Science.gov

Sample records for fluorescence depolarization measurements

  1. Fluorescence depolarization measurements on oriented membranes.

    PubMed Central

    Adler, M; Tritton, T R

    1988-01-01

    We describe the theory and experimental application of fluorescence depolarization measurements on small molecules bound to oriented phospholipid bilayers. The results yield insight into both the orientation and the rotational motion of fluorophores in a membrane environment. To accomplish this the angular distribution of polarized fluorescence intensities is measured on a membrane preparation consisting of stacked phospholipid bilayers oriented in a known coordinate system. Considerably more information is available from this data than in comparable solution phase measurements. Three parameters are derived from the data: the rate of rotational diffusion and the second and fourth degree order parameters. These latter two parameters provide an assessment of the average distribution of fluorophore orientation in the membrane bilayer. The data have been carefully examined for systematic experimental artifacts and new protocols are presented which help to eliminate errors that have not been amply treated in the past. We present data for two types of fluorescent molecules: (a) conventional membrane probes like diphenylhexatriene, perylene and anthroyloxy fatty acids; and (b) the anticancer agent adriamycin and several congeneric anthracycline antibiotics. The results show that the hydrocarbon core of membranes is more rigid than previously thought, particularly above the thermal phase transition temperature. We also show that the orientation of small molecules is sensitive to both the phospholipid composition and to the interaction of specific functional groups with the lipid bilayer. The results are discussed in terms of energetic models describing the general patterns for the binding of small molecules to biological membranes. Images FIGURE 1 PMID:3165033

  2. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    SciTech Connect

    Szubiakowski, Jacek P.

    2014-06-14

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed.

  3. Analyzing fluorophore electronic structure and depolarization by fluorescence polarizing angle spectrum

    SciTech Connect

    Mu, Taotao; Chen, Siying Zhang, Yinchao; Chen, He; Guo, Pan

    2014-07-21

    In this Letter, a method, based on stokes parameters, is developed to observe the angular displacement between the excitation and emission moments. Experiments demonstrate that when combined with degree of polarization spectrums, we can acquire the depolarization caused by angular displacement or energy migration. The method presented in this Letter can be easily realized with the existing fluorescence measuring system and may potentially make it convenient to study the fluorophore electronic structure or the mechanism of fluorescence anisotropy.

  4. Effect of multiple scattering on depolarization measurements with spaceborne lidars.

    PubMed

    Reichardt, Susanne; Reichardt, Jens

    2003-06-20

    An analytical model based on the integration of the scattering-angle and light-path manifold has been developed to quantify the effect of multiple scattering on cirrus measurements obtained with elastic polarization lidars from space. Light scattering by molecules and by a horizontally homogeneous cloud is taken into account. Lidar parameter, including laser beam divergence, can be freely chosen. Up to 3 orders of scattering are calculated. Furthermore, an inversion technique for the retrieval of cloud extinction profiles from measurements with elastic-backscatter lidars is proposed that explicitly takes multiple scattering into account. It is found that for typical lidar system parameters such as those of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument multiple scattering does not significantly affect depolarization-ratio measurements in cirrus clouds with small to moderate optical depths. For all simulated clouds, the absolute value of the difference between measured and single-scattering volume depolarization ratio is < 0.006. The particle depolarization ratio can be calculated from the measured volume depolarization ratio and the retrieved backscatter ratio without degradation of accuracy; thus characterization of the various cirrus categories in terms of the particle depolarization ratio and retrieval of cloud microphysical properties is feasible from space. The results of this study apply to polar stratospheric clouds as well. PMID:12833968

  5. Depolarization Measurements with the High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    This paper describes modifications to the University of Wisconsin High Spectral Resolution Lidar (HSRL) which permit very precise depolarization measurements in addition to optical depth, backscatter cross section, and extinction cross section measurements. Because HSRL separates the lidar return into aerosol and molecular contributions, they can be measured separately.

  6. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  7. A Critique of Asphaltene Fluorescence Decay and Depolarization-Based Claims about Molecular Weight and Molecular Architecture

    SciTech Connect

    Strausz,O.; Safarik, I.; Lown, E.; Morales-Izquierdo, A.

    2008-01-01

    Relying on experimental and theoretical data available from the literature, it is shown that the conclusions derived from measurements of fluorescence decay and depolarization kinetic times as reported in a series of papers over the past decade are egregiously wrong. To start with, the decay time measurements were done with inappropriate instrumentation which resulted in misleading results. Misinterpretation of the results led to the mistaken conclusion that bichromophoric type molecules are absent from petroleum asphaltene and therefore the architecture of the asphaltene molecule features a single condensed cyclic core spiked with some alkyl chains, in spite of irrefutable chemical evidence to the contrary. It was further concluded that if the asphaltene core is a single condensed ring, then the fluorescence depolarization with rotational correlation time method is applicable for the molecular weight determination of asphaltene. This is definitely not so, since, regardless of any other considerations, asphaltene is a mixture of a plethora of different, unknown components, with unknown concentrations along with innumerable different, unknown and some known chromophores portraying widely different absorption coefficients, fluorescence quantum yields, and kinetic decay times. Consequently, asphaltene fluorescence is a highly complex function of the above attributes and as such it is a totally unsuitable property for its molecular weight determination. The injection of an incorrect, single condensed ring core architecture for asphaltene has caused some confusion in asphaltene chemistry that has now hopefully been settled.

  8. Fluorescence depolarization of rhodamine 6G in glycerol: a photon-counting test of three-dimensional excitation transport theory

    SciTech Connect

    Anfinrud, P.A.; Hart, D.E.; Hedstrom, J.F.; Struve, W.S.

    1986-05-22

    Time-correlated photon counting has been used to measure fluorescence concentration depolarization for rhodamine 6G in glycerol. The excitation transport theory developed by Gochanour, Andersen, and Fayer yields good approximations to the experimental decay profiles over the concentration range 1.7 x 10/sup -4/ to 2.4 x 10/sup -3/ M. Although the differences between optimized theoretical and experimental profiles are fractionally small, they are readily characterized under present counting statistics. They prove to be dominated by experimental artifacts, arising from excitation trapping by rhodamine 6G aggregates and from self-absorption in solution cells thicker than approx. 10 ..mu..m.

  9. Experimental verification of depolarization effects in bioelectrical impedance measurement.

    PubMed

    Chen, Xiaoyan; Lv, Xinqiang; Du, Meng

    2014-01-01

    The electrode polarization effects on bioelectrical impedance measurement at low-frequency cannot be ignored. In this paper, the bioelectrical data of mice livers are measured to specify the polarization effects on the bio-impedance measurement data. We firstly introduce the measurement system and methodology. Using the depolarization method, the corrected results are obtained. Besides, the specific effects of electrode polarization on bio-impedance measurement results are investigated using comparative analysis of the previous and posterior correction results from dielectric spectroscopy, Cole-Cole plot, conductivity and spectroscopy of dissipation tangent. Experimental results show that electrode polarization has a significant influence on the characteristic parameters of mouse liver tissues. To be specific, we see a low-frequency limit resistance R0 increase by 19.29%, a reactance peak XP increase by 8.50%, a low-frequency limit conductivity Kl decrease by 17.65% and a dissipation peak tangent decrease by 160%. PMID:25227082

  10. Suppression of Rayleigh scattering noise in sodium laser guide stars by hyperfine depolarization of fluorescence.

    PubMed

    Guillet de Chatellus, Hugues; Moldovan, Ioana; Fesquet, Vincent; Pique, Jean-Paul

    2006-11-27

    We propose what we believe is a novel method for enabling the complete suppression of noise due to Rayleigh scattering in sodium laser guide star systems by means of selective discrimination between Rayleigh and fluorescence signals based on polarization properties. We show that, contrary to the nearly 100% polarized Rayleigh scattering, fluorescence from the D(2) sodium line is strongly depolarized under excitation by a modeless laser. This offers the possibility of completely cancelling the effects of the Rayleigh scattering background while preserving the fluorescence signal to about 40% of its maximal value, leading to an improvement of the signal-to-noise ratio by several orders of magnitude. Both theoretical and experimental data confirm this new proposal. PMID:19529568

  11. Fluorescence depolarization studies of sol-gel-derived glasses using a rigidochromic probe

    NASA Astrophysics Data System (ADS)

    McKiernan, John; Zink, Jeffrey I.; Dunn, Bruce S.

    1992-12-01

    The rigidochromic molecule rhenium(I)chlorotricarbonyl-2,2'-bipyridine was used in fluorescence depolarization experiments to probe the gelation, aging, and drying of silica and aluminosilicate sol-gel derived materials. These studies indicate that the local environment of the probe is fluid until well after gelation has occurred. Aluminosilicate gels show an increase in local viscosity after gelation while silica gels show no increase until the drying stage is begun. These results are compared to previous studies in which the shift of the emission band was used to indicate the rigidity in the local environment of the probe.

  12. Time-Resolved Fluorescence Depolarization Study Of Lamellar To Inverted Cylindrical Micellar Phase

    NASA Astrophysics Data System (ADS)

    Cheng, Kwan H.

    1989-05-01

    The orientational order and rotational dynamics of 2-(3-(diphenyl-hexatrienyl) propanoy11-3-palmitoyl-L-a-phosphatidylcholine (DPH-PC) embedded in dioleoplphosphatidylethanolamine (DOPE) were studied by time-resolved fluorescence depolarization technique. Upon increasing the temperature, the wobbling diffusion constant D⊥ of DPH-PC was found to decrease at the lamellar (Lα) to inverted cylindrical (HII) phase transition (12°C). The calculated ratio of order parameter in the La phase to that in the HII phase was close to the theoretical value of 2.0 as predicted from the change in packing symmetry. The effects of butylated hydroxytoluene, cholesterol and phosphatidylchollne on this phase transition were also examined.

  13. Probing the structure and dynamics of a DNA hairpin by ultrafast quenching and fluorescence depolarization.

    PubMed Central

    Larsen, O F; van Stokkum, I H; Gobets, B; van Grondelle, R; van Amerongen, H

    2001-01-01

    DNA hairpins have been investigated in which individual adenines were replaced by their fluorescent analog 2-aminopurine (2AP). The temperature dependence of the time evolution of polarized emission spectra was monitored with picosecond time resolution. Four isotropic decay components for each oligonucleotide indicated the coexistence of at least four conformations. The fluorescence for three of these was significantly quenched, which is explained by hole transfer from 2AP to guanine(s). An approximately 8-ps component is ascribed to direct hole transfer, the approximately 50-ps and approximately 500-ps components are ascribed to structural reorganization, preceding hole transfer. At room temperature, a fraction remains unquenched on a 10-ns timescale, in contrast to higher temperatures, where the flexibility increases. Besides quenching due to base stacking, a second quenching process was needed to describe the data. Evidence for both intrastrand and interstrand hole transfer was found. The extracted probability for stacking between neighboring bases in double-stranded regions was estimated to be approximately 75% at room temperature and approximately 25% at 80 degrees C, demonstrating structural disorder of the DNA. Fluorescence depolarization revealed both local dynamics of the DNA and overall dynamics of the entire oligonucleotide. Upon raising the temperature, the C-N terminus of the hairpin appears to melt first; the rest of the hairpin denatures above the average melting temperature. PMID:11463652

  14. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-11-01

    Multi-wavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentration profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analysed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical in distinguishing between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  15. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations

    NASA Astrophysics Data System (ADS)

    Nemuc, A.; Vasilescu, J.; Talianu, C.; Belegante, L.; Nicolae, D.

    2013-06-01

    Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart) was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust) a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC) classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code) and very small differences were observed.

  16. Aerosol Properties over Southeastern China from Multi-Wavelength Raman and Depolarization Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Heese, Birgit; Althausen, Dietrich; Baars, Holger; Bohlmann, Stephanie; Deng, Ruru

    2016-06-01

    A dataset of particle optical properties of highly polluted urban aerosol over the Pearl River Delta, Guangzhou, China is presented. The data were derived from multi-wavelengths Raman and depolarization lidar PollyXT and AERONET sun photometer measurements. The measurement campaign was conducted from Nov 2011 to June 2012. High aerosol optical depth was observed in the polluted atmosphere over this megacity, with a mean value of 0.54 ± 0.33 and a peak value of even 1.9. For the particle characterization the lidar ratio and the linear particle depolarization ratio, both at 532 nm, were used. The mean values of these properties are 48.0 sr ± 10.7 sr for the lidar ratio and 4%+-4% for the particle depolarization ratio, which means most depolarization measurements stayed below 10%. So far, most of these results indicate urban pollution particles mixed with particles arisen from biomass and industrial burning.

  17. Excimer fluorescence compared to depolarization in the flow cytometric characterization of lateral membrane mobility in platelets

    NASA Astrophysics Data System (ADS)

    Rothe, Gregor; Schaefer, Buerk; Wimmer, Martin S.; Schmitz, Gerd

    1998-04-01

    An altered cellular membrane fluidity secondary to changes of cholesterol metabolism is a potentially important mechanism in the pathogenesis of atherosclerosis. Especially in blood platelets an increased sensitivity for stimulation dependent aggregation which is a risk factor for thrombosis has been experimentally linked to disorders of lipid and lipoprotein metabolism. The goal of this study was the development of a flow cytometric assay for the direct analysis of cellular membrane microviscosity in correlation to activation associated phenotypic changes of platelets in vitro. The analysis of fluorescence polarization following the staining of hydrophobic lipid regions of cell membranes with the fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH) is a well established method for the analysis of membrane fluidity. The extent of fluorescence anisotropy dependent on the rotational mobility of this fluorochrome is indirectly proportional to the microviscosity of the stained membrane subcompartment. In this study, an alternative and more simple method based on the diffusion dependent excimer formation of pyrenedecanoic acid (PDA) (J. Immunol. Methods 96:225-31, 1987) was characterized in comparison to the DPH method as a reference. Human platelets showed a rapid uptake of both DPH and PDA resulting in the staining primarily of the plasma membrane after up to 30 min of incubation. Staining analyzed at 351 nm excitation resulted in a saturation of the depolarization coefficient of DPH at 20 (mu) M but an increase of the excimer to monomer ratio of PDA with increasing dye concentration. A 'membrane fluidity coefficient' which saturated at 5 (mu) M PDA was calculated as the excimer fluorescence divided through the square of monomer fluorescence thereby correcting for the influence of dye concentration on excimer formation. The temperature dependent changes of membrane viscosity were further used as a model for the comparison of both methods. Cells analyzed at temperatures

  18. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  19. Light depolarization measurements in malaria: A new job for an old friend.

    PubMed

    Rebelo, Maria; Tempera, Carolina; Bispo, Claudia; Andrade, Claudia; Gardner, Rui; Shapiro, Howard M; Hänscheid, Thomas

    2015-05-01

    The use of flow cytometry in malaria research has increased over the last decade. Most approaches use nucleic acid stains to detect parasite DNA and RNA and require complex multi-color, multi-parameter analysis to reliably detect infected red blood cells (iRBCs). We recently described a novel and simpler approach to parasite detection based on flow cytometric measurement of scattered light depolarization caused by hemozoin (Hz), a pigment formed by parasite digestion of hemoglobin in iRBCs. Depolarization measurement by flow cytometry was described in 1987; however, patent issues restricted its use to a single manufacturer's hematology analyzers until 2009. Although we recently demonstrated that depolarization measurement of Hz, easily implemented on a bench top flow cytometer (Cyflow), provided useful information for malaria work, doubts regarding its application and utility remain in both the flow cytometry and malaria communities, at least in part because instrument manufacturers do not offer the option of measuring depolarized scatter. Under such circumstances, providing other researchers with guidance as to how to do this seemed to offer the most expeditious way to resolve the issue. We accordingly examined how several commercially available flow cytometers (CyFlow SL, MoFLo, Attune and Accuri C6) could be modified to detect depolarization due to the presence of free Hz on solution, or of Hz in leukocytes or erythrocytes from rodent or human blood. All were readily adapted, with substantially equivalent results obtained with lasers emitting over a wide wavelength range. Other instruments now available may also be modifiable for Hz measurement. Cytometric detection of Hz using depolarization is useful to study different aspects of malaria. Adding additional parameters, such as DNA content and base composition and RNA content, can demonstrably provide improved accuracy and sensitivity of parasite detection and characterization, allowing malaria researchers and

  20. Conductivity Variation Observed by Polarization and Depolarization Current Measurements of High-Voltage Equipment Insulation System

    NASA Astrophysics Data System (ADS)

    Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah

    2012-09-01

    Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.

  1. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  2. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  3. Practical depolarization-ratio-based inversion procedure: lidar measurements of the Eyjafjallajökull ash cloud over the Netherlands.

    PubMed

    Donovan, David Patrick; Apituley, Arnoud

    2013-04-10

    In this paper we present a technique for estimating optical backscatter and extinction profiles using lidar, which exploits the difference between the observed linear volume depolarization ratio at 355 nm and the corresponding expected aerosol-only depolarization ratio. The technique is specific to situations where a single strongly depolarizing species is present and the associated linear particulate depolarization ratio may be presumed to be known to within a reasonable degree of accuracy (on the order of 10%). The basic principle of the technique is extended to deal with situations where a depolarizing fraction is mixed with nondepolarizing aerosol. In general, since the relative depolarization interchannel calibration is much more stable than the absolute system calibration, the depolarization-based technique is easier to implement than conventional techniques that require a profile-by-profile calibration or, equivalently, an identification of aerosol-free altitude intervals. This in particular allows for unattended data analysis and makes the technique well-suited to be part of a broader (volcanic ash) surveillance system. The technique is demonstrated by applying it to the analysis of aerosol layers resulting from the 2010 eruptions of the Eyjafjallajökull volcano in Iceland. The measurements were made at the Cabauw remote-sensing site in the central Netherlands. By comparing the results of the depolarization-based inversion with a more conventional manual inversion procedure as well as Raman lidar results, it is demonstrated that the technique can be successfully applied to the particular case of 355 nm depolarization lidar volcanic ash soundings, including cases in which the ash is mixed with nondepolarizing aerosol. PMID:23670771

  4. Impacts of depolarization calibration methods on cloud phase interpretation at Eureka during 2013 and 2014 CRL lidar measurement campaigns

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Perro, C. W.; Gamage, S. M.; Hopper, J.; Sica, R. J.; Duck, T.; Walker, K. A.; Drummond, J. R.

    2014-12-01

    The radiative behaviour of clouds is dependent on cloud particle phase. Water droplets can exist in temperatures well below 0° C for extended periods. Lidar depolarization measurements allow liquid and solid states to be differentiated in individual clouds at high spatial-temporal resolution. The 2012, 2013 and 2014 Canadian Arctic ACE Validation Campaigns in Eureka, Nunavut, Canada (80°N, 86°W) provided an opportunity to make extensive depolarization measurements using the CANDAC Rayleigh-Mie-Raman Lidar (CRL) in the troposphere.To date, most calibration methods in the literature are applicable to lidars which do not have non-ideal polarizing optics upstream of the polarizing analyzers in the receiver. We demonstrate a more complete matrix algebra calibration of the CRL to take the extra optics from six upstream lidar channels into account.Differences in depolarization parameter from 2013 and 2014 measurements show the advantage of the more extensive calibration for this lidar compared to the simpler traditional approach. The largest differences are found for depolarization parameter values around d = 0.50 (corresponding to δ = 0.33). Depolarization ratio values of δ = 0.2 to 0.3 are generally taken to be the cutoff between interpretations of ice (higher δ) or water (lower δ), and many CRL measurements lie in this particularly diagnostic range. An uncertainty analysis becomes important when extending the depolarization parameters to interpretation of the clouds in the atmosphere above Eureka.

  5. Depolarization Ratio of Clouds Measured by Multiple-Field of view Multiple Scattering Polarization Lidar

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Sato, Kaori; Makino, Toshiyuki; Nishizawa, Tomoaki; Sugimoto, Nobuo; Jin, Yoshitaka; Shimizu, Atsushi

    2016-06-01

    We have developed the Multiple Field of view Multiple Scattering Polarization Lidar (MFMSPL) system for the study of optically thick low-level clouds. It has 8 telescopes; 4 telescopes for parallel channels and another 4 for perpendicular channels. The MFMSPL is the first lidar system that can measure depolarization ratio for optically thick clouds where multiple scattering is dominant. Field of view of each channel was 10mrad and was mounted with different angles ranging from 0 mrad (vertical) to 30mrad. And footprint size from the total FOV was achieved to be close to that of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar at the altitude of 1km in order to reproduce similar degree of multiple scattering effects as observed from space. The MFMSPL has started observations since June 2014 and has been continuously operated at National Institute for Environmental Studies (NIES) in Tsukuba, Japan. Observations proved expected performance such that measured depolarization ratio was comparable to the one observed by CALIPSO lidar.

  6. Measurement of the Loss and Depolarization Probability of UCN on Beryllium and Diamond Like Carbon Films

    PubMed Central

    Brys, Tomas; Daum, Manfred; Fierlinger, Peter; Geltenbort, Peter; Gupta, Mukul; Henneck, Reinhold; Heule, Stefan; Kirch, Klaus; Lasakov, Mikhail; Mammei, Russel; Makela, Mark; Pichlmaier, Axel; Serebrov, Anatoli; Straumann, Ulrich; Vogelaar, Robert B.; Wermelinger, Cedric; Young, Albert

    2005-01-01

    Currently several institutes worldwide are working on the development of a new generation of ultracold neutron (UCN) sources. In parallel with source development, new materials for guiding and storage of UCN are developed. Currently the best results have been achieved using 58Ni, Be, solid O2 and low temperature Fomblin oil (LTF). All of these materials have their shortcomings like cost, toxicity or difficulty of use. A novel very promising material is diamond like carbon (DLC). Several techniques exist to coat surfaces, and industrial applications (e.g., for extremely hard surfaces) are already wide spread. Preliminary investigations using neutron reflectometry at PSI and Los Alamos yielded a critical velocity for DLC of about 7 m/s thus comparable to Beryllium. A low upper limit of depolarization probability for stored polarized UCN has been measured at the PF2 facility of the Institut Laue-Langevin (ILL) by North Carolina State University (NCSU), Los Alamos National Laboratory (LANL), and Petersburg Nuclear Physics Institute (PNPI), thus making it also a good material for storage and guidance of polarized UCN. Still missing is the loss probability per bounce. We will be able to extract this number and a more stringent value for the depolarization from our experiment thus proving the suitability of DLC as a wall material for a wide range of UCN applications. PMID:27308136

  7. Concept Design of a Multiwavelength Aerosol Lidar System With Mitigated Diattenuation Effects and Depolarization-Measurement Capability

    NASA Astrophysics Data System (ADS)

    Comerón, Adolfo; Sicard, Michaël; Vidal, Eric; Barragán, Rubén; Muñoz, Constantino; Rodríguez, Alejandro; Tiana-Alsina, Jordi; Rocadenbosch, Francesc; García-Vizcaíno, David

    2016-06-01

    It is known that the retrieval of aerosol extinction and backscatter coefficients from lidar data acquired through so-called total-power channels - intended to measure the backscattered power irrespective of the polarization - can be adversely affected by varying depolarization effects produced by the aerosol under measurement. This effect can be particularly noticeable in advanced multiwavelength systems, where different wavelengths are separated using a system of dichroic beam splitters, because in general the reflection and transmission coefficients of the beam splitters will be different for fields with polarization parallel or perpendicular to the incidence plane. Here we propose a setup for multiwavelength aerosol lidars alleviating diattenuation effects due to changing depolarization conditions while allowing measure linear depolarization.

  8. Measurement of the Linear Depolarization Ratio of Aged Dust at Three Wavelengths (355, 532 and 1064 nm) Simultaneously over Barbados

    NASA Astrophysics Data System (ADS)

    Haarig, Moritz; Althausen, Dietrich; Ansmann, Albert; Klepel, André; Baars, Holger; Engelmann, Ronny; Groß, Silke; Freudenthaler, Volker

    2016-06-01

    A ground-based polarization Raman lidar is presented, that is able to measure the depolarization ratio at three wavelengths (355, 532 and 1064 nm) simultaneously. This new feature is implemented for the first time in a Raman lidar. It provides a full dataset of 3 backscatter coefficients, two extinction coefficients and 3 depolarization ratios (3+2+3 lidar system). To ensure the data quality, it has been compared to the well characterized two-wavelength polarization lidar POLIS. Measurements of long-range transported dust have been performed in the framework of the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the Caribbean.

  9. FLUORESCENCE DEPOLARIZATION STUDIES OF RED CELL MEMBRANE FLUIDITY. THE EFFECT OF EXPOSURE TO 1.0-GHZ MICROWAVE RADIATION

    EPA Science Inventory

    The internal viscosity of human red blood cell membranes was investigated during exposure to continuous wave 1.0-GHz microwave radiation using fluorescence measurements of a lipid seeking molecular probe, diphenylhexatriene. Samples were exposed in a Crowford cell arranged so tha...

  10. Passive fluorescence measurements during SIFLEX

    NASA Astrophysics Data System (ADS)

    Moya, I.; Ounis, A.; Louis, J.; Evain, S.; Ducruet, J.-M.

    The goal of the participation of the LURE team to the SIFLEX campaign was %to provide clear evidence of quantitative absolute measurements of natural fluorescence andfluorescence flux evaluation by passive methods in the Fraunhofer lines. More specifically, to quantify the fluorescence flux in A and B absorption bands of atmospheric oxygen. The measurements have been focus on: Testing specific passive fluorescence instrumentation recently developed at LURE for assessing the sun induced fluorescence radiance from vegetation. Investigating diurnal and seasonal change of fluorescence and its behaviour with respect to plant condition, pigment content, global radiation amount and its correlation against accumulated biomass during growing period, Cross-correlate the fluorescence signal with hyperspectral reflectance and thermal IR radiance. A special attention has been paid to diurnal cycle and seasonal variations. Comparing fluorescence fluxes with CO2 fluxes measured by the already existing gas exchange equipment of the site. Instrumentation PMFD (Passive Multiwavelength Fluorescence Detector) was the main instrument used to asses fluorescence fluxes. The instrument was based on the Fraunhofer line principle, applied in the atmospheric oxygen A and B bands (760nm and 687nm, respectively). The output parameters were two stationary fluorescence flux at 687nm and 760nm and the NDVI (NDVI = (R760-R687) / (R760+R687)) index. Two additional channels of the instrument are devoted to measure reflectance variations at 531nm and 570 nm in order to calculate the PRI (PRI = (R531-R570) / (R531+R570)) index. This instrument was installed on the main tower, 10 m above the crown of the trees and maintained in the same viewing direction during the campaign (towards the north direction). The zenith angle was set to about 50-65 degrees. The footprint of the instrument contained the crowns of several trees. BD was a second passive detector operating solely in the atmospheric oxygen A

  11. Order and dynamics in the lamellar L alpha and in the hexagonal HII phase. Dioleoylphosphatidylethanolamine studied with angle-resolved fluorescence depolarization.

    PubMed Central

    van Langen, H; Schrama, C A; van Ginkel, G; Ranke, G; Levine, Y K

    1989-01-01

    Fluorescence depolarization techniques are used to determine the molecular order and reorientational dynamics of the probe molecule TMA-DPH embedded in the lamellar L alpha and the hexagonal HII phases of lipid/water mixtures. The thermotropically induced L alpha----HII phase transition of the lipid DOPE is used to obtain macroscopically aligned samples in the hexagonal HII phase at 45 degrees C from samples prepared in the lamellar L alpha phase at 7 degrees C. The interpretation of angle-resolved fluorescence depolarization experiments on these phases, within the framework of the rotational diffusion model, yields the order parameters (P2) and (P4), and the diffusion constants for the reorientational motions. The reorientational motion rates of the TMA-DPH molecules in the hexagonal HII phase are comparable with those in the lamellar L alpha phase. Furthermore, the lateral diffusion of the probe molecule on the surface of the lipid/water cylinder in the hexagonal phase is found to be considerably slower than the reorientational motion. PMID:2720082

  12. Extracting the depolarization coefficient DNN from data measured with a full acceptance detector

    NASA Astrophysics Data System (ADS)

    Hauenstein, F.; Clement, H.; Dzhygadlo, R.; Eyrich, W.; Gillitzer, A.; Grzonka, D.; Jowzaee, S.; Ritman, J.; Roderburg, E.; Röder, M.; Wintz, P.

    2016-05-01

    The spin transfer from vertically polarized beam protons to Λ or Σ hyperons of the associated strangeness production p → p →pK+ Λ and p → p →pK0Σ+ is described with the depolarization coefficient DNN. As the polarization of the hyperons is determined by their weak decays, detectors, which have a large acceptance for the decay particles, are needed. In this paper a formula is derived, which describes the depolarization coefficient DNN by count rates of a 4π detector. It is shown that formulas, which are given in publications for detectors with restricted acceptance, are specific cases of this formula for a 4π detector.

  13. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  14. Lidar depolarization measurements of ice-precipitating liquid cloud layers during the 2012 Canadian Arctic ACE Validation Campaign

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Perro, C. W.; Nott, G. J.; Hopper, J.; Duck, T. J.; Sica, R. J.; Drummond, J. R.

    2012-12-01

    There is still great uncertainty in the relative abundance of liquid and solid particles in polar clouds, particularly in winter. Measurements of these quantities are important for the correct estimate of the local radiation budget. Depolarization measurements by the CANDAC Rayleigh-Mie-Raman Lidar (CRL) at Eureka, Nunavut, Canada (80°N, 86°W) are improving our understanding in this area. The 2012 Canadian Arctic ACE Validation Campaign provided an opportunity to run the CRL depolarization channel nearly continuously (both day and night) throughout the polar sunrise season, measuring cloud particle phase with 7.5 m resolution in altitude and 1-minute time resolution in the troposphere. More than 10 co-located instruments, and additional detection channels of the CRL itself, make for a data set which is well-supported for intercomparison analyses. The CRL is a versatile instrument with eight detection channels, capable of measuring 532 nm (visible) and 355 nm (ultraviolet) elastic and nitrogen Raman backscatter, aerosol extinction, water vapour mixing ratio, tropospheric temperature profiles, as well as particulate properties including density and colour ratio. The 532 nm depolarization channel measures the extent to which the polarization state of the lidar beam is changed by scattering interactions with cloud particles in the sky, providing the ability to discern between ice crystals and liquid water droplets in polar clouds. This paper will focus on such measurements of early springtime clouds over Eureka. A nearly-continuous time series of depolarization was collected from late February through early April 2012 and provides a detailed case study of several distinct cloud features. Particular attention is paid to thin ice clouds of several varieties (both precipitating and non-precipitating, as well as some possible examples of mixed-phase clouds) and to ice-precipitating liquid cloud layers, examined in the context of local meteorological measurements. The

  15. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements.

    PubMed

    Amsler, Peter; Stetzer, Olaf; Schnaiter, Martin; Hesse, Evelyn; Benz, Stefan; Moehler, Ottmar; Lohmann, Ulrike

    2009-10-20

    We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements. PMID:19844319

  16. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.

    PubMed

    Cho, Hyoun-Myoung; Yang, Ping; Kattawar, George W; Nasiri, Shaima L; Hu, Yongxiang; Minnis, Patrick; Trepte, Charles; Winker, David

    2008-03-17

    This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (gamma') and layer-averaged depolarization ratio (delta) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low gamma' values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO delta-gamma' relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30 degrees -60 degrees and 60 degrees -90 degrees in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the delta-gamma' relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in

  17. Efficient Chlorophyll Fluorescence Measurements of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with many crops, chlorophyll fluorescence emission is a promising tool for measuring responses of sugarcane (Saccharum spp.) to biotic and abiotic stresses. Chlorophyll fluorescence can be easily measured using portable fluorometers. However, several factors should be considered in order to op...

  18. Depolarized FRET (depolFRET) on the cell surface: FRET control by photoselection.

    PubMed

    Bene, László; Gogolák, Péter; Ungvári, Tamás; Bagdány, Miklós; Nagy, István; Damjanovich, László

    2016-02-01

    Sensitivity of FRET in hetero- and homo-FRET systems on the photoselected orientation distribution of donors has been proven by using polarized and depolarized light for excitation. FRET as well as donor and acceptor anisotropies have been simultaneously measured in a dual emission-polarization scheme realized in a conventional flow cytometer by using single laser excitation and applying fluorophore-conjugated mAbs against the MHCI and MHCII cell surface receptors. Depolarization of the originally polarized light have been achieved by using crystal depolarizers based on Cornu's principle, a quarter-wave plate for circular polarization, and a parallel beam splitter acting as a diagonal-polarizer for dual-polarization excitation. Simultaneous analysis of intensity-based FRET efficiency and acceptor depolarization equivocally report that depolarization of light may increase FRET in an amount depending on the acceptor-to-donor concentration ratio. Acceptor depolarization turned to be more sensitive to FRET than donor hyper-polarization and even than intensity-based FRET efficiency. It can be used as a sensitive tool for monitoring changes in the dynamics of the donor-acceptor pairs. The basic observations of FRET enhancement and increased acceptor depolarization obtained for hetero-FRET are paralleled by analog observations of homo-FRET enhancements under depolarized excitation. In terms of the orientation factor for FRET, the FRET enhancements on depolarization in the condition of the macroscopically isotropic orientation distributions such as those of the cell surface bound fluorophores report on the presence of local orientation mismatches of the donor and acceptor preventing the optimal FRET in the polarized case, which may be eliminated by the excitation depolarization. A theory of fluorescence anisotropy for depolarized excitation is also presented. PMID:26657258

  19. Mesosphere light scattering depolarization during the Perseids activity epoch by wide-angle polarization camera measurements

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Maslov, Igor A.

    2014-03-01

    The paper describes the study of scattered radiation field in the mesosphere basing on wide-angle polarization camera (WAPC) measurements of the twilight sky background and single scattering separation procedure. Mid-August observations in 2012 and 2013 show the decrease of single scattering polarization value probably related with Perseids meteor dust moderation in the upper mesosphere. Effect correlates with activity of tiny fraction of Perseids shower. Polarization and temperature analysis allows estimating the altitude of dust layer and character polarization of dust scattering.

  20. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  1. Fluorescence lifetime measurements in heterogeneous scattering medium

    NASA Astrophysics Data System (ADS)

    Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke

    2016-07-01

    Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.

  2. Depolarization of cell membrane is associated with an increase in ciliary beat frequency (CBF).

    PubMed

    Mao, H; Wong, L B

    1995-10-24

    We hypothesize that activation of muscarinic cholinergic receptors depolarizes the cell membrane of the mammalian ciliated cells which in turn causes an increase of CBF. To test this hypothesis, a di-8-ANEPPS fluorescence photon counting and nonstationary heterodyne laser light scattering system was developed to measure cell membrane potential (psi) and CBF in cultured ovine tracheal ciliated cells simultaneously. Carbachol dose dependently depolarized the cell membrane with a corresponding stimulation of CBF. The carbachol induced depolarization of cell membrane and increases of CBF were inhibited by prior application of either atropine or verapamil or amiloride. These novel data suggest that depolarization of the cell membrane and the corresponding stimulation of CBF caused by the activation of muscarinic receptors of the mammalian ciliated cells are dependent on the influx of either extracellular Ca2+ or Na+. PMID:7488025

  3. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  4. Fluorescence anisotropy measurements under shock compression

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Bassett, Will; Banishev, Alexandr; Dlott, Dana

    2015-06-01

    Fluorescence anisotropy measurements, where the parallel and perpendicular polarized emissions from probe molecules are acquired simultaneously, provide direct measurement of molecular rotational dynamics. In our experiments, the fluorescence from rhodamine 6G dye in various materials under GPa shocks produced by laser-driven flyer plates is collected, separated into two orthogonally-polarized beams using a Wollaston prism and detected with a streak camera. In liquids, the molecular rotations result from rotational diffusion and in solids from shear flow. The rotation rates can be used to determine the viscosity of the shocked medium.

  5. Fundus depolarization imaging with GDx VCC scanning laser polarimeter and depolarization characteristics of normal eyes

    NASA Astrophysics Data System (ADS)

    Zhou, Qienyuan; Leder, Henry A.; Lo, Barrick P.; Reed, Geradus C.; Knighton, Robert W.; Cousins, Scott W.

    2009-02-01

    GDx VCC is a confocal scanning laser polarimeter (SLP) developed to assess the retinal nerve fiber layer (RNFL) of the eye based on measurement of the phase retardation in the backscattered light from the fundus. In addition to the phase retardation measurement, a depolarization measurement is readily available from the same image series. We hypothesize that the depolarized light in the GDx signal consists of backscattering from the retinal pigment epithelium (RPE) and the RPE-Bruch's membrane junction, and further, that subRPE deposits contribute to the depolarized backscattered light in proportion to their thickness. Therefore, a quantitative macular depolarization map will provide information about both spatial distribution and heterogeneity of the RPE structure and deposit thickness. Ultimately we predict that depolarization mapping will significantly increase the positive predictive power to identify early dry AMD eyes. In this paper, depolarization measurements in normal eyes and age related changes are reported. Data collection was performed at the Duke University Eye Center. A commercial GDx VCC system was modified with a central fixation target and, instead of depolarized light intensity images, normalized depolarization images were derived and saved in the database. Macular depolarization was observed to increase with age in normal eyes at a rate of 0.27%/yr.

  6. Measurement of fluorescent white effects and whiteness.

    PubMed

    Anders, G

    1975-01-01

    This report surveys the literature and describes various techniques of whiteness measurement and evaluation in current use. Measuring techniques are described for dealing separately with the effects obtained by bleaching, blueing and fluorescent whitening, and an example is given of the direct quantitative estimation of a fluorescent whitening agents (FWAs) on a substrate by measuring reflectance in the ultraviolet region. Another chapter deals with the colorimetric estimation of the whiteness and the shade of a fluorescent white using modern apparatus in conjunction with a programmable minicomputer. A new simple and universally applicab,e formula was worked out: W=D-Y+P-x+Q-y+C which has been successfully used in routine tests and which for the first time gives different weight to whiteness values corresponding to all shade preferences existing in theory. Each user can match the formula to his own preference by appropriate adjustment of the D, P, Q andC values. Y,x and y are the customary colorimetric values as standardized by the CIE (Commission Internationale de l'Eclairage). It was also found that with another formula the shades of fluorescent whitening effects (green to red tints) may be defined in a simple way. PMID:1064551

  7. Plant stress detection by remote measurement of fluorescence

    USGS Publications Warehouse

    McFarlane, J. C.; Watson, Robert D.; Theisen, Arnold F.; Jackson, R. D.; Ehrler, W. L.; Pinter, P. J., Jr.; Idso, S. B.; Reginato, R. J.

    1980-01-01

    Chlorophyll fluorescence of mature lemon trees was measured with a Fraunhofer line discriminator (FLD). An increase in fluorescence was correlated with plant water stress as measured by stomatal resistance and twig water potential.

  8. Laser-excited fluorescence for measuring atmospheric pollution

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1975-01-01

    System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.

  9. Measurement of Rydberg positronium fluorescence lifetimes

    NASA Astrophysics Data System (ADS)

    Deller, A.; Alonso, A. M.; Cooper, B. S.; Hogan, S. D.; Cassidy, D. B.

    2016-06-01

    We report measurements of the fluorescence lifetimes of positronium (Ps) atoms with principal quantum numbers n =10 -19 . Ps atoms in Rydberg-Stark states were produced via a two-color two-step 1 3S→2 3P→n 3S/n measured time-of-flight distributions were used to determine the mean lifetimes of the Rydberg levels, yielding values ranging from 3 μ s to 26 μ s . Our data are in accord with the expected radiative lifetimes of Rydberg-Stark states of Ps.

  10. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba.

    PubMed

    Sakai, Tetsu; Nagai, Tomohiro; Nakazato, Masahisa; Mano, Yuzo; Matsumura, Takatsugu

    2003-12-20

    The tropospheric particle extinction-to-backscatter ratio, the depolarization ratio, and the water-vapor mixing ratio were measured by use of a Raman lidar and a polarization lidar during the Asian dust seasons in 2001 and 2002 in Tsukuba, Japan. The apparent (not corrected for multiple-scattering effects) extinction-to-backscatter ratios (Sp) showed a dependence on the relative humidity with respect to ice (RHice) obtained from the lidar-derived water-vapor mixing ratio and radiosonde-derived temperature; they were mostly higher than 30 sr in dry air (RHice < 50%), whereas they were mostly lower than 30 sr in ice-supersaturated air (RHice > or = 100%), where the apparent extinction coefficients were larger than 0.036 km(-1). Both regions showed mean particle depolarization ratios of 20%-22%. Comparisons with theoretical calculations and the previous experiments suggest that the observed dependence of Sp on RHice is attributed to the difference in the predominant particles: nonspherical aerosols (mainly the Asian dust) in dry air and cloud particles in ice-supersaturated air. PMID:14717284

  11. Connection of Jones and Mueller Tensors in Second Harmonic Generation and Multi-Photon Fluorescence Measurements.

    PubMed

    Simpson, Garth J

    2016-04-01

    Despite the rapidly growing use of second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) microscopy, opportunities for relating polarization-dependent measurements back to local structure and molecular orientation are often confounded by losses in polarization purity. In this work, connections linking Mueller tensor and Jones tensor descriptions of polarization-dependent SHG and TPEF are shown to substantially simplify partially depolarized microscopy measurements. These connections were facilitated by the derivation of several new tensor identity relations, based on generalization of established transformations of matrices and vectors. Methods are described for integrating local-frame symmetry and azimuthal rotation angle for simplifying the Mueller tensor. Through simple expressions bridging the Mueller and Jones formalisms, mathematical models for partial depolarization can greatly simplify interpretation of SHG and TPEF measurements to reconstruct the more general Mueller tensors using the much more concise Jones descriptions for the purely polarized components. Integrating the Mueller architecture allows polarization-dependent SHG and TPEF measurements to be connected back to a relatively small set of free parameters related to local structure and orientation. PMID:26918624

  12. Shape-induced Gravitational Sorting of Saharan Dust During Transatlantic Voyage: Evidence from CALIOP Lidar Depolarization Measurements

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; Kostinski, Alexander B.; Varnai, Tamas

    2013-01-01

    Motivated by the physical picture of shape-dependent air resistance and, consequently, shape-induced differential sedimentation of dust particles, we searched for and found evidence of dust particle asphericity affecting the evolution and distribution of dust-scattered light depolarization ratio (delta). Specifically, we examined a large data set of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of Saharan dust from June to August 2007. Observing along a typical transatlantic dust track, we find that (1) median delta is uniformly distributed between 2 and 5?km altitudes as the elevated dust leaves the west coast of Africa, thereby indicating uniformly random mixing of particle shapes with height; (2) vertical homogeneity of median delta breaks down during the westward transport: between 2 and 5?km delta increases with altitude and this increase becomes more pronounced with westward progress; (3) delta tends to increase at higher altitude (greater than 4?km) and decrease at lower altitude (less than 4?km) during the westward transport. All these features are captured qualitatively by a minimal model (two shapes only), suggesting that shape-induced differential settling and consequent sorting indeed contribute significantly to the observed temporal evolution and vertical stratification of dust properties. By implicating particle shape as a likely cause of gravitational sorting, these results will affect the estimates of radiative transfer through Saharan dust layers.

  13. Integrating fluorescence and interactance measurements to improve apple maturity assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence and interactance are promising techniques for measuring fruit quality and condition. Our previous research showed that a hyperspectral imaging technique integrating fluorescence and reflectance could improve predictions of selected quality parameters compared to single sensing technique...

  14. Comparison of Sum Absolute QRST Integral, and Temporal Variability in Depolarization and Repolarization, Measured by Dynamic Vectorcardiography Approach, in Healthy Men and Women

    PubMed Central

    Tereshchenko, Larisa G.

    2013-01-01

    Background Recently we showed the predictive value of sum absolute QRST integral (SAI QRST) and repolarization lability for risk stratification of sudden cardiac death (SCD) in heart failure patients. The goal of this study was to compare SAI QRST and metrics of depolarization and repolarization variability in healthy men and women. Methods Orthogonal ECGs were recorded at rest for 10 minutes in 160 healthy men and women (mean age 39.6±14.6, 80 men). Mean spatial TT′ angle, and normalized variances of T loop area, of spatial T vector amplitude, of QT interval and Tpeak-Tend area were measured for assessment of repolarization lability. Normalized variances of spatial QRS vector and QRS loop area characterized variability of depolarization. In addition, variability indices (VI) were calculated to adjust for normalized heart rate variance. SAI QRST was measured as the averaged arithmetic sum of areas under the QRST curve. Results Men were characterized by shorter QTc (430.3±21.7 vs. 444.7±22.2 ms; P<0.0001) and larger SAI QRST (282.1±66.7 vs.204.9±58.5 mV*ms; P<0.0001). Repolarization lability negatively correlated with spatial T vector amplitude. Adjusted by normalized heart rate variance, QT variability index was significantly higher in women than in men (−1.54±0.38 vs. −1.70±0.33; P = 0.017). However, in multivariate logistic regression after adjustment for body surface area, QTc, and spatial T vector amplitude, healthy men had 1.5–3 fold higher probability of having larger repolarization lability, as compared to healthy women (T vector amplitude variability index odds ratio 3.88(95%CI 1.4–11.1; P = 0.012). Conclusions Healthy men more likely than women have larger repolarization lability. PMID:23451181

  15. An optical microsensor to measure fluorescent light intensity in biofilms.

    PubMed

    Beyenal, Haluk; Yakymyshyn, Chris; Hyungnak, Jeon; Davis, Catherine C; Lewandowski, Zbigniew

    2004-09-01

    We have developed an optical microsensor to quantify fluorescent light intensity distribution in biofilms. The optical system consisted of a beam splitter, light couplers, filters and a spectrophotometer able to accept the fiberoptic cable to measure fluorescent light intensity. The emitted light, fluorescence from the biofilm, was collected at the tip of the optical microsensor and was transferred to a spectrophotometer via a fiberoptic cable. The total fluorescent light intensity was evaluated from the emission spectrum by numerical integration. The newly developed fiberoptic microsensor was tested using a Staphylococcus aureus strain producing yellow fluorescent protein (YFP) grown as biofilm. We used a 405-nm violet laser diode for excitation, and measured the emission intensity between 480 nm and 540 nm. The optical microsensor that quantifies fluorescent light intensity is a promising tool in biofilm research which often requires detection and quantification of fluorescent light intensity distribution generated by various fluorescent proteins. PMID:15279941

  16. Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement

    PubMed Central

    Desai, Arpan S.; Chauhan, Veeren M.; Johnston, Angus P. R.; Esler, Tim; Aylott, Jonathan W.

    2013-01-01

    Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore, nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer) and a pH-insensitive reference fluorophore (internal standard) immobilized in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesized using standard laboratory equipment and are detectable by non-invasive widely accessible imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular, special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: (1) synthesis and characterization of polyacrylamide and silica based nanosensors, (2) nanosensor calibration and (3) performing measurements using fluorescence microscopy. PMID:24474936

  17. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, John C.; Jett, James H.

    1986-01-01

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle.

  18. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1984-01-06

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser which excites a different stained component of the same biological particle.

  19. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1986-03-04

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle. 8 figs.

  20. Dissolved-oxygen quenching of in-situ fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Chudyk, Wayne; Tonaszuck, David; Pohlig, Kenneth

    1993-04-01

    In-situ fluorescence measurements of aromatic organic ground water contaminants do not always agree with gas chromatographic methods. Dissolved oxygen quenching of fluorescence may be an interferant in field measurements. Two standard fluorescent aromatics, quinine sulfate and naphthalene, were evaluated in this study. Over the range of dissolved oxygen concentrations expected to be encountered in the field, no effects of oxygen quenching on fluorescence of these compounds was observed. Quenching of quinine sulfate fluorescence by sodium chloride was observed using this system. Sodium chloride quenching was shown to follow the Stern-Volmer relation.

  1. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  2. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  3. Suitability of fluorescence measurements to quantify sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Carpenter, Claire M

    2013-06-01

    Fluorescence activity has been used to identify Desulfovibrio and has been termed the 'desulfoviridin test'. This fluorescence is attributed to the prosthetic group of bisulfite reductase, a key enzyme in dissimilatory sulfate reduction. We have pursued the use of fluorescence measurements to quantify sulfate-reducing bacteria. Cells of D. desulfuricans and D. gigas were treated with NaOH and produced two fluorescence spectra: one with maximum fluorescence with an excitation at 395 nm and an emission at 605 nm and another with an excitation at 320 nm and emission at 360 nm. Using the fluorescence with excitation at 395 nm and emission at 605 nm, we explored a series of parameters to measure Desulfovibrio in pure cultures and environmental samples. Fluorescence measurements are reliable provided the cells are treated with 1.75 N NaOH and the chromophore released from the cells is not exposed to strong light intensity, and is not exposed to temperatures greater than 20 °C, and measurements are done within a few minutes of extraction. Bleaching of fluorescence was attributed to metal ions in solution which was not observed until metal concentrations reached 1.5mM. We propose that D. desulfuricans is appropriate as the reference organism for measurement of sulfate-reducing bacteria by fluorescence and by using fluorescence intensity, 10(5) cells/ml can be readily detected in environmental samples. PMID:23566827

  4. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.

    PubMed

    George Abraham, Bobin; Sarkisyan, Karen S; Mishin, Alexander S; Santala, Ville; Tkachenko, Nikolai V; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  5. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    PubMed Central

    van der Tol, C; Berry, J A; Campbell, P K E; Rascher, U

    2014-01-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions. Key Points Light saturation of photosynthesis determines quenching of leaf fluorescence We incorporated steady state leaf fluorescence in a photosynthesis model PMID:27398266

  6. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, E.; van Zyl, P. G.; Müller, D.; Balis, D.; Komppula, M.

    2015-12-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol proper ties, i.e. effective radius and single scattering, albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban/industrial aerosols, while these values were 92 ± 10 sr; 3.2 ± 1.3 %; 2.0 ± 0.4 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed biomass burning and desert dust aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for

  7. Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Giannakaki, Elina; van Zyl, Pieter G.; Müller, Detlef; Balis, Dimitris; Komppula, Mika

    2016-07-01

    Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type are available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single-scattering albedo, were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr, 41 ± 13 sr, 0.9 ± 0.4 % and 2.3 ± 0.5, respectively, for urban/industrial aerosols, while these values were 92 ± 10 sr, 75 ± 14 sr, 3.2 ± 1.3 % and 1.7 ± 0.3, respectively, for biomass burning aerosol layers. Biomass burning particles are larger and slightly less absorbing compared to urban/industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03, 0.17 ± 0.04 and 0.13 ± 0.03 µm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single-scattering albedo at 532 nm was 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532

  8. Photon-counting technique for rapid fluorescence-decay measurement.

    PubMed

    Pack, S D; Renfro, M W; King, G B; Laurendeau, N M

    1998-08-01

    We report on a novel laser-induced fluorescence triple-integration method (LIFTIME) that is capable of making rapid, continuous fluorescence lifetime measurements by a unique photon-counting technique. The LIFTIME has been convolved with picosecond time-resolved laser-induced fluorescence, which employs a high-repetition-rate mode-locked laser, permitting the eventual monitoring of instantaneous species concentrations in turbulent flames. We verify the technique by application of the LIFTIME to two known fluorescence media, diphenyloxazole (PPO) and quinine sulfate monohydrate (QSM). PPO has a fluorescence lifetime of 1.28 ns, whereas QSM has a fluorescence lifetime that can be varied from 1.0 to 3.0 ns. From these liquid samples we demonstrate that fluorescence lifetime can currently be monitored at a sampling rate of up to 500 Hz with less than 10% uncertainty (1 sigma) . PMID:18087478

  9. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    SciTech Connect

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  10. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  11. Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K+ current.

    PubMed

    Zhu, W H; Conforti, L; Czyzyk-Krzeska, M F; Millhorn, D E

    1996-08-01

    The effects of hypoxia on K+ current (IK), resting membrane potential, and cytosolic free Ca2+ in rat pheochromocytoma (PC-12) cells were studied. Whole cell voltage- and current-clamp experiments were performed to measure IK and membrane potential, respectively. Cytosolic free Ca2+ level was measured using the Ca(2+)-sensitive fluorescent dye fura 2. Depolarizing voltage steps to +50 mV from a holding potential of -90 mV elicited a slowly inactivating, tetraethylammonium chloride-sensitive, and Ca(2+)-insensitive IK that was reversibly inhibited by reduced O2 tension. Graded reduction in PO2 (from 150 to 0 mmHg) induced a graded inhibition of O2-sensitive IK [IK(O2)] up to 46% at 0 mmHg. Moreover, hypoxia induced a 19-mV membrane depolarization and a twofold increase in cytosolic free Ca2+. In Ca(2+)-free condition, inhibition of IK(O2) induced an 8-mV depolarization, suggesting that inhibition of IK(O2) was responsible for initiating depolarization. The effect of reduced PO2 on the current-voltage relationship showed a reduction of outward current and a 14-mV shift in the reversal potential comparable with the amount of depolarization measured in current clamp experiments. Neither Ca(2+)-activated IK nor inwardly rectifying IK are responsible for the hypoxia-induced depolarization. In conclusion, PC-12 cells express an IK(O2), inhibition of which leads to membrane depolarization and increased intracellular Ca2+, making the PC-12 clonal cell line a useful model for studying the molecular and biophysical mechanisms that mediate O2 chemosensitivity. PMID:8770007

  12. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    PubMed

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-01

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease. PMID:26397162

  13. Measuring initiator caspase activation by bimolecular fluorescence complementation.

    PubMed

    Parsons, Melissa J; Bouchier-Hayes, Lisa

    2015-01-01

    Initiator caspases, including caspase-2, -8, and -9, are activated by the proximity-driven dimerization that occurs after their recruitment to activation platforms. Here we describe the use of caspase bimolecular fluorescence complementation (caspase BiFC) to measure this induced proximity. BiFC assays rely on the use of a split fluorescent protein to identify protein-protein interactions in cells. When fused to interacting proteins, the fragments of the split fluorescent protein (which do not fluoresce on their own) can associate and fluoresce. In this protocol, we use the fluorescent protein Venus, a brighter and more photostable variant of yellow fluorescent protein (YFP), to detect the induced proximity of caspase-2. Plasmids encoding two fusion products (caspase-2 fused to either the amino- or carboxy-terminal halves of Venus) are transfected into cells. The cells are then treated with an activating (death) stimulus. The induced proximity (and subsequent activation) of caspase-2 in the cells is visualized as Venus fluorescence. The proportion of Venus-positive cells at a single time point can be determined using fluorescence microscopy. Alternatively, the increase in fluorescence intensity over time can be evaluated by time-lapse confocal microscopy. The caspase BiFC strategy described here should also work for other initiator caspases, such as caspase-8 or -9, as long as the correct controls are used. PMID:25561623

  14. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  15. Measurement of Fluorescence Spectra from Ambient Aerosol Particles Using Laser-induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Nakamura, T.; Moteki, N.; Takegawa, N.

    2011-12-01

    To obtain the information of composition of organic aerosol particles in atmosphere, we developed an instrument using laser-induced fluorescence (LIF) technique. To measure the fluorescence from a particle, we employed two lasers. Scattering light signal derived from a single particle upon crossing the 635nm-CW laser triggers the 266nm-pulsed laser to excite the particle. Fluorescence from the particle in the wavelength range 300-600nm is spectrally dispersed by a grating spectrometer and then detected by a 32-Ch photo-multiplier tube(PMT). The aerosol stream is surrounded by a coaxial sheath air flow and delivered to the optical chamber at atmospheric pressure. Using PSL particles with known sizes, we made a calibration curve to estimate particle size from scattering light intensity. With the current setup of the instrument we are able to detect both scattering and fluorescence from particles whose diameters are larger than 0.5um. Our system was able to differentiate particles composed of mono-aromatic species (e.g. Tryptophan) from those of Riboflavin, by their different fluorescence wavelengths. Also, measurements of fluorescence spectra of ambient particles were demonstrated in our campus in Yokosuka city, facing Tokyo bay in Japan. We obtained several types of florescence spectra in the 8 hours. Classification of the measured fluorescence spectra will be discussed in the presentation.

  16. Double-excitation fluorescence spectral imaging: eliminating tissue auto-fluorescence from in vivo PPIX measurements

    NASA Astrophysics Data System (ADS)

    Torosean, Sason; Flynn, Brendan; Samkoe, Kimberley S.; Davis, Scott C.; Gunn, Jason; Axelsson, Johan; Pogue, Brian W.

    2012-02-01

    An ultrasound coupled handheld-probe-based optical fluorescence molecular tomography (FMT) system has been in development for the purpose of quantifying the production of Protoporphyrin IX (PPIX) in aminolevulinic acid treated (ALA), Basal Cell Carcinoma (BCC) in vivo. The design couples fiber-based spectral sampling of PPIX fluorescence emission with a high frequency ultrasound imaging system, allowing regionally localized fluorescence intensities to be quantified [1]. The optical data are obtained by sequential excitation of the tissue with a 633nm laser, at four source locations and five parallel detections at each of the five interspersed detection locations. This method of acquisition permits fluorescence detection for both superficial and deep locations in ultrasound field. The optical boundary data, tissue layers segmented from ultrasound image and diffusion theory are used to estimate the fluorescence in tissue layers. To improve the recovery of the fluorescence signal of PPIX, eliminating tissue autofluorescence is of great importance. Here the approach was to utilize measurements which straddled the steep Qband excitation peak of PPIX, via the integration of an additional laser source, exciting at 637 nm; a wavelength with a 2 fold lower PPIX excitation value than 633nm.The auto-fluorescence spectrum acquired from the 637 nm laser is then used to spectrally decouple the fluorescence data and produce an accurate fluorescence emission signal, because the two wavelengths have very similar auto-fluorescence but substantially different PPIX excitation levels. The accuracy of this method, using a single source detector pair setup, is verified through animal tumor model experiments, and the result is compared to different methods of fluorescence signal recovery.

  17. System and method for measuring fluorescence of a sample

    DOEpatents

    Riot, Vincent J

    2015-03-24

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.

  18. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Tol, C.; Berry, J. A.; Campbell, P. K. E.; Rascher, U.

    2014-12-01

    We have extended a conventional photosynthesis model to simulate field and laboratory measurements of chlorophyll fluorescence at the leaf scale. The fluorescence paramaterization is based on a close nonlinear relationship between the relative light saturation of photosynthesis and nonradiative energy dissipation in plants of different species. This relationship diverged only among examined data sets under stressed (strongly light saturated) conditions, possibly caused by differences in xanthophyll pigment concentrations. The relationship was quantified after analyzing data sets of pulse amplitude modulated measurements of chlorophyll fluorescence and gas exchange of leaves of different species exposed to different levels of light, CO2, temperature, nitrogen fertilization treatments, and drought. We used this relationship in a photosynthesis model. The coupled model enabled us to quantify the relationships between steady state chlorophyll fluorescence yield, electron transport rate, and photosynthesis in leaves under different environmental conditions.

  19. Fluorescence cross section measurements of biological agent simulants

    SciTech Connect

    Stephens, J.R.

    1996-11-01

    Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

  20. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  1. Fluorescence lifetime as a new parameter in analytical cytology measurements

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.

    1996-05-01

    A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.

  2. Measurement of Sun Induced Chlorophyll Fluorescence Using Hyperspectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Irteza, S. M.; Nichol, J. E.

    2016-06-01

    Solar Induced Chlorophyll Fluorescence (SIF), can be used as an indicator of stress in vegetation. Several scientific approaches have been made and there is considerable evidence that steady state Chlorophyll fluorescence is an accurate indicator of plant stress hence a reliable tool to monitor vegetation health status. Retrieval of Chlorophyll fluorescence provides an insight into photochemical and carbon sequestration processes within vegetation. Detection of Chlorophyll fluorescence has been well understood in the laboratory and field measurement. Fluorescence retrieval methods were applied in and around the atmospheric absorption bands 02B (Red wavelength) approximately 690 nm and 02A (Far red wavelengths) 740 nm. Hyperion satellite images were acquired for the years 2012 to 2015 in different seasons. Atmospheric corrections were applied using the 6S Model. The Fraunhofer Line Discrimanator (FLD) method was applied for retrieval of SIF from the Hyperion images by measuring the signal around the absorption bands in both vegetated and non vegetated land cover types. Absorption values were extracted in all the selected bands and the fluorescence signal was detected. The relationships between NDVI and Fluorescence derived from the satellite images are investigated to understand vegetation response within the absorption bands.

  3. Measuring and Sorting Cell Populations Expressing Isospectral Fluorescent Proteins with Different Fluorescence Lifetimes

    PubMed Central

    Naivar, Mark; Houston, Jessica P.; Brent, Roger

    2014-01-01

    Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation. PMID:25302964

  4. Protein rotational motion in solution measured by polarized fluorescence depletion.

    PubMed Central

    Yoshida, T M; Barisas, B G

    1986-01-01

    A microscope-based system is described for directly measuring protein rotational motion in viscous environments such as cell membranes by polarized fluorescence depletion (PFD). Proteins labeled with fluorophores having a high quantum yield for triplet formation, such as eosin isothiocyanate (EITC), are examined anaerobically in a fluorescence microscope. An acousto-optic modulator generates a several-microsecond pulse of linearly polarized light which produces an orientationally-asymmetric depletion of ground state fluorescence in the sample. When the sample is then probed with light polarized parallel to the excitation pulse, fluorescence recovers over 0-1,000 microseconds as the sum of two exponentials. One exponential corresponds to triplet decay and the other to the rotational relaxation. An exciting pulse perpendicular to the probe beam is then applied. Fluorescence recovery following this pulse is the difference of the same two exponentials. Equations for fluorescence recovery kinetics to be expected in various experimentally significant cases are derived. Least-squares analysis using these equations then permits the triplet lifetime and rotational correlation time to be determined directly from PFD data. Instrumentation for PFD measurements is discussed that permits photobleaching recovery measurements of lateral diffusion coefficients using the same microscope system. With this apparatus, both rotational and translational diffusion coefficients (Dr, Dt) were measured for EITC-labeled bovine serum albumin in glycerol solutions. Values obtained for Dr and Dt are discussed in light of both the PFD models and the experimental system. PMID:3730506

  5. Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Li, Weiqi; Zhang, Chuanwei; Jiang, Hao; Chen, Xiuguo; Liu, Shiyuan

    2016-05-01

    Noticeable depolarization effects are observed in the measurement of the air using an in-house developed dual rotating-compensator Mueller matrix ellipsometer. We demonstrate that these depolarization effects are essentially artifacts and mainly induced when the compensator with wavelength-dependent optical properties is integrated with the finite bandwidth detector. We define a general formula to represent the actual Mueller matrix of the compensator by taking into account the depolarization artifacts. After incorporating this formula into the system model, a correction method is further proposed, and consequently, improved accuracy can be achieved in the Mueller matrix measurement.

  6. Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide.

    PubMed

    Katakam, Prasad V G; Dutta, Somhrita; Sure, Venkata N; Grovenburg, Samuel M; Gordon, Angellica O; Peterson, Nicholas R; Rutkai, Ibolya; Busija, David W

    2016-05-01

    The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7-10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries. PMID:26945078

  7. Inelastic spin depolarization spectroscopy in silicon

    NASA Astrophysics Data System (ADS)

    Li, Jing; Appelbaum, Ian

    2013-07-01

    In ballistic injection spin transport devices, a tunnel junction emitter bias voltage determines the energy at which spin-polarized hot electrons cross a Schottky barrier into the conduction band of a semiconductor collector. Fast energy relaxation via phonon emission restores equilibrium for subsequent transport at the band edge. Through an analysis incorporating voltage-dependent measurement of magnetocurrent polarization in silicon spin transport devices along with magnetic-tunnel- and spin-valve-transistor configurations, the contribution to total spin depolarization caused by this inelastic scattering in the presence of spin-orbit interaction is quantified. From the shape of this spectroscopy, it is found that all measured spin depolarization can be accounted for solely by considering spin relaxation during bulk transport in quasi-equilibrium near the conduction band edge; the relaxation of initial spin state is irrelevant to the spin-dependent device characteristics.

  8. Fluorescent-Antibody Measurement Of Cancer-Cell Urokinase

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1993-01-01

    Combination of laboratory techniques provides measurements of amounts of urokinase in and between normal and cancer cells. Includes use of fluorescent antibodies specific against different forms of urokinase-type plasminogen activator, (uPA), fluorescence microscopy, quantitative analysis of images of sections of tumor tissue, and flow cytometry of different uPA's and deoxyribonucleic acid (DNA) found in suspended-tumor-cell preparations. Measurements provide statistical method for indicating or predicting metastatic potentials of some invasive tumors. Assessments of metastatic potentials based on such measurements used in determining appropriate follow-up procedures after surgical removal of tumors.

  9. Breast cancer: in vitro measurements of native fluorescence

    NASA Astrophysics Data System (ADS)

    Lohmann, Wolfgang; Bohle, Rainer M.; Dreyer, Thomas; Haas, Sabine; Wallenfels, Heike; Schwemmle, Konrad; Schill, Wolf-Bernhard

    1996-12-01

    Unfixed, HE stained cryosections of breast tissue obtained from 67 patients during surgery were illuminated with 395 - 440 nm and their fluorescence response as well as the 2- dimensional fluorophore distribution were measured. The histological evaluation of the same cryosection, illuminated as usual with a transmitted light obtained from a halogen lamp, revealed 9 patients with healthy tissue, 11 with benign epithelial hyperplasia, 4 with ductal carcinoma in situ, 35 with invasive ductal carcinoma, 7 with invasive lobular carcinoma, and one with invasive tubular carcinoma. A comparison between the fluorescence and the HE images shows that both match very nicely and that the fluorescence images are also characteristic for the different pathological condition of the biopsy sample. Moreover, benign tumors e.g. fibroadenomas, exhibit a fluorescence response different from cancer and healthy tissue.

  10. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase. PMID:18855420

  11. Single-particle spectroscopic measurements of fluorescent graphene quantum dots.

    PubMed

    Xu, Qinfeng; Zhou, Qi; Hua, Zheng; Xue, Qi; Zhang, Chunfeng; Wang, Xiaoyong; Pan, Dengyu; Xiao, Min

    2013-12-23

    We have performed the first single-particle spectroscopic measurements on individual graphene quantum dots (GQDs) and revealed several intriguing fluorescent phenomena that are otherwise hidden in the optical studies of ensemble GQDs. First, despite noticeable differences in the size and the number of layers from particle to particle, all of the GQDs studied possess almost the same spectral lineshapes and peak positions. Second, GQDs with more layers are normally brighter emitters but are associated with shorter fluorescent lifetimes. Third, the fluorescent spectrum of GQDs was red-shifted upon being aged in air, possibly due to the water desorption effect. Finally, the missing emission of single photons and stable fluorescence without any intermittent behavior were observed from individual GQDs. PMID:24251867

  12. Marine fluorescence from high spectrally resolved satellite measurements

    NASA Astrophysics Data System (ADS)

    Wolanin, Aleksandra; Dinter, Tilman; Rozanov, Vladimir; Noël, Stefan; Vountas, Marco; Burrows, John P.; Bracher, Astrid

    2014-05-01

    When chlorophyll molecules absorb light, most of this energy is transformed into chemical energy in a process of photosynthesis. However, a fraction of the energy absorbed is reemitted as fluorescence. As a result of its relationship to photosynthetic e?ciency, information about chlorophyll fluorescence can be used to assess the physiological state of phytoplankton (Falkowski and Kolber,1995). In-situ measurements of chlorophyll fluorescence are widespread in physiological and ecophysiological studies. When retrieved from space, chlorophyll fluorescence can improve our knowledge of global biogeochemical cycles and phytoplankton productivity (Behrenfeld et al., 2009; Huot et al., 2013) by providing high coverage and periodicity. So far, the only satellite retrieval of sun-induced marine fluorescence, Fluorescence Line Height (FLH), was designed for MODIS (Abbott and Letelier, 1999), and later also applied to the similar sensor MERIS (Gower et al., 2004). However, it could so far not be evaluated on global scale. Here, we present a different approach to observe marine chlorophyll fluorescence, based on the Differential Optical Absorption Spectroscopy (DOAS) technique (Perner and Platt, 1979) applied to the hyperspectral data from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 (GOME-2). Since fluorescence, as a trans-spectral process, leads to the shift of the wavelength of the radiation, it can be observed in the filling-in of Fraunhofer lines. In our retrieval, we evaluate the filling-in of the Zeeman triplet Fraunhofer line FeI at 684.3 nm, which is located very close to the emission peak of marine fluorescence (~685 nm). In order to conduct the chlorophyll fluorescence retrieval with the DOAS method, we calculated the reference spectra for chlorophyll fluorescence, based on simulations performed with the coupled ocean-atmosphere radiative transfer model SCIATRAN (Rozanov et al., 2014

  13. Fluorescence lifetime measurements of boronate derivatives to determine glucose concentration

    SciTech Connect

    Gable, J H

    2000-06-01

    A novel investigation into the fluorescence lifetimes of molecules, both established and newly designed, was performed. These molecules are the basis of a continuous, minimally invasive, glucose sensor based on fluorescence lifetime measurements. This sensor, if coupled with an automated insulin delivery device, would effectively create an artificial pancreas allowing for the constant monitoring and control of glucose levels in a person with diabetes. The proposed sensor includes a fluorescent molecule that changes its' fluorescence properties upon binding selectively and reversibly to glucose. One possible sensor molecule is N-methyl-N-(9-methylene anthryl)-2-methylenephenylboronic acid (AB). The fluorescence intensity of AB was shown to change in response to changing glucose concentrations. (James, 1994) James proposed that when glucose binds to AB the fluorescence intensity increases due to an enhancement of the N{yields}B dative bond which prevents photoinduced electron transfer (PET). PET from the amine (N) to the fluorophore (anthracene) quenches the fluorescence. The dative bond between the boron and the amine can prevent PET by involving the lone pair of electrons on the amine in interactions with the boron rather than allowing them to be transferred to the fluorophore. Results of this research show the average fluorescence lifetime of AB also changes with glucose concentration. It is proposed that fluorescence is due to two components: (1) AB with an enhanced N{yields}B interaction, and no PET, and (2) AB with a weak N{yields}B interaction, resulting in fluorescence quenching by PET. Lifetime measurements of AB as a function of both the pH of the solvent and glucose concentration in the solution were made to characterize this two component system and investigate the nature of the N{yields}B bond. Measurements of molecules similar to AB were also performed in order to isolate behavior of specific AB constituents. These molecules are 9-(Methylaminomethyl

  14. Biochip Image Grid Normalization Absolute Signal Fluorescence Measurement Using

    Energy Science and Technology Software Center (ESTSC)

    2001-04-17

    This software was developed to measure absolute fluorescent intensities of gel pads on a microchip in units defined by a standard fluorescent slide. It can accomodate varying measurement conditions (e.g. exposure time, sensitivity of detector, resolution of detector, etc.) as well as fluorescent microscopes with non-uniform sensitivity across their field of view allowing the user to compare measurements done on different detectors with varying exposure times, sensitivities, and resolutions. The software is designed both tomore » operate Roper Scientific, Inc. cameras and to use image files produced by the program supplied with that equipment for its calculations. the intensity of the gel pad signal is computed so as to reduce background influence.« less

  15. Fluorescence molecular tomographic image reconstruction based on reduced measurement data

    NASA Astrophysics Data System (ADS)

    Zou, Wei; Wang, Jiajun; Feng, David Dagan; Fang, Erxi

    2015-07-01

    The analysis of fluorescence molecular tomography is important for medical diagnosis and treatment. Although the quality of reconstructed results can be improved with the increasing number of measurement data, the scale of the matrices involved in the reconstruction of fluorescence molecular tomography will also become larger, which may slow down the reconstruction process. A new method is proposed where measurement data are reduced according to the rows of the Jacobian matrix and the projection residual error. To further accelerate the reconstruction process, the global inverse problem is solved with level-by-level Schur complement decomposition. Simulation results demonstrate that the speed of the reconstruction process can be improved with the proposed algorithm.

  16. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  17. Ultracold neutron depolarization in magnetic bottles

    NASA Astrophysics Data System (ADS)

    Steyerl, A.; Kaufman, C.; Müller, G.; Malik, S. S.; Desai, A. M.

    2012-12-01

    We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those used in existing or proposed magnetogravitational storage experiments aiming at a precise measurement of the neutron lifetime. We use an extension of the semiclassical Majorana approach as well as an approximate quantum mechanical analysis, both pioneered by Walstrom [Nucl. Instrum. Methods Phys. Res. A10.1016/j.nima.2008.11.010 599, 82 (2009)]. In contrast with this previous work we do not restrict the analysis to purely vertical modes of neutron motion. The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap. The system studied also allowed us to estimate the depolarization loss suffered by ultracold neutrons totally reflected on a nonmagnetic mirror immersed in a magnetic field. This problem is of preeminent importance in polarized neutron decay studies such as the measurement of the asymmetry parameter A using ultracold neutrons, and it may limit the efficiency of ultracold neutron polarizers based on passage through a high magnetic field.

  18. Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres

    PubMed Central

    Du Le, Vinh Nguyen; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; Fang, Qiyin

    2014-01-01

    The fluorescence of Intralipid and polystyrene microspheres with sphere diameter of 1 µm at a representative lipid and microsphere concentration for simulation of mucosal tissue scattering has not been a subject of extensive experimental study. In order to elucidate the quantitative relationship between lipid and microsphere concentration and the respective fluorescent intensity, the extrinsic fluorescence spectra between 360 nm and 650 nm (step size of 5 nm) were measured at different lipid concentrations (from 0.25% to 5%) and different microsphere concentrations (0.00364, 0.0073, 0.0131 spheres per cubic micrometer) using laser excitation at 355 nm with pulse energy of 2.8 µJ. Current findings indicated that Intralipid has a broadband emission between 360 and 650 nm with a primary peak at 500 nm and a secondary peak at 450 nm while polystyrene microspheres have a single peak at 500 nm. In addition, for similar scattering properties the fluorescence of Intralipid solutions is approximately three-fold stronger than that of the microsphere solutions. Furthermore, Intralipid phantoms with lipid concentrations ~2% (simulating the bottom layer of mucosa) produce up to seven times stronger fluorescent emission than phantoms with lipid concentration ~0.25% (simulating the top layer of mucosa). The fluoresence decays of Intralipid and microsphere solutions were also recorded for estimation of fluorescence lifetime. PMID:25136497

  19. Fluorescence Rise Time Measurements for High Temperature Fluorescence-Based Thermometry

    SciTech Connect

    Allison, S.W.

    2005-03-24

    Certain ceramic-like phosphor materials exhibit bright fluorescence with a pronounced temperature dependence over a range which spans the cryogenic to 1700 C, depending on the specific phosphor. To measure temperature, a surface, for instance a turbine blade, is coated with the material. An optical system, sometimes including optical fibers, conveys stimulating light and collects the emission for analysis. Either emission intensity or decay time may indicate temperature. Previously fielded tests have involved surfaces such as blades, vanes, pistons, in-take valves, sheets of galvanneal steel, etc. The fluorescent coatings may be applied to small parts via sputtering methods or to large areas by mixture with inorganic binders. Presented here are results characterizing fluorescence rise times as a means of determining temperature from ambient to 700 C for Y{sub 2}O{sub 3}:Eu.

  20. Velocity measurements by laser resonance fluorescence. [single atom diffusional motion

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Fairbank, W. M., Jr.

    1980-01-01

    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.

  1. Compton effect thermally activated depolarization dosimeter

    DOEpatents

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  2. Raman/Rayleigh/fluorescence lidar for atmosphere measurement

    NASA Astrophysics Data System (ADS)

    Gong, Shunsheng; Zheng, Wengang; Li, Hongjun; Yang, Guotao

    1998-08-01

    A Raman/Rayleigh/Fluorescence Lidar established in the Wuhan Institute of Physics & Mathematics, China for the measurements of the atmosphere is described, and the preliminary observation results for the lower, upper atmosphere and the sodium layer over Wuhan, China obtained by this lidar are presented in this paper.

  3. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume. PMID:23126755

  4. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  5. Temperature Dependent Fluorescence Lifetime Measurements in a Phosphor

    NASA Astrophysics Data System (ADS)

    Nettles, Charles J.; Smith, R. Seth; Heath, Jonathan J.

    2012-03-01

    This poster will describe an undergraduate senior research project involving fluorescence lifetime measurements in a LaSO4:Eu phosphor compound. Specifically, this project seeks to determine the temperature dependence of the lifetime. The temperature of the phosphor will be varied using a heater block with temperature control. The phosphor will be excited with the 337 nm output of a Nitrogen Laser. An Oriel Monochromator will be used to disperse the fluorescence, and the lifetime for a particular wavelength will be determined from a photomultiplier tube signal. At the time of the presentation, this project will be nearing completion; and I will discuss my progress, successes, and challenges.

  6. Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus

    PubMed Central

    Silverman, Jared A.; Perlmutter, Nancy G.; Shapiro, Howard M.

    2003-01-01

    The objective of this study was to further elucidate the role of membrane potential in the mechanism of action of daptomycin, a novel lipopeptide antibiotic. Membrane depolarization was measured by both fluorimetric and flow cytometric assays. Adding daptomycin (5 μg/ml) to Staphylococcus aureus gradually dissipated membrane potential. In both assays, cell viability was reduced by >99% and membrane potential was reduced by >90% within 30 min of adding daptomycin. Cell viability decreased in parallel with changes in membrane potential, demonstrating a temporal correlation between bactericidal activity and membrane depolarization. Decreases in viability and potential also showed a dose-dependent correlation. Depolarization is indicative of ion movement across the cytoplasmic membrane. Fluorescent probes were used to demonstrate Ca2+-dependent, daptomycin-triggered potassium release from S. aureus. Potassium release was also correlated with bactericidal activity. This study demonstrates a clear correlation between dissipation of membrane potential and the bactericidal activity of daptomycin. A multistep model for daptomycin's mechanism of action is proposed. PMID:12878516

  7. Laboratory investigations of mineral dust near-backscattering depolarization ratios

    NASA Astrophysics Data System (ADS)

    Järvinen, E.; Kemppinen, O.; Nousiainen, T.; Kociok, T.; Möhler, O.; Leisner, T.; Schnaiter, M.

    2016-07-01

    Recently, there has been increasing interest to derive the fractions of fine- and coarse-mode dust particles from polarization lidar measurements. For this, assumptions of the backscattering properties of the complex dust particles have to be made either by using empirical data or particle models. Laboratory measurements of dust backscattering properties are important to validate the assumptions made in the lidar retrievals and to estimate their uncertainties. Here, we present laboratory measurements of linear and circular near-backscattering (178°) depolarization ratios of over 200 dust samples measured at 488 and 552 nm wavelengths. The measured linear depolarization ratios ranged from 0.03 to 0.36 and were strongly dependent on the particle size. The strongest size-dependence was observed for fine-mode particles as their depolarization ratios increased almost linearly with particle median diameter from 0.03 to 0.3, whereas the coarse-mode particle depolarization values stayed rather constant with a mean linear depolarization ratio of 0.27. The depolarization ratios were found to be insensitive to the dust source region or thin coating of the particles or to changes in relative humidity. We compared the measurements with results of three different scattering models. With certain assumptions for model particle shape, all the models were capable of correctly describing the size-dependence of the measured dust particle, albeit the model particles significantly differed in composition, shape and degree of complexity. Our results show potential for distinguishing the dust fine- and coarse-mode distributions based on their depolarization properties and, thus, can serve the lidar community as an empirical reference.

  8. Diffusion measurement of fluorescence-labeled amphiphilic molecules with a standard fluorescence microscope.

    PubMed Central

    Dietrich, C; Merkel, R; Tampé, R

    1997-01-01

    The lateral diffusion of fluorescence-labeled amphiphilic tracer molecules dissolved within a two-dimensional matrix of lipids was measured by continuous illumination of an elongated rectangular region. The resulting spatial concentration profile of unbleached tracer molecules was observed with a standard epifluorescence microscope and analyzed with digital image-processing techniques. These concentration profiles are governed by the mobility of the tracers, their rate of photolysis, and the geometry of the illuminated area. For the case of a long and narrow illuminated stripe, a mathematical analysis of the process is given. After prolonged exposure, the concentration profile can be approximated by a simple analytical function. This fact was used to measure the quotient of the rate of photolysis, and the diffusion constant of the fluorescent probe. With an additional measurement of the rate of photolysis, the mobility of the tracer was determined. As prototype experiments we studied the temperature dependence of the lateral diffusion of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dipalmitoylphosphatidyl++ + ethanolamine in glass-supported bilayers of L-alpha-dimyristoylphosphatidylcholine. Because of its simple experimental setup, this technique represents a very useful method of determining the lateral diffusion of fluorescence-labeled membrane molecules. Images FIGURE 5 PMID:9083674

  9. Measuring Exocytosis Rate Using Corrected Fluorescence Recovery After Photoconversion.

    PubMed

    Luo, Nan; Yan, An; Yang, Zhenbiao

    2016-05-01

    Exocytosis plays crucial roles in regulating the distribution and function of plasma membrane (PM) and extracellular matrix proteins. However, measuring the exocytosis rate of a specific protein by conventional methods is very difficult because of exocytosis-independent trafficking such as endocytosis, which also affects membrane protein distribution. Here, we describe a novel method, corrected fluorescence recovery after photoconversion, in which exocytosis-dependent and -independent trafficking events are measured simultaneously to accurately determine exocytosis rate. In this method, the protein-of-interest is tagged with Dendra2, a green-to-red photoconvertible fluorescent protein. Following the photoconversion of PM-localized Dendra2, both the recovery of the green signal and the changes in the photoconverted red signal are measured, and the rate of exocytosis is calculated from the changing rates of these two signals. PMID:26822068

  10. Polarization-independent electro-optic depolarizer

    NASA Astrophysics Data System (ADS)

    Heismann, F.; Tokuda, K. L.

    1995-05-01

    We demonstrate a compact electro-optic polarization scrambler that depolarizes arbitrarily polarized light with less than 2.5% residual degree of polarization and variable depolarization times in the microsecond to millisecond range. The integrated-optic depolarizer is fabricated on lithium niobate and operates with a single-mode waveguide designed for a 1.5- mu m wavelength. The scrambler introduces negligible intensity modulation of less than 1.6% in the depolarized output light.

  11. Measurements of Solar Induced Chlorophyll Fluorescence at 685 nm by Airborne Plant Fluorescence Sensor (APFS)

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J. H.; Boldt, J.; Cook, W. B.; Corp, L. A.

    2015-12-01

    Solar-induced chlorophyll fluorescence (ChlF) by terrestrial vegetation is linked closely to photosynthetic efficiency that can be exploited to monitor the plant health status and to assess the terrestrial carbon budget from space. The weak, broad continuum ChlF signal can be detected from the fill-in of strong O2 absorption lines or solar Fraunhofer lines in the reflected spectral radiation. The Johns Hopkins University, Applied Physics Laboratory (JHU/APL) Airborne Plant Fluorescence Sensor (APFS) is a triple etalon Fabry-Perot interferometer designed and optimized specifically for the ChlF sensing from an airborne platform using this line fill-in technique. In this paper, we will present the results of APFS ChlF measurements obtained from a NASA Langley King Air during two airborne campaigns (12/12 in 2014 and 5/20 in 2015) over various land, river, and vegetated targets in Virginia during stressed and growth seasons.

  12. Measurements of Fluorescent Bioaerosol Particles in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Emerson, J. B.; Fierer, N.; Schwarz, J. P.; Fahey, D. W.

    2013-12-01

    Bioaerosols are of atmospheric interest due to their potential importance as cloud condensation and heterogeneous ice nuclei and because they represent a sizeable fraction of coarse mode aerosol in some locations. Relatively little data exists, however, regarding diurnal, seasonal and annual cycles of bioaerosols and the meteorological processes that control them. Newly developed real-time instrumentation allows for sensitive, high time resolution detection of fluorescent bioaerosols and is uniquely suited to address key uncertainties in the sources, distributions and behavior of these particles in the atmosphere. Here we present observations of ambient fluorescent biological aerosol made on the Front Range of Colorado using a custom-modified Wideband Integrated Bioaerosol Sensor (WIBS) during the summer and fall of 2013. The summertime measurements were made from the roof of the NOAA ESRL David Skaggs Research Center in Boulder and the fall measurements were made both at the surface and aloft at the Boulder Atmospheric Observatory Tall Tower. We examine diurnal variations in loading and size distribution of fluorescent bioaerosol at the two locations. We also investigate the relationship between meteorological events and fluorescent bioaerosol. For example, we observe higher concentrations and markedly different number distributions associated with precipitation events. Simultaneous filter samples were collected for DNA sequencing and flow cytometry. To our knowledge this represents the first such comparison for the WIBS under ambient conditions and the microbial identification accomplished with the filters adds significantly to the analysis. This data set will provide useful insight into the sources, loadings and properties of fluorescent bioaerosol and the local and regional processes that drive them.

  13. Blind deconvolution estimation of fluorescence measurements through quadratic programming

    NASA Astrophysics Data System (ADS)

    Campos-Delgado, Daniel U.; Gutierrez-Navarro, Omar; Arce-Santana, Edgar R.; Skala, Melissa C.; Walsh, Alex J.; Jo, Javier A.

    2015-07-01

    Time-deconvolution of the instrument response from fluorescence lifetime imaging microscopy (FLIM) data is usually necessary for accurate fluorescence lifetime estimation. In many applications, however, the instrument response is not available. In such cases, a blind deconvolution approach is required. An iterative methodology is proposed to address the blind deconvolution problem departing from a dataset of FLIM measurements. A linear combination of a base conformed by Laguerre functions models the fluorescence impulse response of the sample at each spatial point in our formulation. Our blind deconvolution estimation (BDE) algorithm is formulated as a quadratic approximation problem, where the decision variables are the samples of the instrument response and the scaling coefficients of the basis functions. In the approximation cost function, there is a bilinear dependence on the decision variables. Hence, due to the nonlinear nature of the estimation process, an alternating least-squares scheme iteratively solves the approximation problem. Our proposal searches for the samples of the instrument response with a global perspective, and the scaling coefficients of the basis functions locally at each spatial point. First, the iterative methodology relies on a least-squares solution for the instrument response, and quadratic programming for the scaling coefficients applied just to a subset of the measured fluorescence decays to initially estimate the instrument response to speed up the convergence. After convergence, the final stage computes the fluorescence impulse response at all spatial points. A comprehensive validation stage considers synthetic and experimental FLIM datasets of ex vivo atherosclerotic plaques and human breast cancer cell samples that highlight the advantages of the proposed BDE algorithm under different noise and initial conditions in the iterative scheme and parameters of the proposal.

  14. Uncertainty analysis of planar laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Tavoularis, Stavros; Vanderwel, Christina

    2014-11-01

    We present a thorough analysis of the uncertainty of the planar laser-induced fluorescence (PLIF) method. We consider the measurement of concentration maps in cross-sections parallel to and normal to the axis of a slender plume containing Rhodamine 6G as a passive scalar tracer and transported by a turbulent shear flow. In particular, we identify two previously unexplored sources of error contributed by non-uniformity of the concentration across the laser sheet and by secondary fluorescence. We propose new methods to evaluate and correct for these sources of error and demonstrate that the corrected concentration measurements accurately determined the injected dye mass flow rate of the plume in the far field. Supported by NSERC.

  15. Measurement of Nanoparticle Magnetic Hyperthermia Using Fluorescent Microthermal Imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaowan; van Keuren, Edward

    Nanoparticle magnetic hyperthermia uses the application of an AC magnetic field to ferromagnetic nanoparticles to elevate the temperature of cancer cells. The principle of hyperthermia as a true cell-specific therapy is that tumor cells are more sensitive to high temperature, so it is of great importance to control the locality and magnitude of the temperature differences. One technique to measure temperature variations on microscopic length scales is fluorescent microthermal imaging (FMI). Since it is the local temperature that is measured in FMI, effects such as heating due to nearby field coils can be accounted for. A dye, the rare earth chelate europium thenoyltrifluoroacetonate (Eu:TTA), with a strong temperature-dependent fluorescence emission has been incorporated into magnetic nanoparticles dispersed in a polymer films. FMI experiments were carried out on these samples under an applied high frequency magnetic field. Preliminary results show that FMI is a promising technique for characterizing the local generation of heat in nanoparticle magnetic hyperthermia.

  16. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  17. Near-infrared spark source excitation for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Birch, D. J. S.; Hungerford, G.; Imhof, R. E.

    1991-10-01

    We have extended the range of excitation wavelengths from spark sources used in single photon timing fluorometry into the near infrared by means of the all-metal coaxial flashlamp filled with an argon-hydrogen gas mixture. At 750 nm this mixture gives ˜15 times the intensity available from pure hydrogen for a comparable pulse duration. Measurements are demonstrated by using the laser dye IR-140 in acetone, for which a fluorescence lifetime of 1.20 ns is recorded.

  18. Solvent-induced multicolour fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements.

    PubMed

    Fujii, Mayu; Namba, Misa; Yamaji, Minoru; Okamoto, Hideki

    2016-07-01

    A series of amino-2,3-naphthalimide derivatives having the amino functionality at 1-, 5- and 6-positions (, and , respectively) were prepared, and their photophysical properties were systematically investigated based on the measurements of steady-state absorption and fluorescence spectra, fluorescence lifetimes as well as transient absorption spectra. The s efficiently fluoresced in solution, and the emission spectra appreciably shifted depending on the solvent polarity. displayed only a slight fluorescence red-shift upon increasing the solvent polarity. In contrast, and showed marked positive solvatofluorochromism with large Stokes shifts displaying multicolour fluorescence; the fluorescence colours of and varied from violet-blue in hexane to orange-red in methanol. and , thus, serve as micro-environment responding fluorophores. In methanol, the intensity of the fluorescence emission band of and significantly reduced. Based on the fluorescence quantum yields and lifetimes, and transient absorption measurements, it has been revealed that internal conversion from the S1 state of s to the ground state was accelerated by the protic medium, resulting in a reduction in their fluorescence efficiency, while intersystem crossing from the S1 state to a triplet state was not responsible for the decrease of fluorescence intensity. PMID:27251860

  19. Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes

    PubMed Central

    te Winkel, J. Derk; Gray, Declan A.; Seistrup, Kenneth H.; Hamoen, Leendert W.; Strahl, Henrik

    2016-01-01

    The bacterial cytoplasmic membrane is a major inhibitory target for antimicrobial compounds. Commonly, although not exclusively, these compounds unfold their antimicrobial activity by disrupting the essential barrier function of the cell membrane. As a consequence, membrane permeability assays are central for mode of action studies analysing membrane-targeting antimicrobial compounds. The most frequently used in vivo methods detect changes in membrane permeability by following internalization of normally membrane impermeable and relatively large fluorescent dyes. Unfortunately, these assays are not sensitive to changes in membrane ion permeability which are sufficient to inhibit and kill bacteria by membrane depolarization. In this manuscript, we provide experimental advice how membrane potential, and its changes triggered by membrane-targeting antimicrobials can be accurately assessed in vivo. Optimized protocols are provided for both qualitative and quantitative kinetic measurements of membrane potential. At last, single cell analyses using voltage-sensitive dyes in combination with fluorescence microscopy are introduced and discussed. PMID:27148531

  20. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.

    1982-01-01

    Laser induced fluorescence techniques were developed for the containerless study of high temperature processes, material properties, levitation, and heating techniques for containerless earth-based experimentation. Experiments were performed in which fluorescence of atomic aluminum, mercury, or tungsten were studied. These experiments include measurements of: (1) Al atom evaporation from CW CO2 laser heated and aerodynamically levitated sapphire and alumina spheres, and self-supported sapphire filaments, (2) Al atom reaction with ambient oxygen in the wake of a levitated specimen, (3) Hg atom concentrations in the wake of levitated alumina and sapphire spheres, relative to the ambient Hg atom concentration, (4) Hg atom concentrations in supersonic levitation jets, and (5) metastable, electronically excited W atom concentrations produced by evaporation of an electrically heated tungsten filament.

  1. Laser-induced fluorescence measurement of combustion chemistry intermediates

    NASA Technical Reports Server (NTRS)

    Crosley, David R.

    1986-01-01

    Laser-induced fluorescence (LIF) can measure the trace (often free radical) species encountered as intermediates in combustion chemistry; OH, CS, NH, NS, and NCO are typical of the species detected in flames by LIF. Attention is given to illustrative experiments designed to accumulate a quantitative data base for LIF detection in low pressure flow systems and flames, as well as to flame measurements conducted with a view to the detection of new chemical intermediaries that may deepen insight into the chemistry of combustion.

  2. Bloodstain age analysis: toward solid state fluorescent lifetime measurements

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Zhegalova, Natalia; Achilefu, Samuel; Berezin, Mikhail Y.

    2013-03-01

    One of the most pressing unsolved challenges in forensic science is the determination of time since deposition (TSD) of bloodstains at crime scenes. Despite a number of high profile cases over the past couple hundred years involving controversy over TSD methods, no reliable quantitative method has been established. We present here an approach that has yet to be explored by forensic scientist: measuring the fluorescence lifetime of solid-state blood. Such a method would allow for on-site measurements of bloodstains utilizing the appropriate device, and would allow for rapid results returned in real-time to investigators.

  3. Characterization of natural and irradiated nails by means of the depolarization metrics

    NASA Astrophysics Data System (ADS)

    Savenkov, Sergey; Priezzhev, Alexander; Oberemok, Yevgen; Sholom, Sergey; Kolomiets, Ivan; Chunikhina, Kateryna

    2016-07-01

    Mueller polarimetry is applied to study the samples of nails: natural (or reference) and irradiated to 2 Gy ionizing radiation dose. We measure the whole Mueller matrices of the samples as a function of the scattering angle at a wavelength of 632.8 nm. We apply depolarization analysis to measured Mueller matrices by calculating the depolarization metrics [depolarization index, Q(M)-metric, first and second Lorenz indices, Cloude and Lorenz entropy] to quantify separability of the different samples of nails under study based on differences in their Mueller matrix. The results show that nail samples strongly depolarize the output light in backscattering, and irradiation in all cases results in increasing of depolarization. Most sensitive among depolarization metrics are the Lorenz entropy and Q(M)-metric.

  4. Characterization of natural and irradiated nails by means of the depolarization metrics.

    PubMed

    Savenkov, Sergey; Priezzhev, Alexander; Oberemok, Yevgen; Sholom, Sergey; Kolomiets, Ivan; Chunikhina, Kateryna

    2016-07-01

    Mueller polarimetry is applied to study the samples of nails: natural (or reference) and irradiated to 2 Gy ionizing radiation dose. We measure the whole Mueller matrices of the samples as a function of the scattering angle at a wavelength of 632.8 nm. We apply depolarization analysis to measured Mueller matrices by calculating the depolarization metrics [depolarization index, Q(M)-metric, first and second Lorenz indices, Cloude and Lorenz entropy] to quantify separability of the different samples of nails under study based on differences in their Mueller matrix. The results show that nail samples strongly depolarize the output light in backscattering, and irradiation in all cases results in increasing of depolarization. Most sensitive among depolarization metrics are the Lorenz entropy and Q(M)-metric. PMID:26927390

  5. Geometry of generalized depolarizing channels

    SciTech Connect

    Burrell, Christian K.

    2009-10-15

    A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.

  6. Measurement of cation movement in primary cultures using fluorescent dyes.

    PubMed

    Reynolds, I J

    2001-05-01

    Ca(2+), Na(+), K(+), and Mg(2+) have a central role in neuronal excitability. The concentration of these cations in the cytoplasm of neurons (generically termed [ion(+)]i) provides a marker of the excitation state of the neurons, and may also illuminate the activity of specific signaling mechanisms that involve Ca(2+)- or Mg(2+)-activated enzymes. The measurement of [ion(+)]i in cultured neurons is achieved with the use of an ion-sensitive fluorescent dye in combination with equipment designed to quantitatively measure fluorescence. Specificity is obtained by choosing dyes with the appropriate selectivity for the ion of interest. Measurements of steady state ion concentrations can be made, as well as measurements of the net difference between ion movement into the cytoplasm (in response to a stimulus) and the physiological buffering of that ion. The procedures in this unit for loading and recording from dyes are broadly similar for each ion when ratiometric dyes are used as described, and can readily be modified for use with single-wavelength dyes. Support protocols are provided for calibration of individual dyes, which can be more problematic. PMID:18428522

  7. A depolarization and attenuation experiment using the CTS satellite. Volume 1: Experiment description

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Holt, S. B., Jr.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Stutzman, W. L.; Wiley, P. H.

    1976-01-01

    An experiment for measuring precipitation attenuation and depolarization on the Communications Technology Satellite (CTS) 11.7 GHz downlink is described. Attenuation and depolarization of the signal received from the spacecraft is monitored on a 24 hour basis. Data is correlated with ground weather conditions. Theoretical models for millimeter wave propagation through rain are refined for maximum agreement with observed data. Techniques are developed for predicting and mimimizing the effects of rain scatter and depolarization on future satellite communication systems.

  8. Measuring Phagosome pH by Ratiometric Fluorescence Microscopy.

    PubMed

    Nunes, Paula; Guido, Daniele; Demaurex, Nicolas

    2015-01-01

    Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H(+) is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized

  9. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  10. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The use of laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties is studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in Earth-based containerless high temperature experiments. The work to date includes development of an apparatus and its use in studies of chemical reactions on Al2O3, molybdenum, and tungsten specimens, novel methods for noncontact specimen temperature measurement, and levitation jet properties. Brief summaries of these studies are given. The apparatus is described and detailed results for the current reporting period are presented.

  11. Assessment of Vegetation Stress Using Reflectance or Fluorescence Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, P. K. E.; Middleton, E. M.; McMurtrey, J. E.; Corp, L. A.; Chappelle, E. W.

    2007-01-01

    Current methods for large-scale vegetation monitoring rely on multispectral remote sensing, which has serious limitation for the detection of vegetation stress. To contribute to the establishment of a generalized spectral approach for vegetation stress detection, this study compares the ability of high-spectral resolution reflectance (R) and fluorescence (F) foliar measurements to detect vegetation changes associated with common environmental factors affecting plant growth and productivity. To obtain a spectral dataset from a broad range of species and stress conditions, plant material from three experiments was examined, including (i) corn, nitrogen (N) deficiency/excess; (ii) soybean, elevated carbon dioxide, and ozone levels; and (iii) red maple, augmented ultraviolet irradiation. Fluorescence and R spectra (400-800 nm) were measured on the same foliar samples in conjunction with photosynthetic pigments, carbon, and N content For separation of a wide range of treatment levels, hyperspectral (5-10 nm) R indices were superior compared with F or broadband R indices, with the derivative parameters optimal results. For the detection of changes in vegetation physiology, hyperspectral indices can provide a significant improvement over broadband indices. The relationship of treatment levels to R was linear, whereas that to F was curvilinear. Using reflectance measurements, it was not possible to identify the unstressed vegetation condition, which was accomplished in all three experiments using F indices. Large-scale monitoring of vegetation condition and the detection of vegetation stress could be improved by using hyperspectral R and F information, a possible strategy for future remote sensing missions.

  12. Probing intrinsic anisotropies of fluorescence: Mueller matrix approach.

    PubMed

    Saha, Sudipta; Soni, Jalpa; Chandel, Shubham; Kumar, Uday; Ghosh, Nirmalya

    2015-08-01

    We demonstrate that information on “intrinsic” anisotropies of fluorescence originating from preferential orientation/organization of fluorophore molecules can be probed using a Mueller matrix of fluorescence. For this purpose, we have developed a simplified model to decouple and separately quantify the depolarization property and the intrinsic anisotropy properties of fluorescence from the experimentally measured fluorescence Mueller matrix. Unlike the traditionally defined fluorescence anisotropy parameter, the Mueller matrix-derived fluorescence polarization metrics, namely, fluorescence diattenuation and polarizance parameters, exclusively deal with the intrinsic anisotropies of fluorescence. The utility of these newly derived fluorescence polarimetry parameters is demonstrated on model systems exhibiting multiple polarimetry effects, and an interesting example is illustrated on biomedically important fluorophores, collagen. PMID:26301796

  13. Rapid measurements of intracellular calcium using a fluorescence plate reader.

    PubMed

    Lin, K; Sadée, W; Quillan, J M

    1999-02-01

    Intracellular calcium is a universal second messenger that can serve as a broad-based measure of receptor activity. Recent developments in multi-well plate fluorescence readers facilitate measurement of intracellular free-calcium levels and reduce reliance on slower, more cumbersome or expensive data collection methods. In this report, we describe a rapid and sensitive method to assay intracellular calcium ions in human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells from multi-well plates using a fluorometer equipped with on-line injectors. We examine the compatibility of visible-light excitable dyes Calcium Green-1 and Oregon Green 488 BAPTA-1. Using this assay, we were able to detect and quantify activity from muscarinic and beta-adrenergic receptors endogenous to HEK293 cells and detect calcium signals generated by activation of Gi-coupled recombinant mu-opioid and dopamine D2L receptors, and the Gs-coupled melanocortin subtype 4 (MC4) receptor. Fluorescence signals, stable in HEK293 cells, required the use of Oregon Green 488 BAPTA-1 and an inhibitor of organic anion transport in CHO cells. Under appropriate conditions, both cell types can be used to collect complete concentration-response data for a variety of receptors (including a recombinant muscarinic M1 receptor expressed in CHO cells) from a single plate of dye-loaded cells. PMID:10023544

  14. Strain measurements in thermally grown alumina scales using ruby fluorescence

    SciTech Connect

    Veal, B.W.; Natesan, K.; Koshelev, I.; Grimsditch, M.; Renusch, D. Hou, P.Y.

    1996-12-31

    We have measured strains in alumina scales thermally grown on Fe-Cr- Al alloys by exploiting the strain dependence of the ruby luminescence line. Measurements were done on Fe-5Cr-28Al and Fe-18Cr-10Al (at.%, bal. Fe) oxidized between 300-1300 C with periodic cycling to room temperature. Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a dilute reactive element (Zr or Hf) are also presented. We observe that scales on alloys containing a reactive element (RE) can support higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed. In early stage oxidation, the evolution of transition phases is monitored using Raman and fluorescence spectroscopies. The fluorescence technique also provides a sensitive probe of early stage formation of {alpha}-Al{sub 2}O{sub 3}. It appears that, in presence of Cr{sub 2}O{sub 3} or Fe{sub 2}O{sub 3}, the {alpha}-alumina phase can form at anomalously low temperatures.

  15. Radiometric calibration to consider in quantitative clinical fluorescence imaging measurements

    NASA Astrophysics Data System (ADS)

    Litorja, M.; Urbas, A.; Zong, Y.

    2015-03-01

    The fluorescent light detected by a clinical imager is assumed to be proportional only to the amount of fluorescent substance present in the sample and the level of excitation. Unfortunately, there are many factors that can add or subtract to the light signal directly attributable to the desired fluorescence emission, especially with fluorescence from inside the body imaged remotely. The quantification of fluorescence emission is feasible by calibrating the imager using international system of units (SI)-traceable physical and material calibration artifacts such that the detector's digital numbers (DN) can be converted to radiometric units. Here we discuss three calibration methods for quantitative clinical fluorescence imaging systems.

  16. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Shiffman, Robert A.

    1987-01-01

    Containerless high temperature processing and material property measurements are discussed. Researchers developed methods for non-contact suspension, heating, and property measurement for materials at temperatures up to 3,680K, the melting point of tungsten. New, scientifically interesting results were obtained in Earth-based research. These results and the demonstration of new methods and techniques form a basis for further advances under the low gravity environment of space where containerless conditions are more easily achieved. Containerless high temperature material property investigations that have been completed in this and our earlier projects include measurements of fluorine LaB sub 6 reaction kinetics at 1,000 to 1,500K; optical property measurements on sapphire (Al2O3) at temperatures up to the melting point (2,327K); and vapor pressure measurements for LaB sub 6 at 2,000 to 2,500K, for molybdenum up to 2,890K and for tungsten up to 3,680K. Gas jet levitation which is applicable to any solid material, and electromagnetic levitation of electrical conductors were used to suspend the materials of interest. Non-contact heating and property measurements were achieved by optical techniques, i.e., laser heating, laser induced fluorescence measurements of vapor concentrations, and optical pyrometry for specimen temperatures.

  17. Neutron depolarization study of phase transformations in steel

    NASA Astrophysics Data System (ADS)

    van Dijk, N. H.; Te Velthuis, S. G. E.; Rekveldt, M. Th.; Sietsma, J.; van der Zwaag, S.

    1999-06-01

    Three-dimensional neutron depolarization experiments have been performed in order to study the phase transformations from austenite (γ-Fe) into ferrite (α-Fe) and cementite (Fe 3C) in two medium-carbon steel samples with different carbon concentrations. The rotation of the neutron polarization vector during transmission through the sample is a direct measure for the ferromagnetic ferrite fraction. The degree of depolarization is related to the magnetic correlation length, which gives an indication of the characteristic length scales of the microstructure.

  18. Fluorescent measurements of Zn2+ on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Ast, Sandra; Canning, John; Cook, Kevin; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    Using a smartphone-based portable spectrofluorimeter, measurement of metal ion concentration in water is reported. A UV LED (λex ~ 370 nm), which is powered by the internal source of the smartphone was implemented to function as the excitation source. The emission peak of the UV LED overlaps well with the absorption peak of the Zn2+-responsive molecular probe 6-(1,4,8,11-cyclam-1-yl)ethyl-1,2,3-triazol-4-yl)2-ethyl-naphthalimide fluoro-ionophore (λabs ~ 358 nm). The fluorescence emission of this dye at λem ~ 458 nm is enhanced upon coordination of Zn2+. A customized Android application digitally processes the image from a nano-imprinted polymer diffraction grating and analyses the spectral changes. Zn2+ concentration in water samples were measured with a detection limit of δ ~ 5 μM.

  19. Multiparameter single-molecule fluorescence measurements of DNA intercalating fluorophores

    NASA Astrophysics Data System (ADS)

    Bowen, Benjamin P.; Enderlein, Jorg; Woodbury, Neal W. T.

    2003-06-01

    Experiments using single-molecules of TOTO-1 intercalated into dsDNA were performed to investigate the DNA sequence dependence on the fluorescence detectable with single-molecule fluorescence spectroscopy. Previous work has shown that there is a difference in the fluorescence lifetime when TOTO-1 is intercalated in poly-AT DNA or in poly-GC DNA. The fluorescence detected from single-molecules in this work for poly-GC and poly-AT DNA showed fluorescence lifetimes of 2.1 and 1.8 nsec, respectively. Analysis of the fluorescence intensity detected from single-molecules of TOTO-1 was performed by fluorescence cross-correlation spectroscopy. TOTO-1 is shown to spend large amounts of time in dark states. These dark states reduce the detectable fluorescence intensity to approximately 10 photons per millisecond on average.

  20. Limitation of fluorescence spectrophotometry in the measurement of naphthenic acids in oil sands process water.

    PubMed

    Lu, Weibing; Ewanchuk, Andrea; Perez-Estrada, Leonidas; Sego, Dave; Ulrich, Ania

    2013-01-01

    Fluorescence spectrophotometry has been proposed as a quick screening technique for the measurement of naphthenic acids (NAs). To evaluate the feasibility of this application, the fluorescence emission spectra of NAs extracted from three oil sands process water sources were compared with that of commercial NAs. The NAs resulting from the bitumen extraction process cannot be differentiated because of the similarity of the fluorescence spectra. Separation of the fluorescent species in NAs using high performance liquid chromatography with fluorescence detector proved unsuccessful. The acidic fraction of NAs is fluorescent but the basic fraction of NAs is not fluorescent, implying that aromatic acids in NAs give rise to the fluorescent signals. The concentrations of NAs in oil sands process water were measured by Fourier transform infrared spectroscopy (FTIR), fluorescence spectrophotometry and ultra high performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). Commercial Merichem and Kodak NAs are the best standards to use when measuring NAs concentration with FTIR and fluorescence spectrophotometry. In addition, the NAs concentrations measured by fluorescence spectrophotometry are about 30 times higher than those measured by FTIR and UPLC-TOF/MS. The findings in this study underscore the limitation of fluorescence spectrophotometry in the measurement of NAs. PMID:23379948

  1. Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Forster resonance energy transfer measurements.

    PubMed

    Hoffmann, Birgit; Zimmer, Thomas; Klöcker, Nikolaj; Kelbauskas, Laimonas; König, Karsten; Benndorf, Klaus; Biskup, Christoph

    2008-01-01

    Since its discovery, green fluorescent protein (GFP) and its variants have proven to be a good and convenient fluorescent label for proteins: GFP and other visible fluorescent proteins (VFPs) can be fused selectively to the protein of interest by simple cloning techniques and develop fluorescence without additional cofactors. Among the steadily growing collection of VFPs, several pairs can be chosen that can serve as donor and acceptor fluorophores in Forster resonance energy transfer (FRET) experiments. Among them, the cyan fluorescent proteins (ECFP/Cerulean) and the enhanced yellow fluorescent protein (EYFP) are most commonly used. We show that ECFP and Cerulean have some disadvantages despite their common use: Upon irradiation with light intensities that are commonly used for intensity- and lifetime-based FRET measurements, both the fluorescence intensity and the fluorescence lifetime of ECFP and Cerulean decrease. This can hamper both intensity- and lifetime-based FRET measurements and emphasizes the need for control measurements to exclude these artifacts. PMID:18601529

  2. Localization of subsurface fluorescent lesions using surface spectral measurements

    NASA Astrophysics Data System (ADS)

    Kolste, Kolbein

    Localization of Subsurface Fluorescent Lesions using Surface Spectral Measurements Sponsored by the National Institute of Health, Bethesda, Maryland Kolbein Kolste, Ph.D. Keith Paulsen In neurosurgical tumor resection, maximizing extent of resection plays a major role in the care of cancer patients. To date, ALA is being researched as a technique to guide tumor resection by inducing the accumulation of the endogenous fluorophore PpIX. Most research has focused on the use of blue light excitation of PpIX to visual the tumor. However, due to the high attenuation of blue light by in vivo chromophores, such as oxy- and deoxy-hemoglobin, the source of collected fluorescence emissions is confined to the top layer of cells, and the signal is subject to masking by blood on the surface of the surgical field of view. This issue is particularly a problem at the end of the resection, when the surgeon is evaluating the margin for remaining tumor, but the blue-signal is insensitive to residual tumor that may be located several millimeters beneath the surface. PpIX has an absorption band in the near infrared (NIR), where the absorption due to blood is orders of magnitude lower, enabling the excitation of a fluorophore at depth. In this work, we created a hyperspectral imaging system that attaches to a neurosurgical microscope and is capable of detecting PpIX fluorescence that has been excited at 635 nm. We utilize a dual-waveband technique from the hyperspectral to estimate depth of fluorescence origin and characterize the inherent limitations of the estimated depth. One of the major benefits of this technique is that the estimation is independent of the concentration and size of the fluorophore. This is first demonstrated in phantom studies, where the depths of multiple separate inclusions at various depths are accurately estimated. The technique is verified in animal tumor models and translated into the clinical theater, with pilot data showing the first estimation of depth of

  3. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics.

    PubMed

    Mendoza, Michelle C; Besson, Sebastien; Danuser, Gaudenz

    2012-10-01

    Quantitative fluorescent speckle microscopy (QFSM) is a live-cell imaging method to analyze the dynamics of macromolecular assemblies with high spatial and temporal resolution. Its greatest successes were in the analysis of actin filament and adhesion dynamics in the context of cell migration and microtubule dynamics in interphase and the meiotic/mitotic spindle. Here, focus is on the former application to illustrate the procedures of FSM imaging and the computational image processing that extracts quantitative information from these experiments. QFSM is advantageous over other methods because it measures the movement and turnover kinetics of the actin filament (F-actin) network in living cells across the entire field of view. Experiments begin with the microinjection of fluorophore-labeled actin into cells, which generate a low ratio of fluorescently labeled to endogenously unlabeled actin monomers. Spinning disk confocal or wide-field imaging then visualizes fluorophore clusters (two to eight actin monomers) within the assembled F-actin network as speckles. QFSM software identifies and computationally tracks and utilizes the location, appearance, and disappearance of speckles to derive network flows and maps of the rate of filament assembly and disassembly. PMID:23042526

  4. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique.

    PubMed

    Huang, Botao; Nguyen, Duykien; Liu, Tianyi; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively. PMID:26089935

  5. An advanced fluorescence LIDAR system for the acquisition of interleaved active (LIF) and passive (SIF) fluorescence measurements on vegetation

    NASA Astrophysics Data System (ADS)

    Raimondi, Valentina; Palombi, Lorenzo; Di Ninni, Paola

    2015-10-01

    Fluorescence is regarded as a valuable tool to investigate the eco-physiological status of vegetation. Chlorophyll a, which emits a typical fluorescence in the red/far-red region of the e.m. spectrum, plays a key role in the photosynthetic process and its fluorescence is considered an effective proxy of photosynthetic activity of plants. Laser Induced Fluorescence (LIF) has been studied for several decades both at leaf- and canopy-level by means of optical fibers-coupled instrumentation and fluorescence LIDAR systems. On the other hand, Solar-Induced Fluorescence (SIF) has been the object of several scientific studies quite recently, with the aim to investigate the feasibility of measuring the fluorescence of vegetation using passive spectroradiometers in view of global scale monitoring from satellite platforms. This paper presents the main technical features and preliminary tests of a fluorescence LIDAR, recently upgraded to acquire maps of interleaved LIF and SIF measurements at canopy level. In-house developed electronics and software permits the acquisition of interleaved LIF and SIF spectra by switching on/off the laser, the selection of the suitable grating, the setting of the integration time and the synchronization of the Intensified CCD (ICCD) gate opening time. For each pixel of the map, a fluorescence dataset can be acquired containing a LIF spectrum - from 570 nm to 830 nm with a spectral resolution of 0.5 nm - and radiance spectra from 685.53 nm to 690.30 nm with subnanometric spectral resolution containing the molecular oxygen O2-B telluric absorption band. The latter can be exploited for polynomial regression data fit and SIF retrieval.

  6. Fluorescent Measurement of Synaptic Activity Using SynaptopHluorin in Isolated Hippocampal Neurons

    PubMed Central

    Li, Hongmei; Park, Han-A; Jonas, Elizabeth A.

    2016-01-01

    This protocol comprises the entire process of fluorescent measurement of vesicle recycling using the probe SynaptopHluorin, a pH-dependent GFP variant whose fluorescence increases at the synapse upon vesicle release due to fluorescence quenching in acidic vesicles. This technique provides a genetic tool to monitor synaptic vesicle recycling in real time in cultured hippocampal neurons.

  7. Measurement uncertainty in Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Floor, G. H.; Queralt, I.; Hidalgo, M.; Marguí, E.

    2015-09-01

    Total Reflection X-ray Fluorescence (TXRF) spectrometry is a multi-elemental technique using micro-volumes of sample. This work assessed the components contributing to the combined uncertainty budget associated with TXRF measurements using Cu and Fe concentrations in different spiked and natural water samples as an example. The results showed that an uncertainty estimation based solely on the count statistics of the analyte is not a realistic estimation of the overall uncertainty, since the depositional repeatability and the relative sensitivity between the analyte and the internal standard are important contributions to the uncertainty budget. The uncertainty on the instrumental repeatability and sensitivity factor could be estimated and as such, potentially relatively straightforward implemented in the TXRF instrument software. However, the depositional repeatability varied significantly from sample to sample and between elemental ratios and the controlling factors are not well understood. By a lack of theoretical prediction of the depositional repeatability, the uncertainty budget can be based on repeat measurements using different reflectors. A simple approach to estimate the uncertainty was presented. The measurement procedure implemented and the uncertainty estimation processes developed were validated from the agreement with results obtained by inductively coupled plasma - optical emission spectrometry (ICP-OES) and/or reference/calculated values.

  8. Laser induced fluorescence measurements of the cylindrical Hall thruster plume

    SciTech Connect

    Spektor, R.; Diamant, K. D.; Beiting, E. J.; Raitses, Y.; Fisch, N. J.

    2010-09-15

    An investigation of a fully cylindrical Hall thruster was performed using laser induced fluorescence (LIF) to measure ion velocity profiles in the plume. The measurements confirm a previously reported 9% increase in the exhaust energy when the cathode keeper draws an excess current (overrun mode). Furthermore, the velocity directions in the plume remain relatively unchanged for the cusped and direct magnetic field configuration in both overrun and nonoverrun modes. Previously reported plume narrowing in the overrun mode was confirmed and found to be due to the shift of the acceleration and ionization regions toward the anode. The electric field inferred from the LIF measurements allowed calculation of the electron ExB drift. Close to the centerline of the thruster, electrons drift azimuthally with velocity decreasing away from the centerline, thus creating shear. This shear can be a source of plasma instabilities and influence electron transport. Further away from the centerline, electrons drift in the opposite direction with their velocity increasing with increasing radius. In that region, electrons rotate without shear.

  9. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  10. Characterization and measurement results of fluorescence in absorption optical filter glass

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Biertümpfel, R.; Engel, A.

    2015-09-01

    Optical filter glasses (absorption filters) are for example used for spectroscopy. The filter glass absorbs the unwanted light and has a nearly angle independent spectral characteristic. The absorbed light can lead to (self-) fluorescence, i. e. the filter glass itself re-emits fluorescence light at a different wavelength - compared to the incident (excitation) light. This fluorescence light can disturb the measurement signal. In order to obtain an optimized optical design the fluorescence properties of the glasses must be known. By knowing fluorescence properties one can design a system with a good signal-to-noise ratio. We will present our measurement set-up for fluorescence measurements of optical filter glass. This set-up was used to obtain fluorescence measurement results for different optical filter glasses. For the first time we present results on the fluorescence level for different optical filter glasses. In addition the effect of excitation wavelength on the fluorescence level will be studied. Besides other factors, fluorescence depends on impurities of the raw material of the glass melt. Due to small fluctuations of the raw material used for the glass production the fluorescence of the same filter glass type can fluctuate from melt-to-melt. Thus, results from different melts will be shown for the same filter glass type.

  11. Electron beam fluorescence measurements in the Boeing hypersonic shock tunnel

    NASA Technical Reports Server (NTRS)

    Price, Linwood L.; Williams, W. Dan; Powell, H. M.

    1992-01-01

    The Calspan electron beam fluorescence (EBF) measurement system is described along with the results of measurements made in hypersonic flow. Numerous self-emitting metallic species were identified, many of which may be associated with an aging/erosion process within the B30HST. Because there were only 16 tunnel runs, it was only possible to obtain spectral measurements over a limited range of wavelengths and time sampling periods. Many spectral features of the flow remain uninvestigated. Because flow self-emission is important to all optical diagnostic techniques, it is recommended that additional spectral studies by performed. The three electron beam-excited species that were identified are nitrogen, helium, and nitric oxide. The high metallic radiation background interfered with attempts to obtain the time-wise variation of N2 density and He radiation with the optical fiber/PMT channels. In the case of the N2 density measurements the result of interference was increased uncertainty. Unfortunately, the interference caused the time-wise He measurements to fail completely. It is recommended that the electron beam be modulated to provide discrimination against the background radiation in future N2 density measurements. Careful data reduction produced useful measurements of N2 vibrational temperature, even though the high background from metallic species significantly increased measurement uncertainty. Perhaps the recommended additional spectral studies would reveal N2(+) First Negative System band-pair regions having less background. Detection of the He arrival was easily accomplished with the spectrometer/array detector system. Because of this, it is recommended that this means of detecting He arrival be used in the future. With proper calibrations of the system an He number density could be obtained. Although the flow conditions were out of limits for the run in which the NO spectrum was recorded, the usefulness of the NO spectrum for determination of free

  12. Phytoplankton photocompensation from space-based fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Morrison, J. Ruairidh; Goodwin, Deborah S.

    2010-03-01

    Recent satellite-derived observations linked global scale phytoplankton fluorescence variability with iron stress and hinted at photophysiological responses associated with changing light levels. These photocompensation reactions, the sum of photoacclimation and photoadaptation, were examined with climatological data for the Gulf of Maine. Significant seasonal variability was observed in the fluorescence quantum yield that was unrelated to patterns of biomass. Up to 89% of the variability in the fluorescence quantum yield was explained by a physiology-based photocompensation model. Spatial variability in seasonal patterns was associated with differing hydrodynamic regimes. This variability in the quantum yield demonstrates that satellite-based fluorescence is inappropriate for phytoplankton biomass determinations. More importantly, the work presented here provides the modeling foundation for fluorescence-based investigations of temporal and spatial variability in phytoplankton physiology associated with growth irradiance. These space-based physiological observations have the potential to decrease uncertainties in future ocean color derived primary productivity estimates.

  13. Ice depolarization on low-angle 2 GHz satellite downlinks

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Bostian, C. W.; Tsolakis, A.; Pratt, T.

    1984-01-01

    The impact of ice depolarization on the statistical performance of satellite downlinks were investigated. Propagation data recorded during 1979 and 1980 to see what impact of ice depolarization on link performance were analyzed. The effects on the cross polarization discrimination (XPD) statistics amounted to at most a 2 to 4 dB reduction in the XPD values which rain would have produced for a given percentage of time. Ice depolarization had no effect on the statistics of XPD values below the 0.01% level. Most of the severe ice depolarization events were associated with drops in barometric pressure and the passage of intense cold fronts through our area. Ice contents as the product of three individually undetermined quantities were defined: ice particle density, ice cloud thickness, and the average volume of the ice crystals. It is indicated that populations of ice particle with ice contents on the order of 0.002 m4/m3 are probably responsible for the lower values of measured XPD.

  14. Time-resolved spectroscopy of charge-transfer fluorescent molecules in polymer matrices

    NASA Astrophysics Data System (ADS)

    Hofstraat, Johannes W.; Verhey, H. J.; Verhoeven, Jan W.; Kuemke, M.; McGown, Linda B.; Novikov, Eugene G.; van Hoek, Arie; Visser, Antonie J. W. G.

    1996-03-01

    Time-resolved fluorescence measurements have been carried out on charge-transfer fluorescent molecules incorporated in polymeric lattices, consisting of polystyrene cores and polyglycidylmethacrylate shells, and in polymethylmethacrylate thin films. New approaches to the analysis of fluorescence lifetime data obtained for molecules in polymer matrices had to be applied, since conventional analysis methods appeared not suitable for such strongly heterogeneous systems. The polymer lattices could be characterized by application of phase- resolved fluorescence lifetime measurements followed by maximum-entropy methods for data analysis. The thin films were studied using time-correlated single photon counting fluorescence lifetime measurements and data analysis with a home-built program based on stretched exponential decays. Interactions of the fluorescent guest molecules could be established by combined fluorescence lifetime and depolarization measurements. Suggestions for further improvements in fluorescence lifetime methods for characterization of polymeric materials have been made.

  15. Laser-induced fluorescence, dispersed fluorescence and lifetime measurements of jet-cooled chloro-substituted benzyl radicals

    NASA Astrophysics Data System (ADS)

    Hamatani, Satoshi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2002-07-01

    We measured the laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of jet-cooled α-, o- and m-chlorobenzyl radicals after they were generated by the 193 nm photolysis of the corresponding parent molecules. The vibronically resolved spectra were obtained to analyze their D1-D0 transitions. The fluorescence lifetimes of α-, o-, m- and p-chlorobenzyls in the zeroth vibrational levels of the D1 states were measured to estimate the oscillator strengths of a series of benzyl derivatives. It was found that the α-substitution is inefficient to break the `accidental forbiddenness' of the D1-D0 transition of benzyl, while the ring-substitution enhances the oscillator strength by 50%.

  16. Fluorescence measurements of the thermal control experiments coatings on LDEF S0069 and A0114

    NASA Technical Reports Server (NTRS)

    Zwiener, J. M.; Mell, R. J.; Peters, P. N.; Gregory, J. C.; Wilkes, D. R.; Miller, E. R.

    1993-01-01

    Fluorescence measurements were made on the thermal control coatings from the Long Duration Experiment Facility (LDEF) S0069, Thermal Control Surfaces Experiment (TCSE); and the A0114, Interaction of Atomic Oxygen with Material Surfaces in Low Earth orbit. Fluorescence was observed in two types of thermal control coatings and is attributed to pigments or binders. In addition, fluorescence measurement on the silver Teflon from the front cover of TCSE led to confirmation of damage (cracking) to the metal layers during application.

  17. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    PubMed Central

    Leeuw, Thomas; Boss, Emmanuel S.; Wright, Dana L.

    2013-01-01

    Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger. PMID:23783738

  18. Quantum dots fluorescence quantum yield measured by Thermal Lens Spectroscopy.

    PubMed

    Estupiñán-López, Carlos; Dominguez, Christian Tolentino; Cabral Filho, Paulo E; Fontes, Adriana; de Araujo, Renato E

    2014-01-01

    An essential parameter to evaluate the light emission properties of fluorophores is the fluorescence quantum yield, which quantify the conversion efficiency of absorbed photons to emitted photons. We detail here an alternative nonfluorescent method to determine the absolute fluorescence quantum yield of quantum dots (QDs). The method is based in the so-called Thermal Lens Spectroscopy (TLS) technique, which consists on the evaluation of refractive index gradient thermally induced in the fluorescent material by the absorption of light. Aqueous dispersion carboxyl-coated cadmium telluride (CdTe) QDs samples were used to demonstrate the Thermal Lens Spectroscopy technical procedure. PMID:25103802

  19. Aberrations of a horizontal-vertical depolarizer

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.; Hillman, Lloyd W.

    1992-01-01

    Ray-trace equations for uniaxial birefringent materials are used here to derive third-order estimates for aberrations that are produced in imaging through uniaxial plates and horizontal-vertical (HV) depolarizers. An HV depolarizer is a spatial pseudodepolarizer; it converts a uniform input polarization state into a continuum of spatially varying polarization states in an output beam. An HV depolarizer consists of two birefringent wedges whose crystal axes are crossed at 90 deg. The interface between the wedges is included, which leads to a spatially varying retardance that provides the spatial pseudodepolarization. In HV depolarizers, spherical aberration, astigmatism, and image doubling are the principal aberrations for on-axis objects. Only spherical aberration occurs in isotropic plates, while the presence of birefringent wedges introduces astigmatism and image doubling. It is shown that image separation is proportional to the magnitude of the retardance variation.

  20. Lidar ratio and depolarization ratio for cirrus clouds.

    PubMed

    Chen, Wei-Nai; Chiang, Chih-Wei; Nee, Jan-Bai

    2002-10-20

    We report on studies of the lidar and the depolarization ratios for cirrus clouds. The optical depth and effective lidar ratio are derived from the transmission of clouds, which is determined by comparing the backscattering signals at the cloud base and cloud top. The lidar signals were fitted to a background atmospheric density profile outside the cloud region to warrant the linear response of the return signals with the scattering media. An average lidar ratio, 29 +/- 12 sr, has been found for all clouds measured in 1999 and 2000. The height and temperature dependences ofthe lidar ratio, the optical depth, and the depolarization ratio were investigated and compared with results of LITE and PROBE. Cirrus clouds detected near the tropopause are usually optically thin and mostly subvisual. Clouds with the largest optical depths were found near 12 km with a temperature of approximately -55 degrees C. The multiple-scattering effect is considered for clouds with high optical depths, and this effect lowers the lidar ratios compared with a single-scattering condition. Lidar ratios are in the 20-40 range for clouds at heights of 12.5-15 km and are smaller than approximately 30 in height above 15 km. Clouds are usually optically thin for temperatures below approximately -65 degrees C, and in this region the optical depth tends to decrease with height. The depolarization ratio is found to increase with a height at 11-15 km and smaller than 0.3 above 16 km. The variation in the depolarization ratio with the lidar ratio was also reported. The lidar and depolarization ratios were discussed in terms of the types of hexagonal ice crystals. PMID:12396200

  1. Naphthalene laser-induced fluorescence measurements at low temperature and pressure.

    PubMed

    Combs, Christopher S; Clemens, Noel T

    2016-05-01

    Few studies on naphthalene vapor fluorescence have been conducted at low temperature and pressure conditions. The current study focuses on conducting measurements of naphthalene quenching and absorption cross section in a temperature- and pressure-regulated test cell with 266 nm laser excitation. The test-cell measurements were of the naphthalene-fluorescence lifetime and integrated fluorescence signal over the temperature range of 100 to 525 K and pressure range of 1 to 40 kPa in air. These data enabled the calculation of naphthalene-fluorescence quantum yield and absorption cross section over the range of temperatures and pressures tested, which were then fit to simple functional forms for future use in the calibration of naphthalene laser-induced fluorescence (LIF) measurements. Furthermore, the variation of naphthalene-fluorescence signal with respect to temperature was investigated for four different excitation wavelengths, demonstrating that a two-line naphthalene LIF thermometry technique may be feasible. PMID:27140385

  2. Atmospheric Depolarization Lidar Experimental Receiver: A Space Shuttle Hitchhiker Payload

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Scott, V. Stanley; Spinhirne, James D.

    1998-01-01

    Development work is underway at the Goddard Space Flight Center to construct a depolarization measuring atmospheric lidar receiver. The Atmospheric Lidar (AL) is tentatively scheduled to fly on the Space Shuttle in a late-1999 time frame. The AL will fly in conjunction with the Shuttle Laser Altimeter (SLA) and the Infrared Spectral Imaging Radiometer (ISIR) to provide a comprehensive package of atmospheric aerosol and cloud information. The AL operates in conjunction with the SLA laser transmitter and measures profiles of atmospheric backscatter at 532 nm. The receiver system discriminates between the parallel and perpendicular polarizations of the backscattered signal, thus providing depolarization ratios for scattering from clouds. The lidar receiver also provides cloud height and thickness measurements to complement the brightness temperature measurements generated by the ISIR thermal imager. The function of the AL is twofold. The primary function is to provide range-resolved measurements of atmospheric aerosol backscatter and depolarization ratio at 532 nm with 75 m vertical resolution. The scientific purpose of these measurements is to determine composition of clouds based on the depolarization ratio (i.e cloud content is water or ice), to determine cloud height and thickness, and to gain further understanding of the global distribution of aerosols. This information, when coupled with the cloud brightness measured by the ISIR thermal imager will provide a significant amount of information on cloud composition and radiative effects, particularly for cirrus and sub-visual cirrus clouds. A secondary function of the AL is to serve as an in-space test bed for lidar technology advancements, including a fully fiber-coupled receiver and photon counting from space. In addition, the data obtained by the AL will be used to develop software for the Geoscience Laser Altimeter System (GLAS) flight mission.

  3. [Study on fluorescence measurement system of wastewater treatment process].

    PubMed

    Wu, Zhi-Xiang; Wang, Jun-Bo; Li, Zhan-Feng; Deng, Hu

    2011-06-01

    The present paper, focusing on the relationship between the fluorescence characteristics of fluorescent substances produced by the anaerobic reactors in process of the wastewater treatment status, aims to build an online detection platform of anaerobic wastewater treatment process for the wastewater treatment process parameter control, to provide effective, credible and stable technical basis, and to a certain extent can improve the efficiency of wastewater treatment. The results showed that it is feasible for this system to use fluorescence spectroscopy of wastewater treatment anaerobic reactor during the test; compared with the conventional detection method, it has simple structure, high sensitivity, and less time-consuming advantages; for other fluorescent substances in waste water treatment, it has broad application prospects. PMID:21847935

  4. Color measurements on prints containing fluorescent whitening agents

    NASA Astrophysics Data System (ADS)

    Andersson, Mattias; Norberg, Ole

    2007-01-01

    Papers with a slightly blue shade are, at least among a majority of observers being perceived as whiter than papers having a more neutral color1. Therefore, practically all commercially available printing papers contain bluish dyes and fluorescent whitening agents (FWA) to give the paper a whiter appearance. Furthermore, in the paper industry, the most frequently used measure for paper whiteness is the CIE-whiteness. The CIE Whiteness formula, does in turn, also favor slightly bluish papers. Excessive examples of high CIE-whiteness values can be observed in the office-paper segment where a high CIE-whiteness value is an important sales argument. As an effect of the FWA, spectrophotometer measurements of optical properties such as paper whiteness are sensitive to the ultraviolet (UV) content of the light source used in the instrument. To address this, the standard spectrophotometers used in the paper industry are equipped with an adjustable filter for calibrating the UV-content of the illumination. In the paper industry, spectrophotometers with d/0 measurement geometry and a light source of type C are used. The graphical arts industry on the other hand, typically measures with spectrophotometers having 45/0 geometry and a light source of type A. Moreover, these instruments have only limited possibilities to adjust the UV-content by the use of different weighting filters. The standard for color measurements in the paper industry governs that measurements should be carried out using D65 standard illumination and the 10 ° standard observer. The corresponding standard for the graphic arts industry specify D50 standard illumination and the 2 ° standard observer. In both cases, the standard illuminants are simulated from the original light source by spectral weighting functions. However, the activation of FWA, which will impact the measured spectral reflectance, depends on the actual UV-content of the illumination used. Therefore, comparisons between measurements on

  5. Determination of biological activity from fluorescence-lifetime measurements in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Rudek, F.; Baselt, T.; Lempe, B.; Taudt, C.; Hartmann, P.

    2015-03-01

    The importance of fluorescence lifetime measurement as an optical analysis tool is growing. Many applications already exist in order to determine the fluorescence lifetime, but the majority of these require the addition of fluorescence-active substances to enable measurements. Every usage of such foreign materials has an associated risk. This paper investigates the use of auto-fluorescing substances in Saccharomyces cerevisiae (Baker's yeast) as a risk free alternative to fluorescence-active substance enabled measurements. The experimental setup uses a nitrogen laser with a pulse length of 350 ps and a wavelength of 337 nm. The excited sample emits light due to fluorescence of NADH/NADPH and collagen. A fast photodiode collects the light at the output of an appropriate high-pass edge-filter at 400 nm. Fluorescence lifetimes can be determined from the decay of the measurement signals, which in turn characterizes the individual materials and their surrounding environment. Information about the quantity of the fluorescence active substances can also be measured based on the received signal intensity. The correlation between the fluorescence lifetime and the metabolic state of Saccharomyces cerevisiae was investigated and is presented here.

  6. Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames.

    PubMed

    Mokhov, A V; Levinsky, H B; van der Meij, C E; Jacobs, R A

    1995-10-20

    The influence of fluctuating concentrations and temperature on the laser-induced-fluorescence (LIF) measurement of CO in turbulent flames is described, under conditions in which the fluorescence and the temperature are measured independently. The analysis shows that correlations between CO concentration and temperature can bias the averaged mole fraction extracted from LIF measurements. The magnitude of the bias can exceed the order of the average CO mole fraction. Further, LIF measurements of CO concentrations in a turbulent, nonpremixed, natural gas flame are described. The averaged CO mole fractions are derived from the fluorescence measurements by the use of flame temperatures independently measured by coherent anti-Stokes Raman spectroscopy. Analysis of the fluctuations in measured temperature and fluorescence indicates that temperature and CO concentrations in flame regions with intensive mixing are indeed correlated. In the flame regions where burnout of CO has ceased, the LIF measurements of the CO mole fraction correspond to the probe measurements in exhaust. PMID:21060569

  7. Measuring thermodynamic details of DNA hybridization using fluorescence

    PubMed Central

    You, Yong; Tataurov, Andrey V; Owczarzy, Richard

    2011-01-01

    Modern real-time PCR systems make it easy to monitor fluorescence while temperature is varied for hundreds of samples in parallel, permitting high-throughput studies. We employed such system to investigate melting transitions of ordered nucleic acid structures into disordered random coils. Fluorescent dye and quencher were attached to oligonucleotides in such a way that changes of fluorescence intensity with temperature indicated progression of denaturation. When fluorescence melting data were compared with traditional ultraviolet optical experiments, commonly used dye/quencher combinations, like fluorescein and tetramethylrhodamine, showed substantial discrepancies. We have therefore screened 22 commercially available fluorophores and quenchers for their ability to reliably report annealing and melting transitions. Dependence of fluorescence on temperature and pH was also investigated. The optimal performance was observed using Texas Red or ROX dyes with Iowa Black RQ or Black Hole quenchers. These labels did not alter two-state nature of duplex melting process and provided accurate melting temperatures, free energies, enthalpies, and entropies. We also suggest a new strategy for determination of DNA duplex thermodynamics where concentration of a dye-labeled strand is kept constant and its complementary strand modified with a quencher is added at increasing excess. These methodological improvements will help build predictive models of nucleic acid hybridization. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 472–486, 2011. PMID:21384337

  8. Suppression of Ultracold Neutron Depolarization on Material Surfaces with Magnetic Holding Fields

    NASA Astrophysics Data System (ADS)

    Rios, Raymond

    2009-05-01

    The depolarization of Ultracold Neutrons(UCN) was measured within 1-m long, 2 3/4" diameter electropolished copper, diamondlike carbon-coated copper, and stainless steel guide tubes as a function of magnetic holding field. The UCN were trapped between a 6 Tesla solenoidal magnetic field and a 3/8" copper aperture. A series of Helmholtz coils produced a magnetic field over the length of the test guide of either 10 or 250 Gauss. The surface depolarization was observed to be suppressed at the higher holding field on the measured copper guides. These measurements will aid in the determination of the upper limit of depolarization of UCN in the UCN beta asymmetry measurement at LANL (UCNA) and in understanding the mechanisms for depolarization in non-magnetic guides.

  9. Frequency domain fluorescence lifetime microwell-plate platform for respirometry measurements

    NASA Astrophysics Data System (ADS)

    Chatni, M. R.; Yale, G.; Van Ryckeghem, A.; Porterfield, D. M.

    2010-04-01

    Traditionally micro-well plate based platforms used in biology utilize fluorescence intensity based methods to measure processes of biological relevance. However, fluorescence intensity measurements suffer from calibration drift due to a variety of factors. Photobleaching and self-quenching of the fluorescent dyes cause the intensity signal to drop over the lifetime of sensor immobilized inside the well. Variation in turbidity of the sample during the course of the measurement affects the measured fluorescence intensity. In comparison, fluorescence lifetime measurements are not significantly affected by these factors because fluorescence lifetime is a physico-chemical property of the fluorescent dye. Reliable and inexpensive frequency domain fluorescence lifetime instrumentation platforms are possible because the greater tolerance for optical alignment, and because they can be performed using inexpensive light sources such as LEDs. In this paper we report the development of a frequency domain fluorescence lifetime well-plate platform utilizing an oxygen sensitive transition-metal ligand complex fluorophore with a lifetime in the microsecond range. The fluorescence lifetime dye is incorporated in a polymer matrix and immobilized on the base of micro-well of a 60 well micro-well plate. Respiration measurements are performed in both aqueous and non-aqueous environment. Respirometry measurements were recorded from single Daphnia magna egg in hard water. Daphnia is an aquatic organism, important in environmental toxicology as a standard bioassay and early warning indicator for water quality monitoring. Also respirometry measurements were recorded from Tribolium castaneum eggs, which are common pests in the processed flour industry. These eggs were subjected to mitochondrial electron transport chain inhibitor such as potassium cyanide (KCN) and its effects on egg respiration were measured in real-time.

  10. Depolarization of Cellular Resting Membrane Potential Promotes Neonatal Cardiomyocyte Proliferation In Vitro

    PubMed Central

    Lan, Jen-Yu; Williams, Corin; Levin, Michael; Black, Lauren Deems

    2014-01-01

    Cardiomyocytes (CMs) undergo a rapid transition from hyperplastic to hypertrophic growth soon after birth, which is a major challenge to the development of engineered cardiac tissue for pediatric patients. Resting membrane potential (Vmem) has been shown to play an important role in cell differentiation and proliferation during development. We hypothesized that depolarization of neonatal CMs would stimulate or maintain CM proliferation in vitro. To test our hypothesis, we isolated postnatal day 3 neonatal rat CMs and subjected them to sustained depolarization via the addition of potassium gluconate or Ouabain to the culture medium. Cell density and CM percentage measurements demonstrated an increase in mitotic CMs along with a ~2 fold increase in CM numbers with depolarization. In addition, depolarization led to an increase in cells in G2 and S phase, indicating increased proliferation, as measured by flow cytometry. Surprisingly depolarization of Vmem with either treatment led to inhibition of proliferation in cardiac fibroblasts. This effect is abrogated when the study was carried out on postnatal day 7 neonatal CMs, which are less proliferative, indicating that the likely mechanism of depolarization is the maintenance of the proliferating CM population. In summary, our findings suggest that depolarization maintains postnatal CM proliferation and may be a novel approach to encourage growth of engineered tissue and cardiac regeneration in pediatric patients. PMID:25295125

  11. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer. PMID:15223288

  12. Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer.

    PubMed

    de Sande, Juan Carlos G; Santarsiero, Massimo; Piquero, Gemma; Gori, Franco

    2012-12-01

    The polarization characteristics of unpolarized light passing through a double wedge depolarizer are studied. It is found that the degree of polarization of the radiation propagating after the depolarizer is uniform across transverse planes after the depolarizer, but it changes from one plane to another in a periodic way giving, at different distances, unpolarized, partially polarized, or even perfectly polarized light. An experiment is performed to confirm this result. Measured values of the Stokes parameters and of the degree of polarization are in complete agreement with the theoretical predictions. PMID:23262685

  13. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    PubMed Central

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-01-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters. PMID:27181496

  14. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra.

    PubMed

    Goun, Alexei; Bondar, Denys I; Er, Ali O; Quine, Zachary; Rabitz, Herschel A

    2016-01-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters. PMID:27181496

  15. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    NASA Astrophysics Data System (ADS)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  16. Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration.

    PubMed

    Mayer, R H; Reynolds, J S; Sevick-Muraca, E M

    1999-08-01

    A method is presented to determine fluorescence decay lifetimes within tissuelike scattering media. Fluorescence lifetimes are determined for micromolar concentrations of the dyes 3,3'-Diethylthiatricarbocyanine Iodide and Indocyanine Green by frequency-domain investigations of light propagating in turbid media. Dual-wavelength photon-migration measurements that use intensity-modulated sources at excitation and emission wavelengths of the fluorophores provide optical parameters of the media as well as fluorescence properties of the dyes. The deduction of fluorescence lifetimes requires no calibration with reference fluorophores, and the results are shown to be independent of dye concentration. PMID:18323983

  17. Intestine pH measurements using fluorescence imaging: an in-vivo preliminary study

    NASA Astrophysics Data System (ADS)

    Marechal, Xavier-Marie; Mordon, Serge R.; Devoisselle, Jean-Marie; Begu, Sylvie; Mathieu, D.; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Neviere, Remi; Chopin, Claude

    1999-02-01

    Measurement of gastrointestinal intramucosal pH has been recognized as an important factor in the detection of hypoxia-induced dysfunctions. However, current pH measurement techniques are limited in terms of time and spatial resolution. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-4,5- carboxyfluorescein (BCECF). This study aimed to demonstrate the feasibility of fluorescence imaging technique to measure in vivo the pH of intestine. The intestine was inserted in an optical chamber placed under a microscope. Animals were injected i.v. with the pH-sensitive fluorescent dye BCECF. Fluorescence was visualized by illuminating the intestine alternately at 490 and 470 nm. The emitted fluorescence was directed to an intensified camera. The ratio of emitted fluorescence at excitation wavelengths of 490 and 470 nm was measured, corrected and converted to pH by constructing a calibration curve. The pH controls were performed with a pH microelectrode correlated with venous blood gas sampling. We concluded that accurate pH measurements of rat intestine can be obtained by fluorescence imaging using BCECF. This technology could be easily adapted for endoscopic pH measurement.

  18. Droplet temperature measurement based on 2-color laser-induced exciplex fluorescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyin; Zhang, Gaoming; Xu, Min; Wang, Jianxin

    2013-08-01

    Measurements of liquid phase temperature distributions in liquid-vapor co-existing conditions (such as in evaporating sprays) are important to understand the physics of droplet evaporation. The techniques based on laser-induced fluorescence are not suitable for evaporating case since both liquid and vapor phases emit fluorescence with the same wavelength. In this study, the fluorescence from liquid and vapor phases was separated by use of laser-induced exciplex fluorescence (LIEF) technique. Two fluorescence bands from the liquid phase fluorescence spectra were detected simultaneously, and their intensity ratio was correlated to the liquid phase temperature. For the LIEF imaging system, FB-DEMA- n-hexane was selected as it was a typical LIEF system for the vapor concentration diagnostic, and thus easily to be extended to a simultaneous diagnostic on the vapor concentration and the droplet temperature. The fluorescence spectra were obtained in the temperature range from 303 to 423 K. The effects of liquid temperature, liquid pressure, dopant concentration and laser energy on the temperature measurement were investigated. The results show a good linear relationship between the fluorescence ratio and the temperature function. Increasing the dopant concentration can raise the signal-to-noise ratio but deteriorate temperature sensitivity. The optimal range of the dopant concentration was found between 0.1 % and 0.5 %. After calibration, the technique was applied to a monosized droplet stream, and the measurement results demonstrated excellent measurement accuracy with error below 1 % in the range of 303-423 K.

  19. Relative entropy convergence for depolarizing channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the convergence of states under continuous-time depolarizing channels with full rank fixed points in terms of the relative entropy. The optimal exponent of an upper bound on the relative entropy in this case is given by the log-Sobolev-1 constant. Our main result is the computation of this constant. As an application, we use the log-Sobolev-1 constant of the depolarizing channels to improve the concavity inequality of the von Neumann entropy. This result is compared to similar bounds obtained recently by Kim and we show a version of Pinsker's inequality, which is optimal and tight if we fix the second argument of the relative entropy. Finally, we consider the log-Sobolev-1 constant of tensor-powers of the completely depolarizing channel and use a quantum version of Shearer's inequality to prove a uniform lower bound.

  20. Zinc depolarized electrochemical CO2 concentration

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  1. Localization of nerve depolarization with magnetic stimulation.

    PubMed

    Odderson, I R; Halar, E M

    1992-06-01

    The specific location on the magnetic stimulation (MS) coil that may correspond to the area of nerve depolarization has not been determined. In order to localize such an area, MS with 9-cm and 5-cm diameter coils was compared with conventional percutaneous electric stimulation (ES). On the 9-cm coil the distribution of points of nerve depolarization corresponded to that quarter of the coil which was placed over and parallel to the median nerve, whereas on the 5-cm coil, this area also extended outside the coil. The points of median nerve depolarization with MS were distributed over a distance of 7 cm on the stimulator head and was nearly identical for the 2 coil sizes at the wrist and elbow. Ulnar nerve costimulation was less frequent with the smaller coil at the wrist. A calculated reference point on the coil is suggested for more accurate NCV determinations. PMID:1508235

  2. Capturing Depolarization Information in GPS Reflections

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.

    2000-01-01

    The state of the surface of the ocean has a prominent effect on the depolarization of the circularly polarized emissions of the GPS satellites. The system designers election to capture the important information carries with it the need to implement the data extraction in a cost efficient manner. Antenna components, and associated networks for deriving depolarization information are described. For typical sea states the polarization characteristics of the reflected GPS signal vary rapidly with time so various methods for recording the changes are discussed.

  3. Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis

    NASA Astrophysics Data System (ADS)

    Rossini, M.; Nedbal, L.; Guanter, L.; Ač, A.; Alonso, L.; Burkart, A.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Hanus, J.; Janoutova, R.; Julitta, T.; Kokkalis, P.; Moreno, J.; Novotny, J.; Panigada, C.; Pinto, F.; Schickling, A.; Schüttemeyer, D.; Zemek, F.; Rascher, U.

    2015-03-01

    Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated grass carpet. The reflectance signal of the two grass carpets was indistinguishable, confirming that the fast dynamic changes in fluorescence emission were related to variations in the functional status of actual photosynthesis induced by herbicide application. Our results from a controlled experiment at the local scale illustrate the potential for the global mapping of terrestrial photosynthesis through space-borne measurements of chlorophyll fluorescence.

  4. Temperature dependent steady state and picosecond kinetic fluorescence measurements of a photosystem I preparation from spinach

    SciTech Connect

    Mukerji, I.; Sauer, K.

    1988-08-01

    The fluorescence properties of a photosystem I (PSI) preparation from spinach containing approximately 200 chlorophyll (Chl) per reaction center were investigated. The preparation, characterized both spectroscopically and biochemically, contained the peripheral light harvesting antenna associated with PSI. In this study steady state fluorescence measurements were performed as a function of temperature. An emission maximum at 690 nm and a long wavelength shoulder from 710 to 740 nm were observed. The fluorescence yield at 690 nm is temperature independent, while the yield of the long wavelength shoulder increases dramatically with decreasing temperature. Additionally, kinetic measurements using the technique of single photon counting were done at room temperature and 77K. At 295K a four component fit was needed to describe the fluorescence decay; whereas at 77K, an additional 40-50 ps rise component indicative of fluorescence induction was necessary. 28 refs., 13 figs., 1 tab.

  5. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    SciTech Connect

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  6. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  7. INTER-LABORATORY STUDY OF CELLULAR FLUORESCENCE INTENSITY MEASUREMENTS WITH FLUORESCEIN-LABELED MICROBEAD STANDARDS

    EPA Science Inventory

    To determine the precision of cellular fluorescence intensity (FI) measurements derived from labeled microbead standards, FI results were compared from 43 different flow cytometers in 34 laboratories. ll laboratories analyzed prepared aliquots of fluoresceinated calf thymocyte nu...

  8. Direct determination of fluorescent whitening agents by absorption measurement in situ on thin layer chromatograms.

    PubMed

    Theidel, H

    1975-01-01

    The measuring technique for the chromatogram spectrophotometer (Zeiss) to determine the reflectance curves, the analysis according to the Kubelka-Munck function, and the basic outlines of the quantitative determination of stilbene fluorescent whitening agents (FWAs) are explained. PMID:1064527

  9. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  10. Intrinsic photosensitizer fluorescence measured using multi-diameter single-fiber spectroscopy in vivo

    NASA Astrophysics Data System (ADS)

    van Leeuwen-van Zaane, Floor; Gamm, Ute A.; van Driel, Pieter B. A. A.; Snoeks, Thomas J.; de Bruijn, Henriette S.; van der Ploeg-van den Heuvel, Angelique; Sterenborg, Henricus J. C. M.; Löwik, Clemens W.; Amelink, Arjen; Robinson, Dominic J.

    2014-01-01

    Quantification of fluorescence in vivo is complicated by the influence of tissue optical properties on the collected fluorescence signal. When tissue optical properties in the measurement volume are quantified, one can obtain the intrinsic fluorescence, which equals the product of fluorophore absorption coefficient and quantum yield. We applied this method to in vivo single-fiber fluorescence spectroscopy measurements on mouse tongue, skin, liver, and oral squamous cell carcinoma, where we detected intrinsic fluorescence spectra of the photosensitizers chlorin e6 and Bremachlorin at t=[3,4.5,6,24,48] h incubation time. We observed a tissue-dependent maximum of 35% variation in the total correction factor over the visible wavelength range. Significant differences in spectral shape over time between sensitizers were observed. Although the wavelength position of the fluorescence intensity maximum for ce6 shifted to the red, Bremachlorin showed a blue shift. Furthermore, the Bremachlorin peak appeared to be broader than the ce6 fluorescence peak. Intrinsic fluorescence intensity, which can be related to photosensitizer concentration, was decreasing for all time points but showed significantly more Bremachlorin present compared to ce6 at long incubation times. Results from this study can be used to define an optimal treatment protocol for Bremachlorin-based photodynamic therapy.

  11. Measurement of the Fluorescence Quantum Yield Using a Spectrometer With an Integrating Sphere Detector.

    PubMed

    Gaigalas, Adolfas K; Wang, Lili

    2008-01-01

    A method is proposed for measuring the fluorescence quantum yield (QY) using a commercial spectrophotometer with a 150 mm integrating sphere (IS) detector. The IS detector is equipped with an internal cuvette holder so that absorbance measurements can be performed with the cuvette inside the IS. In addition, the spectrophotometer has a cuvette holder outside the IS for performing conventional absorbance measurements. It is shown that the fluorescence quantum yield can be obtained from a combination of absorbance measurements of the buffer and the analyte solution inside and outside the IS detector. Due to the simultaneous detection of incident and fluorescent photons, the absorbance measurements inside the IS need to be adjusted for the wavelength dependence of the photomultiplier detector and the wavelength dependence of the IS magnification factor. An estimate of the fluorescence emission spectrum is needed for proper application of the wavelength-dependent adjustments. Results are presented for fluorescein, quinine sulfate, myoglobin, rhodamine B and erythrosin B. The QY of fluorescein in 0.1 mol/L NaOH was determined as 0.90±0.02 where the uncertainty is equal to the standard deviation of three independent measurements. The method provides a convenient and rapid estimate of the fluorescence quantum yield. Refinements of the measurement model and the characteristics of the IS detector can in principle yield an accurate value of the absolute fluorescence quantum yield. PMID:27096110

  12. Optical fiber sensor system for oil contamination measurement based on 3D fluorescence spectrum parameterization

    NASA Astrophysics Data System (ADS)

    Shang, Liping; Shi, Jinshan

    2000-10-01

    In recent years oil contamination in water is more serious and destroys the mode of life and relation to water body environments. Excitation fluorescence method is one of the main approaches to monitor oil contamination on line. But average intensity of oil fluorescence only indicates its density, not indicates the type of contamination oil. Two-dimensional fluorescence spectrum is more difficult to determine the kind of oil, because the different oil has fluorescence spectrum overlapping to a great extent. In this paper, the 3D fluorescence spectrum parameterization is introduced. It can extract several characteristic parameters to measure the kid of oil to be measured. A prototype of optical fiber 3D fluorescence spectrum meter we developed carries out the identification of different oil types, such as crude oil, diesel oil and kerosene. The experiment arrangement conceived to measure pulse xenon lamp induced of oil component in water. The experiment results state clearly that the 3D fluorescence spectrum parameterization and software are successful to measure oil density and identify the type of oil in situ.

  13. A double filtering method for measuring the translational velocity of fluorescently stained cells

    SciTech Connect

    Yasokawa, Toshiki; Ishimaru, Ichirou; Kuriyama, Shigeki; Masaki, Tsutomu; Takegawa, Kaoru; Tanaka, Naotaka

    2007-09-24

    The authors propose a double filtering method to measure translational velocity for tracking fluorescently stained cells. This method employs two diffraction gratings installed in the infinity space through which the parallel pencil beam of the fluorescence passes. With this method, the change in light intensity whose period is proportional to the translational velocity of the sample can be obtained at the imaging surface. By using a sample that has a random distribution of fluorescence intensity, the authors verified that translational velocity measurements could be achieved using the proposed method.

  14. A bio-aerosol detection technique based on tryptophan intrinsic fluorescence measurement

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Zhang, Pei; Zhu, Linglin; Zhao, Yongkai; Huang, Huijie

    2011-12-01

    Based on the measurement of intrinsic fluorescence, a set of bio-aerosol including virus aerosols detection instrument is developed, with which a method of calibration is proposed using tryptophan as the target. The experimental results show a good linear relationship between the fluorescence voltage of the instrument and the concentration of the tryptophan aerosol. An excellent correlation (R2>=0.99) with the sensitivity of 4000PPL is obtained. The research demonstrates the reliability of the bio-aerosol detection by measuring the content of tryptophan. Further more the feasibility of prejudgment to the species of bio-aerosol particles with the multi-channel fluorescence detection technology is discussed.

  15. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  16. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  17. Confidence intervals for concentration and brightness from fluorescence fluctuation measurements.

    PubMed

    Pryse, Kenneth M; Rong, Xi; Whisler, Jordan A; McConnaughey, William B; Jiang, Yan-Fei; Melnykov, Artem V; Elson, Elliot L; Genin, Guy M

    2012-09-01

    The theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation amplitudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations. The χ(2) hypersurface in the neighborhood of the optimum parameter set can have varying degrees of curvature, due to the intrinsic curvature of the model, the specific parameter values of the system under study, and the relative noise in the data. Because of this varying curvature, parameters estimated from the least-squares analysis have varying degrees of uncertainty associated with them. There are several methods for assigning confidence intervals to the parameters, but these methods have different efficacies for PCH data. Here, we evaluate several approaches to confidence interval estimation for PCH data, including asymptotic standard error, likelihood joint-confidence region, likelihood confidence intervals, skew-corrected and accelerated bootstrap (BCa), and Monte Carlo residual resampling methods. We study these with a model two-dimensional membrane system for simplicity, but the principles are applicable as well to fluorophores diffusing in three-dimensional solution. Using simulated fluorescence fluctuation data, we find the BCa method to be particularly well-suited for estimating confidence intervals in PCH analysis, and several other methods to be less so. Using the BCa method and additional simulated fluctuation data, we find that confidence intervals can be reduced dramatically for a specific non-Gaussian beam profile. PMID:23009839

  18. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Slezak, Ondrej; Yasuhara, Ryo; Lucianetti, Antonio; Vojna, David; Mocek, Tomas

    2015-06-01

    Thermal birefringence-induced depolarization in terbium gallium garnet (TGG) ceramic rods has been numerically evaluated for the geometry and heating conditions in a previous experiment. In this model, the spatially resolved heat transfer coefficient corresponding to natural convection cooling and the offset of the beam from the rotational axis of the rod have been incorporated and the realistic beam profile used in the experiment has been considered. A resulting beam depolarization ratio of 4.3 × 10-4 has been calculated for an input power of 117 W. The results were found to be in good agreement with the measured values. Furthermore, a parametric study of the depolarization ratio for higher input powers has been performed leading to a depolarization ratio of 3.3 × 10-2 for 1 kW input power.

  19. A research on measuring and analyzing the optical properties of fluorescent whitening agent in soybean milk

    NASA Astrophysics Data System (ADS)

    Zhu, Xingyue; Zhao, Zhimin; Zhang, Lin; Qian, Kun; Wang, Lexin; Lan, Xiufeng

    2015-03-01

    A research on measuring and analyzing the fluorescence spectra of fluorescent whitening agent in soybean milk was explained in this paper. At the temperature of 30 °C, linear relationship was found good between fluorescence intensity and concentration of fluorescent whitening agent in the range of 0.015-0.25 mg/mL when the emission wavelength was 437 nm and excitation wavelength was 347 nm. Modeling analysis showed that the correlation coefficient was 0.996, the relative standard deviation (RSD) ranged from 0.45% to 0.73% and the recovery of standard addition ranged from 96.80% to 102.67%, which testified the validity of the method. This research provided a new way for detecting the unedible fluorescent whitening agent content in food production.

  20. Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements.

    PubMed

    Boreham, Alexander; Pikkemaat, Jens; Volz, Pierre; Brodwolf, Robert; Kuehne, Christian; Licha, Kai; Haag, Rainer; Dernedde, Jens; Alexiev, Ulrike

    2015-01-01

    Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue. PMID:26712722

  1. A novel pretreatment method of three-dimensional fluorescence data for quantitative measurement of component contents in mixture.

    PubMed

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Three-dimensional fluorescence technique is commonly used for the determination of component contents in the mixture. Fluorescence intensity data are used directly in the fluorescent spectrum data processing method. The relationship between fluorescence intensity values and concentrations is linear. Random noise is inevitable in the process of measuring due to fluorescence spectrometer. The measurement accuracy is reduced due to the existence of noise. To reduce random noise and improve the measurement sensitivity, a novel pretreatment method of three-dimensional fluorescence data is proposed. The method is based on Quasi-Monte-Carlo integral. Due to the increased slope of fluorescence intensity data during the integral, the measurement sensitivity is improved. At the same time, the sum of different exponentials of fluorescence intensity at the points reduces the random noise, so the measurement sensitivity is improved more. The recovery rates of the mixture mixed by gasoline, kerosene and diesel oil are calculated to validate the effectiveness of the method. PMID:25638431

  2. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  3. DAPI-fluorescent fading: a problem in microscopy or a way to measure nuclear DNA content?

    NASA Astrophysics Data System (ADS)

    Gallardo-Escárate, Cristian; Álvarez-Borrego, Josué; Kober, V.; del Río-Portilla, Miguel Á.

    2006-01-01

    In observation by confocal or conventional fluorescence microscopy, the retardation of the lost in fluorescence, from highest signal of fluorescence to lowest intensity are important factors in order to obtain accurate images. This problem is very common in fluorochromes for nuclear DNA and especially for DAPI stain. The fluorescence of DAPI is rapidly lost when it is exposure to excitation by ultra violet (UV) light, and especially under optimal condition of observation. Although the fading process could be retardate by using of mounting medium with antifading solutions, the photochemical process underlying the fluorescence decay has not yet been fully explained. In addiction, neither relationship has been tested between the fluorescence fading and nuclear DNA content. However, the capacity of the DNA to absorb UV light is knows. In order to test this relationship we measured by means of image analysis the fluorescence intensity in several nuclei types during a fading period. The analysis was performed by an algorithm specifically built in MATLAB software. The relationship between nuclear DNA content and DAPI-fluorescence fading was found equal to 99%. This study demonstrates the feasibility for estimates genome size by quantification of fluorescence fading. In this context, the present method allows to measure nuclear DNA content in several medical applications (cancer, HIV, organ transplants, etc). Nowadays, for measuring DNA content, flow cytometry is widely used; however, with the flow cytometry method it is not possible to select a specific group of cells, such as from a specific region of a tumor. Moreover, the using of image analysis allows automatizing diagnostics procedures.

  4. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared

    NASA Astrophysics Data System (ADS)

    Chib, Rahul; Shah, Sunil; Gryczynski, Zygmunt; Fudala, Rafal; Borejdo, Julian; Zelent, Bogumil; Corradini, Maria G.; Ludescher, Richard D.; Gryczynski, Ignacy

    2016-02-01

    Allura red (AR) fluorophore, a common dye in the food industry, displays a broad emission spectrum in water (visible-to-near infrared region of the electromagnetic spectrum) and has a remarkably short fluorescence lifetime of about 10 ps. This short lifetime does not depend on the emission (observation) wavelength. We examined time responses of AR fluorescence across emission wavelengths from 550 nm to 750 nm and found that it is an ideal candidate for impulse response functions in fluorescence lifetime measurements.

  5. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; Rouille D'Orfeuil, B.; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2013-02-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y337=5.61±0.06stat±0.22syst photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  6. On-line measurement of lignin in wood pulp by color shift of fluorescence

    DOEpatents

    Jeffers, Larry A.; Malito, Michael L.

    1996-01-01

    Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method.

  7. Ultrafast solvent dynamics: Connection between time resolved fluorescence and optical Kerr measurements

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng; Rosenthal, Sandra J.; Scherer, Norbert F.; Ziegler, Lawrence D.; Fleming, Graham R.

    1992-04-01

    The vibrational characteristics of liquid dynamics are used to describe the ultrafast relaxations observed in time-dependent fluorescence Stokes shift [J. Chem. Phys. 95, 4715 (1991)] and heterodyne detected optical Kerr effect measurements on acetonitrile, via a Brownian oscillator model. Introducing a frequency distribution of vibrational modes makes it possible to compare the two experiments. The ultrafast decays observed in the fluorescence Stokes shift and optical Kerr signals are produced by destructive superposition of the high frequency, underdamped modes.

  8. Simultaneous measurement of Raman scattering and laser-induced OH fluorescence in nonpremixed turbulent jet flames.

    PubMed

    Barlow, R S; Dibble, R W; Lucht, R P

    1989-03-01

    Spontaneous Raman scattering and laser-induced fluorescence are combined to perform simultaneous point measurements of major species concentrations, temperature, and hydroxyl radical concentration in turbulent nonpremixed flames. The Raman-scattering data for major species concentrations and temperature characterize the instantaneous, local, collisional quenching environment of the OH molecule. Collisional quenching corrections are applied for each laser shot so that absolute hydroxyl concentrations are obtained in turbulent flames using linear laser-induced fluorescence. PMID:19749889

  9. On-line measurement of lignin in wood pulp by color shift of fluorescence

    DOEpatents

    Jeffers, L.A.; Malito, M.L.

    1996-01-23

    Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method. 6 figs.

  10. Laser Induced Fluorescence For Measurement Of Lignin Concentrations In Pulping Liquors

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.; Biasca, K. L.; Attala, R.

    1988-11-01

    Laser excited fluorescence of pulping liquors was investigated for use in the pulp and paper industry for process measurement and control applications. Liquors from both mill and laboratory cooks were studied. A Nd-YAG pumped dye laser was used to generate the excitation wavelength of 280 nm; measurements were also performed using a commercially available fluorometer. Measurements on mill pulping liquors gave strong signals and showed changes in the fluorescence intensity during the cook. Absorption spectra of diluted mill liquor samples showed large changes during the cook. Samples from well controlled and characterized laboratory cooks showed fluorescence to be linear with concentration over two decades with an upper limit of approximately 1000 ppm dissolved lignin. At the end of these cooks a possible chemical change was indicated by an increase in the observed fluorescence intensity. Results indicate that lignin concentrations in pulping liquors can be accurately determined with fluorescence in the linear optical region over a greater dynamic range than absorption spectroscopy. Laser induced fluorescence may also provide an indication of chemical changes occurring in the lignin structure during a cook.

  11. Quenching-independent measurement of species concentrations in flames by laser-induced fluorescence

    SciTech Connect

    Salmon, J.T.; Carter, C.D.; Laurendeau, N.M.

    1990-09-01

    This report describes work accomplished in the last two years on measurement of species concentrations in flames via laser-induced fluorescence. During this period, we have published absolute number densities of atomic hydrogen in subatmospheric, premixed C{sub 2}H{sub 4}/O{sub 2}/Ar flames at equivalence ratios of 1.0 and 1.7 via two-photon excited fluorescence. This work has led to the development of a new single-laser, two-step fluorescence method for the detection of atomic hydrogen in flames. Using photoionization controlled-loss spectroscopy (PICLS), we have verified the T{sup {minus}1/2} dependence of quenching on temperature for atomic hydrogen, in agreement with kinetic theory. Previous work on pyrometry using laser-saturated fluorescence (LSF) and the anomalous fluorescence from pyrene has evolved into publication of a major review paper on temperature measurements by light-scattering methods. Finally, we have demonstrated the feasibility of quantitative LSF measurements of NO concentration by obtaining relative saturation curves and NO fluorescence profiles. 25 refs.

  12. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity

    NASA Astrophysics Data System (ADS)

    Levitt, James A.; Chung, Pei-Hua; Suhling, Klaus

    2015-09-01

    Spectrally resolved confocal microscopy and fluorescence lifetime imaging have been used to measure the polarity of lipid-rich regions in living HeLa cells stained with Nile red. The emission peak from the solvatochromic dye in lipid droplets is at a shorter wavelength than other, more polar, stained internal membranes, and this is indicative of a low polarity environment. We estimate that the dielectric constant, ɛ, is around 5 in lipid droplets and 25<ɛ<40 in other lipid-rich regions. Our spectrally resolved fluorescence lifetime imaging microscopy (FLIM) data show that intracellular Nile red exhibits complex, multiexponential fluorescence decays due to emission from a short lifetime locally excited state and a longer lifetime intramolecular charge transfer state. We measure an increase in the average fluorescence lifetime of the dye with increasing emission wavelength, as shown using phasor plots of the FLIM data. We also show using these phasor plots that the shortest lifetime decay components arise from lipid droplets. Thus, fluorescence lifetime is a viable contrast parameter for distinguishing lipid droplets from other stained lipid-rich regions. Finally, we discuss the FLIM of Nile red as a method for simultaneously mapping both polarity and relative viscosity based on fluorescence lifetime measurements.

  13. DEVELOPMENT OF EVALUATION OF A QUANTITATIVE VIDEO-FLUORESCENCE IMAGING SYSTEM AND FLUORESCENT TRACER FOR MEASURING TRANSFER OF PESTICIDE RESIDUES FROM SURFACES TO HANDS WITH REPEATED CONTACTS

    EPA Science Inventory

    A video imaging system and the associated quantification methods have been developed for measurement of the transfers of a fluorescent tracer from surfaces to hands. The highly fluorescent compound riboflavin (Vitamin B2), which is also water soluble and non-toxic, was chosen as...

  14. Validation of fluorescent-labeled microspheres for measurement of relative blood flow in severely injured lungs

    NASA Technical Reports Server (NTRS)

    Hubler, M.; Souders, J. E.; Shade, E. D.; Hlastala, M. P.; Polissar, N. L.; Glenny, R. W.

    1999-01-01

    The aim of the study was to validate a nonradioactive method for relative blood flow measurements in severely injured lungs that avoids labor-intensive tissue processing. The use of fluorescent-labeled microspheres was compared with the standard radiolabeled-microsphere method. In seven sheep, lung injury was established by using oleic acid. Five pairs of radio- and fluorescent-labeled microspheres were injected before and after established lung injury. Across all animals, 175 pieces were selected randomly. The radioactivity of each piece was determined by using a scintillation counter. The fluorescent dye was extracted from each piece with a solvent without digestion or filtering. The fluorescence was determined with an automated fluorescent spectrophotometer. Perfusion was calculated for each piece from both the radioactivity and fluorescence and volume normalized. Correlations between flow determined by the two methods were in the range from 0.987 +/- 0.007 (SD) to 0.991 +/- 0.002 (SD) after 9 days of soaking. Thus the fluorescent microsphere technique is a valuable tool for investigating regional perfusion in severely injured lungs and can replace radioactivity.

  15. Measuring diffusion coefficients via two-photon fluorescence recovery after photobleaching.

    PubMed

    Sullivan, Kelley D; Brown, Edward B

    2010-01-01

    Multi-fluorescence recovery after photobleaching is a microscopy technique used to measure the diffusion coefficient (or analogous transport parameters) of macromolecules, and can be applied to both in vitro and in vivo biological systems. Multi-fluorescence recovery after photobleaching is performed by photobleaching a region of interest within a fluorescent sample using an intense laser flash, then attenuating the beam and monitoring the fluorescence as still-fluorescent molecules from outside the region of interest diffuse in to replace the photobleached molecules. We will begin our demonstration by aligning the laser beam through the Pockels Cell (laser modulator) and along the optical path through the laser scan box and objective lens to the sample. For simplicity, we will use a sample of aqueous fluorescent dye. We will then determine the proper experimental parameters for our sample including, monitor and bleaching powers, bleach duration, bin widths (for photon counting), and fluorescence recovery time. Next, we will describe the procedure for taking recovery curves, a process that can be largely automated via LabVIEW (National Instruments, Austin, TX) for enhanced throughput. Finally, the diffusion coefficient is determined by fitting the recovery data to the appropriate mathematical model using a least-squares fitting algorithm, readily programmable using software such as MATLAB (The Mathworks, Natick, MA). PMID:20190730

  16. Confocal zero-angle dynamic depolarized light scattering.

    PubMed

    Potenza, M A C; Sanvito, T; Alaimo, M D; Degiorgio, V; Giglio, M

    2010-01-01

    We present a novel Dynamic Depolarized Scattering method based on a tight confocal, zero scattering angle, heterodyne scheme. The method is highly immune from parasitic multiple-scattering contributions, so that it can operate with non-index-matched samples presenting large turbidity. It provides measurements of both rotational and translational diffusion coefficients, the latter via number fluctuation spectroscopy. In addition, the amplitude ratio between the two baselines for the fast rotational mode and the slow translational mode can be used to determine the particles intrinsic birefringence. PMID:20087622

  17. Portable x-ray fluorescence spectrometer for coating thickness measurement

    SciTech Connect

    Carapelle, Alain; Fleury-Frenette, Karl; Collette, Jean-Paul; Garnir, Henri-Pierre; Harlet, Philippe

    2007-12-15

    A handheld x-ray spectrometer has been realized and tested. The purpose of the device is to measure the thickness of coated samples in the range of 1-1500 nm in an industrial environment. Accuracy of {approx}3% has been achieved in this range with a measurement time of 1 min. Automated software has been implemented to allow utilization by a nonspecialist operator. An automated calibration procedure, based on measurements of reference samples, is used.

  18. Simultaneous measurement of NK cell cytotoxicity against two target cell lines labelled with fluorescent lanthanide chelates.

    PubMed

    Lövgren, J; Blomberg, K

    1994-07-12

    We describe a cytotoxicity assay which permits the simultaneous measurement of natural killer cell activity against two different cell lines. The target cell lines are labelled either with a fluorescent europium chelate or with a fluorescent terbium chelate and cell death is quantified by measuring the chelate release. K-562, Molt4 and Daudi cell lines have been used as targets. The release of the two chelates from the target cells can be detected with the help of time resolved fluorometry. As the measurements are made after background fluorescence has decayed no additional steps are needed to correct for the background from the medium. The assay procedure used for measurement of cytotoxicity against two target cell lines is very similar to the widely used 51Cr release assay. PMID:8034979

  19. Quantitative correlation between light depolarization and transport albedo of various porcine tissues

    NASA Astrophysics Data System (ADS)

    Alali, Sanaz; Ahmad, Manzoor; Kim, Anthony; Vurgun, Nasit; Wood, Michael F. G.; Vitkin, I. Alex

    2012-04-01

    We present a quantitative study of depolarization in biological tissues and correlate it with measured optical properties (reduced scattering and absorption coefficients). Polarized light imaging was used to examine optically thick samples of both isotropic (liver, kidney cortex, and brain) and anisotropic (cardiac muscle, loin muscle, and tendon) pig tissues in transmission and reflection geometries. Depolarization (total, linear, and circular), as derived from polar decomposition of the measured tissue Mueller matrix, was shown to be related to the measured optical properties. We observed that depolarization increases with the transport albedo for isotropic and anisotropic tissues, independent of measurement geometry. For anisotropic tissues, depolarization was higher compared to isotropic tissues of similar transport albedo, indicating birefringence-caused depolarization effects. For tissues with large transport albedos (greater than ~0.97), backscattering geometry was preferred over transmission due to its greater retention of light polarization; this was not the case for tissues with lower transport albedo. Preferential preservation of linearly polarized light over circularly polarized light was seen in all tissue types and all measurement geometries, implying the dominance of Rayleigh-like scattering. The tabulated polarization properties of different tissue types and their links to bulk optical properties should prove useful in future polarimetric tissue characterization and imaging studies.

  20. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications

    NASA Astrophysics Data System (ADS)

    Drezek, Rebekah A.; Sokolov, Konstantin V.; Utzinger, Urs; Boiko, Iouri; Malpica, Anais; Follen, Michele; Richards-Kortum, Rebecca R.

    2001-10-01

    Objective: At 380 nm excitation, cervical tissue fluorescence spectra demonstrate characteristic changes with both patient age and the presence of dysplasia. A Monte Carlo model was developed in order to quantitatively examine how intrinsic NADH and collagen fluorescence, in combination with tissue scattering and absorption properties, yield measured tissue spectra. Methods: Excitation-emission matrices were measured for live cervical cells and collagen gel phantoms. Fluorescence microscopy of fresh tissue sections was performed to obtain the location and density of fluorophores as a function of patient age and the presence of dysplasia. A Monte Carlo model was developed which incorporated measurements of fluorophore line shapes and spatial distributions. Results: Modeled spectra were consistent with clinical measurements and indicate that an increase in NADH fluorescence and decrease in collagen fluorescence create clinically observed differences between normal and dysplastic tissue spectra. Model predictions were most sensitive to patient age and epithelial thickness. Conclusions: Monte Carlo techniques provide an important means to investigate the combined contributions of multiple fluorophores to measured emission spectra. The approach will prove increasingly valuable as a more sophisticated understanding of in vivo optical properties is developed.

  1. Role of membrane depolarization and extracellular calcium in increased complement receptor expression during neutrophil (PMN) activation

    SciTech Connect

    Berger, M.; Wetzler, E.; Birx, D.L.

    1986-03-05

    During PMN activation the surface expression of receptors (R) for C3b and C3bi increases rapidly. This is necessary for optimal cell adhesion, migration, and phagocytosis. Following stimulation with fMLP or LTB-4, the increased expression of C3bR depends only on the Ca/sup + +/ released from intracellular stores and is not inhibited by 5mM EDTA, while the increase in C3biR also requires extracellular Ca/sup + +/. CR expression also increases when the PMN are depolarized with 140 mM K/sup +/, but with this stimulus, EDTA inhibits C3bR by 67% and C3biR 100%, suggesting that intracellular Ca/sup + +/ stores may not be released. Pertussis toxin caused dose-dependent inhibition of both CR responses to fMLP and also inhibited the increases in both CR induced by K/sup +/. Membrane depolarization (monitored by di-O-C5 fluorescence) due to fMLP was similarly inhibited by toxin but the depolarization due to K/sup +/ was not. The dose of phorbol myristate acetate that maximally increased CR expression, 0.1 ng/ml, did not depolarize the membrane. These results suggest that membrane depolarization is neither necessary nor sufficient for increased CR expression. A Ca/sup + +/ and GTP binding protein-dependent enzyme such as phospholipase C is necessary to the amplify initial signals generated either by release of Ca/sup + +/ stores or by opening voltage dependent Ca/sup + +/ channels following membrane depolarization.

  2. Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    SciTech Connect

    Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

    2005-07-06

    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

  3. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  4. Laser measurement of the spectral extinction coefficients of fluorescent, highly absorbing liquids. [crude petroleum oils

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1982-01-01

    A conceptual method is developed to deduce rapidly the spectral extinction coefficient of fluorescent, highly absorbing liquids, such as crude or refined petroleum oils. The technique offers the advantage of only requiring one laser wavelength and a single experimental assembly and execution for any specific fluorescent liquid. The liquid is inserted into an extremely thin wedge-shaped cavity for stimulation by a laser from one side and flurescence measurement on the other side by a monochromator system. For each arbitrarily selected extinction wavelength, the wedge is driven slowly to increasing thicknesses until the fluorescence extinguishes. The fluorescence as a function of wedge thickness permits a determination of the extinction coefficient using an included theoretical model. When the monochromator is set to the laser emission wavelength, the extinction coefficient is determined using the usual on-wavelength signal extinction procedure.

  5. Fluorescence Spectrum and Decay Measurement for Hsil VS Normal Cytology Differentiation in Liquid Pap Smear Supernatant

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Juodkazis, S.; Jursenas, S.; Miasojedovas, S.; Kurtinaitiene, R.; Rimiene, J.; Vaitkus, J.

    2009-06-01

    Cervical smear material contains endo and exocervical cells, mucus and inflammative, immune cells in cases of pathology. Just not destroyed keratinocytes lay on the glass for microscopy. Liquid cytology supernatant apart other diagnostics could be used for photodiagnostic. The spectroscopic parameters suitable for Normal and HSIL cytology groups supernatant differentiation are demonstrated. The dried liquid PAP supernatant fractions—sediment and liquid were investigated. Excitation and emission matrices (EEM), supernatant fluorescence decay measured under 280 nm diode short pulse excitation and fluorescence spectroscopy by excitation with 355 nm laser light were analyzed. The differences between Normal and HSIL groups were statistically proven in the certain spectral regions. Fluorescence decay peculiarities show spectral regions consisting of few fluorophores. Obtained results on fluorescence differences in Normal and HSIL groups' supernatant shows the potency of photodiagnosis application in cervical screening.

  6. Simultaneous Measurement of Oscillations in Oxygen Evolution and Chlorophyll a Fluorescence in Leaf Pieces 1

    PubMed Central

    Walker, David A.; Sivak, Mirta N.; Prinsley, Roslyn T.; Cheesbrough, John K.

    1983-01-01

    In spinach (Spinacia oleracea) and barley (Hordeum vulgare) leaves, chlorophyll a fluorescence and O2 evolution have been measured simultaneously following re-illumination after a dark interval or when steady state photosynthesis has been perturbed by changes in the gas phase. In high CO2 concentrations, both O2 and fluorescence can display marked dampening oscillations that are antiparallel but slightly out of phase (a rise or fall in fluorescence anticipating a corresponding fall or rise in O2 by about 10 to 15 seconds). Infrared gas analysis measurements showed that CO2 uptake behaved like O2 evolution both in the period of oscillation (about 1 minute) and in its relation to fluorescence. In the steady state, oscillations were initiated by increases in CO2 or by increases or decreases in O2. Oscillations in O2 or CO2 did not occur without associated oscillations in fluorescence and the latter were a sensitive indicator of the former. The relationship between such oscillations in photosynthetic carbon assimilation and chlorophyl a fluorescence is discussed in the context of the effect of ATP or NADPH consumption on known quenching mechanisms. PMID:16663255

  7. Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces.

    PubMed

    Walker, D A; Sivak, M N; Prinsley, R T; Cheesbrough, J K

    1983-11-01

    In spinach (Spinacia oleracea) and barley (Hordeum vulgare) leaves, chlorophyll a fluorescence and O(2) evolution have been measured simultaneously following re-illumination after a dark interval or when steady state photosynthesis has been perturbed by changes in the gas phase. In high CO(2) concentrations, both O(2) and fluorescence can display marked dampening oscillations that are antiparallel but slightly out of phase (a rise or fall in fluorescence anticipating a corresponding fall or rise in O(2) by about 10 to 15 seconds). Infrared gas analysis measurements showed that CO(2) uptake behaved like O(2) evolution both in the period of oscillation (about 1 minute) and in its relation to fluorescence. In the steady state, oscillations were initiated by increases in CO(2) or by increases or decreases in O(2). Oscillations in O(2) or CO(2) did not occur without associated oscillations in fluorescence and the latter were a sensitive indicator of the former. The relationship between such oscillations in photosynthetic carbon assimilation and chlorophyl a fluorescence is discussed in the context of the effect of ATP or NADPH consumption on known quenching mechanisms. PMID:16663255

  8. Fluorescent Mueller matrix analysis of a highly scattering turbid media

    SciTech Connect

    Satapathi, Soumitra; Soni, Jalpa; Ghosh, Nirmalya

    2014-03-31

    We report the fluorescent Mueller matrix analysis of a highly scattering, inhomogeneous, and low quantum yield polymeric nanoparticle system. Both the ground and the excited state anisotropy of this turbid system were measured. The excited state anisotropy was found to be higher than ground state anisotropy by inverse polar decomposition analysis. The depolarization coefficients of these polythiophene nanoparticles were experimentally determined by recording Mueller matrices from this complex random medium. This approach provides an alternative method of determining optical characteristics of low quantum efficiency turbid system like fluorescently leveled tissue phantom.

  9. Laser-induced fluorescence measurement of the dynamics of a pulsed planar sheath

    SciTech Connect

    Goeckner, M.J.; Malik, S.M. ); Conrad, J.R. ); Breun, R.A. )

    1994-04-01

    Using laser-induced fluorescence (LIF) the ion density near the edge of an expanding plasma sheath has been measured. These measurements utilized a transition of N[sup +][sub 2] [the P12 component of the [ital X] [sup 2][Sigma][sup +][sub [ital g

  10. Fluorescence spectroscopy: a rapid, noninvasive method for measurement of skin surface thickness of topical agents.

    PubMed

    Rhodes, L E; Diffey, B L

    1997-01-01

    We report the quantification of skin surface thickness of topical agents by in vivo fluorescence spectroscopy, and demonstrate its potential uses for assessment of application technique and substantivity. A series of studies were performed on forearm skin of eight normal subjects using three creams which have intrinsic fluorescence: a sunscreen (Neutrogena SPF15 waterproof cream), an antiseptic (Hewlett's cream) and a steroid (Trimovate (clobetasone butyrate) cream). Initially, the dose-response relationship was established for each agent by applying a series of five doses (0.5-8 microliters/cm2) and measuring cream fluorescence using appropriate excitation and emission wavelengths. Next, the influence of application technique was examined by comparing light application of cream with firm rubbing. Substantivity of the three creams was assessed on dry skin by taking fluorescence measurements over 8 h. Finally, water resistance of 2 microliters/cm2 of sunscreen and antiseptic cream were compared by measuring fluorescence after each of four water immersions. The fluorescence intensity was strongly correlated with the logarithm of surface density. r = 1.0, 0.92 and 0.98 for sunscreen, antiseptic and steroid creams, respectively, allowing derivation of a simple expression for equivalent thickness. Surface thickness of each cream was lower following firm rubbing compared with light application (P < 0.01). The rate constants for reduction of surface density of the three creams with time on dry skin were not significantly different. However, on washed skin, the rate constant was higher for Hewlett's than Neutrogena cream (0.503 and 0.243 h. respectively, P = 0.02), with a higher rate for each cream on wet compared with dry skin (P < 0.001). Hence, fluorescence spectroscopy is a simple, rapid method for measurement of cream thickness in vivo. The many potential applications in dermatology include quantitative assessment of application technique and substantivity of topical

  11. Time-Resolved Fluorescence Anisotropy of Bicyclo[1.1.1]pentane/Tolane-Based Molecular Rods Included in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP)

    PubMed Central

    2015-01-01

    We examine the fluorescence anisotropy of rod-shaped guests held inside the channels of tris(o-phenylenedioxy)cyclotriphosphazene (TPP) host nanocrystals, characterized by powder X-ray diffraction and solid state NMR spectroscopy. We address two issues: (i) are light polarization measurements on an aqueous colloidal solution of TPP nanocrystals meaningful, or is depolarization by scattering excessive? (ii) Can measurements of the rotational mobility of the included guests be performed at low enough loading levels to suppress depolarization by intercrystallite energy transfer? We find that meaningful measurements are possible and demonstrate that the long axis of molecular rods included in TPP channels performs negligible vibrational motion. PMID:25937858

  12. Measurement of diffusion of fluorescent compounds and autofluorescence in skin in vivo using a confocal instrument

    NASA Astrophysics Data System (ADS)

    Buttenschoen, K. K.; Sutton, E. E.; Daly, D.; Girkin, J. M.

    2016-02-01

    Using compact and affordable instrumentation based upon fluorescent confocal imaging we have tracked the movement of autofluorescent compounds through skin in near real time with high temporal and spatial resolution and sensitivity. The ability to measure the diffusion of compounds through skin with such resolution plays an important role for applications such as monitoring the penetration of pharmaceuticals applied to skin and assessing the integrity of the skin barrier. Several measurement methods exist, but they suffer from a number of problems such as being slow, expensive, non-portable and lacking sensitivity. To address these issues, we adapted a technique that we previously developed for tracking fluorescent compounds in the eye to measure the autofluorescence and the diffusion of externally applied fluorescent compounds in skin in vivo. Results are presented that show the change in autofluorescence of the volar forearm over the course of a week. We furthermore demonstrate the ability of the instrument to measure the diffusion speed and depth of externally applied fluorescent compounds both in healthy skin and after the skin barrier function has been perturbed. The instrument is currently being developed further for increased sensitivity and multi-wavelength excitation. We believe that the presented instrument is suitable for a large number of applications in fields such as assessment of damage to the skin barrier, development of topical and systemic medication and tracking the diffusion of fluorescent compounds through skin constructs as well as monitoring effects of skin products and general consumer products which may come into contact with the skin.

  13. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  14. Quantitative fluorescence measurements of the OH radical in high pressure methane flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1992-01-01

    A method for quantifying laser-induced fluorescence signals from the OH radical in high-pressure flames is presented. The fluorescence signal per unit OH mole fraction is modeled as a function of temperature, pressure, and overall flame stoichiometry. Known values of the collisional quenching cross sections as a function of temperature are used to model the electronic quench rate. The reverse A - X (1.0) Q15 transition is used with broadband collection to measure single-point fluorescence produced by a pulsed Nd:YAG-pumped, frequency-doubled dye laser. Laser absorption and thermocouples are used to measure absolute OH concentration and temperature, respectively, which are used to confirm the validity of the model. Measurements are made in CH4/O2/N2 flames up to 10 atm.

  15. Stochastic path integral approach to continuous quadrature measurement of a single fluorescing qubit

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew N.; Chantasri, Areeya; Huard, Benjamin

    I will present a theory of continuous quantum measurement for a superconducting qubit undergoing fluorescent energy relaxation. The fluorescence of the qubit is detected via a phase-preserving heterodyne measurement, giving the cavity mode quadrature signals as two continuous qubit readout results. By using the stochastic path integral approach to the measurement physics, we obtain the most likely fluorescence paths between chosen boundary conditions on the state, and compute approximate correlation functions between all stochastic variables via diagrammatic perturbation theory. Of particular interest are most-likely paths describing increasing energy during the florescence. Comparison to Monte Carlo numerical simulation and experiment will be discussed. This work was supported by US Army Research Office Grants No. W911NF-09-0-01417 and No. W911NF-15-1-0496, by NSF Grant DMR-1506081, by John Templeton Foundation Grant ID 58558, and by the DPSTT Project Thailand.

  16. Ischemia-induced spreading depolarization in the retina.

    PubMed

    Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna; Newman, Eric A

    2016-09-01

    Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients. PMID:27389181

  17. Calibration of the Pierre Auger Observatory fluorescence detectors and the effect on measurements

    NASA Astrophysics Data System (ADS)

    Gookin, Ben

    The Pierre Auger Observatory is a high-energy cosmic ray observatory located in Malargue, Mendoza, Argentina. It is used to probe the highest energy particles in the Universe, with energies greater than 1018 eV, which strike the Earth constantly. The observatory uses two techniques to observe the air shower initiated by a cosmic ray: a surface detector composed of an array of more than 1600 water Cherenkov tanks covering 3000 km2, and 27 nitrogen fluorescence telescopes overlooking this array. The Cherenkov detectors run all the time and therefore have high statistics on the air showers. The fluorescence detectors run only on clear moonless nights, but observe the longitudinal development of the air shower and make a calorimetric measure of its energy. The energy measurement from the the fluorescence detectors is used to cross calibrate the surface detectors, and makes the measurements made by the Auger Observatory surface detector highly model-independent. The calibration of the fluorescence detectors is then of the utmost importance to the measurements of the Observatory. Described here are the methods of the absolute and multi-wavelength calibration of the fluorescence detectors, and improvements in each leading to a reduction in calibration uncertainties to 4% and 3.5%, respectively. Also presented here are the effects of introducing a new, and more detailed, multi-wavelength calibration on the fluorescence detector energy estimation and the depth of the air shower maximum measurement, leading to a change of 1+-0.03% in the absolute energy scale at 1018 eV, and a negligible change in the measurement on shower maximum.

  18. Measurement of partial L fluorescence yields of bismuth using synchrotron radiation.

    PubMed

    Ménesguen, Yves; Boyer, Bruno; Rodrigues, Matias; Lépy, Marie-Christine

    2016-03-01

    Tunable monochromatic photon radiation was used to measure transmission of a bismuth target in the energy range from 7keV to 20keV. Partial L fluorescence yields of bismuth were obtained by combining measurement of the fluorescence induced by photoionization of the bismuth target and X-rays from the radioactive decay of (210)Pb. Several photon energies have been used to successively ionize the L subshells, which allowed detailed analysis of the rearrangement spectra and determination of the X-ray relative intensities of the L1, L2 and L3 series. PMID:26651165

  19. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants is revealed. The phytoplankton or higher plants are illuminated with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes. 14 figs.

  20. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  1. Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1995-06-20

    A fast repetition rate fluorometer device and method for measuring in vivo fluorescence of phytoplankton or higher plants chlorophyll and photosynthetic parameters of phytoplankton or higher plants by illuminating the phytoplankton or higher plants with a series of fast repetition rate excitation flashes effective to bring about and measure resultant changes in fluorescence yield of their Photosystem II. The series of fast repetition rate excitation flashes has a predetermined energy per flash and a rate greater than 10,000 Hz. Also, disclosed is a flasher circuit for producing the series of fast repetition rate flashes.

  2. Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow.

    PubMed

    Dunaev, Andrey V; Dremin, Victor V; Zherebtsov, Evgeny A; Rafailov, Ilya E; Litvinova, Karina S; Palmer, Scott G; Stewart, Neil A; Sokolovski, Sergei G; Rafailov, Edik U

    2015-06-01

    Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied. The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices. PMID:25922293

  3. Noninvasive measurement of pharmacokinetics by near-infrared fluorescence imaging in the eye of mice

    NASA Astrophysics Data System (ADS)

    Dobosz, Michael; Strobel, Steffen; Stubenrauch, Kay-Gunnar; Osl, Franz; Scheuer, Werner

    2014-01-01

    Purpose: For generating preclinical pharmacokinetics (PKs) of compounds, blood is drawn at different time points and levels are quantified by different analytical methods. In order to receive statistically meaningful data, 3 to 5 animals are used for each time point to get serum peak-level and half-life of the compound. Both characteristics are determined by data interpolation, which may influence the accuracy of these values. We provide a method that allows continuous monitoring of blood levels noninvasively by measuring the fluorescence intensity of labeled compounds in the eye and other body regions of anesthetized mice. Procedures: The method evaluation was performed with four different fluorescent compounds: (i) indocyanine green, a nontargeting dye; (ii) OsteoSense750, a bone targeting agent; (iii) tumor targeting Trastuzumab-Alexa750; and (iv) its F(-alxea750 fragment. The latter was used for a direct comparison between fluorescence imaging and classical blood analysis using enzyme-linked immunosorbent assay (ELISA). Results: We found an excellent correlation between blood levels measured by noninvasive eye imaging with the results generated by classical methods. A strong correlation between eye imaging and ELISA was demonstrated for the F( fragment. Whole body imaging revealed a compound accumulation in the expected regions (e.g., liver, bone). Conclusions: The combination of eye and whole body fluorescence imaging enables the simultaneous measurement of blood PKs and biodistribution of fluorescent-labeled compounds.

  4. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  5. Laser induced fluorescence measurements and modeling of nitric oxide in high-pressure premixed flames

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Laurendeau, Normand M.

    1994-01-01

    Laser-induced fluorescence (LIF) has been applied to the quantitative measurement of nitric oxide (NO) in premixed, laminar, high-pressure flames. Their chemistry was also studied using three current kinetics schemes to determine the predictive capabilities of each mechanism with respect to NO concentrations. The flames studied were low-temperature (1600 less than T less than 1850K) C2H6/O2/N2 and C2H6/O2/N2 flames, and high temperature (2100 less than T less than 2300K) C2H6/O2/N2 flames. Laser-saturated fluorescence (LSF) was initially used to measure the NO concentrations. However, while the excitation transition was well saturated at atmospheric pressure, the fluorescence behavior was basically linear with respect to laser power at pressures above 6 atm. Measurements and calculations demonstrated that the fluorescence quenching rate variation is negligible for LIF measurements of NO at a given pressure. Therefore, linear LIF was used to perform quantitative measurements of NO concentration in these high-pressure flames. The transportability of a calibration factor from one set of flame conditions to another also was investigated by considering changes in the absorption and quenching environment for different flame conditions. The feasibility of performing LIF measurements of (NO) in turbulent flames was studied; the single-shot detection limit was determined to be 2 ppm.

  6. Algal fluorescence: impact and potential for retrieval from measurements of the underwater degree of polarization

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Tonizzo, A.; Ibrahim, A.; Gilerson, A.; Gross, B.; Moshary, F.

    2012-09-01

    Algorithms for retrieving inherent optical properties (IOPs) in coastal waters from remote sensing of water leaving reflectance spectra, are increasingly focused on red and near infrared (NIR) spectral bands, since the simple blue - green ratio approaches, valid in open oceans, fail when in coastal waters with strongly scattering inorganic particles and colored dissolved organic matter (CDOM). NIR spectra can however be significantly impacted by overlapping chlorophyll a fluorescence, and considerable progress has been made to quantify its contribution, and hence achieve more accurate [Chl] retrievals. Recently we have been studying multiangular hyperspectral polarization characteristics of underwater scattered light, using our recently developed Stokes vector polarimeter to fully measure Stokes parameters. From these studies, information on IOPs, in particular the characteristics of non - algal particles (NAP), which are the primary source of underwater polarized elastic scattering, can be obtained. Multiangular hyperspectral polarization measurements, combined with those of IOPs collected in eutrophic waters of Chesapeake/Virginia and New York Harbor/Hudson River areas, showed that chlorophyll a fluorescence markedly impacts (reduces) the underwater degree of polarization (DOP) in the 650 - 700 nm spectral region. By noting the unpolarized nature of algal fluorescence and the partially polarized properties of elastic scattering, we are able to separate the chlorophyll a fluorescence signal from the total reflectance. The analysis is based on comparisons of experimental measurements with vector/scalar radiative transfer computations using measured IOPs as inputs. Relationships between change in observed DOP and fluorescence contributions are examined, and the possibility of using DOP measurements for underwater fluorescence retrieval is evaluated for different scattering geometries.

  7. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    SciTech Connect

    Wang, Hongtao; Salthouse, Christopher D.; Qi, Ying; Mountziaris, T. J.

    2014-05-15

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  8. Dualex: A New Instrument for Field Measurements of Epidermal Ultraviolet Absorbance by Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Goulas, Yves; Cerovic, Zoran G.; Cartelat, Aurélie; Moya, Ismaël

    2004-08-01

    Dualex (dual excitation) is a field-portable instrument, hereby described, for the assessment of polyphenolic compounds in leaves from the measurement of UV absorbance of the leaf epidermis by double excitation of chlorophyll fluorescence. The instrument takes advantage of a feedback loop that equalizes the fluorescence level induced by a reference red light to the UV-light-induced fluorescence level. This allows quick measurement from attached leaves even under field conditions. The use of light-emitting diodes and of a leaf-clip configuration makes Dualex a user-friendly instrument with potential applications in ecophysiological research, light climate analysis, agriculture, forestry, horticulture, pest management, selection of medicinal plants, and wherever accumulation of leaf polyphenolics is involved in plant responses to the environment.

  9. Measurement of Peptide Binding to MHC Class II Molecules by Fluorescence Polarization.

    PubMed

    Yin, Liusong; Stern, Lawrence J

    2014-01-01

    Peptide binding to major histocompatibility complex class II (MHCII) molecules is a key process in antigen presentation and CD4+ T cell epitope selection. This unit describes a fairly simple but powerful fluorescence polarization-based binding competition assay to measure peptide binding to soluble recombinant MHCII molecules. The binding of a peptide of interest to MHCII molecules is assessed based on its ability to inhibit the binding of a fluorescence-labeled probe peptide, with the strength of binding characterized as IC50 (concentration required for 50% inhibition of probe peptide binding). Data analysis related to this method is discussed. In addition, this unit includes a support protocol for fluorescence labeling peptide using an amine-reactive probe. The advantage of this protocol is that it allows simple, fast, and high-throughput measurements of binding for a large set of peptides to MHCII molecules. PMID:25081912

  10. Fluorescent triplet probes for measuring the rotational diffusion of membrane proteins.

    PubMed Central

    Johnson, P; Garland, P B

    1982-01-01

    We have previously described a method for measuring the rotational diffusion of membrane proteins by using fluorescent triplet probes [Johnson & Garland (1981) FEBS Lett. 135, 252-256]. We now describe the criteria by which the suitability of such probes may be judged. In general, the greatest sensitivity is achievable with probes where the ratio of the quantum yields for prompt fluorescene (phi f) and triplet formation (phi t) are high, as with Rhodamine (phi f/phi t congruent to 10(3)). However, considerations of heat generation at the sample membrane, of time resolution of fast rotations and of irreversible bleaching of the fluorescent probe also apply. The immediate environment of a probe molecule at a membrane protein must also be important in determining the performance of a given probe. Nevertheless, we describe guidelines for evaluating the likely usefulness of fluorescent triplet probes in measurements of membrane protein rotation. PMID:7103944

  11. Composition measurement of bicomponent droplets using laser-induced fluorescence of acetone

    NASA Astrophysics Data System (ADS)

    Maqua, C.; Depredurand, V.; Castanet, G.; Wolff, M.; Lemoine, F.

    2007-12-01

    Commercial fuels are complex mixtures, the evaporation of which remains particularly difficult to model. Experimental characterization of the differential vaporization of the components is a problem that is seldom addressed. In this paper, the evaporation of binary droplets made of ethyl-alcohol and acetone is investigated using a technique of measurement of the droplet composition developed in purpose. This technique exploits the laser induced fluorescence of acetone which acts as a fluorescent tracer as well as the more volatile component of the fuel associated with an accurate measurement of the droplet diameter by forward scattering interferometry. A model of the fluorescence intensity of the binary mixture, taking into account the absorption of the acetone molecules, is proposed and validated. The sensitivity of the technique is discussed. Finally, the reliability of the technique is demonstrated on binary combusting droplets in linear stream.

  12. Intracellular calcium in cardiac myocytes: calcium transients measured using fluorescence imaging.

    PubMed

    Cannell, M B; Berlin, J R; Lederer, W J

    1987-01-01

    We have examined the distribution of Ca2+ in voltage-clamped cardiac myocytes under resting conditions and during the Ca2+ transient. We find that the resting Ca2+ level in a quiescent rat myocyte bathed in 1 mM extracellular Ca is relatively low (between 60 and 100 nM) and uniform. At the peak of the Ca2+ transient, Ca2+ can rise to a level as high as 600 nM to 1.0 microM. Furthermore, the magnitude of the Ca2+ transient is dependent on the size of the membrane depolarization. There is good agreement between measurements made using video imaging and those made using a photomultiplier tube for the value of intracellular Ca2+ at the peak of the Ca2+ transient and for the subsequent slow changes in intracellular Ca2+. On repolarization, intracellular Ca2+ falls with a half-time of approximately 100 ms. The uniform distribution of Ca2+ reported in the Ca2+ images of myocytes at rest and at the peak of the Ca2+ transient under normal conditions is in contrast to what is observed during "Ca2+ overload" when subcellular regions of elevated Ca2+ are observed to propagate along the cell. Thus, the measurement of [Ca2+]i in cardiac myocytes with fura-2 has already yielded important new information that was not available using other techniques to measure [Ca2+]i in cardiac ventricular muscle. PMID:3505361

  13. Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage.

    PubMed

    Hamming, Arend M; Wermer, Marieke Jh; Umesh Rudrapatna, S; Lanier, Christian; van Os, Hine Ja; van den Bergh, Walter M; Ferrari, Michel D; van der Toorn, Annette; van den Maagdenberg, Arn Mjm; Stowe, Ann M; Dijkhuizen, Rick M

    2016-07-01

    Spreading depolarizations may contribute to delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage, but the effect of spreading depolarizations on brain lesion progression after subarachnoid hemorrhage has not yet been assessed directly. Therefore, we tested the hypothesis that artificially induced spreading depolarizations increase brain tissue damage in a rat model of subarachnoid hemorrhage. Subarachnoid hemorrhage was induced by endovascular puncture of the right internal carotid bifurcation. After one day, brain tissue damage was measured with T2-weighted MRI, followed by application of 1 M KCl (SD group, N = 16) or saline (no-SD group, N = 16) to the right cortex. Cortical laser-Doppler flowmetry was performed to record spreading depolarizations. MRI was repeated on day 3, after which brains were extracted for assessment of subarachnoid hemorrhage severity and histological damage. 5.0 ± 2.7 spreading depolarizations were recorded in the SD group. Subarachnoid hemorrhage severity and mortality were similar between the SD and no-SD groups. Subarachnoid hemorrhage-induced brain lesions expanded between days 1 and 3. This lesion growth was larger in the SD group (241 ± 233 mm(3)) than in the no-SD group (29 ± 54 mm(3)) (p = 0.001). We conclude that induction of spreading depolarizations significantly advances lesion growth after experimental subarachnoid hemorrhage. Our study underscores the pathophysiological consequence of spreading depolarizations in the development of delayed cerebral tissue injury after subarachnoid hemorrhage. PMID:26661246

  14. Dynamic depolarization in plasmonic metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Apell, S. Peter; Zorić, Igor; Langhammer, Christoph

    2016-08-01

    At very low photon energies most metals have a very large and negative dielectric function. For the response of a metal nanoparticle to an external field in this limit, this means that the particular choice of metal does not matter and the localized surface plasmon energy mainly depends on the shape and size of the particle. Here, we present a theoretical framework to describe this situation and unearth the interplay between the depolarization factor of the problem at hand and the dielectric function of the particle. Available experimental results compare favorably with our theoretical framework.

  15. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  16. Prediction of myocardial damage depth induced by extracellular photosensitization reaction using fluorescence measurement in vivo

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Ogawa, E.; Nakamura, T.; Kawakami, H.; Machida, N.; Yajima, M.; Kurotsu, M.; Ito, A.; Kimura, T.; Arai, T.

    2014-03-01

    We experimentally studied the correlation between myocardial damage depth due to the extracellular photosensitization reaction (PR) using talaporfin sodium and fluorescence-fall amount (FA), which is calculated from the measured backscattering fluorescence intensity via a manipulatable 7 Fr. laser catheter during the PR operation in vivo to establish treatment depth predictor for a non-thermal tachyarrhythmia treatment. The PR was performed to left and/or right ventricle in the open-chest canine heart. The laser irradiation of 663+/-2 nm in wavelength via the laser catheter was operated 15 min after the intravenous administration of talaporfin sodium with concentration of 36.2+/-8.0 μg/ml in plasma. The irradiation was operated with irradiance of 5, 10, 20 W/cm2, and duration of 5, 10, 20 s. Backscattering fluorescence of 710+/-2 nm in wavelength was measured via the laser catheter during the PR. The FA was calculated multiplying the irradiation duration by the fluorescence-fall, which is subtraction of the fluorescence intensity at the kickoff and end of the irradiation. The canine heart was extracted 1 week after the PR and HE stained specimen was histologically evaluated. The correlation of the myocardial damage depth and FA was investigated. We found that FA obtained a logarithmic relation to the myocardial damage depth. We think that the FA might be available to predict the PR induced myocardial damage depth for the application of tachyarrhythmia treatment under catheterization in vivo.

  17. Neural depolarization triggers Mg2+ influx in rat hippocampal neurons.

    PubMed

    Yamanaka, R; Shindo, Y; Karube, T; Hotta, K; Suzuki, K; Oka, K

    2015-12-01

    Homeostasis of magnesium ion (Mg(2+)) plays key roles in healthy neuronal functions, and deficiency of Mg(2+) is involved in various neuronal diseases. In neurons, we have reported that excitotoxicity induced by excitatory neurotransmitter glutamate increases intracellular Mg(2+) concentration ([Mg(2+)]i). However, it has not been revealed whether neuronal activity under physiological condition modulates [Mg(2+)]i. The aim of this study is to explore the direct relationship between neural activity and [Mg(2+)]i dynamics. In rat primary-dissociated hippocampal neurons, the [Mg(2+)]i and [Ca(2+)]i dynamics were simultaneously visualized with a highly selective fluorescent Mg(2+) probe, KMG-104, and a fluorescent Ca(2+) probe, Fura Red, respectively. [Mg(2+)]i increase concomitant with neural activity by direct current stimulation was observed in neurons plated on an indium-tin oxide (ITO) glass electrode, which enables fluorescent imaging during neural stimulation. The neural activity-dependent [Mg(2+)]i increase was also detected in neurons whose excitability was enhanced by the treatment of a voltage-gated K(+) channel blocker, tetraethylammonium (TEA) at the timings of spontaneous Ca(2+) increase. Furthermore, the [Mg(2+)]i increase was abolished in Mg(2+)-free extracellular medium, indicating [Mg(2+)]i increase is due to Mg(2+) influx induced by neural activity. The direct neuronal depolarization by veratridine, a Na(+) channel opener, induced [Mg(2+)]i increase, and this [Mg(2+)]i increase was suppressed by the pretreatment of a non-specific Mg(2+) channel inhibitor, 2-aminoethoxydiphenyl borate (2-APB). Overall, activity-dependent [Mg(2+)]i increase results from Mg(2+) influx through 2-APB-sensitive channels in rat hippocampal neurons. PMID:26455951

  18. Characterization of depolarizing optical media by means of the entropy factor: application to biological tissues

    NASA Astrophysics Data System (ADS)

    Pereda Cubián, David; Arce Diego, José Luis; Rentmeesters, Raf

    2005-01-01

    Polarized light imaging is a potential tool to obtain an adequate description of the properties of depolarizing media such as biological tissues. In many biomedical applications, for instance, dermatology, ophthalmology, or urology, imaging polarimetry provides a noninvasive diagnosis of a wide range of disease states, and, likewise, it could be applied to the study of internal tissues though the use of endoscopes that use optical fibers. We introduce an algebraic method, based on the Mueller-coherence matrix, for a clearer analysis of the polarization characteristics of depolarizing media via the entropy factor. First-order errors introduced by the measurement system are corrected. Entropy defines three kinds of media according to their depolarizing behavior, and several examples corresponding to each region are shown. The calculation of this factor provides clearer information than that provided by the traditional Mueller matrix in the analysis of biological tissue properties by polarization measurement techniques.

  19. Homogeneous time resolved fluorescence assay to measure histamine release.

    PubMed

    Claret, Emmanuel J; Ouled-Diaf, Josy; Seguin, Patrick

    2003-12-01

    Histamine is a biogenic amine synthesized by the enzymatic decarboxylation of histidine. Implication of histamine in allergy is well described but histamine is also found in some specific neurones, functions as a neurotransmitter and regulates sleep/wake cycles, hormonal secretion, cardiovascular control and thermo-regulation. We have developed a TR-FRET histamine assay, based on the competition between sample histamine and allophycocyanine (XL665) labelled histamine for binding to a Europium cryptate (EuK) labelled antibody. As histamine is a small monoamine molecule, high affinity antibodies have been raised against carrier protein conjugated histamine. Therefore, sample histamine needs to be derivatized in the same way as the conjugated histamine, so that the antibody will have a similar affinity for both molecules. This acylation step is performed directly in wells and does not need to be done in separate vials, making handling easier for large numbers of samples. The incubation takes place at room temperature for 3 hours. The assay covers a measurement range of 1.56 to 400 nM and shows an analytical sensitivity of 1.3nM. We have shown that miniaturization of sample and reagents volumes down to 20 micro l does not alter these performances. This histamine release assay provides a particularly well adapted procedure for HTS and secondary screening compared to current heterogeneous methods. PMID:14683484

  20. Measurement of chlorophyll a fluorescence with an airborne fluorosensor

    NASA Technical Reports Server (NTRS)

    Jarrett, O., Jr.; Brown, C. A., Jr.; Campbell, J. W.; Houghton, W. M.; Poole, L. R.

    1979-01-01

    Phytoplankton biomass and diversity among various algal species are important for marine productivity assessments. The spatial heterogeneity of phytoplankton in coastal and estuarine environments complicates estimates of total biomass using conventional surface sampling techniques. Since synoptic or near-synoptic data can be quite useful in these studies, this area is a natural focal point for development of remote sensors. However, it is very difficult to sense phytoplankton density and diversity with spacecraft-borne passive sensors primarily because modulation in the signal due to phytoplankton is of the same order as that of atmospheric effects. The same sensors mounted on aircraft may be able to detect and quantify high concentrations of phytoplankton (blooms), but the current lack of knowledge about the spectral reflectance signatures of the major phytoplankton color groups rules out any diversity measurements by this type of sensor. An active fluorosensor mounted on a low-flying aircraft or helicopter is not limited by any of these constraints. A brief survey of the four currently active systems is presented.

  1. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect

    Baldwin, G.T.; Craven, R.E.

    1986-01-01

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  2. Simulation modelling of a micro-system for time-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Repich, Marina; Stoppa, David; Rae, Bruce R.; Henderson, Robert K.; Dalla Betta, Gian-Franco

    2010-04-01

    This paper presents the simulation modelling of a typical experimental setup for time-resolved fluorescence measurement. The developed model takes into account the setup geometry, characteristics of light source, detector and fluorescent sample as well as the adopted measurement technique. A qualitative verification of the model has been reported before. In this paper, we present a quantitative analysis and verification of the system versatility. For this we conducted time-resolved fluorescence measurements using a two-chip based micro-system, including a blue micro-LED array as a light source and a CMOS SPAD array as a detector. The sample of interest (CdSe/ZnS quantum dots in toluene) in a micro-cavity slide and an excitation filter were placed in the gap between the excitation and detection planes. A time-correlated single photon counting module was used to build fluorescence decay curves. A range of experiments with different excitation light pulse widths and using several setups have been performed. The simulated data are in good agreement with measured results and the model proves to be flexible enough to simulate different light sources and detector quenching/recharging circuits. This model can be used to predict qualitative and quantitative results for specific experimental setups, supporting the explanations of observed effects and allowing the realisation of virtual experiments.

  3. PULSED FLUORESCENCE MONITOR FOR MEASURING AMBIENT NITROGEN DIOXIDE. DEVELOPMENT OF A LABORATORY PROTOTYPE

    EPA Science Inventory

    A prototype pulsed flashlamp monitor for measuring ambient NO2 has been developed, constructed and tested. The basic principles are similar to a laser fluorescence NO2 monitor developed 3 years earlier by the Electronics Research Lab of the Aerospace Corp. The pulsed system has m...

  4. Fluorescence lifetime measurements of NADH and tryptophan in intact ischemic, intact rabbit myocardium

    NASA Astrophysics Data System (ADS)

    Hamburger, Adrian; Gryczynski, Zygmunt; Lakowicz, Joseph R.; Sommers, Keith

    1999-07-01

    Ischemia-reperfusion injury is the leading cause of early dysfunction following transplantation. Currently, there are no techniques available to accurately measure ischemic changes during organ storage. Therefore, the interest exists in developing non-invasive monitoring techniques. We used NADH and tryptophan as fluorescent markers, since both are intrinsic fluorophores and excellent indicators for levels of hypoxia and protein denaturation, respectively.

  5. Myoplasmic binding of fura-2 investigated by steady-state fluorescence and absorbance measurements.

    PubMed Central

    Konishi, M; Olson, A; Hollingworth, S; Baylor, S M

    1988-01-01

    Binding of the fluorescent Ca2+ indicator dye fura-2 by intracellular constituents has been investigated by steady-state optical measurements. Fura-2's (a) fluorescence intensity, (b) fluorescence emission anisotropy, (c) fluorescence emission spectrum, and (d) absorbance spectra were measured in glass capillary tubes containing solutions of purified myoplasmic proteins; properties b and c were also measured in frog skeletal muscle fibers microinjected with fura-2. The results indicate that more than half, and possibly as much as 85%, of fura-2 molecules in myoplasm are in a protein-bound form, and that the binding changes many properties of the dye. For example, in vitro characterization of the Ca2+-dye reaction indicates that when fura-2 is bound to aldolase (a large and abundant myoplasmic protein), the dissociation constant of the dye for Ca2+ is three- to fourfold larger than that measured in the absence of protein. The problems raised by intracellular binding of fura-2 to cytoplasmic proteins may well apply to cells other than skeletal muscle fibers. PMID:3266079

  6. Winter wheat GPC estimation with fluorescence-based sensor measurements of canopy

    NASA Astrophysics Data System (ADS)

    Song, Xiaoyu; Wang, Jihua; Gu, Xiaohe; Xu, Xingang

    2015-10-01

    This study focused on the wheat grain protein content (GPC) estimation based on wheat canopy chlorophyll parameters which acquired by hand-held instrument, Multiplex 3. Nine fluorescence spectral indices from Multiplex sensor were used in this study. The wheat GPC estimation experiment was conducted in 2012 at the National Experiment Station for Precision Agriculture in Changping district, Beijing. A square with area of 1.1 ha was selected and divided to 110 small plots by 10×10m in this study. In each plot, four 1-m2 area distributed in the square were selected for canopy fluorescence spectral measurements, physiological and biochemical analyses. Measurements were performed five times at wheat raising, jointing, heading stage, milking and ripening stage, respectively. The wheat plant samples for each plot were then collected after the measurement and sent to Lab for leaf N concentration (LNC) and canopy nitrogen density (CND) analyzed. GPC sampling for each plot was collected manually during the harvested season. Then, statistical analysis were performed to detect the correlation between fluorescence spectral indices and wheat CND for each growth stage, as well as GPC. The results indicate that two Nitrogen Balance Indices, NBI_G and NBI_R were more sensitive to wheat GPC than other fluorescence spectral indices at milking stage and ripening stage. Five linear regression models with GPC and fluorescence indices at different winter wheat growth stages were then established. The R2 of GPC estimated model increased form 0.312 at raising stage to 0.686 at ripening stage. The study reveals that canopy-level fluorescence spectral parameters were better indicators for the wheat group activity and could be demonstrated to be good indicators for winter wheat GPC estimation.

  7. Depolarization Lidar Determination Of Cloud-Base Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.

    2016-06-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.

  8. Tune space manipulations in jumping depolarizing resonances

    SciTech Connect

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10/sup 10/ polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations.

  9. Quantitative in vivo imaging of the lung using time-domain fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Jean-Jacques, Muriel; Melanson-Drapeau, Lysanne; Khayat, Mario

    2009-02-01

    In this paper, nebulized or intravenous cetuximab (also known as Erbitux) labeled with NIR dyes is administered in the lungs of the mouse and imaged using a time-domain fluorescence imaging system (Optix(R)). Time resolved measurements provide lifetime of the fluorescent probes. In addition, through time-of-flight information contained in the data, one can also assess probe localization and concentration distribution quantitatively. Results shown include suppression of tissue autofluorescence by lifetime gating and recovery of targeted and non-targeted distributions of cetuximab labeled with the NIR fluorophores.

  10. Tumor detection in mice by measurement of fluorescence decay time matrices

    NASA Astrophysics Data System (ADS)

    Cubeddu, R.; Pifferi, A.; Taroni, P.; Valentini, G.; Canti, G.

    1995-12-01

    An intensified CCD video camera has been used to measure the spatial distribution of the fluorescence decay time in tumor-bearing mice sensitized with hematoporphyrin derivative. Mice were injected with five doses of sensitizer, ranging from 0.1 to 10 mg / kg body weight. For any drug dose the decay time of the exogenous fluorescence in the tumor is always significantly longer than in normal tissues. The image created by associating a gray-shade scale to the decay time matrix of each mouse permits a reliable and precise detection of the neoplasia.

  11. Remotely Measured Terrestrial Chlorophyll Fluorescence Using Airborne G-LiHT and APFS Sensors

    NASA Astrophysics Data System (ADS)

    Cook, W. B.; Yee, J. H.; Corp, L. A.; Cook, B. D.; Huemmrich, K. F.

    2014-12-01

    In September 2014 the Goddard Lidar, Hyperspectral and Thermal (G-LiHT) and the APL/JHU Airborne Plant Fluorescence Sensor (APFS) were flown together on a NASA Langley King Air over vegetated targets in North Carolina and Virginia. The instruments provided high spatial and spectral resolution data in the visible and near infrared, down-welling irradiance, elevation maps, and thermal imagery. Ground validation data was also collected concurrently. Here we report the results of these measurements and show the feasibility of using these types of instruments for collection the fluorescence and other information essential for ecological and carbon cycle studies.

  12. Molecular diffusivity measurement through an alumina membrane using time-resolved fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Mason, Michael D.

    2010-11-01

    We present a simple fluorescence imaging method for measuring the time-resolved concentration of a fluorescent molecule diffusing through an anodic alumina membrane with a pore diameter of 20 nm. From the concentration breakthrough curve, the molecular diffusivity of the fluorophore was extracted. The experimentally determined diffusivity was three orders of magnitude lower than reported bulk values. Due to the relative simplicity and ease of use, this method can be applied to provide fundamental information for biomolecular separations applications. One feature of this method is the high sensitivity at intercellular volumes broadening its application to drug delivery and controlled cell growth.

  13. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors.

    PubMed

    Shadpour, Hamed; Zawistowski, Jon S; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L

    2011-06-24

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronectin coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4-fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays

  14. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  15. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.

    PubMed

    Matsuda, Tomoki; Nagai, Takeharu

    2014-12-01

    Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. PMID:25268018

  16. Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    SciTech Connect

    Reichardt, Thomas A.; Timlin, Jerilyn Ann; Jones, Howland D. T.; Sickafoose, Shane M.; Schmitt, Randal L.

    2010-09-01

    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects.

  17. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  18. Reflectance and fluorescence characterization of maize species using field laboratory measurements and lidar remote sensing.

    PubMed

    Zhao, Guangyu; Duan, Zheng; Ming, Lian; Li, Yiyun; Chen, Ruipeng; Hu, Jiandong; Svanberg, Sune; Han, Yanlai

    2016-07-01

    Laser-induced fluorescence is an important technique to study photosynthesis and plants. Information on chlorophyll and other pigments can be obtained. We have been using a mobile laboratory in a Chinese experimental farm setting to study maize (Zea mays L.) leaves by reflectance and fluorescence measurements and correlated the spectroscopic signals to the amount of fertilizer supplied. Further, we studied five different species of maize using the remote monitoring of the fluorescence signatures obtained with the same mobile laboratory, but now in a laser radar remote-sensing configuration. The system separation from the target area was 50 m, and 355 nm pulsed excitation using the frequency-tripled output from an Nd:YAG laser was employed. Principal component analysis and linear discriminant analysis were combined to identify the different maize species using their fluorescence spectra. Likewise, the spectral signatures in reflectance and fluorescence frequently allowed us to separate different fertilizer levels applied to plants of the same species. PMID:27409221

  19. Measurement of fluorescent probes concentration ratio in the cerebrospinal fluid for early detection of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Harbater, Osnat; Gannot, Israel

    2014-03-01

    The pathogenic process of Alzheimer's Disease (AD), characterized by amyloid plaques and neurofibrillary tangles in the brain, begins years before the clinical diagnosis. Here, we suggest a novel method which may detect AD up to nine years earlier than current exams, minimally invasive, with minimal risk, pain and side effects. The method is based on previous reports which relate the concentrations of biomarkers in the Cerebrospinal Fluid (CSF) (Aβ and Tau proteins) to the future development of AD in mild cognitive impairment patients. Our method, which uses fluorescence measurements of the relative concentrations of the CSF biomarkers, replaces the lumbar puncture process required for CSF drawing. The process uses a miniature needle coupled trough an optical fiber to a laser source and a detector. The laser radiation excites fluorescent probes which were prior injected and bond to the CSF biomarkers. Using the ratio between the fluorescence intensities emitted from the two biomarkers, which is correlated to their concentration ratio, the patient's risk of developing AD is estimated. A theoretical model was developed and validated using Monte Carlo simulations, demonstrating the relation between fluorescence emission and biomarker concentration. The method was tested using multi-layered tissue phantoms simulating the epidural fat, the CSF in the sub-arachnoid space and the bone. These phantoms were prepared with different scattering and absorption coefficients, thicknesses and fluorescence concentrations in order to simulate variations in human anatomy and in the needle location. The theoretical and in-vitro results are compared and the method's accuracy is discussed.

  20. Fluorescence combined with excised patch: measuring calcium currents in plant cation channels.

    PubMed

    Gradogna, Antonella; Scholz-Starke, Joachim; Gutla, Paul Vijay Kanth; Carpaneto, Armando

    2009-04-01

    Combined application of the patch-clamp technique and fura-2 fluorescence detection enables the study of study calcium fluxes or related increases in cytosolic calcium concentration. Here we used the excised patch configuration, focusing the photomultiplier on the tip of the recording pipette where the fluorescent dye was present (FLEP, fluorescence combined with excised patch). This configuration has several advantages, i.e. a lack of delay in loading the fluorophore, of interference by internal calcium buffers and of photobleaching, due to the quasi-infinite dye reservoir inside the pipette. Upon voltage stimulation of tonoplast patches, sustained and robust fluorescence signals indicated permeation of calcium through the slow vacuolar (SV) channel. Both SV currents and fluorescence signal changes were absent in the presence of SV channel inhibitors and in vacuoles from Arabidopsis tpc1 knockout plants that lack SV channel activity. The fractional calcium currents of this non-selective cation channel were voltage-dependent, and were approximately 10% of the total SV currents at elevated positive potentials. Interestingly, calcium permeation could be recorded as the same time as oppositely directed potassium fluxes. These events would have been impossible to detect using patch-clamp measurements alone. Thus, we propose use of the FLEP technique for the study of divalent ion-selective channels or transporters that may be difficult to access using conventional electrophysiological approaches. PMID:19067975

  1. Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles.

    PubMed

    Nachman, P; Chen, G; Pinnick, R G; Hill, S C; Chang, R K; Mayo, M W; Fernandez, G L

    1996-03-01

    We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles. PMID:21085216

  2. [Rapid and high throughput measurement of lipase thermo-stability through ANS fluorescence signal assay].

    PubMed

    Feng, Weizong; Lin, Junhan; Cai, Shaoli; Zou, Youtu; Chen, Guoren; Huang, Ping; Lin, Yajing; Wang, Bingbing; Lin, Lin

    2011-04-01

    We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement. PMID:21847993

  3. Method for qualitative determination of measurement errors caused by sample fluorescence

    NASA Astrophysics Data System (ADS)

    Spooner, David L.

    1995-04-01

    Many of the papers and inks used to produce color hard copy products contain fluorescent materials. Most density and/or color instruments use the ratio of value of the light returned by the sample at each wavelength relative to that returned by a white calibration standard to derive the measurement value. Generally, no effort is made to differentiate between light reflected by the sample and light emitted by the sample due to fluorescence. The blue emitted light resulting from the inclusion of fluorescent whitening agents (FWA) in graphic arts materials is excited by violet and ultraviolet (UV) light in the instrument illumination source. Differences in instrument source UV intensity can cause significant differences in the blue reflectance values of FWA containing samples reported by the instrument measurement system. Standard reference materials (SRM) which contain known amounts of FWA are commercially available. These SRMs allow a semiquantitative assessment of the UV content of an instrument's illuminating source. A further refinement, using thin UV cutoff filters, allows the qualitative determination of the presence or absence of FWA in paper samples. We anticipate that with the use of other thin filters, measurement errors caused by visible light excited fluorescence of inks, particular yellows, will be possible.

  4. Single-pulse, laser-saturated fluorescence measurements of OH in turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Lucht, R. P.; Sweeney, D. W.; Laurendeau, N. M.; Drake, M. C.; Lapp, M.; Pitz, R. W.

    1984-01-01

    A single-pulse, laser-saturated fluorescence technique has been developed for absolute OH concentration measurements with a temporal resolution of 2 nsec, a spatial resolution of less than 0.1 cu mm, and an estimated accuracy of + or - 30 percent. It has been applied in laminar, transitional, and turbulent hydrogen-air diffusion flames, providing the first reported quantitative measurements of average values, rms fluctuations, and probability-density functions of OH-radical concentration in nonpremixed flames.

  5. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-09-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein-Smoluchowski-Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm.

  6. A 20 Ghz Depolarization Experiment Using the ATS-6 Satellite

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Manus, E. A.; Marshall, R. E.; Pendrak, H. N.; Stutzman, W. L.; Wiley, P. H.; Kauffman, S. R.

    1975-01-01

    A depolarization experiment using the 20 GHz downlink from the ATS-6 satellite was described. The following subjects were covered: (1) an operational summary of the experiment, (2) a description of the equipment used with emphasis on improvements made to the signal processing receiver used with the ATS-5 satellite, (3) data on depolarization and attenuation in one snow storm and two rain storms at 45 deg elevation, (4) data on low angle propagation, (5) conclusions about depolarization on satellite paths, and (6) recommendations for the depolarization portion of the CTS experiment.

  7. Rod-like cholesterol micelles in aqueous solution studied using polarized and depolarized dynamic light scattering.

    PubMed Central

    Castanho, M A; Brown, W; Prieto, M J

    1992-01-01

    Micelles of cholesterol in aqueous solution have been investigated using polarized and depolarized dynamic light scattering. They are shown to be highly extended and characterized by a narrow size distribution. It is shown that a rod-like model is applicable with length, L = 580 nm. Determination of the rotational diffusion coefficient by analysis of the autocorrelation function gave a value of theta = 150 s-1, which is close to the calculated value for the rod with this dimension. Depolarized dynamic light scattering measurements as a function of angle gave a value of 110 s-1. PMID:1489905

  8. Development of a fluorescent probe for measurement of peroxyl radical scavenging activity in biological samples.

    PubMed

    Güçlü, Kubilay; Kıbrıslıoğlu, Gülşah; Özyürek, Mustafa; Apak, Reşat

    2014-02-26

    In antioxidant activity testing, it has been argued that assays capable of measuring the inhibitive action against the biologically relevant peroxyl radicals (ROO(•)) from a controllable source are preferable in terms of simulating physiological conditions because ROO(•) is the predominant free radical found in lipid oxidation in foods and biological systems. A new fluorescent probe, p-aminobenzoic acid (PABA), was developed for selective measurement of peroxyl radical scavenging (PRS) activity of biological samples, in view of the fact that the existing PRS assays are quite laborious and require the application of strictly optimized conditions. The earlier probe, β-phycoerythrin, of a similar PRS assay of wide use, oxygen radical absorbance capacity (ORAC), varies from lot to lot of production, undergoes photobleaching, and interacts with polyphenols via non-specific protein binding, while the current probe, fluorescein, undergoes undesired fluorescence (FL) quenching and side reactions. The developed technique is based on the fluorescence decrease of the PABA probe (within an optimal time of 30 min) because of its oxidation by ROO(•), generated from the thermal dissociation of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). In the absence of the scavenger, ROO(•) reacted with the probe, generating non-fluorescent products, and caused a decrease in PABA fluorescence, whereas the ROO(•) scavenger resulted in a fluorescence increase because of the inhibition of the probe oxidation by ROO(•). Thus, the fluorescence increment of intact PABA is proportional to the ROO(•) scavenging activity of samples. The linear range of relative fluorescence intensity versus the PABA concentration was in the interval of 0.5-5.0 μM. Assay precision and accuracy were assessed by analyzing two spiked homogenates of liver and kidney at clinically relevant concentrations with 97-105% recovery and 2.3% interday reproducibility. The proposed method was

  9. Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Holloway, John S.; Jakoubek, Roger O.; Parrish, David D.; Gerbig, Christoph; Volz-Thomas, Andreas; Schmitgen, Sandra; Fried, Alan; Wert, Brian; Henry, Bruce; Drummond, James R.

    2000-01-01

    During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft-based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between two separate instruments, both employing the VUV fluorescence method, on the NOAA WP-3 and the U.K. Meteorological Office C-130 Hercules. The results indicate that both of the VUV fluorescence instruments and the TDLAS system are capable of measuring ambient CO accurately and precisely with no apparent interferences in 5 s. The accuracy of the measurements, based upon three independent calibration systems, is indicated by the agreement to within 11% with systematic offsets of less than 1 ppbv. In addition, one of the groups participated in the Measurement of Air Pollution From Satellite (MAPS) intercomparison [Novelli et al., 1998] with a different measurement technique but very similar calibration system, and agreed with the accepted analysis to within 5%. The precision of the measurements is indicated by the variability of the ratio of simultaneous measurements from the separate instruments. This variability is consistent with the estimated precisions of 1.5 ppbv and 2.2 ppbv for the 5 s average results of the C-130 and the WP-3 instruments, respectively, and indicates a precision of approximately 3.6% for the TDLAS instrument. The excellent agreement of the instruments in both intercomparisons demonstrates that significant interferences in the measurements are absent in air masses that ranged from 7 km in the midtroposphere to boundary layer conditions including subtropical marine air and continental outflow with embedded urban plumes. The intercomparison of the two VUV instruments that differed widely

  10. Microlensed dual-fiber probe for depth-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo

    2011-07-01

    We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.

  11. Remote Sensing of Sun-induced Fluorescence to Measure the Functional Regulation of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Cendrero Mateo, M. D. P.; Damm, A.; Matveeva, M.; Pinto, F.; Rossini, M.; Schickling, A.; Rascher, U.

    2014-12-01

    Photosynthesis is the ultimate process that determines crop performance. Changes in environmental conditions subject vegetation to different stresses determining dynamics of photosynthetic rate. In this context, techniques that allow the quantification of spatial and temporal patterns of photosynthesis at different scales would be of great use. Hyperspectral reflectance techniques have often failed to quantify actual photosynthetic light use efficiency and only allow measuring pigment content and canopy structure. Alternatively passive detection of Sun Induced Chlorophyll Fluorescence (SIF) has the potential to be used in the quantification of the actual photosynthetic rate. Chlorophyll fluorescence is emitted from the core of the photosynthetic machinery and is closely related to vegetation stress, reflecting functional limitations of photosynthetic carbon gain. In this study we aim to assess the potential of SIF to quantify the functional status of photosynthesis in crops. Hereby we present a summary of results obtained at different vegetation levels. Applying the Fraunhofer Line Depth (FLD) principle we estimated SIF from point and imaging hyperspectral data at leaf and canopy level. For the larger scale, the data were collected using HyPlant, the high performance airborne imaging spectrometer. We expect that local and airborne measurements will greatly facility the development of a potential satellite mission FLEX (FLuorescence Explorer), which is currently under evaluation by the European Space Agency. The FLEX mission proposed to launch a satellite for the global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation.

  12. Fluorescence lifetime imaging to quantify sub-cellular oxygen measurements in live macrophage during bacterial invasion

    NASA Astrophysics Data System (ADS)

    Dragavon, Joe; Amiri, Megdouda; Marteyn, Benoit; Sansonetti, Philipe; Shorte, Spencer

    2011-03-01

    Fluorophore concentration, the surrounding microenvironment, and photobleaching greatly influence the fluorescence intensity of a fluorophore, increasing the difficulty to directly observe micro-environmental factors such as pH and oxygen. However, the fluorescence lifetime of a fluorophore is essentially independent of both the fluorophore concentration and photobleaching, providing a viable alternative to intensity measurements. The development of fluorescence lifetime imaging (FLI) allows for the direct measurement of the microenvironment surrounding a fluorophore. Pt-porphyrin is a fluorophore whose optical properties include a very stable triplet excited state. This energy level overlaps strongly with the ground triplet state of oxygen, making the phosphorescent lifetime directly proportional to the surrounding oxygen concentration. Initial experiments using this fluorophore involved the use of individual microwells coated with the porphyrin. Cells were allowed to enter the micro-wells before being sealed to create a diffusionally isolated volume. The decrease in the extracellular oxygen concentration was observed using FLI. However, this isolation technique provides only the consumption rate but cannot indicate the subcellular oxygen distribution. To improve upon this, live macrophages are loaded with the porphyrin and the fluorescence lifetime determined using a Lambert Instruments Lifa-X FLI system. Initial results indicate that an increase in subcellular oxygen is observed upon initial exposure to invasive bacteria. A substantial decrease in oxygen is observed after about 1 hour of exposure. The cells remain in this deoxygenated state until the bacteria are removed or cell death occurs.

  13. [The measurement and analysis of visible-absorption spectrum and fluorescence spectrum of lycopene].

    PubMed

    Yang, Xiao-zhan; Li, Ping; Dai, Song-hui; Wu, Da-cheng; Li, Rui-xia; Yang, Jian-hui; Xiao, Hai-bo

    2005-11-01

    Using ICCD spectral detection system, the absorbency of lycopene-carbon bisulfide solution with different concentration was measured, and the result shows that in a specified range the absorption rule of lycopene solution agrees with Lambert-Beer Law. Absorption spectral wavelength shifts were measured respectively when lycopene was dissolved in acetone, normal hexane, petroleum ether, benzene, ethyl acetate, and carbon bisulfide, and comparing to acetone, different red-shift appeared when lycopene was dissolved in benzene, ethyl acetate, and carbon bisulfide when water was added in lycopene-acetone solution, t he absorbency of lycopene dropped, the fine structure of absorption spectrum became indistinct, and a new absorption peak appeared in UV. The reason for these phenomena is that the solvent molecule had different effect on lycopene molecule when lycopene was dissolved in different solvent. Using fluorecence spectrophotometer, fluorescence spectra of lycopene in different concentrations were collected, and the results show that the fluorescence spectra of lycopene were mainly in 500-680 nm. When concentration was lower than 50 microg x mL(-1), the fluorescence intensity linearly increased with increasing concentration, and when concentration was higher than 60 microg x mL(-1), the fluorescence intensity dropped because of the interaction between lycopene molecules. PMID:16499057

  14. Experimental evidence of incomplete fluorescence quenching of pyrene bound to humic substances: implications for Koc measurements.

    PubMed

    Shirshin, E A; Budylin, G S; Grechischeva, N Yu; Fadeev, V V; Perminova, I V

    2016-07-01

    Fluorescence quenching (FQ) is extensively used for quantitative assessment of partition coefficients (KOC) of polycyclic aromatic hydrocarbons (PAHs) to natural organic materials - humic substances (HS). The presence of bound PAHs with incompletely quenched fluorescence would lead to underestimation of the KOC values measured by this technique. The goal of this work was to prove the validity of this assumption using an original experimental setup, which implied FQ measurements upon excitation into two distinct vibronically coupled electronic states. Pyrene was used as a fluorescent probe, and aquatic fulvic acid (SRFA) and leonardite humic acid (CHP) were used as the humic materials with low and high binding affinity for pyrene, respectively. Excitation of pyrene into the forbidden (S0-S1) and allowed (S0-S2) electronic states yielded two pairs of nonidentical FQ curves. This was indicative of incomplete quenching of the bound pyrene, and the divergence of the two FQ curves was much more pronounced for CHP as compared to SRFA. The two component model of fluorescence response formation was proposed to estimate the KOC values from the data obtained. The resulting pyrene KOC value for CHP (220 ± 20) g L(-1) was a factor 3 higher compared to the KOC value determined with the use of the Stern-Volmer formalism (68 ± 2) g L(-1). At the same time for aquatic FA the difference in FQ curves was almost negligible, which enables the use of the Stern-Volmer formalism for weakly interacting HS and PAHs. PMID:27279258

  15. Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe.

    PubMed

    Liu, Saisai; Zhao, Jun; Zhang, Kui; Yang, Lei; Sun, Mingtai; Yu, Huan; Yan, Yehan; Zhang, Yajun; Wu, Lijun; Wang, Suhua

    2016-04-01

    This work reports a novel dual-emissive fluorescent probe based on dye hybrid silica nanoparticles for ratiometric measurement of the hydroxyl radical (˙OH). In the probe sensing system, the blue emission of coumarin dye (coumarin-3-carboxylic acid, CCA) immobilized on the nanoparticle surface is selectively enhanced by ˙OH due to the formation of a coumarin hydroxylation product with strong fluorescence, whereas the emission of red fluorescent dye encapsulated in the silica nanoparticle is insensitive to ˙OH as a self-referencing signal, and so the probe provides a good quantitative analysis based on ratiometric fluorescence measurement with a detection limit of 1.65 μM. Moreover, the probe also shows high selectivity for ˙OH determination against metal ions, other reactive oxygen species and biological species. More importantly, it exhibits low cytotoxicity and high biocompatibility in living cells, and has been successfully used for cellular imaging of ˙OH, showing its promising application for monitoring of intracellular ˙OH signaling events. PMID:26958658

  16. Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.; Logan, P.

    1987-01-01

    A laser-induced fluorescence method has been developed that provides simultaneous measurements of temperature, density, and their fluctuations owing to turbulence in unheated compressible flows. Pressure and its fluctuations are also deduced using the equation of state. Fluorescence is induced in nitric oxide that has been seeded into a nitrogen flow in concentrations of 100 ppm. Measurements are obtained from each laser pulse, with a spatial resolution of 1 mm and a temporal resolution of 125 ns. The method was applied to a supersonic, turbulent, boundary-layer flow with a free-stream Mach number of 2. For stream conditions in the range from 150-300 K and 0.3-1 atm, temperature is measured with an uncertainty of approximately 1 percent rms, while density and pressure uncertainties are approximately 2 percent rms.

  17. Excitation-emission matrices measurements of human cutaneous lesions: tool for fluorescence origin

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, A.; Borisova, E.; Angelova, L.; Pavlova, E.; Keremedchiev, M.

    2013-11-01

    The light induced fluorescence (LIF) technique has the potential of providing real-time diagnosis of malignant and premalignant skin tissue; however, human skin is a multilayered and inhomogeneous organ with different optical properties that complicate the analysis of cutaneous fluorescence spectra. In spite of the difficulties related to the detection and analysis of fluorescent data from skin lesions, this technique is among the most widely applied techniques in laboratorial and pre-clinical investigations for early skin neoplasia diagnosis. The important point is to evaluate all sources of intrinsic fluorescence and find any significant alterations distinguishing the normal skin from a cancerous state of the tissue; this would make the autofluorescence signal obtained useful for the development of a non-invasive diagnostic tool for the dermatological practice. Our investigations presented here were based on ex vivo point-by-point measurements of excitation-emission matrices (EEM) from excised tumor lesions and the surrounding skin taken during the daily clinical practice of Queen Jiovanna- ISUL University Hospital, Sofia, the local Ethical Committee's approval having already been obtained. The fluorescence emission was measured between 300 nm and 800 nm using excitation in the 280-440 nm spectral range. In the process of excitation-emission matrices (EEM) measurements we could establish the origin of the autofluorescence and the compounds related by assigning the excitation and emission maxima obtained during the experiments. The EEM were compared for normal human skin, basal cell carcinoma, squamous cell carcinoma, benign nevi and malignant melanoma lesions to obtain information for the most common skin malignancies and their precursors. The main spectral features and the applicability of the technique of autofluorescent spectroscopy of human skin in general as an initial diagnostic tool are discussed as well.

  18. Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics.

    PubMed Central

    Heinze, Katrin G; Rarbach, Markus; Jahnz, Michael; Schwille, Petra

    2002-01-01

    Dual-color fluorescence cross-correlation analysis is a powerful tool for probing interactions of different fluorescently labeled molecules in aqueous solution. The concept is the selective observation of coordinated spontaneous fluctuations in two separate detection channels that unambiguously reflect the existence of physical or chemical linkages among the different fluorescent species. It has previously been shown that the evaluation of cross-correlation amplitudes, i.e., coincidence factors, is sufficient to extract essential information about the kinetics of formation or cleavage of chemical or physical bonds. Confocal fluorescence coincidence analysis (CFCA) (Winkler et al., Proc. Natl. Acad. Sci. U.S.A. 96:1375-1378, 1999) emphasizes short analysis times and simplified data evaluation and is thus particularly useful for screening applications or measurements on live cells where small illumination doses need to be applied. The recent use of two-photon fluorescence excitation has simplified dual- or multicolor measurements by enabling the simultaneous excitation of largely different dye molecules by a single infra-red laser line (Heinze et al., Proc. Natl. Acad. Sci. U.S.A. 97:10377-10382, 2000). It is demonstrated here that a combination of CFCA with two-photon excitation allows for minimization of analysis times for multicomponent systems down to some hundreds of milliseconds, while preserving all known advantages of two-photon excitation. By introducing crucial measurement parameters, experimental limits for the reduction of sampling times are discussed for the special case of distinguishing positive from negative samples in an endonucleolytic cleavage assay. PMID:12202390

  19. Impact of Emission Anisotropy on Fluorescence Spectroscopy and FRET Distance Measurements

    PubMed Central

    Ivanov, Vassili; Li, Min; Mizuuchi, Kiyoshi

    2009-01-01

    Abstract The objective of this report is to provide a practical and improved method for estimating Förster resonance energy transfer distance measurement error due to unknown angles in the dipole orientation factor based on emission anisotropy measurements. We improve on the method of Dale et al. (1979), which has minor mistakes and is frequently interpreted in overly optimistic ways in the literature. To facilitate proper fluorescence intensity measurements, we also evaluated instrument parameters that could impact the measurement. The apparent fluorescence intensity of isotropic samples depends on the sample emission anisotropy, fluorometer geometry, and optical apertures. We separate parameters of the sample, and those of the cylindrically symmetric illumination source and detector in the equations describing results of unpolarized and polarized fluorescence intensity measurements. This approach greatly simplifies calculations compared with the more universal method of Axelrod (1989). We provide a full computational method for calculating the Förster resonance energy transfer distance error and present a graph describing distance error in the simplest case. PMID:19651051

  20. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  1. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy

    PubMed Central

    Youker, Robert T.; Teng, Haibing

    2014-01-01

    Abstract. Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques. PMID:25260867

  2. Impact of emission anisotropy on fluorescence spectroscopy and FRET distance measurements.

    PubMed

    Ivanov, Vassili; Li, Min; Mizuuchi, Kiyoshi

    2009-08-01

    The objective of this report is to provide a practical and improved method for estimating Förster resonance energy transfer distance measurement error due to unknown angles in the dipole orientation factor based on emission anisotropy measurements. We improve on the method of Dale et al. (1979), which has minor mistakes and is frequently interpreted in overly optimistic ways in the literature. To facilitate proper fluorescence intensity measurements, we also evaluated instrument parameters that could impact the measurement. The apparent fluorescence intensity of isotropic samples depends on the sample emission anisotropy, fluorometer geometry, and optical apertures. We separate parameters of the sample, and those of the cylindrically symmetric illumination source and detector in the equations describing results of unpolarized and polarized fluorescence intensity measurements. This approach greatly simplifies calculations compared with the more universal method of Axelrod (1989). We provide a full computational method for calculating the Förster resonance energy transfer distance error and present a graph describing distance error in the simplest case. PMID:19651051

  3. Valley depolarization in monolayer WSe2

    PubMed Central

    Yan, Tengfei; Qiao, Xiaofen; Tan, Pingheng; Zhang, Xinhui

    2015-01-01

    We have systematically examined the circular polarization of monolayer WSe2 at different temperature, excitation energy and exciton density. The valley depolarization in WSe2 is experimentally confirmed to be governed by the intervalley electron-hole exchange interaction. More importantly, a non-monotonic dependence of valley circular polarization on the excitation power density has been observed, providing the experimental evidence for the non-monotonic dependence of exciton intervalley scattering rate on the excited exciton density. The physical origination of our experimental observations has been proposed to be in analogy to the D′yakonov-Perel′ mechanism that is operative in conventional GaAs quantum well systems. Our experimental results are fundamentally important for well understanding the valley pseudospin relaxation in atomically thin transition metal dichalcogenides. PMID:26490157

  4. Valley depolarization in monolayer WSe2.

    PubMed

    Yan, Tengfei; Qiao, Xiaofen; Tan, Pingheng; Zhang, Xinhui

    2015-01-01

    We have systematically examined the circular polarization of monolayer WSe2 at different temperature, excitation energy and exciton density. The valley depolarization in WSe2 is experimentally confirmed to be governed by the intervalley electron-hole exchange interaction. More importantly, a non-monotonic dependence of valley circular polarization on the excitation power density has been observed, providing the experimental evidence for the non-monotonic dependence of exciton intervalley scattering rate on the excited exciton density. The physical origination of our experimental observations has been proposed to be in analogy to the D'yakonov-Perel' mechanism that is operative in conventional GaAs quantum well systems. Our experimental results are fundamentally important for well understanding the valley pseudospin relaxation in atomically thin transition metal dichalcogenides. PMID:26490157

  5. Understanding Solar Induced Fluorescence: Building up from Leaf Scale Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Van der Tol, C.; Frankenberg, C.; Joiner, J.; Guanter, L.

    2013-12-01

    Measurements of chlorophyll fluorescence have long been a key method for probing the mechanisms of photosynthesis in laboratory studies. Recent advances in satellite spectroscopy have enabled retrieval of chlorophyll fluorescence from terrestrial ecosystems at a global scale. Analyses of these retrievals show promising potential as an indicator of photosynthetic rate and of its response to environmental stress. This talk will explore the mechanistic basis for interpreting and modeling of solar induced chlorophyll fluorescence ( SIF). SIF is essentially a leak of photons from photosynthetic membranes, and it is, therefore, related to the flux of photons absorbed by chlorophyll and to biochemical processes that regulate the processing of these photons in macromolecuar complexes associated with photosystem II. Thus: SIF = aPAR * φF, where aPAR is the flux of absorbed photosynthetically active radiation and φF, is the yield (light-use efficiency) of fluorescence. (For simplicity we will ignore the transport of fluorescence from its sources to the sensor for the moment). This expression for SIF is similar to a common expression for photosynthesis or gross primary productivity, GPP = aPAR * LUE, where LUE, is the light-use-efficiency for CO2 uptake. These equations can be combined and simplified to illustrate the relationship between SIF and GPP; GPP =SIF *LUE / φF. The extent to which GPP is proportional to SIF hinges on the stability of the ratio, LUE / φF, and it leads to the key question to be considered here. What is the relationship between the light-use-efficiency for photosynthesis and that for fluorescence? Satellite retrievals of SIF occur at mid-day, conditions where the capacity for CO2 fixation usually limits the rate of photosynthesis. Under this condition the rate of the photo-acts must be down-regulated to protect from photo-damage. This balancing the source with the sink is accomplished by opening non-photochemical trapping centers that compete with

  6. Monitoring sperm mitochondrial respiration response in a laser trap using ratiometric fluorescence

    NASA Astrophysics Data System (ADS)

    Mei, Adrian; Botvinick, Elliot; Berns, Michael

    2005-08-01

    Sperm motility is an important area in understanding male infertility. Various techniques, such as the Computer Assisted Sperm Analysis (CASA), have been used to understand sperm motility. Sperm motility is related to the energy (ATP) production of sperm. ATP is produced by the depolarization of the membrane potential of the inner membrane of the mitochondria. In this study, a mitochondrial dye, JC-1, has been used to monitor the energetics of the mitochondria. This fluorescent dye can emit at two different wavelengths, depending on the membrane potential of the mitochondria. It can fluoresce green at low membrane potential and red at high membrane potential. The ratio of the two colors (red/green) allows for an accurate measurement of the change of membrane potential. Various experiments were conducted to quantify the behavior of the dye within the sperm and the reaction of the sperm to trap. Sperm were trapped using laser tweezers. Results have shown that the ratio drops dramatically when sperm are trapped, indicating a depolarization of the membrane. The physiological response to this depolarization is yet to be determined, but the studies indicate that the sperm could have been slightly damaged by the laser. However, knowing that sperm depolarizes their membrane when trapped can help understand how sperm react to their environment and consequently help treat male infertility.

  7. Tissue distribution and real-time fluorescence measurement of a tumor-targeted nanodevice by a two photon optical fiber fluorescence probe

    NASA Astrophysics Data System (ADS)

    Thomas, Thommey P.; Ye, Jing Yong; Yang, Chu-Sheng; Myaing, Monthiri; Majoros, Istvan J.; Kotlyar, Alina; Cao, Zhengyi; Norris, Theodore B.; Baker, James R., Jr.

    2006-02-01

    Real-time fluorescence measurement in deep tumors in live animals (or humans) by conventional methods has significant challenges. We have developed a two-photon optical fiber fluorescence (TPOFF) probe as a minimally invasive technique for quantifying fluorescence in solid tumors in live mice. Here we demonstrate TPOFF for real-time measurements of targeted drug delivery dynamics to tumors in live mice. 50-femtosecond laser pulses at 800 nm were coupled into a single mode optical fiber and delivered into the tumor through a 27-gauge needle. Fluorescence was collected back through the same fiber, filtered, and detected with photon counting. Biocompatible dendrimer-based nanoparticles were used for targeted delivery of fluorescent materials into tumors. Dendrimers with targeting agent folic acid and fluorescent reporter 6-TAMRA (G5-6T-FA) were synthesized. KB cell tumors expressing high levels of FA receptors were developed in SCID mice. We initially demonstrated the specific uptake of the targeted conjugates into tumor, kidney and liver, using the TPOFF probe. The tumor fluorescence was then taken in live mice at 30 min, 2 h and 24 h with the TPOFF probe. G5-6T-FA accumulated in the tumor with maximum mean levels reaching 673 +/- 67 nM at the 2 h time point. In contrast, the levels of a control, non-targeted conjugate (G5-6T) at 2 h reached a level of only 136 +/- 28 nM in tumors, and decrease quickly. This indicates that the TPOFF probe can be used as a minimally invasive detection system for quantifying the specific targeting of a fluorescent nanodevice on a real-time basis.

  8. Toward the measurement of multiple fluorescence lifetimes in flow cytometry: maximizing multi-harmonic content from cells and microspheres.

    PubMed

    Jenkins, Patrick; Naivar, Mark A; Houston, Jessica P

    2015-11-01

    Flow cytometry is a powerful means for in vitro cellular analyses where multi-fluorescence and multi-angle light scattering can indicate unique biochemical or morphological features of single cells. Yet, to date, flow cytometry systems have lacked the ability to capture complex fluorescence dynamics due to the transient nature of flowing cells. In this contribution we introduce a simple approach for measuring multiple fluorescence lifetimes from a single cytometric event. We leverage square wave modulation, Fourier analysis, and high frequency digitization and show the ability to resolve more than one fluorescence lifetime from fluorescently-labelled cells and microspheres. Illustration of a flow cytometer capable of capturing multiple fluorescence lifetime measurements; creating potential for multi-parametric, time-resolved signals to be captured for every color channel. PMID:25727072

  9. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  10. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  11. Suppression of Ultracold Neutron Depolarization on Material Surfaces with Magnetic Holding Fields

    NASA Astrophysics Data System (ADS)

    Rios, Raymond

    2009-10-01

    Experiments involving polarized Ultracold Neutrons (UCN) for high precision measurements require the use of high Fermi potential materials with a low spin flip probability per bounce. Previous studies show that the spin flip probability for materials vary on the order of 10-3 to 10-6. In this study, the depolarization of UCN was measured within 1-m long, 2 3/4" diameter bare copper, electropolished copper, diamond-like carbon-coated copper, and stainless steel guide tubes as a function of the magnetic holding field. The UCN were trapped between a 6 Tesla solenoidal magnet and a copper plate. A series of Helmholtz coils produced a magnetic holding field over the length of the test guide at 10, 100, or 250 Gauss. The surface depolarization was observed to be suppressed at higher holding fields. These measurements will aid in the determination of an upper limit on depolarization of UCN in the UCNA beta asymmetry measurement at LANL and in understanding the mechanisms for depolarization in non-magnetic guides.

  12. Delayed fluorescence spectra of intact leaves photoexcited by sunlight measured with a multichannel Fourier-transform chemiluminescence spectrometer

    NASA Astrophysics Data System (ADS)

    Akita, Saeka; Yano, Ayako; Ishii, Hiroshi; Satoh, Chikahiro; Akai, Nobuyuki; Nakata, Munetaka

    2013-06-01

    Delayed fluorescence spectra of intact leaves of Green pak choi (Brassica rapa var. chinensis) were measured with a multichannel Fourier-transform chemiluminescence spectrometer, which we developed recently. The intact samples, photoexcited by sunlight without artificial light sources, showed delayed fluorescence around 740 nm with a lifetime of ˜6 s. The observed spectra were deconvoluted into two Gaussian bands: the delayed fluorescence from photosystem II and photosystem I complexes. Their relative intensities depended on the chlorophyll concentration, but their wavelengths were unchanged.

  13. Depolarization of decaying counterflow turbulence in He II.

    PubMed

    Barenghi, C F; Gordeev, A V; Skrbek, L

    2006-08-01

    We present experimental evidence backed up by numerical simulations that the steady-state vortex tangle created in He II by heat-transfer counterflow is strongly polarized. When the heater that generates the counterflow turbulence is switched off, the vortex tangle decays, the vortex lines randomize their spatial orientation and the tangle's polarization decreases. The process of depolarization slows down the recovery of the transverse second sound signal which measures the vortex line density; at some values of parameters it even leads to a net decrease of the amplitude of the transverse second sound prior to reaching the universal -32 power temporal law decay typical of classical homogeneous isotropic turbulence in a finite-sized channel. PMID:17025541

  14. Depolarization of decaying counterflow turbulence in He II

    SciTech Connect

    Barenghi, C. F.; Gordeev, A. V.; Skrbek, L.

    2006-08-15

    We present experimental evidence backed up by numerical simulations that the steady-state vortex tangle created in He II by heat-transfer counterflow is strongly polarized. When the heater that generates the counterflow turbulence is switched off, the vortex tangle decays, the vortex lines randomize their spatial orientation and the tangle's polarization decreases. The process of depolarization slows down the recovery of the transverse second sound signal which measures the vortex line density; at some values of parameters it even leads to a net decrease of the amplitude of the transverse second sound prior to reaching the universal -3/2 power temporal law decay typical of classical homogeneous isotropic turbulence in a finite-sized channel.

  15. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles.

    PubMed

    Kaye, P H; Barton, J E; Hirst, E; Clark, J M

    2000-07-20

    We describe a prototype laboratory light-scattering instrument that integrates two approaches to airborne particle characterization: spatial light-scattering analysis and intrinsic fluorescence measurement, with the aim of providing an effective means of classifying biological particles within an ambient aerosol. The system uses a single continuous-wave 266-nm ultraviolet laser to generate both the spatial elastic scatter data (from which an assessment of particle size and shape is made) and the particle intrinsic fluorescence data from particles in the approximate size range of 1-10-mum diameter carried in a sample airflow through the laser beam. Preliminary results suggest that this multiparameter measurement approach can provide an effective means of classifying different particle types and can reduce occurrences of false-positive detection of biological aerosols. PMID:18349949

  16. Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows

    NASA Technical Reports Server (NTRS)

    Hiller, B.; Mcdaniel, J. C.; Rea, E. C., Jr.; Hanson, R. K.

    1983-01-01

    A nonintrusive optical technique is reported for multiple-point velocity measurements in subsonic flows. The technique is based on the detection of fluorescence from a Doppler-shifted absorption line of seeded iodine molecules excited at a laser frequency fixed in the wing of the line. Counterpropagating laser sheets are used to illuminate the flow, in the present case a nitrogen round jet, thereby eliminating the need for an unshifted reference signal. The fluorescence is detected simultaneously at 10,000 points in a plane of the flow using a 100 x 100 element photodiode-array camera. The velocity at each point is computed from four successive camera frames, each recorded with a different beam direction. The measured mean velocities between 5 and 50 m/sec agree well with data from the literature.

  17. Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Woolley, Adam T

    2013-05-24

    A microfluidic chip with integrated 2mm long monoliths incorporated with poly(ethylene glycol) (PEG) groups was developed for thrombin-aptamer interaction study. The non-G quartet forming oligonucleotide coated monoliths was compared to a 15 mer thrombin-binding aptamer, in which affinity binding and elution processes were real-time monitored fluorescently. The results showed that the fluorescence intensity of aptamer stationary phase is approximately 10 times higher than that of the control column, which is probably due to the successful suppression of nonspecific adsorption between thrombin and aptamers/monoliths by using PEG-monolith. The experiment was repeated using human serum albumin (HSA) and green fluorescence protein (GFP) as interferences, it was double confirmed that thrombin was selectively retained by PEG-monolith. An elution efficiency of 75% was achieved with an elute of 200mM acetic acid and 2M NaCI, and the eluted thrombin was successfully separated in an ionic buffer system of 20mM NaHCO3 (pH 9.5) with 3% PEG. The hydrophilic and antifouling properties of PEG-monolith greatly decrease nonspecific adsorption and enhance detection sensitivity, which provided an alternative method to perform on-chip fluorescent measurement of bioaffinity binding. PMID:23587316

  18. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  19. Precise intensity correlation measurement for atomic resonance fluorescence from optical molasses.

    PubMed

    Nakayama, Kazuyuki; Yoshikawa, Yutaka; Matsumoto, Hisatoshi; Torii, Yoshio; Kuga, Takahiro

    2010-03-29

    We measured the intensity correlation of true thermal light scattered from cold atoms in an optical molasses. Using a single-mode fiber as a transverse mode filter, measurement with maximally high spatial coherence was realized, allowing us to observe ideal photon bunching with unprecedented precision. The measured intensity correlation functions showed a definite bimodal structure with fast damped oscillation from the maximum value of 2.02(3) and slow monotonic decay toward unity. The oscillation can be understood as an interference between elastic and inelastic scattering fields in resonance fluorescence. PMID:20389684

  20. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    SciTech Connect

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  1. Simple analytic formula for the strength of spin depolarizing resonance

    SciTech Connect

    Lee, S.Y.

    1985-01-01

    A simple analytic formula is derived to explain the periodicity of spin depolarizing resonance. The spin depolarizing resonance strengths of CPS and SPS at CERN and the lattices of meson factory at TRIUMF are used to compare with the analytic formula.

  2. [Cortical spreading depolarization: a new pathophysiological mechanism in neurological diseases].

    PubMed

    Sánchez-Porras, Renán; Robles-Cabrera, Adriana; Santos, Edgar

    2014-05-20

    Cortical spreading depolarization is a wave of almost complete depolarization of the neuronal and glial cells that occurs in different neurological diseases such as migraine with aura, subarachnoid hemorrhage, intracerebral hemorrhage, head trauma and stroke. These depolarization waves are characterized by a change in the negative potential with an amplitude between -10 and -30mV, duration of ∼1min and changes in the ion homeostasis between the intra- and extracellular space. This results in neuronal edema and dendritic distortion. Under pathologic states of hypoperfusion, cortical spreading depolarization can produce oxidative stress, worsen hypoxia and induce neuronal death. This is due to intense arterial vasoconstriction produced by an inverse response called spreading ischemia. Only in the last years there has been an electrophysiological confirmation of cortical spreading depolarization in human brains. Occurrence of cortical spreading depolarization has been associated with worse outcome in patients. Currently, increased knowledge regarding the pathophysiologic mechanisms supports the hypothetical correlation of cortical spreading depolarization with brain damage in humans. There are diverse therapeutic alternatives that promise inhibition of cortical spreading depolarization and subsequent better outcomes. PMID:23928069

  3. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  4. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    SciTech Connect

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; Di Giulio, C.; Luis, P.Facal San; Gonzales, D.; Hojvat, C.; Horandel, J.R.; Hrabovsky, M.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  5. Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime

    NASA Technical Reports Server (NTRS)

    Lin, C.; Dienes, A.

    1973-01-01

    By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.

  6. Evaluation of Portable X-Ray Fluorescence (XRF) Analyzer for Zirconium-Thickness Measurements

    SciTech Connect

    Glenn Moore

    2013-09-01

    This Technical Evaluation Report provides details of preliminary testing/experiments performed using a handheld X-ray fluorescence analyzer. The analyzer will be utilized in upcoming fuel-foil-rolling optimization studies at the INL. The studies are being performed in support of DOE’s Office of Global Threat Reduction -- Reactor Conversion Subprogram. Details of the equipment used, operating parameters, and measurement results are provided in this report.

  7. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  8. A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.

    PubMed

    Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G

    2014-04-22

    The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). PMID:24703214

  9. Fluorescence lifetime measurement via a radionuclide-scintillation light source and analog cross correlation.

    PubMed

    Burden, D L; Hobbs, S E; Hieftje, G M

    1997-05-15

    beta-Emitting 90Sr is used with a plastic scintillator to produce excitation-light pulses for fluorescence lifetime analysis. This light source is less expensive, more compact, and much more reliable than traditionally employed excitation sources such as lasers or pulsed flash lamps. The pulse train from this light source varies randomly in amplitude and time. Cross-correlation signal analysis is ideal for such a source because, unlike other time domain techniques, cross correlation takes complete advantage of its random nature. Here we report on the construction of an instrument and the methods employed to make fluorescence lifetime measurements via the new source and an analog correlation processor. Although the light intensity of the scintillator-based excitation source is comparatively low, an adequate signal level can be generated. The fluorescence lifetimes of three fluorophores are measured with a 1-mCi radionuclide to demonstrate a lifetime range from less than 1.5 to 28 ns. Long-lifetime measurements require an extra calibration step in order to compensate for delay cable energy loss. The light collection efficiency of the current instrument was found to be undesirably low; improvements in the instrument optics are suggested that will increase the collection efficiency and enhance the detection capability. PMID:9164162

  10. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    PubMed

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  11. Oxygen plasma flow properties deduced from laser-induced fluorescence and probe measurements.

    PubMed

    Löhle, Stefan; Eichhorn, Christoph; Steinbeck, Andreas; Lein, Sebastian; Herdrich, Georg; Röser, Hans-Peter; Auweter-Kurtz, Monika

    2008-04-10

    Estimation of the local dissociation degree and the local mass-specific enthalpy of a pure oxygen plasma flow determined mainly from laser-induced fluorescence measurements are reported. Measurements have been conducted for several generator parameters in an inductively heated plasma wind tunnel. Additional probe measurements of total pressure together with the deduced translational temperature are used to estimate the local mass-specific enthalpy. For a reference condition, full dissociation has been measured. The measured translational temperature of atomic oxygen for this condition is T = 3500 K. Subsequently, the local mass-specific enthalpy has been derived using these local density and temperature measurements. For the reference condition the estimated value of h = 27 MJ/kg is in good agreement with the probe measurements and results from diode laser absorption spectroscopy. PMID:18404183

  12. Modelling and measurement of solar induced fluorescence in a boreal scots pine canopy

    NASA Astrophysics Data System (ADS)

    Nichol, C. J.; Drolet, G.; Atherton, J.; Wade, T. J.; Porcar-Castell, A.; Levula, J.; Nikinmaa, E.; Vesala, T.

    2012-12-01

    Terrestrial sun induced chlorophyll fluorescence (Fs) is emitted by chlorophyll molecules in the photosystems of higher plants. The signal originates from the photosynthetic machinery and is thus expected to respond to changes in environmental conditions such as light and physiological stress. This therefore makes Fs an attractive tool to provide insight into a plants photosynthetic performance over traditional reflectance based approaches utilised in vegetation remote sensing applications. A number of Fs retrieval methods from optical data have been documented and these share a common basis; that the fractional depth of the Fraunhofer lines decreases due to infilling by solar induced fluorescence (Fs). Here we presents results from two (linked) studies that demonstrates the challenge of retrieving Fs from, firstly, continuous irradiance and radiance measurements collected over a boreal canopy from a custom built continuously operating optical system, and secondly, we present a coupled physiological-radiative transfer model that predicts changes in the apparent reflectance of a leaf, due to chlorophyll fluorescence that occur on timescales of seconds to minutes. The biochemical model is based on a detailed model of the dynamics of the fate of absorbed light energy through photosystem II. The radiative transfer component is derived from empirically obtained fluorescence excitation-emission matrices and the PROSPECT leaf model. A Markov Chain Monte Carlo (MCMC) algorithm was used to optimise biochemical model parameters by fitting model simulations of transient chlorophyll fluorescence to measured reflectance spectra. The model successfully simulated the transient fluorescence decay curve and reproduced yield estimates for photochemical and non-photochemical quenching when validated against an independent data-set. The biochemical model is driven solely by incident radiation, to scale to the canopy and to use the model on trans-seasonal time scales the effects of

  13. Fluorescence Recovery after Merging a Droplet to Measure the Two-dimensional Diffusion of a Phospholipid Monolayer

    PubMed Central

    Jeong, Dae-Woong; Kim, KyuHan; Choi, Myung Chul; Choi, Siyoung Q.

    2015-01-01

    We introduce a new method to measure the lateral diffusivity of a surfactant monolayer at the fluid-fluid interface, called fluorescence recovery after merging (FRAM). FRAM adopts the same principles as the fluorescence recovery after photobleaching (FRAP) technique, especially for measuring fluorescence recovery after bleaching a specific area, but FRAM uses a drop coalescence instead of photobleaching dye molecules to induce a chemical potential gradient of dye molecules. Our technique has several advantages over FRAP: it only requires a fluorescence microscope rather than a confocal microscope equipped with high power lasers; it is essentially free from the selection of fluorescence dyes; and it has far more freedom to define the measured diffusion area. Furthermore, FRAM potentially provides a route for studying the mixing or inter-diffusion of two different surfactants, when the monolayers at a surface of droplet and at a flat air/water interface are prepared with different species, independently. PMID:26556128

  14. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.

    PubMed

    Reichardt, T A; Klassen, M S; King, G B; Laurendeau, N M

    1996-04-20

    Picosecond time-resolved laser-induced fluorescence (PITLIF) can potentially be used to obtain measurements of minor species concentrations in rapidly fluctuating flames. Previous studies demonstrated this potential for atomic sodium by monitoring the temporal fluorescence signal with both an equivalent-time and a real-time sampling method. In this developmental study, PITLIF is used to determine hydroxyl concentrations in laminar CH(4)-O(2)-N(2) flames by the measurement of both the integrated fluorescence signal and the fluorescence lifetime. The quenching environment can be monitored with real-time sampling, and thus the necessary quenching rate coefficient is obtained in 348 us, which is fast enough for use in many turbulent flows. Fluorescence lifetimes of OH are also measured at different equivalence ratios in laminar flames by the use of the equivalent-time sampling technique. These results compare favorably with predicted lifetimes based on relevant quenching cross sections and calculated species concentrations. PMID:21085341

  15. Fluorescence Recovery after Merging a Droplet to Measure the Two-dimensional Diffusion of a Phospholipid Monolayer.

    PubMed

    Jeong, Dae-Woong; Kim, KyuHan; Choi, Myung Chul; Choi, Siyoung Q

    2015-01-01

    We introduce a new method to measure the lateral diffusivity of a surfactant monolayer at the fluid-fluid interface, called fluorescence recovery after merging (FRAM). FRAM adopts the same principles as the fluorescence recovery after photobleaching (FRAP) technique, especially for measuring fluorescence recovery after bleaching a specific area, but FRAM uses a drop coalescence instead of photobleaching dye molecules to induce a chemical potential gradient of dye molecules. Our technique has several advantages over FRAP: it only requires a fluorescence microscope rather than a confocal microscope equipped with high power lasers; it is essentially free from the selection of fluorescence dyes; and it has far more freedom to define the measured diffusion area. Furthermore, FRAM potentially provides a route for studying the mixing or inter-diffusion of two different surfactants, when the monolayers at a surface of droplet and at a flat air/water interface are prepared with different species, independently. PMID:26556128

  16. Measurement and quantification of fluorescent changes in ocular tissue using a novel confocal instrument

    NASA Astrophysics Data System (ADS)

    Buttenschoen, Kim K.; Girkin, John M.; Daly, Daniel J.

    2014-05-01

    Our sight is a major contributor to our quality of life. The treatment of diseases like macular degeneration and glaucoma, however, presents a challenge as the delivery of medication to ocular tissue is not well understood. The instrument described here will help quantify targeted delivery by non-invasively and simultaneously measuring light reflected from and fluorescence excited in the eye, used as position marker and to track compounds respectively. The measurement concept has been proven by monitoring the diffusion of fluorescein and a pharmaceutical compound for treating open angle glaucoma in vitro in a cuvette and in ex vivo porcine eyes. To obtain a baseline of natural fluorescence we measured the change in corneal and crystalline lens autofluorescence in volunteers over a week. We furthermore present data on 3D ocular autofluorescence. Our results demonstrate the capability to measure the location and concentration of the compound of interest with high axial and temporal resolution of 178 μm and 0.6 s respectively. The current detection limit is 2 nM for fluorescein, and compounds with a quantum yield as low as 0.01 were measured to concentrations below 1 μM. The instrument has many applications in assessing the diffusion of fluorescent compounds through the eye and skin in vitro and in vivo, measuring autofluorescence of ocular tissues and reducing the number of animals needed for research. The instrument has the capability of being used both in the clinical and home care environment opening up the possibility of measuring controlled drug release in a patient friendly manner.

  17. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  18. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  19. Fluorescence dilution technique for measurement of albumin reflection coefficient in isolated glomeruli.

    PubMed

    Fan, Fan; Chen, Chun Cheng Andy; Zhang, Jin; Schreck, Carlos M N; Roman, Eric A; Williams, Jan M; Hirata, Takashi; Sharma, Mukut; Beard, Daniel A; Savin, Virginia J; Roman, Richard J

    2015-12-15

    This study describes a high-throughput fluorescence dilution technique to measure the albumin reflection coefficient (σAlb) of isolated glomeruli. Rats were injected with FITC-dextran 250 (75 mg/kg), and the glomeruli were isolated in a 6% BSA solution. Changes in the fluorescence of the glomerulus due to water influx in response to an imposed oncotic gradient was used to determine σAlb. Adjustment of the albumin concentration of the bath from 6 to 5, 4, 3, and 2% produced a 10, 25, 35, and 50% decrease in the fluorescence of the glomeruli. Pretreatment of glomeruli with protamine sulfate (2 mg/ml) or TGF-β1 (10 ng/ml) decreased σAlb from 1 to 0.54 and 0.48, respectively. Water and solute movement were modeled using Kedem-Katchalsky equations, and the measured responses closely fit the predicted behavior, indicating that loss of albumin by solvent drag or diffusion is negligible compared with the movement of water. We also found that σAlb was reduced by 17% in fawn hooded hypertensive rats, 33% in hypertensive Dahl salt-sensitive (SS) rats, 26% in streptozotocin-treated diabetic Dahl SS rats, and 21% in 6-mo old type II diabetic nephropathy rats relative to control Sprague-Dawley rats. The changes in glomerular permeability to albumin were correlated with the degree of proteinuria in these strains. These findings indicate that the fluorescence dilution technique can be used to measure σAlb in populations of isolated glomeruli and provides a means to assess the development of glomerular injury in hypertensive and diabetic models. PMID:26447220

  20. "Open-Box" Approach to Measuring Fluorescence Quenching Using an iPad Screen and Digital SLR Camera

    ERIC Educational Resources Information Center

    Koenig, Michael H.; Yi, Eun P.; Sandridge, Matthew J.; Mathew, Alexander S.; Demas, James N.

    2015-01-01

    Fluorescence quenching is an analytical technique and a common undergraduate laboratory exercise. Unfortunately, a typical quenching experiment requires the use of an expensive fluorometer that measures the relative fluorescence intensity of a single sample in a closed compartment unseen by the experimenter. To overcome these shortcomings, we…

  1. Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom

    SciTech Connect

    Ziegler, Ronny; Nielsen, Tim; Koehler, Thomas; Grosenick, Dirk; Steinkellner, Oliver; Hagen, Axel; Macdonald, Rainer; Rinneberg, Herbert

    2009-08-20

    We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.

  2. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM).

    PubMed Central

    Clayton, Andrew H A; Hanley, Quentin S; Arndt-Jovin, Donna J; Subramaniam, Vinod; Jovin, Thomas M

    2002-01-01

    We describe a novel variant of fluorescence lifetime imaging microscopy (FLIM), denoted anisotropy-FLIM or rFLIM, which enables the wide-field measurement of the anisotropy decay of fluorophores on a pixel-by-pixel basis. We adapted existing frequency-domain FLIM technology for rFLIM by introducing linear polarizers in the excitation and emission paths. The phase delay and intensity ratios (AC and DC) between the polarized components of the fluorescence signal are recorded, leading to estimations of rotational correlation times and limiting anisotropies. Theory is developed that allows all the parameters of the hindered rotator model to be extracted from measurements carried out at a single modulation frequency. Two-dimensional image detection with a sensitive CCD camera provides wide-field imaging of dynamic depolarization with parallel interrogation of different compartments of a complex biological structure such as a cell. The concepts and technique of rFLIM are illustrated with a fluorophore-solvent (fluorescein-glycerol) system as a model for isotropic rotational dynamics and with bacteria expressing enhanced green fluorescent protein (EGFP) exhibiting depolarization due to homotransfer of electronic excitation energy (emFRET). The frequency-domain formalism was extended to cover the phenomenon of emFRET and yielded data consistent with a concentration depolarization mechanism resulting from the high intracellular concentration of EGFP. These investigations establish rFLIM as a powerful tool for cellular imaging based on rotational dynamics and molecular proximity. PMID:12202387

  3. Experimental study and verification of the residence time distribution using fluorescence spectroscopy and color measurement

    NASA Astrophysics Data System (ADS)

    Aigner, Michael; Lepschi, Alexander; Aigner, Jakob; Garmendia, Izaro; Miethlinger, Jürgen

    2015-05-01

    We report on the inline measurement of residence time (RT) and residence time distribution (RTD) by means of fluorescence spectroscopy [1] and optical color measurements [2]. Measurements of thermoplastics in a variety of single-screw extruders were conducted. To assess the influence of screw configurations, screw speeds and mass throughput on the RT and RTD, tracer particles were introduced into the feeding section and the RT was measured inline in the plasticization unit. Using special measurement probes that can be inserted into 1/2″ - 20 UNF (unified fine thread) bore holes, the mixing ability of either the whole plasticization unit or selected screw regions, e.g., mixing parts, can be validated during the extrusion process. The measurement setups complement each other well, and their combined use can provide further insights into the mixing behavior of single-screw plasticization units.

  4. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    SciTech Connect

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  5. Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame

    NASA Astrophysics Data System (ADS)

    Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang

    2016-06-01

    The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).

  6. 4-D reconstruction of fluorescence molecular tomography using re-assembled measurement data

    PubMed Central

    Liu, Xin; He, Xiaowe; Yan, Zhuangzhi; Lu, Hongbing

    2015-01-01

    Challenges remain in the reconstruction of dynamic (4-D) fluorescence molecular tomography (FMT). In our previous work, we implemented a fully 4-D FMT reconstruction approach using Karhunen-Loève (KL) transformation. However, in the reconstruction processes, the input data were scan-by-scan fluorescence projections. As a result, the reconstruction interval is limited by the data acquisition time for scanning one circle projections, leading to a long time (typically >1 min). In this paper, we propose a new method to reduce the reconstruction interval of dynamic FMT imaging, which is achieved by re-assembling the acquired fluorescence projection sequence. Further, to eliminate the temporal correlations within measurement data, the re-assembled projection sequence is reconstructed by the KL-based method. The numerical simulation and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that after re-assembling measurement data, the reconstruction interval can be greatly reduced (~2.5 sec/frame). In addition, the proposed re-assembling method is helpful for improving reconstruction quality of the KL-based method. PMID:26114022

  7. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    SciTech Connect

    Hoover, Andrew S; Rudy, Cliff R; Tobin, Steve J; Charlton, William S; Stafford, A; Strohmeyer, D; Saavadra, S

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  8. Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C., Jr.

    1982-01-01

    Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.

  9. Immobilized fluorescent dyes for sensitive pH measurements on enamel surfaces with fiber optics

    NASA Astrophysics Data System (ADS)

    Rumphorst, A.; Seeger, Stefan; Duschner, H.

    1996-01-01

    Information on the pH directly on surfaces of dental enamel is an important aspect in research on tooth decay. As an alternative to pH-electrodes our approach to the problem is the optical determination of pH by pH sensitive fluorescent dyes immobilized to tooth surfaces. In this study a model for measuring pH either on aminated cellulose substrates or on enamel (in vitro) with a fluorescein type dye is presented. The experimental realization is a fiber optic sensor with a nitrogen-pumped dye laser system and photodiode for the detection of the emitted fluorescence light. The surface pH values in the range between 4 and 7 were derived from the ratios of the excitation bands at 490 nm and 460 nm.

  10. Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics

    PubMed Central

    Streets, Aaron M.; Sourigues, Yannick; Kopito, Ron R.; Melki, Ronald; Quake, Stephen R.

    2013-01-01

    An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation. PMID:23349924

  11. Oh Laser-Induced Fluorescence Measurements in Nanosecond Pulse Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Choi, Inchul; Adamovich, Igor V.; Lempert, Walter R.

    2010-06-01

    We present recent results of laser-induced fluorescence measurements of hydroxyl radical density in repetitively pulsed nanosecond plasmas, created using 10-20 nsec duration, high (up to 20 kV) voltage pulsers, capable of operation at repetition rates as high as 40-50 kHz. OH mole fraction as a function of time with respect to discharge creation is determined, with absolute calibration performed using a Hencken flat flame burner. This paper will focus on a series of low temperature, non-equilibrium kinetics measurements in hydrogen and hydrocarbon-air mixtures, with results compared to predictions of a recently developed plasma chemical oxidation model.

  12. Application of a pulsed laser for measurements of bathymetry and algal fluorescence.

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Hogg, J. E.; Friedman, E. J.; Ghovanlou, A. H.

    1973-01-01

    The technique of measuring water depths with an airborne pulsed dye laser is studied, with emphasis on the degrading effect of some environmental and operational parameters on the transmitted and reflected laser signals. Extrapolation of measurements of laser stimulated fluorescence, performed as a function of both the algal cell concentration and the distance between the algae and the laser/receiver, indicate that a laser system operating from a height of 500 m should be capable of detecting chlorophyll concentrations as low as 1.0 mg/cu m.-

  13. On the measurement of particle number and mobility in nonideal solutions by fluorescence correlation spectroscopy.

    PubMed Central

    Abney, J R; Scalettar, B A; Hackenbrock, C R

    1990-01-01

    Interparticle interactions are incorporated into the theoretical description of the initial amplitude, G(0), of the normalized fluorescence correlation spectroscopy autocorrelation function. Measurements of particle number, aggregate size, and interaction-dependent diffusion are then analyzed in the context of this generalized theory. It is shown that the neglect of interactions can introduce order-of-magnitude errors into estimates of particle number and aggregate size. It is also shown that measurement of G(0) provides an essentially unique method for testing the validity of theories of interaction-dependent membrane protein diffusion. PMID:2383634

  14. Fluorescence photobleaching measurements of plant membrane viscosity: Effects of environmental stress: Final report

    SciTech Connect

    Breidenbach, R.W.

    1986-11-01

    The primary purpose of this project was to measure the temperature dependence of the fluidity of plant cell membranes by fluorescence photobleaching recovery, and see if there is a change in fluidity at the temperature of chilling injury. For practical reasons, we have concentrated on measurements of the lateral diffusion constant of the lipid analog dil in tomato vacuolar membrane. We have found an apparent change in the diffusion constant of dil near the temperature of chilling injury (approx.12/sup 0/C), but the scatter in the diffusion constants makes it difficult to prove that there is a change. 11 refs.

  15. Structural relaxation mechanisms in liquid Eugenol. A depolarized light scattering study

    NASA Astrophysics Data System (ADS)

    Bezot, P.; Hesse-Bezot, C.; Roynard, D.; Jeanneaux, F.

    1988-07-01

    A depolarized light scattering study of liquid Eugenol, over a large temperature range including the supercooled region, is proposed. Comparisons with shear mechanical impedance measurements, obtained at lower frequencies, lead to more precise information on the viscoelastic parameters in the supercooled region. The structural relaxation process measurements by means of the photon correlation technique are compared to the dielectric and mechanical measurements. Molecular mechanisms are proposed.

  16. Pyrene measurements in sooting low pressure methane flames by jet-cooled laser-induced fluorescence.

    PubMed

    Wartel, M; Pauwels, J-F; Desgroux, P; Mercier, X

    2011-12-15

    This paper presents in detail the study we carried out concerning the pyrene measurement by jet-cooled laser-induced fluorescence (JCLIF) in different sooting low pressure methane flames. The aim of this paper is both to demonstrate the potentialities of this technique for the measurement of such moderately sized polycyclic aromatic hydrocarbons under sooting flame conditions and to provide new experimental data for the understanding and the development of chemical models of the soot formation processes. Several concentration profiles of pyrene measured in different sooting flame (various pressure and equivalence ratio) are presented. The validation of the JCLIF method for pyrene measurements is explained in detail as well as the calibration procedure, based on the standard addition method, which has been implemented for the quantification of the concentration profiles. Sensitivity lower than 1 ppb was obtained for the measurement of this species under sooting flame conditions. PMID:22029528

  17. Spatial uniformity in chamber-cleaning plasmas measured using planar laser-induced fluorescence

    SciTech Connect

    Steffens, Kristen L.; Sobolewski, Mark A.

    1998-11-24

    Planar laser-induced fluorescence (PLIF) measurements were made to determine 2-D spatial maps of CF{sub 2} density as an indicator of chemical uniformity in 92%CF{sub 4}/O{sub 2} and 50%C{sub 2}F{sub 6}/O{sub 2} chamber-cleaning plasmas. Measurements were also made of broadband optical emission and of discharge current and voltage. All measurements were made in the Gaseous Electronics Conference (GEC) reference cell, a capacitively-coupled, parallel-plate platform designed to facilitate comparison of results among laboratories. The PLIF and emission results were found to correlate with discharge current and voltage measurements. Together, these optical and electrical measurements provide insight into the optimization of chamber-cleaning processes and reactors and suggest new methods of monitoring plasma uniformity.

  18. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.

    PubMed

    Day, Richard N

    2014-03-15

    The method of fluorescence lifetime imaging microscopy (FLIM) is a quantitative approach that can be used to detect Förster resonance energy transfer (FRET). The use of FLIM to measure the FRET that results from the interactions between proteins labeled with fluorescent proteins (FPs) inside living cells provides a non-invasive method for mapping interactomes. Here, the use of the phasor plot method to analyze frequency domain (FD) FLIM measurements is described, and measurements obtained from cells producing the 'FRET standard' fusion proteins are used to validate the FLIM system for FRET measurements. The FLIM FRET approach is then used to measure both homologous and heterologous protein-protein interactions (PPI) involving the CCAAT/enhancer-binding protein alpha (C/EBPα). C/EBPα is a transcription factor that controls cell differentiation, and localizes to heterochromatin where it interacts with the heterochromatin protein 1 alpha (HP1α). The FLIM-FRET method is used to quantify the homologous interactions between the FP-labeled basic leucine zipper (BZip) domain of C/EBPα. Then the heterologous interactions between the C/EBPa BZip domain and HP1a are quantified using the FRET-FLIM method. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. PMID:23806643

  19. Upgrade of goniospectrophtometer GEFE for near-field scattering and fluorescence radiance measurements

    NASA Astrophysics Data System (ADS)

    Bernad, Berta; Ferrero, Alejandro; Pons, Alicia; Hernanz, M. L.; Campos, Joaquín.

    2015-03-01

    The goniospectrophotometer GEFE, designed and developed at IO-CSIC (Instituto de Optica, Agencia Estatal Consejo Superior de Investigaciones Cientificas), was conceived to measure the spectral Bidirectional Reflectance Distribution Function (BRDF) at any pair of irradiation and detection directions. Although the potential of this instrument has largely been proved, it still required to be upgraded to deal with some important scattering features for the assessment of the appearance. Since it was not provided with a detector with spatial resolution, it simply could not measure spectrophotometric quantities to characterize texture through the Bidirectional Texture Function (BTF) or translucency through the more complex Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF). Another requirement in the GEFE upgrading was to provide it with the capability of measuring fluorescence at different geometries, since some of the new pigments used in industry are fluorescent, which can have a non-negligible impact in the color of the product. Then, spectral resolution at irradiation and detection had to be available in GEFE. This paper describes the upgrading of the goniospectrophotometer GEFE, and its new capabilities through the presentation of sparkle and goniofluorescence measurements. In addition, the potential of the instrument to evaluate translucency by the measurement of the BSSRDF is briefly discussed.

  20. Glutathione Oxidation as a Trigger of Mitochondrial Depolarization and Oscillation in Intact Hearts

    PubMed Central

    Slodzinski, M.K.; Aon, A.M.; O’Rourke, B.

    2008-01-01

    Depolarization of the mitochondrial inner membrane potential (ΔΨm) associated with oxidative stress is thought to be a critical factor in cardiac dysfunction and cell injury following ischemia-reperfusion or exposure to cardiotoxic agents. In isolated cardiomyocytes, mitochondrially-generated reactive oxygen species (ROS) can readily trigger cell-wide collapse or oscillations of ΔΨm but is it not known whether these phenomena scale to the level of the whole heart. Here we utilize two-photon laser scanning fluorescence microscopy to track ΔΨm, ROS, and reduced glutathione (GSH) levels in intact perfused guinea-pig hearts subjected to ischemia-reperfusion or GSH depletion with the thiol oxidizing agent diamide. Exposure to oxidative stress by either method provoked heterogeneous ΔΨm depolarization and occasional oscillation in clusters of myocytes in the epicardium in association with increased mitochondrial ROS production. Furthermore, the whole heart oxidative stress dramatically increased the sensitivity of seemingly quiescent cells to ΔΨm depolarization induced by a localized laser flash. These effects were directly correlated with depletion of the intracellular GSH pool. Unexpectedly, hearts perfused with nominally Ca2+-free solution or those switched from 0.5 mM Ca2+ to nominally Ca2+-free solution also displayed heterogeneous ΔΨm depolarization and oscillation, in parallel with net oxidation of the GSH pool. The findings demonstrate that metabolic heterogeneity initiated by mitochondrial ROS-induced ROS release is present in the intact heart, and that the redox state of the glutathione pool is a key determinant of loss of ΔΨm. PMID:18760283

  1. Realizing controllable depolarization in photonic quantum-information channels

    SciTech Connect

    Shaham, A.; Eisenberg, H. S.

    2011-02-15

    Controlling the depolarization of light is a long-standing open problem. In recent years, many demonstrations have used the polarization of single photons to encode quantum information. The depolarization of these photons is equivalent to the decoherence of the quantum information they encode. We present schemes for building various depolarizing channels with controlled properties using birefringent crystals. Three such schemes are demonstrated, and their effects on single photons are shown by quantum process tomography to be in good agreement with a theoretical model.

  2. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex.

    PubMed

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang; Woitzik, Johannes; Scheel, Michael; Wiesenthal, Dirk; Martus, Peter; Winkler, Maren K L; Hartings, Jed A; Fabricius, Martin; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression

  3. The reproducibility of [sup 109]Cd-based X-ray fluorescence measurements of bone lead

    SciTech Connect

    Gordon, C.L. ); Webber, C.E.; Chettle, D.R. )

    1994-08-01

    We assessed the reproducibility of X-ray fluorescence-based lead measurements from multiple measurements made on a low-concentration plaster of paris phantom and in five subjects measured five times on two occasions. Over a 6-month period, 220 measurements of the same phantom were obtained and showed a standard deviation of 1.29 [mu]g Pb (g plaster of paris)[sup [minus]1]. The two sets of in vivo measurements were made 10 months apart and revealed a mean standard deviation of 3.4 [mu]Pb (g bone mineral)[sup [minus]1] and 5.1 [mu]g Pb (g bone mineral)[sup [minus]1] for males and females, respectively. Our measured standard deviation exceeded by 20-30% the calculated standard deviation associated with a single measurement both in the phantom and in subjects. This indicates that some variance is introduced during the measurement process. Operator learning and consistency significantly minimized this increased variability. Measured lead concentrations of the left and right tibia in 14 subjects showed no significant differences between legs. As a result, either tibia can be sampled and compared over time. The levels of reproducibility we report here mean that X-ray fluorescence-based determinations of bone lead concentrations are reliable both over the short and long term. Thus, reasonably sized confidence intervals can be placed on detected changes in concentration and should permit acquisition of longitudinal data within a reasonable length of time. 19 refs., 1 fig., 6 tabs.

  4. A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector.

    PubMed

    Lamb, Jacob; Forfang, Kristin; Hohmann-Marriott, Martin

    2015-01-01

    The fluorescence emission spectrum of photosynthetic microorganisms at liquid nitrogen temperature (77 K) provides important insights into the organization of the photosynthetic machinery of bacteria and eukaryotes, which cannot be observed at room temperature. Conventionally, to obtain such spectra, a large and costly table-top fluorometer is required. Recently portable, reliable, and largely maintenance-free instruments have become available that can be utilized to accomplish a wide variety of spectroscopy-based measurements in photosynthesis research. In this report, we show how to build such an instrument in order to record 77K fluorescence spectra. This instrument consists of a low power monochromatic light-emitting diode (LED), and a portable CCD array based spectrometer. The optical components are coupled together using a fiber optic cable, and a custom made housing that also supports a dewar flask. We demonstrate that this instrument facilitates the reliable determination of chlorophyll fluorescence emission spectra for the cyanobacterium Synechocystis sp. PCC 6803, and the green alga Chlamydomonas reinhardtii. PMID:26177548

  5. Multiple Velocity Profile Measurements in Hypersonic Flows using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inmian, Jennifer A.; Jones, Stephen B.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD camera was used to obtain separate images of the initial undelayed and delayed NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm x 0.7-mm). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. Quantification of systematic errors, the contribution of gating/exposure duration errors, and influence of collision rate on fluorescence to temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the analysis technique and signal-to-noise of the acquired profiles. This investigation focused on two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-inch Mach 10 wind tunnel.

  6. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    SciTech Connect

    Chyu, M.K.

    1996-04-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:Eu{sup +3}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  7. Automatic microfluidic fluorescence-array measurement system for detecting organic phosphate.

    PubMed

    Chang, Hsing-Cheng; Lin, Jung-Chin; Lin, Shyan-Lung; Chang, I-Nan; Lin, Chern-Sheng; Chen, Shi-Yao

    2015-01-01

    In this study, an automatic microfluidic fluorescence-array measurement system is developed to detect the concentration of organic phosphate based on the luminol-hydrogen peroxide catalytic fluorescent mechanism. Not only sample quantity and cost can be reduced, but also detection time, accuracy and precision can be improved in the system. The system is composed of a CCD image module, a stepper motor with driver, a microfluidic fluorescence array, a background light elimination module, and a dynamic image-analyzed interface. The pesticides of chlorpyrifos and fenitrothion of organic phosphate are chosen as experimental samples. Only a 2.5 μ l quantity of sample is required to have a fast response time of 1.4 second. Experimental results show that the sensitivities of chlorpyrifos and fenitrothion are 1.88 V/ppm in the range of 0.166 ∼ 10 ppm with averaged error of 1.66% and 0.32 V/ppm in the range of 0.03 ∼ 10 ppm with averaged error of 1.68% respectively. The organophosphorus effective detection range of the developed system covers the legal prescription for pesticide residues. PMID:26409537

  8. A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector

    PubMed Central

    Lamb, Jacob; Forfang, Kristin; Hohmann-Marriott, Martin

    2015-01-01

    The fluorescence emission spectrum of photosynthetic microorganisms at liquid nitrogen temperature (77 K) provides important insights into the organization of the photosynthetic machinery of bacteria and eukaryotes, which cannot be observed at room temperature. Conventionally, to obtain such spectra, a large and costly table-top fluorometer is required. Recently portable, reliable, and largely maintenance-free instruments have become available that can be utilized to accomplish a wide variety of spectroscopy-based measurements in photosynthesis research. In this report, we show how to build such an instrument in order to record 77K fluorescence spectra. This instrument consists of a low power monochromatic light-emitting diode (LED), and a portable CCD array based spectrometer. The optical components are coupled together using a fiber optic cable, and a custom made housing that also supports a dewar flask. We demonstrate that this instrument facilitates the reliable determination of chlorophyll fluorescence emission spectra for the cyanobacterium Synechocystis sp. PCC 6803, and the green alga Chlamydomonas reinhardtii. PMID:26177548

  9. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    SciTech Connect

    Chyu, M.K.

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  10. Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide in a Heptane Spray Flame

    NASA Technical Reports Server (NTRS)

    Cooper, Clayton S.; Laurendeau, Normand M.; Lee, Chi (Technical Monitor)

    1997-01-01

    We report spatially resolved laser-saturated fluorescence measurements of NO concentration in a pre-heated, lean-direct injection (LDI) spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q2(26.5) transition of the gamma(0,0) band. Detection is performed in a 2-nm region centered on the gamma(0,1) band. Because of the relatively close spectral spacing between the excitation (226 nm) and detection wavelengths (236 nm), the gamma(0,1) band of NO cannot be isolated from the spectral wings of the Mie scattering signal produced by the spray. To account for the resulting superposition of the fluorescence and scattering signals, a background subtraction method has been developed that utilizes a nearby non-resonant wavelength. Excitation scans have been performed to locate the optimum off-line wavelength. Detection scans have been performed at problematic locations in the flame to determine possible fluorescence interferences from UHCs and PAHs at both the on-line and off-line excitation wavelengths. Quantitative radial NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors.

  11. High glucose causes delayed fetal lung maturation as measured by fluorescence anisotropy.

    PubMed

    Gewolb, I H; Unger, M E; Merdian, W; Deutsch, J; Cavalieri, R L

    1993-06-15

    Fluorescence anisotropy has been used to estimate the microviscosity of the surfactant phospholipid bilayer and no predict fetal lung maturity in human amniotic fluid; its usefulness in in vitro systems has been recently demonstrated. To investigate the effect of high glucose on lung development, anisotropy measurements were performed on 20-day fetal rat lung explant homogenates and culture media after culture for 48 hours in medium containing final concentrations of 10, 50, and 100mM glucose. Anisotropy of lung tissue cultured in 100mM glucose was significantly increased when compared to those cultured in 10mM glucose (p < .01). After 48 hours, the media from samples grown in 100mM glucose had significantly higher anisotropy (.2210 +/- .0031) than did media from explants grown in 50mM glucose (.2027 +/- .0079; p < .05), or in 10mM glucose (.1886 +/- .0046; p < .001). Relative fluorescence intensity of explants grown in 100mM glucose was 74.4 +/- 5.7% of those grown in 10mM glucose (p < .01). Fluorescence intensity of media was also decreased by 15-30% under higher glucose considerations (p < .05). These data suggest that surfactant synthesized and secreted under high glucose conditions, such as exist in the infant of the diabetic gestation, may have qualitative as well as quantitative changes. PMID:8512578

  12. Plant-Stress Measurements Using Laser-Induced Fluorescence Excitation: Poland Experiment

    SciTech Connect

    Gene Capelle; Steve Jones

    1999-05-01

    Bechtel Nevada's Special Technologies Laboratory (STL) has been involved in remote sensing for many years, and in April 1995 STL began to study the use of active remote sensing for detecting plant stress. This work was motivated by the need to detect subsurface contamination, with the supposition that this could be accomplished by remote measurement of optical signatures from the overgrowing vegetation. The project has been a cooperative DOE/Disney effort, in which basic optical signature measurements (primarily fluorescence) were done at the Disney greenhouse facilities at Epcot Center in Florida, using instrumentation developed by STL on DOE funding. The primary instrument is a LIFI system, which had originally been developed for detection of surface uranium contamination at DOE sites. To deal specifically with the plant stress measurements, a LIFS system was built that utilizes the same laser, but captures the complete fluorescence spectrum from blue to red wavelengths. This system had continued to evolve, and the version in existence in September 1997 was sent to Poland, accompanied by two people from STL, for the purpose of making the measurements described in this report.

  13. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.

    PubMed Central

    Blackman, S M; Cobb, C E; Beth, A H; Piston, D W

    1996-01-01

    The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms. Images FIGURE 4 FIGURE 8 FIGURE 9 PMID:8804603

  14. Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence

    NASA Technical Reports Server (NTRS)

    Drake, M. C.; Pitz, R. W.; Lapp, M.; Fenimore, C. P.; Lucht, R. P.

    1985-01-01

    The first quantitative, time- and space-resolved measurements have been obtained for probability density functions of OH concentration in nonpremixed flames. Measurements using single-pulse, laser-saturated fluorescence in laminar, transitional, and turbulent nonpremixed H2-air flames provide unambiguous evidence for substantial OH superequilibrium concentrations, in qualitative agreement with predictions of laminar and turbulent combustion models. The average degree of superequilibrium, OH/OH(AE), is typically 4-5 near the jet exit and approaches unity far downstream. The maximum instantaneous OH concentration measured in transitional and turbulent H2-air flames is about 6 x 10 to the 16th molecules/cc, in accord with the maximum determined by partial equilibrium thermodynamic calculations and with the maximum OH concentrations measured in premixed H2-air flames.

  15. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  16. Satellite ultraviolet measurements of nitric oxide fluorescence with a diffusive transport model.

    NASA Technical Reports Server (NTRS)

    Rusch, D. W.

    1973-01-01

    Twilight measurements of fluorescence in the (1, 0) gamma band of nitric oxide were made from June 1967 to January 1969 by an ultraviolet scanning spectrometer on board the polar orbiting satellite Ogo 4. Nitric oxide vertical column emission rates were measured between solar zenith angles of 93 and 98 deg. Seasonal and latitudinal variations were found to be less than a factor of 1.3, the scatter and uncertainty in the data prohibiting more precise determinations from being made. Time independent chemical diffusion models for the vertical distribution of nitric oxide agree well with profiles measured from sounding rockets. The column emission rates calculated from the theoretical models are larger than the satellite measurements by a factor of 3.

  17. SU-C-303-05: Photosensitizer Determination for PDT Using Interstitial and Surface Measurements of Fluorescence

    SciTech Connect

    Kim, M; Finlay, J; Zhu, T

    2015-06-15

    Purpose: Photosensitizer concentration during photodynamic therapy (PDT) is an important parameter for accurate dosimetry. Fluorescence signal can be used as a measure of photosensitizer concentration. Two methods of data acquisition were compared to an ex vivo study both for in vivo and phantom models. Methods: Fluorescence signal of commonly used photosensitizer benzoporphyrin derivative monoacid ring A (BPD) was obtained in phantoms and mouse tumors using an excitation light of 405 nm. Interstitial fluorescence signal was obtained using a side-cut fiber inserted into the tumor tissue of interest. Using a previously developed multi-fiber probe, tumor surface fluorescence measurements were also collected. Signals were calibrated according to optical phantoms with known sensitizer fluorescence. Optical properties for each sample were determined and the influence of different absorption and scattering properties on the fluorescence signals was investigated. Using single value decomposition of the spectra, the sensitizer concentration was determined using the two different measurement geometries. An ex vivo analysis was also performed for tumor samples to determine the sensitizer concentration. Results: The two fluorescence signals obtained from the surface multi-fiber probe and the interstitial measurements were compared and were corresponding for both phantoms and mouse models. The values obtained were comparable to the ex vivo measurements as well. Despite the difference in geometry, the surface probe measurements can still be used as a metric for determining the presence of sensitizer in small volume tumors. Conclusion: The multi-fiber contact probe can be used as a tool to measure fluorescence at the surface of the treatment area for PDT and predict sensitizer concentration throughout the tumor. This is advantageous in that the measurement does not damage any tissue. Future work will include investigating the dependence of these results on intratumor sensitizer

  18. Particle velocity measurements with macroscopic fluorescence imaging in lymph tissue mimicking microfluidic phantoms

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Koo, Chiwan; Ton, Phuc; Han, Arum; Righetti, Raffaella; Maitland, Kristen C.

    2011-03-01

    Ultrasound poroelastography can quantify structural and mechanical properties of tissues such as stiffness, compressibility, and fluid flow rate. This novel ultrasound technique is being explored to detect tissue changes associated with lymphatic disease. We have constructed a macroscopic fluorescence imaging system to validate ultrasonic fluid flow measurements and to provide high resolution imaging of microfluidic phantoms. The optical imaging system is composed of a white light source, excitation and emission filters, and a camera with a zoom lens. The field of view can be adjusted from 100 mm x 75 mm to 10 mm x 7.5 mm. The microfluidic device is made of polydimethylsiloxane (PDMS) and has 9 channels, each 40 μm deep with widths ranging from 30 μm to 200 μm. A syringe pump was used to propel water containing 15 μm diameter fluorescent microspheres through the microchannels, with flow rates ranging from 0.5 μl/min to 10 μl/min. Video was captured at a rate of 25 frames/sec. The velocity of the microspheres in the microchannels was calculated using an algorithm that tracked the movement of the fluorescent microspheres. The imaging system was able to measure particle velocities ranging from 0.2 mm/sec to 10 mm/sec. The range of flow velocities of interest in lymph vessels is between 1 mm/sec to 10 mm/sec; therefore our imaging system is sufficient to measure particle velocity in phantoms modeling lymphatic flow.

  19. High-Resolution, Noninvasive, Two-Photon Fluorescence Measurement of Molecular Concentrations in Corneal Tissue

    PubMed Central

    Cui, Liping; Huxlin, Krystel R.; Xu, Lisen; MacRae, Scott

    2011-01-01

    Purpose. To perform high-resolution, noninvasive, calibrated measurements of the concentrations and diffusion profiles of fluorescent molecules in the live cornea after topical application to the ocular surface. Methods. An 800-nm femtosecond laser was used to perform two-photon fluorescence (TPF) axial scanning measurements. Calibration solutions consisting of sodium fluorescein (Na-Fl; concentration range, 0.01%–2.5%) and riboflavin (concentration range, 0.0125%–0.1%) were tested in well slides, and TPF signals were assessed. Excised feline eyeballs preserved in corneal storage medium and with either intact or removed corneal epithelia were then treated with Na-Fl, riboflavin, or fluorescein dextran (Fl-d) of different molecular weight (MW) for 30 minutes. Calibrated TPF was then used immediately to measure the concentration of these molecules across the central corneal depth. Results. The axial resolution of our TPF system was 6 μm, and a linear relationship was observed between TPF signal and low concentrations of most fluorophores. Intact corneas treated with Na-Fl or riboflavin exhibited a detectable penetration depth of only approximately 20 μm, compared with approximately 400 to 600 μm when the epithelium was removed before fluorophore application. Peak concentrations for intact corneas were half those attained with epithelial removal. Debrided corneas treated with 2,000,000 MW Fl-d showed a half-maximum penetration depth of 156.7 μm compared with 384 μm for the 3,000 MW dextran. The peak concentration of the high MW dextran was one quarter that of the lower MW dextran. Conclusions. TPF is an effective, high-resolution, noninvasive method of quantifying the diffusion and concentration of fluorescent molecules across the cornea. PMID:21228379

  20. Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts.

    PubMed

    Chao, A C; Dix, J A; Sellers, M C; Verkman, A S

    1989-12-01

    The methodology has been developed to measure Cl activity and transport in cultured cells grown on a monolayer using the entrapped Cl-sensitive fluorophore 6-methoxy-N-[3-sulfopropyl] quinolinium (SPQ). The method was applied to a renal epithelial cell line, LLC-PKI, and a nonepithelial cell line, Swiss 3T3 fibroblasts. SPQ was nontoxic to cells when present for greater than h in the culture media. To load with SPQ (5 mM), cells were made transiently permeable by exposure to hypotonic buffer (150 mOsm, 4 min). Intracellular fluorescence was monitored continuously by epifluorescence microscopy using low illumination intensity at 360 +/- 5 nm excitation wavelength and photomultiplier detection at greater than 410 nm. Over 60 min at 37 degrees C, there was no photobleaching and less than 10% leakage of SPQ out of cells; intracellular SPQ fluorescence was uniform. SPQ fluorescence was calibrated against intracellular [Cl] using high K solutions containing the ionophores nigericin and tributyltin. The Stern-Volmer constant (Kq) for quenching of intracellular SPQ by Cl was 13 M-1 for fibroblasts and LLC-PKl cells. In the absence of Cl, SPQ lifetime was 26 ns in aqueous solution and 3.7 +/- 0.6 ns in cells, showing that the lower Kq in cells than in free solution (Kq = 118 M-1) was due to SPQ quenching by intracellular anions. To examine Cl transport mechanisms, the time course of intracellular [Cl] was measured in response to rapid Cl addition and removal in the presence of ion or pH gradients. In fibroblasts, three distinct Cl transporting systems were identified: a stilbeneinhibitable Cl/HCO3 exchanger, a furosemide-sensitive Na/K/2Cl cotransporter, and a Ca-regulated Cl conductance. These results establish a direct optical method to measure intracellular [Cl] continuously in cultured cells. PMID:2482083

  1. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    PubMed Central

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D.; Wilkinson, Martin G.; Panek, Jiri; Auty, Mark A. E.; Periasamy, Ammasi; Sheehan, Jeremiah J.

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening. PMID:25798136

  2. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    PubMed Central

    Macháň, Radek; Hof, Martin

    2010-01-01

    Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support. PMID:20386647

  3. Electromagnetic interference (EMI) measurements of fluorescent lamps operated with solid-state ballasts

    NASA Astrophysics Data System (ADS)

    Arthur, A.; Verderber, R.; Rubinstein, F.; Morse, O.

    1981-05-01

    Solid state ballasts were placed in fluorescent lamps in various areas of a hospital to determine if these high frequency systems would adversely any hospital operations. The general areas tested included a lobby and an office space. Potentially sensitive areas containing hospital diagnostic and monitoring equipment, including a computerized axial tomography (CAT) scanning room, an electroencephatograph (EEG) examination room, and a coronary ward were also tested. The measurement techniques are described and the results discussed with respect to the existing RFI environment and with respect to EMI radiated and conducted limits specified by the Federal Communications Commission and the Federal Drug Administration.

  4. Laser Induced Fluorescence Measurements of Ion Velocity in Magnetic Cusped Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    MacDonald, Natalia; Cappelli, Mark; Hargus, William, Jr.

    2012-10-01

    Cusped Field Thrusters (CFTs) are magnetized plasma accelerators that use strong cusps to shape the magnetic field and hence the electrostatic potential. The cusped magnetic field lines meter the electron transport to the anode and reduce the energetic ion flux towards the dielectric channel walls, thereby reducing the effects of erosion. This work presents time averaged laser induced fluorescence velocity measurements of the ions in the plumes of three CFT variants. These include the Cylindrical Hall Thruster (CHT), Cylindrical Cusped Field Thruster (CCFT), and Diverging Cusped Field Thruster (DCFT). Results indicate that magnetic cusps form equipotential surfaces, and that the majority of ion acceleration occurs outside of the thruster channels.

  5. Airborne Laser-Induced Oceanic Chlorophyll Fluorescence: Solar-Induced Quenching Corrections by use of Concurrent Downwelling Irradiance Measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1998-05-01

    Airborne laser-induced (and water Raman-normalized) spectral fluorescence emissions from oceanic chlorophyll were obtained during variable downwelling irradiance conditions induced by diurnal variability and patchy clouds. Chlorophyll fluorescence profiles along geographically repeated inbound and outbound flight track lines, separated in time by 3 6 h and subject to overlying cloud movement, were found to be identical after corrections made with concurrent downwelling irradiance measurements. The corrections were accomplished by a mathematical model containing an exponential of the ratio of the instantaneous-to-average downwelling irradiance. Concurrent laser-induced phycoerythrin fluorescence and chromophoric dissolved organic matter fluorescence were found to be invariant to downwelling irradiance and thus, along with sea-surface temperature, established the near constancy of the oceanic surface layer during the experiment and validated the need for chlorophyll fluorescence quenching corrections over wide areas of the ocean.

  6. Multiple Velocity Profile Measurements in Hypersonic Flows Using Sequentially-Imaged Fluorescence Tagging

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Ivey,Christopher b.; Goyne, Christopher P.

    2010-01-01

    Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity measurements in hypersonic flows by generating multiple tagged lines which fluoresce as they convect downstream. For each laser pulse, a single interline, progressive scan intensified CCD (charge-coupled device) camera was used to obtain two sequential images of the NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond acquisition of both images, resulting in sub-microsecond temporal resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). Determination of axial velocity was made by application of a cross-correlation analysis of the horizontal shift of individual tagged lines. A numerical study of measured velocity error due to a uniform and linearly-varying collisional rate distribution was performed. Quantification of systematic errors, the contribution of gating/exposure duration errors, and the influence of collision rate on temporal uncertainty were made. Quantification of the spatial uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity measurement technique has been demonstrated for two hypersonic flow experiments: (1) a reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical boundary layer trip. The experiments were performed at the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel.

  7. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported. PMID:21102917

  8. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells

    NASA Astrophysics Data System (ADS)

    Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng

    2015-03-01

    Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (RC) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD˜nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and RC values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.

  9. Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor

    PubMed Central

    Sargsyan, A.; Cai, J.; Fandino, L. B.; Labasky, M. E.; Forostyan, T.; Colosimo, L. K.; Thompson, S. J.; Graham, T. E.

    2015-01-01

    Mitochondrial dysfunction is implicated in many human diseases and occurs in normal aging. Mitochondrial health is maintained through organelle biogenesis and repair or turnover of existing mitochondria. Mitochondrial turnover is principally mediated by mitophagy, the trafficking of damaged mitochondria to lysosomes via macroautophagy (autophagy). Mitophagy requires autophagy, but is itself a selective process that relies on specific autophagy-targeting mechanisms, and thus can be dissociated from autophagy under certain circumstances. Therefore, it is important to assess autophagy and mitophagy together and separately. We sought to develop a robust, high-throughput, quantitative method for monitoring both processes in parallel. Here we report a flow cytometry-based assay capable of rapid parallel measurements of mitophagy and autophagy in mammalian cells using a single fluorescent protein biosensor. We demonstrate the ability of the assay to quantify Parkin-dependent selective mitophagy in CCCP-treated HeLa cells. In addition, we show the utility of the assay for measuring mitophagy in other cell lines, as well as for Parkin-independent mitophagy stimulated by deferiprone. The assay makes rapid measurements (10,000 cells per 6 seconds) and can be combined with other fluorescent indicators to monitor distinct cell populations, enabling design of high-throughput screening experiments to identify novel regulators of mitophagy in mammalian cells. PMID:26215030

  10. Two-photon Laser Induced Fluorescence on Xenon for Neutral Density and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Galante, Matthew; Scime, Earl; Soderholm, Mark; Vandervort, Rober

    2013-10-01

    Many noble gasses are ideal species for plasma generation because of their relatively low ionization energies, very low electron affinities, and because the neutral and ion electronic configurations are easily probed spectroscopically. Laser induced fluorescence of a ground state neutral atom is particularly useful because it enables absolute signal calibration. We have identified a new two-photon-absorption laser-induced-fluorescence (TALIF) scheme for neutral xenon. The initial 5p6 ground state is pumped to the 5p5 7f state (ΔJ = 2) by two photons of wavelength approximately 209 nm, which then decays to the 5p5 6s state through single photon emission at 543 nm. Since the excitation is from the ground state, measurements of the fill gas provide absolute calibration. The pulsed TALIF laser (approx. 1 MWatt) with a very narrow line width (approx. 1 cm-1) enables the Doppler broadened line shape (superimposed on the isotopic splitting) to be measured. These measurements are obtained with confocal optics necessitating only a single lens and a single view port. We present spatially and temporally resolved neutral density and neutral temperature profiles in a xenon helicon plasma. Now at Wisconsin-Madison.

  11. Research in depolarization of particles in Tibetan Plateau and coastal area by lidar

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Wu, Songhua; Song, Xiaoquan; Qin, Shengguang; Liu, Bingyi; Liu, Jintao; Zhang, Kailin; Zhang, Wei

    2014-11-01

    Vertical profiles of the linear particle depolarization ratio p δ of cloud and aerosol in the Tibet Plateau were measured during the Tibetan Plateau atmospheric expedition experiment campaign with water vapor, cloud and aerosol lidar system, which is capable of depolarization ratio measurement. The atmospheric comprehensive observations were performed during July of 2013 at Litang (30.03°N,100.28°E), which is 3949 meters above the mean sea level, Sichuan province, China. It was the first time to detect and obtain the Tibetan Plateau cloud and aerosol lidar depolarization profiles to our knowledge. After completing the plateau experiment campaign, the lidar system measured the atmosphere above coastal area in Qingdao (36.165°N,120.4956°E). In this year, we continued to participate in the plateau experiment campaign in Nagchu (31.5°N,92.05°E), which is 4600 meters above the mean sea level, The Tibet Autonomous Region from 1st, July to 1st, September. Since particle size, shape and refractive index have an impact on linear particle depolarization ratio, one can classify the aerosol types and cloud phase in turn in the Tibetan Plateau and Qingdao area using linear particle depolarization ratio data. Generally, two calibration methods were applied: comparison of the lidar measurement data and CALIPSO simultaneous data method and half-wave plate ±45°switch method. In this paper we applied the comparison calibration method. The correlation coefficient between lidar measurement data and CALIPSO data reaches up to 84.92%, which shows great linear relation. Finally, after the calculation and calibration of the linear particle depolarization ratio measured during the plateau experiment campaign and observation in coastal area, the ice-water mixed cloud (0.15< p δ <0.5), water cloud ( p δ <0.15) and dusty mix(0.2< p δ <0.35) in Tibetan Plateau were occurred and classified. Meanwhile, the cirrus clouds ( p δ <0.5), water cloud, smoke and urban pollution (0.05< p

  12. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  13. Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties

    NASA Astrophysics Data System (ADS)

    Le Roy-Brehonnet, F.; Le Jeune, B.

    Polarization is an important property of several physical phenomena such as Rayleigh and Raman ( High intensity Raman Interactions: A. Penzkofer, A. Lauberteau, and W. Kaiser, Progress in Quantum Electronics, 6) (1982) scattering ( Multi-photon Scattering Molecular Spectroscopy, S. Kielich, Progress in Optics, E. Wolf(ed.) North-Holland, Amsterdam) (1983) or fluorescence ( Principles of Fluorescence Spectroscopy, J.R. Lakowicz, Plenum Press) (1986) for example, but also for laser spectral lines ( Laser Lines in Atomic Species, C. S. Willett, Progress in Quantum Electronics, 1) (1969). So, the polarimetric aspect for the propagation in media, such as fibres (Recent progress in fibre optics, G. Cancellieri, F. Chiaraluce, Progress in Quantum Electronics, 18) (1994), the atmosphere and the sea ( Light Scattering by Small Particles (Dover, New York, 1981), must be considered. Following general considerations on the different polarimetric formalisms(Chapter I), this paper first presents a review of present theoretical works on the exploitation of the Mueller matrix (Chapter II). This is followed by original studies of our own, concerning the possibility of extracting polarizing and depolarizing properties of a target characterized by a Mueller matrix (Chapter III). We then study the depolarization effects induced by targets in the Poincare´space (Chapter IV). This depolarization is induced by multiple reflections on rough surfaces or due to partial volume scattering. We have developed an algorithm, based on the knowledge of experimental noise, to classify experimental Mueller matrices according to their polarimetric characteristics. The laser imaging set-up used is described and the method (such as dichroic and birefringent ferrofluid samples) and surfaces (such as sand and other natural targets, dielectric or metallic rough targets).

  14. Repeatability of tibia lead measurement by X-Ray fluorescence in a battery-making workforce.

    PubMed

    Todd, A C; Ehrlich, R I; Selby, P; Jordaan, E

    2000-11-01

    The purpose of this study was to remeasure in vivo tibia lead levels in a lead-acid battery manufacturing workforce measured in a previous survey and believed to be unrealistically high. Tibia lead levels were measured by K-shell X-ray fluorescence (XRF) spectroscopy in a stratified random sample (n=40) of the original study group (n=381). The repeat survey showed much lower tibia lead levels (median=54.3 microg lead/g bone mineral, compared to 217.9 microg lead/g bone mineral, n=40). Tibia lead levels were significantly correlated with duration of occupational exposure, zinc protoporphyrin levels, and cumulative blood lead index, but not with current blood lead levels. Thirty-eight of the 40 subjects underwent two consecutive tibia lead measurements to assess the test-retest repeatability of the XRF tibia lead measurement technique. The intraclass correlation coefficient between repeated measurements was 0.926 (P=0.0001). Three measurement pairs differed by more than 20 microg/g. There was no fixed or proportional bias between the two sets of measurements. We conclude that the technique offers a highly repeatable measurement of tibia bone lead. However, care needs to be taken to avoid contamination when performing measurements on active lead workers. PMID:11097802

  15. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons

    PubMed Central

    Azucena, Oscar; Crest, Justin; Cao, Jian; Sullivan, William; Kner, Peter; Gavel, Donald; Dillon, Daren; Olivier, Scot; Kubby, Joel

    2010-01-01

    We present a new method to directly measure and correct the aberrations introduced when imaging through thick biological tissue. A Shack-Hartmann wavefront sensor is used to directly measure the wavefront error induced by a Drosophila embryo. The wavefront measurements are taken by seeding the embryo with fluorescent microspheres used as “artificial guide-stars.” The wavefront error is corrected in ten millisecond steps by applying the inverse to the wavefront error on a micro-electro-mechanical deformable mirror in the image path of the microscope. The results show that this new approach is capable of improving the Strehl ratio by 2 times on average and as high as 10 times when imaging through 100 μm of tissue. The results also show that the isoplanatic half-width is approximately 19 μm resulting in a corrected field of view 38 μm in diameter around the guide-star. PMID:20721137

  16. Demonstration of a transmission nuclear resonance fluorescence measurement for a realistic radioactive waste canister scenario

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Karwowski, H. J.; Silano, J.

    2015-03-01

    Transmission nuclear resonance fluorescence (NRF) is a promising method for precision non-destructive assay (NDA) of fissile isotopes-including 239Pu-in spent fuel while inside a storage canister. The assay, however, could be confounded by the presence of overlapping resonances from competing isotopes in the canister. A measurement is needed to demonstrate that transmission NRF is unaffected by the shielding material. To this end, we carried out a transmission NRF measurement using a mono-energetic γ-ray beam on a proxy target (Al) and absorbing material simulating a realistic spent fuel storage canister. Similar amounts of material as would be found in a possible spent fuel storage canister were placed upstream: concrete, stainless steel (SS 304), lead (as a proxy for U), and water. An Al absorption target was also used as a reference. These measurements demonstrated that the canister material should not significantly influence the non-destructive assay.

  17. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  18. A cryogenically cooled photofragment fluorescence instrument for measuring stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Weinstock, Elliot M.; Schwab, James J.; Nee, Jan Bai; Schwab, M. J.; Anderson, James G.

    1990-01-01

    An instrument developed for high-resolution daytime measurements of water vapor in the stratosphere using the technique of photofragment fluorescence is examined. A detailed description of all aspects of the instrument, as well as the results of its first two flights, are presented. The main areas of concern were optical baffling, cryogen transfer, water vapor measurement without contamination, and a dual path absorption measurement. Results of the second flight test indicate that the problems of instrument and gondola contamination, identified in the first flight test, were solved. A signal-to-noise ratio of about 50:1 for 10 sec of averaging throughout the stratosphere is achieved, as well as an altitude resolution of better than 100 m.

  19. A deterministic method for studying depolarization in turbid media

    NASA Astrophysics Data System (ADS)

    Clark, Julia P.

    2016-05-01

    There are a number of interesting experimental and Monte Carlo results regarding the persistence of polarization in turbid media; however, there is not a good theoretical understanding of this phenomenon. These results include circular polarization memory in strongly scattering anisotropic media and the impact of polydisperse scatterers on the depolarization rate. In this work we use the spectrum of the discretized vector radiative transport equation to investigate to study circular depolarization in strongly scattering media.

  20. Depolarization effects in the active remote sensing of random media

    NASA Technical Reports Server (NTRS)

    Zuniga, M.; Kong, J. A.; Tsang, L.

    1980-01-01

    Backscattering cross sections for depolarization are derived for the active remote sensing of a two-layer random medium. It is shown that the depolarization effects arise as a second-order term in albedo under the Born approximation. The results of the backscattering cross sections are illustrated as functions of frequency and incident angles and used to match experimental data collected from a vegetation field.

  1. The Identification of Mitogen Responding Subpopulations of Human Lymphocytes by Flow Polarimeter Fluorescence Measurements.

    NASA Astrophysics Data System (ADS)

    Chan, Sandra Lynn

    I have developed a method to identify the mitogen responding subpopulation of human peripheral blood lymphocytes. This method employs a flow polarimeter to measure the distribution of the intensity and the polarization of intracellular fluorescein fluorescence in suspensions of mononuclear cells isolated on density gradients from the peripheral blood of donors. I have used the change in the fluorescence of cells exposed to the mitogens PHA and Con A to identify the responding cells and to quantitate this number. I have found that for most donors, the responding cells constitute about 20-40% of the lymphocyte population. The percent of responding cells decreases to zero in patients with acute lymphocytic leukemia (2 patients) and chronic lymphocyte leukemia (10 patients). For a variety of patients with other types of cancer, the responding fraction was not significantly different from healthy controls. Moreover, the number of responding cells does not appear to be age dependent in the age range of 20-80 years. I also found that the change in fluorescence polarization correlated strongly with changes in fluorescence intensity induced by mitogens--the number of responding cells, therefore can be estimated either from the intensity or polarization distributions. The shapes of fluorescence distributions depend strongly on a number of variables including the composition and density of the lymphocyte isolating medium, the mitogen and dye concentrations, the length of incubation with mitogen or dye, and the potassium, calcium, and magnesium concentrations in the medium. In the case of fluorescein, I have worked out a methodology that allows a consistent estimate of the responding lymphocyte number. I have also investigated the use of the dye carbocyanine for the same purpose. This dye presumably identifies the mitogen responding lymphocytes on the basis of changes in membrane potential. The results with carbocyanine were found to depend on a number of variables and I could

  2. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization.

    PubMed

    Mentink-Vigier, Frédéric; Paul, Subhradip; Lee, Daniel; Feintuch, Akiva; Hediger, Sabine; Vega, Shimon; De Paëpe, Gaël

    2015-09-14

    Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals. PMID:26235749

  3. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    PubMed

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  4. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  5. AUV Measured Variability in Phytoplankton Fluorescence within the ETM of the Columbia River during Summer 2013

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T. M.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B. C.; Peterson, T. D.; Prahl, F. G.; Cravo, A.

    2014-12-01

    We present highly resolved observations of fluorescence and optical backscatter taken in the estuarine turbidity maxima (ETM) of the North Channel of the Columbia River estuary (USA) during summer 2013. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs) equipped with ECO Puck triplets. Concentrations of three phytoplankton pigments were measured by fluorescence emission at wavelengths of 695 nm for chlorophyll, 570 nm for phycoerythrin, and 680 nm for phycocyanin. We use phycocyanin to indicate the presence of freshwater phytoplankton. Optical backscatter at wavelengths of 700 nm and 880 nm are used to characterize turbidity. During flood tide, high phycocyanin concentrations were associated with a strong ETM event which had relatively low salinity waters of approximately 6 psu. These data indicate that this low salinity ETM event contained large concentrations of freshwater phytoplankton. Since freshwater phytoplankton are known to lyse in saltwater, the brackish ETM event may have formed by the accumulation of lysed freshwater phytoplankton that settled out from the river as it mixed in the lower estuary. As the flood tide proceeded, it brought high concentrations of marine phytoplankton into the north channel at mid-depth as indicated by high chlorophyll levels with significantly lower phycoerythrin concentrations in high salinity waters of approximately 30 psu. The data set highlights the potential for large variability in phytoplankton species composition and concentrations within the ETM depending on mixing rates and phytoplankton bloom dynamics. Visualization of the 4-D data is aided by generating interpolated data movies.

  6. Three-dimensional printed miniaturized spectral system for collagen fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Koslakiewicz, Ronald; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe Fujiou

    2016-07-01

    Various types of collagens, e.g., type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes such as wound healing and fibrosis. When excited by ultraviolet light, collagens exhibit autofluorescence distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Here, we designed a miniaturized spectral-lifetime detection system as a noninvasive probe for monitoring tissue collagen compositions. A sine-modulated LED illumination was applied to enable frequency domain fluorescence lifetime measurements under three wavelength bands, separated via a series of longpass dichroics at 387, 409, and 435 nm. We employed a lithography-based three-dimensional (3-D) printer with <50 μm resolution to create a custom designed optomechanics in a handheld form factor. We examined the characteristics of the optomechanics with finite element modeling to simulate the effect of thermal (from LED) and mechanical (from handling) strain on the optical system. The geometry was further optimized with ray tracing to form the final 3-D printed structure. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes. This system represents a low cost, handheld probe for clinical tissue monitoring applications.

  7. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  8. Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes

    PubMed Central

    Moon, C. Preston; Fleming, Karen G.

    2013-01-01

    Accurate measurements of the thermodynamic stability of folded membrane proteins require methods for monitoring their conformation that are free of experimental artifacts. For tryptophan fluorescence emission experiments with membrane proteins folded into liposomes, there are two significant sources of artifacts: the first is light scattering by the liposomes; the second is the nonlinear relationship of some tryptophan spectral parameters with changes in protein conformation. Both of these sources of error can interfere with the method of determining the reversible equilibrium thermodynamic stability of proteins using titrations of chemical denaturants. Here, we present methods to manage light scattering by liposomes for tryptophan emission experiments and to properly monitor tryptophan spectra as a function of protein conformation. Our methods are tailored to the titrations of membrane proteins using common chemical denaturants. One of our recommendations is to collect and analyze the right-angle light scattering peak that occurs around the excitation wave- length in a fluorescence experiment. Another recommendation is to use only those tryptophan spectral parameters that are linearly proportional to the protein conformational population. We show that other commonly used spectral commonly used parameters lead to errors in protein stability measurements. PMID:21333792

  9. Measurements of Diffusion Coefficients in Particles Using Fluorescence Recovery after Photobleaching (FRAP)

    NASA Astrophysics Data System (ADS)

    Chenyakin, Y.; Kamal, S.; Bertram, A. K.

    2014-12-01

    Secondary organic aerosol (SOA) particles are formed in the atmosphere via gas-to-particle conversion of low and semi volatile organic compounds. They are abundant in the atmosphere and can directly contribute to climate change by scattering solar radiation or indirectly by acting as cloud condensation nuclei or ice nuclei. There is also a health concern associated with SOA particles because they can make up a large fraction of suspended submicron particulate mass. In addition, a reduction in visibility in both polluted and rural areas can be due to SOA particles. Knowledge of diffusion coefficients of organic species within SOA particles is needed to predict the atmospheric behaviour and environmental impacts of these particles. Here we introduce a new method to determine diffusion coefficients of organic probes in particles made up of organic species as a function of relative humidity (RH). Our method involves using fluorescence recovery after photobleaching (FRAP) to measure the diffusion coefficients of organic fluorescent dyes in organic particles with dimensions of approximately 25 μm. We validated this method by measuring diffusion coefficients of organic dyes of varied size in sucrose-water solutions as a function of RH and comparing these results with data from the literature. In the future this method will be applied to SOA particles.

  10. Distance measurements near the myosin head-rod junction using fluorescence spectroscopy.

    PubMed Central

    Kekic, M; Huang, W; Moens, P D; Hambly, B D; dos Remedios, C G

    1996-01-01

    We reacted a fluorescent probe, N-methyl-2-anilino-6-naphthalenesulfonyl chloride (MNS-Ci), with a specific lysine residue of porcine cardiac myosin located in the S-2 region of myosin. We performed fluorescence resonance energy transfer (FRET) spectroscopy measurements between this site and three loci (Cys109, Cys125, and Cys154) located within different myosin light-chain 2s (LC2) bound to the myosin "head". We used LC2s from rabbit skeletal muscle myosin (Cys125), chicken gizzard smooth muscle myosin (Cys109), or a genetically engineered mutant of chicken skeletal muscle myosin (Cys154). The atomic coordinates of these LC2 loci can be closely approximated, and the FRET measurements were used to determine the position of the MNS-labeled lysine with respect to the myosin head. The C-terminus of myosin subfragment-1 determined by Rayment et al. ends abruptly after a sharp turn of its predominantly alpha-helical structure. We have constructed a model based on our FRET distance data combined with the known structure of chicken skeletal muscle myosin subfragment-1. This model suggests that the loci that bracket the head-rod junction will be useful for evaluating dynamic changes in this region. Images FIGURE 4 FIGURE 5 PMID:8804587

  11. Measurement of glycated haemoglobin in whole blood by a novel fluorescence quenching assay.

    PubMed

    Blincko, S; Anzetse, J; Edwards, R

    2000-07-01

    We describe a method for the specific measurement of glycated Hb (GHb) by fluorescence quenching. Whole blood is added to lysing solution, then the lysate is mixed with eosin-boronic acid solution and reacted for at least 5 min at room temperature. The quenching of the fluorescence of the eosin-boronic acid solution is proportional to the concentration of GHb present. Total Hb concentration was measured by absorbance and the GHb expressed as a percentage of the total Hb. Comparison with a commercial high-performance liquid chromatography (HPLC) system for HbA1c showed: %GHb=1.30 (SD 0.04) %HbA1c + 1.36 (SD 0.30), S(y/x) 0.803, n=95, r=0.965 (SD=standard deviation). Intra-assay coefficients of variation were <2.5% (for GHb concentrations in the range 6-20%) and inter-assay coefficients of variation were <4.1% (10 assays on six samples with GHb concentrations in the range 6-20%). Linearity of response was demonstrated by dilution. The effect of adding exogenous glucose, bilirubin and triglycerides was tested on samples with low, medium and high GHb concentrations. No significant interference was found. Variation of haematocrit over the range 0.4-0.6 also had no significant effect on percentage GHb. Preliminary results with samples containing variant Hb (HbAS and HbAC) indicated good agreement with HPLC for these samples also. PMID:10902866

  12. Guided fluorescence diagnosis of childhood caries: preliminary measures correlate with depth of carious decay

    NASA Astrophysics Data System (ADS)

    Timoshchuk, Mari-Alina; Zhang, Liang; Dickinson, Brian A.; Ridge, Jeremy S.; Kim, Amy S.; Baltuck, Camille T.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2014-02-01

    The current rise in childhood caries worldwide has increased the demand for portable technologies that can quickly and accurately detect and diagnose early stage carious lesions. These lesions, if identified at an early stage, can be reversed with remineralization treatments, education, and improvements in home care. A multi-modal optical prototype for detecting and diagnosing occlusal caries demineralization in vivo has been developed and pilot tested. The device uses a 405-nm laser as a scanned illumination source to obtain high resolution and high surface contrast reflectance images, which allows the user to quickly image and screen for any signs of demineralized enamel. When a suspicious region is located, the device can be switched to perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitations. These spectra are used to compute an auto-fluorescence (AF) ratio of the suspicious region and the percent difference of AF ratios from a healthy region of the same tooth. The device was tested on 7 children's teeth in vivo with clinically diagnosed carious lesions. Lesion depth was then visually estimated from the video image using the 405-nm scanned light source, and within a month the maximum drill depth was assessed by a clinician. The researcher and clinicians were masked from previous measurements in a blinded study protocol. Preliminary results show that the ratiometric percent difference measurement of the AF spectrum of the tooth correlates with the severity of the demineralization as assessed by the clinician after drilling.

  13. A Simple and Rapid Protocol for Measuring Neutral Lipids in Algal Cells Using Fluorescence

    PubMed Central

    Storms, Zachary J.; Cameron, Elliot; de la Hoz Siegler, Hector; McCaffrey, William C.

    2014-01-01

    Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay. PMID:24961928

  14. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes.

    PubMed Central

    Velez, M; Axelrod, D

    1988-01-01

    A variation of fluorescence photobleaching recovery (FPR) suitable for measuring the rate of rotational molecular diffusion in solution and cell membranes is presented in theory and experimental practice for epi-illumination microscopy. In this technique, a brief flash of polarized laser light creates an anisotropic distribution of unbleached fluorophores which relaxes by rotational diffusion, leading to a time-dependent postbleach fluorescence. Polarized FPR (PFPR) is applicable to any time scales from seconds to microseconds. However, at fast (microsecond) time scales, a partial recovery independent of molecular orientation tends to obscure rotational effects. The theory here presents a method for overcoming this reversible photobleaching, and includes explicit results for practical geometries, fast wobble of fluorophores, and arbitrary bleaching depth. This variation of a polarized luminescence "pump-and-probe" technique is compared with prior ones and with "pump-only" time-resolved luminescence anisotropy decay methods. The technique is experimentally verified on small latex beads with a variety of diameters, common fluorophore labels, and solvent viscosities. Preliminary measurements on a protein (acetylcholine receptor) in the membrane of nondeoxygenated cells in live culture (rat myotubes) show a difference in rotational diffusion between clustered and nonclustered receptors. In most experiments, signal averaging, high laser power, and automated sample translation must be employed to achieve adequate statistical accuracy. PMID:3382712

  15. A simple and rapid protocol for measuring neutral lipids in algal cells using fluorescence.

    PubMed

    Storms, Zachary J; Cameron, Elliot; de la Hoz Siegler, Hector; McCaffrey, William C

    2014-01-01

    Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay. PMID:24961928

  16. Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction.

    PubMed

    Winkler, Maren K L; Chassidim, Yoash; Lublinsky, Svetlana; Revankar, Gajanan S; Major, Sebastian; Kang, Eun-Jeung; Oliveira-Ferreira, Ana I; Woitzik, Johannes; Sandow, Nora; Scheel, Michael; Friedman, Alon; Dreier, Jens P

    2012-11-01

    Spreading depolarization describes a sustained neuronal and astroglial depolarization with abrupt ion translocation between intraneuronal and extracellular space leading to a cytotoxic edema and silencing of spontaneous activity. Spreading depolarizations occur abundantly in acutely injured human brain and are assumed to facilitate neuronal death through toxic effects, increased metabolic demand, and inverse neurovascular coupling. Inverse coupling describes severe hypoperfusion in response to spreading depolarization. Ictal epileptic events are less frequent than spreading depolarizations in acutely injured human brain but may also contribute to lesion progression through increased metabolic demand. Whether abnormal neurovascular coupling can occur with ictal epileptic events is unknown. Herein we describe a patient with aneurysmal subarachnoid hemorrhage in whom spreading depolarizations and ictal epileptic events were measured using subdural opto-electrodes for direct current electrocorticography and regional cerebral blood flow recordings with laser-Doppler flowmetry. Simultaneously, changes in tissue partial pressure of oxygen were recorded with an intraparenchymal oxygen sensor. Isolated spreading depolarizations and clusters of recurrent spreading depolarizations with persistent depression of spontaneous activity were recorded over several days followed by a status epilepticus. Both spreading depolarizations and ictal epileptic events where accompanied by hyperemic blood flow responses at one optode but mildly hypoemic blood flow responses at another. Of note, quantitative analysis of Gadolinium-diethylene-triamine-pentaacetic acid (DTPA)-enhanced magnetic resonance imaging detected impaired blood-brain barrier integrity in the region where the optode had recorded the mildly hypoemic flow responses. The data suggest that abnormal flow responses to spreading depolarizations and ictal epileptic events, respectively, may be associated with blood-brain barrier

  17. UV Raman and Fluorescence for Multi-Species Measurement in Hydrocarbon-Fueled High-Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Skaggs, Patricia Annette; Nandula, Sastri P.; Pitz, Robert W.

    1999-01-01

    This report documents work performed through the NASA Graduate Student Researchers Program, Grant No. NGT3-52316. Research performed included investigation of two-line fluorescence imaging of OH for temperature measurement and an investigation of negative flame speeds for modeling of premixed turbulent flames. The laboratory work and initial analysis of the fluorescence imaging was performed at NASA Glen Research Center with follow up analysis at Vanderbilt University. The negative flame speed investigation was performed using an opposed jet flow simulation program at Vanderbilt University. The fluorescence imaging work is presented first followed by the negative flame speed investigation.

  18. Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ravikrishna, Rayavarapu V.

    2000-01-01

    The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the

  19. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a

  20. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media

    PubMed Central

    Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-01-01

    Abstract. Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media. PMID:23208294

  1. Effects of multiple scattering on fluorescence correlation spectroscopy measurements of particles moving within optically dense media.

    PubMed

    Zustiak, Silviya; Riley, Jason; Boukari, Hacène; Gandjbakhche, Amir; Nossal, Ralph

    2012-12-01

    Fluorescence correlation spectroscopy (FCS) is increasingly being used to assess the movement of particles diffusing in complex, optically dense surroundings, in which case measurement conditions may complicate data interpretation. It is considered how a single-photon FCS measurement can be affected if the sample properties result in scattering of the incident light. FCS autocorrelation functions of Atto 488 dye molecules diffusing in solutions of polystyrene beads are measured, which acted as scatterers. Data indicated that a scattering-linked increase in the illuminated volume, as much as two fold, resulted in minimal increase in diffusivity. To analyze the illuminated beam profile, Monte-Carlo simulations were employed, which indicated a larger broadening of the beam along the axial than the radial directions, and a reduction of the incident intensity at the focal point. The broadening of the volume in the axial direction has only negligible effect on the measured diffusion time, since intensity fluctuations due to diffusion events in the radial direction are dominant in FCS measurements. Collectively, results indicate that multiple scattering does not result in FCS measurement artifacts and thus, when sufficient signal intensity is attainable, single-photon FCS can be a useful technique for measuring probe diffusivity in optically dense media. PMID:23208294

  2. Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Li, X.; Tillmann, R.; Acir, I.; Holland, F.; Rohrer, F.; Wegener, R.; Keutsch, F. N.

    2014-06-01

    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH < 2% and RH > 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments.

  3. Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements.

    PubMed

    Li, Jianping; Chan, Robert K Y; Wang, Xuzhu

    2009-11-01

    An imaging Fourier transform spectrometer (IFTS) designed for fluorescence emission measurements is reported. The spectral range extension from NIR to visible of the system is realized by using a simple and low-cost optical beam-folding position-tracking technique. Spectral resolution as high as 9.78cm(-1)(0.4nm at 632.8nm) and maximum image resolution up to 300x300 pixels are proved by the system tests on its optical performances. Imaging fluorescence spectra acquisition of quantum dot clusters and single 200nm diameter fluorescent beads have demonstrated the system's potential for high throughput imaging spectroscopic measurements of fluorescent biological and chemical samples. PMID:19997347

  4. Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence

    NASA Astrophysics Data System (ADS)

    Vlijm, Rifka; Mashaghi, Alireza; Bernard, Stéphanie; Modesti, Mauro; Dekker, Cees

    2015-02-01

    The most common form of DNA is the well-known B-structure of double-helix DNA. Many processes in the cell, however, exert force and torque, inducing structural changes to the DNA that are vital to biological function. Virtually all DNA in cells is in a state of negative supercoiling, with a DNA structure that is complex. Using magnetic tweezers combined with fluorescence imaging, we here study DNA structure as a function of negative supercoiling at the single-molecule level. We classify DNA phases based on DNA length as a function of supercoiling, down to a very high negative supercoiling density σ of -2.5, and forces up to 4.5 pN. We characterize plectonemes using fluorescence imaging. DNA bubbles are visualized by the binding of fluorescently labelled RPA, a eukaryotic single-strand-binding protein. The presence of Z-DNA, a left-handed form of DNA, is probed by the binding of Zα77, the minimal binding domain of a Z-DNA-binding protein. Without supercoiling, DNA is in the relaxed B-form. Upon going toward negative supercoiling, plectonemic B-DNA is being formed below 0.6 pN. At higher forces and supercoiling densities down to about -1.9, a mixed state occurs with plectonemes, multiple bubbles and left-handed L-DNA. Around σ = -1.9, a buckling transition occurs after which the DNA end-to-end length linearly decreases when applying more negative turns, into a state that we interpret as plectonemic L-DNA. By measuring DNA length, Zα77 binding, plectoneme and ssDNA visualisation, we thus have mapped the co-existence of many DNA structures and experimentally determined the DNA phase diagram at (extreme) negative supercoiling.The most common form of DNA is the well-known B-structure of double-helix DNA. Many processes in the cell, however, exert force and torque, inducing structural changes to the DNA that are vital to biological function. Virtually all DNA in cells is in a state of negative supercoiling, with a DNA structure that is complex. Using magnetic tweezers

  5. Automated measurement of estrogen receptor in breast cancer: a comparison of fluorescent and chromogenic methods of measurement.

    PubMed

    Zarrella, Elizabeth R; Coulter, Madeline; Welsh, Allison W; Carvajal, Daniel E; Schalper, Kurt A; Harigopal, Malini; L Rimm, David; M Neumeister, Veronique

    2016-09-01

    Whereas FDA-approved methods of assessment of estrogen receptor (ER) are 'fit for purpose', they represent a 30-year-old technology. New quantitative methods, both chromogenic and fluorescent, have been developed and studies have shown that these methods increase the accuracy of assessment of ER. Here, we compare three methods of ER detection and assessment on two retrospective tissue microarray (TMA) cohorts of breast cancer patients: estimates of percent nuclei positive by pathologists and by Aperio's nuclear algorithm (standard chromogenic immunostaining), and immunofluorescence as quantified with the automated quantitative analysis (AQUA) method of quantitative immunofluorescence (QIF). Reproducibility was excellent (R(2)>0.95) between users for both automated analysis methods, and the Aperio and QIF scoring results were also highly correlated, despite the different detection systems. The subjective readings show lower levels of reproducibility and a discontinuous, bimodal distribution of scores not seen by either mechanized method. Kaplan-Meier analysis of 10-year disease-free survival was significant for each method (Pathologist, P=0.0019; Aperio, P=0.0053, AQUA, P=0.0026); however, there were discrepancies in patient classification in 19 out of 233 cases analyzed. Out of these, 11 were visually positive by both chromogenic and fluorescent detection. In 10 cases, the Aperio nuclear algorithm labeled the nuclei as negative; in 1 case, the AQUA score was just under the cutoff for positivity (determined by an Index TMA). In contrast, 8 out of 19 discrepant cases had clear nuclear positivity by fluorescence that was unable to be visualized by chromogenic detection, perhaps because of low positivity masked by the hematoxylin counterstain. These results demonstrate that automated systems enable objective, precise quantification of ER. Furthermore, immunofluorescence detection offers the additional advantage of a signal that cannot be masked by a counterstaining

  6. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    SciTech Connect

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy.

  7. Measuring OH and HO2 in the Troposphere by Laser-Induced Fluorescence at Low Pressure.

    NASA Astrophysics Data System (ADS)

    Brune, William H.; Stevens, Philip S.; Mather, James H.

    1995-10-01

    The hydroxyl radical OH oxidizes many lime gases in the atmosphere. It initiates and then participates in chemical reactions that lead to such phenomena as photochemical smog, acid rain, and stratospheric ozone depletion. Because OH is so reactive, its volume mixing ratio is less than 1 part per trillion volume (pptv) throughout the troposphere. Its close chemical cousin, the hydroperoxyl radical HO2, participates in many reactions as well. The authors have developed an instrument capable of measuring OH and HO2 by laser-induced fluorescence in a detection chamber at low pressure. This prototype instrument is able to detect about 1.4 × 105 molecules cm3 (0.005 pptv) of OH at the ground in a signal integration time of 30 s with negligible interferences. The absolute uncertainty is a factor of 1.5. This instrument is now being adapted to aircraft use for measurements throughout the troposphere.

  8. Real-time quantitative fluorescence measurement of microscale cell culture analog systems

    NASA Astrophysics Data System (ADS)

    Oh, Taek-il; Kim, Donghyun; Tatosian, Daniel; Sung, Jong Hwan; Shuler, Michael

    2007-02-01

    A microscale cell culture analog (μCCA) is a cell-based lab-on-a-chip assay that, as an animal surrogate, is applied to pharmacological studies for toxicology tests. A μCCA typically comprises multiple chambers and microfluidics that connect the chambers, which represent animal organs and blood flow to mimic animal metabolism more realistically. A μCCA is expected to provide a tool for high-throughput drug discovery. Previously, a portable fluorescence detection system was investigated for a single μCCA device in real-time. In this study, we present a fluorescence-based imaging system that provides quantitative real-time data of the metabolic interactions in μCCAs with an emphasis on measuring multiple μCCA samples simultaneously for high-throughput screening. The detection system is based on discrete optics components, with a high-power LED and a charge-coupled device (CCD) camera as a light source and a detector, for monitoring cellular status on the chambers of each μCCA sample. Multiple samples are characterized mechanically on a motorized linear stage, which is fully-automated. Each μCCA sample has four chambers, where cell lines MES-SA/DX- 5, and MES-SA (tumor cells of human uterus) have been cultured. All cell-lines have been transfected to express the fusion protein H2B-GFP, which is a human histone protein fused at the amino terminus to EGFP. As a model cytotoxic drug, 10 μM doxorubicin (DOX) was used. Real-time quantitative data of the intensity loss of enhanced green fluorescent protein (EGFP) during cell death of target cells have been collected over several minutes to 40 hours. Design issues and improvements are also discussed.

  9. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  10. Partitioning of the Leaf CO2 Exchange into Components Using CO2 Exchange and Fluorescence Measurements.

    PubMed

    Laisk, A.; Sumberg, A.

    1994-10-01

    Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate. PMID:12232361

  11. Remote measurement of photosynthetic efficiency using laser induced fluorescence transient (LIFT) technique.

    NASA Astrophysics Data System (ADS)

    Pieruschka, R.; Rascher, U.; Klimov, D.; Kolber, Z. S.; Berry, J. A.

    2007-12-01

    An understanding of spatial and temporal diversity of photosynthetic processes, water and energy exchange of complex plant canopies is essential for carbon and climate models. Remote sensing from space or aircraft platforms provides the only practical way to characterize the vast extent of plant canopies around the globe, but the basis for relating physiological processes to remote sensing is still largely theoretical. Experiments that bridge this gap are needed. Chlorophyll fluorescence measurements have been widely applied to quantify photosynthetic efficiency and non- photochemical energy dissipation non-destructively in photosynthetically active organisms. The most commonly used Pulse Amplitude Modulated (PAM) technique provides a saturating light pulse and is not practical at the canopy scale. We report here on a recently developed technique, Laser Induced Fluorescence Transient (LIFT), capable of remote measurement of photosynthetic efficiency of selected leaves at a distance of up to 50 m and we present here continuous studies on plans growing under natural conditions during the beginning of the winter season and the onset of summer drought in this Mediterranean climate. i) Lichens showed a strong diurnal variation in photosynthetic efficiency which correlated with relative humidity; ii) Photosynthetic efficiency of annual grass decreased with progressing drought stress; iii) An oak canopy showed very little variation of quantum yield from leaf out in spring to summer; iv) The combined effect of low temperature and high light intensity during an early winter strongly reduced the photosynthetic efficiency of four different species in response to chilling stress. These measures with the LIFT correlated well with (more limited) sampling by PAM fluoromentry and gas exchange. The ability to make continuous, automatic and remote measurements of photosynthetic efficiency of leaves with the LIFT provides a new approach for studying the heterogeneity of

  12. Velocity of movement of actin filaments in in vitro motility assay. Measured by fluorescence correlation spectroscopy.

    PubMed Central

    Borejdo, J; Burlacu, S

    1992-01-01

    We have measured the velocity of actin filaments in in vitro motility assay by fluorescence correlation spectroscopy. In this method, one measures fluctuations in the number of filaments in an open sample volume. The number of filaments was calculated from measurements of fluorescence of rhodamine-phalloidin bound to F-actin. Sample volume was defined by a diaphragm placed in front of the photomultiplier. Fluctuations arise when actin filaments enter and leave the sample volume due to translations driven by mechanochemical interactions with myosin heads which are immobilized on a glass surface. The average velocity of the translation of filaments determined by the correlation method, (Vc), was equal to the diameter of the diaphragm divided by the half-time of the relaxation of fluctuations. The average number of moving filaments determined by correlation method, (Nc), was inversely proportional to the relative fluctuations. By the fluctuation method it was possible to determine the average velocity of over 800 moving filaments in less than 4 min. There was good agreement between (Vc) and (Nc) and the average velocity and the average number of moving filaments determined manually. To be able to apply correlation measurements to an experimental problem, neither (Vc) nor (Nc) must depend on the position of observation of filaments. We first confirmed that this was indeed the case. We then applied the method to investigate the dependence of motility on the ATPase activity of myosin heads. ATPase activity was varied by mixing intact heads with heads which were labeled with different thiol reagents. It was found that the motion was drastically influenced by the reagent used for modification. When the reagent was N-ethyl-maleimide, 1.5% modification was sufficient to completely inhibit the motion. When the reagent was 5-iodoacetamidofluorescein, motion declined hyperbolically with the fraction of modified heads. Images FIGURE 2 FIGURE 4 FIGURE 11 PMID:1534696

  13. Diffusive transfer of polarized 3He gas through depolarizing magnetic gradients

    NASA Astrophysics Data System (ADS)

    Maxwell, J. D.; Epstein, C. S.; Milner, R. G.

    2015-03-01

    Transfer of polarized 3He gas across spatially varying magnetic fields will facilitate a new source of polarized 3He ions for particle accelerators. In this context, depolarization of atoms as they pass through regions of significant transverse field gradients is a major concern. To understand these depolarization effects, we have built a system consisting of a Helmholtz coil pair and a solenoid, both with central magnetic fields of order 30 gauss. The atoms are polarized via metastability exchange optical pumping in the Helmholtz coil and are in diffusive contact via a glass tube with a second test cell in the solenoid. We have carried out measurements of the spin relaxation during transfer of polarization in 3He at 1 torr by diffusion. We explore the use of measurements of the loss of polarization taken in one cell to infer the polarization in the other cell.

  14. Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Stone, Daniel; Whalley, Lisa K.; Ingham, Trevor; Edwards, Peter M.; Cryer, Danny R.; Brumby, Charlotte A.; Seakins, Paul W.; Heard, Dwayne E.

    2016-07-01

    OH reactivity (k'OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH reactivity measurements enable determination of the comprehensiveness of measurements used in models to predict air quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our understanding of OH production rates. In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in London, UK, and York, UK. The instrumental limit of detection for k'OH was determined to be 1.0 s-1 for the campaign in London and 0.4 s-1 for the campaign in York. The precision, determined by laboratory experiment, is typically < 1 s-1 for most ambient measurements of OH reactivity. Total uncertainty in ambient measurements of OH reactivity is ˜ 6 %. We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements to OH reactivity LFP-LIF instruments.

  15. Local OH concentration measurement in atmospheric pressure flames by a laser-saturated fluorescence method: two-optical path laser-induced fluorescence.

    PubMed

    Desgroux, P; Cottereau, M J

    1991-01-01

    The first (to our knowledge) measurements of number density of OH in flames at atmospheric pressure by TOPLIF are reported. TOPLIF (acronym for two optical paths laser-induced fluorescence) improves the accuracy of LIF measurements by taking into account both the spatial profile of the exciting laser intensity and the collisional transfer rate. The method is based on simultaneously recording the LIF signals from focal volumes of two different shapes. The ratio of the signals is a measure of the saturation parameter (which depends on the laser intensity and the quenching) using which accurate determination of the species number density can be deduced from the fluorescence signals. The method is valid as far as at least partial saturation is reached. First, experimental verification of the theoretical basis of the method is reported. The population of a single rovibronic level is measured as it is in most of the spectroscopic methods. TOPLIF measures this population relative to this level's population in a chosen reference flame. Absolute value can therefore be obtained if the value in the reference flame is known or measured. Absolute [OH] profiles obtained in flat flames burning at 60 and 1000 mb are presented and compared to laser absorption measurements. PMID:20581952

  16. Temperature measurements in flames using thermally assisted laser-induced fluorescence of Ga.

    PubMed

    Joklik, R G; Horvath, J J; Semerjian, H G

    1991-04-20

    The use of thermally assisted fluorescence (THAF) for temperature measurements has been investigated in a laminar, premixed C(2)H(2)/O(2)/Ar flame seeded with Ga atoms. Average temperature measurements were made with an uncertainty of less than +/-100 K in flames >2150 K and were found to be in agreement with sodium line reversal temperature measurements and equilibrium calculations. In both fuel rich and lean flames spanning equivalence ratios from 0.75 to 2.0, it was found that composition influenced the measured temperatures, resulting in an accuracy of +/-100 K over this range of flame conditions. Dilution of the flame with N(2) rather than Ar resulted in measured temperatures that were substantially higher than the calculated adiabatic flame temperature, indicating that, in this case, a partial Boltzmann equilibrium is not established among the collisionally populated levels of Ga used for the measurement. These results indicate that THAF with gallium as the thermometric species is limited to cases in which an inefficient quencher, such as a rare gas, is the primary diluent. PMID:20700311

  17. Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Li, X.; Tillmann, R.; Acir, I.; Rohrer, F.; Wegener, R.; Keutsch, F. N.

    2014-01-01

    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch Fluorimetry and a custom-built instrument based on Fiber-Laser Induced Fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH < 2% and RH > 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified.

  18. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  19. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  20. Evaluation of terrestrial primary production using biosphere models and space-based measurements of fluorescence

    NASA Astrophysics Data System (ADS)

    Parazoo, N.; Bowman, K. W.; Frankenberg, C.; Sitch, S.; Fisher, J. B.; Jones, D. B.; Friedlingstein, P.; Poulter, B.

    2013-12-01

    Changes in the processes that control terrestrial carbon uptake are highly uncertain but likely to have a significant influence on future atmospheric CO2 levels. RECCAP aims to improve process understanding by reconciling fluxes from top-down CO2 inversions and bottom-up estimates from an ensemble of dynamical global vegetation models (DGVMs). As these models are typically used in projections of climate change a key part of this effort is evaluating drivers of net carbon exchange within the current climate. Of particular importance are the spatial distribution and time rate of change of gross primary productivity (GPP). Recent advances in the remote sensing of solar-induced chlorophyll fluorescence opens up a new possibility to directly measure planetary photosynthesis on spatially resolved scales. Here, we discuss a new methodology for estimating GPP from an optimal combination of an ensemble of DGVMs from the TRENDY project with satellite-based observations of chlorophyll fluorescence from GOSAT. We evaluate optimized fluxes against flux tower and semi-empirical data in N. America, Europe, and S. America, then examine the period 2009-2010 to identify critical regions (i.e., regions with high annual GPP) where optimized and model fluxes diverge.

  1. Fluorescence excitation and propagation through brain phantom gelatins: measurements and potential applications

    SciTech Connect

    Allison, Stephen W; Gillies, George

    2010-01-01

    We have investigated the utility of 0.6% agarose gels as surrogate materials for brain tissues in optical propagation studies for possible diagnostic and therapeutic applications. Centimeter-scale layers of the gel exhibited a Beer's law attenuation factor, , of 0.2 mm 1 for incident illumination via a pulsed LED (100 Hz) at 405 nm. This result was different by only about a factor of 3 from the effective penetration depth at similar wavelengths through in vitro samples of the gray (cortical) matter of human brain, as measured by others. Then, films of the thermographic phosphors La2O2S:Eu, Mg4FGeO6:Mn, YAG:Cr and variants of the latter were formed on aluminum substrates and the fluorescence of these samples was stimulated and observed through layers of the gel up to 4 cm thick. In all cases, the fluorescence was easily excited and distinguishable above the background. The results demonstrate that this gel might serve as an inexpensive and robust test bed for exploratory studies of neurological modalities involving propagation of optical signals within brain tissues.

  2. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters

    PubMed Central

    Hires, Samuel Andrew; Zhu, Yongling; Tsien, Roger Y.

    2008-01-01

    Genetically encoded sensors of glutamate concentration are based on FRET between cyan and yellow fluorescent proteins bracketing a bacterial glutamate-binding protein. Such sensors have yet to find quantitative applications in neurons, because of poor response amplitude in physiological buffers or when expressed on the neuronal cell surface. We have improved our glutamate-sensing fluorescent reporter (GluSnFR) by systematic optimization of linker sequences and glutamate affinities. Using SuperGluSnFR, which exhibits a 6.2-fold increase in response magnitude over the original GluSnFR, we demonstrate quantitative optical measurements of the time course of synaptic glutamate release, spillover, and reuptake in cultured hippocampal neurons with centisecond temporal and spine-sized spatial resolution. During burst firing, functionally significant spillover persists for hundreds of milliseconds. These glutamate levels appear sufficient to prime NMDA receptors, potentially affecting dendritic spike initiation and computation. Stimulation frequency-dependent modulation of spillover suggests a mechanism for nonsynaptic neuronal communication. PMID:18332427

  3. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  4. Two-Beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    We describe a multiplexed, laser-induced fluorescence (LIF) technique with which radial and axial profiles of vector velocities of excited propellant species were obtained in the exhaust plume from a 300-W argon arcjet. Although the arcjet is a prototype, and although argon is not an interesting propellant from a propulsion perspective, the technique clearly demonstrates how a narrowband, frequency-stabilized ring-dye laser can be used to obtain simultaneous measurements of two velocity components in an arcjet plume and how a third signal from an optogalvanic cell can be used as a frequency reference. We also show that much information on the flow can be obtained by analyzing the Doppler widths and fluorescence intensities of the LIF data. Specifically, the data identify a boundary layer in the radial direction of the plume and a shock in the downstream region of the flow. Also, some flow anisotropy is observed, consistent with the assumption that the magnitude of the mean flow velocity fluctuates. The peak velocity on centerline remains roughly constant at 3 km/s throughout the expansion.

  5. Development of an X-ray fluorescence holographic measurement system for protein crystals

    NASA Astrophysics Data System (ADS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Happo, Naohisa; Kimura, Koji; Okabe, Takahiro; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-06-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α2β2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  6. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  7. Optimized streak-camera system: wide excitation range and extended time scale for fluorescence lifetime measurement

    NASA Astrophysics Data System (ADS)

    Graf, Urs; Buehler, Christof; Betz, Michael; Zuber, Herbert; Anliker, M.

    1994-08-01

    A new versatile system for the measurement of time-resolved fluorescence emission spectra of biomolecules is presented. Frequency doubling and tripling of a Ti:Sapphire laser allows excitation over a wide wavelength range. The influence of increasing the spectral resolution on the time resolution has been investigated. System performance can be optimized for best resolution in the spectral or time domain, respectively. System performance can be optimized for best resolution in the spectral or time domain, respectively. The currently achieved temporal resolution is 6 psec, and the best spectral resolution is 3 nm. Long fluorescence decays can be resolved with optimal time resolution by way of taking into account the flyback of the streak camera. With the system described, the core complex ((alpha) (beta) )3APCLC8.9 of the phycobilisome from the photosynthetic cyanobacteria Mastigocladus laminosus has been analyzed. Lifetime analysis clearly demonstrated the influence of the linker polypeptide on the phycobiliprotein complex and the identity of native and reconstituted complex.

  8. Performance evaluation of principal component analysis for dynamic fluorescence tomographic imaging in measurement space

    NASA Astrophysics Data System (ADS)

    Liu, Xin; He, Xiaowei; Yan, Zhuangzhi

    2015-05-01

    Challenges remain in resolving drug (fluorescent biomarkers) distributions within small animals by fluorescence diffuse optical tomography (FDOT). Principal component analysis (PCA) provides the capability of detecting organs (functional structures) from dynamic FDOT images. However, the resolving performance of PCA may be affected by various experimental factors, e.g., the noise levels in measurement data, the variance in optical properties, the number of acquired frames, and so on. To address the problem, based on a simulation model, we analyze and compare the performance of PCA when applied to three typical sets of experimental conditions (frames number, noise level, and optical properties). The results show that the noise is a critical factor affecting the performance of PCA. When input data containing a low noise (<5%), by a short (e.g., 6 frame) projection sequence, we can resolve the poly(DL-lactic-coglycolic acid)/indocynaine green (PLGA/ICG) distributions in heart and lungs, even though there are great variances in optical properties. In contrast, when 20% Gaussian noise is added to the input data, it hardly resolves the distributions of PLGA/ICG in heart and lungs even though accurate optical properties are used. However, with an increased number of frames, the resolving performance of PCA may gradually recover.

  9. Development of an X-ray fluorescence holographic measurement system for protein crystals.

    PubMed

    Sato-Tomita, Ayana; Shibayama, Naoya; Happo, Naohisa; Kimura, Koji; Okabe, Takahiro; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C; Hayashi, Kouichi

    2016-06-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α2β2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm(3)) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules. PMID:27370459

  10. Localization of fluorescence spots with space-space MUSIC for mammographylike measurement systems.

    PubMed

    Pfister, Marcus; Scholz, Bernhard

    2004-01-01

    Breast cancer diagnosis may be improved by optical fluorescence imaging techniques in the near-infrared wavelength range. We have shown that the recently proposed space-space MUSIC (multiple signal classification) algorithm allows the 3-D localization of focal fluorophore-tagged lesions in a turbid medium from 2-D fluorescence data obtained from laser excitations at different positions. The data are assumed to be measured with two parallel planar sensor arrays on the top and bottom of the medium. The laser sources are integrated at different positions in one of the planes. The space-space data are arranged into an MxN matrix (M, number of sensors; N, number of excitation sources). A singular-value decomposition (SVD) of this matrix yields the detectable number of spot regions with linearly independent behavior with respect to the laser excitation positions and thus allows definition of a signal subspace. Matches between this signal subspace and data from model spots are tested at scanned points in a model medium viewed as the breast region under study. The locations of best matches are then considered the centers of gravity of focal lesions. The optical model used was unbounded and optically homogeneous. Nevertheless, simulated spots in bounded, inhomogeneous media modeling the breast could be localized accurately. PMID:15189085

  11. Fluorescence excitation and propagation through brain phantom gelatins: measurements and potential applications

    NASA Astrophysics Data System (ADS)

    Allison, S. W.; Gillies, G. T.

    2010-08-01

    We have investigated the utility of 0.6% agarose gels as surrogate materials for brain tissues in optical propagation studies for possible diagnostic and therapeutic applications. Centimeter-scale layers of the gel exhibited a Beer's law attenuation factor, δ, of ≈0.2 mm-1 for incident illumination via a pulsed LED (100 Hz) at 405 nm. This result was different by only about a factor of 3 from the effective penetration depth at similar wavelengths through in vitro samples of the gray (cortical) matter of human brain, as measured by others. Then, films of the thermographic phosphors La2O2S:Eu, Mg4FGeO6:Mn, YAG:Cr and variants of the latter were formed on aluminum substrates and the fluorescence of these samples was stimulated and observed through layers of the gel up to 4 cm thick. In all cases, the fluorescence was easily excited and distinguishable above the background. The results demonstrate that this gel might serve as an inexpensive and robust test bed for exploratory studies of neurological modalities involving propagation of optical signals within brain tissues.

  12. Fluorescence-based system for measurement of electrophysiological changes in stretched cultured cardiomyocytes.

    PubMed

    Duverger, James E; Béland, Jonathan; Maguy, Ange; Adegbindin, Mouhamed M; Comtois, Philippe

    2011-01-01

    Acute or sustained stretch of cardiac tissue is known to play a key role in arrhythmogenesis. Using a fluorescence approach, we designed a system measuring calcium transients and transmembrane potential changes in monolayers of cultured cardiomyocytes under uniaxial elongation and electrical stimulation. Cardiac myocytes are seeded on a rectangular PDMS template held and stretched by a motorized linear guide system. Electrical stimulation is performed with two parallel carbon electrodes supplied by amplified pulses from a digital-to-analog converter. The cells are stained with either voltage- or calcium-sensitive dye (di-4-ANEPPS and Fluo-4 AM respectively). The two available excitation light sources are both current-controlled LED arrays (λ = 523 ± 45 nm for di-4-ANEPPS and λ = 505 ± 15 nm for Fluo-4 AM). The filtered emitted fluorescence (λ > 610 nm for di-4-ANEPPS and λ = 535 ± 25 nm for Fluo-4 AM) is transduced to current with a photodiode, converted to amplified voltage signals and digitized. The design and preliminary validation results are presented. PMID:22254244

  13. OH-Planar Fluorescence Measurements of Pressurized, Hydrogen Premixed Flames in the SimVal Combustor

    SciTech Connect

    Strakey, P.A.; Woodruff, S.D.; Williams, T.C.; Schefer, R.W.

    2008-07-01

    Planar laser-induced fluorescence measurements of the hydroxyl radical in lean, premixed natural gas flames augmented with hydrogen are presented. The experiments were conducted in the Simulation Validation combustor at the National Energy Technology Laboratory at operating pressures from 1 to 8 atmospheres. The data, which were collected in a combustor with well-controlled boundary conditions, are intended to be used for validating computational fluid dynamics models under conditions directly relevant to land-based gas turbine engines. The images, which show significant effects of hydrogen on local flame quenching, are discussed in terms of a turbulent premixed combustion regime and nondimensional parameters such as Karlovitz number. Pressure was found to thin the OH region, but only had a secondary effect on overall flame shape compared with the effects of hydrogen addition, which was found to decrease local quenching and shorten the turbulent flame brush. A method to process the individual images based on local gradients of fluorescence intensity is proposed, and results are presented. Finally, the results of several large eddy simulations are presented and compared with the experimental data in an effort to understand the issues related to model validation, especially for simulations that do not include OH as an intermediate species.

  14. Faraday signature of magnetic helicity from reduced depolarization

    SciTech Connect

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.

  15. Application of fluorescent tracer agent technology to point-of-care gastrointestinal permeability measurement

    NASA Astrophysics Data System (ADS)

    Dorshow, Richard B.; Shieh, Jeng-Jong; Rogers, Thomas E.; Hall-Moore, Carla; Shaikh, Nurmohammad; Talcott, Michael; Tarr, Phillip I.

    2016-03-01

    Gut dysfunction, often accompanied by increased mucosal permeability to gut contents, frequently accompanies a variety of human intestinal inflammatory conditions. These disorders include inflammatory bowel diseases (e.g., Crohn's Disease) and environmental enteropathy and enteric dysfunction, a condition strongly associated with childhood malnutrition and stunting in resource poor areas of the world. The most widely used diagnostic assay for gastrointestinal permeability is the lactulose to mannitol ratio (L:M) measurement. These sugars are administered orally, differentially absorbed by the gut, and then cleared from the body by glomerular filtration in the kidney. The amount of each sugar excreted in the urine is measured. The larger sugar, lactulose, is minimally absorbed through a healthy gut. The smaller sugar, mannitol, in contrast, is readily absorbed through both a healthy and injured gut. Thus a higher ratio of lactulose to mannitol reflects increased intestinal permeability. However, several issues prevent widespread use of the L:M ratio in clinical practice. Urine needs to be collected over time intervals of several hours, the specimen then needs to be transported to an analytical laboratory, and sophisticated equipment is required to measure the concentration of each sugar in the urine. In this presentation we show that fluorescent tracer agents with molecular weights similar to those of the sugars, selected from our portfolio of biocompatible renally cleared fluorophores, mimic the L:M ratio test for gut permeability. This fluorescent tracer agent detection technology can be used to overcome the limitations of the L:M assay, and is amenable to point-of-care clinical use.

  16. Combined fluorescence, reflectance, and ground measurements of a stressed Norway spruce forest for forest damage assessment

    NASA Technical Reports Server (NTRS)

    Banninger, C.

    1991-01-01

    The detection and monitoring of stress and damage in forested areas is of utmost importance to forest managers for planning purposes. Remote sensing are the most suitable means to obtain this information. This requires that remote sensing data employed in a forest survey be properly chosen and utilized for their ability to measure canopy spectral features directly related to key tree and canopy properties that are indicators of forest health and vitality. Plant reflectance in the visible to short wave IR regions (400 to 2500 nm) provides information on its biochemical, biophysical, and morphological make up, whereas plant fluorescence in the 400 to 750 nm region is more indicative of the capacity and functioning of its photosynthetic apparatus. A measure of both these spectral properties can be used to provide an accurate assessment of stress and damage within the forest canopy. Foliar chlorophyll and nitrogen are essential biochemical constituents required for the proper functioning and maintenance of a plant's biological processes. Chlorophyll-a is the prime reactive center for photosynthesis, by which a plant converts CO2 and H2O into necessary plant products. Nitrogen forms an important component of the amino-acids, enzymes, proteins, alkaloids, and cyanogenic compounds that make up a plant, including its pigments. Both chlorophyll and nitrogen have characteristic absorption features in the visible to short wave IR region. By measuring the wavelength position and depth of these features and the fluorescence response of the foliage, the health and vitality of a canopy can be ascertained. Examples for a stressed Norway spruce forest in south-eastern Austria are presented.

  17. Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy.

    PubMed

    Bismuto, E; Gratton, E; Lamb, D C

    2001-12-01

    The dynamics of the binding reaction of ANS to native and partly folded (molten globule) tuna and horse apomyoglobins has been investigated by fluorescence correlation spectroscopy and frequency domain fluorometry. The reaction rate has been measured as a function of apomyoglobin and ANS concentrations, pH, and temperature. Examination of the autocorrelation functions shows that the reaction rate is fast enough to be observed in tuna apomyoglobin, whereas the reaction rate in horse apomyoglobin is on the same time scale as diffusion through the volume or longer. Specifically, for tuna apomyoglobin at pH 7 and room temperature the on rate is 2200 microM(-1) s(-1) and the off rate is 5900 s(-1), in comparison with k(on) = 640 microM(-1) s(-1) and k(off) = 560 s(-1) for horse myoglobin as measured previously. The independence of the reaction rate from the ANS concentration indicates that the reaction rate is dominated by the off rate. The temperature dependence of the on-rate shows that this rate is diffusion limited. The temperature dependence of the off rates analyzed by Arrhenius and Ferry models indicates that the off rate depends on the dynamics of the protein. The differences between horse and tuna apomyoglobins in the ANS binding rate can be explained in terms of the three-dimensional apoprotein structures obtained by energy minimization after heme removal starting from crystallographic coordinates. The comparison of the calculated apomyoglobin surfaces shows a 15% smaller cavity for tuna apomyoglobin. Furthermore, a negative charge (D44) is present in the heme cavity of tuna apomyoglobin that could decrease the strength of ANS binding. At pH 5 the fluorescence lifetime distribution of ANS-apomyoglobin is bimodal, suggesting the presence of an additional binding site in the protein. The binding rates determined by FCS under these conditions show that the protein is either in the open configuration or is more flexible, making it much easier to bind. At pH 3, the

  18. The Growth and Mechanical Properties of Living Neurons Measured via Atomic Force and Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Spedden, Elise

    In this thesis we explore specific properties of the cytoskeleton and growth of living neurons via atomic force and fluorescence microscopies. We make the first comparative elastic modulus measurements on three types of neuronal cells plated on three types of substrate adhesion factors. We discover that during phases of active neurite extension the soma of cortical neurons stiffens reversibly due to changes in microtubule aggregation. Additionally, we demonstrate that mechanical properties of cortical neurons measured near physiological temperatures are primarily dependent on the microtubule component of the cytoskeleton. We further explore the response of the neuronal cytoskeleton to changes in ambient temperature. The elastic modulus of cortical neuron somas is discovered to increase dramatically upon a drop in ambient temperature. We determine through fluorescent staining and chemical modification of the cytoskeleton that this stiffening is due primarily to a change in the mechanically dominant component of the cytoskeleton from microtubules at 37ºC to actin at 25ºC precipitated by changes in myosin II dynamics within the cell. We make the first direct mechanical measurements of the pericellular brush layer on living neurons, demonstrating that the traditionally observed viscoelastic behavior of the neuronal soma is due to the properties of this brush layer. When the brush layer is excluded, the underlying soma is discovered to be both stiffer than previously observed, and elastic, with no loading-speed dependence to the elastic modulus under the test conditions. We additionally demonstrate that the soma elastic modulus, brush length, and brush density are all dependent on the ambient temperature. Finally, through fluorescent and bright field microscopies we track the outgrowth of living neurons on patterned directional surfaces, demonstrating that asymmetrical ratchet topographies unidirectionally bias axonal outgrowth. We model the outgrowth of the neurons

  19. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.

    PubMed

    Noel, Vincent; Chepfer, Helene; Ledanois, Guy; Delaval, Arnaud; Flamant, Pierre H

    2002-07-20

    A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds. PMID:12148751

  20. Effects of overlying soft tissue on X-ray fluorescence bone lead measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Ahmed, Naseer; Fleming, David E. B.; Wilkie, David; O'Meara, Joanne M.

    2006-01-01

    The effects of overlying soft tissue on the measurement uncertainty of the in vivo 109Cd K-shell X-ray fluorescence (XRF) technique were investigated, as applied to the tibia bone site. Experimental measurements were performed on a set of nine leg phantoms of different soft tissue thickness, intended to model the lower leg at mid-tibia. A standard bone phantom made from plaster-of-Paris and having a nominal lead concentration of 25.6 μg Pb per gram was used in all trials. Monte Carlo simulations of the experimental set-up were also performed. Results indicate a strong relation between measurement uncertainty and overlying tissue thickness (OTT) for the XRF bone lead method. In increasing the OTT from 3.2 to 14.6 mm, an increase in average measurement uncertainty by a factor of 2.40 was observed experimentally. Monte Carlo simulations indicated an increase in minimum detectable limit (MDL) by a factor of 2.46 over the same interval. Experimental and Monte Carlo results were generally in strong agreement. For subject screening purposes, direct measurement of soft tissue overlying the tibia is recommended whenever practical.

  1. Optical tweezers with fluorescence detection for temperature-dependent microrheological measurements.

    PubMed

    Shundo, Atsuomi; Hori, Koichiro; Penaloza, David P; Tanaka, Keiji

    2013-01-01

    We introduce a setup of optical tweezers, capable of carrying out temperature-dependent rheological measurements of soft materials. In our setup, the particle displacement is detected by imaging a bright spot due to fluorescence emitted from a dye-labeled particle against a dark background onto a quadrant photodiode. This setup has a relatively wide space around the sample that allows us to further accessorize the optical tweezers by a temperature control unit. The applicability of the setup was examined on the basis of the rheological measurements using a typical viscoelastic system, namely a worm-like micelle solution. The temperature and frequency dependences of the local viscoelastic functions of the worm-like micelle solution obtained by this setup were in good accordance with those obtained by a conventional oscillatory rheometer, confirming the capability of the optical tweezers as a tool for the local rheological measurements of soft materials. Since the optical tweezers measurements only require a tiny amount of sample (~40 μL), the rheological measurements using our setup should be useful for soft materials of which the available amount is limited. PMID:23387671

  2. The Backscattering Linear Depolarization Ratio of Ice Clouds Composed of Small Ice Crystals

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Abdelmonem, A.; Benz, S.; Leisner, T.; Möhler, O.; Wagner, R.

    2009-04-01

    The importance of small ice crystals (< 50 µm) for cirrus cloud radiative properties is a matter of controversial debate, mainly because some measurements seemed to clearly overestimate the number concentrations of small ice particles due to particle shattering on the instrument inlets. On the other hand, there is no doubt that small micrometer-sized ice crystals dominate the particle size distributions of contrails and cirrus clouds emerging from contrails. Polarisation LIDAR is frequently used to investigate the microphysics of contrails and contrail cirrus remotely. These investigations reveal unusually high maximum linear depolarization ratios of 0.5 - 0.7. The knowledge of the link between ice crystal depolarization and their size and shape is a prerequisite for the interpretation of these LIDAR data. Since young contrails consist of relatively small ice crystals with sizes typically less than 10 µm, the scattering matrix of these non-spherical particles can be calculated by the T-matrix method. In order to investigate the relation between the linear backscattering depolarization ratio and the microphysical properties of small ice particles that closely resemble those found in contrails and young cirrus, we started to run dedicated ice crystal nucleation and growth experiments at the large cloud simulation chamber AIDA of Forschungszentrum Karlsruhe. Such studies became feasible after the installation of the new in situ laser scattering and depolarization set up SIMONE at the chamber in 2006. The light scattering measurements are analyzed in the context of the microphysical properties of the ice clouds measured by optical cloud particle spectrometers, single particle imaging, and in situ infrared extinction spectroscopy. We compare our experimental results with theoretical results generated by the T-matrix method for finite cylinders. The results give new insight into the scattering depolarisation properties of small ice crystals grown under simulated

  3. Establishment of a New Cell-Based Assay To Measure the Activity of Sweeteners in Fluorescent Food Extracts

    PubMed Central

    2011-01-01

    Taste receptors have been defined at the molecular level in the past decade, and cell-based assays have been developed using cultured cells heterologously expressing these receptors. The most popular approach to detecting the cellular response to a tastant is to measure changes in intracellular Ca2+ concentration using Ca2+-sensitive fluorescent dyes. However, this method cannot be applied to food-derived samples that contain fluorescent substances. To establish an assay system that would be applicable to fluorescent samples, we tested the use of Ca2+-sensitive photoproteins, such as aequorin and mitochondrial clytin-II, as Ca2+ indicators in a human sweet taste receptor assay. Using these systems, we successfully detected receptor activation in response to sweetener, even when fluorescent compounds coexisted. This luminescence-based assay will be a powerful tool to objectively evaluate the sweetness of food-derived samples even at an industry level. PMID:21981007

  4. Establishment of a new cell-based assay to measure the activity of sweeteners in fluorescent food extracts.

    PubMed

    Toda, Yasuka; Okada, Shinji; Misaka, Takumi

    2011-11-23

    Taste receptors have been defined at the molecular level in the past decade, and cell-based assays have been developed using cultured cells heterologously expressing these receptors. The most popular approach to detecting the cellular response to a tastant is to measure changes in intracellular Ca(2+) concentration using Ca(2+)-sensitive fluorescent dyes. However, this method cannot be applied to food-derived samples that contain fluorescent substances. To establish an assay system that would be applicable to fluorescent samples, we tested the use of Ca(2+)-sensitive photoproteins, such as aequorin and mitochondrial clytin-II, as Ca(2+) indicators in a human sweet taste receptor assay. Using these systems, we successfully detected receptor activation in response to sweetener, even when fluorescent compounds coexisted. This luminescence-based assay will be a powerful tool to objectively evaluate the sweetness of food-derived samples even at an industry level. PMID:21981007

  5. Sterile measurement on the characteristics of chlorophyll fluorescence in plantlets in vitro preserved under low temperature condition

    NASA Astrophysics Data System (ADS)

    Wu, Yanyou; Xing, Deke

    Micro-environment such as temperature influenced the growth and quality of plantlets in vitro. Chlorophyll fluorescence (ChlF) parameter is an important one for photosynthesis capacity in plant. The modulated chlorophyll fluorescence imaging system can be used for obtaining ChlF imaging and signal of plantlet in vitro because the container has light permeability. Therefore, the biological activity and growth condition of plantlet in vitro can be estimated by sterilely measuring the characteristics of chlorophyll fluorescence. This study determined the parameter of chlorophyll fluorescence in Orychophragmus violaceus plantlets in vitro preserved under different temperature levels (0, 4, and 8°C). The results showed that photosynthesis capacity in Orychophragmus violaceus plantlets in vitro preserved under 4°C condition were higher than that under 0°C or 8°C conditions. The plantlets in vitro preserved under 4°C condition maintained a high vitality to be subcultured.

  6. Temperature profile of a stoichiometric ch4/N2O flame from laser excited fluorescence measurements on OH

    SciTech Connect

    Anderson, W.R.; Decker, L.J.; Kotlar, A.J.

    1982-07-01

    The temperature profile of a stoichiometric CH/sub 4//N/sub 2/O flame over a porous plug, atmospheric-pressure burner has been measured using laser excited fluorescence of the OH radical. The technique of rotationally resolved fluorescence excitation scans was extended to the (1,1) vibrational band of the A doublet sigma plus - X doublet pi system to avoid problems of laser beam depletion and self-absorption encountered by this group and previous workers using the (O,O) band. Absorption spectra were obtained in addition to fluorescence spectra. A least squares curve-fitting technique which accounts for the various types of line broadening was developed and applied to two absorption lines in the (O,O) band. The resulting temperature profile is compared to that from fluorescence data reduced using Boltzmann plots. The more complicated curve-fitting approach was later applied to five lines in the spectrum using several combinations of fluorescence and absorption data. Results of all the aforementioned methods were compared to those from OH band reversal and N2 vibrational Raman measurements at the same point in the post flame gases. Excellent agreement was achieved. The results are discussed with emphasis on both the fluorescence diagnostics and the characteristics of the CH/sub 4//N/sub 2/O flame on the porous-plug burner.

  7. LABORATORY MEASUREMENTS OF NiH BY FOURIER TRANSFORM DISPERSED FLUORESCENCE

    SciTech Connect

    Vallon, Raphael; Richard, Cyril; Crozet, Patrick; Wannous, Ghassan; Ross, Amanda

    2009-05-01

    Red and orange bands of laser-induced fluorescence in NiH have been recorded on a Fourier transform interferometer at Doppler resolution. The spectra show strong transitions to low-lying vibronic states which are not thermally populated in a laboratory source, and therefore do not appear in laser excitation spectra, but which would be expected to contribute significantly to any stellar spectrum. The strongest bands belong to the G[{omega}' 5/2]-X {sub 2} {sup 2}{delta}{sub 3/2}, I[{omega}' 3/2]-X {sub 2}, and {sup 2}{delta}{sub 3/2} I[{omega}' 3/2]-W {sub 1} {sup 2}{pi}{sub 3/2} systems. Measurements are reported for {sup 58}NiH, {sup 60}NiH, and {sup 62}NiH.

  8. Measurement of the UHECR Energy Spectrum by the Telescope Array Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas

    2013-04-01

    Ultra-high-energy cosmic rays (UHECRs), subatomic charged particles of extraterrestrial origin and with kinetic energies near or exceeding 10^18 eV, are very rare. The Telescope Array (TA) experiment in western Utah is the northern hemisphere's largest UHECR detector, and consists of three atmospheric fluorescence detectors (FDs) and a ground array of 507 scintillator detectors. In stand-alone ``monocular'' operation, the FDs can observe the widest range in primary UHECR energies. One FD employs refurbished hardware from the High-Resolution Fly's Eye experiment; the remaining two FDs were designed for TA and employ new hardware and analysis. We will present the UHECR energy spectrum measured by the FDs in monocular mode using data collected during the first four years of operation.

  9. Feasibility of hydroxyl concentration measurements by laser-saturated fluorescence in high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.; Salmon, J. Thaddeus

    1987-01-01

    The effect of pressure on the laser-saturated fluorescence method for measuring OH concentration in high-pressure flames is studied using calculations for the burned-gas region of a stoichiometric H2-O2 flame at 2000 K. A numerical model of the excitation dynamics of OH is developed to explore the validity of the balanced cross-rate model at higher pressures. It is shown that depopulation of the laser-coupled levels is sensitive to collisions which depopulate v-double-prime (VDP) = 0 and to rate coefficients for rotational transfer in the ground state which are smaller than those in the excited state. In particular, it is shown that the depopulation of VDP = 0, and hence the laser-coupled levels, depends on the probability of electronic quenching to vibrational levels for which VDP is greater than 0 and vibrational relaxation to VDP = 0.

  10. Downsizing of Georgia Tech's Airborne Fluorescence Spectrometer (AFS) for the Measurement of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1998-01-01

    This report addresses the Tropospheric Trace Gas and Airborne Measurements (TTGAMG) endeavors to further downsize and stabilize the Georgia Institute of Technology's Airborne Laser Induced Fluorescence Experiment (GITALIFE). It will mainly address the TTGAMG successes and failures as participants in the summer 1998 Wallops Island test flights on board the P3-B. Due to the restructuring and reorganization of the TTGAMG since the original funding of this grant, some of the objectives and time lines of the deliverables have been changed. Most of these changes have been covered in the preceding annual report. We are anticipating getting back on track with the original proposal's downsizing effort this summer, culminating in the GITALIFE no longer occupying a high bay rack and the loss of several hundred pounds.

  11. Thyroid iodine content measured by x-ray fluorescence in amiodarone-induced thyrotoxicosis: concise communication

    SciTech Connect

    Leger, A.F.; Fragu, P.; Rougier, P.; Laurent, M.F.; Tubiana, M.; Savole, J.C.

    1983-07-01

    Iodine-induced thyrotoxicosis (IiT) is characterized by (a) a low radioiodine uptake, increased by exogenous TSH, and (b) a spontaneous evolution towards cure within a few months. An hypothetical pathogenesis of IiT is an initial inflation in the stores of thyroid hormones during iodine excess, followed by their sudden discharge into the circulation. Thyroid iodine content was measured by fluorescent scanning in 10 patients with amiodarone-induced thyrotoxicosis and in various control groups. Results were found to be high at the onset of the disease and to decrease during its course. The data agree with the hypothetical pathogenesis. Furthermore they may permit exclusion of a painless subacute thyroiditis, which is the main differential diagnosis of IiT.

  12. Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma

    SciTech Connect

    Galante, M. E.; Magee, R. M.; Scime, E. E.

    2014-05-15

    We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup −1}) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2 cm, a time resolution of 10 ns, and a measurement cadence of 20 Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1 ms. Additionally, we find that neutral hydrogen atoms are born with 0.08 eV temperatures, not 2 eV as is typically assumed.

  13. Measuring lead, mercury, and uranium by in vivo X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    O'Meara, Joanne Michelle

    X-ray fluorescence (XRF) has been demonstrated to be a useful technique for measuring trace quantities of heavy metals in various tissues within the body. This thesis investigates a means of improving the measurement of lead in bone, as well as increasing the existing sensitivity of measuring kidney mercury content. The XRF measurement of uranium is also explored. This work assesses the feasibility of a normalisation method for the 57Co/90° system, in relating detected signal to the lead content of the sample. The feasibility of normalisation has been shown, which reduces subject dose and improves system transportability, as well as removes subjectivity, by eliminating the need for acquiring planar x-ray images of the measurement site. In the measurement of renal mercury concentrations, a gain in sensitivity increasing the x-ray tube operating voltage of the current system is investigated. It found that 250 kV, rather than 175 kV, and a titanium rather than uranium filter, results in a 2.5 +/- 0.2 times gain in sensitivity. This potential improvement could have profound clinical implications for the accuracy of occupational monitoring, and for assessing whether there is a quantitative relationship between biological fluid levels and mercury content in this critical organ. The XRF measurement of bone uranium content is also explored. Both source-excited and polarised systems have been developed, however, the sensitivity is currently beyond that which is useful for occupational monitoring of exposure to this toxin. The particular case of measuring uranium in survivors of "Friendly Fire" incidents (from Operation Desert Storm) is investigated, and the first detectable quantity of uranium has been observed in a member of this cohort, with the XRF system designed and built during the course of this work.

  14. Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Nivaggioli, Thierry; Hatton, T. Alan

    1994-01-01

    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera.

  15. Improving the modeling of the seasonal carbon cycle of the boreal forest with chlorophyll fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Thum, Tea; Aalto, Tuula; Aurela, Mika; Laurila, Tuomas; Zaehle, Sönke

    2014-05-01

    The boreal ecosystems are characterized a very strong seasonal cycle and they are very sensitive to the climatic variables. The vegetation's deep wintertime dormancy requires a long recovery time during spring before the plants reach their full photosynthetic capacity. During this recovery time the plants are highly susceptible the night frosts. The transition period is different during spring and autumn for the evergreen plants. During spring there is plenty of light, but cold air temperatures inhibit the photosynthesis. The plants therefore experience to high stress levels, as they need to protect their photosynthetic apparatus from intense light. In autumn the air temperature and light level decrease more concurrently. To have a realistic presentation of the carbon cycle in boreal forests it is important to have these characteristics properly modeled, so that also the implications of changing seasonality under climate change can be more reliably predicted. In this study, we focus on the CO2 exchange of a Scots pine forest Sodankylä located in Finnish Lapland, 100 km north from the Arctic Circle. Micrometeorological flux measurements provide information about the exchanges of carbon, energy and water between atmosphere and vegetation. To complement these fluxes, we use dark-adapted chlorophyll fluorescence (CF) measurements, which is an optical measurement and tracks the development of the photosynthetic capacity. These two approaches combined together are very useful when we want to improve the modeling of the forest's CO2 exchange. We used two models that describe the photosynthesis with the biochemical model of Farquhar et al. The FMI-CANOPY is a canopy level model that is feasible to use in parameter estimation. We used the CF measurements of Fv/Fm, that is a measure of the maximum photosynthetic capacity, to include a seasonal development in the base rate of the maximum carboxylation rate (Vc(max)) in FMI-CANOPY. The simulation results matched the

  16. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes.

    PubMed Central

    Donoso, P; Mill, J G; O'Neill, S C; Eisner, D A

    1992-01-01

    1. The fluorescent Na+ indicator SBFI was incorporated into isolated ventricular myocytes using the acetoxymethyl (AM) ester. 2. The excitation spectrum was found to be shifted about 20 nm in the cell compared to in vitro. In the cell, an increase of [Na+] decreased fluorescence at 380 nm (F380) and had no effect at 340 nm (F340). The ratio (R = F340/F380) was used as a measure of [Na+]i. 3. In vivo calibration of SBFI for [Na+]i was obtained by equilibrating [Na+] across the plasma membrane with a divalent-free solution in the presence of gramicidin D. 4. Selective removal of the surface membrane with saponin or digitonin released only about 50% of the indicator. Following saponin treatment, cyanide or carbonylcyanide m-chlorphenylhydrazone (CCCP) increased the apparent [Na+] measured by the remaining (presumably mitochondrial) SBFI. It is suggested that mitochondrial [Na+] is normally less than cytoplasmic. 5. Attempts to examine the effects of metabolic inhibition on [Na+]i were hampered by changes of autofluorescence due to changes of [NADH]. It is shown that this effect can be corrected for using the isosbestic signal (excited at 340 nm). 6. Inhibition of both aerobic metabolism (with CN-) and glycolysis (glucose removal or iodoacetate) produced a gradual increase of [Na+]i. This began before the resting contracture developed and may (via Na(+)-Ca2+ exchange) account for some of the rise of diastolic [Ca2+]i seen in previous work. The rise of [Na+]i began at about the same time as the decrease of systolic contraction and therefore at a time when [ATP]i had begun to fall. PMID:1593474

  17. Research in Depolarization and Extinction Coefficient of Particles in Tibetan Plateau by Lidar

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Song, Xiaoquan; Zhai, Xiaochun; Wu, Songhua

    2016-06-01

    Vertical profiles of the depolarization ratio and the extinction coefficient of atmospheric particles in Tibetan Plateau were measured with the OUC Water Vapor, Cloud and Aerosol Lidar during the 3rd Tibetan Plateau Atmospheric Expedition Experiment Campaign in 2013 and 2014. The cloud types and phases, the spatial temporal distribution of the aerosols and the boundary layer height in the Tibetan Plateau were obtained using polarization lidar technique. In this paper, the depolarization ratio was validated with CALIOP polarization simultaneous data, and the extinction coefficient was retrieved by the Fernald method. The result implied that the atmosphere in the Tibetan Plateau was quite clean with low aerosol load and serious pollution. The ice-water mixed cumulus, water cumulus or stratus clouds in Litang and Nagqu were occurred and classified, respectively. The boundary layer height in Nagqu at average altitude over 4600 m was obtained at around 200 m-300 m, which was commonly lower than that in other observed sites.

  18. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  19. Neutron depolarization imaging of the hydrostatic pressure dependence of inhomogeneous ferromagnets

    NASA Astrophysics Data System (ADS)

    Schulz, M.; Neubauer, A.; Böni, P.; Pfleiderer, C.

    2016-05-01

    The investigation of fragile and potentially inhomogeneous forms of ferromagnetic order under extreme conditions, such as low temperatures and high pressures, is of central interest for areas such as geophysics, correlated electron systems, as well as the optimization of materials synthesis for applications where particular material properties are required. We report neutron depolarization imaging measurements on the weak ferromagnet Ni3Al under pressures up to 10 kbar using a Cu:Be clamp cell. Using a polychromatic neutron beam with wavelengths λ ≥ 4 Å in combination with 3He neutron spin filter cells as polarizer and analyzer, we were able to track differences of the pressure response in inhomogeneous samples by virtue of high resolution neutron depolarization imaging. This provides spatially resolved and non-destructive access to the pressure dependence of the magnetic properties of inhomogeneous ferromagnetic materials.

  20. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  1. Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields

    NASA Astrophysics Data System (ADS)

    Vogt, J.; Stephan, P.

    2012-10-01

    In this paper, a novel particle image thermometry method based on microcapsules filled with a fluorescent dye solution is described. The microcapsules consist of a liquid core of hexadecane in which the dye is dissolved and a solid polymer shell. The combination of a temperature-sensitive dye (Pyrromethene 597-8C9) and a dye showing a relatively smaller temperature sensitivity (Pyrromethene 567) in hexadecane makes application of the ratiometric LIF possible. This is necessary to compensate for fluctuations of the illuminating pulsed Nd:YAG laser (532 nm) as well as the different particle sizes. The applicability of this measurement technique is demonstrated for a cubic test cell (10 × 10 × 10 mm3) with flow and temperature fields driven by natural convection and a capillary tube (1.16 mm inner diameter) inducing a temperature gradient and a Hagen-Poiseuille velocity profile. For the first case, a light sheet illumination is used making two optical accesses necessary. In the second case an inverted microscope is used, so only one optical access is needed and a volume illumination is applied. The technique facilitates high-resolution measurements (first case: 79 × 79 μm2 second case: 8 × 8 μm2). Although the measurement uncertainty is high compared to LIF measurements with dissolved dyes, temperature fields can be reproduced very well, and the experimental results are in good agreement with numerical computations.

  2. Measurement of pre-sheath flow velocities by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gulick, S. L.; Stansfield, B. L.; Abou-Assaleh, Z.; Boucher, C.; Matte, J. P.; Johnston, T. W.; Marchand, R.

    1990-12-01

    For the first time, the pre-sheath ion flow velocity has been measured using the Doppler shift of laser-induced fluorescence in singly-ionized argon ions. The velocity shows a monotonic increase, from a value of about 0.15 of the sound speed VS far from the target to 0.5 of Vs at a distance of 5 mm from the surface. The temperature, the floating potential and the density are calculated from cylindrical probe measurements taken in the same region under identical conditions. These experimental results are compared with those from a 1D isothermal single-ion fluid model of the pre-sheath and a kinetic electron/fluid ion model. Both models agree well with the density profile, but underestimate the potential change and overestimate the velocity. In addition, the bulk flow velocity has been independently determined from "Mach probe" measurements, using various candidate theories to relate the Mach number to the ratio of the upstream to downstream saturation currents. Comparison with the optical measurements indicate that the probe models which include viscosity provide reasonable agreement with our Mach probe data.

  3. Laser-fluorescence measurements of nitric oxide in low-pressure H2/O2/NO flames

    NASA Technical Reports Server (NTRS)

    Cattolica, R. J.; Mataga, T. G.; Cavolowsky, J. A.

    1989-01-01

    The concentration profiles of NO in low-pressure (76 Torr) H2/O2/Ar flames to which nitric oxide is added are measured by pulsed laser-induced fluorescence. Temporally resolved fluorescence measurements are used to determine the collisional deexcitation rates needed to convert time-integrated fluorescence signal into oxide concentration. Five flames are studied with H2/O2 equivalence ratios of 0.88, 0.98, 1.22, 1.37, and 1.50. In these flames the collisional deexcitation rate decreases rapidly above the burner surface as the density decreases with increasing temperature. A 20 percent decrease is observed for the lean flames, and a 30 percent decrease for the rich flames. Within the precision of the measurement technique (+ or - 10 percent), no significant removal of nitric oxide is observed in these flames.

  4. Quantal currents evoked by graded intracellular depolarization of crayfish motor axon terminals.

    PubMed Central

    Atwood, H L; Parnas, H; Parnas, I; Wojtowicz, J M

    1987-01-01

    1. Quantal transmitter release was examined at nerve terminals of the excitatory motor axon of the crayfish opener muscle. The magnitude of synaptic currents, recorded with macro-patch electrodes at a nerve terminal, served as a measure of quantal size. Transmitter release was initiated by pulses of depolarizing current applied intracellularly to the axonal terminals after application of tetrodotoxin. Quantal release was altered by a variety of methods and the resulting quantal output and quantal size were measured. 2. Amplitude distributions of quantal events were obtained during experimental manipulations which altered the rate of quantal release by up to 25-fold. These manipulations consisted of: varying pulse amplitude or pulse duration; facilitating the release by prolonged depolarization; and application of a potassium channel blocker, 4-aminopyridine. 3. The amplitude of quantal events is impervious to marked changes in presynaptic depolarization and is not affected by experimental procedures which promote accumulation of calcium ions in the terminals. The vesicular mechanism of release, in which transmitter substance is prepackaged in vesicles which individually undergo exocytosis at a release zone, could account for the observed results. PMID:2888878

  5. Acousto-optic deflector of depolarized laser radiation

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.

    2016-01-01

    An original acousto-optic deflector is based on the anisotropic diffraction in the paratellurite crystal. The deflector is characterized by a relatively high diffraction efficiency for depolarized laser radiation. The deflector consists of two sequential acousto-optic cells. Each cell deflects one of the orthogonally polarized components of the originally depolarized radiation. The first and second cells scan the low- and highfrequency parts of the angular interval, respectively. The simultaneous and independent operation of the cells makes it possible to use the entire optical (laser) power. A frequency band of 32 MHz is almost reached for depolarized radiation with a wavelength of 1.06 µm and the absolute angular interval is 50 mrad at a total efficiency of no less than 70%.

  6. Depolarization of subalfvenic plasma jet generating field-aligned currents

    NASA Astrophysics Data System (ADS)

    Sobyanin, D. B.; Gavrilov, B. G.; Podgorny, I. M.

    2004-01-01

    The subalfvenic magnetized plasma jet propagating across the geomagnetic field generates the field-aligned currents in ionospheric plasma. The transverse polarization electric field Ep = - V × B in the jet is reduced due to a leakage of polarization charges through the field-aligned currents (plasma jet depolarization). These phenomena are investigated in the laboratory experiment. It was revealed that the depolarization is accompanied by appearing of the electric field Ea along the plasma velocity vector and creation of an additional pair of the field-aligned currents being generated at the leading and trailing edge of the moving plasma. The value of Ea is comparable with the transverse electric field Ep. The depolarization results in the plasma jet deflection. The possibility of a manifestation of these effects in the NORTH STAR Russian-American active rocket experiment is discussed.

  7. Measurements of IO in the Tropical Marine Boundary Layer using Laser-Induced Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Walker, H.; Ingham, T.; Heard, D. E.

    2012-12-01

    Halogenated short-lived substances (VSLS) are emitted from the oceans by marine species such as macroalgae and phytoplankton and contribute to halogen loading in the troposphere and lower stratosphere. Transport of halogenated VSLS into the stratosphere occurs mainly in the tropics, where ascending warm air carries them aloft, and leads to catalytic depletion of stratospheric ozone on a global scale and formation of the Antarctic ozone hole. The tropical marine environment is therefore an important region in which to study the effects of these short-lived halogen species on ozone depletion. The SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project combines ship-borne, aircraft-based and ground-based measurements in and over the South China Sea and the Sulu Sea, and around the coast of Malaysian Borneo, to reduce uncertainties in the amount of halogenated VSLS reaching the stratosphere, the associated ozone depletion, and the effects of a changing climate on these processes. In this work we present measurements of IO radicals made onboard the German research vessel Sonne during SHIVA, between Singapore and Manila. IO is formed via photolysis of iodine-containing source gases (e.g. I2, CH3I) to produce I atoms, which react with ozone. It is therefore an important species to consider when assessing the impacts of halogen chemistry on ozone depletion. Measurements of IO were made over a two-week period by the University of Leeds Laser-Induced Fluorescence (LIF) instrument, which excites IO radicals at λ ~ 445 nm and detects the resultant fluorescence at λ ~ 512 nm. A suite of supporting gas- and aqueous-phase measurements were also made, including concentrations of halocarbons (e.g. CHBr3, CH3I), trace pollutant gases (e.g. CO, O3, NOx), and biological parameters (e.g. abundance and speciation of phytoplankton). Preliminary data analysis indicates that IO was detected above the instrumental limit of detection (0.3 pptv for a 30 minute averaging

  8. Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine.

    PubMed

    Akasofu, Shigeru; Sawada, Kohei; Kosasa, Takashi; Hihara, Hiroe; Ogura, Hiroo; Akaike, Akinori

    2008-07-01

    Long-lasting membrane depolarization in cerebral ischemia causes neurotoxicity via increases of intracellular sodium concentration ([Na+]i) and calcium concentration ([Ca2+]i). Donepezil has been shown to exert neuroprotective effects in an oxygen-glucose deprivation model. In the present study, we examined the effect of donepezil on depolarization-induced neuronal cell injury resulting from prolonged opening of Na+ channels with veratridine in rat primary-cultured cortical neurons. Veratridine (10 microM)-induced neuronal cell damage was completely prevented by 0.1 microM tetrodotoxin. Pretreatment with donepezil (0.1-10 microM) for 1 day significantly decreased cell death in a concentration-dependent manner, and a potent NMDA receptor antagonist, dizocilpine (MK801), showed a neuroprotective effect at the concentration of 10 microM. The neuroprotective effect of donepezil was not affected by nicotinic or muscarinic acetylcholine receptor antagonists. We further characterized the neuroprotective properties of donepezil by measuring the effect on [Na+]i and [Ca2+]i in cells stimulated with veratridine. At 0.1-10 microM, donepezil significantly and concentration-dependently reduced the veratridine-induced increase of [Ca2+]i, whereas MK801 had no effect. At 10 microM, donepezil significantly decreased the veratridine-induced increase of [Na+]i. We also measured the effect on veratridine-induced release of the excitatory amino acids, glutamate and glycine. While donepezil decreased the release of glutamate and glycine, MK801 did not. In conclusion, our results indicate that donepezil has neuroprotective activity against depolarization-induced toxicity in rat cortical neurons via inhibition of the rapid influx of sodium and calcium ions, and via decrease of glutamate and glycine release, and also that this depolarization-induced toxicity is mediated by glutamate receptor activation. PMID:18508044

  9. Elastic depolarization and polarization transfer in CN(A2Π, v = 4)+Ar collisions

    NASA Astrophysics Data System (ADS)

    Ballingall, Iain; Rutherford, Michael F.; McKendrick, Kenneth G.; Costen, Matthew L.

    2010-04-01

    Rate constants for collisional loss and transfer of population and rotational angular momentum alignment have been determined for the CN(A2Π, v = 4)+Ar system. Aligned samples of CN(A2Π, v = 4, F 1, j = 1.5-23.5e) were prepared by optical pumping on the A-X(4,0) band. Their evolution was observed using Doppler-resolved frequency-modulated spectroscopy in stimulated emission on the A-X(4,2) band. State-resolved total population removal rate constants, and state-to-state rotational energy transfer (RET) rate constants, are found to be in excellent agreement with previous experimental measurements and theoretical predictions for the v = 3 level. Rapid elastic depolarization of rotational alignment was observed for j = 1.5-6.5, with an average rate constant of 1.1 × 10-10 cm3 s-1. This declines with increasing j, reaching zero within experimental error for j = 23.5. The polarization transfer efficiency of the initially created alignment in state-to-state RET was also determined for the selected initial state j = 6.5, F 1, e. Substantial depolarization of the alignment was observed for small Δj transitions. Alignment transfer efficiencies ranged from 0.55 ± 0.06 for Δj = -1, to 0.32 ± 0.08 for Δj = +3. These measurements are discussed with reference to recent experimental and theoretical advances on collisional depolarization of related open-shell species. We suggest that the surprisingly efficient collisional depolarization observed may be the result of the multiple potential energy surfaces involved in this system.

  10. Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina

    NASA Astrophysics Data System (ADS)

    Sugita, Mitsuro; Pircher, Michael; Zotter, Stefan; Baumann, Bernhard; Saito, Kenichi; Makihira, Tomoyuki; Tomatsu, Nobuhiro; Sato, Makoto; Hitzenberger, Christoph K.

    2015-01-01

    Measurement and imaging of depolarization by polarization-sensitive optical coherence tomography (PS-OCT) requires averaging of Stokes vector elements within two- or three-dimensional (3-D) evaluation windows to obtain the degree of polarization uniformity (DOPU). By use of a PS-OCT system with an integrated retinal tracker, we analyze optimum conditions for depolarization imaging, data processing, and segmentation of depolarizing tissue in the human retina. The trade-offs between figures of merit like DOPU imaging sensitivity, efficiency, and susceptibility are evaluated in terms of 3-D resolution. The results are used for a new, detailed interpretation of PS-OCT high-resolution images of the human retinal pigment epithelium and Bruch's membrane.

  11. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus.

    PubMed

    Sipilä, Sampsa T; Huttu, Kristiina; Soltesz, Ivan; Voipio, Juha; Kaila, Kai

    2005-06-01

    Spontaneous periodic network events are a characteristic feature of developing neuronal networks, and they are thought to play a crucial role in the maturation of neuronal circuits. In the immature hippocampus, these types of events are seen in intracellular recordings as giant depolarizing potentials (GDPs) during the stage of neuronal development when GABA(A)-mediated transmission is depolarizing. However, the precise mechanism how GABAergic transmission promotes GDP occurrence is not known. Using whole-cell, cell-attached, perforated-patch, and field-potential recordings in hippocampal slices, we demonstrate here that CA3 pyramidal neurons in the newborn rat generate intrinsic bursts when depolarized. Furthermore, the characteristic rhythmicity of GDP generation is not based on a temporally patterned output of the GABAergic interneuronal network. However, GABAergic depolarization plays a key role in promoting voltage-dependent, intrinsic pyramidal bursting activity. The present data indicate that glutamatergic CA3 neurons have an instructive, pacemaker role in the generation of GDPs, whereas both synaptic and tonic depolarizing GABAergic mechanisms exert a temporally nonpatterned, facilitatory action in the generation of these network events. PMID:15930375

  12. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    SciTech Connect

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size

  13. Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane

    PubMed Central

    Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.

    2014-01-01

    We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776

  14. Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors

    SciTech Connect

    Golovan, L. A.; Zabotnov, S. V. Timoshenko, V. Yu.; Kashkarov, P. K.

    2009-02-15

    The effective-medium model has been generalized within the dipole approximation, with allowance for the shape anisotropy and dynamic depolarization of semiconductor nanoparticles. The calculations revealed nonmonotonic dependences for the birefringence and dichroism on the nanoparticle size. Comparison of the measured and calculated refractive index dispersion of birefringent porous silicon layers in the near-IR region indicates that consideration for the dynamic depolarization gives a better description of the optical properties for this material in comparison with the generally used effective-medium electrostatic approximation.

  15. Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield

    SciTech Connect

    Marcham, M. K.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Cavill, S. A.; Shelford, L. R.; van der Laan, G.; Telling, N. D.; Childress, J. R.; Katine, J. A.; Shafer, P.; Arenholz, E.

    2010-10-14

    Phase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L{sub 3} edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap.

  16. HCHO Measurements Using an Ultra-Compact Fiber Laser-Induced Fluorescence Instrument During BEARPEX 2009

    NASA Astrophysics Data System (ADS)

    Digangi, J. P.; Paul, J.; Henry, S. B.; Kammrath, A.; Keutsch, F.

    2009-12-01

    The oxidation of volatile organic compounds (VOCs) is central to the production of tropospheric ozone smog and the formation of secondary organic aerosol (SOA). The oxidation of biogenic VOCs (BVOCs), such as isoprene and terpenes emitted from forests, can result in elevated ozone and aerosol concentrations in rural areas away from urban pollution. Formaldehyde (HCHO) is one of the most ubiquitous VOC oxidation products and thus an important tracer of VOC oxidation. Measurements of HCHO gradients and fluxes in forests can provide valuable insight into rapid BVOC oxidation inside the forest canopy. We present field measurements of formaldehyde concentrations and gradients taken with the first deployment of the Madison FIber Laser-Induced Fluorescence (FILIF) Instrument during the Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) 2009 at a rural forest in the Sierra Nevada mountains. The instrument utilizes a novel fiber laser from NovaWave Technologies which is < 1ft3 and requires < 100 W power. The detection limit (3σ) during BEARPEX 2009 was ~ 1 ppbv/s, but modifications will improve the detection limit to < 40 pptv/s, or < 6 pptv/min. Large nighttime gradients through the canopy were observed with larger HCHO concentrations above the canopy, whereas smaller reverse gradients were observed during the day. These results will be discussed in the context of rapid in-canopy BVOC oxidation and the uncertainties in the HOx budget inside forest canopies. We will also discuss the capability of the instrument to measure HCHO fluxes via eddy correlation.

  17. Dark-field circular depolarization optical coherence microscopy

    PubMed Central

    Mehta, Kalpesh; Zhang, Pengfei; Yeo, Eugenia Li Ling; Kah, James Chen Yong; Chen, Nanguang

    2013-01-01

    Optical coherence microscopy (OCM) is a widely used structural imaging modality. To extend its application in molecular imaging, gold nanorods are widely used as contrast agents for OCM. However, they very often offer limited sensitivity as a result of poor signal to background ratio. Here we experimentally demonstrate that a novel OCM implementation based on dark-field circular depolarization detection can efficiently detect circularly depolarized signal from gold nanorods and at the same time efficiently suppress the background signals. This results into a significant improvement in signal to background ratio. PMID:24049689

  18. Possible Depolarization Mechanism due to Low Beta Squeeze

    SciTech Connect

    Ranjbar,V.; Luccio, A.; Bai, M.

    2008-04-01

    Simulations reveal a potential depolarization mechanism during low beta squeeze. This depolarization appears to be driven by a spin tune modulation caused by spin precession through the strong low beta quads due to the vertical fields. The modulation of the spin tune introduces an additional snake resonance condition at {nu}{sub s0} {+-} n{nu}{sub x} - {nu}{sub z}l = integer which while the same numerology as the well known sextupole resonance, can operate in the absence of sextupole elements.

  19. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    PubMed Central

    Sundelacruz, Sarah; Levin, Michael

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na+/K+ ATPase inhibitor, or by treatment with high concentrations of extracellular K+. To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved

  20. Source-corrected two-photon excited fluorescence measurements between 700 and 880 nm

    SciTech Connect

    Fisher, W.G.; Wachter, E.A.; Lytle, F.E.; Armas, M.; Seaton, C.

    1998-04-01

    Passively mode-locked titanium:sapphire (Ti:S) lasers are capable of generating a high-frequency train of transform-limited subpico-second pulses, producing peak powers near 10{sup 5}thinspW at moderate average powers. The low energy per pulse ({lt}20 nJ) permits low fluence levels to be maintained in tightly focused beams, reducing the possibility of saturating fluorescence transitions. These properties, combined with a wavelength tunability from approximately 700 nm to 1 {mu}m, provide excellent opportunities for studying simultaneous two-photon excitation (TPE). However, pulse formation is very sensitive to a variety of intracavity parameters, including group velocity dispersion compensation, which leads to wavelength-dependent pulse profiles as the wavelength is scanned. This wavelength dependence can seriously distort band shapes and apparent peak heights during collection of two-photon spectral data. Since two-photon excited fluorescence is proportional to the product of the peak and average powers, it is not possible to obtain source-independent spectra by using average power correction schemes alone. Continuous-wave, single-mode lasers can be used to generate source-independent two-photon data, but these sources are four to five orders of magnitude less efficient than the mode-locked Ti:S laser and are not practical for general two-photon measurements. Hence, a continuous-wave, single-mode Ti:S laser has been used to collect a source-independent excitation spectrum for the laser dye Coumarin 480. This spectrum may be used to correct data collected with multimode sources; this possibility is demonstrated by using a simple ratiometric method to collect accurate TPE spectra with the mode-locked Ti:S laser. An approximate value of the two-photon cross section for Coumarin 480 is also given. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}