effect of the major parameters, such as opening and aeration air at different locations, on solids flow rate. The operational considerations will be given in this paper.

  12. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  13. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  15. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  16. Cluster Dynamics in a Circulating Fluidized Bed

    SciTech Connect

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  17. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  18. Status of the fluidized bed unit

    SciTech Connect

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  19. Hydrodynamic aspects of a circulating fluidized bed with internals

    SciTech Connect

    Balasubramanian, N.; Srinivasakannan, C.

    1998-06-01

    An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.

  20. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  1. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  2. Analysis for radiative heat transfer in a circulating fluidized bed

    SciTech Connect

    Steward, F.R.; Couturier, M.F.; Poolpol, S.

    1995-12-31

    The radiative heat transfer from the particles within a circulating fluidized bed has been determined for a number of different assumptions. Based on temperature profiles measured in an operating circulating fluidized bed burning coal, a procedure for predicting the radiative transfer from the solid particles to a cold wall is recommended. The radiative transfer from the solid particles to a cold wall makes up approximately 50% of the total heat transfer to the wall in a circulating fluidized bed combustor.

  3. Heat transfer in a fluidized-bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.

    1983-01-01

    The authors investigated the use of a fluidized bed as a solar thermal receiver. A 0.3 m diameter, quartz-walled bed was designed, built, and tested at a 325 kW, solar thermal test facility. Various large-particle bed materials were tested, and we found that strong temperature gradients existed in the fluidized bed exposed to concentrated solar radiation. A heat transfer analysis is presented and effective bed thermal conductivities are estimated.

  4. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  5. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  6. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  7. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  8. Simulation of fluidized bed coal combustors

    NASA Technical Reports Server (NTRS)

    Rajan, R.

    1979-01-01

    The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.

  9. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  10. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  11. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    SciTech Connect

    Joel R. Schroeder; Robert C. Brown

    1998-04-23

    The purpose of this project is to investigate the origin of pressure fluctuations in fluidized bed systems. The study will asses the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers.

  12. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  13. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  14. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  15. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  16. Development and testing of a fluidized bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.; Brown, C.T.; Lefferdo, J.M.

    1981-01-01

    Requirements for effective solar thermal receivers are compared with the characteristics of fluidized beds to demonstrate the compatibility of the two technologies. The Westinghouse design and construction of a solar thermal fluidized bed air heater for industrial process heat is described. Tests of the unit with concentrated solar radiation at the Georgia Tech Advanced Components Test Facility are outlined and receiver performance is evaluated.

  17. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  18. Fluidized bed boiler having a segmented grate

    DOEpatents

    Waryasz, Richard E.

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  19. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Dang, Sai-Chao; Ma, Qiang; Xia, Wei-Dong

    2015-07-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current Cms, air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005 and 11034010).

  20. Fluidized bed gasification of select granular biomaterials.

    PubMed

    Subramanian, P; Sampathrajan, A; Venkatachalam, P

    2011-01-01

    Biomaterials can be converted into solid, liquid and gaseous fuels through thermochemical or biochemical conversion processes. Thermochemical conversion of granular biomaterials is difficult because of its physical nature and one of the suitable processes is fluidized bed gasification. In this study, coir pith, rice husk and saw dust were selected and synthetic gas was generated using a fluidized bed gasifier. Gas compositions of product gas were analyzed and the percentage of carbon monoxide and carbon dioxide was in the range of 8.24-19.55 and 10.21-17.14, respectively. The effect of equivalence ratio (0.3, 0.4 and 0.5) and reaction time (at 10 min interval) on gas constituents was studied. The gas yield for coir pith, rice husk and sawdust were found to be in the range of 1.98-3.24, 1.79-2.81 and 2.18-3.70 Nm3 kg(-1), respectively. Models were developed to study the influence of biomaterial properties and operating conditions on molar concentration of gas constituents and energy output. PMID:20817445

  1. Next generation fluidized bed granulator automation.

    PubMed

    Rantanen, J; Känsäkoski, M; Suhonen, J; Tenhunen, J; Lehtonen, S; Rajalahti, T; Mannermaa, J P; Yliruusi, J

    2000-01-01

    A system for fluidized bed granulator automation with in-line multichannel near infrared (NIR) moisture measurement and a unique air flow rate measurement design was assembled, and the information gained was investigated. The multivariate process data collected was analyzed using principal component analysis (PCA). The test materials (theophylline and microcrystalline cellulose) were granulated and the calibration behavior of the multichannel NIR set-up was evaluated against full Fourier Transform (FT) NIR spectra. Accurate and reliable process air flow rate measurement proved critical in controlling the granulation process. The process data describing the state of the process was projected in two dimensions, and the information from various trend charts was outlined simultaneously. The absorbence of test material at correction wavelengths (NIR region) and the nature of material-water interactions affected the detected in-line NIR water signal. This resulted in different calibration models for the test materials. Development of process analytical methods together with new data visualization algorithms creates new tools for in-process control of the fluidized bed granulation. PMID:14727843

  2. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  3. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  4. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  5. Fluidized-bed calciner with combustion nozzle and shroud

    DOEpatents

    Wielang, Joseph A.; Palmer, William B.; Kerr, William B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.

  6. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  7. [Structure and fluidization of an internally circulating fluidized bed for FGD process].

    PubMed

    Yang, Liuchun; Yang, Wenqi; Tong, Zhiquan

    2003-09-01

    A new internally circulating fluidized bed for FGD process was developed, and different types of top and bottom structures were employed in the experiment to find out the best fluidized bed structure. Fluidizing status, the axial distribution of solid hold-up and the fluid mechanics under cold conditions were investigated. The results indicate that the unit can realize internally circulating of a large number of solid particles which presents an core-annulus structure when the velocity of fluidizing gas was at the range of 2.5 to 5 m/s, and that the solid density in the bed is higher than that in traditional equal diameter fluidized bed, which provide the equipment with potential for application in FGD process. PMID:14719258

  8. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    This chapter discusses a DOE-sponsored project to design, fabricate, install and demonstrate a system which can be fired with anthracite refuse coal (culm) or other coal. It is estimated that there are over 800 culm banks containing approximately 900 million ton of material in the northeast Pennsylvania area, which represents 1 billion barrels (159 GL) of oil equivalent. Culm combustion tests were conducted to establish and confirm the start-up and load following control systems to be used in the fluidized-bed boiler. The main purpose of the examined project is to demonstrate to industry that mine-site preparation/delivery of ready-to-burn fuel and disposal of the ash can be accomplished reliably, economically, and without detriment to the industrial or community environment.

  9. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  10. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  11. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  12. Dual-Fuel Fluidized Bed Combustor Prototype for Residential Heating: Steady-State and Dynamic Behavior

    NASA Astrophysics Data System (ADS)

    Cammarota, Antonio; Chirone, Riccardo; Miccio, Michele; Sollmene, Roberto; Urcluohr, Massimo

    Fluidized bed combustion of biogenic fuels can be recognized as an attractive option for an ecologically sustainable use of biofuels in residential applications. Nevertheless, biomass combustion in fluidized bed reactors presents some drawbacks that are mainly related to mixing/segregation of fuel particles/volatile matter during devolatilization inside the bed and in the freeboard or to bed agglomeration. A prototype of a 30-50 kWth fluidized bed boiler for residential heating has been designed to burn either a gaseous combustible or a solid biomass fuel or both fuels at the same time. The prototype has been equipped with a gas burner located in the wind-box to optimize the start-up stage of the boiler and with a fluidized bed characterized by a conical geometry ("Gulf Stream" circulation) to improve the mixing of the fuel particles during both devolatilization and char burn-out. The operation of the combustor adopting wood pellets as fuel has been investigated to evaluate their use in residential combustion applications. Steady-state thermally stable regimes of operation have been recognized analyzing both boiler temperatures and gaseous emissions. The optimization of the steady-state operation of the boiler in terms of gaseous emissions has been achieved by varying the nominal thermal power and air excess. An ad-hoc experimental campaign has been carried out to analyze the dynamic performance of the prototype as a response to changes of the demanded thermal power. On the basis of the experimental data, an interpretation of the dynamic behavior of the fluidized bed boiler has been proposed.

  13. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated with ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.

  14. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is

  15. CHARACTERIZATION OF SOLID RESIDUES FROM FLUIDIZED-BED COMBUSTION UNITS

    EPA Science Inventory

    The report gives results of physical and chemical characterizations of samples of spent bed material and of flyash from three experimental atmospheric and pressurized fluidized-bed combustion (FBC) units. It also gives results of characterization of samples of bed material which ...

  16. Process analysis of fluidized bed granulation.

    PubMed

    Rantanen, J; Jørgensen, A; Räsänen, E; Luukkonen, P; Airaksinen, S; Raiman, J; Hänninen, K; Antikainen, O; Yliruusi, J

    2001-01-01

    This study assesses the fluidized bed granulation process for the optimization of a model formulation using in-line near-infrared (NIR) spectroscopy for moisture determination. The granulation process was analyzed using an automated granulator and optimization of the verapamil hydrochloride formulation was performed using a mixture design. The NIR setup with a fixed wavelength detector was applied for moisture measurement. Information from other process measurements, temperature difference between process inlet air and granules (T(diff)), and water content of process air (AH), was also analyzed. The application of in-line NIR provided information related to the amount of water throughout the whole granulation process. This information combined with trend charts of T(diff) and AH enabled the analysis of the different process phases. By this means, we can obtain in-line documentation from all the steps of the processing. The choice of the excipient affected the nature of the solid-water interactions; this resulted in varying process times. NIR moisture measurement combined with temperature and humidity measurements provides a tool for the control of water during fluid bed granulation. PMID:14727858

  17. JPL in-house fluidized-bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.

  18. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  19. Meat and bone meal as secondary fuel in fluidized bed combustion

    SciTech Connect

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  20. Fluidized-bed retrofit a practical alternative to FGD

    SciTech Connect

    Stringfellow, T.E.

    1984-02-01

    A comparison is made between the costs of flue-gas desulphurization retrofit to a 112 MW pf-fired boiler, fluidized-bed combustion retrofit to the boiler, and a new fluidized-bed boiler. Breakdowns are given for capital costs, operating and maintenance costs and the busbar cost of energy for a 20 year unit life. The analysis shows that fbc is a viable option for the retrofit of many existing boilers from both a technical and economic viewpoint.

  1. A staged fluidized-bed comubstion and filter system

    SciTech Connect

    Mei, J.S.; Halow, J.S.

    1993-12-31

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  2. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  3. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  4. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect

    Rong Fan

    2006-08-09

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section

  5. Development and applications of clean coal fluidized bed technology

    SciTech Connect

    Eskin, N.; Hepbasli, A.

    2006-09-15

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  6. Sludge incineration in a spinning fluidized bed incinerator

    SciTech Connect

    Swithenbank, J.; Basire, S.; Wong, W.Y.; Lu, Y.; Nasserzadeh, V.

    1999-07-01

    At the present time, the sewage treatment plants in the UK produce about 25 million tonnes of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incinerators will be required to dispose of about five million tonnes per year. Bubbling fluidized bed incinerators are widely used to burn sewage sludge at a typical consumption rate of about 0.02 kg(dry)/s/m{sup 2}, and it follows that over 300 conventional fluidized bed incinerators of 3 meters bed diameter could be required to cope with the increased demand. At Sheffield University Waste Incineration Centre (SUWIC) research work is being carried out to develop a novel spinning fluidized bed incinerator. The key factor to note is that when air flows up through a bed of near mono-sized particles, it fluidizes when the pressure drop across the bed is equal to the weight of the bed. Normally, the weight of the bed is determined by gravity. However, if the bed is contained by a cylindrical air distributor plate that is rotating rapidly about its axis, then the effective weight of the bed can be increased dramatically. The airflow passing through the bed can be increased proportionally to the g level produced by the rotation and it follows that the process has been intensified. In exploratory tests with a spinning fluidized bed the authors have achieved combustion intensities with coal combustion as high as 100 MW/m{sup 3}. A problem with burning coal is that it was difficult to remove the heat and rotating water seals had to be used to transfer cooling water into the bed. In the case of sewage and other sludges, this problem does not exist since the flue gases can remove the small amount of heat released. The rotating fluidized bed sludge incinerator is a novel device, which is very compact. It is able to solve the turndown problem encountered with conventional fluidized beds by simply changing the rotation speed. Bearing in mind that a centrifugal sludge

  7. Fluidized-bed drying of flotation concentration

    SciTech Connect

    Antonenko, I.N.; Galka, B.A.

    1981-01-01

    The first pilot commercial unit for the fluidized-bed drying of flotation concentrate has been operational at the Dneprodzerzhinsk C and CW since 1964. Its advantages over drum dryers include the high processing speed and the compactness of the equipment, which is particularly valuable in view of the limited space available around the charge preparation plant. The grating in the unit consists of stamped sheets with perforations 6 to 7 mm square and a live section of 10.5 to 12.0%, designed to withstand the pressure required for normal drying conditions (4200 to 4600 Pa) and maintain uniform fluidization inside the reactor; it rapidly cools when the unit is shut down. The working temperatures are 600 to 650/sup 0/C under the grating, 70 to 80/sup 0/C in the bed and 75 to 85/sup 0/C beyond the dust-removing cyclones. Heating agent from the firebox is diverted into the dust-catching system to keep it at a higher temperature than the reactor and prevent the deposition of coal dust in the pipelines and dust-catching cyclones. At present, the drying unit is used to dry the entire output of flotation concentrate together with additional coarse slurry. The working area of the reactor is 7 m/sup 2/. The dust-catching system includes two batteries of BP-50 cyclones (seven per battery) and a PM-100 wet dust catcher. A compact stationary material charger is used; and a new high-capacity gas-burning firebox has been built with a large mixing chamber.Air is supplied by two VM-50/1000 blowers, assisted by a D-18/2 waste-gas fan and two OGN-3000 gas blowers. The fuel is a rich coke-oven gas (calorific value 5500 to 6000 kcal/m/sup 3/). The gas consumption varies between 1700 and 2000 m/sup 3//h, depending on the load and initial moisture content. The unit operates 10 to 20 h/day.

  8. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  9. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    SciTech Connect

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  10. Methods of forming a fluidized bed of circulating particles

    SciTech Connect

    Marshall, Douglas W.

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  11. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. PMID:26896004

  12. Mathematical modelling of coal fired fluidized bed combustors

    SciTech Connect

    Selcuk, N.; Siddall, R.G.; Sivrioglu, U.

    1980-12-01

    A system model of continuous fluidized bed combustors burning coal of wide size distribution has been derived, and applied to the investigation of the effect of excess air and recycle on bed concentration and temperature profiles and combustion efficiency of a pilot scale coal fired fluidized combustor. To demonstrate the effect of recycling, the behaviour of the fluidized combustor has been predicted for two extreme cases of recycle: complete and no recycle of elutriated char particles, the former was chosen to determine the behaviour of the model in the absence of elutriation, and the latter corresponds to the actual operating conditions of the fluidized combustor. Expected trends for concentration and temperature profiles and combustion efficiency are predicted correctly for both cases. The predictive ability and the flexibility of the model for incorporation of refinements such as a correlation for bubble growth and a detailed combustion mechanism, makes the model a promising one for the evaluation of performance of the fluid bed industrial boilers.

  13. Method of feeding particulate material to a fluidized bed

    DOEpatents

    Borio, Richard W.; Goodstine, Stephen L.

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  14. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  15. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  16. Nonlinear Unstable Wave Disturbances in Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Liu, J. T. C.

    1983-10-01

    Instabilities in fluidized beds are interpreted from the two-phase continuum theory of linearized hydrodynamic stability as the result of interactions between wave hierarchies for which the stability condition is violated; that is, in which the lower-order waves propagate at speeds exceeding those of the higher-order waves. For weak nonlinearities a hierarchy of Burgers-like equations is obtained. The nonlinear modifications to the wave speeds point towards the restoration of the stability condition in the linearized sense. A weakly nonlinear hydrodynamic stability analysis yields an amplitude equation that is of second order. It is argued, however, that the major history of the disturbance development may be expressed by a simpler first-order amplitude equation. The Landau-Stuart constant obtained is intimately related to the nonlinear modifications of the wave speeds of the higher- and lower-order wave operators. It is shown that for supercritical disturbances, amplitude and phase velocity equilibration is possible, and that the levels of the equilibration depend on the initial amplification rate, in agreement with observations. The equilibration occurs by cascades of the fundamental wave disturbance into its harmonics.

  17. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

  18. Kinetic behavior of solid particles in fluidized beds: Annual report

    SciTech Connect

    Kono, H.O.; Huang, C.C.

    1987-10-01

    This report summarizes technical accomplishments for the first year in a 3-year contract project for the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) under contract number AC21-86MC23249. The objectives of the project are (1) to develop experimental techniques for measuring the forces of fluidized particles, and (2) to predict solid particle performance in fluidized beds using data analysis and mathematical modeling. During the first year, the fracture-sensitive tracer-particle method was developed and applied to investigate the effects of fluidized particle size, superficial gas velocity, bed height, bed diameter, and bed configuration on the kinetic behavior of solid particles in fluidized beds. Quantitative data and comprehensive information were obtained. A piezoresistive strain-gauge sensor and a PC data-acquisition system were also developed; these are being used to measure the force distribution in fluidized beds. The pressure fluctuation method will also be investigated in the near future. 12 refs., 24 figs., 2 tabs.

  19. A fluidized-bed reactor for silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, S.

    1984-01-01

    The silane decomposition in a fluidized bed reactor was studied. The process feasibility and operating windows were determined. Long duration tests were conducted and silicon purity was demonstrated. A high purity linear was installed in the fluid bed reactor; the FBR product was melted and single crystallized. Product purity improvements are noted.

  20. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  1. Torrefaction of sawdust in a fluidized bed reactor.

    PubMed

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors. PMID:22055091

  2. Stability of flows in fluidized beds

    SciTech Connect

    Rajagopal, C.

    1992-01-01

    In this paper we carry out a systematic linearized stability analysis of the state of uniform fluidization for a fluid infused with granular particles. We carry out an interesting optimization procedure which leads to bounds for certain parameters, within which the state of uniform fluidization is stable. We find that this stability depends critically on the structure of the pressure-like term. (VC)

  3. Solid fuel feed system for a fluidized bed

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  4. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  5. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  6. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  7. Review of fluidized bed combustion technology in the United States

    SciTech Connect

    Krishnan, R.P.; Daw, C.S.; Jones, J.E. Jr.

    1984-01-01

    The United States (US) initiated work in fluidized bed combustion (FBC) in the mid-1960s, with primary emphasis on industrial applications. With passage of the Clean Air Act in 1970, the environmental benefits of the technology soon attracted interest. This provided the impetus for expanded effort focused on the reduced NO/sub x/ emissions resulting from lower combustion temperature and SO/sub 2/ capture by means of chemical reaction with limestone or dolomite in the fluidized bed. The oil embargo in 1973 further stimulated interest in FBC technology. Several manufacturers presently offer atmospheric fluidized bed combustion (AFBC) and circulating fluidized bed combustion (CFBC) units for industrial application in the United States. However, FBC for electric power generation remains in the development and demonstration phase. The Tennessee Valley Authority (TVA) and Electric Power Research Institute (EPRI) are operating a 20-MW AFBC utility pilot plant and are proceeding with plans for a 160-MW(e) demonstration plant with other participants. Research has been under way on pressurized fluidized bed combustion (PFBC) at Grimethorpe in South Yorkshire, England, and within the United States at the Curtiss-Wright Pilot Plant, and at other smaller test facilities. An emerging turbocharged PFBC concept will likely stimulate more near-term interest in PFBC technology for both industrial and utility applications. The major US programs and test facilities are described; remaining technical uncertainties are discussed, and the future outlook for the technology is assessed.

  8. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  9. Performance and electrochemical behavior of fluidized bed electrodes

    SciTech Connect

    Huh, T.

    1985-01-01

    The fluidized bed electrode was studied to characterize its behavior and evaluate its possible application to the electrowinning of precious metals and to the energy storage systems. Its performance and electrochemical behavior were analyzed in terms of various operating parameters. The first part of the study is concerned mainly with the overall performance of a fluidized-bed electrode for silver recovery from aqueous cyanide solution. The effects of applied current density, bed expansion, and electrode materials were considered, and its was found that the performance is free of operating problems and is superior to the Azadra-type cell, which is commonly used for precious metal recovery. The second part is concerned with the internal behavior of the fluidized bed electrode. The particle and electrolyte potentials and overpotentials in fluidized bed electrodes of two different types have been measured and analyzed by means of the probability density distribution and the power spectral density distribution. The resistance of such electrodes are also measured. The potential transients are observed to depend on current, bed expansion, and position in the bed (for copper particles) and each potential can be regarded as a time averaged value onto which two kinds of noise, low-frequency flicker noise and white noise, are added.

  10. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  11. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  12. Fluidized bed combustion tested for Turkish oil shales

    SciTech Connect

    Not Available

    1986-09-01

    About 7.5 billion tons of lignite and 5 billion tons of oil shale deposits are potential energy sources and therefore potential air pollution sources for Turkey. The low calorific value, and high ash and sulfur contents of these fuels render fluidized bed combustion a promising method of utilization. A fluidized bed combustion system with a nominal capacity of 418,000 to 627,000 kilojoules per hour for producing hot water has been designed and constructed at Istanbul Technical University. This paper lists the important characteristics of the main Turkish lignite and oil shale reserves, and the specifications of the pilot-scale fluidized-bed combustor designed to burn these fuels.

  13. Combustion of waste fuels in a fluidized-bed boiler

    SciTech Connect

    Zylkowski, J.; Ehrlich, S.

    1983-01-01

    This paper reports on a project whose objectives are to determine the impact of the waste fuels on Atmospheric Fluidized Bed Combustion (AFBC) operating procedures, boiler performance, and emissions and to assess the potential for fuel-specific operating problems. The low-grade waste fuels investigated are hogged railroad ties, shredded rubber tires, peat, refuse-derived fuel, and one or more agricultiral wastes. The Northern States Power (NSP) Company converted their French Island Unit No. 2 stoker-fired boiler to a fluidized-bed combustor designed to burn wood waste. NSP and EPRI are investigating cofiring other waste fuels with wood waste. Topics considered include fluidized-bed boiler conversion, fuel resources, economic justification, environmental considerations, the wood-handling system, an auxiliary fuel system, the air quality control system, ash handling and disposal, and the alternate fuels test program.

  14. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  15. Combustion model for staged circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Fang, Jianhua; Lu, Qinggang; Wang, Bo; Pan, Zhonggang; Wang, Dasan

    1997-03-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion, which takes fluid dynamics, combustion, heat transfer, pollutants formation and retention, into account was developed in the Institute of Engineering Thermophysics (IET) recently. The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure. The chemical species CO, CO2, H2, H2O, CH4, O2 and N2 were considered in the reaction process. The mathematical model consisted of sub-models of fluid namics, coal heterogeneous and gas homogeneous chemical reactions, heat transfer, particle fragmentation and attrition, mass and energy balance etc. The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data. The main submodels and simulation results are given in this paper.

  16. Characteristics of oily sludge combustion in circulating fluidized beds.

    PubMed

    Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo

    2009-10-15

    Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles. PMID:19482424

  17. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  18. Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed

    SciTech Connect

    Cadoret, L.; Reuge, N; Pannala, Sreekanth; Syamlal, M; Rossignol, C; Dexpert-Ghys, J; Coufort, C; Caussat, B

    2009-01-01

    Titanium oxide (TiO2) submicron powders have been treated by Chemical Vapor Deposition (CVD) in a vibro-fluidized bed in order to deposit silicon layers of nanometer scale on each individual grain from silane (SiH4). Experimental results show that for the conditions tested, the original granular structure of the powders is preserved for 90% of the initial bed weight while the remaining 10% consisted of agglomerates in millimetre range found near the distributor of the reactor. A comparison between experimental and modelling results using the MFIX code shows that for Geldart's Group B alumina particles (Al2O3), the model represents both the bed hydrodynamics and silane conversion rates quite well. The future objective is to extend the simulation capability to cohesive submicron powders in order to achieve better predictability of the phenomena governing ultrafine particles.

  19. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  20. Fluidized-Bed Deposition Of Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Hsu, George C.; Rohatgi, Naresh K.

    1988-01-01

    Uniformly thin single-crystal films of silicon produced by modification of fluidized-bed-reactor technique producing polysilicon by chemical vapor deposition. Proposed for silicon wafers for flat-plate solar arrays and results in different structural and electronic properties in deposition layer desirable for specific microelectronic or solar-cell processing. In process deposition occurs on silicon wafers, kept individually at temperatures above 1,000 degree C. Heated wafers held in unheated and minimally-agitated-fluidized bed of silicon particles and in low concentration of silane.

  1. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  2. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  3. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  4. Direct combustion of olive cake using fluidized bed combustor

    SciTech Connect

    Khraisha, Y.H.; Hamdan, M.A.; Qalalweh, H.S.

    1999-05-01

    A fluidized bed combustor of 0.146 m diameter and 1 m length was fabricated from stainless steel to burn olive cake. Initially, and in order to obtain fluidization, the system was operated under cold conditions using a sand with particle size in the range of 500 to 710 microns. The continuous combustion experiments were carried out under controlled conditions, such that the effects of bed temperature, olive cake feed rate, fluidization velocity, and particle size on combustion efficiency and flue gas composition were investigated. It was found that the combustion efficiency decreases with the bed temperature, fluidization velocity, and the feed rate, while it increases with the particle size used. Further, the gas products analysis carried out using a gas chromatography analyzer have shown a nonmeasured amount of SO{sub 2}, and small amounts of CO. Finally, the temperature distribution along the bed indicated that the temperature throughout the bed is fairly uniform, demonstrating a good mixing of reactants, which is important for efficient combustion.

  5. Tapered fluidized bed bioreactor for environmental control and fuel production

    SciTech Connect

    Scott, C. D.; Hancher, C. W.; Arcuri, E. J.

    1980-01-01

    Fluidized bed bioreactors are under development for use in environmental control and energy production. The most effective systems utilize a tapered portion either throughout the column or at the top of the column. This taper allows a wide range of operating conditions without loss of the fluidized particulates, and in general, results in more stable operation. The system described here utilize fixed films of microorganisms that have attached themselves to the fluidized particles. Preliminary investigations of the attachment indicate that reactor performance is related to film thickness. The biological denitrification of aqueous waste streams is typical of processes under development that utilize fluidized bed bioreactors. This development has progressed to the pilot plant scale where two 20-cm-diam x 800-cm fluidized beds in series accept aqueous wastes with nitrate concentrations as high as 10,000 mg/l and denitrification rates greater than 50 g/l/day using residence times of less than 30 minutes in each reactor. Other applications include aerobic degradation of phenolic wastes at rates greater than 25 g/l/day and the conversion of glucose to ethanol.

  6. Oil shale loss from a laboratory fluidized bed

    SciTech Connect

    Taylor, R.W.; Beavers, P.L. )

    1989-01-01

    The rate of loss of dust from a laboratory-scale fluidized bed of Greenriver oil shale has been measured. The rate of loss of dust form raw shale in the bed was approximately 1%/min for the first few minutes and then decreased. The loss rate for retorted or burnt shale was 5 to 10 times higher. The rates for retorted and burned shale were nearly the same. The time required for a 10 wt% loss of mass was approximately 3 min for processed shale and 1 hour for raw shale. Particles left in the bed during fluidization lost sharp corners, but kept the original elongation. Dust lost by the bed has a very wide range of sizes and demonstrated a strong bimodal distribution of sizes. The bimodal distribution of particles is interpreted as resulting from two mechanisms of dust generation; fracture and wear.

  7. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo; Hosek, William S.

    1981-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  8. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo; Hosek, William

    1983-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  9. Numerical Simulation of Physical and Chemical Processes in Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Baturin, D. A.; Gil, A. V.

    2015-10-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian representation on a 2D model.

  10. MONITORING STRATEGIES FOR FLUIDIZED BED COMBUSTION COAL PLANTS

    EPA Science Inventory

    Air and water monitoring strategies for commercial-size Fluidized Bed Combustion (FBC) coal plants are presented. This is one of five reports developing air and water monitoring strategies for advanced coal combustion (FBC), coal conversion (coal gasification and liquefaction), a...

  11. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  12. Autothermal gasification of low-grade fuels in fluidized bed

    NASA Astrophysics Data System (ADS)

    Belyaev, A. A.

    2009-01-01

    Autothermal gasification of high-ash floatation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

  13. Anthracite culm fired fluidized bed boiler at East Stroudsburg University

    SciTech Connect

    Curran, M.J.; Lentz, E.C.

    1986-01-01

    This paper describes operating experience and results of a fluidized bed boiler through the first 7500 hours of operation. Solutions to problems encountered during this period are described. Problem areas discussed in the paper include: finding alternate fuel suppliers; material handling and storage systems; personnel selection, training, and job description changes; and ash disposal.

  14. JPL in-house fluidized bed reactor research

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1985-01-01

    The progress in the in-house program on the silane fluidized-bed system is reported. A seed-particle cleaning procedure was developed to obtain material purity near the level required to produce a semiconductor-grade product. The liner-seal design was consistently proven to withstand heating/cooling cycles in all of the experimental runs.

  15. LEVEL 2 CHEMICAL ANALYSIS OF FLUIDIZED-BED COMBUSTOR SAMPLES

    EPA Science Inventory

    The report gives results of a Level 1 data evaluation and prioritization and the Level 2 environmental assessment (EA) chemical data acquired on a set of fluidized-bed combustor (FBC) particulate samples. The Level 2 analysis followed the approach described in 'Approach to Level ...

  16. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  17. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION, 1978 ANNUAL REPORT

    EPA Science Inventory

    The report gives results of laboratory- and process-scale EPA studies supporting the national development of atmospheric and pressurized fluidized-bed combustion (PFBC) of coal. Program objectives are: (1) to develop basic information needed to optimize the use of limestone for S...

  18. Description of emission control using fluidized-bed, heat-exchange technology

    SciTech Connect

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  19. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  20. Stability of flows in fluidized beds

    SciTech Connect

    Not Available

    1993-04-01

    We study the linearized stability of the state of uniform fluidization, within the context of the theory of mixtures. The mixture is assumed to be made up of a classical linearly viscous fluid mixed with solid particles. In marked departure from most of the previous studies, we model the solid as a granular material and assume a constitutive relation that stems from classical motions in continuum mechanics. The linearized stability analysis of the state of uniform fluidization, in general, leads to an eighth order equation for the characteristic whose root implies instability, when positive. We find that the characteristic equation can be factored and one of the factors is precisely the equation that governs the stability when we use a simplified analysis akin to that of the earlier study of Anderson and Jackson.

  1. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor

    PubMed Central

    Calvo, L. F.; García, A. I.; Otero, M.

    2013-01-01

    The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

  2. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  3. Fluid bed porosity mathematical model for an inverse fluidized bed bioreactor with particles growing biofilm.

    PubMed

    Campos-Díaz, K E; Bandala-González, E R; Limas-Ballesteros, R

    2012-08-15

    A new mathematic model to estimate bed porosity as a function of Reynolds and Archimedes numbers was developed based in experimental data. Experiments were performed using an inverse fluidized bed bioreactor filled with polypropylene particles, Lactobacillus acidophillus as the immobilized strain and fluidized with a Man-Rogosa-Sharpe culture medium under controlled temperature and pH conditions. Bed porosity was measured at different flow rates, starting from 0.95 to 9.5 LPM. The new model has several advantages when compared with previously reported. Among them, advantages such as standard deviation values ≤ 1% between experimental and calculated bed porosity, its applicability in traditional and inverse fluidization, wall effects do not take account, it gives excellent agreement with spherical particles with or without biofilm, and inertial drag coefficient allow extend the new model a non-spherical particles. PMID:22484706

  4. Plasma spouted/fluidized bed for materials processing

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, D.

    2010-02-01

    Plasma when coupled with spout/fluidized bed reactor for gas-solid reaction brings in several advantages such as high rate of heat and mass transfer, generation of high bulk temperature using a thin jet of plasma itself as a heat source. The science and technology of plasma and fluidization or spouted bed are well established except of these two put together for high temperature application. Plasma heating of fluid/ spouted bed can bring down the size of the equipment and increase the productivity. However the theory and practice of the hybrid technology has not been tested in a variety of applications that involves high temperature synthesis of materials, TRISO particle coating for nuclear fuel particle, thermal decomposition of refractory type ore, halogenations of minerals, particulate processes and synthesis of advanced materials. This paper gives an account of the use and exploitation of plasma coupled with spouted/ fluidized bed especially for material processing and also addresses the issues for adapting the same in the era of developing advanced high temperature materials.

  5. Design of fluidized-bed, biological denitrification systems

    SciTech Connect

    Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.

    1982-01-01

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO/sub 3//sup -/)/m/sup 3/) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO/sub 3//sup -/)/m/sup 3/ range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams.

  6. Particle pressures in fluidized beds. Second year annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.

    1993-12-31

    Campbell and Wang (1991) showed that the particle pressures in gas-fluidized beds were largely generated by the passage of bubbles. In particular, they showed that the average particle pressure exerted on the side walls scaled with the average size of the bubble. This immediately brings to mind two questions: (1) what is it about bubbles that leads to particle pressure generation and (2) would there be measurable particle pressures in liquid-fluidized beds which, while unstable, do not bubble? This project is largely aimed at answering these two questions. To attack the first problem, the authors have built a two-dimensional gas-fluidized bed into which bubbles may be injected and the distribution of particle-pressure measured. For the latter, other experiments are being performed in liquid fluidized beds. However, it soon became apparent that the particle pressures generated in the liquid beds are extremely small. This has pointed that phase of the research in two directions. The first is the design and construction of a third, and more sensitive, from of the particle pressure transducer. The second approach arose from reflection on what ultimately was the utility of the current research. This led to the development of a generic stability model, in which all modeled terms are left unspecified. From analyzing this model, they have developed an experimental plan that, by measuring the characteristics of voidage disturbances and comparing with the theory, will allow them to back out appropriate values for the modeled terms. The results will not only yield insight into the particle pressure, but also of the fluid drag. The latter results may be used to evaluate common models for these terms.

  7. Control methods for mitigating biomass ash-related problems in fluidized beds.

    PubMed

    Vamvuka, D; Zografos, D; Alevizos, G

    2008-06-01

    Embodiment of biomass combustion technologies in the Cretan energy system will play an important role and will contribute to the local development. The main biomass fuels of Crete are the agricultural residues olive kernel and olive tree wood. Future applications of these biofuels may create, among others, operational problems related to ash effects. In this regard, the thermal behavior of the ashes during lab-scale fluidized bed combustion tests was examined, in terms of slagging/fouling and agglomeration of bed material. Control methodologies for mitigating ash problems were applied, such as leaching the raw fuels with water and using different mineral additives during combustion. The ashes and the bed material were characterized in terms of mineralogical, chemical and morphological analyses and the slagging/fouling and agglomeration propensities were determined. The results showed that fly ashes were rich in Ca, Si and Fe minerals and contained substantial amounts of alkali, falling within the range of "certain or probable slagging/fouling". Leaching of the raw fuels with water resulted in a significant reduction of the problematic elements K, Na, Cl and S in the fly ashes. The use of fuel additives decreased the concentrations of alkali and iron minerals in the fly ashes. With clay additives calcium compounds were enriched in the bottom ash, while with carbonate additives they were enriched in the fly ash. Fuel additives or water leaching reduced the slagging/fouling potential due to alkali. Under the conditions of the combustion tests, no signs of ash deposition or bed agglomeration were noticed. PMID:17826986

  8. A fluidized-bed continuous bioreactor for lactic acid production

    SciTech Connect

    Andrews, G.F.; Fonta, J.P.

    1988-05-01

    A laboratory bioreactor consists of a fluidized bed of monosized activated carbon coated with a biofilm of the homolactic fermentative organism Streptococcus thermophilus. Biofilm growth moves the carbon through the bed, and adsorption of substrate and product at the bottom and top of the bed respectively reduces their inhibitory effects on the organism. Theory shows that high reactor productivity and rapid recirculation of carbon through the bed require a biofilm thickness of 25 to 45% of the carbon particle radius on particles fed into the base of the bed. This could not be achieved in practice due to the fragility of the biofilm. Product concentration was higher than expected from measurements of product inhibition, possibly because it is the undissociated form of the acid that both inhibits metabolism and adsorbs on the activated carbon. The observed productivity of 12 gm/1 hr could be greatly increased by ph control. 13 refs., 7 figs., 2 tabs.

  9. Mixing equilibrium in two-density fluidized beds by DEM

    NASA Astrophysics Data System (ADS)

    Di Renzo, A.; Di Maio, F. P.

    2010-05-01

    Interaction of fluid and granular flows in dense two-phase systems is responsible for the significantly different behavior of units used in the chemical industry such as fluidized beds. The momentum exchange phenomena involved during gas fluidization of a binary mixture of solids differing in density is such that the continuous mixing action of the fluid flowing upwards counteracts the natural tendency of the two (fluidized) solids to segregate with the heavier component fully settling at the bottom of the bed. In the present work the complex hydrodynamics of two-density gas-fluidized beds is studied by means of a DEM-CFD computational approach, combining the discrete element method (DEM) and a solution of the locally averaged equations of motion (CFD). The model is first validated against experimental data and then used to investigate the role of gas velocity versus density ratio of the two components in determining the distribution of the components in the system. It is shown first that a unique equilibrium composition profile is reached independent of the initial arrangements of the solids. Then, numerical simulations are used to find the equilibrium conditions of mixing/segregation as a function of the gas velocity in excess of the minimum fluidization velocity of the heavier component and as a function of the density ratio of the two solid species. A mixing map on the gas velocity-density ratio plane is finally reconstructed by plotting iso-mixing lines that shows quantitatively how conditions ranging from full mixing to fully segregated components are obtained.

  10. Bubbles trapped in a fluidized bed: Trajectories and contact area

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Vidal, Valérie; Varas, Germán

    2016-03-01

    This work investigates the dynamics of bubbles in a confined, immersed granular layer submitted to an ascending gas flow. In the stationary regime, a central fluidized zone of parabolic shape is observed, and the bubbles follow different dynamics: either the bubbles are initially formed outside the fluidized zone and do not exhibit any significant motion over the experimental time or they are located inside the fluidized bed, where they are entrained downwards and are, finally, captured by the central air channel. The dependence of the air volume trapped inside the fluidized zone, the bubble size, and the three-phase contact area on the gas injection flow rate and grain diameter are quantified. We find that the volume fraction of air trapped inside the fluidized region is roughly constant and of the order of 2%-3% when the gas flow rate and the grain size are varied. Contrary to intuition, the gas-liquid-solid contact area, normalized by the air injected into the system, decreases when the flow rate is increased, which may have significant importance in industrial applications.